WO2008018183A1 - Système de commande d'une pluralité de moteurs - Google Patents

Système de commande d'une pluralité de moteurs Download PDF

Info

Publication number
WO2008018183A1
WO2008018183A1 PCT/JP2007/000867 JP2007000867W WO2008018183A1 WO 2008018183 A1 WO2008018183 A1 WO 2008018183A1 JP 2007000867 W JP2007000867 W JP 2007000867W WO 2008018183 A1 WO2008018183 A1 WO 2008018183A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signal generator
control system
counter
motor control
Prior art date
Application number
PCT/JP2007/000867
Other languages
English (en)
French (fr)
Inventor
Tatsuo Toyonaga
Yuji Kaneko
Original Assignee
Sodick Co., Ltd.
Sodick America Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co., Ltd., Sodick America Corporation filed Critical Sodick Co., Ltd.
Priority to JP2008528723A priority Critical patent/JP4925477B2/ja
Publication of WO2008018183A1 publication Critical patent/WO2008018183A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/26Automatic controllers electric in which the output signal is a pulse-train
    • G05B11/30Automatic controllers electric in which the output signal is a pulse-train using pulse-frequency modulation

Definitions

  • the present invention relates to a motor control system for controlling a plurality of motors.
  • the present invention relates to a motor control system that controls a plurality of motors to move an object in directions of different axes.
  • Machine tools such as an electric discharge machine and a machining center include a plurality of motors that move an object in each axial direction, an analysis unit that analyzes an NC code to obtain an object movement locus, and the locus And a position / speed / current control unit for controlling the position, speed, and motor drive current.
  • the object is, for example, a tool attached to the head or a work fixed to the table.
  • machine tools are equipped with physically separated numerical controllers (N C).
  • the analysis unit is included in the numerical controller, and the N C code is sent to the analysis unit as a N C program or form input by the operator.
  • Many of the conventional machine tools were realized by one of the following typical hardware configurations.
  • the signal can be transmitted from the analysis unit via each position / speed / current control unit through a relatively low-speed wiring such as a serial bus, thereby reducing wiring. .
  • Patent Documents 1 and 2 disclose an apparatus related to motor control using the second configuration (2).
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 00 _ 2 5 2 5 2 7
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2 0 0 4 _ 2 8 0 5 0 6
  • the target device in the case of the first configuration (1), it is difficult to synchronize the target device as the position / speed / current control unit arranged for each motor. In particular, it is difficult to drive the motor synchronously, and it is not suitable for machine tools that require high-speed and high-precision performance.
  • the second configuration (2) since the current control with the heaviest computation load is processed by using only one processing device of the host device, it is processed when the machine tool requires many control axes. The processing load of the apparatus increases. For this reason, when controlling a large number of motors, it is necessary to take measures such as setting the motor execution cycle to a low frequency, making high-speed driving difficult.
  • the present invention addresses the above problems.
  • the present invention provides a motor control system that drives a plurality of motors at high speed and with high accuracy, with less wiring for control signals.
  • a motor control system that controls a plurality of motors that move an object in different axial directions uses a triangular wave signal to generate a PWM signal for driving a motor. It includes multiple target devices each including a width modulation (P WM) signal generator and a host device that supplies a synchronization signal to each target device. The target device is arranged for each motor, and the P WM signal generator Resets the triangular wave signal in response to the synchronization signal.
  • P WM width modulation
  • each P WM signal generator has a counter that repeatedly counts a clock interval to generate a triangular wave signal, and the host device has the same or the same period as the counter in the P WM signal generator. It has a counter that repeats the clock interval with an integer multiple cycle and counts it, and generates a synchronization signal when the count value of the counter in the PWM signal generator reaches a predetermined value.
  • the clock input to the counter in the host device is the power in the P WM signal generator. It is desirable to have the same frequency as the clock input to the router, but the frequency of the clock input to the counter in the host device is the same as the clock input to the counter in each PWM signal generator. Is an integer multiple of the frequency of the clock.
  • each target device further includes a reset signal generator that generates a reset signal in response to the synchronization signal, and the triangular wave signal generator resets the triangular wave signal in response to the reset signal.
  • the motor control system that controls the first and second motors that move the object in different axial directions includes the first position command and the first position command.
  • a first speed command is generated based on the first position deviation between the position feedbacks
  • a second speed command is generated based on the second position deviation between the second position command and the second position feedback.
  • Generating a first torque command based on the first speed deviation between the first speed command and the first speed feedback, and generating a second speed deviation between the second speed command and the second speed feedback.
  • a position speed controller for generating a second torque command based on The motor control system supplies a first drive current to the first motor and generates a first current feedback, and a first PWM signal as a first support amplifier.
  • a first PWM signal generator for supplying to the first PWM signal generator and a first current for supplying a first three-phase voltage command to the first PWM signal generator based on the first current feedback and the first torque command.
  • a second controller that supplies a second drive current to the second motor and generates a second current feedback; and a second PWM signal that is supplied to the second motor amplifier.
  • a second P WM signal generator for supplying to the second P WM signal generator, and a second three-phase voltage command for supplying a second three-phase voltage command to the second P WM signal generator based on the second current feedback and the second torque command.
  • Current controller a first serial bus for transmitting a first torque command to the first current controller, and a second Further comprising a second serial bus for transmitting torque command to the second current controller.
  • the first P WM signal generator has a first counter for generating a first numerical signal to generate a triangular wave signal
  • the second P WM signal generator is a triangular wave signal.
  • the position velocity controller includes a synchronization signal generator that generates a synchronization signal for synchronizing the first and second counters.
  • the motor control system that controls the first and second motors that move the object in different axial directions includes the first counter that repeatedly counts the clock interval.
  • a first PWM signal generator that has a counter and generates a first PWM signal for the first motor; and a second counter that repeatedly counts the clock interval and has a second counter for the second motor.
  • a second PWM signal generator for generating a second PWM signal; and a synchronization signal generator for generating a synchronization signal for synchronizing the first and second counters.
  • Each triangular wave generator repeatedly resets the triangular wave signal in response to the synchronization signal generated by the host device, so that an undesirable phase shift of the triangular wave signal can be suppressed. Therefore, phase synchronization of a plurality of motors can be achieved, and a high-speed and high-performance motor control system can be realized.
  • the host device and each target are adopted.
  • the device can be connected with a relatively low-speed wiring such as a serial bus, reducing the system wiring.
  • FIG. 1 is a block diagram showing a motor control system of the present invention.
  • FIG. 2 (A) is a flowchart showing a count value signal in the host device, (B) is a flowchart showing a synchronization signal in the host device, (C) is a flowchart showing a reset signal in the target device, D) is a flowchart showing the count value signal in the target device, and (E) is a flow chart showing the triangular wave signal in the target device.
  • the motor control system 1 0 0 includes a host device 2, It includes a hub 3 and an X-axis control device 4 X and a Y-axis control device 4 y as target devices.
  • the motor control system 1 0 0 controls two thermometers 5 1 X and 5 1 y that move the object in two directions, the X axis and the Y axis.
  • the control axis is not limited to this. If additional control axes are required, a motor and target device similar to X-axis controller 4 X can be added.
  • Human interface 1 is a device equipped with a computer, for example, a personal computer equipped with a keyboard, a mouse, a display device and the like.
  • the human interface 1 and the host device 2 are contained in a numerical controller (“N C”) that is physically separated from the machine tool.
  • N C numerical controller
  • the operator who operates the machine tool can input various data, commands, etc. via the human interface 1, which are supplied to the host device 2.
  • the host device 2 includes an analyzer and a position / velocity controller 21, a memory 22, and a serial / parallel converter 23.
  • the analyzer and the position / velocity controller 2 1 are composed of one C PU or the like.
  • the analyzer and the position / velocity controller 21 have an internal data / program storage unit (memory) (not shown), and the NC program is stored in the storage unit prior to machining.
  • the analyzer and the position / velocity controller 21 analyze the N C code described in the N C program to obtain trajectory information on which the object moves. Furthermore, the analyzer and the position / speed controller 21 generate position commands for the motors 51 x and 51 y based on the trajectory information.
  • Position feedback for the X-axis and Y-axis is supplied to the position / speed controller 21 from a position detector appropriately provided in the servo motors 51 X and 51 y. Based on the position deviation between position command and position feedback, speed commands for servo motors 5 1 X and 5 1 y are generated. Furthermore, torque commands for the servo motors 5 1 X and 5 1 y are generated based on the speed command and the speed deviation between the speed feedback, which is the differential value of the position feedback.
  • the torque command is temporarily stored in the memory 22 and stored in the serial / parallel converter 23. Therefore, the parallel signal is converted into a serial signal and supplied to the X-axis control device 4 X and the Y-axis control device 4 y. In this way, the position / speed control processing with a light processing load is executed by only one processing device, that is, the analyzer and the position / speed controller 2 1. Current control with a high processing load is performed by each of the X-axis controller 4 X and the Y-axis controller 4 y. In this way, the host device 2 and the X-axis control device 4 X and the Y-axis control device 4 y can be wired using the relatively low-speed serial bus 3 2. Therefore, the number of wires in the motor control system can be reduced.
  • the hub 3 is a distributor for transmitting the torque command generated by the host device 2 to the X-axis control device 4 X and the Y-axis control device 4 y.
  • X-axis controller 4 X is serial / parallel converter 4 1 x, memory 4 2 x, current controller 4 3 x, P WM signal generator 4 4 x, support amplifier 4 5 x, encoder counter 4 Includes 6 X and reset signal generator 4 7 X.
  • the serial / parallel converter 4 1 X converts the torque command transmitted from the host device 2 via the hub 3 and the serial bus 3 2 from a serial signal to a parallel signal.
  • the converted torque command is temporarily stored in the memory 4 2 X.
  • the current controller 4 3 X consists of only one CPU.
  • the feed back of the motor 5 1 X is generated by the encoder counter 4 6 X, the current feedback is generated by the temperature amplifier 4 5 X, and both feedback to the current controller 4 3 X Have been supplied.
  • the current controller 4 3 X reads the torque command stored in the memory 4 2 and generates a three-phase voltage command based on the position feedback, current feedback, and torque command.
  • the P WM signal generator 4 4 X has a triangular wave generator 4 4 1 X that generates a triangular wave of a predetermined period, and generates a P WM signal based on the triangular wave signal and a three-phase voltage command.
  • the support amplifier 4 5 X generates a drive current based on the P WM signal, and supplies the drive current to the servo motor 5 1 X.
  • the support motor 5 1 X has a rotary encoder 5 2 X.
  • the rotary encoder 5 2 X supplies the rotation position of the thermomotor 5 1 X to the encoder counter 4 6 X as a pulse signal.
  • the triangular wave generator 4 4 1 X has a clock generator (not shown) and a counter 4 4 2 X, and the counter 4 4 2 x is a clock.
  • the count interval signal is generated as shown in Fig. 2 (D).
  • the triangular wave generator 441 X generates the triangular wave signal shown in FIG. 2 (E) using the count value signal.
  • the counter 442 X may be an up / down counter, or may simply be a counter that repeats counting from zero to an upper limit value.
  • Y-axis control device 4y is implemented using the same elements as X-axis control device 4X described above, description thereof will not be repeated here.
  • the present invention achieves matching of the period of the triangular wave generated by the triangular wave generators 441 X and 441 y and synchronous driving of the servo motors 51 X and 51 y. Therefore, the clock generators in the triangular wave generators 441 X and 441 y generate clock intervals with the same or an integer multiple of the frequency. In practice, however, the cookie generators are separate, and each cookie becomes asynchronous over time. As a result, the count value signals of the counters 442 X and 442 y vary, which causes a phase shift in the triangular waves generated by the triangular wave generators 441 X and 441 y. If this happens, each motor will be in an asynchronous state, making it impossible to perform high-precision control of the motor.
  • a synchronization signal generator 211 for generating a synchronization signal for simultaneously resetting each triangular wave signal generator is provided in the position / speed controller 21.
  • the synchronization signal generator 21 1 has a counter 21 2 that repeatedly counts the clock interval at the same cycle as the cycle of the counters 442 X and 442 y or an integer multiple thereof.
  • FIG. 2 (A) shows the count value signal generated by the counter 212.
  • the counter 21 2 counts clock intervals output from a clock generator (not shown) installed inside or outside.
  • the counter 212 may be an up / down counter, or may simply be an up counter that repeats counting from zero to an upper limit value. As shown in FIG.
  • the synchronization signal generator 21 1 generates a signal PH—CLK, that is, a synchronization signal every time the count value of the counter 21 2 reaches a predetermined value.
  • Signal PH—C LK is a rectangle that switches between “Hi” and “Low” every time the count signal in Fig. 2 (A) becomes "0". Signal.
  • the signal PH—CLK switches from “L ow” to “H i” at time t 1, and switches from “H i” to “L ow” at time t 2.
  • the signal PH—C LK is supplied to the reset signal generators 47 X and 47 y via the hub 3, the serial bus 32 and the serial / parallel converter 41 X.
  • the P WM signal generators 44 X and 44 y reset the respective count value signals to zero in response to the synchronization signal PH—CLK, and counting starts again. By doing this, the phase shift of the triangular wave signal generated in the triangular wave generators 441 X and 441 y is periodically corrected, and synchronization of each triangular wave signal is achieved.
  • the reset signal generator 47 X generates a pulse signal S Y N C—COM as a reset signal in response to the rising edge of the signal PH—C L K.
  • the signal SYNC_COM is generated, for example, at time t 1 and time t 3, that is, for each period of the signal P H—C L K.
  • the signal SYNC—C OM is fed to the triangular wave generator 441 X.
  • the triangular wave generator 441 x resets the count value signal to zero in response to the rising edge of the signal SYNC—COM and starts generating the count value signal again.
  • the triangular wave generator 441 X resets the triangular wave signal in response to the reset signal.
  • the count value signal is reset at time t 1 and time t 3. Even if there is a phase shift between the triangular wave signals generated by the triangular wave generators 441 X and 441 y from time t 1 to time t 3, the count signal resets in response to the rising edge of the signal SYNC-COM. Since ⁇ is repeatedly executed, the phase shift between each triangular wave signal can be suppressed. Therefore, the synchronization of the super motors 51 X and 51 y is achieved, and a high-speed and high-performance motor control system is realized.
  • the present invention is not limited to the disclosed form. Many modifications and variations are possible with reference to the above description.
  • the count value signals of counters 442 X and 442 y are Signal SYNC—Reset to zero in response to the rising edge of COM. Alternatively, these count signals may be reset to zero in response to the rising edge of the signal PH-CLK.
  • the illustrated embodiment was chosen to illustrate the nature and practical application of the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Multiple Motors (AREA)

Description

明 細 書
複数のモータを制御するモータ制御システム
技術分野
[0001 ] 本発明は、 複数のモータを制御するモータ制御システムに関する。 特に、 本 発明は、 複数モータを制御して対象物を異なる軸の方向に移動させるモータ 制御システムに関する。
背景技術
[0002] 放電加工機およびマシニングセンタのような工作機械は、 対象物を各軸方向 に移動させる複数モータと、 N Cコ一ドを解析して対象物が移動する軌跡を 求める解析部と、 その軌跡に基づいて位置、 速度およびモータ用駆動電流を 制御する位置/速度/電流制御部を備えて構成されている。 対象物は、 例え ば、 ヘッドに取り付けられた工具、 またはテ一ブルに固定されたワークであ る。 一般的に、 工作機械は物理的に離れた数値制御装置 (N C ) を備えてい る。 解析部は数値制御装置の中に含まれ、 N Cコードは N Cプログラムまた は操作者による書式入力として解析部へ送られる。 従来の工作機械の多くは 、 以下の典型的なハードウエア構成のいずれかによつて実現されていた。
( 1 ) 1つの解析部がホスト装置として設けられ、 位置/速度/電流制御部 とサ一ポアンプがターゲット装置としてモータ毎に設けられている構成。
( 2 ) 解析部と位置/速度/電流制御部が同一のホスト装置であり、 電流指 令がホスト装置から各モータ用のサーポアンプへ送られる構成。
[0003] 最初の構成 (1 ) の場合、 信号は解析部から各位置/速度/電流制御部ヘシ リアルバス等の比較的低速な配線によって送信可能であるため、 省配線化が 可能であった。
[0004] 第 2の構成 (2 ) の場合、 各モータ用サーポアンプに対する電流指令がただ
1つのホスト装置の出力を用いて決定されるため、 複数のモータを同期させ 易く、 高速高精度な駆動を実現できる。 特許文献 1および 2は、 第 2の構成 ( 2 ) を用いたモータ制御に関する装置を開示している。 特許文献 1 :特開 2 0 0 4 _ 2 5 2 5 2 7号公報
特許文献 2:特開 2 0 0 4 _ 2 8 0 5 0 6号公報
発明の開示
発明が解決しょうとする課題
[0005] しかしながら、 第 1の構成 (1 ) の場合、 モータ毎に配置された位置/速度 /電流制御部としてのターゲット装置を同期させることが困難である。 特に 、 モータの同期駆動が困難であり、 高速高精度な性能が要求される工作機械 には不向きである。 また、 第 2の構成 (2 ) の場合、 演算負荷が最も重い電 流制御がただ 1つのホスト装置の処理装置を用いて処理されるため、 工作機 械が多くの制御軸を必要とすると処理装置の処理負荷が増大してしまう。 こ のため、 多数のモータを制御する場合はモータの実行周期を低い周波数に設 定するなどの対応が必要となり、 高速駆動が困難であった。
[0006] 本発明は上記の問題に対応するものである。 概して、 本発明は、 制御信号用 の配線が少ない、 複数のモータを高速で高精度に駆動するモータ制御システ ムを提供するものである。
課題を解決するための手段
[0007] 本発明の一側面によれば、 対象物を異なる各軸方向に移動させる複数のモー タを制御するモータ制御システムは、 三角波信号を用いてモータ駆動用の P WM信号を生成するパルス幅変調 (P WM ) 信号生成器をそれぞれが含む複 数のターゲット装置と、 各ターゲット装置へ同期化信号を供給するホスト装 置を含み、 ターゲット装置はモータ毎に配置され、 P WM信号生成器は同期 化信号に応答して三角波信号をリセッ卜する。
[0008] 好ましくは、 各 P WM信号生成器は三角波信号を生成するためにクロック間 隔を繰り返しカウン卜するカウンタを有し、 ホスト装置は P WM信号生成器 中のカウンタの周期と同じまたはその整数倍の周期でクロック間隔を繰り返 しカウン卜するカウンタを有し P WM信号生成器中のカウンタの計数値が所 定値に達したとき同期化信号を生成する。
[0009] ホスト装置中のカウンタへ入力されるクロックは、 P WM信号生成器中の力 ゥンタが入力するク口ックと同じ周波数を有することが望ましいが、 ホスト 装置中のカウンタへ入力されるク口ックの周波数は、 各 P WM信号生成器中 のカウンタへ入力されるク口ックの周波数の整数倍である。
[0010] また、 好ましくは、 各ターゲット装置は同期化信号に応答してリセット信号 を生成するリセット信号生成器を更に含み、 三角波信号生成器はリセット信 号に応答して三角波信号をリセッ卜する。
[001 1 ] 本発明の別の側面によれば、 異なる各軸方向に対象物を移動させる第 1およ び第 2のモータを制御するモータ制御システムは、 第 1の位置指令と第 1の 位置フィードバック間の第 1の位置偏差に基づいて第 1の速度指令を生成し 、 第 2の位置指令と第 2の位置フィ一ドバック間の第 2の位置偏差に基づい て第 2の速度指令を生成し、 第 1の速度指令と第 1の速度フィードバック間 の第 1の速度偏差に基づいて第 1のトルク指令を生成し第 2の速度指令と第 2の速度フィードバック間の第 2の速度偏差に基づいて第 2のトルク指令を 生成する位置速度制御器を含む。 そのモータ制御システムは、 第 1の駆動電 流を第 1のモータへ供給すると共に第 1の電流フィードバックを発生する第 1のサ一ポアンプと、 第 1の P WM信号を第 1のサ一ポアンプへ供給する第 1の P WM信号生成器と、 第 1の電流フィードバックと第 1のトルク指令に 基づいて第 1の三相電圧指令を第 1の P WM信号生成器へ供給する第 1の電 流制御器と、 第 2の駆動電流を第 2のモータへ供給すると共に第 2の電流フ イードバックを生成する第 2のサ一ポアンプと、 第 2の P WM信号を第 2の サ一ポアンプへ供給する第 2の P WM信号生成器と、 第 2の電流フィードバ ックと第 2のトルク指令に基づいて第 2の三相電圧指令を第 2の P WM信号 生成器へ供給する第 2の電流制御器と、 第 1のトルク指令を第 1の電流制御 器へ送信する第 1のシリアルバスと、 第 2のトルク指令を第 2の電流制御器 へ送信する第 2のシリアルバスを更に含む。
[0012] 好ましくは、 第 1の P WM信号生成器は三角波信号を生成するため第 1の計 数値信号を生成する第 1のカウンタを有し、 第 2の P WM信号生成器は三角 波信号を生成するため第 2の計数値信号を生成する第 2のカウンタを有し、 位置速度制御器は第 1および第 2のカウンタを同期させる同期化信号を生成 する同期化信号生成器を含む。
[0013] 本発明の更に他の側面によれば、 異なる各軸方向に対象物を移動させる第 1 および第 2のモータを制御するモータ制御システムは、 クロック間隔を繰り 返しカウン卜する第 1のカウンタを有し第 1のモータ用の第 1の P WM信号 を生成する第 1の P WM信号生成器と、 クロック間隔を繰り返しカウン卜す る第 2のカウンタを有し第 2のモータ用の第 2の P WM信号を生成する第 2 の P WM信号生成器と、 第 1および第 2のカウンタを同期させる同期化信号 を生成する同期化信号生成器を含む。
発明の効果
[0014] ホスト装置が生成した同期化信号に応答して各三角波生成器が三角波信号の リセットを繰り返し行うことにより、 三角波信号の望ましくない位相ずれを 抑えることができる。 したがって、 複数のモータの位相同期化を達成するこ とができると共に、 高速高性能なモータ制御システムを実現することができ る。
[0015] また、 処理負荷の軽い位置制御および速度制御がホスト装置において実行さ れ、 処理負荷の重い電流制御が各ターゲット装置において実行される構成を 採用することにより、 ホスト装置と各タ一ゲット装置とをシリアルバス等の 比較的低速な配線によって接続することができ、 システムを省配線化できる
[001 6] 発明の他の新規な特徴は、 以下の説明中に述べられる。
図面の簡単な説明
[0017] [図 1 ]図 1は、 本発明のモータ制御システムを示すブロック図である。
[図 2] ( A ) はホスト装置内の計数値信号を示すフローチャート、 (B ) はホ スト装置内の同期化信号を示すフローチャート、 (C ) はターゲット装置内 のリセット信号を示すフローチャート、 (D ) はターゲット装置内の計数値 信号を示すフローチャート、 (E ) はターゲット装置内の三角波信号を示す フローチヤ一トである。 符号の説明
[0018] 1 ヒューマン■インタ一フェイス
1 0 0 モータ制御システム
2 ホスト装置
2 1 解析器および位置 速度制御器
2 1 1 同期化信号生成器
2 1 2 カウンタ
2 2 メモリ
2 3 シリアル/パラレル変換器
3 ハブ
3 2 シリアルバス
4 X X軸制御装置
4 y Y軸制御装置
4 1 χ、 4 1 y シリアル/パラレル変:
4 2 x、 4 2 y メモリ
4 ό x、 4 3 y 電流制御器
4 4 x、 4 4 y P WM信号生成器
4 4 1 x 、 4 4 1 y 三角波生成器
4 4 2 x 、 4 4 2 y カウンタ
4 5 x、 4 5 y サーポアンプ
4 6 x、 4 6 y エンコーダカウンタ
4フ χ、 4 7 y リセット信号生成器
5 1 χ、 5 1 y サーボモ一タ
5 2 x、 5 2 y ロータリエンコーダ
発明を実施するための最良の形態
[001 9] 以下、 図面を参照して本発明のモータ制御システムの一実施例が説明される [0020] 図 1中に示されるように、 モータ制御システム 1 0 0は、 ホスト装置 2と、 ハブ 3と、 ターゲット装置としての X軸制御装置 4 X及び Y軸制御装置 4 y を含んでいる。 説明を簡単にするため、 本実施例では、 モータ制御システム 1 0 0は、 対象物を X軸および Y軸の 2方向に移動させる 2つのサ一ポモ一 タ 5 1 Xおよび 5 1 yを制御する。 しかしながら、 制御軸はこの限りではな し、。 追加の制御軸が必要とされる場合、 モータと、 X軸制御装置 4 Xと同様 のターゲット装置を追加することができる。
[0021 ] ヒューマン■インタ一フェイス 1はコンピュータを備えた装置であり、 例え ばキーボード、 マウス、 表示装置等を備えたパソコンである。 本実施例では 、 ヒューマン .インタ一フェイス 1 とホスト装置 2は、 工作機械から物理的 に離れた数値制御装置 ( 「N C」 ) の中に含まれている。 工作機械を操作す る操作者はヒューマン■インタ一フヱイス 1を介して各種のデータ、 指令等 を入力することができ、 それらはホスト装置 2へ供給される。
[0022] ホスト装置 2は、 解析器および位置/速度制御器 2 1 と、 メモリ 2 2と、 シ リアル/パラレル変換器 2 3を備えて構成されている。 解析器および位置/ 速度制御器 2 1は、 1つの C P U等によって構成されている。 解析器および 位置/速度制御器 2 1は、 内部にデータ/プログラム記憶部 (メモリ) (図 示しない) を備え、 加工に先立って N Cプログラムがその記憶部に記憶され る。 解析器および位置/速度制御器 2 1は、 N Cプログラムに記述された N Cコードを解析して対象物が移動する軌跡情報を求める。 更に、 解析器およ び位置/速度制御器 2 1は、 軌跡情報に基づいて、 モータ 5 1 x、 5 1 yの それぞれの位置指令を発生する。 X軸および Y軸用の位置フィードバックが 、 サーポモータ 5 1 Xおよび 5 1 y中に適当に設けられた位置検出器から位 置/速度制御器 2 1へ供給されている。 位置指令と位置フィードバック間の 位置偏差に基づいて、 サーポモータ 5 1 Xおよび 5 1 y用の速度指令が発生 される。 更に、 速度指令と、 位置フィードバックの微分値である速度フィー ドバック間の速度偏差に基づいてサ一ポモータ 5 1 Xおよび 5 1 y用のトル ク指令が発生される。
[0023] トルク指令はメモリ 2 2に一旦記憶され、 シリアル/パラレル変換器 2 3に よってパラレル信号からシリアル信号に変換されて X軸制御装置 4 Xおよび Y軸制御装置 4 yへ供給される。 このように処理負荷の軽い位置/速度制御 処理が、 ただ 1つの処理装置、 すなわち解析器および位置/速度制御器 2 1 によって実行される。 処理負荷の高い電流制御は X軸制御装置 4 Xおよび Y 軸制御装置 4 yのそれぞれで実行される。 こうして、 ホスト装置 2と X軸制 御装置 4 Xおよび Y軸制御装置 4 yとの間を比較的低速なシリアルバス 3 2 を用いて配線できる。 したがって、 モータ制御システム中の配線数を削減で きる。 ハブ 3はホスト装置 2が生成するトルク指令を X軸制御装置 4 Xおよ び Y軸制御装置 4 yへ送信するための分配器である。
X軸制御装置 4 Xは、 シリアル/パラレル変換器 4 1 x、 メモリ 4 2 x、 電 流制御器 4 3 x、 P WM信号生成器4 4 x、 サ一ポアンプ 4 5 x、 ェンコ一 ダカウンタ 4 6 Xおよびリセット信号生成器 4 7 Xを含んでいる。 シリアル /パラレル変換器 4 1 Xはホスト装置 2からハブ 3およびシリアルバス 3 2 を介して送信されたトルク指令をシリアル信号からパラレル信号に変換する 。 変換されたトルク指令はメモリ 4 2 Xに一旦記憶される。 電流制御器 4 3 Xはただ 1つの C P Uによって構成されている。 サ一ポモータ 5 1 Xの位置 フィ一ドバックがエンコーダカウンタ 4 6 Xによって発生され、 電流フィ一 ドノくックがサ一ポアンプ 4 5 Xによって発生され、 両フィードバックが電流 制御器 4 3 Xへ供給されている。 電流制御器 4 3 Xはメモリ 4 2に記憶され たトルク指令を読み出し、 位置フィードバック、 電流フィードバックおよび トルク指令に基づいて三相電圧指令を生成する。 P WM信号生成器 4 4 Xは 所定周期の三角波を生成する三角波生成器 4 4 1 Xを有し、 三角波信号と三 相電圧指令に基づいて P WM信号を生成する。 サ一ポアンプ 4 5 Xは P WM 信号に基づいて駆動電流を発生し、 駆動電流をサーポモータ 5 1 Xへ供給す る。 サ一ポモータ 5 1 Xはロータリエンコーダ 5 2 Xを備えている。 ロータ リエンコーダ 5 2 Xはサ一ポモータ 5 1 Xの回転位置をパルス信号としてェ ンコーダカウンタ 4 6 Xへ供給する。 三角波生成器 4 4 1 Xは、 クロック発 生器 (図示しない) とカウンタ 4 4 2 Xを有し、 カウンタ 4 4 2 xはクロッ ク間隔をカウントして図 2 (D) 中に示された計数値信号を生成する。 三角 波生成器 441 Xは、 計数値信号を用いて図 2 (E) 中に示された三角波信 号を生成する。 カウンタ 442 Xはアップダウンカウンタであってもよいし 、 単に零から上限値までのカウントを繰り返すカウンタであってもよい。
[0025] Y軸制御装置 4 yは上述の X軸制御装置 4 Xと同様の要素を用いて実現され ているため、 ここではその説明を繰り返さない。
[0026] 本発明は三角波生成器 441 Xおよび 441 yが生成する三角波の周期の一 致と、 サーポモータ 51 Xおよび 51 yの同期駆動を達成する。 そのため、 三角波生成器 441 Xおよび 441 y中のクロック発生器は、 同じまたは整 数倍の周波数をもつクロック間隔を発生する。 しかしながら、 実際には、 ク 口ック発生器は別個であるので、 それぞれのク口ックは時間の経過とともに 非同期となってしまう。 その結果、 カウンタ 442 Xおよび 442 yの計数 値信号にばらつきが生じてしまい、 そのことが三角波生成器 441 Xおよび 441 yが生成する三角波に位相ずれを引き起こしてしまう。 このような事 態になると、 各モータは非同期状態となり、 モータの高精度制御を行うこと ができなくなってしまう。
[0027] そこで、 各三角波信号生成器を同時にリセットする同期化信号を生成する同 期化信号生成器 21 1が位置/速度制御器 21の中に設けられる。 同期化信 号生成器 21 1は、 カウンタ 442 Xおよび 442 yの周期と同じまたはそ の整数倍の周期でクロック間隔を繰り返しカウン卜するカウンタ 21 2を有 する。 図 2 (A) は、 カウンタ 21 2が生成する計数値信号を示す。 カウン タ 21 2は内部または外部に設置されたクロック発生器 (図示しない) から 出力されるクロック間隔をカウントする。 カウンタ 21 2は、 アップダウン カウンタであってもよいし、 単に零から上限値までのカウントを繰り返すァ ップカウンタであってもよい。 同期化信号生成器 21 1は、 図 2 (B) 中に 示されるように、 カウンタ 21 2の計数値が所定値に達する毎に信号 PH— C LK、 すなわち同期化信号を生成する。 信号 PH— C LKは、 図 2 (A) 中の計数値信号が "0" になる度に "H i " と "L ow" を切り替える矩形 信号である。 例えば、 信号 P H— C L Kは、 時刻 t 1で " L o w" から "H i " に切り替わり、 時刻 t 2で "H i " から "L ow" に切り替わる。 信号 PH— C LKは、 ハブ 3、 シリアルバス 32およびシリアル/パラレル変換 器 41 Xを介してリセット信号生成器 47 Xおよび 47 yへ供給される。 P WM信号生成器 44 Xおよび 44 yはこの同期化信号 P H— C L Kに応じて それぞれの計数値信号を零にリセットし、 再びカウントが始まる。 こうする ことにより、 三角波生成器 441 Xおよび 441 yにおいて生成された三角 波信号の位相ずれが定期的に修正され、 各三角波信号の同期化が達成される
[0028] 説明を簡単にするため、 以下、 主に X軸制御装置 4 X中に含まれる要素を用 いて説明を行うが、 Y軸制御装置 4 yでも同様の信号処理が実行される。
[0029] リセット信号生成器 47 Xは、 図 2 (C) 中に示されるように、 信号 PH— C L Kの立ち上がりに応答してリセット信号としてのパルス信号 S Y N C— COMを生成する。 信号 SYNC_COMは、 例えば時刻 t 1および時刻 t 3で、 つまり信号 P H— C L Kの 1周期毎に生成される。 信号 SYNC— C OMは三角波生成器 441 Xへ供給される。 三角波生成器 441 xは、 信号 SYNC— COMの立ち上がりに応答して計数値信号を零にリセッ卜し、 再 び計数値信号の生成を開始する。 こうして、 三角波生成器 441 Xは、 リセ ット信号に応答して三角波信号をリセッ卜する。 例えば、 時刻 t 1および時 刻 t 3で計数値信号のリセッ卜が実行される。 時刻 t 1から時刻 t 3の間で 、 三角波生成器 441 Xおよび 441 yにおいて生成された三角波信号の間 で位相ずれが生じても、 信号 S Y N C— COMの立ち上がりに応答して計数 値信号のリセッ卜が繰り返し実行されるため、 各三角波信号間の位相ずれを 抑えることができる。 従って、 サ一ポモータ 51 Xおよび 51 yの同期化が 達成され、 高速高性能なモータ制御システムが実現される。
[0030] 本発明は開示された形式に限定されるものではない。 上記の説明を参照して 多くの改良および変形が可能である。 例えば、 図 2 (C) および図 2 (D) 中に示されているように、 カウンタ 442 Xおよび 442 yの計数値信号は 信号 S Y N C— C O Mの立ち上がりに応答して零にリセッ卜されている。 そ の代わりに、 それら計数値信号を信号 P H— C L Kの立ち上がりに応答して 零にリセッ卜するようにしてもよい。 図示の実施例は発明の本質と実用化を 説明するために選ばれた。
本発明はさまざまな図と実施例を参照して詳しく説明されたが、 当然のこと ながらそれらは例示のみを目的としており発明の範囲を限定するものと見な すべきではない。 当業者は、 本発明の精神と範囲から逸脱することなく本発 明に多くの変更および修正をなすことができる。

Claims

請求の範囲
[1 ] 対象物を異なる各軸方向に移動させる複数のモータを制御するモータ制御シ ステムにおいて、
三角波信号を用いてモータ駆動用の P WM信号を生成する P WM信号生成器 をそれぞれが含む複数のターゲット装置と、
各前記ターゲット装置へ同期化信号を供給するホスト装置を含み、 各前記タ一ゲット装置は対応するモータと共に配置され、 各前記 P WM信号 生成器は前記同期化信号に応答して前記三角波信号をリセッ卜するモータ制 御システム。
[2] 各前記 P WM信号生成器は前記三角波信号を生成するためク口ック間隔を繰 り返しカウン卜するカウンタを含み、 前記ホスト装置は前記 P WM信号生成 器中の前記カウンタの周期と同じまたはその整数倍の周期でクロック間隔を 繰り返しカウン卜するカウンタを有し前記 P WM信号生成器中の前記カウン タの計数値が所定値に達したとき同期化信号を生成する請求項 1のモータ制 御システム。
[3] 各前記ターゲット装置は前記同期化信号に応答してリセット信号を生成する リセット信号生成器を更に含み、 前記 P WM信号生成器は前記リセット信号 に応答して前記三角波信号をリセッ卜する請求項 1のモータ制御システム。
[4] 前記ホスト装置はシリアルバスを介して各前記ターゲット装置へ接続される 請求項 1のモータ制御システム。
[5] 異なる各軸方向に対象物を移動させる第 1および第 2のモータを制御するモ ータ制御システムにおいて、
第 1の位置指令と第 1の位置フィードバック間の第 1の位置偏差に基づいて 第 1の速度指令を生成し、 第 2の位置指令と第 2の位置フィードバック間の 第 2の位置偏差に基づいて第 2の速度指令を生成し、 第 1の速度指令と第 1 の速度フィードバック間の第 1の速度偏差に基づいて第 1のトルク指令を生 成し第 2の速度指令と第 2の速度フィ一ドバック間の第 2の速度偏差に基づ いて第 2のトルク指令を生成する位置速度制御器と、 第 1の駆動電流を前記第 1のモータへ供給すると共に第 1の電流フィードバ ックを発生する第 1のサーポアンプと、
第 1の P WM信号を前記第 1のサ一ポアンプへ供給する第 1の P WM信号生 成器と、
前記第 1の電流フィードバックと前記第 1のトルク指令に基づいて第 1の三 相電圧指令を前記第 1の P WM信号生成器へ供給する第 1の電流制御器と、 第 2の駆動電流を前記第 2のモータへ供給すると共に第 2の電流フィ一ドバ ックを生成する第 2のサーポアンプと、
第 2の P WM信号を前記第 2のサ一ポアンプへ供給する第 2の P WM信号生 成器と、
前記第 2の電流フィ一ドバックと前記第 2のトルク指令に基づいて第 2の三 相電圧指令を前記第 2の P WM信号生成器へ供給する第 2の電流制御器と、 前記第 1のトルク指令を前記第 1の電流制御器へ送信する第 1のシリアルバ スと、
前記第 2のトルク指令を前記第 2の電流制御器へ送信する第 2のシリァルバ スを含むモータ制御システム。
[6] 前記第 1の P WM信号生成器は三角波信号を生成するため第 1の計数値信号 を生成する第 1のカウンタを有し、 前記第 2の P WM信号生成器は三角波信 号を生成するため第 2の計数値信号を生成する第 2のカウンタを有し、 前記 位置速度制御器は前記第 1および第 2のカウンタを同期させる同期化信号を 生成する同期化信号生成器を含む請求項 5のモータ制御システム。
[7] 前記同期化信号生成器は前記第 1および第 2のカウンタの周期と同じまたは その整数倍の周期で繰り返しクロック間隔をカウン卜する第 3のカウンタを 含む請求項 5のモータ制御システム。
[8] 異なる各軸方向に対象物を移動させる第 1および第 2のモータを制御するモ ータ制御システムにおいて、
クロック間隔を繰り返しカウン卜する第 1のカウンタを有し前記第 1のモー タ用の第 1の P WM信号を生成する第 1の P WM信号生成器と、 クロック間隔を繰り返しカウン卜する第 2のカウンタを有し前記第 2のモー タ用の第 2の P WM信号を生成する第 2の P WM信号生成器と、
前記第 1および第 2のカウンタを同期させる同期化信号を生成する同期化信 号生成器を含むモータ制御システム。
前記同期化信号生成器は前記第 1および第 2のカウンタの周期と同じまたは その整数倍の周期で繰り返しクロック間隔をカウン卜する第 3のカウンタを 含む請求項 8のモータ制御システム。
PCT/JP2007/000867 2006-08-10 2007-08-10 Système de commande d'une pluralité de moteurs WO2008018183A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008528723A JP4925477B2 (ja) 2006-08-10 2007-08-10 複数のモータを制御するモータ制御システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/501,846 2006-08-10
US11/501,846 US7463003B2 (en) 2006-08-10 2006-08-10 Motor control system for controlling a plurality of motors

Publications (1)

Publication Number Publication Date
WO2008018183A1 true WO2008018183A1 (fr) 2008-02-14

Family

ID=39032723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000867 WO2008018183A1 (fr) 2006-08-10 2007-08-10 Système de commande d'une pluralité de moteurs

Country Status (3)

Country Link
US (1) US7463003B2 (ja)
JP (1) JP4925477B2 (ja)
WO (1) WO2008018183A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020073417A (ja) * 2010-12-15 2020-05-14 シムボティック エルエルシー 自律搬送車両

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2138917A1 (de) * 2008-06-26 2009-12-30 Siemens Aktiengesellschaft Verfahren zur Synchronisation einer Mehrzahl von Antrieben sowie nach dem Verfahren betreibbarer Antrieb
JP4580023B2 (ja) * 2009-03-02 2010-11-10 ファナック株式会社 複数の巻線を備えたモータを駆動するモータ駆動システム
IL203642A (en) * 2010-02-01 2014-01-30 Yesaiahu Redler A system and method for optimizing electric current utilization in the control of multiplex motors, and a projectile device containing it
JP6184712B2 (ja) * 2013-03-22 2017-08-23 Ntn株式会社 モータ駆動装置
KR101491933B1 (ko) 2013-11-19 2015-02-09 엘에스산전 주식회사 병렬 인버터 제어 장치
CN106092148B (zh) * 2015-04-29 2020-02-28 恩智浦美国有限公司 用于测量物体运动的基于计数器的电路
CN109891733A (zh) * 2016-12-22 2019-06-14 日本电产株式会社 马达驱动系统
CN109656199B (zh) * 2018-12-26 2021-07-30 湖南航天机电设备与特种材料研究所 基于时钟激励反馈量同步处理的伺服控制方法
JP6961097B1 (ja) * 2020-01-22 2021-11-05 東芝三菱電機産業システム株式会社 ドライブシステム
CN116317709B (zh) * 2023-05-23 2023-09-12 深圳弘远电气有限公司 盾构机多电机转矩同步驱动控制方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205574A (ja) * 1995-01-30 1996-08-09 Matsushita Electric Ind Co Ltd デジタルサーボ装置
JP2003169497A (ja) * 2001-12-03 2003-06-13 Mitsubishi Heavy Ind Ltd サーボドライブシステム、射出成型機、サーボモータ制御方法及び射出成型機の動作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252902A (en) * 1990-03-02 1993-10-12 Kabushiki Kaisha Sg Servo control system
JP3419158B2 (ja) * 1995-07-20 2003-06-23 三菱電機株式会社 数値制御駆動装置のデータ処理方法
US6794842B2 (en) * 2000-12-19 2004-09-21 Mitsubishi Denki Kabushiki Kaisha Servomotor drive control system
ATE461551T1 (de) * 2001-10-10 2010-04-15 Ebm Papst St Georgen Gmbh & Co Verfahren zum betreiben eines elektronisch kommutierten motors, und motor zur durchführung eines solchen verfahrens
JP3841762B2 (ja) * 2003-02-18 2006-11-01 ファナック株式会社 サーボモータ制御システム
JP2004280506A (ja) * 2003-03-17 2004-10-07 Fanuc Ltd 数値制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205574A (ja) * 1995-01-30 1996-08-09 Matsushita Electric Ind Co Ltd デジタルサーボ装置
JP2003169497A (ja) * 2001-12-03 2003-06-13 Mitsubishi Heavy Ind Ltd サーボドライブシステム、射出成型機、サーボモータ制御方法及び射出成型機の動作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020073417A (ja) * 2010-12-15 2020-05-14 シムボティック エルエルシー 自律搬送車両

Also Published As

Publication number Publication date
JPWO2008018183A1 (ja) 2009-12-24
US20080036414A1 (en) 2008-02-14
JP4925477B2 (ja) 2012-04-25
US7463003B2 (en) 2008-12-09

Similar Documents

Publication Publication Date Title
WO2008018183A1 (fr) Système de commande d'une pluralité de moteurs
EP2187280B1 (en) Motor controller with integrated serial interface having selectable synchronization and communication
JP3421277B2 (ja) モータ駆動制御装置およびモータ駆動制御方法
JP2008017553A (ja) 三台一体型acサーボ駆動装置
JP6899099B2 (ja) 機械制御システム、機械制御装置、及び制振指令生成方法
US9361260B2 (en) Master device that changes data communication speed when preparation to drive motor is completed
CN103457525A (zh) 电机驱动电路
CN212433614U (zh) 一种基于fpga的多轴电机流水线控制系统
US20080303474A1 (en) Systems and methods for controlling limited rotation motor systems
JP2005102377A (ja) 多軸モータ制御システム
JP2007267480A (ja) サーボ制御装置とそれを利用するサーボシステム
US20140103852A1 (en) Motor control device controlling a plurality of motors that drive one driven body
US20070248337A1 (en) Real-time responsive motor control system
US9836040B2 (en) Motor control device, motor control system and motor control method
JP2008090825A (ja) 位置検出器をマルチドロップ接続した多軸制御システム
KR100925274B1 (ko) 다축 모션 제어 회로 및 장치
JP2013169063A (ja) モータ制御装置、ロボット装置及びモータ制御方法
JP2007202300A (ja) サーボモータ駆動装置
WO2023127252A1 (ja) モータシステム
US11955917B2 (en) Motor control system, motor control apparatus, and motor control method
JP4063209B2 (ja) モータ制御装置
JP2001268990A (ja) 多軸制御システム
JPH0447841B2 (ja)
CN117955363A (zh) 一种基于fpga的高精度调频驱动超声电机控制器
CN112083668A (zh) 一种基于fpga的多轴电机流水线控制系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790354

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008528723

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790354

Country of ref document: EP

Kind code of ref document: A1