WO2008015855A1 - Flame retardant material decomposition burner - Google Patents

Flame retardant material decomposition burner Download PDF

Info

Publication number
WO2008015855A1
WO2008015855A1 PCT/JP2007/062663 JP2007062663W WO2008015855A1 WO 2008015855 A1 WO2008015855 A1 WO 2008015855A1 JP 2007062663 W JP2007062663 W JP 2007062663W WO 2008015855 A1 WO2008015855 A1 WO 2008015855A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
exhaust gas
combustion cylinder
process exhaust
flame retardant
Prior art date
Application number
PCT/JP2007/062663
Other languages
French (fr)
Japanese (ja)
Inventor
Atsuko Seo
Satoshi Yamashita
Kenichi Sugihara
Byoung-Sup Park
Heitetsu Kin
Kazuaki Fujimori
Tetsurou Hoshino
Original Assignee
Tokyo Gas Co., Ltd.
Tokyo Gas Chemicals Co., Ltd.
Koike Sanso Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co., Ltd., Tokyo Gas Chemicals Co., Ltd., Koike Sanso Kogyo Co., Ltd. filed Critical Tokyo Gas Co., Ltd.
Publication of WO2008015855A1 publication Critical patent/WO2008015855A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel

Definitions

  • the present invention relates to a flame retardant substance decomposition partner, and in particular, a film forming raw material contained in a process exhaust gas discharged in a semiconductor manufacturing process, a liquid crystal manufacturing process, a solar cell manufacturing process, a gas treatment process in a waste transformer, or the like.
  • Silane materials SiH, Si H, TEOS (Si (OC H)
  • the present invention relates to a flame retardant decomposition cracker suitable for understanding.
  • Patent Document 1 describes an exhaust gas abatement apparatus for the purpose of effective combustion decomposition treatment of a process exhaust gas containing a flame retardant substance.
  • the exhaust port for process exhaust gas is arranged on the peripheral side wall of the combustion cylinder extending to the upstream side so that its axial center is parallel to the plane perpendicular to the central axis of the combustion cylinder, and a plurality of ports are provided on the downstream side.
  • Patent Document 2 As shown in Fig. 5 (a) in a plan view and in Fig. 5 (b) in a cross-sectional view, the upper end of the combustion cylinder 2 is closed with a blocking wall 3, and the blocking wall
  • a process exhaust gas introduction port 40 for ejecting process exhaust gas containing flame retardant is attached so as to coincide with the central axis L of the combustion cylinder 2, and a plurality of concentric circles from the central axis L are installed.
  • a combustion burner 50 is attached, and each of the plurality of combustion burners 50 is combusted by each of the jet flames f.
  • a flame retardant substance decomposition partner 10 is described in which the axis is inclined to the downstream side so that it can converge at substantially the same point on the central axis L of the cylinder 2.
  • the flames f from the plurality of combustion burners 50 converge at approximately the same point on the central axis L of the combustion cylinder 2, so that the flame converges.
  • a high temperature combustion region S is formed. Then, since the process exhaust gas from the process exhaust gas introduction port 40 surely passes through the region S, the combustion decomposition process of the flame-retardant substance in the exhaust gas proceeds effectively, and the combustion decomposition temperature is high. Even CF and SF are expensive
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-165422
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-202108
  • the inventors have disclosed, for example, a process exhaust gas discharged from a semiconductor manufacturing process power as a patent document.
  • SiF SiF
  • SiO powder silicon powder
  • the formation may deposit on the combustion cylinder or the tip of the burner, and immediately cause clogging of the process exhaust gas introduction port 40 or combustion burner 50. If powder clogging occurs, it will interfere with the fuel supply from the combustion burner 50 and worsen the combustion state. In the worst case, it may lead to misfire, so it must be avoided. It is also conceivable that powder, which is a combustion product, is formed in the process exhaust gas introduction port 40 and is agglomerated.
  • the amount of process gas used in the semiconductor manufacturing process or the liquid crystal manufacturing process is substantially proportional to the size of the substrate.
  • the wafer size is 200 mm.
  • the substrate glass size is shifting from 5th generation to 6th generation and from 6th generation to 7th generation.
  • the amount of process gas used has increased remarkably, and naturally, the amount of silane-based substances used has increased, and the emission of SiO powder (silica powder) as a combustion product has also increased. . That
  • the exhaust gas abatement apparatus described in Patent Document 1 has a configuration in which a combustion paner is disposed on the peripheral side wall of the combustion cylinder, and combustion products such as SiO scatter and enter the combustion panner.
  • the process exhaust gas introduction port is arranged on the upstream side and the combustion burner is arranged on the downstream side, so that the distance between the process exhaust gas introduction port and the combustion flame can be sufficiently secured, and the process Since the vicinity of the exhaust gas introduction port can be kept in a low temperature region, it is expected that combustion products can be avoided to some extent in and near the process exhaust gas introduction port.
  • the process exhaust gas introduction port is arranged in a direction parallel to a plane perpendicular to the central axis of the combustion cylinder, If the process exhaust gas contains powder such as SiO from the beginning, or the process exhaust gas
  • combustion products are generated in the introduction port, they may stay in the port and become agglomerated, which may hinder the flow of process exhaust gas.
  • powders such as SiO are often contained in the discharged process exhaust gas from the beginning.
  • the residence in the exhaust gas introduction port can occur sufficiently.
  • the process exhaust gas introduction port is connected to the central axis of the combustion cylinder as compared with the case where the process exhaust gas introduction port is attached in a direction that coincides with the central axis of the combustion cylinder. If it is placed in a direction parallel to the orthogonal plane, the shape of the combustion flame The combustion cracking efficiency is reduced because the shape is disturbed and the generation of the high temperature region is limited.
  • the present invention has been made in view of the above circumstances, and SiH, SiH, TEOS,
  • Silane-based materials that produce powders (such as SiO) by combustion decomposition, such as SiF, and CF
  • An object of the present invention is to provide a flame retardant decomposition cracker that can further improve the decomposition efficiency and can continue the operation without reducing the efficiency.
  • a flame retardant substance decomposition parner includes a combustion cylinder having one end closed, a plurality of combustion pans for forming a flame in the combustion cylinder, and a flame retardant substance in the combustion cylinder.
  • a plurality of process exhaust gas introduction ports for introducing process exhaust gas containing at least
  • each combustion burner and each process exhaust gas introduction port are flame retardant decomposition crackers attached to the peripheral side wall of the combustion cylinder, and each of the plurality of combustion burners has a jet flame at the center of the combustion cylinder.
  • the plurality of process exhaust gas introduction ports are attached to the peripheral wall of the combustion cylinder with the axis inclined to the downstream side so as to converge at substantially the same point on the axis. It is characterized in that it is attached to the peripheral side wall of the combustion cylinder with its axis inclined to the downstream side so that it intersects at substantially the same point on the central axis of the combustion cylinder upstream of the convergence region.
  • the combustion partner and the process exhaust gas introduction port are both attached to the peripheral side wall of the combustion cylinder, and they are attached to the upper closed wall of the combustion cylinder. Compared with this form of flame retardant decomposition burner, the degree of blockage of the port or the burner caused by the powder of combustion products is less.
  • the extension line of the axis thereof is the concentration of the ejection flame. Since the axis is inclined to the downstream side so that it intersects at substantially the same point on the central axis of the combustion cylinder upstream from the bundle region, it is attached to the peripheral side wall of the combustion cylinder, so the process exhaust gas introduction port is Compared with the flame retardant decomposition cracker that is arranged so that its axial center is parallel to the plane perpendicular to the central axis of the combustion cylinder, the generated powder stays in the port and forms a lump. Can be effectively prevented.
  • This structure also makes it possible to secure the required distance between the flame and the process exhaust gas introduction port outlet, so that combustion products (silica powder, etc.) are generated near the outlet of the process exhaust gas introduction port. Can be effectively prevented. As a result, it is possible to effectively prevent the process exhaust gas introduction port and the panner from causing a channel failure due to powder.
  • the process exhaust gas introduction port is attached to the peripheral wall of the combustion cylinder with its axis inclined to the downstream side, the cross-sectional area at the port outlet increases in an elliptical shape according to the angle of inclination.
  • the process exhaust gas can be smoothly introduced into the combustion cylinder by gradually reducing the gas flow rate. For this reason, the influence on the combustion flame shape change can be reduced.
  • the process exhaust gas introduction port may be configured to have a portion whose cross-sectional area gradually expands toward the outlet portion into the combustion cylinder.
  • the plurality of combustion panners are inclined to the downstream side so that the respective fire flames can converge at substantially the same point on the central axis of the combustion cylinder. As described above, it is attached to the peripheral side wall of the combustion cylinder, and a high temperature combustion region is formed around the region where the flame has converged.
  • a plurality of process exhaust gases are introduced into the combustion cylinder through the plurality of process exhaust gas introduction ports, the upward force can enter the high temperature combustion region without increasing the flow velocity.
  • the initial speed is increased as described above. It is possible to enter the combustion flame without causing any significant disturbance, and this point also provides high combustion decomposition efficiency of process exhaust gas containing CFC-based flame retardants. In addition, it is possible to eliminate the phenomenon in which the process exhaust gas flows down along the wall surface region of the combustion cylinder, that is, through the low temperature region of the combustion chamber. This also prevents a decrease in combustion decomposition efficiency. .
  • the inclination angle of the axis of each combustion parner and each process exhaust gas introduction port is in the range of 15 to 60 degrees with respect to the central axis of the combustion cylinder. Is preferred.
  • the inclination angle of the axis of each combustion pan is preferably around 30 degrees, and the inclination angle of the axis of each process exhaust gas introduction port is preferably around 45 degrees. By selecting the angle in this way, higher combustion decomposition efficiency could be obtained. If the inclination angle of the combustion pan is larger than 60 degrees, the vicinity of the process exhaust gas introduction port is heated to promote the formation of SiO, so the unfavorable inclination angle is smaller than 15 degrees.
  • each process exhaust gas introduction port it is not preferable because the flame is too close to the inner surface of the combustion cylinder and thermal damage to the combustion cylinder is likely to proceed. Further, if the inclination angle of the axis of each process exhaust gas introduction port is smaller than about 15 degrees, the space above the flame becomes too large, and the flame retardant decomposition cracking force S is undesirably elongated. On the other hand, if it exceeds 60 degrees, the process exhaust gas entering from each process exhaust gas introduction port forms a turbulent flow, which is not preferable.
  • each combustion partner is preferably detachable from the combustion casing in order to facilitate maintenance.
  • a method for making the combustion partner detachable is to install a sheath tube on the combustion housing side and insert the combustion partner body into it, and attach it with a joint that can be attached and detached without using tools such as a clamped joint. It is done.
  • the flame retardant substance decomposition partner according to the present invention further includes a scraper that rotates along the inner wall surface of the combustion cylinder.
  • a scraper that rotates along the inner wall surface of the combustion cylinder.
  • a scraper can be easily attached using a lid member that closes the upper end side of the combustion cylinder, and the lid member Is located at a position away from the combustion flame due to the structure of the flame retardant decomposition burner, so that it is possible to effectively avoid damage to the drive mechanism of the scraper due to heat. Also, the weight of the lid member can be reduced, and it becomes easy to repair the inside of the combustion cylinder by opening the lid member during maintenance.
  • an inner cylinder made of a heat-resistant metal is provided along the inner wall of the combustion cylinder, and the scraper extends along the inner wall surface of the inner cylinder. To rotate.
  • an inner cylinder made of such a heat-resistant metal it is possible to avoid thermal damage to the inner wall surface of the combustion cylinder, which is usually made of an irregular refractory material commonly called refractory brick or castable. This makes it possible to extend the life of the flame retardant decomposition cracker.
  • the material of the inner cylinder is preferably a heat resistant metal such as SUS310S or Inconel, or a ceramic such as silicon nitride or silicon carbide.
  • the flame retardant substance decomposition planer includes a plurality of process exhaust gas introduction ports, and a plurality of manufacturing or processing apparatuses installed in parallel or a single unit having a plurality of chambers. Even when the process exhaust gas discharged from the equipment for each chamber is processed at the same time, by installing as many process exhaust gas introduction ports as the number of manufacturing or treatment equipment or chambers, Therefore, it is possible to prevent the process exhaust gases from merging with each other, thereby eliminating the danger caused by the mixing of process exhaust gases.
  • the process exhaust gas to be treated is not particularly limited, but the process exhaust gas is a gas treatment in a semiconductor manufacturing process, a liquid crystal manufacturing process, a solar cell manufacturing process, or a waste transformer.
  • CFC-based flame retardant materials such as CF, SF and NF together with silane-based materials such as OS and SiF
  • the flame retardant decomposition cracker according to the present invention functions particularly effectively when the process exhaust gas contains.
  • Silanes that produce powder (SiO, etc.) by combustion decomposition such as Si H, TEOS, SiF
  • chlorofluorocarbon flame retardants such as CF, SF and NF
  • the detoxification process can be performed under high combustion decomposition efficiency.
  • the operation can be continued for a long time without lowering the processing efficiency.
  • FIG. 1 shows an embodiment of a flame retardant decomposition cracker according to the present invention
  • Fig. 1 (a) is a plan view
  • Fig. 1 (b) is b-b in Fig. 1 (a). Sectional drawing by a line.
  • FIG. 2 is a diagram schematically showing a state in which process exhaust gas enters an ejection flame in the flame-retardant substance decomposition partner according to the present invention.
  • FIG. 3 is a view corresponding to FIG. 1 (b) showing another embodiment of the flame-retardant substance decomposition partner according to the present invention.
  • FIG. 4 is a view showing still another embodiment of the flame retardant substance decomposition partner according to the present invention.
  • FIG. 4 (a) is a view corresponding to FIG. 1 (b), and FIG. Sectional view along line bb in Fig. 4 (a).
  • Fig. 5 is a diagram showing a conventional flame retardant decomposition planer.
  • Fig. 5 (a) is a plan view
  • Fig. 5 (b) is a cross-sectional view taken along line bb in Fig. 5 (a). .
  • Fig. 1 shows an example of the flame retardant decomposition cracker 1.
  • Fig. 1 (a) is a plan view
  • Fig. 1 (b) is a cross-sectional view taken along line b_b in Fig. 1 (a).
  • Fig. 2 schematically illustrates the formation of flame and the introduction position of the process exhaust gas in the flame retardant material decomposition Pana according to the present invention.
  • the parner 1 includes a cylindrical combustion cylinder 2 and a lid member 3 that closes one end of the combustion cylinder 2.
  • the combustion cylinder 2 has a cylinder body 21 made of an irregular refractory material, an outer cylinder 22 made of a heat-resistant metal covering the outside, and an inner body made of a heat-resistant metal such as SUS310S or Inconel. It consists of cylinder 23.
  • the inner cylinder 23 is disposed along the inner wall of the cylinder main body 21, and preferably a slight gap 24 is formed between the inner cylinder 23 and the inner wall surface of the cylinder main body 21.
  • the inner cylinder 23 is attached to the cylinder main body 21 by an appropriate means in a state where it can be easily detached from the cylinder main body 21.
  • the lower open end of the combustion cylinder 2 is connected to a force connected to a suction blower, a water scrubber, and the like through an appropriate pipe line as in the case of a conventional parner of this type.
  • An appropriate inner flange 25 is formed at the upper end of the combustion cylinder 2, and the lid member 3 is detachably attached thereto by means such as a set bolt 31.
  • a through hole 32 is formed in the center of the lid member 3 and is used for maintenance or for attaching a scraper 70 described later. Usually sealed with cap 33.
  • a plurality of combustion burners 50 are detachably attached to the combustion cylinder 2 at equal intervals. In the example shown in the figure, it is optional as long as the three combustion panners 50 are installed at 120 ° intervals with two or more forces.
  • Each combustion spanner 50 has a predetermined angle ⁇ (preferably in the range of 15 to 50 degrees) so that the extension line of the axis L1 intersects at substantially the same point P1 on the center axis L of the combustion cylinder 2 (Preferably 30 degrees) and tilted downward, so that each fire flame f converges at approximately the same point Pla on the central axis L of the combustion cylinder 2 as shown in FIG. become.
  • a high temperature combustion region S is formed around the region where the flame f has converged.
  • a plurality of process exhaust gas introduction ports 60 are further formed at equal intervals.
  • the three process exhaust gas introduction ports 60 are attached at intervals of 120 degrees so as to be at intermediate positions between the combustion burners 50, respectively.
  • Each process exhaust gas introduction port 60 is such that the extension line of the axis L2 intersects at substantially the same point on the central axis L of the combustion cylinder 2 at the position P2 upstream from the convergence region of the above-described ejection flame f.
  • a predetermined angle / 3 (preferably in the range of 15 to 50 degrees, more preferably 45 degrees).
  • the process exhaust gas introduction port 60 is connected to, for example, a halfway through a pipe 61. Process exhaust gas from a conductor manufacturing apparatus or the like is introduced.
  • the process exhaust gas G is introduced into the combustion cylinder 2 from each process exhaust gas introduction port 60 in a state where the combustion flames f are formed in the combustion burners 50.
  • Each process exhaust gas introduction port 60 is inclined downward at an angle j3. Therefore, even if the process exhaust gas G contains a powder such as Si02, the powder is in the pipeline 61 and the process exhaust gas introduction port. Enters combustion cylinder 2 without staying in 60
  • the process exhaust gas G is ejected from each process exhaust gas introduction port 60 so as to intersect at substantially the same point on the central axis L of the combustion cylinder 2 in a posture inclined to the downstream side, a large turbulent flow is caused. Without merging around the central axis L of the combustion cylinder 2.
  • the merged process exhaust gas G enters the high-temperature combustion region S formed in the region where the flame f converges from above. As a result, SiH, Si H, TE ⁇ S, SiF, etc.
  • Process exhaust gas G which has been subjected to combustion decomposition treatment, flows out from the lower end of the combustion cylinder 2.
  • silane-based materials such as S and SiF
  • chlorofluorocarbon-based flame retardant materials such as CF, SF and NF
  • FIG. 3 is a diagram illustrating another form of the flame retardant decomposition cracker according to the present invention.
  • This flame retardant substance decomposition partner la is different from the flame retardant substance decomposition partner 1 shown in FIG. 1 in that a scraper 70 is provided.
  • the scraper 70 is made of a heat-resistant alloy such as SUS310S or Inconel, or ceramics such as silicon nitride or silicon carbide, and includes a shaft portion 71 that passes through the through-hole 32 formed in the center of the lid member 3, and a shaft portion 71.
  • the shaft portion 71 includes a handle 73 in the illustrated example.
  • the scraping bar 72 can be periodically rotated along the inner wall surface of the inner cylinder 23. As a result, the powder adhering to the inner cylinder 23 is effectively scraped off.
  • the scraper rod 72 can also be rotated periodically by driving the motor.
  • Fig. 4 shows another embodiment of the flame retardant substance decomposition panner according to the present invention.
  • Fig. 4 (a) is a diagram corresponding to Fig. 1 (b), and
  • Fig. 4 (b) is a diagram. 4 is a cross-sectional view taken along line b_b in FIG.
  • This flame-retardant material decomposition Pana lb has a portion 61 in which the cross-sectional area of the process exhaust gas introduction port 60 gradually expands toward the outlet portion into the combustion cylinder 2, so that the flame-retardant material shown in FIG. Dissimilar to decomposition Pana 1.
  • Other configurations are the same, and are denoted by the same reference numerals.
  • the partial force S of the through-hole formed in the cylinder main body 21 in the process exhaust gas introduction port 60 is a portion 61 that gradually expands in the form of a trumpet.
  • the vicinity of the lid member 3 is relatively low in temperature because it is separated from the combustion burner by 50 forces. Therefore, the configuration of the lid member 3 can be simplified and reduced in weight. For this reason, the effect of facilitating the work when the lid member 3 is opened and the inside of the combustion cylinder is maintained is also brought about.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)
  • Treating Waste Gases (AREA)

Abstract

A plurality of combustion burners (50) for forming a flame within a combustion cylinder (2) closed at its one end and a plurality of process exhaust gas introduction port (60)for introducing a process exhaust gas containing a flame retardant material into the combustion cylinder (2) are mounted on the peripheral wall of the combustion cylinder (2) closed at its one end. Each of the combustion burners (50) is mounted in such a manner that an axial line (L1) is inclined toward the downstream side so that spouted flames (f) converge at a substantially identical point (P1a) on a central axial line (L) in the combustion cylinder (2). Each processexhaust gas introduction port (60) is mounted in such a manner that an axial line (L2) is inclined toward the downstream side so that extension lines of axial lines (L2) cross each other at a substantially identical point of (P2) located on the upstream side of the convergent region of the spouted flames (f) and on the central axial line (L) in the combustion cylinder (2). The flame retardant material decomposition burner can render a process exhaust gas containing a silane material, which produces powder (such as SiO2) upon combustion decomposition, and a flon flame retardant material harmless with high combustion decomposition efficiency and can realize long-term operation without lowering the treatment efficiency.

Description

明 細 書  Specification
難燃性物質分解パーナ  Flame retardant decomposition PANA
技術分野  Technical field
[0001] 本発明は難燃性物質分解パーナに関し、特に、半導体製造工程、液晶製造工程、 太陽電池製造工程あるいは廃棄トランス内の気体処理工程等で排出されるプロセス 排ガスに含まれる、成膜原料であるシラン系物質(SiH、 Si H、 TEOS (Si (OC H  TECHNICAL FIELD [0001] The present invention relates to a flame retardant substance decomposition partner, and in particular, a film forming raw material contained in a process exhaust gas discharged in a semiconductor manufacturing process, a liquid crystal manufacturing process, a solar cell manufacturing process, a gas treatment process in a waste transformer, or the like. Silane materials (SiH, Si H, TEOS (Si (OC H
4 2 6 2 5 4 2 6 2 5
) )、 SiFなど)およびクリーニングまたエッチングで使用されるフロン系の難分解性)), SiF, etc.) and chlorofluorocarbons used in cleaning and etching
4 4 4 4
物質(CF、 SF、 C F、 C F、 C F、 CHF、 NFなど)を同時に高効率で燃焼分  Substances (CF, SF, C F, C F, C F, CHF, NF, etc.) are simultaneously burned with high efficiency
4 6 2 6 3 8 4 8 3 3  4 6 2 6 3 8 4 8 3 3
解するのに好適な難燃性物質分解パーナに関する。  The present invention relates to a flame retardant decomposition cracker suitable for understanding.
背景技術  Background art
[0002] 半導体製造工程、液晶製造工程、太陽電池製造工程あるいは廃棄トランス内の気 体処理工程等から排出されるプロセス排ガスには、多くの種類の有害物質が含まれ ている。そのような有害物質を無害化処理して大気に放出するために種々の排ガス 処理装置が提案されている。  [0002] Process exhaust gas discharged from a semiconductor manufacturing process, a liquid crystal manufacturing process, a solar cell manufacturing process, a gas treatment process in a waste transformer, or the like contains many types of harmful substances. Various exhaust gas treatment devices have been proposed for detoxifying such harmful substances and releasing them into the atmosphere.
[0003] 例えば、特許文献 1には、難燃性物質を含むプロセス排ガスを効果的に燃焼分解 処理することを目的とした排ガス除害装置が記載されており、そこでは、上端を閉鎖 した上下に延びる燃焼筒体の周側壁に、上流側にプロセス排ガスの導入ポートを、 その軸心が燃焼筒体の中心軸と直交する面に平行な方向となるように配置し、下流 側に複数個の燃焼パーナを、そのパーナ噴出方向を燃焼筒体中心軸と直交する面 に対して傾斜状にかつ燃焼筒体に想定した仮想円の接線に一致する向きに配置し 、それにより、プロセス排ガスが高熱になる広い燃焼領域で滞留する時間を長くして、 難燃性物質を含むプロセス排ガスの熱分解を促進し除害するようにしてレ、る。  [0003] For example, Patent Document 1 describes an exhaust gas abatement apparatus for the purpose of effective combustion decomposition treatment of a process exhaust gas containing a flame retardant substance. The exhaust port for process exhaust gas is arranged on the peripheral side wall of the combustion cylinder extending to the upstream side so that its axial center is parallel to the plane perpendicular to the central axis of the combustion cylinder, and a plurality of ports are provided on the downstream side. Are arranged in a direction that is inclined with respect to the plane perpendicular to the central axis of the combustion cylinder and coincides with the tangent of the virtual circle assumed for the combustion cylinder. Increase the residence time in a wide combustion area where the heat is high, and promote the thermal decomposition of the process exhaust gas containing flame retardants to eliminate it.
[0004] 特許文献 2には、図 5 (a)に平面図を、図 5 (b)に断面図を示すように、燃焼筒体 2 の上端を閉塞壁 3により閉鎖すると共に、該閉塞壁 3には、難燃物質を含むプロセス 排ガスを噴出するプロセス排ガス導入ポート 40を燃焼筒体 2の中心軸線 Lと一致す るように取り付け、さらに、中心軸線 Lから同心円上の位置に複数個の燃焼パーナ 50 とを取り付けると共に、前記複数個の燃焼パーナ 50はそれぞれの噴出火炎 fが燃焼 筒体 2の中心軸線 L上のほぼ同じ点で収束できるように軸線を下流側に傾斜させて 取り付けるようにした難燃性物質分解パーナ 10が記載されている。 [0004] In Patent Document 2, as shown in Fig. 5 (a) in a plan view and in Fig. 5 (b) in a cross-sectional view, the upper end of the combustion cylinder 2 is closed with a blocking wall 3, and the blocking wall In Fig. 3, a process exhaust gas introduction port 40 for ejecting process exhaust gas containing flame retardant is attached so as to coincide with the central axis L of the combustion cylinder 2, and a plurality of concentric circles from the central axis L are installed. A combustion burner 50 is attached, and each of the plurality of combustion burners 50 is combusted by each of the jet flames f. A flame retardant substance decomposition partner 10 is described in which the axis is inclined to the downstream side so that it can converge at substantially the same point on the central axis L of the cylinder 2.
[0005] この難燃性物質分解パーナ 10では、複数個の燃焼パーナ 50からの噴出火炎 fが 燃焼筒体 2の中心軸線 L上のほぼ同じ点で収束することにより、火炎が収束した領域 には高温の燃焼領域 Sが形成される。そして、プロセス排ガス導入ポート 40からのプ 口セス排ガスはその領域 Sを確実に通過していくので、排ガス中の難燃性物質の燃 焼分解処理は効果的に進行し、燃焼分解温度の高い CFや SFであっても高い分 [0005] In this flame retardant material decomposition burner 10, the flames f from the plurality of combustion burners 50 converge at approximately the same point on the central axis L of the combustion cylinder 2, so that the flame converges. A high temperature combustion region S is formed. Then, since the process exhaust gas from the process exhaust gas introduction port 40 surely passes through the region S, the combustion decomposition process of the flame-retardant substance in the exhaust gas proceeds effectively, and the combustion decomposition temperature is high. Even CF and SF are expensive
4 6  4 6
解率が得られる。  The solution rate is obtained.
特許文献 1 :特開 2001— 165422号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-165422
特許文献 2 :特開 2003— 202108号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-202108
発明の開示  Disclosure of the invention
[0006] 本発明者らは、例えば半導体製造工程力 排出されるプロセス排ガスを、特許文献  [0006] The inventors have disclosed, for example, a process exhaust gas discharged from a semiconductor manufacturing process power as a patent document.
2に記載される形態の難燃性物質分解パーナを用いて燃焼分解処理する実験を継 続して行ってきているが、その過程で、上記難燃性物質分解パーナは、燃焼室上部 の閉塞壁 3に、難燃物質を含むプロセス排ガスを噴出するプロセス排ガス導入ポート 40と複数個の燃焼パーナ 50とを取り付ける構成であることから、両者は位置的に近 接せざるを得ず、導入されるプロセス排ガスはすぐに高温で処理されて除害効率が 高まる反面、除害処理すべきプロセス排ガスが、 SiH、 Si H、 TEOS (Si (OC H )  Experiments for combustion decomposition using the flame retardant decomposition cracker of the form described in Fig. 2 have been continued, and in the process, the flame retardant decomposition cracker clogs the upper part of the combustion chamber. Since the process exhaust gas introduction port 40 for ejecting process exhaust gas containing flame retardants and a plurality of combustion panners 50 are attached to the wall 3, both of them must be positioned close to each other and introduced. Process exhaust gases that are processed immediately at high temperatures increase the efficiency of detoxification, while process exhaust gases to be detoxified are SiH, Si H, TEOS (Si (OC H)
4 2 6 2 5 4 2 6 2 5
)や SiFのようなシラン系物質を多く含むときに、燃焼パーナ 50の近傍で、燃焼生) And SiF such as SiF.
4 4 4 4
成物として、 SiOの粉体(シリカ粉)が生成しやすいことを経験した。このような粉体の  As a composition, it was experienced that SiO powder (silica powder) was easily generated. Of such powder
2  2
形成は、燃焼筒体やパーナ先端部に付着堆積しやすぐプロセス排ガス導入ポート 40や燃焼パーナ 50に粉体詰まりなどを引き起こす恐れがある。粉体詰まり等が生じ ると、燃焼パーナ 50からの燃料の供給に支障をきたして燃焼状態を悪化させ、最悪 の場合には失火に至る恐れがあるので、回避しなければならなレ、。また、プロセス排 ガス導入ポート 40内でも燃焼生成物である粉体が形成され塊状化することも考えら れる。  The formation may deposit on the combustion cylinder or the tip of the burner, and immediately cause clogging of the process exhaust gas introduction port 40 or combustion burner 50. If powder clogging occurs, it will interfere with the fuel supply from the combustion burner 50 and worsen the combustion state. In the worst case, it may lead to misfire, so it must be avoided. It is also conceivable that powder, which is a combustion product, is formed in the process exhaust gas introduction port 40 and is agglomerated.
[0007] 半導体製造工程あるいは液晶製造工程で使用するプロセスガスの量は基板サイズ の大きさにほぼ比例する。近年、半導体製造分野ではウェハーサイズが 200mmか ら 300mmへ移行しつつあり、また、液晶製造分野では基板ガラスサイズが第 5世代 力 第 6世代へ、第 6世代から第 7世代へと移行しつつある。それに伴い、使用する プロセスガスの量が著しく増加し、当然ながら使用されるシラン系物質の量も増加し、 その燃焼生成物として、 SiOの粉体 (シリカ粉)の排出量も増加してきている。そのた [0007] The amount of process gas used in the semiconductor manufacturing process or the liquid crystal manufacturing process is substantially proportional to the size of the substrate. In recent years, in the semiconductor manufacturing field, the wafer size is 200 mm. In the liquid crystal manufacturing field, the substrate glass size is shifting from 5th generation to 6th generation and from 6th generation to 7th generation. Along with this, the amount of process gas used has increased remarkably, and naturally, the amount of silane-based substances used has increased, and the emission of SiO powder (silica powder) as a combustion product has also increased. . That
2  2
めに、前記した Si〇の粉体 (シリカ粉)による障害が発生するのを効果的に回避する  For this reason, it is possible to effectively avoid the trouble caused by the SiO powder (silica powder).
2  2
ことが、難燃性物質分解パーナでの大きな課題となっている。  This is a major problem in the flame retardant decomposition cracker.
[0008] また、本発明者らは、処理すべきプロセス排ガス量が大きくなると、 1つのプロセス 排ガス導入ポート 40から燃焼室内に送り込まれるプロセス排ガスの流速が大きくなつ て、収束している火炎をプロセス排ガスが押し開くようにして通過してしまうことから、 燃焼分解効率が低下することも経験した。 [0008] In addition, when the amount of process exhaust gas to be processed increases, the present inventors process the flame that has converged as the flow rate of the process exhaust gas fed into the combustion chamber from one process exhaust gas introduction port 40 increases. We also experienced that the combustion decomposition efficiency declines because the exhaust gas passes through as if it was pushed open.
[0009] 特許文献 1に記載の排ガス除害装置では、燃焼筒体の周側壁に燃焼パーナを配 置する構成であり、 SiOのような燃焼生成物が飛散して燃焼パーナ内に侵入するの [0009] The exhaust gas abatement apparatus described in Patent Document 1 has a configuration in which a combustion paner is disposed on the peripheral side wall of the combustion cylinder, and combustion products such as SiO scatter and enter the combustion panner.
2  2
をある程度は抑制することができる。また、上流側にプロセス排ガスの導入ポートを配 置し、その下流側に燃焼パーナを配置する構成であることから、プロセス排ガス導入 ポートと燃焼火炎との距離を十分に確保することができ、プロセス排ガス導入ポートの 近傍を低温域としておくことができることから、プロセス排ガス導入ポート内およびそ の近傍で燃焼生成物が生成されるのをある程度は回避できることが期待される。  Can be suppressed to some extent. In addition, the process exhaust gas introduction port is arranged on the upstream side and the combustion burner is arranged on the downstream side, so that the distance between the process exhaust gas introduction port and the combustion flame can be sufficiently secured, and the process Since the vicinity of the exhaust gas introduction port can be kept in a low temperature region, it is expected that combustion products can be avoided to some extent in and near the process exhaust gas introduction port.
[0010] しかし、特許文献 1に記載の形状の排ガス除害装置では、プロセス排ガス導入ポー トは、その軸心が燃焼筒体の中心軸と直交する面に平行な方向に配置されており、 プロセス排ガスに Si〇のような粉体が当初から含まれている場合や、プロセス排ガス [0010] However, in the exhaust gas abatement apparatus having the shape described in Patent Document 1, the process exhaust gas introduction port is arranged in a direction parallel to a plane perpendicular to the central axis of the combustion cylinder, If the process exhaust gas contains powder such as SiO from the beginning, or the process exhaust gas
2  2
導入ポート内で燃焼生成物が生成された場合に、ポート内に滞留して塊状化し、プ 口セス排ガスの流れを阻害する要因となる恐れがある。前記したように、使用するプロ セスガスの量が著しく増加する傾向にある状況下では、排出されるプロセス排ガスに SiOのような粉体が当初から含まれている場合が多くなりつつあり、粉体のプロセス If combustion products are generated in the introduction port, they may stay in the port and become agglomerated, which may hinder the flow of process exhaust gas. As described above, in a situation where the amount of process gas used tends to increase remarkably, powders such as SiO are often contained in the discharged process exhaust gas from the beginning. Process
2 2
排ガス導入ポート内滞留は十分に起こり得る。  The residence in the exhaust gas introduction port can occur sufficiently.
[0011] さらに、特許文献 2に記載のように、プロセス排ガス導入ポートを燃焼筒体の中心軸 線に一致する方向に取り付ける場合と比較して、プロセス排ガス導入ポートが燃焼筒 体の中心軸と直交する面に平行な方向に配置されている場合には、燃焼火炎の形 状が乱れ、高温領域生成が限定されるという理由から、燃焼分解処理効率が低下す る。 [0011] Further, as described in Patent Document 2, the process exhaust gas introduction port is connected to the central axis of the combustion cylinder as compared with the case where the process exhaust gas introduction port is attached in a direction that coincides with the central axis of the combustion cylinder. If it is placed in a direction parallel to the orthogonal plane, the shape of the combustion flame The combustion cracking efficiency is reduced because the shape is disturbed and the generation of the high temperature region is limited.
[0012] さらに、特許文献 1に記載の形状の排ガス除害装置では、パーナ火炎の噴出方向 が燃焼筒体に想定した仮想円の接線に一致する向きであり、複数の火炎が一箇所 に収束する領域が存在しなレ、ことから、十分に高温の燃焼分解処理領域が形成され 難ぐ CF、 SF、 NFなどのフロン系難燃性物質を含むプロセス排ガスについては、  [0012] Further, in the exhaust gas abatement apparatus having the shape described in Patent Document 1, the direction in which the Pana flame is ejected is aligned with the tangent of the virtual circle assumed for the combustion cylinder, and a plurality of flames converge at one place. As for process exhaust gas containing chlorofluorocarbon-based flame retardants such as CF, SF, and NF, it is difficult to form a sufficiently high temperature combustion decomposition treatment area.
4 6 3  4 6 3
十分な処理効率が得られなレ、。  I can't get enough processing efficiency.
[0013] 本発明は、上記のような事情に鑑みてなされたものであり、 SiH、 Si H、 TEOS、  [0013] The present invention has been made in view of the above circumstances, and SiH, SiH, TEOS,
4 2 6  4 2 6
SiFなどのように燃焼分解により粉体(SiO等)を生成するシラン系物質および CF  Silane-based materials that produce powders (such as SiO) by combustion decomposition, such as SiF, and CF
4 2 4 4 2 4
、 SF、 NFなどのフロン系難燃性物質を含むプロセス排ガスに対しても、高い燃焼High combustion even for process exhaust gas containing chlorofluorocarbon flame retardants such as SF, NF
6 3 6 3
分解処理効率を確保することができ、かつ処理効率を低下させることなく運転を継続 することが可能な、さらに改良された難燃性物質分解パーナを提供することを目的と する。  An object of the present invention is to provide a flame retardant decomposition cracker that can further improve the decomposition efficiency and can continue the operation without reducing the efficiency.
[0014] 本発明による難燃性物質分解パーナは、一端が閉じている燃焼筒体と、燃焼筒体 内に火炎を形成するための複数個の燃焼パーナと、燃焼筒体内に難燃性物質を含 むプロセス排ガスを導入する複数個のプロセス排ガス導入ポートと、を少なくとも備え [0014] A flame retardant substance decomposition parner according to the present invention includes a combustion cylinder having one end closed, a plurality of combustion pans for forming a flame in the combustion cylinder, and a flame retardant substance in the combustion cylinder. A plurality of process exhaust gas introduction ports for introducing process exhaust gas containing at least
、各燃焼パーナと各プロセス排ガス導入ポートは共に燃焼筒体の周側壁に取り付け られている難燃性物質分解パーナであって、前記複数個の燃焼パーナはそれぞれ の噴出火炎が燃焼筒体の中心軸線上のほぼ同じ点で収束できるように軸線を下流 側に傾斜させて燃焼筒体の周側壁に取り付けられており、前記複数個のプロセス排 ガス導入ポートはその軸線の延長線が前記噴出火炎の収束域よりも上流側において 燃焼筒体の中心軸線上のほぼ同じ点で交わるように軸線を下流側に傾斜させて燃 焼筒体の周側壁に取り付けられていることを特徴とする。 In addition, each combustion burner and each process exhaust gas introduction port are flame retardant decomposition crackers attached to the peripheral side wall of the combustion cylinder, and each of the plurality of combustion burners has a jet flame at the center of the combustion cylinder. The plurality of process exhaust gas introduction ports are attached to the peripheral wall of the combustion cylinder with the axis inclined to the downstream side so as to converge at substantially the same point on the axis. It is characterized in that it is attached to the peripheral side wall of the combustion cylinder with its axis inclined to the downstream side so that it intersects at substantially the same point on the central axis of the combustion cylinder upstream of the convergence region.
[0015] 本発明による難燃性物質分解パーナでは、燃焼パーナとプロセス排ガス導入ポー トは共に燃焼筒体の周側壁に取り付けられており、それらが燃焼筒体の上部閉塞壁 に取り付けられてレ、る形態の難燃性物質分解パーナと比較して、燃焼生成物である 粉体によってポートあるいはパーナに閉塞障害が生じる程度は少ない。  [0015] In the flame retardant substance decomposition partner according to the present invention, the combustion partner and the process exhaust gas introduction port are both attached to the peripheral side wall of the combustion cylinder, and they are attached to the upper closed wall of the combustion cylinder. Compared with this form of flame retardant decomposition burner, the degree of blockage of the port or the burner caused by the powder of combustion products is less.
[0016] さらに、複数個のプロセス排ガス導入ポートは、その軸線の延長線が噴出火炎の収 束域よりも上流側において燃焼筒体の中心軸線上のほぼ同じ点で交わるように軸線 を下流側に傾斜させて燃焼筒体の周側壁に取り付けられているので、プロセス排ガ ス導入ポートをその軸心が燃焼筒体の中心軸と直交する面に平行な方向となるよう に配置した形態の難燃性物質分解パーナと比較して、発生する粉体がポート内に滞 留して塊状化するのを効果的に阻止することができる。また、この構造によって、火炎 とプロセス排ガス導入ポート出口の距離を所要に確保することも可能となり、プロセス 排ガス導入ポートの出口近傍にぉレ、て燃焼生成物(シリカ粉等)が生成されるのを効 果的に防止することができる。それによつて、プロセス排ガス導入ポートおよびパーナ に粉体による流路障害等が生じるのを効果的に阻止することができる。 [0016] Furthermore, in the plurality of process exhaust gas introduction ports, the extension line of the axis thereof is the concentration of the ejection flame. Since the axis is inclined to the downstream side so that it intersects at substantially the same point on the central axis of the combustion cylinder upstream from the bundle region, it is attached to the peripheral side wall of the combustion cylinder, so the process exhaust gas introduction port is Compared with the flame retardant decomposition cracker that is arranged so that its axial center is parallel to the plane perpendicular to the central axis of the combustion cylinder, the generated powder stays in the port and forms a lump. Can be effectively prevented. This structure also makes it possible to secure the required distance between the flame and the process exhaust gas introduction port outlet, so that combustion products (silica powder, etc.) are generated near the outlet of the process exhaust gas introduction port. Can be effectively prevented. As a result, it is possible to effectively prevent the process exhaust gas introduction port and the panner from causing a channel failure due to powder.
[0017] さらに、プロセス排ガス導入ポートはその軸線を下流側に傾斜させて燃焼筒体の周 側壁に取り付けられているので、ポート出口における断面積が傾斜させた角度に応じ て楕円状に大きくなり、結果として、ガス流速を緩やかに低下させてスムーズにプロセ ス排ガスを燃焼筒体内に導入することができる。そのために、燃焼火炎形状変化に 与える影響を少なくすることができる。  [0017] Furthermore, since the process exhaust gas introduction port is attached to the peripheral wall of the combustion cylinder with its axis inclined to the downstream side, the cross-sectional area at the port outlet increases in an elliptical shape according to the angle of inclination. As a result, the process exhaust gas can be smoothly introduced into the combustion cylinder by gradually reducing the gas flow rate. For this reason, the influence on the combustion flame shape change can be reduced.
[0018] この効果をさらに大きくするために、プロセス排ガス導入ポートを、その断面積が燃 焼筒体内への出口部に向けて次第に拡大する部分を有するように構成することもで きる。それによつて、プロセス排ガス導入ポートに粉体による流路障害等が生じるのを さらに効果的に阻止することができる。  [0018] In order to further increase this effect, the process exhaust gas introduction port may be configured to have a portion whose cross-sectional area gradually expands toward the outlet portion into the combustion cylinder. As a result, it is possible to more effectively prevent the occurrence of flow path failure due to powder at the process exhaust gas introduction port.
[0019] 本発明による難燃性物質分解パーナでは、複数個の燃焼パーナはそれぞれの噴 出火炎が燃焼筒体の中心軸線上のほぼ同じ点で収束できるように軸線を下流側に 傾斜させて、前記のように燃焼筒体の周側壁に取り付けられており、火炎が収束した 領域周辺には高温の燃焼領域が形成される。また、プロセス排ガスは、複数個備えら れたプロセス排ガス導入ポートから燃焼筒体内に導入されるので、流速を大きくする ことなく該高温の燃焼領域に向けて、その上方力 侵入することができる。それにより 、プロセス排ガスに混入する SiH、 Si H、 TE〇S、 SiFなどのシラン系物質および  [0019] In the flame retardant substance decomposition parner according to the present invention, the plurality of combustion panners are inclined to the downstream side so that the respective fire flames can converge at substantially the same point on the central axis of the combustion cylinder. As described above, it is attached to the peripheral side wall of the combustion cylinder, and a high temperature combustion region is formed around the region where the flame has converged. In addition, since a plurality of process exhaust gases are introduced into the combustion cylinder through the plurality of process exhaust gas introduction ports, the upward force can enter the high temperature combustion region without increasing the flow velocity. As a result, SiH, Si H, TEOS, SiF and other silane-based substances mixed in the process exhaust gas and
4 2 6 4  4 2 6 4
CF、 SF、 NFなどのフロン系難燃性物質の燃焼分解は高い効率で進行する。さら Combustion and decomposition of CFC-based flame retardants such as CF, SF, and NF proceeds with high efficiency. More
4 6 3 4 6 3
に、複数個のプロセス排ガス導入ポートは、燃焼筒体の中心軸線上のほぼ同じ点で 交わるように軸線を下流側に傾斜させて配置されるので、前記のように、初速を大きく することなぐかつ燃焼火炎に大きな乱れを生じさせることなく侵入することができ、こ の点力 もフロン系難燃性物質を含むプロセス排ガスの高い燃焼分解効率が得られ る。また、プロセス排ガスが燃焼筒体の壁面領域に沿って、すなわち燃焼室の低温 領域を通過して流下する現象をなくすこともできるので、このことからも燃焼分解効率 の低下を阻止することができる。 In addition, since the plurality of process exhaust gas introduction ports are arranged with the axis inclined to the downstream side so that they intersect at substantially the same point on the central axis of the combustion cylinder, the initial speed is increased as described above. It is possible to enter the combustion flame without causing any significant disturbance, and this point also provides high combustion decomposition efficiency of process exhaust gas containing CFC-based flame retardants. In addition, it is possible to eliminate the phenomenon in which the process exhaust gas flows down along the wall surface region of the combustion cylinder, that is, through the low temperature region of the combustion chamber. This also prevents a decrease in combustion decomposition efficiency. .
[0020] 本発明による難燃性物質分解パーナにおいて、各燃焼パーナおよび各プロセス排 ガス導入ポートの軸線の傾斜角度は、燃焼筒体の中心軸線に対して 15度〜 60度の 範囲であることが好ましい。本発明者らの実験では、各燃焼パーナの軸線の傾斜角 度は 30度前後が好ましぐ各プロセス排ガス導入ポートの軸線の傾斜角度は 45度前 後が好ましい。このように角度を選択することにより、より高い燃焼分解効率を得ること ができた。燃焼パーナの傾斜角度が 60度より大きいと、プロセス排ガス導入ポートの 近傍を高温ィヒして Si〇の生成を促進するので好ましくなぐ傾斜角度が 15度より小 [0020] In the flame retardant material decomposition parner according to the present invention, the inclination angle of the axis of each combustion parner and each process exhaust gas introduction port is in the range of 15 to 60 degrees with respect to the central axis of the combustion cylinder. Is preferred. In the experiments by the present inventors, the inclination angle of the axis of each combustion pan is preferably around 30 degrees, and the inclination angle of the axis of each process exhaust gas introduction port is preferably around 45 degrees. By selecting the angle in this way, higher combustion decomposition efficiency could be obtained. If the inclination angle of the combustion pan is larger than 60 degrees, the vicinity of the process exhaust gas introduction port is heated to promote the formation of SiO, so the unfavorable inclination angle is smaller than 15 degrees.
2  2
さいと、火炎が燃焼筒体内面に接近し過ぎて燃焼筒体の熱損傷が進行しやすくなる ので好ましくない。また、各プロセス排ガス導入ポートの軸線の傾斜角度が 15度程度 より小さくなると、火炎より上方のスペースが大きくなりすぎ、難燃性物質分解パーナ 力 Sいたずらに長尺化するので好ましくない。また、 60度より大きくなると各プロセス排 ガス導入ポートから入り込むプロセス排ガスが乱流を形成するので好ましくない。  On the other hand, it is not preferable because the flame is too close to the inner surface of the combustion cylinder and thermal damage to the combustion cylinder is likely to proceed. Further, if the inclination angle of the axis of each process exhaust gas introduction port is smaller than about 15 degrees, the space above the flame becomes too large, and the flame retardant decomposition cracking force S is undesirably elongated. On the other hand, if it exceeds 60 degrees, the process exhaust gas entering from each process exhaust gas introduction port forms a turbulent flow, which is not preferable.
[0021] 本発明による難燃性物質分解パーナにおいて、各燃焼パーナはメンテナンスを容 易にするために、燃焼筐体から脱着自在であることが好ましい。燃焼パーナを脱着 自在にする方法は、例えば燃焼筐体側に鞘管部を設けその中に燃焼パーナ本体を 差し込んで、クランプ形継手など工具を使用せずに脱着できる継手で取り付ける手 段などが考えられる。 [0021] In the flame retardant substance decomposition partner according to the present invention, each combustion partner is preferably detachable from the combustion casing in order to facilitate maintenance. For example, a method for making the combustion partner detachable is to install a sheath tube on the combustion housing side and insert the combustion partner body into it, and attach it with a joint that can be attached and detached without using tools such as a clamped joint. It is done.
[0022] 本発明による難燃性物質分解パーナにおいて、好ましくは、燃焼筒体の内壁面に 沿って回動するスクレーバがさらに備えられる。それにより、シラン系物質から燃焼分 解により Si〇 (シリカ粉)が生成される場合に、燃焼筒体の内面に付着する燃焼生成  [0022] Preferably, the flame retardant substance decomposition partner according to the present invention further includes a scraper that rotates along the inner wall surface of the combustion cylinder. As a result, when SiO (silica powder) is generated from silane-based materials by combustion decomposition, combustion generation that adheres to the inner surface of the combustion cylinder
2  2
物としての粉体を搔き落とすことができ、難燃性物質分解パーナの性能低下を阻止 することができる。本発明による難燃性物質分解パーナでは、燃焼筒体の上端側を 閉鎖する蓋部材を利用してスクレーバを容易に取り付けることができ、また、蓋部材 は、難燃性物質分解パーナの構成上、燃焼火炎から離れた位置にあるので、スクレ ーパの駆動機構等が熱により損傷するのも効果的に回避できる。また、蓋部材の軽 量化も可能であり、メンテナンス時に蓋部材を開放して燃焼筒体の内部を補修するこ と等が容易となる。 It is possible to scrape off the powder as a product, and to prevent the performance degradation of the flame retardant decomposition cracker. In the flame-retardant substance decomposition Pana according to the present invention, a scraper can be easily attached using a lid member that closes the upper end side of the combustion cylinder, and the lid member Is located at a position away from the combustion flame due to the structure of the flame retardant decomposition burner, so that it is possible to effectively avoid damage to the drive mechanism of the scraper due to heat. Also, the weight of the lid member can be reduced, and it becomes easy to repair the inside of the combustion cylinder by opening the lid member during maintenance.
[0023] 本発明による難燃性物質分解パーナにおいて、好ましくは、燃焼筒体の内壁に沿 うようにして耐熱性金属からなる内筒を備えるようにし、スクレーバは前記内筒の内壁 面に沿って回動するようにされる。このような耐熱性金属からなる内筒を備えることに より、耐火煉瓦あるいはキャスタブルと通称されている不定形耐火材で通常は作られ る燃焼筒体の内壁面が熱損傷するのを回避することができ、難燃性物質分解パーナ の長寿命化を図ることができる。また、耐熱性金属からなる内筒が熱損傷等を受けた 場合には、内筒のみを交換することで、再び難燃性物質分解パーナとして使用する こと力 Sできる。内筒の材質は SUS310Sやインコネル等の耐熱性金属あるいは窒化 珪素や炭化珪素などのセラミックスが好適である。  [0023] In the flame-retardant substance decomposition partner according to the present invention, preferably, an inner cylinder made of a heat-resistant metal is provided along the inner wall of the combustion cylinder, and the scraper extends along the inner wall surface of the inner cylinder. To rotate. By providing an inner cylinder made of such a heat-resistant metal, it is possible to avoid thermal damage to the inner wall surface of the combustion cylinder, which is usually made of an irregular refractory material commonly called refractory brick or castable. This makes it possible to extend the life of the flame retardant decomposition cracker. If the inner cylinder made of heat-resistant metal is damaged by heat, etc., it is possible to use it again as a flame-retardant substance decomposition partner by replacing only the inner cylinder. The material of the inner cylinder is preferably a heat resistant metal such as SUS310S or Inconel, or a ceramic such as silicon nitride or silicon carbide.
[0024] 本発明による難燃性物質分解パーナは、複数個のプロセス排ガス導入ポートを備 えており、並列に設置された複数の製造あるいは処理装置または一台で複数のチヤ ンバーを有する製造あるいは処理装置からチャンバ一ごとに排出されるプロセス排ガ スを同時処理する場合であっても、その製造あるいは処理装置またはチャンバ一の 数だけのプロセス排ガス導入ポートを設置することにより、燃焼筒体より上流でプロセ ス排ガス同士が合流するのを阻止することができるので、プロセス排ガスの混合によ る危険性も排除することができる。  [0024] The flame retardant substance decomposition planer according to the present invention includes a plurality of process exhaust gas introduction ports, and a plurality of manufacturing or processing apparatuses installed in parallel or a single unit having a plurality of chambers. Even when the process exhaust gas discharged from the equipment for each chamber is processed at the same time, by installing as many process exhaust gas introduction ports as the number of manufacturing or treatment equipment or chambers, Therefore, it is possible to prevent the process exhaust gases from merging with each other, thereby eliminating the danger caused by the mixing of process exhaust gases.
[0025] 本発明による難燃性物質分解パーナにおいて、その処理すべきプロセス排ガスに 特に制限はないが、プロセス排ガスが、半導体製造工程、液晶製造工程、太陽電池 製造工程あるいは廃棄トランス内の気体処理工程力 排出される SiH、 Si H、 TE  [0025] In the flame retardant decomposition cracker according to the present invention, the process exhaust gas to be treated is not particularly limited, but the process exhaust gas is a gas treatment in a semiconductor manufacturing process, a liquid crystal manufacturing process, a solar cell manufacturing process, or a waste transformer. Process power Discharged SiH, Si H, TE
4 2 6 4 2 6
OSや SiFのようなシラン系物質と共に CF、 SF、 NFのようなフロン系難燃性物質 CFC-based flame retardant materials such as CF, SF and NF together with silane-based materials such as OS and SiF
4 4 6 3  4 4 6 3
を含むプロセス排ガスである場合に、本発明による難燃性物質分解パーナは特に有 効に機能する。  The flame retardant decomposition cracker according to the present invention functions particularly effectively when the process exhaust gas contains.
[0026] 本発明による難燃性物質分解パーナによれば、半導体製造工程、液晶製造工程、 太陽電池製造工程あるいは廃棄トランス内の気体処理工程等で排出される、 SiH、 Si H、TEOS、 SiFなどのような燃焼分解により粉体(SiO等)を生成するシラン系[0026] According to the flame-retardant substance decomposition Pana according to the present invention, SiH discharged in a semiconductor manufacturing process, a liquid crystal manufacturing process, a solar cell manufacturing process, a gas treatment process in a waste transformer, etc. Silanes that produce powder (SiO, etc.) by combustion decomposition such as Si H, TEOS, SiF
2 6 4 2 2 6 4 2
物質と同時に CF、 SF、 NFなどのフロン系難燃性物質を含むプロセス排ガスに対  For process exhaust gas containing chlorofluorocarbon flame retardants such as CF, SF and NF
4 6 3  4 6 3
して、高い燃焼分解効率のもとで無害化処理することが可能となる。また、処理効率 を低下させることなく長時間運転を継続することを可能となる。  Thus, the detoxification process can be performed under high combustion decomposition efficiency. In addition, the operation can be continued for a long time without lowering the processing efficiency.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]図 1は、本発明による難燃性物質分解パーナの一形態を示し、図 1 (a)は平面 図、図 1 (b)は図 1 (a)の b— b線による断面図。  [0027] [Fig. 1] Fig. 1 shows an embodiment of a flame retardant decomposition cracker according to the present invention, Fig. 1 (a) is a plan view, and Fig. 1 (b) is b-b in Fig. 1 (a). Sectional drawing by a line.
[図 2]図 2は、本発明による難燃性物質分解パーナでの噴出火炎に対するプロセス 排ガスの入り込み状態を模式的に示す図。  [FIG. 2] FIG. 2 is a diagram schematically showing a state in which process exhaust gas enters an ejection flame in the flame-retardant substance decomposition partner according to the present invention.
[図 3]図 3は、本発明による難燃性物質分解パーナの他の形態を示す図 1 (b)に相当 する図。  [FIG. 3] FIG. 3 is a view corresponding to FIG. 1 (b) showing another embodiment of the flame-retardant substance decomposition partner according to the present invention.
[図 4]図 4は、本発明による難燃性物質分解パーナのさらに他の形態を示す図であり 、図 4 (a)は図 1 (b)に相当する図、図 4 (b)は図 4 (a)の b— b線による断面図。  [FIG. 4] FIG. 4 is a view showing still another embodiment of the flame retardant substance decomposition partner according to the present invention. FIG. 4 (a) is a view corresponding to FIG. 1 (b), and FIG. Sectional view along line bb in Fig. 4 (a).
[図 5]図 5は、従来の難燃性物質分解パーナを示す図であり、図 5 (a)は平面図、図 5 (b)は図 5 (a)の b— b線による断面図。  [Fig. 5] Fig. 5 is a diagram showing a conventional flame retardant decomposition planer. Fig. 5 (a) is a plan view, and Fig. 5 (b) is a cross-sectional view taken along line bb in Fig. 5 (a). .
符号の説明  Explanation of symbols
[0028] 1、 la…難燃性物質分解パーナ、 2…円筒形の燃焼筒体、 21…不定形耐火材力 なる筒本体、 22…耐熱性金属で作られる外筒、 23…耐熱性金属で作られる内筒、 3 …蓋部材、 32…貫通孔、 L…燃焼筒体の中心軸線、 50…燃焼パーナ、 L1…燃焼 パーナの軸線、 ひ…燃焼パーナの軸線の傾斜角、 f…火炎、 S…火炎の高温領域、 60…プロセス排ガス導入ポート、 L2…プロセス排ガス導入ポートの軸線、 β…プロセ ス排ガス導入ポートの軸線の傾斜角、 70· · 'スクレーパ  [0028] 1, la ... Flame retardant substance decomposition panner, 2 ... Cylindrical combustion cylinder, 21 ... Cylinder body made of irregular refractory material, 22 ... Outer cylinder made of heat-resistant metal, 23 ... Heat-resistant metal 3 ... Cover member, 32 ... Through hole, L ... Combustion cylinder center axis, 50 ... Combustion burner, L1 ... Combustion burner axis, D ... Combustion burner axis inclination, f ... Flame , S ... High temperature area of flame, 60 ... Process exhaust gas introduction port, L2 ... Process exhaust gas introduction port axis, β ... Process exhaust gas introduction port axis tilt angle, 70 · 'Scraper
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、本発明による難燃性物質分解パーナの一形態について図面を参照しながら 説明する。図 1は難燃性物質分解パーナ 1の一例を示しており、図 1 (a)は平面図、 図 1 (b)は図 1 (a)の b_b線による断面図である。図 2は本発明による難燃性物質分 解パーナにおける火炎の形成とプロセス排ガスの導入位置とを模式的に説明してい る。 [0030] パーナ 1は、円筒形の燃焼筒体 2と、該燃焼筒体 2の一方端を閉鎖する蓋部材 3と を備える。この例において、燃焼筒体 2は、不定形耐火材からなる筒本体 21と、それ を外側から覆う耐熱性金属で作られる外筒 22と、 SUS310Sやインコネルのような耐 熱性金属で作られる内筒 23とで構成される。内筒 23は、筒本体 21の内壁に沿うよう にして配置され、好ましくは、内筒 23と筒本体 21の内壁面との間に僅かに隙間 24が 形成されるようにする。また、好ましくは、内筒 23は、筒本体 21から容易に着脱できる 状態で、適宜の手段により筒本体 21に装着する。燃焼筒体 2の下方側開放端は、従 来のこの種のパーナと同様に適宜の管路を介して吸引ブロアに接続される力、、水スク ラバー等に接続される。 [0029] Hereinafter, an embodiment of a flame retardant substance decomposition partner according to the present invention will be described with reference to the drawings. Fig. 1 shows an example of the flame retardant decomposition cracker 1. Fig. 1 (a) is a plan view, and Fig. 1 (b) is a cross-sectional view taken along line b_b in Fig. 1 (a). Fig. 2 schematically illustrates the formation of flame and the introduction position of the process exhaust gas in the flame retardant material decomposition Pana according to the present invention. The parner 1 includes a cylindrical combustion cylinder 2 and a lid member 3 that closes one end of the combustion cylinder 2. In this example, the combustion cylinder 2 has a cylinder body 21 made of an irregular refractory material, an outer cylinder 22 made of a heat-resistant metal covering the outside, and an inner body made of a heat-resistant metal such as SUS310S or Inconel. It consists of cylinder 23. The inner cylinder 23 is disposed along the inner wall of the cylinder main body 21, and preferably a slight gap 24 is formed between the inner cylinder 23 and the inner wall surface of the cylinder main body 21. Preferably, the inner cylinder 23 is attached to the cylinder main body 21 by an appropriate means in a state where it can be easily detached from the cylinder main body 21. The lower open end of the combustion cylinder 2 is connected to a force connected to a suction blower, a water scrubber, and the like through an appropriate pipe line as in the case of a conventional parner of this type.
[0031] 燃焼筒体 2の上端には適宜の内フランジ 25が形成され、そこに、止めボルト 31等 の手段により、前記蓋部材 3が着脱可能に取り付けられる。蓋部材 3の中央には貫通 孔 32が形成されており、メンテナンス時あるいは後記するスクレーパ 70の取り付けに 利用される。通常はキャップ 33により封鎖されている。  An appropriate inner flange 25 is formed at the upper end of the combustion cylinder 2, and the lid member 3 is detachably attached thereto by means such as a set bolt 31. A through hole 32 is formed in the center of the lid member 3 and is used for maintenance or for attaching a scraper 70 described later. Usually sealed with cap 33.
[0032] 燃焼筒体 2には、複数個の燃焼パーナ 50が等しい間隔をおいて、着脱自在に取り 付けられる。図示の例では、 3個の燃焼パーナ 50が 120度の間隔で取り付けてある 力 2個以上であれば任意である。各燃焼パーナ 50は、その軸線 L1の延長線が燃 焼筒体 2の中心軸線 L上のほぼ同じ点 P1で交叉するように所定の角度 α (好ましくは 、 15度〜 50度の範囲、より好ましくは 30度)で下向きに傾斜して取り付けられており 、それにより、図 2に示すように、それぞれの噴出火炎 fは燃焼筒体 2の中心軸線 L上 のほぼ同じ点 Plaで収束するようになる。そして、火炎 fが収束した領域周辺には、高 温の燃焼領域 Sが形成される。  [0032] A plurality of combustion burners 50 are detachably attached to the combustion cylinder 2 at equal intervals. In the example shown in the figure, it is optional as long as the three combustion panners 50 are installed at 120 ° intervals with two or more forces. Each combustion spanner 50 has a predetermined angle α (preferably in the range of 15 to 50 degrees) so that the extension line of the axis L1 intersects at substantially the same point P1 on the center axis L of the combustion cylinder 2 (Preferably 30 degrees) and tilted downward, so that each fire flame f converges at approximately the same point Pla on the central axis L of the combustion cylinder 2 as shown in FIG. become. A high temperature combustion region S is formed around the region where the flame f has converged.
[0033] 燃焼筒体 2には、さらに、複数個のプロセス排ガス導入ポート 60が等しい間隔をお いて形成される。図示の例では、 3個のプロセス排ガス導入ポート 60が、それぞれ燃 焼パーナ 50間の中間位置となるようにして、 120度の間隔で取り付けてある。各プロ セス排ガス導入ポート 60は、その軸線 L2の延長線が、前記した噴出火炎 fの収束域 よりも上流側の位置 P2において、燃焼筒体 2の中心軸 L上のほぼ同じ点で交わるよう に所定の角度 /3 (好ましくは 15度〜 50度の範囲、より好ましくは 45度)で下流側に 傾斜して形成される。プロセス排ガス導入ポート 60には、管路 61を介して、例えば半 導体製造装置等からのプロセス排ガスが導入される。 [0033] In the combustion cylinder 2, a plurality of process exhaust gas introduction ports 60 are further formed at equal intervals. In the example shown in the figure, the three process exhaust gas introduction ports 60 are attached at intervals of 120 degrees so as to be at intermediate positions between the combustion burners 50, respectively. Each process exhaust gas introduction port 60 is such that the extension line of the axis L2 intersects at substantially the same point on the central axis L of the combustion cylinder 2 at the position P2 upstream from the convergence region of the above-described ejection flame f. At a predetermined angle / 3 (preferably in the range of 15 to 50 degrees, more preferably 45 degrees). The process exhaust gas introduction port 60 is connected to, for example, a halfway through a pipe 61. Process exhaust gas from a conductor manufacturing apparatus or the like is introduced.
[0034] プロセス排ガスの燃焼処理に際しては、各燃焼パーナ 50に燃焼火炎 fが形成され ている状態で、各プロセス排ガス導入ポート 60からプロセス排ガス Gを燃焼筒体 2内 に導入する。各プロセス排ガス導入ポート 60は下向きに角度 j3で傾斜しているので 、プロセス排ガス G中に Si〇2のような粉体が含まれている場合でも、粉体は管路 61 およびプロセス排ガス導入ポート 60内に滞留することなぐ燃焼筒体 2内に入り込む  In the combustion treatment of the process exhaust gas, the process exhaust gas G is introduced into the combustion cylinder 2 from each process exhaust gas introduction port 60 in a state where the combustion flames f are formed in the combustion burners 50. Each process exhaust gas introduction port 60 is inclined downward at an angle j3. Therefore, even if the process exhaust gas G contains a powder such as Si02, the powder is in the pipeline 61 and the process exhaust gas introduction port. Enters combustion cylinder 2 without staying in 60
[0035] プロセス排ガス Gは、下流側へ傾斜した姿勢で燃焼筒体 2の中心軸 L上のほぼ同じ 点で交わるように各プロセス排ガス導入ポート 60から噴出するので、大きな乱流を引 き起こすことなく燃焼筒体 2の中心軸 Lを中心に合流する。合流したプロセス排ガス G は、火炎 fが収束した領域に形成される高温の燃焼領域 Sに向けて、その上方から侵 入する。それにより、プロセス排ガス Gに混入する SiH、 Si H、 TE〇S、 SiFなどの [0035] Since the process exhaust gas G is ejected from each process exhaust gas introduction port 60 so as to intersect at substantially the same point on the central axis L of the combustion cylinder 2 in a posture inclined to the downstream side, a large turbulent flow is caused. Without merging around the central axis L of the combustion cylinder 2. The merged process exhaust gas G enters the high-temperature combustion region S formed in the region where the flame f converges from above. As a result, SiH, Si H, TE〇S, SiF, etc.
4 2 6 4 シラン系物質および CF、 SF、 NFなどのフロン系難燃性物質の燃焼分解は高い  4 2 6 4 Combustion decomposition of silane-based materials and chlorofluorocarbon-based flame retardant materials such as CF, SF, and NF is high.
4 6 3  4 6 3
効率で進行する。燃焼分解処理済みのプロセス排ガス Gは燃焼筒体 2の下端から流 出する。  Progress with efficiency. Process exhaust gas G, which has been subjected to combustion decomposition treatment, flows out from the lower end of the combustion cylinder 2.
[0036] 燃焼分解の過程で、 SiO等のような粉体物質が生成される。燃焼生成物の生成は  [0036] In the process of combustion decomposition, a powder material such as SiO is generated. The production of combustion products is
2  2
主にプロセス排ガス導入ポート 60よりも下流側で生じており、また、プロセス排ガス導 入ポート 60は形成される火炎 fから上流側に離れた低温域にあるので、生成された S i〇等が塊状となってプロセス排ガス導入ポート 60を閉塞するような事態は生じなレ、 This occurs mainly on the downstream side of the process exhaust gas introduction port 60, and the process exhaust gas introduction port 60 is in a low temperature region away from the formed flame f to the upstream side. There should be no situation where the process exhaust gas introduction port 60 is blocked due to lumps.
2 2
。また、形成火炎 fの中央部分に合流したプロセス排ガス Gが入り込むこと、また、プロ セス排ガス Gおよび形成火炎 fは下向き噴出していることから、生成された SiO等の  . In addition, since the process exhaust gas G that has joined the central part of the formed flame f enters, and the process exhaust gas G and the formed flame f are jetted downward,
2 ような粉体物質は積極的に下流側へのエネルギーが与えられ、各燃焼パーナ 50の 吹き出し口近傍に生成された SiO等が塊状に集積して、吹き出し口を閉塞するよう  2 such a powder substance is positively given energy to the downstream side, and the SiO etc. generated in the vicinity of the outlet of each combustion pan 50 accumulate in a lump and block the outlet.
2  2
な事態が生じるのも回避できる。そのために、長時間にわたって、 SiH、 Si H、 TE  It is also possible to avoid the occurrence of unexpected situations. Therefore, for a long time, SiH, Si H, TE
4 2 6 4 2 6
〇S、 SiFなどのシラン系物質および CF、 SF、 NFなどのフロン系難燃性物質を 〇 Add silane-based materials such as S and SiF and chlorofluorocarbon-based flame retardant materials such as CF, SF and NF
4 4 6 3  4 4 6 3
含むプロセス排ガス Gを高い燃焼分解効率のもとで無害化処理することが可能となる [0037] 図 3は、本発明による難燃性物質分解パーナの他の形態を示す図 1 (b)に相当す る図である。この難燃性物質分解パーナ laはスクレーパ 70を備える点で、図 1に示し た難燃性物質分解パーナ 1と相違する。他の構成は同じであり、同じ符号を付してい る。スクレーパ 70は SUS310Sやインコネルのような耐熱合金あるいは窒化珪素や 炭化珪素のようなセラミックスで作られており、蓋部材 3の中央に形成した前記貫通孔 32を通過する軸部 71と、軸部 71に連続しており燃焼筒体 2の内壁に取り付けた前 記内筒 23の内壁面に沿って移動する搔き取り棒 72とで構成される。軸部 71は図示 の例ではハンドル 73を備えており、ハンドル 73を操作することにより、定期的に搔き 取り棒 72を内筒 23の内壁面に沿って回動させることができる。それにより、内筒 23に 付着した粉体は効果的に搔き落とされる。モータ駆動によって定期的に搔き取り棒 7 2を回動させることもできる。 It is possible to detoxify the process exhaust gas G containing high combustion decomposition efficiency. [0037] FIG. 3 is a diagram illustrating another form of the flame retardant decomposition cracker according to the present invention. Equivalent FIG. This flame retardant substance decomposition partner la is different from the flame retardant substance decomposition partner 1 shown in FIG. 1 in that a scraper 70 is provided. Other configurations are the same and are denoted by the same reference numerals. The scraper 70 is made of a heat-resistant alloy such as SUS310S or Inconel, or ceramics such as silicon nitride or silicon carbide, and includes a shaft portion 71 that passes through the through-hole 32 formed in the center of the lid member 3, and a shaft portion 71. And a scraping bar 72 that moves along the inner wall surface of the inner cylinder 23 attached to the inner wall of the combustion cylinder 2. The shaft portion 71 includes a handle 73 in the illustrated example. By operating the handle 73, the scraping bar 72 can be periodically rotated along the inner wall surface of the inner cylinder 23. As a result, the powder adhering to the inner cylinder 23 is effectively scraped off. The scraper rod 72 can also be rotated periodically by driving the motor.
[0038] 図 4は、本発明による難燃性物質分解パーナの他の形態を示しており、図 4 (a)は 図 1 (b)に相当する図であり、図 4 (b)は図 4 (a)の b_b線に沿う断面図である。この 難燃性物質分解パーナ lbは、プロセス排ガス導入ポート 60の断面積が燃焼筒体 2 内への出口部に向けて次第に拡大する部分 61を有する点で、図 1に示した難燃性 物質分解パーナ 1と相違する。他の構成は同じであり、同じ符号を付している。この 例では、プロセス排ガス導入ポート 60における筒本体 21に形成される貫通孔の部分 力 Sラッパ状に次第に拡がる部分 61とされている。この構成とすることにより、ガス流速 を緩やかに低下させてスムーズにプロセス排ガスを燃焼筒体 2内に導入することが可 能となり、プロセス排ガスが燃焼火炎 fの形状変化に与える影響を一層少なくすること ができる。また、プロセス排ガス導入ポート 60に粉体による流路障害等が生じるのを さらに効果的に阻止することができる。  [0038] Fig. 4 shows another embodiment of the flame retardant substance decomposition panner according to the present invention. Fig. 4 (a) is a diagram corresponding to Fig. 1 (b), and Fig. 4 (b) is a diagram. 4 is a cross-sectional view taken along line b_b in FIG. This flame-retardant material decomposition Pana lb has a portion 61 in which the cross-sectional area of the process exhaust gas introduction port 60 gradually expands toward the outlet portion into the combustion cylinder 2, so that the flame-retardant material shown in FIG. Dissimilar to decomposition Pana 1. Other configurations are the same, and are denoted by the same reference numerals. In this example, the partial force S of the through-hole formed in the cylinder main body 21 in the process exhaust gas introduction port 60 is a portion 61 that gradually expands in the form of a trumpet. With this configuration, it becomes possible to smoothly reduce the gas flow rate and smoothly introduce the process exhaust gas into the combustion cylinder 2, thereby further reducing the influence of the process exhaust gas on the shape change of the combustion flame f. be able to. In addition, it is possible to more effectively prevent the process exhaust gas introduction port 60 from causing a channel failure due to powder.
[0039] 本発明による難燃性物質分解パーナ 1、 laでは、蓋部材 3の近傍は燃焼パーナ 50 力 離れているために比較的に低温である。そのために、蓋部材 3の構成を簡素化 かつ軽量化することができる。そのために、蓋部材 3を開いて燃焼筒体内をメンテナ ンスするときの作業が容易となる効果ももたらされる。  [0039] In the flame-retardant substance decomposing burner 1, la according to the present invention, the vicinity of the lid member 3 is relatively low in temperature because it is separated from the combustion burner by 50 forces. Therefore, the configuration of the lid member 3 can be simplified and reduced in weight. For this reason, the effect of facilitating the work when the lid member 3 is opened and the inside of the combustion cylinder is maintained is also brought about.

Claims

請求の範囲 The scope of the claims
[1] 一端が閉じている燃焼筒体と、燃焼筒体内に火炎を形成するための複数個の燃焼 パーナと、燃焼筒体内に難燃性物質を含むプロセス排ガスを導入する複数個のプロ セス排ガス導入ポートと、を少なくとも備え、各燃焼パーナと各プロセス排ガス導入ポ ートは共に燃焼筒体の周側壁に取り付けられている難燃性物質分解パーナであって 前記複数個の燃焼パーナはそれぞれの噴出火炎が燃焼筒体の中心軸線上のほ ぼ同じ点で収束できるように軸線を下流側に傾斜させて燃焼筒体の周側壁に取り付 けられており、前記複数個のプロセス排ガス導入ポートはその軸線の延長線が前記 噴出火炎の収束域よりも上流側において燃焼筒体の中心軸線上のほぼ同じ点で交 わるように軸線を下流側に傾斜させて燃焼筒体の周側壁に取り付けられていることを 特徴とする難燃性物質分解パーナ。  [1] A combustion cylinder with one end closed, a plurality of combustion partners for forming a flame in the combustion cylinder, and a plurality of processes for introducing process exhaust gas containing a flame retardant into the combustion cylinder An exhaust gas introduction port, and each combustion burner and each process exhaust gas introduction port are flame retardant decomposition crackers attached to the peripheral side wall of the combustion cylinder. Is attached to the peripheral side wall of the combustion cylinder with the axis inclined to the downstream side so that the erupting flame can converge at approximately the same point on the central axis of the combustion cylinder. The port is inclined to the downstream side wall of the combustion cylinder by inclining the axis to the downstream side so that the extension line of the axis intersects at substantially the same point on the central axis of the combustion cylinder upstream from the convergence area of the jet flame. Attached Flame retardant material decomposition PANA characterized by.
[2] プロセス排ガス導入ポートは、その断面積が燃焼筒体内への出口部に向けて次第 に拡大する部分を有することを特徴とする請求項 1に記載の難燃性物質分解パーナ [2] The flame retardant substance decomposition partner according to claim 1, wherein the process exhaust gas introduction port has a portion whose cross-sectional area gradually increases toward an outlet portion into the combustion cylinder.
[3] 各燃焼パーナおよび各プロセス排ガス導入ポートの軸線の傾斜角度は、燃焼筒体 の中心軸線に対して 15度〜 60度の範囲であることを特徴とする請求項 1または 2に 記載の難燃性物質分解パーナ。 [3] The inclination angle of the axis of each combustion pan and each process exhaust gas introduction port is in the range of 15 degrees to 60 degrees with respect to the central axis of the combustion cylinder. Flame retardant decomposition PANA.
[4] 燃焼筒体の内壁面に沿って回動するスクレーパをさらに備えることを特徴とする請 求項 1ないし 3のいずれ力、 1項に記載の難燃性物質分解パーナ。 [4] The flame-retardant substance decomposing pan according to any one of claims 1 to 3, further comprising a scraper that rotates along the inner wall surface of the combustion cylinder.
[5] 燃焼筒体は内壁に沿うようにして耐熱性金属からなる内筒を備えており、スクレー パは前記内筒の内壁面に沿って回動することを特徴とする請求項 4に記載の難燃性 物質分解パーナ。 5. The combustion cylinder includes an inner cylinder made of a heat resistant metal along the inner wall, and the scraper rotates along the inner wall surface of the inner cylinder. Flame retardant material decomposition PANA.
[6] 処理すべきプロセス排ガスが、半導体製造工程、液晶製造工程、太陽電池製造ェ 程あるいは廃棄トランス内の気体処理工程から排出される SiH、 Si H、 TEOS、 Si  [6] Process exhaust gas to be treated is discharged from semiconductor manufacturing process, liquid crystal manufacturing process, solar cell manufacturing process or gas processing process in waste transformer, SiH, Si H, TEOS, Si
4 2 6  4 2 6
Fのように燃焼分解により粉体を生成するシラン系物質を含むプロセス排ガス、およ Process exhaust gas containing silane-based substances that produce powder by combustion decomposition, such as F, and
4 Four
び CF、 SF、 C F、 C F、 C F、 CHF、 NFのようなフロン系難燃性物質を含む And chlorofluorocarbon-based flame retardants such as CF, SF, C F, C F, C F, CHF, NF
4 6 2 6 3 8 4 8 3 3 4 6 2 6 3 8 4 8 3 3
プロセス排ガスであることを特徴とする請求項 1ないし 5のいずれ力 1項に記載の難燃 性物質分解パーナ。 The flame retardant according to any one of claims 1 to 5, wherein the flame retardant is a process exhaust gas. Sexually decomposed PANA.
PCT/JP2007/062663 2006-08-04 2007-06-25 Flame retardant material decomposition burner WO2008015855A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006213648A JP4987380B2 (en) 2006-08-04 2006-08-04 Flame retardant decomposition burner
JP2006-213648 2006-08-04

Publications (1)

Publication Number Publication Date
WO2008015855A1 true WO2008015855A1 (en) 2008-02-07

Family

ID=38997038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062663 WO2008015855A1 (en) 2006-08-04 2007-06-25 Flame retardant material decomposition burner

Country Status (3)

Country Link
JP (1) JP4987380B2 (en)
TW (1) TWI334473B (en)
WO (1) WO2008015855A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002149A1 (en) * 2013-07-01 2015-01-08 小池酸素工業株式会社 Exhaust gas treatment equipment
CN111720839A (en) * 2020-06-12 2020-09-29 山东同智创新能源科技股份有限公司 Environment-friendly multi-stage combustion device applied to waste gas liquid incineration treatment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032990A1 (en) * 1998-12-01 2000-06-08 Ebara Corporation Exhaust gas treating device
JP2004028546A (en) * 2002-06-25 2004-01-29 Iwatani Internatl Corp Combustion type vertical detoxification device
JP2006194541A (en) * 2005-01-14 2006-07-27 Tokyo Gas Co Ltd Flame-retardant substance decomposition burner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032990A1 (en) * 1998-12-01 2000-06-08 Ebara Corporation Exhaust gas treating device
JP2004028546A (en) * 2002-06-25 2004-01-29 Iwatani Internatl Corp Combustion type vertical detoxification device
JP2006194541A (en) * 2005-01-14 2006-07-27 Tokyo Gas Co Ltd Flame-retardant substance decomposition burner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002149A1 (en) * 2013-07-01 2015-01-08 小池酸素工業株式会社 Exhaust gas treatment equipment
CN111720839A (en) * 2020-06-12 2020-09-29 山东同智创新能源科技股份有限公司 Environment-friendly multi-stage combustion device applied to waste gas liquid incineration treatment

Also Published As

Publication number Publication date
JP2008039280A (en) 2008-02-21
TWI334473B (en) 2010-12-11
TW200819683A (en) 2008-05-01
JP4987380B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
KR20080074923A (en) Process abatement reactor
JP4497726B2 (en) Exhaust gas treatment equipment
EP2463579B1 (en) Combustion exhaust gas treatment device
US7985379B2 (en) Reactor design to reduce particle deposition during process abatement
JP4579944B2 (en) Exhaust gas treatment equipment
JP4084338B2 (en) Heat treatment equipment for process exhaust gas containing pollutants
JP2018040511A (en) Detoxification device and deposits removing means used for detoxification device
JP2014134350A (en) Inlet nozzle and detoxification device
WO2008015855A1 (en) Flame retardant material decomposition burner
JP6113029B2 (en) Removal device and abatement device
JP6659461B2 (en) Exhaust gas treatment equipment
EP2744587B1 (en) Apparatus for treating a gas stream
JP3242875B2 (en) Exhaust gas abatement apparatus and exhaust gas abatement method
JP2017040429A (en) Method and apparatus for burning silane inclusion gas or silane inclusion waste liquid
IL311169A (en) Detoxification device and nozzle scraper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767470

Country of ref document: EP

Kind code of ref document: A1