WO2008017514A1 - Adsorbens, verfahren zu dessen herstellung und verwendung in wärmespeichern und wärmepumpen - Google Patents
Adsorbens, verfahren zu dessen herstellung und verwendung in wärmespeichern und wärmepumpen Download PDFInfo
- Publication number
- WO2008017514A1 WO2008017514A1 PCT/EP2007/007146 EP2007007146W WO2008017514A1 WO 2008017514 A1 WO2008017514 A1 WO 2008017514A1 EP 2007007146 W EP2007007146 W EP 2007007146W WO 2008017514 A1 WO2008017514 A1 WO 2008017514A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- adsorbent
- group
- acid
- heat
- use according
- Prior art date
Links
- 239000003463 adsorbent Substances 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 238000005338 heat storage Methods 0.000 claims description 15
- 238000001179 sorption measurement Methods 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 claims description 10
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- 239000013110 organic ligand Substances 0.000 claims description 9
- 238000011068 loading method Methods 0.000 claims description 8
- 125000002524 organometallic group Chemical group 0.000 claims description 8
- 229910052723 transition metal Inorganic materials 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 6
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 6
- 238000009835 boiling Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 150000003624 transition metals Chemical class 0.000 claims description 5
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052762 osmium Inorganic materials 0.000 claims description 4
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 4
- 150000002910 rare earth metals Chemical class 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- -1 transition metal salt Chemical class 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- MWVTWFVJZLCBMC-UHFFFAOYSA-N 4,4'-bipyridine Chemical compound C1=NC=CC(C=2C=CN=CC=2)=C1 MWVTWFVJZLCBMC-UHFFFAOYSA-N 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 125000004434 sulfur atom Chemical group 0.000 claims description 3
- 150000003628 tricarboxylic acids Chemical class 0.000 claims description 3
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-K benzene-1,3,5-tricarboxylate(3-) Chemical compound [O-]C(=O)C1=CC(C([O-])=O)=CC(C([O-])=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-K 0.000 claims 2
- 239000003446 ligand Substances 0.000 claims 2
- 229910052748 manganese Inorganic materials 0.000 claims 2
- RIOSJKSGNLGONI-UHFFFAOYSA-N 2-phenylbenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1C1=CC=CC=C1 RIOSJKSGNLGONI-UHFFFAOYSA-N 0.000 claims 1
- 239000012621 metal-organic framework Substances 0.000 abstract description 9
- 239000000463 material Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- 239000010457 zeolite Substances 0.000 description 10
- 238000003860 storage Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- 230000001932 seasonal effect Effects 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000013148 Cu-BTC MOF Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000000274 adsorptive effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000013147 Cu3(BTC)2 Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000013132 MOF-5 Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000007210 heterogeneous catalysis Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000012229 microporous material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000002429 nitrogen sorption measurement Methods 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 239000010981 turquoise Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F1/00—Compounds containing elements of Groups 1 or 11 of the Periodic Table
- C07F1/005—Compounds containing elements of Groups 1 or 11 of the Periodic Table without C-Metal linkages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/223—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
- B01J20/226—Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/41—Preparation of salts of carboxylic acids
- C07C51/418—Preparation of metal complexes containing carboxylic acid moieties
Definitions
- Adsorbent process for its preparation and use in heat spreaders and heat pumps
- the invention relates to a method for producing an adsorbent of hydrophilic and porous organometallic framework structures (English, metal-organic framework, MOF). This adsorbent is used in heat accumulators or heat pumps.
- hydrophilic and porous organometallic framework structures English, metal-organic framework, MOF.
- Adsorption heat storage offer the possibility of almost lossless storage of heat, especially in the temperature range up to 250 0 C, over long periods.
- a need for such long-term heat storage exists in particular in connection with the solar thermal heating of buildings in regions of the earth with strong seasonal fluctuation of solar radiation, ie in all equatorfernfernen regions.
- the largest supply of solar heat from thermal collectors will fall into the summer, but the heating demand will mostly be in the winter.
- seasonal heat storage is desirable for heating buildings and is a prerequisite for achieving high solar cover shares in solar thermal building heating.
- Heat storage in the temperature range up to approx. 250 ° C is also an important topic for many other applications.
- CHP combined heat and power plants
- this heat In order to be able to operate these plants in a current-controlled manner and to be able to use the heat generated, this heat must be temporarily stored until it is needed.
- heat storage with high energy density and high efficiency, ie low heat losses needed In order to be able to operate these plants in a current-controlled manner and to be able to use the heat generated, this heat must be temporarily stored until it is needed.
- Adsorption heat storage have not prevailed in the market despite decades of research efforts. So far, there has been a lack of adsorption materials that show a large load and heat conversion in the desired temperature range.
- the zeolites frequently investigated and used for heat storage applications eg zeolites with the structure types LTA and FAU, in particular the commercially available zeolites A, X and Y, typically require a driving temperature difference of at least 100 ° C. between adsorber and condenser for desorption, ie at a condenser temperature of 35 0 C a desorption temperature of at least 135 0 C. This temperature can not be achieved with typical Flachkol- lectors or only at very low collector efficiency.
- Vacuum tube collectors or radiation concentrating collectors are required.
- zeolites loading of not more than 0.18 grams of water per gram of zeolite.
- storage energy densities of up to about 150 kWh / m3 can be achieved (A. Hauer, Ph.D., TU Berlin 2002, “Assessment of solid adsorbents in open sorption systems for energetic applications”).
- adsorbents are therefore sought whose water adsorption properties lie between those of typical zeolites and typical silica gels.
- materials are sought whose Adsorptionsisobaren to a water vapor pressure of about 56 hPa (corresponding to a water reservoir at 35 0 C) in the temperature range of about 60-110 0 C show a load change of at least 0/2 g / g.
- Organometallic builders have been developed with a view to their possible use as high-temperature hydrogen storage or generally for sorptive gas storage (U.M., "Metal-organic frameworks-prospective industrial applications", J. Mater. Chem. 16 (2006), p. 626-636) Due to the high porosity and surface they are suitable for various other fields of application which are classically covered by zeolites, such as heterogeneous catalysis or gas purification.
- Synthesis instructions for organometallic builders are usually found only for laboratory-scale batch processes (K. Schlichte, "Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu 3 (BTC) 2 ", Micro 73 (2004), pp. 81-88), which are also usually poorly reproducible due to inaccurate documentation of the starting substances.
- a process for producing an adsorbent from hydrophilic and porous metal-organic framework (MOF), in which at least one transition metal salt is reacted in at least one bidentate or polydentate organic ligand.
- MOF hydrophilic and porous metal-organic framework
- the inventive method is characterized in that the reaction takes place in an organic solvent having an elevated boiling point of at least 90 0 C.
- the method of the invention can be used to provide metal-organic framework structures which are distinguished by a significantly smaller crystallite size, which leads to significant improvements in the sorbent kinetics of the adsorbent according to the invention.
- Salts of the transition metals selected from the group consisting of zinc, copper, cobalt, ruthenium, osmium, manganese, nickel and rare earth metals are preferably used as transition metal salts.
- the organic ligands are preferably those having bridging oxygen, nitrogen or sulfur atoms for complexation of the transition metals. These are preferably selected from the group of the dicarboxylic and tricarboxylic acids, in particular terephthalic acid, trimesic acid, 1,3,5-benzenetricarboxylic acid. carboxylate (BTC) 4, 4'-bipyridine, biphenylbisulfonic acid, 2, 6-naphthalenedicarboxylic acid and mixtures thereof are preferred.
- the solvent which particularly preferably has a boiling point in the range from 90 ° C. to 100 ° C. is preferably selected from the group consisting of diethylene glycol, n-butanol, dioxane, dimethylformamide, diethylformamide and mixtures thereof.
- the process is preferably carried out at a temperature in the range of 70 0 C to 200 0 C.
- a pressure of 1 to 50 bar is preferred.
- the reaction time can be in the range of 1 h to 14 days. It is particularly advantageous in the process control according to the invention that it is possible to dispense with the use of an autoclave.
- an adsorbent is also provided which can be produced by the method described above.
- the adsorbent preferably has an average pore diameter in the range from 4 to 50 ⁇ , particularly preferably from 10 to 30 ⁇ .
- the adsorbent is in the form of crystallites, these having a mean size in the range of 50 nm to 100 .mu.m, in particular from 50 nm to 10 .mu.m.
- an adsorbent which has a BET specific surface area of at least 50 m 2 / g and more preferably of at least 500 m 2 / g.
- the adsorbent can be loaded with either water or methanol, the loading conversion for Water preferably at least 20 wt .-%, and particularly preferably 30 wt .-% is.
- the measurement of charge transfer relates to the usual cycle conditions, such as those in heat storage or heat pumps (see A. Hauer, Dissertation TU Berlin 2002, "Assessment of solid adsorbents in open sorption systems for energetic applications") loading turnover determined with the following cycling conditions: desorption at 140 0 C over capacitor at 35 0 C, adsorption at 35 0 C over evaporator at 10 0 C.
- porous and hydrophilic organometallic framework structures is also selected from a complex of a transition metal selected from the group consisting of zinc, copper, cobalt, ruthenium, osmium, manganese, nickel and rare earth metals with bidentate or polydentate organic ligands or Mixed phases thereof provided as adsorbent in heat storage and heat pumps.
- a transition metal selected from the group consisting of zinc, copper, cobalt, ruthenium, osmium, manganese, nickel and rare earth metals with bidentate or polydentate organic ligands or Mixed phases thereof provided as adsorbent in heat storage and heat pumps.
- these skeleton structures show a very high loading conversion with water of preferably at least 20% by weight, particularly preferably at least 30% by weight, compared with materials from the prior art.
- Fig. 1 shows microscopic photographs of metal-organic lattice structures produced according to the prior art.
- 2 shows microscopic photographs of metal-organic lattice structures produced according to the invention.
- Fig. 3 shows a micrograph of a support structure which is equipped with the adsorbent and water glass according to the invention.
- samples of the hydrophilic material Cu 3 (BTC) 2 (H 2 O) 3 XH 2 O were prepared and characterized by way of example.
- the hydrophilic material Cu 3 (BTC) 2 (H 2 O) 3 XH 2 O surprisingly showed excellent suitability for use as a water-based sorptive heat storage medium.
- the basis for the preparation was the synthesis instructions of K. Schlicht et al. , Microporous and Meso-porous Materials 73 (2004), pp 81-88 at 120 0 C in an autoclave, which proved to be very well reproducible.
- the synthesis instructions were initially further optimized in terms of doubling the concentration and doubling the amount of liquid, so that each synthesis approach a total of the multiple amount of material could be produced, whereby the suitability of the material for use as a heat storage could be tested first ,
- Example 1 If in the synthesis of Example 1 instead of ethanol higher boiling organic solvents, such as diethylene glycol, n-butanol, or dioxane, this increases the possible reaction temperature under normal pressure to 100 0 C, which is then limited by the water in the mixture. Surprisingly, one obtains in this way much smaller crystallites in the range of 1 micron and smaller.
- organic solvents such as diethylene glycol, n-butanol, or dioxane
- the synthesis is carried out in the following manner: 1.75 g of copper nitrate are placed in a flask, 24 ml of water are added and the mixture is completely
- the coupling of the material to the heat exchanger structure should take place via a connection which is as strong as possible and has good thermal conductivity.
- the crystalline material must be readily accessible to the adsorptive. This can be done, for example, by applying a mixture of adsorbent-loaded adsorbent and Na water glass, which is applied to the carrier material. In the subsequent drying process (120 ° C / vacuum but still to be optimized) sodium water glass cures in an open-porous structure in which the adsorbent is embedded. The pores result from the outgassing of the adsorptive during the drying process and allow optimum accessibility of the micropores of the adsorbent (see Fig. 3).
- Further advantageous materials are organic binders, such as, for example, cellulose or polyvinyl alcohols.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Adsorbens aus hydrophilen und porösen metallorganischen Gerüststrukturen (engl. metal-organic framework, MOF). Dieses Adsorbens findet Verwendung in Wärmespeichern oder Wärmepumpen.
Description
Adsorbens , Verfahren zu dessen Herstellung und Verwendung in Wärmespeiehern und Wärmepumpen
Die Erfindung betrifft ein Verfahren zur Herstellung eines Adsorbens aus hydrophilen und porösen metallorganischen Gerüststrukturen (engl, metal-organic framework, MOF) . Dieses Adsorbens findet Verwendung in Wärmespeichern oder Wärmepumpen.
Adsorptionswärmespeicher bieten die Möglichkeit einer nahezu verlustfreien Speicherung von Wärme, insbesondere im Temperaturbereich bis 250 0C, über lange Zeiträume. Ein Bedarf an solchen Langzeit-Wärmespeichern besteht insbesondere im Zusammenhang mit der solarthermischen Gebäudeheizung in Erdregionen mit starker jahreszeitlicher Schwankung der solaren Einstrahlung, d.h. in allen äquatorfernen Regionen. Hier fällt im Jahresverlauf das größte Angebot der Solarwärme aus thermischen Kollektoren in den Sommer, der Heizwärmebedarf jedoch überwiegend in den Winter. Im
Sinne des Aufbaus einer nachhaltigen Energieversorgung, die verstärkt auf erneuerbare Energiequellen setzt, ist die saisonale Wärmespeicherung für die Gebäudeheizung wünschenswert und ist Voraussetzung zur Erreichung hoher solarer Deckungsanteile bei der solarthermischen Gebäudeheizung.
Die Wärmespeicherung im Temperaturbereich bis ca. 250 0C ist auch für viele andere Anwendungen ein wichtiges Thema. So besteht z.B. bei der dezentralen Stromerzeugung in Anlagen mit Kraft-Wärme-Kopplung (KWK) typischerweise das Problem unterschiedlicher zeitlicher Bedarfsprofile für Strom und Wärme. Um diese Anlagen stromgeführt betreiben zu können und die erzeugte Wärme nutzen zu können, muss diese Wärme zwischengespeichert werden, bis sie gebraucht wird. Dazu werden Wärmespeicher mit hoher Energiedichte und hoher Effizienz, d.h. geringen Wärmeverlusten, benötigt.
Adsorptionswärmespeicher haben sich trotz jahrzehntelanger Forschungsanstrengungen bisher nicht am Markt durchgesetzt. Es fehlte bisher vor allem an Adsorptionsmaterialien, die im gewünschten Temperatur- bereich einen großen Beladungs- und Wärmeumsatz zeigen. Die vielfach für Wärmespeicheranwendungen untersuchten und eingesetzten Zeolithe, z.B. Zeolithe mit den Strukturtypen LTA und FAU, insbesondere die kommerziell erhältlichen Zeolithe A, X und Y, erfordern typischerweise zur Desorption eine treibende Temperaturdifferenz von mindestens 100 0C zwischen Adsorber und Kondensator, also bei einer Kondensatortemperatur von 35 0C eine Desorptionstemperatur von mindestens 135 0C. Diese Temperatur kann mit typischen Flachkol- lektoren nicht oder nur bei sehr geringer Kollektoreffizienz erreicht werden. Es werden daher teurere
Vakuumröhrenkollektoren oder strahlungskonzentrieren- de Kollektoren benötigt. Unter typischen Be- und Entladebedingungen eines saisonalen solaren Speichersystems, wie z.B. beschrieben in Mittelbach et al . , "So- lid sorption thermal energy storage for solar heating Systems" (TERRASTOCK 2000, Stuttgart, 28.8.- 1.9.2000), werden mit den genannten Zeolithen Beladungsumsätze von nicht mehr als 0,18 Gramm Wasser pro Gramm Zeolith erreicht. Bezogen auf die Dichte einer Schüttung des Zeoliths sind damit Speicher-Energiedichten bis etwa 150 kWh/m3 erreichbar (A. Hauer, Dissertation, TU Berlin 2002, "Beurteilung fester Ad- sorbentien in offenen Sorptionssystemen für energetische Anwendungen" ) .
Mit Silikagelen werden vergleichbare Energiedichten erreicht, hier ist das Hauptproblem der geringe nutzbare Temperaturhub bei der Entladung des Speichers.
Für die saisonale solare Wärmespeicherung wird daher nach Adsorbentien gesucht, deren Wasser-Adsorptions- eigenschaften zwischen denen typischer Zeolithe und typischer Silikagele liegen. Insbesondere werden Materialien gesucht, deren Adsorptionsisobaren zu einem Wasserdampfdruck von etwa 56 hPa (entsprechend einem Wasserreservoir bei 350C) im Temperaturbereich von etwa 60-110 0C eine Beladungsänderung von mindestens 0 / 2 g/g zeigen.
Metallorganische Gerüstsubstanzen wurden im Hinblick auf einen möglichen Einsatz als Hochtemperatur- WasserstoffSpeicher oder generell zur sorptiven Gas- speicherung entwickelt (U. Müller, „Metal-organic frameworks-prospective industrial applications" , J. Mater. Chem. 16(2006), S. 626-636). Aufgrund der hohen Porosität und Oberfläche eignen sie sich für
vielfältige weitere Einsatzgebiete die klassischerweise durch Zeolithe abgedeckt werden, wie etwa die heterogene Katalyse oder zur Gasreinigung.
Synthesevorschriften für metallorganische Gerüstsubstanzen findet man zumeist nur für Batchverfahren im Labormaßstab (K. Schlichte, „Improved synthesis, thermal stability and catalytic properties of the me- tal-organic framework Compound Cu3(BTC)2", Micro. Me- so. Mat. 73(2004), S. 81-88). Diese sind zudem meist schlecht reproduzierbar aufgrund ungenauer Dokumentation der Ausgangssubstanzen.
Mit Ausnahme des mittlerweile im technischen Maßstab hergestellten Materials MOF-5 sind noch keine Verfahren zur Formgebung der kristallinen Endprodukte entwickelt worden. Klassische Formgebungsmethoden mit anorganischen Bindern, die beispielsweise für Zeolithe entwickelt wurden, sind für metallorganische GerüstSubstanzen nicht anwendbar, da diese Verfahren eine Temperatur von 500 0C erfordern. Metallorganische Gerüstsubstanzen sind zumeist nur bis ca. 300 0C temperaturstabil .
Ausgehend hiervon war es Aufgabe der vorliegenden Erfindung, ein Adsorbens bereitzustellen, das bezüglich der Adsorption, insbesondere von Wasserdampf oder Methanol, Eigenschaften aufweist, die es für die Verwendung in einem Adsorptionswärmespeicher oder einer Adsorptionswärmepumpe besonders prädestinieren. Insbesondere sollte ein derartiges Adsorbens im thermo- dynamischen Zyklus eines Adsorptionswärmespeichers einen höheren spezifischen Wärmeumsatz erreichen, als die bisher aus dem Stand der Technik bekannten Mate- rialien.
Diese Aufgabe wird durch das Verfahren mit den Merkmalen des Anspruchs 1 und das Adsorbens mit den Merkmalen des Anspruchs 10 gelöst. Gemäß Anspruch 16 wird die Verwendung von metallorganischen Gerüststrukturen als Adsorbens bereitgestellt. Die weiteren abhängigen Ansprüche zeigen vorteilhafte Weiterbildungen auf.
Erfindungsgemäß wird ein Verfahren zur Herstellung eines Adsorbens aus hydrophilen und porösen metallor- ganischen Gerüststrukturen (engl, metal-organic fra- mework, MOF) bereitgestellt, bei dem mindestens ein Übergangsmetallsalz in mindestens einem zwei- oder mehrzähnigen organischen Liganden umgesetzt wird. Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass die Umsetzung in einem organischen Lösungsmittel mit erhöhtem Siedepunkt von mindestens 90 0C erfolgt.
Überraschenderweise konnte so gezeigt werden, dass mit der erfindungsgemäßen Verfahrensführung metallor- ganische Gerüststrukturen bereitgestellt werden können, die sich durch eine wesentlich geringere Kristallitgröße auszeichnen, was hinsichtlich der Sorptionskinetik zu deutlichen Verbesserungen des erfindungsgemäßen Adsorbens führt.
Als Übergangsmetallsalze kommen bevorzugt Salze der Übergangsmetalle ausgewählt aus der Gruppe bestehend aus Zink, Kupfer, Kobalt, Ruthenium, Osmium, Mangan, Nickel und Seltenerden-Metallen zur Anwendung.
Die organischen Liganden sind vorzugsweise solche, die verbrückende Sauerstoff-, Stickstoff- oder Schwefelatome zur Komplexierung der Übergangsmetalle aufweisen. Vorzugsweise sind diese ausgewählt aus der Gruppe der Di- und Tricarbonsäuren, wobei insbesondere Therephthalsäure, Trimesinsäure, 1, 3 , 5-Benzoltri-
carboxylat (BTC) 4 , 4'-Bipyridin, Biphenylbisulfonsäu- re, 2, 6-Naphthalendicarbonsäure und Mischungen hiervon bevorzugt sind.
Das Lösungsmittel, das besonders bevorzugt einen Siedepunkt im Bereich von 90 0C bis 100 0C aufweist, ist vorzugsweise ausgewählt aus der Gruppe bestehend aus Diethylenglykol, n-Butanol, Dioxan, Dimethylformamid, Diethylformamid und Mischungen hiervon.
Die Verfahrensführung erfolgt vorzugsweise bei einer Temperatur im Bereich von 70 0C bis 200 0C. Bei der Umsetzung ist ein Druck von 1 bis 50 bar bevorzugt. Die Reaktionsdauer kann dabei im Bereich von 1 h bis 14 Tage liegen. Besonders vorteilhaft bei der erfindungsgemäßen Verfahrensführung ist es, dass auf den Einsatz eines Autoklaven verzichtet werden kann.
Erfindungsgemäß wird ebenso ein Adsorbens bereitge- stellt, das nach dem zuvor beschriebenen Verfahren herstellbar ist. Das Adsorbens weist dabei vorzugsweise einen mittleren Porendurchmesser im Bereich von 4 bis 50 Ä, besonders bevorzugt von 10 bis 30 Ä, auf.
Das Adsorbens liegt in Form von Kristalliten vor, wobei diese einen mittlere Größe im Bereich von 50 nm bis 100 μm, insbesondere von 50 nm bis 10 μm, aufweisen.
Erfindungsgemäß kann so ein Adsorbens bereitgestellt werden, das eine spezifische Oberfläche nach BET von mindestens 50 m2/g und besonders bevorzugt von mindestens 500 m2/g aufweist.
Das Adsorbens kann dabei sowohl mit Wasser oder Methanol beladen werden, wobei der Beladungsumsatz für
Wasser vorzugsweise mindestens 20 Gew.-%, und besonders bevorzugt 30 Gew.-% beträgt. Die Messung des Be- ladungsumsatzes bezieht sich dabei auf die üblichen Zyklenbedingungen, wie sie in Wärmespeichern oder Wärmepumpen auftreten (vgl. A. Hauer, Dissertation TU Berlin 2002, „Beurteilung fester Adsorbentien in offenen Sorptionssystemen für energetische Anwendungen") . Im vorliegenden Fall wurde der Beladungsumsatz bei folgenden Zyklenbedingungen bestimmt: Desorption bei 140 0C gegenüber Kondensator bei 35 0C, Adsorption bei 35 0C gegenüber Verdampfer bei 10 0C.
Erfindungsgemäß wird ebenso die Verwendung von porösen und hydrophilen metallorganischen Gerüststruktu- ren aus einem Komplex eines Übergangsmetalls ausgewählt aus der Gruppe bestehend aus Zink, Kupfer, Kobalt, Ruthenium, Osmium, Mangan, Nickel und Seltenerden-Metallen mit zwei- oder mehrzähnigen organischen Liganden bzw. Mischphasen hiervon als Adsorbens in Wärmespeicher und Wärmepumpen bereitgestellt. Diese Gerüststrukturen zeigen überraschenderweise einen im Vergleich zu Materialien aus dem Stand der Technik sehr hohen Beladungsumsatz mit Wasser von vorzugsweise mindestens 20 Gew.-%, besonders bevorzugt mindes- tens 30 Gew.-%.
Anhand der nachfolgenden Beispiele und Figuren soll der erfindungsgemäße Gegenstand näher beschrieben werden, ohne dieses auf die hier gezeigten speziellen Ausführungsformen einschränken zu wollen.
Fig. 1 zeigt mikroskopische Aufnahmen von nach dem Stand der Technik hergestellten Metall-organischen Gitterstrukturen .
Fig. 2 zeigt mikroskopische Aufnahmen von erfindungs- gemäß hergestellten Metall-organischen Gitterstrukturen.
Fig. 3 zeigt eine mikroskopische Aufnahme einer Trägerstruktur, die mit dem erfindungsgemäßen Adsorbens und Wasserglas ausgerüstet ist.
Beispiel 1
Zur Überprüfung der generellen Eignung dieser Materialien für den Einsatz als Wärmespeichermedien wurden exemplarisch Proben des hydrophilen Materials Cu3(BTC)2(H2O)3X H2O hergestellt und charakterisiert.
Das hydrophile Material Cu3(BTC)2(H2O)3X H2O zeigte überraschenderweise eine exzellente Eignung für den Einsatz als sorptives Wärmespeichermedium auf Wasserbasis. Basis für die Herstellung war die Synthesevor- schrift von K.Schlichte et al . ,Microporous and Meso- porous Materials 73 (2004), S. 81-88 bei 120 0C im Autoklaven, die sich als sehr gut reproduzierbar erwies. Die Synthesevorschrift wurde zunächst noch weiter optimiert, im Hinblick auf eine Verdopplung der Konzentration sowie Verdoppelung der Flüssigkeitsmenge, so dass je Syntheseansatz insgesamt die vielfache Menge an Material produziert werden konnte, wodurch die Eignung des Materials für den Einsatz als Wärme- Speicher erst getestet werden konnte.
Bei der Synthese entsteht Cu3(BTC)2(H2O)3X H2O als ca. 20 μm große Kristalle (s. Fig. 1), die eine sehr schlechte Sorptionskinetik ergeben. Alle mittels dieser Synthese hergestellten Proben ergeben eine be- reits sehr hohe Beladbarkeit mit Wasser von deutlich über 30 %, wobei das Gleichgewicht unter den Messbe-
dingungen nicht ganz erreicht wurde, was auf eine langsame Kinetik hindeutet, für einen möglichen Einsatz in einem saisonalen Speicher aber nicht weiter hinderlich sein sollte. Im Vergleich zu Zeolithen, die dem Stand der Technik für die Wärmespeicherung entsprechen, zeigten die synthetisierten Proben eine geringere Hydrophilie, können also bei geringerer Temperatur desorbiert werden. Dadurch kann ein deutlich höherer Beladungsumsatz in einem entsprechenden Speicherzyklus erreicht werden.
Beispiel 2
Im Hinblick auf eine bessere Kontrollierbarkeit sowie ein Upscaling ist es vorteilhaft, eine Reaktionsführung unter Normaldruck durchzuführen. Eine Reaktions- führung unter Normaldruck der OriginalZusammensetzung ermöglicht allerdings nur eine Reaktionstemperatur von maximal 78 0C, die durch den Siedepunkt des Lö- sungsmittels Ethanol begrenzt wird. Diese Synthese ergibt nur sehr geringe Ausbeuten. Die Kristallitgrö- ße ändert sich hierbei nicht.
Setzt man bei der Synthese nach Beispiel 1 anstatt Ethanol höhersiedende organische Lösemittel, wie etwa Diethylenglycol, n-Butanol, oder Dioxan ein, erhöht dies die mögliche Reaktionstemperatur unter Normadruck auf 100 0C, die dann durch das Wasser im Gemisch begrenzt wird. Überaschenderweise erhält man auf diese Weise sehr viel kleinere Kristallite im Bereich von 1 μm und kleiner.
Die Synthese erfolgt in folgender Weise: In einem Kolben wird 1,75 g Kupfernitrat vorgelegt, 24 ml Wasser hinzugefügt und bis zur vollständigen
Auflösung gerührt. Dazu gibt man eine Lösung von 0,84
g Trimesinsäure in 24 ml Dioxan. Anschließend wird der Kolben in ein auf 110 0C temperiertes Ölbad getaucht und mit einem Rückflusskühler versehen. Nach fünf Tagen wird die Lösung abgesaugt. Der helltürkis- farbene Niederschlag färbt sich beim Trocknen über
Nacht im Vakuumtrockenschrank bei 120 0C dunkelblau. Der Strukturnachweis von Cu3 (BTC) 2xH2O gelingt über Pulverdiffraktometrie sowie Stickstoffsorption bei 77 K.
Die Untersuchung auf die Eignung als Medium im Wärmetauscher ergibt eine wesentlich bessere Kinetik sowie eine erheblich höhere Beladbarkeit bis zu 40 % (s. Fig. 2) . Alternativ sind Agglomerate bzw. Ver- wachsungen von kleineren Kristalliten vorteilhaft für die Sorptionskinetik.
Beispiel 3
Die Kopplung des Materials an die Wärmetauscherstruktur soll über eine möglichst feste und gut wärmeleitende Anbindung erfolgen. Darüber hinaus muss das kristalline Material für das Adsorptiv gut zugänglich sein. Dies kann beispielsweise über das Aufbringen einer Mischung aus mit einem Adsorptiv beladenen Ad- sorbens und Na-Wasserglas geschehen, das auf das Trägermaterial aufgebracht wird. Beim anschließenden Trocknungsprozess (120 0C / Vakuum aber noch zu optimieren) härtet Natriumwasserglas in einer offenporö- sen Struktur aus, in der das Adsorbens eingebettet ist. Die Poren entstehen durch das Ausgasen des Ad- sorptivs während des Trocknungsprozesses und ermöglichen eine optimale Zugänglichkeit der Mikroporen des Adsorbens (s. Fig. 3) . Weitere vorteilhafte Materia- lien sind organische Binder, wie beispielsweise CeI- lulose oder Polyvinylalkohole .
Claims
1. Verfahren zur Herstellung eines Adsorbens aus hydrophilen und porösen metallorganischen Gerüststrukturen (MOF) , bei dem mindestens ein Übergangsmetallsalz mit mindestens einem zwei- oder mehrzähnigen organischen Liganden umgesetzt wird, dadurch gekennzeichnet, dass die Umsetzung in einem organischen Lösungsmittel mit einem Siedepunkt von mindestens 900C erfolgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Übergangsmetall ausgewählt ist aus der Gruppe bestehend aus Zn, Cu, Co, Ru, Os, Mn, Ni und Seltenerden-Metallen.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die organischen Liganden verbrückende Sauerstoff-, Stickstoff- oder Schwefel-Atome aufweisen.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die organischen Li- ganden ausgewählt sind aus der Gruppe der Di- und Tricarbonsäuren.
5. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die organischen Liganden ausgewählt sind aus der Gruppe bestehend aus Terephthalsäure, Trimesinsäure, 1,3,5-Ben- zoltricarboxylat (BTC), 4 , 4 '-Bipyridin, Biphe- nylbisulfonsäure , 2 , 6 -Naphthalendicarbonsäure und Mischungen hiervon.
6. Verfahren nach einem der vorhergehenden Ansprü- che, dadurch gekennzeichnet, dass das Lösungsmittel ausgewählt ist aus der Gruppe bestehend aus Diethylenglykol, n-Butanol, Dioxan, Dimethylfor- mamid, Diethylformamid und Mischungen hiervon.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Umsetzung bei einer Temperatur von 70 bis 2000C erfolgt.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Umsetzung bei einem Druck von 1 bis 50 bar erfolgt.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Reaktionsdauer im Bereich von 1 h bis 14 Tage liegt.
10. Adsorbens herstellbar nach einem der vorhergehenden Ansprüche .
11. Adsorbens nach Anspruch 10, dadurch gekennzeichnet, dass der mittlere Porendurchmesser des Adsorbens im Bereich von 4 bis 50 Ä, insbesondere von 10 bis 30 Ä, liegt.
12. Adsorbens nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass das Adsorbens in
Form von Kristalliten mit einer mittleren Größe im Bereich von 50 nm bis 100 μm, insbesondere von 50 nm bis 10 μm, vorliegt.
13. Adsorbens nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass das Adsorbens eine spezifische Oberfläche nach BET von mindestens 50 m2/g, insbesondere von mindestens 500 m2/g aufweist .
14. Adsorbens nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass das Adsorbens mit Wasser oder Methanol beladbar ist .
15. Adsorbens nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass das Adsorbens einen Beladungsumsatz für Wasser von mindestens 20 Gew.-%, insbesondere von mindestens 30 Gew.-% aufweist .
16. Verwendung von porösen und hydrophilen metallorganischen Gerüststrukturen (MOF) aus einem Korn- plex eines Übergangsmetalls ausgewählt aus der Gruppe bestehend aus Zn, Cu, Co, Ru, Os, Mn, Ni und Seltenerden-Metallen mit zwei- oder mehrzäh- nigen organischen Liganden oder diese enthalten- de Mischphasen als Adsorbens in Wärmespeichern oder Wärmepumpen.
17. Verwendung nach Anspruch 16, dadurch gekennzeichnet, dass die organischen Liganden verbrückende Sauerstoff-, Stickstoff- oder Schwefel-Atome aufweisen.
18. Verwendung nach einem der Ansprüche 16 oder 17, dadurch gekennzeichnet, dass die Liganden ausge- wählt sind aus der Gruppe der Di- und Tricarbon- säuren.
19. Verwendung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Liganden ausge- wählt sind aus der Gruppe bestehend aus Te- rephthalsäure, Trimesinsäure, 1, 3 , 5-Benzoltri- carboxylat (BTC), 4 , 4 '-Bipyridin, Biphenylbisul- fonsäure, 2, 6-Naphthalendicarbonsäure und Mischungen hiervon.
20. Verwendung nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, dass das Adsorbens eine spezifische Oberfläche von mindestens 50 m2/g, insbesondere von mindestens 500 m2/g aufweist.
21. Verwendung nach einem der Ansprüche 16 bis 20, dadurch gekennzeichnet, dass das Adsorbens aus Kristalliten mit einer mittleren Größe im Be- reich von 50 ran bis 100 μm, insbesondere 50 nm bis 10 μm, vorliegt.
22. Verwendung nach einem der Ansprüche 16 bis 21, dadurch gekennzeichnet, dass das Adsorbens der
Adsorption von Wasser oder Methanol dient.
23. Verwendung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass das Adsorbens einen Beladungsumsatz für Wasser von mindestens
20 Gew.-%, insbesondere von mindestens 30 Gew.-% aufweist .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES07786667.1T ES2525794T3 (es) | 2006-08-11 | 2007-08-13 | Adsorbente, procedimiento para su preparación y uso en acumuladores de calor y bombas de calor |
EP07786667.1A EP2049549B1 (de) | 2006-08-11 | 2007-08-13 | Adsorbens, verfahren zu dessen herstellung und verwendung in wärmespeichern und wärmepumpen |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006037698.6 | 2006-08-11 | ||
DE102006037698 | 2006-08-11 | ||
DE102006043648A DE102006043648A1 (de) | 2006-08-11 | 2006-09-18 | Adsorbens, Verfahren zu dessen Herstellung und Verwendung in Wärmespeichern und Wärmepumpen |
DE102006043648.2 | 2006-09-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008017514A1 true WO2008017514A1 (de) | 2008-02-14 |
Family
ID=38657906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/007146 WO2008017514A1 (de) | 2006-08-11 | 2007-08-13 | Adsorbens, verfahren zu dessen herstellung und verwendung in wärmespeichern und wärmepumpen |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2049549B1 (de) |
DE (1) | DE102006043648A1 (de) |
ES (1) | ES2525794T3 (de) |
WO (1) | WO2008017514A1 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2998377A1 (de) | 2014-09-18 | 2016-03-23 | MOF Application Services | Verwendung von mof-materialien in einem kühl-/heizsystem durch adsorption |
DE102015115738A1 (de) * | 2015-09-17 | 2017-03-23 | Christian-Albrechts-Universität Zu Kiel | Verfahren zur Herstellung von metallorganischen Gerüststrukturverbindungen |
FR3063804B1 (fr) | 2017-03-10 | 2019-09-06 | Mof Apps As | Utilisation de materiau metallique-organique hybride dans un systeme de refroidissement/chauffage par adsorption pour batterie thermique |
EP3498368A1 (de) | 2017-12-18 | 2019-06-19 | Centre National De La Recherche Scientifique | Aliphatische zr-, hf- und ln-basierte anorganisch-organische hybride feste mof-materialien, verfahren zur herstellung davon und verwendungen davon |
DE102019104083A1 (de) | 2019-02-19 | 2020-08-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Granulat für einen thermochemischen Wärmespeicher und Verfahren zum Herstellen von Granulat für einen thermochemischen Wärmespeicher |
CN111187596B (zh) * | 2020-01-10 | 2021-04-06 | 北京科技大学 | 一种用于热能管理系统的金属-有机骨架复合相变材料及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007035596A2 (en) | 2005-09-19 | 2007-03-29 | Mastertaste Inc. | Metal organic framework odor sequestration and fragrance delivery |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6491740B1 (en) * | 1999-07-22 | 2002-12-10 | The Boc Group, Inc. | Metallo-organic polymers for gas separation and purification |
DE10111230A1 (de) * | 2001-03-08 | 2002-09-19 | Basf Ag | Metallorganische Gerüstmaterialien und Verfahren zu deren Herstellung |
US7524444B2 (en) * | 2004-11-09 | 2009-04-28 | Basf Aktiengesellschaft | Shaped bodies containing metal-organic frameworks |
-
2006
- 2006-09-18 DE DE102006043648A patent/DE102006043648A1/de not_active Withdrawn
-
2007
- 2007-08-13 WO PCT/EP2007/007146 patent/WO2008017514A1/de active Application Filing
- 2007-08-13 EP EP07786667.1A patent/EP2049549B1/de active Active
- 2007-08-13 ES ES07786667.1T patent/ES2525794T3/es active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007035596A2 (en) | 2005-09-19 | 2007-03-29 | Mastertaste Inc. | Metal organic framework odor sequestration and fragrance delivery |
Non-Patent Citations (8)
Title |
---|
A. HAUER: "Beurteilung fester Adsorbentien in offenen Sorptionssystemen für energetische Anwendungen", DISSERTATION TU BERLIN, 2002 |
A. HAUER: "Beurteilung fester Adsorbentien in offenen Sorptionssystemen für energetische Anwendungen", DISSERTATION, TU BERLIN, 2002 |
K. SCHLICHTE: "Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2", MICRO. MESO. MAT., vol. 73, 2004, pages 81 - 88 |
KRAWIEC, PIOTR ET AL: "Improved hydrogen storage in the metal-organic framework Cu3(BTC)2", ADVANCED ENGINEERING MATERIALS , 8(4), 293-296 CODEN: AENMFY; ISSN: 1438-1656, 2006, XP002458331 * |
KRAWIEC, PJOTRE ET AL., ADVANCED ENGINEERING MATERIALS, vol. 8, no. 4, 2006, pages 293 - 296 |
MITTELBACH ET AL.: "Solid sorption thermal energy storage for solar heating systems", TERRASTOCK 2000, 2000 |
U. MÜLLER: "Metal-organic frameworks-prospective industrial applications", J. MATER. CHEM., vol. 16, 2006, pages 626 - 636 |
VON K.SCHLICHTE ET AL., MICROPOROUS AND MESOPOROUS MATERIALS, vol. 73, 2004, pages 81 - 88 |
Also Published As
Publication number | Publication date |
---|---|
ES2525794T3 (es) | 2014-12-30 |
EP2049549B1 (de) | 2014-11-05 |
DE102006043648A1 (de) | 2008-02-14 |
EP2049549A1 (de) | 2009-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Applications of water-stable metal-organic frameworks in the removal of water pollutants: A review | |
EP2049549B1 (de) | Adsorbens, verfahren zu dessen herstellung und verwendung in wärmespeichern und wärmepumpen | |
DE69413519T2 (de) | Molekular vorbearbeitete aktivkohlenstoffe | |
Zhao et al. | Preparation and hydrogen storage of Pd/MIL-101 nanocomposites | |
WO2003064030A1 (de) | Verfahren zum speichern, zur aufnahme und abgabe von gasen unter verwendung neuartiger gerüstmaterialien | |
DE69606490T2 (de) | Adsorptionswärmepumpe | |
CN107715843B (zh) | 一种在常温下快速合成中微双孔zif-8材料的方法 | |
KR100907907B1 (ko) | 다공성 금속-유기 골격 구조를 갖는 배위중합체 화합물 및 이의 용매 함유물 | |
DE102012211300A1 (de) | Anwendung von porösen strukturierten organischen Filmen zur Gasspeicherung | |
DE102011076080A1 (de) | Verfahren zur Herstellung von Partikeln enthaltend Metall-organische Gerüstverbindungen | |
WO2020021112A1 (en) | Improvements relating to water capture | |
DE102010055677A1 (de) | Wärmemanagement mittels eines Titano-Alumo-Phosphat | |
US20170239643A1 (en) | Composite adsorbent for adsorption chiller | |
Garg et al. | A highly stable terbium (III) metal-organic framework MOF-76 (Tb) for hydrogen storage and humidity sensing | |
CN110652972A (zh) | 一种水滑石无机-有机复合纤维膜及其制备方法 | |
CN115181278B (zh) | 一种钴基金属有机框架的制备方法及应用 | |
EP3350151B1 (de) | Verfahren zur herstellung von metallorganischen gerüststrukturverbindungen | |
Wu et al. | Derivative carbon particles with different sizes from ZIF-8 and their adsorption capacity for MB | |
Chithra et al. | Bimetallic Metal‐Organic Frameworks (BMOF) and BMOF‐Incorporated Membranes for Energy and Environmental Applications | |
Kavak et al. | Multifunctional Anionic Zn (II)-MOF for Selective CO2 Adsorption, Cationic Dye Removal, and Luminescence-Based pH Sensing | |
CN111171326B (zh) | 以八核银团簇为结构重复单元的链状配位聚合物及其制备方法和应用 | |
CN116216715A (zh) | 一种具有高氮掺杂的活性炭及其制备方法 | |
CN105237583A (zh) | 一种三维超分子框架配位聚合物的制备方法 | |
CN108940226A (zh) | 一种用于重金属去除的生物质材料吸附剂及其制备方法与应用 | |
CN116829501A (zh) | 材料、材料的制造方法及功能性材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07786667 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007786667 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: RU |