WO2008017256A1 - Procédé et dispositif pour recevoir et transmettre un signal ofdm - Google Patents

Procédé et dispositif pour recevoir et transmettre un signal ofdm Download PDF

Info

Publication number
WO2008017256A1
WO2008017256A1 PCT/CN2007/070255 CN2007070255W WO2008017256A1 WO 2008017256 A1 WO2008017256 A1 WO 2008017256A1 CN 2007070255 W CN2007070255 W CN 2007070255W WO 2008017256 A1 WO2008017256 A1 WO 2008017256A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
value
sequence
ack
ofdm
Prior art date
Application number
PCT/CN2007/070255
Other languages
English (en)
French (fr)
Inventor
Wei Ruan
Bin Li
Yinggang Du
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2008017256A1 publication Critical patent/WO2008017256A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to an Orthogonal Frequency Division Multiplexing (OFDM) signal transmission and reception method and apparatus.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the information to be transmitted in the communication system can take many forms, such as voice, text, symbols and images.
  • voice voice
  • text text
  • symbols images
  • an electrical signal represents information in one of its parameters. For example, the magnitude of the signal voltage changes with the strength of the voice. This is the signal amplitude to represent the information.
  • the signal can be divided into two categories: analog signal and digital signal.
  • the communication system can be divided into an analog communication system and a digital communication system depending on whether an analog signal or a digital signal is transmitted in the communication system.
  • the transmitted digital signal is not only discrete in time but also discrete in amplitude, in other words, the amplitude is limited to a limited number of values.
  • Multi-carrier technology represented by OFDM has received extensive attention.
  • Multi-carrier transmission decomposes the data stream into a number of independent sub-data streams, each of which will have a much lower bit rate.
  • Demodulating the corresponding subcarriers with low rate multi-state symbols formed at such low bit rates constitutes a transmission system in which a plurality of low rate symbols are transmitted in parallel.
  • OFDM As a multi-carrier digital modulation technique, OFDM encodes data and transmits it in the frequency domain. Unlike conventional single-carrier technology, Amplitude Modulation/Frequency Modulation (AM/FM), which transmits a single signal with only a single frequency at a time, OFDM is in a specially calculated orthogonal sub- Multiple high-speed signals are simultaneously transmitted on the carrier.
  • AM/FM Amplitude Modulation/Frequency Modulation
  • OFDM in turn, is a multiplexing technique that multiplexes multiple signals onto different orthogonal subcarriers.
  • the traditional Frequency Division Multiplexing (FDM) technology divides the bandwidth into several sub-channels, and uses the guard band to reduce interference, and simultaneously transmits data on these sub-channels.
  • OFDM systems require much less bandwidth than traditional FDM systems. Due to the use of interference-free orthogonal carrier technology, There is no need to protect the frequency band between individual carriers, which makes the use of available frequencies more efficient.
  • OFDM technology can dynamically allocate data transmitted on subcarriers. For maximum data throughput, multi-carrier modulators can intelligently allocate more data to sub-carriers with less noise.
  • OFDM encodes the data to be transmitted as frequency domain information, modulates it into a time domain signal, and transmits it on the channel, and performs inverse process demodulation at the receiving end.
  • the modulation and demodulation of the OFDM system can be replaced by an Inverse Discrete Fourier Transform (IDFT) and a Discrete Fourier Transform (DFT), respectively.
  • IDFT Inverse Discrete Fourier Transform
  • DFT Discrete Fourier Transform
  • the frequency domain data symbols are transformed into time domain data symbols by an N-point IDFT operation, and after carrier modulation, are transmitted to the channel.
  • the received signal is coherently demodulated, and then the baseband signal is subjected to an N-point DFT operation to obtain a transmitted data symbol.
  • IDFT/DFT can be implemented by Inverse Fast Fourier Transform (IFFT) and Fast Fourier Transform (FFT).
  • IFFT Inverse Fast Fourier Transform
  • FFT Fast Fourier Transform
  • PLD Programmable Logic Device
  • DSP Digital Signal Processor
  • the signal can be channel coded and then transmitted by OFDM.
  • Channel coding is an indispensable and important technical means in digital communication systems and is widely used in communication systems.
  • the main task of channel coding is to distinguish between paths and increase the reliability of communication.
  • the codes used are orthogonal codes, error correction codes, and the like.
  • the orthogonal code is a code whose main purpose is to distinguish the path, and the orthogonal code also has strong anti-interference ability.
  • the receiving end in order to ensure the communication quality, the receiving end needs to respond to the received data packet, that is, tell the transmitting end whether the data packet is correctly received.
  • the user equipment After the user equipment correctly receives the data packet from the network side, it sends a one-bit ACK (acknowledgement) message to the network side to notify the network side that the data packet has been correctly received. If the user equipment receives the data packet error, it goes to the network. The side sends a one-bit NACK (Negative Acknowledgement) message to inform the network side to resend the packet. Therefore, the correct transmission of ACK/NACK messages plays an important role in the capacity control of the communication system.
  • ACK acknowledgement
  • NACK Negative Acknowledgement
  • the user equipment sends a message to the network side through the control channel to indicate whether the data packet is correctly received.
  • ACK/NACK information In one ACK/NACK feedback period, the reverse ACK/NACK channel for transmitting ACK/NACK information is composed of Nt time-frequency resource blocks, and each time-frequency resource block is composed of several sub-resource blocks. Each sub-resource block is composed of 8 consecutive sub-carriers on two consecutive OFDM symbols, and these sub-carriers on the two OFDM symbols occupy the same frequency point.
  • the number of sub-resource blocks varies with the number of traffic channels, and the minimum value is four.
  • Each sub-resource block can carry 8 ACK/NACK information bits, which respectively correspond to 8 different service channels.
  • Each ACK/NACK information bit is transmitted using an On-Off Keying (OOK).
  • OOK On-Off Keying
  • each bit is extended by an orthogonal code, for example, by a column of a Discrete Fourier Transform ("DFT") matrix of length 16. That is, each ACK/NACK information bit is associated with a certain column of the DFT matrix.
  • DFT Discrete Fourier Transform
  • the eight ACK/NACK information bits correspond to eight columns of the DFT matrix, respectively.
  • each sub-resource block Since the size of the DFT matrix is 16, there are 8 columns remaining. In this sub-resource block, these 8 columns are not sent and are used as interference estimates. That is to say, 8 ACK/NACK information bits are multiplexed on each sub-resource block. Each ACK/NACK information bit is transmitted on 4 different sub-resource blocks on the time-frequency resource block, and multiplexed with ACK/NACK information bits of different users, respectively. These time-frequency resource blocks that transmit ACK/NACK information are randomly hopped on the traffic channel.
  • the network side determines whether the corresponding user equipment sends ACK information or NACK information according to whether the DFT matrix column vector is received in the sub resource block. If the DFT matrix column vector is received, it is determined that the user equipment sends the ACK information, otherwise, it is determined that the user equipment sends the NACK information. At present, the network side uses the energy detection method to determine whether the DFT matrix column vector is received in the sub-resource block. Since it is difficult to determine the threshold of the detection threshold in the case of wireless fading, ACK/NACK is once in the transmission process. If the interference is received, the network side may not correctly determine whether the received ACK information or the NACK information is generated, and the ACK/NACK information is misjudged.
  • the embodiments of the present invention provide a method and a device for transmitting and receiving orthogonal frequency division multiplexing signals, so that the ACK information has good anti-interference capability when transmitting ACK information.
  • An embodiment of the present invention provides a method for transmitting an orthogonal frequency division multiplexing signal, which includes the following steps: setting a signal sequence according to a value of a signal to be sent, and setting a signal sequence different for different values; Spreading separately for each element in the signal sequence with different spreading codes, and combining the spreading results;
  • the combined sequence is transmitted in orthogonal frequency division multiplexing.
  • the present invention also proposes an orthogonal frequency division multiplexing signal receiving method, which is characterized in that it comprises the following steps:
  • the received signals are despread by different spreading codes, and each despreading result is an element in the despreading sequence;
  • the value of the received signal is obtained according to the despreading sequence and the correspondence between the received signal value and the signal sequence.
  • the invention also provides an orthogonal frequency division multiplexing signal transmitting apparatus, comprising:
  • a signal sequence module configured to set a signal sequence according to a value to be sent, and set a different signal sequence for different values
  • a spreading module configured to separately spread each of the elements in the signal sequence with different spreading codes, and combine the spreading results
  • a sending module configured to send the merged sequence in orthogonal frequency division multiplexing.
  • the invention also provides an orthogonal frequency division multiplexing signal receiving apparatus, comprising:
  • a receiving module configured to receive signals in an orthogonal frequency division multiplexing manner
  • a despreading module configured to despread the received signals by different spreading codes, and each despreading result is an element in the despreading sequence
  • a calculation module configured to obtain a value of the received signal according to the despreading sequence and the correspondence between the received signal value and the signal sequence.
  • the signal sequence is set according to the value of the signal to be sent, and the elements in the signal sequence are spread and combined by different spreading codes, and then transmitted to the receiving end by OFDM; at the receiving end, The corresponding spreading code is despread, and the value of the received signal is determined by the despreading sequence according to the setting manner of the signal sequence; since the receiving end does not need to decide whether to receive the DFT matrix corresponding to the ACK/NACK information bit according to the energy detecting method.
  • the column vector effectively avoids the threshold problem. Therefore, the transmission of the ACK/NACK information bits has good anti-interference ability, improves the transmission reliability of the ACK, and thus improves the system capacity.
  • FIG. 1 is a flowchart of a method for transmitting an OFDM signal according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of an OFDM signal transmission method according to a first embodiment of the present invention
  • FIG. 3 is a flowchart of an OFDM signal receiving method according to a second embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an OFDM signal receiving method according to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a method for transmitting an OFDM signal according to a third embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an OFDM signal receiving method according to a fourth embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an OFDM signal transmission method according to a fifth embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an OFDM signal receiving method according to a sixth embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an OFDM signal transmitting apparatus according to a seventh embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an OFDM signal receiving apparatus according to an eighth embodiment of the present invention.
  • a first embodiment of the present invention relates to an OFDM signal transmission method shown in FIG. 1, at step 101, the transmitting end in accordance with a signal value sequence of outgoing signals [Sl, s 2].
  • the to-be-transmitted signal at the transmitting end is an information bit indicating ACK/NACK in the control channel.
  • the transmitting end sets a corresponding signal sequence [s 1 s 2 ] for 1-bit ACK/NACK information, that is, if the value of the bit corresponds to ACK, the bit is set for the bit.
  • the signal sequence is such that if the value of the bit corresponds to NACK, the signal sequence set for the bit is [ ⁇ ].
  • [ 2 °] and [ ⁇ ] are two sequences that are orthogonal to each other.
  • the sequence [ 0 ] and the sequence [ ⁇ ] can be (1,0) and (0,1), respectively, or they can be Hada code sequences, such as (1,1) and (1,-1).
  • the sequence [ «] and the sequence [ ⁇ ] can also be any other orthogonal sequence.
  • the transmitting end spreads the elements 81 and s 2 in the signal sequence by orthogonal spreading codes, as shown in FIG. 2 .
  • the spreading code for spreading spread to Sl is ( Cl , C2 , ..., Cw )
  • the spreading code for spreading s 2 is ⁇ d channeld 2 ,..., d N ) , where ( ⁇ ..., ⁇ ;! and , ⁇ ,..., ⁇ ;!
  • orthogonal spreading codes ( ⁇ , ⁇ , ..., ) and orthogonal Spreading codes (2 ⁇ , ..., ⁇ ) may be two mutually orthogonal Hadamard sequence, or any other form of orthogonal sequences.
  • Si and S 2 are respectively spread by an orthogonal spreading code so that Si and s 2 do not interfere with each other.
  • the transmitting end combines the spread sequences corresponding to 8 1 and s 2 respectively, as shown in FIG. 2 .
  • the sender adds the sequence of the spread 0 ⁇ ,... ⁇ ) to the sequence of (s 2 d 1 , s 2 d 2 ,..., s 2 d N ) to obtain the length.
  • the sequence of N then proceeds to step 104 where the transmitting end transmits the combined signal sequence in OFDM. Specifically, as shown in FIG.
  • the transmitting end will be the elements in the merged sequence, ie, the sequence (s lCl + sd, , Sl c 2 + s 2 d 2 , ..., Sl c N + s 2
  • the N samples in d N ) are mapped into the time-frequency block of OFDM and transmitted to the receiving end by OFDM.
  • a second embodiment of the present invention relates to an OFDM signal receiving method, as shown in FIG.
  • the receiving method in this embodiment is for receiving the ACK/NACK information bits transmitted in the first embodiment.
  • the receiving end receives the signal in OFDM mode. Specifically, as shown in FIG. 4, the receiving end first performs OFDM demodulation on the received signal, and then performs de-mapping of the demodulated signal on the subcarrier. For the above case, the receiving end performs OFDM demodulation on the received signal and inverse mapping of the subcarriers to obtain a received signal of length N: ⁇ s,c,+ s 2 d,,s,c 2 +s 2 d 2 ,..., Sl c N +s 2 d N ).
  • the receiving end performs despreading with an orthogonal code corresponding to the transmitting end.
  • the receiving end uses orthogonal spreading codes ( Cl , C2 , ..., Cw ) and d, d 2 , d N , and the received signal (s lCl + s 2 d, , Sl c 2 + s 2 d 2, ..., Sl c N + s 2 d N) is despread to obtain the despread signal sequences [Xi, x 2], as shown in FIG.
  • the receiving end obtains a to-be-transmitted signal at the transmitting end according to the despread signal sequence [ ⁇ 1 ⁇ 2 ]. Specifically, as shown in FIG. 4, the receiving end performs correlation processing on the signal sequence [ ⁇ 1 ⁇ 2 ], that is, the receiving end correspondingly sets the signal sequence [ ⁇ 1 ⁇ 2 ] to the corresponding end of the transmitting end. Correlation is performed on two orthogonal sequences of ACK/NACK.
  • the set signal sequence is [ «]
  • the set signal sequence is [ ⁇ ]
  • the two orthogonal sequences corresponding to ACK/NACK that may be set at the transmitting end are [ 2 °] and [ ⁇ ], respectively.
  • the receiving end obtains the ACK/NACK information sent by the transmitting end by adopting the relevant processing manner, it is not necessary to determine whether the DFT matrix column vector corresponding to the ACK/NACK information bit is received according to the energy detecting method, thereby effectively improving the transmission ACK/NACK.
  • the anti-interference ability of the information bits improves the transmission reliability of the ACK, thereby increasing the system capacity.
  • the third embodiment is substantially the same manner as the OFDM signal transmission method of the first embodiment of the present invention, which differ only [Sl, s 2] a method is provided according to the value of the signal outgoing signal sequence.
  • the set signal sequences [ 2 °] and W] are orthogonal to each other, and in the present embodiment, according to different values of the signals to be sent.
  • the phase difference between the signal sequence [ , ° ] and [ sl , s ] is different from the phase difference between ⁇ and ⁇ .
  • the value of 0 or ⁇ is determined by the ACK/NACK information.
  • a fourth embodiment of the present invention relates to an OFDM signal receiving method for receiving a signal transmitted in the third embodiment.
  • the receiving method is substantially the same as the second embodiment, except that in the second embodiment, the receiving end performs correlation processing on the despread signal sequence [x 1 x 2 ], thereby obtaining an ACK sent by the transmitting end. /NACK information, but in the present embodiment, the receiving end adopts the phase detection method to obtain the ACK/NACK information transmitted by the transmitting end.
  • the receiving end performs OFDM demodulation and subcarriers on the received signal.
  • the received signal of length ⁇ is obtained: 0 ⁇ + s 2 d, , s, c 2 + s 2 d 2 ,..., Sl c N + s 2 d N ) , using and transmitting orthogonal spreading codes and corresponding (2 ⁇ , ..., ⁇ ) for de-spreading the reception signal to obtain a signal sequence [x 1 x 2], the above-described process is the same as the second embodiment, which is not Like Said.
  • the receiving end detects the phase difference of the signal sequence [x 1 x 2 ] after despreading, and respectively detects the phase difference between ⁇ and x 2 and the phase corresponding to the ACK/NACK information that the transmitting end may set. The difference is compared, and the phase difference of the possible setting which is closest to the phase difference between the detected ⁇ and x 2 is found, and the corresponding ACK/NACK information is output as the ACK/NACK information transmitted by the transmitting end.
  • the transmitting end is a signal sequence corresponding to the bit value set by the ACK
  • the phase difference between s 2 and 81 is 0; in the signal sequence set corresponding to the bit value of the NACK, s 2
  • the phase difference from Si is ⁇ .
  • the receiving end in accordance with the formula Re (x 2 x;) determining a phase difference between the detected phase Xl and x is closest to 0 or 180 degrees phase.
  • Re (x 2) If the value of Re (x 2) is greater than or equal to 0, then the phase difference between the detected x 2 Xl and closer to phase 0, it is determined that the ACK information sent by a transmitter; if Re (x 2 j is less than the value of 0, it indicates that the detected phase difference between ⁇ and x 2 is closer to ⁇ , and it is determined that the sender sends NACK information, where Re represents the real part and * represents the conjugate.
  • the phase difference between Si and s 2 in the signal sequence is used to represent the value of the ACK/NACK information, which effectively improves the transmission anti-interference capability of the ACK/NACK information bits, and avoids the receiving end due to ACK/
  • the NACK information bit is misjudged by the influence of environmental noise during transmission, which improves the transmission reliability of ACK/NACK and further increases the system capacity.
  • a fifth embodiment of the present invention relates to an OFDM signal transmission method, which is substantially the same as the third embodiment, except that in the third embodiment, the signal to be transmitted at the transmitting end has only two different values, which respectively correspond to ACK and NACK, and in this embodiment, the pending signal at the transmitting end has three different values, corresponding to ACK, NACK, and null (NULL), respectively. Therefore, when the signals to be transmitted take different values, the phase difference between S1 and s 2 in the corresponding signal sequence set is different.
  • the value, which is 0 or 2 /3 or 4 /3 corresponds to three cases of ACK, NACK, and null.
  • a sixth embodiment of the present invention relates to an OFDM signal receiving method for receiving a signal transmitted in the fifth embodiment.
  • the receiving method in the present embodiment is substantially the same as the receiving method in the fourth embodiment, and the only difference is that
  • the signal received by the receiving end may only be one of ACK or NACK, and in the embodiment, the signal received by the receiving end may be ACK, NACK or null.
  • the signal received by the receiving end may be ACK, NACK or null.
  • the receiving end performs OFDM demodulation on the received signal and inverse mapping of the subcarriers to obtain a received signal of length N: ( + ⁇ i ⁇ + ⁇ i ⁇ —Ai ⁇ + ⁇ i ⁇ ) Despreading the received signal by using orthogonal spreading codes ( ⁇ , , . . . , 1 ⁇ 2 ) and ( ⁇ 2 , . . . , ⁇ ) corresponding to the transmitting end to obtain a signal sequence [x 1 x 2 ], As shown in FIG. 8, the above process is completely the same as the fourth embodiment, and will not be described here.
  • the receiving end detects the phase difference of the signal sequence [x 1 x 2 ] after despreading, and respectively detects the phase difference between ⁇ and x 2 and the phase corresponding to the ACK/NACK information that the transmitting end may set. The difference is compared, and the phase difference of the possible setting which is closest to the phase difference between the detected ⁇ and x 2 is found, and the corresponding ACK/NACK information is output as the ACK/NACK information transmitted by the transmitting end.
  • the transmitting end is a signal sequence corresponding to the bit value set by the ACK
  • the phase difference between s 2 and 81 is 0; in the signal sequence set corresponding to the bit value of the NACK, s 2
  • the phase difference between 81 and 81 is 2 ⁇ /3
  • the phase difference between s 2 and Si in the signal sequence set for the bit value corresponding to the null value is 4 ⁇ /3.
  • the detected value is judged according to the formulas Re(x 2 x; e- /3 *.), Re( 2 - ⁇ /3tl ), and Re(x 2 jc; e- /3 * 2 ).
  • the phase difference between x and 2 Xl is closest to 0, 2 ⁇ / 3. or 4 ⁇ / 3.
  • Re represents the real part
  • * represents the conjugate.
  • the present embodiment also effectively improves the transmission anti-interference ability of the ACK/ACK information bits by using the phase difference between 81 and 8 2 in the set signal sequence to represent the value of the ACK/NACK information.
  • the storage medium may be a read only memory, a random access memory, a magnetic disk, an optical disk, or the like.
  • a seventh embodiment of the present invention relates to an OFDM signal transmitting apparatus, which has a structure as shown in FIG. 9, and includes: a signal sequence module 910, configured to set a signal sequence according to a value of a signal to be transmitted, and when the values of the to-be-transmitted signals are different The set signal sequence is different; the spreading module 920 is configured to spread the frequency of each element in the set signal sequence with different spreading codes, and add and combine the spreading results to send the sequence.
  • the module 930 is configured to send the module 930 to send the combined sequence in OFDM mode.
  • the spread spectrum module 920 can be spread using orthogonal spreading codes for better reception.
  • the signal sequence module 910 can set a corresponding signal sequence for each value of the signal to be sent, so that the signal sequence set when the signal to be sent takes a certain value will be the same, and the receiving end can be based on the sequence it receives. Which determines the value of the received signal.
  • the signal sequence module 910 can set mutually orthogonal signal sequences for different values of the to-be-transmitted signal.
  • the signal sequence module 910 may also set a corresponding phase difference value for each pending signal value, and set a phase difference between two elements 81 and 8 2 in the signal sequence when the signal to be transmitted takes a certain value. For the phase difference corresponding to the value, the receiving end can obtain the value of the received signal according to the phase difference of the corresponding two elements in the received sequence.
  • An eighth embodiment of the present invention relates to an OFDM signal receiving apparatus for receiving a signal transmitted by a transmitting apparatus in a seventh embodiment, the structure of which is as shown in FIG.
  • the receiving device includes: a receiving module 1010, configured to receive a signal in an OFDM manner; and a despreading module 1020, configured to respectively receive the received signal Different spreading codes are despread, each despreading result is an element in the despreading sequence; and a calculating module 1030 is configured to obtain a received signal according to the despreading sequence and the correspondence between the received signal value and the signal sequence. The value is output.
  • the spreading code used by the despreading module 1020 may be an orthogonal spreading code.
  • the calculating module 1030 may be a correlation operation module, configured to separately separate the despreading sequence and each signal sequence corresponding to the possible value of the received signal. A correlation operation is performed to output the value corresponding to the signal sequence having the largest correlation peak as the value of the received signal.
  • the individual signal sequences respectively corresponding to all possible values of the received signal may be orthogonal to each other.
  • the calculating module 1030 may be a phase difference computing module for despreading according to the despreading
  • the receiving end since the receiving end does not need to decide whether to receive the DFT matrix column vector corresponding to the ACK/NACK information bits according to the energy detection method, the threshold problem is effectively avoided, and therefore, the transmission of the ACK/NACK information bits is enabled. Good anti-interference ability, improve the transmission reliability of ACK, thus improving system capacity;
  • the si and s2 are respectively spread by an orthogonal spreading code, so that si and s2 do not interfere with each other; the ACK/NACK information is effectively represented by using the phase difference of si and s2 in the corresponding signal sequence, thereby effectively improving ACK/NACK.
  • the anti-interference ability of information bits is transmitted, which avoids the misjudgment caused by the environmental noise caused by the ACK/NACK information bits in the transmission process, improves the transmission reliability of ACK/NACK, and improves the system capacity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

正交频分复用信号收发方法及装置
本申请要求于 2006年 8月 2日提交中国专利局、申请号为 200610110543.4、 发明名称为"正交频分复用信号收发方法及装置"的中国专利申请的优先权, 其 全部内容通过引用结合在本申请中。
技术领域
本发明涉及移动通信领域, 特别涉及正交频分复用 ( Orthogonal Frequency Division Multiplexing, 简称' OFDM" )信号收发方法及装置。
背景技术
通信系统中待传输的信息有多种形式, 如话音、 文字、 符号和图像等等。 为了传输和交换信息, 需要把所传送的信息转换为电信号。 通常电信号是以它 的某个参量来表示信息的, 例如信号电压大小随话音强弱而改变, 这就是以信 号幅度来代表信息。
按照信号参量的取值方式及它与信息之间的关系, 可将信号分为两类: 即 模拟信号与数字信号。 进一步说, 根据通信系统中所传送的是模拟信号还是数 字信号 , 可以把通信系统分成模拟通信系统和数字通信系统。
对于数字通信系统而言, 所传送的数字信号不仅在时间上是离散的, 而且 在幅度上也是离散, 换句话说, 幅值被限制在有限个数值之内。
在数字通信系统中 , 以 OFDM为代表的多载波技术受到了广泛的关注。 多载波传输把数据流分解为若干个独立的子数据流, 每个子数据流将具有 低得多的比特速率。 用这样低比特率形成的低速率多状态符号去调制相应的子 载波, 就构成了多个低速率符号并行发送的传输系统。
OFDM作为一种多载波数字调制技术, 将数据经编码后在频域传输。 与常 规的单载波技术, 口调幅 /调频 ( Amplitude Modulation/Frequency Modulation, 简称" AM/FM" ), 在某一时刻只用单一频率发送单一信号不同的是, OFDM在 经过特别计算的正交子载波上同时发送多路高速信号。
OFDM又作为一种复用技术, 将多路信号复用在不同正交子载波上。 传统 的频分复用( Frequency Division Multiplexing, 简称" FDM" )技术将带宽分成几 个子信道,中间用保护频带来降低干扰,在这些子信道上同时发送数据。 OFDM 系统比传统的 FDM系统要求的带宽要少得多。 由于使用无干扰正交载波技术, 单个载波间无需保护频带, 这样使得可用频语的使用效率更高。 另外, OFDM 技术可动态分配在子载波上传输的数据。 为获得最大的数据吞吐量, 多载波调 制器可以智能地分配更多的数据到噪声小的子载波上。
OFDM将经过编码的待传输数据作为频域信息, 将其调制为时域信号, 并 在信道上传输, 而在接收端则进行逆过程解调。 OFDM系统的调制和解调可以 分别由逆离散傅立叶变换( Inverse Discrete Fourier Transform , 简称 "IDFT" )和 离散傅立叶变换 ( Discrete Fourier Transform, 简称" DFT" )来代替。 通过 N点 IDFT运算,把频域数据符号变换为时域数据符号, 经过载波调制之后,发送到 信道中。 在接收端, 对接收信号进行相干解调, 然后将基带信号进行 N点 DFT 运算, 即可获得发送的数据符号。 在实际应用中, IDFT/DFT可以采用逆快速 傅立叶变换 ( Inverse Fast Fourier Transform, 简称" IFFT" )和快速傅立叶变换 ( Fast Fourier Transform, 简称" FFT" )来实现。 FFT技术的采用使得 OFDM系 统的复杂度大大降低, 再加上高性能信息处理器件比如可编程逻辑器件 ( Programmable Logic Device, 简称" PLD" )、 数字信号处理器(Digital signal Processor, 简称" DSP" )、 微处理器( Micro Processor, 简称" μΡ,,)等的发展和 应用,使得 OFDM系统的实现更加容易,成为应用最广的一种多载波传输方案。
为了提高传输性能,可以将信号经过信道编码后再用 OFDM传输。信道编 码作为数字通信系统中的一个必不可少的重要技术手段, 在通信系统中广泛使 用。 信道编码的主要任务是为了区分通路和增加通信的可靠性, 所采用的编码 有正交码、 纠错码等。 其中, 正交码是以区分通路为主要目的的编码, 并且, 正交码还具有很强的抗干扰能力。
在数字通信系统中, 为了保证通信质量, 接收端需要对接收到的数据包进 行应答, 即告诉发送端该数据包是否正确接收。
通常用户设备正确接收了来自网络侧的数据包后, 会向网络侧发送一个比 特的 ACK (确认)消息来通知网络侧该数据包已正确接收; 如果该用户设备接 收数据包出错, 则向网络侧发送一个比特的 NACK (否定性确认)消息来通知 网络侧重发该数据包。 因此, ACK/NACK消息的正确传输对于通信系统的容量 控制起着重要作用。
目前, 用户设备通过控制信道向网络侧发送表示数据包是否正确接收的 ACK/NACK信息。 在一个 ACK/NACK反馈周期内, 用于传输 ACK/NACK信 息的反向 ACK/NACK信道由 Nt个时频资源块组成,每个时频资源块由若干个 子资源块组成。每个子资源块由两个连续的 OFDM符号上的各 8个连续的子载 波组成, 并且这两个 OFDM 符号上的这些子载波占相同的频点。 一个 ACK/NACK反馈周期内, 子资源块的个数随业务信道的数目变化, 最小值为 4 个。 每个子资源块可以承载 8个 ACK/NACK信息比特, 分别对应 8个不同的 业务信道。 每个 ACK/NACK信息比特采用开关键控 (OOK)的方式发送。 在每 个子资源块中,每个比特采用正交码进行扩展, 比如, 采用长度大小为 16的离 散傅立叶变换 ( Discrete Fourier Transform, 简称" DFT" )矩阵的一列来扩展。 即每个 ACK/NACK信息比特和 DFT矩阵的某一列相关联,反馈 ACK信息时, 在该子资源块上发送该列数据,反馈 NACK信息时, 该子资源块上不发送该列 数据。 8个 ACK/NACK信息比特分别对应 DFT矩阵的 8列。 由于 DFT矩阵的 大小为 16, 则剩余 8列。在该子资源块中,这 8列不发送,用来作为干扰估计。 也就是说每个子资源块上复用了 8个 ACK/NACK信息比特。每个 ACK/NACK 信息比特在时频资源块上的 4 个不同的子资源块上传输, 分别和不同用户的 ACK/NACK信息比特复用。这些传输 ACK/NACK信息的时频资源块在业务信 道上随机跳频。
网络侧根据是否在子资源块接收到了 DFT矩阵列向量,来判断相应的用户 设备发送的是 ACK信息还是 NACK信息。如果接收到了 DFT矩阵列向量, 则 判定该用户设备发送了 ACK信息,否则,判定该用户设备发送了 NACK信息。 而目前,网络侧通过能量检测的方法来判断是否在子资源块接收到了 DFT矩阵 列向量,由于在无线衰落情况下,较难确定检测门限的阀值,因此, ACK/NACK 一旦在传输过程中受到干扰, 网络侧就可能无法正确判断出接收到的是 ACK 信息还是 NACK信息, 产生 ACK/NACK信息的误判。
发明内容
有鉴于此, 本发明实施方式提供了一种正交频分复用信号收发方法及装 置, 使得在传输 ACK信息时具有良好的抗干扰能力。
本发明实施方式提出了一种正交频分复用信号发送方法, 包含以下步骤: 才艮据待发信号的值设置信号序列, 为不同的值所设置的信号序列不同; 对所述信号序列中的每个元素以不同的扩频码分别进行扩频 , 并将扩频结 果合并;
将合并后的序列以正交频分复用方式发送。
本发明还提出了一种正交频分复用信号接收方法, 其特征在于, 包含以下 步骤:
以正交频分复用方式接收信号;
对接收信号分别以不同的扩频码进行解扩, 每个解扩结果为解扩序列中的 一个元素;
根据解扩序列、 以及接收信号取值与信号序列的对应关系, 得到接收信号 的值。
本发明还提出了一种正交频分复用信号发送装置, 包含:
信号序列模块, 用于^^据待发信号的值设置信号序列, 为不同的值所设置 的信号序列不同;
扩频模块, 用于对所述信号序列中的每个元素以不同的扩频码分别进行扩 频, 并将扩频结果合并;
发送模块, 用于将合并后的序列以正交频分复用方式发送。
本发明还提出了一种正交频分复用信号接收装置, 包含:
接收模块 , 用于以正交频分复用方式接收信号;
解扩模块, 用于对接收信号分别以不同的扩频码进行解扩, 每个解扩结果 为解扩序列中的一个元素;
计算模块,用于根据解扩序列、以及接收信号取值与信号序列的对应关系, 得到接收信号的值。
本发明实施方式中, 在发送端, 根据待发信号的值设置信号序列, 将信号 序列中各元素以不同扩频码扩频后合并,再以 OFDM方式发送给接收端;在接 收端, 以相应的扩频码解扩, 并根据信号序列的设置方式由解扩所得的序列判 定接收信号的值; 由于接收端无需根据能量检测的方法判决是否接收到对应于 ACK/NACK信息比特的 DFT矩阵列向量, 有效避免了门限问题, 因此, 使得 ACK/NACK信息比特的传输具有了很好的抗干扰能力, 提高了 ACK的传输可 靠性, 从而提高了系统容量。 附图说明
图 1是根据本发明第一实施方式的 OFDM信号发送方法流程图;
图 2是根据本发明第一实施方式的 OFDM信号发送方法示意图;
图 3是根据本发明第二实施方式的 OFDM信号接收方法流程图;
图 4是根据本发明第二实施方式的 OFDM信号接收方法示意图;
图 5是根据本发明第三实施方式的 OFDM信号发送方法示意图;
图 6是根据本发明第四实施方式的 OFDM信号接收方法示意图;
图 7是根据本发明第五实施方式的 OFDM信号发送方法示意图;
图 8是根据本发明第六实施方式的 OFDM信号接收方法示意图;
图 9是根据本发明第七实施方式的 OFDM信号发送装置结构示意图; 图 10是根据本发明第八实施方式的 OFDM信号接收装置结构示意图。
具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明 作进一步地详细描述。
本发明的第一实施方式涉及 OFDM信号发送方法, 如图 1所示, 在步骤 101 中, 发送端根据待发信号的值设置信号序列 [Sl, s2]。 在本实施方式中, 发 送端的待发信号为控制信道中表示 ACK/NACK的信息比特。
具体地说, 如图 2所示, 发送端为 1比特的 ACK/NACK信息设置相应的 信号序列 [s1 s2], 也就是说, 如果该比特的值对应于 ACK, 则为该比特设置的 信号序列为 如果该比特的值对应于 NACK, 则为该比特设置的信号序 列为 [^ ]。 其中, [ 2°]和 [^ ]为相互正交的两个序列。 比如说,序列 [ 0] 和序列 [^ ]可以分别为( 1,0 )和 ( 0,1 ), 也可以分别为哈达码序列, 如 ( 1,1 ) 和(1,- 1 )。 当然, 序列[«]和序列 [^ ]也可以是任何其他的正交序列。
接着, 进入步骤 102, 发送端将信号序列中的元素 81和 s2分别以正交扩频 码进行扩频, 如图 2所示。 比如说, 假定对 Sl进行扩频的扩频码为(Cl,C2,...,Cw), 对 s2进行扩频的扩频码为 {d„d2 ,..., dN ),其中 ( ^…,^;!与 ,^,…,^;!相互正交, 例如可以是快速傅立叶变换( Fast Fourier Transform , 简称" FFT" )矩阵中的某 二个行或某二个列。 那么, 经扩频后与 Sl对应的序列为( ^^2,...,%) , 经扩 频后与 s2对应的序列为 02 ^^2,..., ^)。 当然, 正交扩频码 (^,^,..., )与正交 扩频码 ( ^2,...,^)也可以是二个彼此正交的哈达码序列 , 或是任何其它形式的 正交序列。将 Si和 S2分别以一个正交扩频码进行扩频,使得 Si和 s2不相互干扰。
接着,进入步骤 103,发送端将经扩频后的分别对应于 81和 s2的序列合并, 如图 2 所示。 针对上述案例, 发送端将扩频后的 0^^^,...^^)序列与 (s2d1,s2d2,...,s2dN) 序 列 相 加 , 得 到 长 度 为 N 的 序 列 接着, 进入步骤 104, 发送端将合并后的信号序列以 OFDM的方式发送。 具体地说, 如图 2 所示, 发送端将合并后的序列中的各元素, 即序列 (slCl + s d, , Slc2 + s2d2 ,...,SlcN + s2dN )中的 N个样值 , 映射到 OFDM的时频块中, 并 通过 OFDM方式传输给接收端。
本发明的第二实施方式涉及 OFDM信号接收方法,如图 3所示。本实施方 式中的接收方法用于接收第一实施方式中所发送的 ACK/NACK信息比特。
在步骤 301中, 接收端以 OFDM方式接收信号。 具体地说, 如图 4所示, 接收端首先对收到的信号进行 OFDM的解调,再将解调后的信号进行子载波的 反映射。针对上述案例,接收端对收到的信号进行 OFDM的解调以及子载波的 反映射后, 得到长度为 N的接收信号: {s,c,+ s2d,,s,c2 +s2d2,...,SlcN +s2dN)。
接着, 进入步骤 302, 接收端以与发送端相应的正交码进行解扩。 针对上 述案例, 接收端利用正交扩频码(Cl,C2,...,Cw)和 d ,d2 ,dN、对该接收信号 (slCl + s2d, , Slc2 + s2d2 ,...,SlcN + s2dN )进行解扩 , 得到解扩后的信号序列 [Xi , x2] , 如 图 4所示。
接着, 进入步骤 303, 接收端根据该解扩后的信号序列 [χ1 χ2], 得到发送 端的待发信号。 具体地说, 如图 4所示, 接收端对该信号序列 [χ1 χ2]进行相关 处理, 也就是说, 接收端将该信号序列 [χ1 χ2]分别与发送端可能设置的对应于 ACK/NACK的两个正交序列进行相关。针对上述案例,在发送端中, 当该待发 信号的值对应于 ACK时, 所设置的信号序列为[«], 当该待发信号的值对应 于 NACK 时, 所设置的信号序列为 因此, 发送端可能设置的对应于 ACK/NACK的两个正交序列分别为 [ 2°]和 [^ ]。 接收端将信号序列 [x1 x2] 与 相关后,
Figure imgf000009_0001
, 将信号序列 [χ1 χ2]与 W ]相关后, 得到 然后, 再比较 ι^2与 |2, 如果 ι^2比 |2大, 则说明发送端所发送的待发 信号为 ACK; 如果 比 大, 则说明发送端所发送的待发信号为 NACK。
由于接收端通过采用相关处理的方式得到发送端所发送的 ACK/NACK信 息, 无需根据能量检测的方法判决是否接收到对应于 ACK/NACK信息比特的 DFT矩阵列向量, 有效提高了传输 ACK/NACK信息比特时的抗干扰能力, 提 高了 ACK的传输可靠性, 从而提高了系统容量。
本发明的第三实施方式 OFDM信号发送方法与第一实施方式大致相同,其 区别仅在于根据待发信号的值设置信号序列 [Sl, s2]的方法不同。 在第一实施方 式中, 根据待发信号的不同取值, 所设置的信号序列 [ 2°]和 W ]相互正交, 而在本实施方式中 ,根据待发信号的不同取值所设置的信号序列 [ , ° ]和 [ sl , s ] 中, 与 之间的相位差不同于 ^与 ^之间的相位差。
具体地说,如图 5所示,发送端为待发信号的不同取值设置的信号序列 [Sl, s2]为 [ = = e "A , 其中, 为任意随才 目位值, 耳又值为 0或 Γ , 的 取值由 ACK/NACK信息而定。 比如说, 为对应于 ACK的比特值设置信号序列 [Sl = e ,s2 = e +Jt0 ] , 为 对应 于 NACK 的 比特值设置信号序 列 [Sl = e^ ,s2 = eJ^] , 因此, 如果发送端待发信号为 ACK信息, 则所设置的信 号序列中 s281之间的相位差为 0,如果发送端待发信号为 NACK信息, 则所 设置的信号序列中 82Sl之间的相位差为 τ。 本实施方式中, 81与 82只有相位 上的差异, 绝对值是相同的, 这种情况下效果较好, 当然 Sl与 s2不但有相位上 的差异而且有绝对值差异的情况也属于本发明的保护范围。
然后,再将所设置的信号序列中的 81和 s2分别以一个正交扩频码进行扩频 后合并, 并将合并后的信号以 OFDM方式发送给接收端, 如图 5所示, 对所设 置信号序列的发送与第一实施方式完全相同, 在此不再赞述。
本发明的第四实施方式涉及 OFDM信号接收方法,用于接收第三实施方式 中所发送的信号。 该接收方法与第二实施方式大致相同, 其区别仅在于, 在第 二实施方式中, 接收端对解扩后的信号序列 [x1 x2]进行相关处理, 从而得到发 送端所发送的 ACK/NACK信息, 而在本实施方式中, 接收端采用相位检测的 方式, 得到发送端所发送的 ACK/NACK信息。
具体地说,如图 6所示,接收端对收到的信号进行 OFDM的解调以及子载 波的反映射后 , 得到长度为 Ν的接收信号: 0Α + s2d, , s,c2 + s2d2 ,..., SlcN + s2dN ) , 利用与发送端相应的正交扩频码 和 ( ^2,...,^)对该接收信号进行解 扩得到信号序列 [x1 x2] , 上述过程与第二实施方式完全相同, 在此不再赞述。
接收端对解扩后得到信号序列 [x1 x2]进行相位差的检测, 并将检测到的 ^与 x2之间的相位差分别与发送端可能设置的对应于 ACK/NACK信息的相位 差进行比较, 找出与检测到的 ^与 x2之间的相位差最相近的可能设置的相位 差, 以其对应的 ACK/NACK信息作为发送端所发送的 ACK/NACK信息输出。
针对第三实施方式中的案例, 如果发送端为对应于 ACK的比特值设置的 信号序列中 s281之间的相位差为 0;为对应于 NACK的比特值设置的信号序 列中 s2与 Si之间的相位差为 τ。 那么,在接收端中,根据公式 Re(x2x; )判断检测 到的 Xl与 x2之间的相位差最接近 0相位还是 180度相位。 如果 Re(x2 )的值大 于等于 0, 则说明检测到的 Xl与 x2之间的相位差更为接近 0相位, 判定发送端 发送的为 ACK信息; 如果 Re(x2j 的值小于 0, 则说明检测到的 ^与 x2之间的 相位差更为接近 τ, 判定发送端发送的为 NACK信息。其中, Re代表取实数部 分, *代表取共轭。
在本实施方式中, 利用了信号序列中 Si和 s2之间的相位差来表示 ACK/NACK信息的值, 有效提高了 ACK/NACK信息比特的传输抗干扰能力, 避免了接收端因 ACK/NACK信息比特在传输过程中受到环境噪声的影响而导 致的误判, 提高了 ACK/NACK的传输可靠性, 进而提高了系统容量。
本发明的第五实施方式涉及 OFDM信号发送方法,与第三实施方式大致相 同, 其区别仅在于, 在第三实施方式中, 发送端的待发信号仅有两种不同的取 值, 分别对应于 ACK和 NACK, 而在本实施方式中, 发送端的待发信号有三 种不同的取值, 分别对应于 ACK、 NACK, 以及空值(NULL )。 因此, 当待发 信号取不同的值时,所设置的相应的信号序列中 Sl和 s2之间的相位差各不相同。
具体地说, 发送端为待发信号的不同取值设置的信号序列 [Sl , s2]为 [Sl = eM , s2 = β^ φ ] , 其中, φ0为任意随积 4目位值, 取值为 0或 2 /34 /3 , 分别对应于 ACK、 NACK, 以及空值的三种情况。 比如说, 为对应于 ACK的 比特值设置信号序列 = e^ , s2 = e +J*° ] ,为对应于 NACK的比特值设置信号序 列 = e^ , s2 = β^*2π/3 ] , 为对应 于 空值的 比特值设置信号序列 [Sl =e^,s2 =e^+JtM3 , 也就是说, 如果发送端待发信号为 ACK, 则所设置的信 号序列中 s281之间的相位差为 0, 如果发送端待发信号为 NACK, 则所设置 的信号序列中 s281之间的相位差为 2π/3,如果发送端待发信号为空值, 则所 设置的信号序列中 s281之间的相位差为 4π/3。
然后,再将所设置的信号序列中的 81和82分别以一个正交扩频码进行扩频 后合并, 并将合并后的信号以 OFDM方式发送给接收端, 如图 7所示, 对所设 置的信号序列的发送过程与第三实施方式完全相同, 在此不再赞述。
本发明的第六实施方式涉及 OFDM信号接收方法,用于接收第五实施方式 中所发送的信号, 本实施方式中的接收方法与第四实施方式中的接收方法大致 相同,其区别仅在于,在第四实施方式中,接收端所接收到的信号只可能是 ACK 或 NACK 两种情况之一, 而在本实施方式中, 接收端所接收到的信号可能是 ACK、 NACK或空值这三种情况之一。
具体地说, 接收端对收到的信号进行 OFDM的解调以及子载波的反映射 后, 得到长度为 N的接收信号: ( +^i^^+^i^—Ai^+^i^); 利用与发送 端相应的正交扩频码 (^, ,...,½)和( ^2,...,^)对该接收信号进行解扩得到信号 序列 [x1 x2],如图 8所示,上述过程与第四实施方式完全相同,在此不再赞述。
接收端对解扩后得到信号序列 [x1 x2]进行相位差的检测, 并将检测到的 ^与 x2之间的相位差分别与发送端可能设置的对应于 ACK/NACK信息的相位 差进行比较, 找出与检测到的 ^与 x2之间的相位差最相近的可能设置的相位 差, 以其对应的 ACK/NACK信息作为发送端所发送的 ACK/NACK信息输出。
针对第五实施方式中的案例, 如果发送端为对应于 ACK的比特值设置的 信号序列中 s281之间的相位差为 0;为对应于 NACK的比特值设置的信号序 列中 s281之间的相位差为 2π/3, 为对应于空值的比特值设置的信号序列中 s2与 Si之间的相位差为 4π/3。 那么, 在接收端, 根据公式 Re(x2x;e- /3*。) 、 Re( 2 -^/3tl), 以及 Re(x2jc;e- /3*2)来判断检测到的 Xl与 x2之间的相位差最接 近 0、 2π/3. 还是 4π/3。 其中, Re代表取实数部分, *代表取共轭。
在 Re(x2x;e- /3*。)、 Re(x2x - 3")和 Re(x2x - 3*2)中 , 如果根据解扩后的 信号序列 [x1 x2]计算出 Re(x2x m))的值最大, 则说明检测到的 ^与 x2之间 的相位差更为接近 0相位, 判定发送端发送的信息为 ACK; 如果根据解扩后的 信号序列 [x1 x2]计算出的
Figure imgf000013_0001
与 x2之间 的相位差更为接近 2π /3相位, 判定发送端发送的信息为 NACK; 如果根据解扩 后的信号序列 [x1 x2]计算出的 Re(x2x;e-^/3*2 )值最大, 则说明检测到的 ^与 x2 之间的相位差更为接近 4π /3相位, 判定发送端发送的信息为空值。
不难发现,本实施方式同样通过利用所设置的信号序列中 81和82之间的相 位差来表示 ACK/NACK信息的值,有效提高了 ACK/ ACK信息比特的传输抗 干扰能力。
本领域普通技术人员可以理解实现上述方法实施方式中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成, 所述的程序可以存储于一计算机 步骤。 所述的存储介质可以是只读存储器、 随机存储器、 磁碟、 光盘等。
本发明的第七实施方式涉及 OFDM信号发送装置,其结构如图 9所示, 包 含: 信号序列模块 910, 用于根据待发信号的值设置信号序列, 并且当待发信 号的取值不同时, 所设置的信号序列不同; 扩频模块 920, 用于对所设置的信 号序列中的每个元素分别以不同扩频码进行扩频, 并将扩频结果相加合并后的 序列输出至发送模块 930; 以½送模块 930, 用于将合并后的序列以 OFDM 方式发送。 扩频模块 920可以采用正交扩频码进行扩频, 以获得更好的接收效 果。
信号序列模块 910可以为每个待发信号的取值设定对应的一个信号序列, 这样待发信号取某个值时所设置的信号序列都会是同一个, 接收端可以根据其 接收的序列是哪个来判定接收信号的值。 其中, 信号序列模块 910可以为该待 发信号的不同取值设置相互正交的信号序列。
信号序列模块 910 也可以为每个待发信号的取值设定对应的一个相位差 值, 当待发信号取某个值时, 设置信号序列中两个元素 81和82之间的相位差为 该值对应的相位差值, 接收端可以根据其接收序列中对应的两个元素的相位差 得到接收信号的值。
本发明的第八实施方式涉及 OFDM信号接收装置,用于接收第七实施方式 中的发送装置所发送的信号, 其结构如图 10所示。本接收装置包含: 接收模块 1010, 用于以 OFDM方式接收信号; 解扩模块 1020, 用于对接收信号分别以 不同的扩频码进行解扩, 每个解扩结果为解扩序列中的一个元素; 以及计算模 块 1030, 用于根据解扩序列、 以及接收信号取值与信号序列的对应关系, 得到 接收信号的值并输出。其中,解扩模块 1020所使用的扩频码可以是正交扩频码。
其中, 如果接收信号的每个可能取值都与一个信号序列具有对应关系, 则 计算模块 1030可以是相关运算模块 ,用于将解扩序列与对应于接收信号可能取 值的每个信号序列分别进行相关操作, 将具有最大相关峰的信号序列所对应的 取值作为接收信号的值输出。 分别对应于接收信号的所有可能取值的各个信号 序列可以相互正交。
如果接收信号的每个可能取值都对应于发送端设置的信号序列中两个元 素 81和 s2之间的一个相位差值, 则计算模块 1030可以是相位差运算模块, 用 于根据解扩序列中对应于 81和 s2的元素 [x1 x2], 在接收信号所有可能取值对 应的相位差值中,查找与 和 2之间的相位差最接近的相位差值,将其对应的 取值作为接收信号的值输出。
本发明实施方式中, 由于接收端无需根据能量检测的方法判决是否接收到 对应于 ACK/NACK信息比特的 DFT矩阵列向量,有效避免了门限问题,因此, 使得 ACK/NACK信息比特的传输具有了很好的抗干扰能力 ,提高了 ACK的传 输可靠性, 从而提高了系统容量;
将 si和 s2分别以一个正交扩频码进行扩频, 使得 si和 s2不相互干扰; 通过利用对应的信号序列中 si和 s2的相位差来表示 ACK/NACK信息, 有效提高了 ACK/NACK 信息比特的传输抗干扰能力, 避免了接收端因 ACK/NACK信息比特在传输过程中受到环境噪声的影响而导致的误判 ,提高了 ACK/NACK的传输可靠性, 进而提高了系统容量。
虽然通过参照本发明的某些优选实施方式, 已经对本发明进行了图示和描 述, 但本领域的普通技术人员应该明白, 可以在形式上和细节上对其作各种改 变, 而不偏离本发明的精神和范围。

Claims

权 利 要 求
1. 一种正交频分复用信号发送方法, 其特征在于, 包含以下步骤: 根据待发信号的值设置信号序列, 为不同的值所设置的信号序列不同; 对所述信号序列中的每个元素以不同的扩频码分别进行扩频 , 并将扩频结 果合并;
将合并后的序列以正交频分复用方式发送。
2. 根据权利要求 1 所述的正交频分复用信号发送方法, 其特征在于, 所 述不同的扩频码为相互正交的扩频码。
3. 根据权利要求 1或 2所述的正交频分复用信号发送方法, 其特征在于, 所述每个待发信号的可能取值对应于一个信号序列。
4. 根据权利要求 3 所述的正交频分复用信号发送方法, 其特征在于, 所 述对应于待发信号各个可能取值的信号序列相互正交。
5. 根据权利要求 4 所述的正交频分复用信号发送方法, 其特征在于, 所 述待发信号为 ACK/NACK信息; 所述 ACK/NACK信息的可能取值为 ACK和 NACK, 分别对应于一个包括 2个元素的信号序列。
6. 根据权利要求 1或 2所述的正交频分复用信号发送方法, 其特征在于, 所述信号序列包括元素 81和 S2,待发信号的每个可能取值对应于 81和 S2之间的 一个相位差值。
7. 根据权利要求 6所述的正交频分复用信号发送方法, 其特征在于, 所 述待发信号为 ACK/NACK信息;
当所述 ACK/NACK信息的可能取值为 ACK和 NACK时, 所述 81和82之 间对应于可能取值的相位差值为 0或
当所述 ACK/NACK信息的可能取值为 ACK、 NACK和空值时, 所述 Si 和 s2之间对应于可能耳又值的相位差值为 0、 2π/3或 4π/3。
8. —种正交频分复用信号接收方法, 其特征在于, 包含以下步骤: 以正交频分复用方式接收信号;
对接收信号分别以不同的扩频码进行解扩, 每个解扩结果为解扩序列中的 一个元素;
根据解扩序列、 以及接收信号取值与信号序列的对应关系, 得到接收信号 的值。
9. 根据权利要求 8 所述的正交频分复用信号接收方法, 其特征在于, 所 述不同的扩频码为相互正交的扩频码。
10.根据权利要求 8或 9所述的正交频分复用信号接收方法,其特征在于, 所述接收信号取值与信号序列的对应关系为: 接收信号的每个可能取值对应于 一个信号序列;
所述得到接收信号的值包括: 将解扩序列与对应于接收信号可能取值的每 个信号序列分别进行相关操作, 具有最大相关峰的信号序列所对应的取值即为 接收信号的值。
11. 根据权利要求 10所述的正交频分复用信号接收方法, 其特征在于, 所 述待发信号为 ACK/ ACK信息; 所述 ACK/NACK信息的可能取值为 ACK和 NACK, 分别对应于一个信号序列
所述解扩序列为 [xi,x2] ; 所述得到接收信号的值包括: 对所有可能取值对 应的信号序列 [Si^] , 找出 |χ^ + χ2^2值最大的信号序列 [,82] , 并将该信号序列 所对应的取值作为接收信号的值输出。
12. 根据权利要求 10所述的正交频分复用信号接收方法, 其特征在于, 所述接收信号的各个可能取值对应的信号序列彼此正交。
13.根据权利要求 8或 9所述的正交频分复用信号接收方法,其特征在于, 所述信号序列包括元素 Si和 s2; 所述接收信号取值与信号序列的对应关系为: 接收信号的每个可能取值对应于 Si和 s2之间的一个相位差值;
所述解扩序列包括与 81和 S2对应的元素 ^和 X2; 所述得到接收信号的值 包括:在接收信号所有可能取值对应的相位差值中,查找与 和 2之间的相位 差最接近的相位差值, 将其对应的取值作为接收信号的值输出。
14. 根据权利要求 13 所述的正交频分复用信号接收方法, 其特征在于, 所述待发信号为 ACK/NACK信息;
当所述 ACK/NACK信息的可能取值为 ACK和 NACK时, 所述 Si和 82之 间对应于可能取值的相位差值为 0或 所述得到接收信号的值包括: 计算 Re(x )的值,如果大于 0则相位差值 0对应的取值为接收信号的值,如果小于 0则相位差值 Γ对应的取值为接收信号的值; 当所述 ACK/NACK信息的可能取值为 ACK、 NACK和空值时, 所述 Si 和 s2之间对应于可能取值的相位差值为 0、 2π / 3或 4π / 3 ; 所述得到接收信号的 值包括: 计算 Re(x2x;e- / 3*° ) 、 RQ(x2x;e-^/3n )和 Re(x2x - /3*2 )的值, 如果
RQ(x2x;e-J2^° )的值最大则相位差值 0 对应的取值为接收信号的值, 如果
RQ(x2x;e-J2^ )的值最大则相位差值 2 r /3对应的取值为接收信号的值, 如果
Re(x2 e- ^/3*2)的值最大则相位差值 4π /3对应的取值为接收信号的值;
其中, Re代表取实数部分, *代表取共轭。
15. 一种正交频分复用信号发送装置, 其特征在于, 包含:
信号序列模块, 用于根据待发信号的值设置信号序列, 为不同的值所设置 的信号序列不同;
扩频模块, 用于对所述信号序列中的每个元素以不同的扩频码分别进行扩 频, 并将扩频结果合并;
发送模块 , 用于将合并后的序列以正交频分复用方式发送。
16. 根据权利要求 15 所述的正交频分复用信号发送装置, 其特征在于, 所述扩频模块使用的扩频码为正交扩频码。
17. 根据权利要求 15或 16所述的正交频分复用信号发送装置, 其特征在 于, 对待发信号的每一个可能取值, 所述信号序列模块设置的信号序列相同。
18. 根据权利要求 17所述的正交频分复用信号发送装置, 其特征在于, 对待发信号的各个可能取值, 所述信号序列模块设置的信号序列相互正交。
19. 根据权利要求 15或 16所述的正交频分复用信号发送装置, 其特征在 于, 所述信号序列模块设置的信号序列包括元素 Si和82, 待发信号的每个可能 取值对应于 Si和 S2之间的一个相位差值。
20. 一种正交频分复用信号接收装置, 其特征在于, 包含:
接收模块 , 用于以正交频分复用方式接收信号;
解扩模块, 用于对接收信号分别以不同的扩频码进行解扩, 每个解扩结果 为解扩序列中的一个元素;
计算模块,用于根据解扩序列、以及接收信号取值与信号序列的对应关系, 得到接收信号的值。
21. 根据权利要求 20所述的正交频分复用信号接收装置, 其特征在于, 所述解扩模块使用的不同扩频码为相互正交的扩频码。
22. 根据权利要求 19或 20所述的正交频分复用信号接收装置, 其特征在 于, 所述接收信号取值与信号序列的对应关系为: 接收信号的每个可能取值对 应于一个信号序列;
所述计算模块为相关运算模块 , 用于将解扩序列与对应于接收信号可能取 值的每个信号序列分别进行相关操作, 将具有最大相关峰的信号序列所对应的 取值作为接收信号的值输出。
23. 根据权利要求 22所述的正交频分复用信号接收装置, 其特征在于, 所述对应于接收信号各个可能的取值的信号序列相互正交。
24. 根据权利要求 19或 20所述的正交频分复用信号接收装置, 其特征在 于, 所述信号序列包括元素 Si和82; 所述接收信号取值与信号序列的对应关系 为: 接收信号的每个可能取值对应于 Si和 s2之间的一个相位差值;
所述解扩序列包括与 81和 s2对应的元素 ^和 x2;
所述计算模块为相位差运算模块, 用于在接收信号所有可能取值对应的相 位差值中,查找与 和 2之间的相位差最接近的相位差值,将其对应的取值作 为接收信号的值输出。
0/4
PCT/CN2007/070255 2006-08-02 2007-07-09 Procédé et dispositif pour recevoir et transmettre un signal ofdm WO2008017256A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610110543.4 2006-08-02
CNA2006101105434A CN101119351A (zh) 2006-08-02 2006-08-02 正交频分复用信号收发方法及装置

Publications (1)

Publication Number Publication Date
WO2008017256A1 true WO2008017256A1 (fr) 2008-02-14

Family

ID=39032636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/070255 WO2008017256A1 (fr) 2006-08-02 2007-07-09 Procédé et dispositif pour recevoir et transmettre un signal ofdm

Country Status (2)

Country Link
CN (1) CN101119351A (zh)
WO (1) WO2008017256A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017093186A1 (en) * 2015-12-01 2017-06-08 Ipcom Gmbh & Co. Kg Ack/nack messaging in a single frequency network
WO2017166254A1 (zh) 2016-03-31 2017-10-05 华为技术有限公司 发送信号的方法、终端设备和网络设备
CN108337150A (zh) * 2017-12-29 2018-07-27 广州雅广信息科技有限公司 一种企业多会议资源整合即时通讯系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1280427A (zh) * 1999-07-13 2001-01-17 松下电器产业株式会社 通信终端设备
US20040085919A1 (en) * 2002-10-30 2004-05-06 Seog-Ill Song Apparatus for transmitting and receiving signal using orthogonal codes and non-binary values in CDMA/OFDM system and method thereof
CN1642059A (zh) * 2003-10-16 2005-07-20 三菱电机株式会社 将扩展码码片映射到多载波传输网络中的子信道的方法
CN1650555A (zh) * 2002-08-23 2005-08-03 松下电器产业株式会社 Ofdm-cdma发送装置和ofdm-cdma发送方法
CN1783862A (zh) * 2004-11-03 2006-06-07 美国博通公司 实现网络设备频带范围扩展的方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1280427A (zh) * 1999-07-13 2001-01-17 松下电器产业株式会社 通信终端设备
CN1650555A (zh) * 2002-08-23 2005-08-03 松下电器产业株式会社 Ofdm-cdma发送装置和ofdm-cdma发送方法
US20040085919A1 (en) * 2002-10-30 2004-05-06 Seog-Ill Song Apparatus for transmitting and receiving signal using orthogonal codes and non-binary values in CDMA/OFDM system and method thereof
CN1642059A (zh) * 2003-10-16 2005-07-20 三菱电机株式会社 将扩展码码片映射到多载波传输网络中的子信道的方法
CN1783862A (zh) * 2004-11-03 2006-06-07 美国博通公司 实现网络设备频带范围扩展的方法和系统

Also Published As

Publication number Publication date
CN101119351A (zh) 2008-02-06

Similar Documents

Publication Publication Date Title
US11032401B2 (en) Identification of packet traffic transmitted by various devices operated in multiple overlapped frequency bands in packet-based OFDM systems
JP5295955B2 (ja) 干渉情報を測定、通信、および/または使用する方法および装置
CN1863181B (zh) 在无线通信系统中多路复用数据和控制信息的方法和系统
US8446934B2 (en) Frequency diversity and phase rotation
US20080192621A1 (en) Data Communication System and Data Transmitting Apparatus
US11153125B2 (en) Transmission apparatus, reception apparatus, transmission method, and reception method
EP2590353A1 (en) Transmission of ACK/NACK and transmit power control feedback in evolved utra
JP3882665B2 (ja) 複数の搬送波を用いる無線通信方式のための通信装置、受信装置及び通信方法
WO2016127324A1 (zh) 一种降低峰均比的方法、装置、设备和系统
TW201019624A (en) Efficient multiplexing of reference signal and data in a wireless communication system
WO2018059488A1 (zh) 一种参考信号传输方法和装置
JP2002164864A (ja) Ofdm受信装置、ofdm送信装置およびofdm通信方法
US20090154584A1 (en) Apparatus and method for communication in variable bands
JP2010219820A (ja) 移動端末装置及び無線通信方法
WO2016150241A1 (zh) 一种数据传输方法及装置
WO2018024127A1 (zh) 一种传输信号的方法及网络设备
WO2008011834A1 (fr) Procédé d'émission et de réception, dispositif fondé sur ofdm
RU2417531C2 (ru) Способы и устройство для измерения, обмена и/или использования информации о помехах
WO2018166496A1 (zh) 一种用于无线通信的方法、装置和系统
WO2008017256A1 (fr) Procédé et dispositif pour recevoir et transmettre un signal ofdm
KR20080083552A (ko) 부가 제어 신호 송수신 방법
WO2007137489A1 (fr) Procédé de réception et d'émission de signaux dans le système de multiplexage par répartition orthogonale de la fréquence et appareil correspondant
WO2013056599A1 (zh) 一种实现数据传输的方法及装置
WO2016138633A1 (zh) 用于调度终端设备的方法和网络设备
RU2363109C1 (ru) Способ адаптивного мультиплексирования данных в ofdma-системе и передающее/приемное устройство для него

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07764183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07764183

Country of ref document: EP

Kind code of ref document: A1