WO2008015786A1 - Electric discharge machine and method for correcting thermal displacement of the electric discharge machine - Google Patents

Electric discharge machine and method for correcting thermal displacement of the electric discharge machine Download PDF

Info

Publication number
WO2008015786A1
WO2008015786A1 PCT/JP2007/000818 JP2007000818W WO2008015786A1 WO 2008015786 A1 WO2008015786 A1 WO 2008015786A1 JP 2007000818 W JP2007000818 W JP 2007000818W WO 2008015786 A1 WO2008015786 A1 WO 2008015786A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric discharge
workpiece
electrode
column
bed
Prior art date
Application number
PCT/JP2007/000818
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Hanabusa
Original Assignee
Sodick Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co., Ltd. filed Critical Sodick Co., Ltd.
Publication of WO2008015786A1 publication Critical patent/WO2008015786A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H11/00Auxiliary apparatus or details, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/18Compensation of tool-deflection due to temperature or force
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45221Edm, electrical discharge machining, electroerosion, ecm, chemical
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49219Compensation temperature, thermal displacement

Definitions

  • the present invention relates to an electric discharge machine capable of correcting a thermal displacement of a machine body accompanying a change in temperature of outside air, and a thermal displacement correction method in the electric discharge machine.
  • each part of the machine body that forms the EDM is generally different in shape, such as thickness and length, if the EDM is installed in an environment where temperature changes occur, the difference in heat capacity, etc. Due to this, a temperature difference occurs in each part. When this temperature difference occurs, a difference also occurs in the amount of thermal displacement at each of the parts, so that the relative position between the electrode and the workpiece may change and the processing accuracy may decrease.
  • a temperature detection sensor is arranged in each part of the machine main body, and rotation of a blower fan attached to the machine main body is performed in order to keep the temperature difference of each part within a specified range.
  • the method of controlling the air flow rate by changing the number (Patent Document 1), and by providing the ribs integrated with these in the column and bed, smooth ventilation is provided inside the column and bed, and the entire main structure
  • Patent Document 2 a method for equalizing the temperature distribution.
  • it is not sufficient to take outside air into the machine it is possible to circulate a precisely temperature-controlled gas or liquid inside the machine, or cover the entire EDM machine with a cover and shut it off from the outside air.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5-177500
  • Patent Document 2 Japanese Patent Laid-Open No. 2-3 0 8 1 2
  • the method for controlling the air flow rate as described above and the method for circulating the temperature-controlled gas or liquid inside the machine require a complicated control mechanism, which is costly.
  • the method of covering the entire EDM machine with a cover requires the cost of the cover, and increases the size of the entire machine.
  • the temperature of each part of the machine body varies depending on the shape. The time required for the temperature to become equal to the outside air temperature after the change is different, and this time difference may cause variations in the amount of thermal displacement, which may reduce the processing accuracy.
  • the present invention has been made in view of such circumstances, and in an electric discharge machine and an electric discharge machine that can easily and effectively suppress the amount of relative displacement in a predetermined direction without having a complicated mechanism.
  • one aspect of the present invention relating to an electric discharge machine is to generate an electric discharge between the electrode (6) and the work piece (W) (D), thereby reducing the discharge energy.
  • the electric discharge machine (1) that processes the workpiece (W) more, the first and second parts that cause a change in the relative position of the electrode (6) and the workpiece (W) in a predetermined direction Among them, in the first part where the thermal response speed in the predetermined direction with respect to the temperature change is slow, the relative relationship in the predetermined direction between the electrode (6) and the work piece (W) accompanying the temperature change was experimentally obtained in advance. It is characterized by having an air supply means (2 2, 7 2) for blowing outside air with an air volume that minimizes the change in position.
  • the electric discharge machine (1) includes a bed (2), a column (3) erected on the rear side of the upper surface of the bed (2), and a front surface of the upper surface of the bed (2).
  • the table (4) on which the workpiece (W) is placed and placed and the head (5) held by the column (3) and having the electrode (6) mounted thereon are provided, It can be a bed (2) or a column (3).
  • Another aspect of the present invention relating to an electric discharge machine is that an electric discharge is generated at the gap (D) between the electrode (6) and the workpiece (W), and the workpiece (W)
  • the first and second parts that cause changes in the horizontal relative position of the electrode (6) and the workpiece (W) are affected by temperature changes.
  • the first part where the thermal response speed in the horizontal direction is slow, the change in the relative position in the horizontal direction between the electrode (6) and the workpiece (W), which is experimentally determined, is minimized. It is characterized by having a blowing means (22, 72) for blowing outside air of an air volume.
  • the electric discharge machine (1) includes a bed (2), a column body (7) erected on the rear side of the upper surface of the bed (2), and an upper end surface of the column body (7).
  • a column (3) composed of an upper column (8) placed on the table (4), a table (4) placed on the front side of the upper surface of the bed (2) on which the workpiece (W) is placed, and a table ( 4)
  • the head (5) is held on the front of the column upper part (8) and the electrode (6) is attached to the lower end so that it is located above the bed (2)
  • the second part can be the upper column (8) and the head (5).
  • Still another aspect of the present invention relating to an electric discharge machine is that an electric discharge is generated between the electrode (6) and the workpiece (W) (D), and the workpiece (W) is generated by the discharge energy.
  • the electric discharge machine (1) that performs the machining of the first and second parts that cause changes in the relative positions of the electrode (6) and the workpiece (W) in the upward and downward direction
  • the change in the relative position in the vertical direction between the electrode (6) and the workpiece (W) that accompanies the temperature change is experimentally determined in advance. It is characterized by having air blowing means (22, 72) for blowing the outside air of
  • the electric discharge machine (1) includes a bed (2), a column body (7) and a column body (7) erected on the rear side of the upper surface of the bed (2).
  • the column (3) is composed of the upper part of the column (8), and the table (4) is placed on the front side of the upper surface of the bed (2) on which the workpiece (W) is placed.
  • the tape And the head (5) which is held on the front of the upper part of the column (8) and mounted with the electrode (6) at the lower end so that it is positioned above the column (4).
  • the second part can be a table (4), a workpiece (W), a head (5), and an electrode (6).
  • a cavity (21, 7 1) through which the outside air is blown is formed, and the outside air blown to the first part is It is more preferable to form openings (23, 73) for discharging air, since the flow of the blown outside air in the interior is improved and the outside temperature is quickly approached.
  • One aspect of the present invention relating to a thermal displacement correction method for an electric discharge machine is that an electric discharge is generated between the electrode (6) and the work piece (W) (D), and the work piece is generated by the discharge energy.
  • the thermal displacement correction method of the electric discharge machine (1) that processes (W) the first and second parts that cause changes in the relative positions of the electrode (6) and the workpiece (W) in a predetermined direction Among them, the relative position of the electrode (6) and workpiece (W) in the predetermined direction, which was experimentally obtained in advance, was determined in the first part where the thermal response speed in the predetermined direction with respect to the temperature change was slow It is characterized by blowing the outside air with the least air flow.
  • the electric discharge machine (1) includes a bed (2), a column (3) erected on the upper rear side of the bed (2), and a bed (2). And a table (4) on which the work piece (W) is placed and a head (5) held by the column (3) and having the electrode (6) mounted thereon,
  • One part can be a bed (2) or a column (3).
  • Another aspect of the present invention relating to a thermal displacement correction method for an electric discharge machine is that an electric discharge is generated between the electrode (6) and the workpiece (W) (D), and the electric energy is covered by the discharge energy.
  • the thermal displacement correction method of the electric discharge machine (1) that processes the workpiece (W), the first and second that cause a change in the horizontal relative position of the electrode (6) and the workpiece (W).
  • the first part with a slow thermal response speed in the horizontal direction to the temperature change, and the electrode (6) with the temperature change (6) It is characterized by blowing outside air with an air volume that minimizes the change in the relative position of the object (w) in the horizontal direction.
  • the electric discharge machine (1) includes a bed (2), a column body (7) and a column body (7) erected on the rear side of the upper surface of the bed (2).
  • the column (3) is composed of the upper part of the column (8), and the table (4) is placed on the front side of the upper surface of the bed (2) on which the workpiece (W) is placed.
  • a head (5) that is held on the front surface of the column upper part (8) so that it is positioned above the table (4) and the electrode (6) is attached to the lower end of the table (4).
  • the bed (2) can be the second part, the column top (8) and the head (5).
  • Still another aspect of the present invention relating to a thermal displacement correction method for an electric discharge machine is to generate an electric discharge between the electrode (6) and the work piece (W) (D), and the electric discharge energy
  • the thermal displacement correction method of the electric discharge machine (1) that processes the workpiece (W)
  • the first and the second that cause a change in the relative position in the vertical direction between the electrode (6) and the workpiece (W).
  • the first part which has a slow thermal response speed in the vertical direction with respect to temperature change, is preliminarily experimentally determined between the electrode (6) and workpiece (W) that accompany temperature change. It is characterized by blowing outside air with an air volume that minimizes the change in the relative position in the vertical direction.
  • the electric discharge machine (1) includes a bed (2), a column body (7) and a column body (7) erected on the rear side of the upper surface of the bed (2).
  • the column (3) is composed of the upper part of the column (8), and the table (4) is placed on the front side of the upper surface of the bed (2) on which the workpiece (W) is placed.
  • a head (5) that is held on the front surface of the column upper part (8) so that it is positioned above the table (4) and the electrode (6) is attached to the lower end of the table (4).
  • Column (3) and the second part can be table (4), work piece (W), head (5), and electrode (6).
  • the “relative position in the predetermined direction between the electrode and the workpiece” refers to an interval, that is, a distance in the predetermined direction between the electrode and the workpiece.
  • “Change in relative position in a given direction” refers to the difference between the maximum and minimum intervals when the temperature is changed.
  • “Slow thermal response speed” means that when the outside air temperature changes, it takes a long time for the entire temperature to reach the same temperature as the outside temperature after the change. Means that the time required is short.
  • the "first and second parts” have the same degree of linear thermal expansion in each of the parts in the predetermined direction (rate of change due to temperature change of the total length in the predetermined direction). More specifically, it is preferable that the respective linear thermal expansion coefficients are within a range of 70% to 1300% of the average value of the linear thermal expansion coefficients of the first and second portions. More preferably, it is in the range of 9 0 0 / & to 110%, and more preferably in the range of 9 50 / & to 10 5%.
  • the “part” may be composed of a plurality of constituent elements or may be composed of a single constituent element.
  • the linear thermal expansion coefficient in a predetermined direction is calculated from the values before and after the temperature change.
  • the “part” force is composed of a single constituent material such as a saddle made of a single material
  • the linear thermal expansion coefficient of the material may be used.
  • the "smallest air volume” is not limited to the actual minimum air volume, but also includes an air volume comparable to the air volume, for example, an air volume within a range of ⁇ 10% of the air volume.
  • a predetermined amount of outside air may be blown not only to the first part but also to the second part.
  • the air volume of the outside air blown to the first part is a relative position in the predetermined direction between the electrode and the workpiece due to a temperature change when the predetermined amount of outside air is blown to the second part. It is assumed that the air volume that minimizes the change in the air flow is experimentally determined in advance.
  • the electric discharge machine and the thermal displacement correction method for an electric discharge machine of the present invention one of the first and second parts that cause a change in the relative position of the electrode and the workpiece in a predetermined direction. Because the outside air with the air volume obtained experimentally in advance is blown to the first part where the thermal response speed in the specified direction with respect to the temperature change is slow, the thermal response speed of the first part where the thermal response speed is slow is increased. As a result, the first part and the second part can have substantially the same thermal response speed, and variations in the amount of thermal displacement with time due to temperature changes can be suppressed.
  • the amount of air blown at this time is determined so that the change in the relative position in the predetermined direction between the electrode and the workpiece due to the temperature change is minimized, so the change in the relative position, that is, the relative displacement in the predetermined direction is effective. And the machining accuracy of the electrical discharge machine can be improved.
  • the air volume to be blown is a constant air volume obtained experimentally in advance, a complicated mechanism for controlling the air volume is not required, so that the cost can be reduced.
  • FIG. 1 is a right side view of an electric discharge machine according to the present embodiment.
  • FIG. 2 is a graph showing the relationship between the passage of time when different air volumes are blown and the relative displacement in the Y-axis direction.
  • FIG. 3 is a graph showing the relationship between the passage of time and the amount of relative displacement in the Y-axis direction between an electric discharge machine with a fan attached and an electric discharge machine with no fan attached.
  • FIG. 4 Time course when the outside air temperature is changed by 9 ° C, and the Y-axis and Z-axis directions It is a graph which shows the relationship with relative displacement amount.
  • FIG. 1 is a schematic side view of an electric discharge machine 1 according to this embodiment.
  • the electric discharge machine 1 of the present embodiment is such that the side on which the electrode 6 is located is the upper side (upper side in FIG. 1), the side on which the bed portion 2 is located is the lower side (lower side in the drawing in FIG.
  • the working side, that is, the opposite side through the column part 3 and the table part 4 is the front side (Fig. 1 In the horizontal direction, the front-rear direction (left-right direction in Fig. 1) is the Y-axis direction, and the up-down direction (up-down direction in Fig. 1) is the z-axis direction.
  • thermal displacement the amount of change in the total length of each part due to thermal expansion or contraction at each part.
  • the electric discharge machine 1 of the present embodiment includes a bed portion 2 installed on the floor surface, a column portion 3 erected on the rear side of the upper surface of the bed portion 2,
  • the upper part of the bed part 2 is arranged in front of the column part 3 and placed on the front side of the column part 3 so as to be positioned above the table part 4 and the table part 4 on which the workpiece W is placed.
  • the head part 5 is generally constituted by a held head part 5 and an electrode 6 attached to the lower end of the head part 5.
  • the bed part 2, the column part 3, the table part 4 and the head part 5 are made of a material made of a material having the same linear thermal expansion coefficient.
  • the bed portion 2 is a rectangular parallelepiped having a flat upper surface, and has a bed portion internal cavity 21 therein.
  • the column section 3 is erected on the upper surface of the bed section 2 substantially perpendicularly to the upper surface, and is a column main body 7 having a rectangular columnar shape and having a column body inner cavity 71 inside, and an upper end surface of the column body section 7.
  • the upper and lower surfaces are substantially rectangular parallelepipeds arranged so that the upper and lower surfaces thereof are substantially perpendicular to the column main body 7, that is, parallel to the upper surface of the bed portion 2, and are composed of a column upper portion 8 having a column upper inner cavity 8 1 inside. Yes.
  • the cavities 2 1, 7 1, 8 1 of the bed portion 2, the column main body portion 7, and the column upper portion 8 are separately formed.
  • the head unit 5 has a motor (not shown) installed therein, and an electrode 6 mounted on the lower end of the head unit 5 so as to be movable in the vertical direction.
  • the table portion 4 has an upper surface and a lower surface formed in parallel with the upper surface of the bed portion 2, and the workpiece W is configured to be movable manually or automatically within the upper surface.
  • the workpiece W is placed in a processing tank (not shown) in which a machining fluid is stored.
  • the electric discharge machine 1 configured as described above generates electric discharge by a power source (not shown) in the gap D between the electrode 6 and the workpiece W in the machining liquid stored in the machining tank.
  • the workpiece W is EDMed by the discharge energy.
  • a characteristic of the present invention is that the relative position between the electrode 6 and the workpiece W in a predetermined direction.
  • the first part with a slow thermal response speed in a given direction with respect to the temperature change has a temperature change that has been experimentally determined in advance. It is to blow the outside air with the air volume that minimizes the change in the relative position of the electrode and the workpiece in the predetermined direction.
  • the Y-axis direction is The first part is the bed part 2, the second part is the upper part 9 formed by combining the column upper part 8 and the head part 5, and the first part is the column part 3 and the second part is the table part 4 in the Z-axis direction.
  • the shaft part 10 is a combination of the workpiece W, the head part 5 and the electrode 6.
  • the X-axis direction which is the left-right direction when viewed from the front side, that is, the depth direction of the paper, is that the electrical discharge machine 1 is configured substantially symmetrically when viewed from the front side. Therefore, in this embodiment, it is not considered.
  • the bed part 2 of the electrical discharge machine 1 has the column part 3 etc. on the upper surface, so the outer shape such as thickness is designed larger than the upper part 9 in consideration of strength and stability. ing. For this reason, the heat capacity of the bed part 2 is larger than the heat capacity of the upper part 9, and if there is a temperature change around the EDM 1, the bed part 2 and the upper part 9 will There is a difference in change. If there is a difference in temperature change, the amount of thermal displacement of the bed part 2 in the total Y-axis direction (Y1 in Fig. 1) and the total length of the upper 9 in the Y-axis direction (Y2 in Fig.
  • the thermal displacement correction method of the electric discharge machine 1 according to the present embodiment is applied to the front wall of the bed portion 2 on the front wall of the bed portion 2, which has been experimentally determined in advance, Subject
  • the bed side fan 2 2 set to blow the outside air with the air volume that minimizes the change in the relative position in the Y-axis direction with the object W is installed, and the bed internal cavity 2 1 is forced.
  • a bed side opening 23 that discharges the outside air blown to the rear wall of the bed portion 2 to the outside is formed, and the air flow in the cavity 21 is improved, so that the bed portion 2 is removed earlier. Increase the thermal response speed closer to the air temperature.
  • Fig. 2 shows a graph showing the relationship between the passage of time and the relative displacement in the axial direction when outside air with different air volumes is blown into the cavity 21 by controlling the rotational speed of the fan 22.
  • the number of the curve in FIG. 2 is a curve with a small air volume with a small number, and shows a curve with a large air volume as the number increases.
  • ⁇ ⁇ 1 shows the curve when the air volume is 0.
  • the amount of change in the outside air temperature was 9 ° C, and the same change as the outside air temperature curve in Fig. 3 described later was made.
  • the relative displacement amount in the Y-axis direction changes in conjunction with a change in the outside air temperature (not shown).
  • the air flow is small (No 1-3)
  • the total length of the bed 2 in the Y-axis direction for each hour (Y1 in Fig. 1)
  • the total length of the upper Y-axis direction (Y2 in Fig. 1)
  • the relative displacement in the Y-axis direction when the outside air temperature is changed by 9 ° C.
  • the amount is large, it is about 14 m, and the relative displacement in the Y-axis direction cannot be sufficiently suppressed.
  • FIG. 3 is a graph showing the relationship between the passage of time and the relative displacement in the Y-axis direction when the outside air having the air volume determined as described above is blown into the cavity 21 by the fan 22. Indicates.
  • the change in the temperature of the outside air was 9 ° C. Specifically, the temperature was increased by 9 ° C at 2 ° C / hour, and after 2 hours, it was decreased by 9 ° C at 2 ° C / hour. After 2 hours, the temperature was increased by 9 ° C at 2 ° C / hour, and after 8 hours, the temperature was decreased by 9 ° C at 2 ° C / hour.
  • the thermal response speed of the bed portion 2 can be increased.
  • the difference in thermal response speed between the head 2 and the upper part 9 can be reduced, and the difference in the amount of thermal displacement between the bed 2 and the upper part 9 in the Y-axis direction for each time can be reduced.
  • the amount of relative displacement in the Y-axis direction is suppressed, so that the machining accuracy of the electric discharge machine 1 can be improved.
  • the air volume is constant, the cost can be reduced by not requiring a complicated mechanism for controlling the air volume.
  • the air flow is the relative position of the electrode 6 and workpiece W in the Y-axis direction as the temperature changes. Therefore, the relative position can be effectively reduced, that is, the relative displacement in the Y-axis direction can be effectively suppressed, and the machining accuracy of the electric discharge machine 1 can be improved.
  • the column part 3 of the electric discharge machine 1 holds the electrode 6 in a predetermined position via the head part 5, so that the outer shape is larger than that of the shaft part 10 described above in consideration of strength and stability. Largely designed. For this reason, the heat capacity of the column part 3 is larger than the heat capacity of the shaft part 10, and when a temperature change occurs around the electric discharge machine 1, the column part 3 and the shaft part 10 are affected by the difference in heat capacity. Is different from the temperature change. If there is a difference in temperature change, the amount of thermal displacement in the Z-axis direction of the column 3 (Z 1 in Fig. 1) and the size of the shaft 10 in the Z-axis direction (in Fig.
  • the amount of thermal displacement in Z 2) becomes a different value, which changes the relative position of the electrode 6 and the workpiece W in the Z-axis direction.
  • the heat capacity of the column part 3 is larger than the heat capacity of the shaft part 10, so the time required to bring the column part 3 and the shaft part 10 to a uniform temperature is equal to the column part 3. Is required more than the shaft portion 10. That is, the column part 3 has a slower thermal response speed than the shaft part 10.
  • the thermal displacement correction method for the electric discharge machine 1 is, as shown in FIG.
  • a column-side fan 72 that is set so as to blow the outside air with an air volume that minimizes the change in the relative position in the Z-axis direction of the space D is attached, and the outside air is forcibly blown into the column body internal cavity 71.
  • a column side opening 73 is formed at the upper end of the rear wall of the column main body 7 to activate the ventilation of the cavity 71 more.
  • ventilation by the fan 72 is performed only in the cavity 71 in order to reduce the influence on the Y-axis direction thermal displacement correction described above.
  • the air volume is determined by the same experimental method as in the Y-axis direction described above, and the description of the experimental method in the Z-axis direction is omitted.
  • the experiment in the Z-axis direction was performed with the workpiece W immersed in the machining fluid, and the machining fluid temperature was controlled to the same temperature as the column 7 temperature. Assumed to be performed.
  • the electric discharge machine 1 of the present embodiment configured as described above with reference to FIG. 4, the passage of time and the relative displacement in the Y-axis direction and the Z-axis direction when the outside air temperature is changed by 9 ° C.
  • the graph which shows the relationship with is shown. As shown in FIG. 4, the amount of relative displacement in the Y-axis direction could be suppressed within about 4.5 Om, and the amount of relative displacement in the Z-axis direction could be suppressed within about 2.5 m.
  • a change is caused in the relative position of the electrode 6 and the workpiece W in a predetermined direction.
  • the outside air is blown into the first part where the thermal response speed in the predetermined direction with respect to the temperature change is slow, so the thermal response speed of the first part with a slow thermal response speed is increased.
  • the first part and the second part can have substantially the same thermal response speed, and variations in the amount of thermal displacement with time due to temperature changes can be suppressed.
  • the amount of air blown at this time is determined so that the change in the relative position in the predetermined direction between the electrode and the workpiece due to the temperature change is minimized, so that the relative position change, that is, the relative displacement in the predetermined direction is effectively determined. It can be suppressed and the machining accuracy of the electric discharge machine can be improved.
  • the air volume to be blown is a constant air volume obtained experimentally in advance, a complicated mechanism for controlling the air volume is not required, so that the cost can be reduced. Therefore, the electric discharge machine can process the workpiece with high accuracy.
  • the above-mentioned measurement of the relative displacement in the Y-axis direction and the Z-axis direction is obtained by a commonly used measurement method.
  • a reference sphere is installed at the position of the electrode 6 and the workpiece W. The method of measuring is used.
  • the electric discharge machine 1 of the present embodiment has the fan attached to the bed part 2 and the column main body part 7, but the electric discharge machine of the present invention is not limited to this.
  • the electric discharge machine 1 of the present embodiment has the fan 22 attached to the front surface of the bed part 2, but the electric discharge machine of the present invention is not limited to this, for example, Even if the bed side fan is installed on the right side, the bed on the left side A side fan may be attached, and the design can be changed as appropriate.
  • the electric discharge machine 1 of the present embodiment is such that the fan 72 is attached to the lower end of the rear surface of the column main body 7.
  • the electric discharge machine of the present invention is limited to this.
  • it may be attached to the upper end or the front, and the design can be changed as appropriate.
  • the electric discharge machine 1 of the present embodiment blows outside air into the column main body and the bed part, but the electric discharge machine of the present invention is not limited to this.
  • outside air may be blown to the outer surface.
  • the electric discharge machine 1 of the present embodiment has a shape collectively referred to as a C-shaped frame as described above, the electric discharge machine of the present invention and the thermal displacement correction method in the electric discharge machine are not limited thereto.
  • it may be a shape generally referred to as a portal frame having column main body portions on both the left and right sides, and the design can be changed as appropriate.
  • an EDM machine with a portal frame to correct the thermal displacement in the Z-axis direction, attach the column-side fans to the left and right columns.

Abstract

In an electric discharge machine, it is possible to easily and effectively suppress a relative displacement amount in a predetermined direction without requiring a complicated mechanism. The electric discharge machine (1) generates electric discharge between electrodes (D) of an electrode (6) and a work (W) and performs machining of the work (W) by a discharge energy. The electric discharge machine (1) includes a first portion and a second portion for generating a change in the relative position between the electrode (6) and the work (W) in a predetermined direction. The first portion has a slower thermal response speed in the predetermined direction against the temperature change. An outdoor air of an amount experimentally obtained to minimizes the relative position change in the predetermined direction between the electrode (6) and the work (W)is supplied to the first portion.

Description

明 細 書  Specification
放電加工機及び放電加工機の熱変位補正方法  Electric discharge machine and method for correcting thermal displacement of electric discharge machine
技術分野  Technical field
[0001 ] 本発明は、 外気の温度変化に伴う機械本体の熱変位を補正可能な放電加工 機及び放電加工機における熱変位補正方法に関するものである。  TECHNICAL FIELD [0001] The present invention relates to an electric discharge machine capable of correcting a thermal displacement of a machine body accompanying a change in temperature of outside air, and a thermal displacement correction method in the electric discharge machine.
背景技術  Background art
[0002] 電極と被加工物との極間に放電を発生させ、 放電エネルギにより被加工物 を加工する放電加工機が知られている。 放電加工機を形成する機械本体の各 部位は、 一般的に厚さや長さ等、 形状が異なるものであるため、 放電加工機 が温度変化の生じる環境下に設置されると、 熱容量等の違いにより各部位で 温度差が生じてしまう。 該温度差が生じると前記各部位での熱変位量にも差 が生じてしまうため、 電極と被加工物との間の相対位置が変化して加工精度 が低下する虞があった。 そこで、 従来、 機械内部に外気を取り込んで機械本 体の内壁と外壁との温度差を低減し、 機械全体を均一な温度にして、 熱変位 による前記相対位置の変化を小さくする方法が開示されている。  There is known an electric discharge machine that generates an electric discharge between an electrode and a workpiece and processes the workpiece with discharge energy. Since each part of the machine body that forms the EDM is generally different in shape, such as thickness and length, if the EDM is installed in an environment where temperature changes occur, the difference in heat capacity, etc. Due to this, a temperature difference occurs in each part. When this temperature difference occurs, a difference also occurs in the amount of thermal displacement at each of the parts, so that the relative position between the electrode and the workpiece may change and the processing accuracy may decrease. Therefore, conventionally, a method has been disclosed in which outside air is taken into the machine to reduce the temperature difference between the inner wall and the outer wall of the machine body, the temperature of the entire machine is uniform, and the change in the relative position due to thermal displacement is reduced. ing.
[0003] 上記の方法には、 機械本体の各部位に温度検出用センサを配設し、 前記各 部位の温度差を指定された範囲内にするために、 機械本体に取り付けた送風 ファンの回転数を変えて通風量を制御する方法 (特許文献 1 ) や、 コラムと ベッド内に、 これらと一体の分割リブを設けることにより、 コラムとベッド 内部に円滑な通風を施して、 主要構造体全体の温度分布を均一化する方法 ( 特許文献 2 ) 等がある。 さらに機械内部に外気を取り込むだけでは不十分な 場合には、 精密に温度制御された気体や液体等を機械内部で循環させる方法 や、 放電加工機全体をカバーで覆い外気と遮断することによって、 外気温度 の変化による影響を受けないようにする方法等も開示されている。  [0003] In the above method, a temperature detection sensor is arranged in each part of the machine main body, and rotation of a blower fan attached to the machine main body is performed in order to keep the temperature difference of each part within a specified range. The method of controlling the air flow rate by changing the number (Patent Document 1), and by providing the ribs integrated with these in the column and bed, smooth ventilation is provided inside the column and bed, and the entire main structure There is a method (Patent Document 2) for equalizing the temperature distribution. Furthermore, if it is not sufficient to take outside air into the machine, it is possible to circulate a precisely temperature-controlled gas or liquid inside the machine, or cover the entire EDM machine with a cover and shut it off from the outside air. There are also disclosed methods for avoiding the influence of changes in the outside air temperature.
特許文献 1 :特開平 5— 1 7 7 5 0 2号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 5-177500
特許文献 2:特許平 2— 3 0 8 1 2号公報  Patent Document 2: Japanese Patent Laid-Open No. 2-3 0 8 1 2
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0004] しかしながら、 上記のように通風量を制御する方法や、 温度制御された気 体や液体を機械内部に循環させる方法は、 複雑な制御機構を要するためコス 卜がかかってしまう。 放電加工機全体をカバーで覆う方法は、 カバーの分の コストを必要とし、 かつ機械全体が大型化してしまう。 また上記方法により 機械全体を均一な温度に保持することができても、 機械本体の各部位は、 形 状の違いにより、 熱応答速度すなわち外気温度が変化したときに各部位で全 体の温度が変化後の外気温度と等しい温度になるまでに要する時間が異なり 、 この時間差により熱変位量にばらつきが生じて、 加工精度が低下してしま う虞がある。  [0004] However, the method for controlling the air flow rate as described above and the method for circulating the temperature-controlled gas or liquid inside the machine require a complicated control mechanism, which is costly. The method of covering the entire EDM machine with a cover requires the cost of the cover, and increases the size of the entire machine. In addition, even if the entire machine can be maintained at a uniform temperature by the above method, the temperature of each part of the machine body varies depending on the shape. The time required for the temperature to become equal to the outside air temperature after the change is different, and this time difference may cause variations in the amount of thermal displacement, which may reduce the processing accuracy.
[0005] 本発明はかかる事情に鑑みてなされたものであり、 複雑な機構を有するこ となく容易に、 かつ効果的に所定方向の相対変位量を抑制可能な放電加工機 及び放電加工機における熱変位補正方法を提供することを目的とするもので 課題を解決するための手段  [0005] The present invention has been made in view of such circumstances, and in an electric discharge machine and an electric discharge machine that can easily and effectively suppress the amount of relative displacement in a predetermined direction without having a complicated mechanism. Means for solving a problem with the purpose of providing a thermal displacement correction method
[0006] 上述の目的を達成するため、 放電加工機に係る本発明の一側面は、 電極 ( 6 ) と被加工物 (W) との極間 (D ) に放電を発生させ、 放電エネルギによ り被加工物 (W) の加工を行う放電加工機 (1 ) において、 電極 (6 ) と被 加工物 (W) との所定方向の相対位置に変化を生じさせる第 1および第 2の 部位のうち、 温度変化に対する所定方向における熱応答速度の遅い第 1の部 位に、 予め実験的に求められた、 温度変化に伴う電極 (6 ) と被加工物 (W ) との所定方向の相対位置の変化が最も少なくなる風量の外気を送風する送 風手段 (2 2 , 7 2 ) を備えていることを特徴とする。  [0006] In order to achieve the above object, one aspect of the present invention relating to an electric discharge machine is to generate an electric discharge between the electrode (6) and the work piece (W) (D), thereby reducing the discharge energy. In the electric discharge machine (1) that processes the workpiece (W) more, the first and second parts that cause a change in the relative position of the electrode (6) and the workpiece (W) in a predetermined direction Among them, in the first part where the thermal response speed in the predetermined direction with respect to the temperature change is slow, the relative relationship in the predetermined direction between the electrode (6) and the work piece (W) accompanying the temperature change was experimentally obtained in advance. It is characterized by having an air supply means (2 2, 7 2) for blowing outside air with an air volume that minimizes the change in position.
[0007] ここで、 例えば、 放電加工機 (1 ) は、 ベッド (2 ) と、 ベッド (2 ) の上 面後側に立設されたコラム (3 ) と、 ベッド (2 ) の上面前側に配置され被 加工物 (W) が載置されるテーブル (4 ) と、 コラム (3 ) に保持され電極 ( 6 ) が装着されるヘッド (5 ) と、 を有する場合において、 第 1の部位を ベッド (2 ) またはコラム (3 ) とすることができる。 [0008] 放電加工機に係る本発明の他の側面は、 電極 (6) と被加工物 (W) との極 間 (D) に放電を発生させ、 放電エネルギにより被加工物 (W) の加工を行 う放電加工機 (1 ) において、 電極 (6) と被加工物 (W) との水平方向の 相対位置に変化を生じさせる第 1および第 2の部位のうち、 温度変化に対す る水平方向における熱応答速度の遅い第 1の部位に、 予め実験的に求められ た、 温度変化に伴う電極 (6) と被加工物 (W) との水平方向の相対位置の 変化が最も少なくなる風量の外気を送風する送風手段 (22, 72) を備え ていることを特徴とする。 Here, for example, the electric discharge machine (1) includes a bed (2), a column (3) erected on the rear side of the upper surface of the bed (2), and a front surface of the upper surface of the bed (2). In the case where the table (4) on which the workpiece (W) is placed and placed and the head (5) held by the column (3) and having the electrode (6) mounted thereon are provided, It can be a bed (2) or a column (3). [0008] Another aspect of the present invention relating to an electric discharge machine is that an electric discharge is generated at the gap (D) between the electrode (6) and the workpiece (W), and the workpiece (W) In the electric discharge machine (1) that performs machining, the first and second parts that cause changes in the horizontal relative position of the electrode (6) and the workpiece (W) are affected by temperature changes. In the first part, where the thermal response speed in the horizontal direction is slow, the change in the relative position in the horizontal direction between the electrode (6) and the workpiece (W), which is experimentally determined, is minimized. It is characterized by having a blowing means (22, 72) for blowing outside air of an air volume.
[0009] ここで、 例えば、 放電加工機 (1 ) は、 ベッド (2) と、 ベッド (2) の上 面後側に立設されたコラム本体 (7) およびコラム本体 (7) の上端面に配 設されたコラム上部 (8) から構成されるコラム (3) と、 ベッド (2) の 上面前側に配置され被加工物 (W) が載置されるテーブル (4) と、 テープ ル (4) の上方に位置するようにコラム上部 (8) の前面に保持され下端に 電極 (6) が装着されるヘッド (5) と、 を有する場合において、 第 1の部 位をベッド (2) とし、 第 2の部位はコラム上部 (8) およびヘッド (5) とすることができる。  Here, for example, the electric discharge machine (1) includes a bed (2), a column body (7) erected on the rear side of the upper surface of the bed (2), and an upper end surface of the column body (7). A column (3) composed of an upper column (8) placed on the table (4), a table (4) placed on the front side of the upper surface of the bed (2) on which the workpiece (W) is placed, and a table ( 4) When the head (5) is held on the front of the column upper part (8) and the electrode (6) is attached to the lower end so that it is located above the bed (2) And the second part can be the upper column (8) and the head (5).
[0010] 放電加工機に係る本発明の更に他の側面は、 電極 (6) と被加工物 (W) と の極間 (D) に放電を発生させ、 放電エネルギにより被加工物 (W) の加工 を行う放電加工機 (1 ) において、 電極 (6) と被加工物 (W) との上下方 向の相対位置に変化を生じさせる第 1および第 2の部位のうち、 温度変化に 対する上下方向における熱応答速度の遅い第 1の部位に、 予め実験的に求め られた、 温度変化に伴う電極 (6) と被加工物 (W) との上下方向の相対位 置の変化が最も少なくなる風量の外気を送風する送風手段 (22, 72) を 備えていることを特徴とする。  [0010] Still another aspect of the present invention relating to an electric discharge machine is that an electric discharge is generated between the electrode (6) and the workpiece (W) (D), and the workpiece (W) is generated by the discharge energy. In the electric discharge machine (1) that performs the machining of the first and second parts that cause changes in the relative positions of the electrode (6) and the workpiece (W) in the upward and downward direction, In the first part where the thermal response speed in the vertical direction is slow, the change in the relative position in the vertical direction between the electrode (6) and the workpiece (W) that accompanies the temperature change is experimentally determined in advance. It is characterized by having air blowing means (22, 72) for blowing the outside air of
[0011] ここで、 例えば、 放電加工機 (1 ) は、 べッド (2) と、 べッド (2) の上 面後側に立設されたコラム本体 (7) およびコラム本体 (7) の上端面に配 設されたコラム上部 (8) から構成されるコラム (3) と、 ベッド (2) の 上面前側に配置され被加工物 (W) が載置されるテーブル (4) と、 テープ ル (4) の上方に位置するようにコラム上部 (8) の前面に保持され下端に 電極 (6) が装着されるヘッド (5) と、 を有する場合において、 第 1の部 位をコラム (3) とし、 第 2の部位はテーブル (4) 、 被加工物 (W) 、 へ ッド (5) 、 および電極 (6) とすることができる。 [0011] Here, for example, the electric discharge machine (1) includes a bed (2), a column body (7) and a column body (7) erected on the rear side of the upper surface of the bed (2). ), The column (3) is composed of the upper part of the column (8), and the table (4) is placed on the front side of the upper surface of the bed (2) on which the workpiece (W) is placed. The tape And the head (5), which is held on the front of the upper part of the column (8) and mounted with the electrode (6) at the lower end so that it is positioned above the column (4). 3) and the second part can be a table (4), a workpiece (W), a head (5), and an electrode (6).
[0012] また、 第 1の部位の内部に外気を送風する場合において、 内部に外気が送風 される空洞 (21 , 7 1 ) を形成するとともに、 第 1の部位に送風された外 気を外部に排出する開口 (23, 73) を形成することとすれば、 前記内部 における送風された外気の流れが良くなり、 より早く外気温に近づくので、 より好ましい。 [0012] When the outside air is blown into the first part, a cavity (21, 7 1) through which the outside air is blown is formed, and the outside air blown to the first part is It is more preferable to form openings (23, 73) for discharging air, since the flow of the blown outside air in the interior is improved and the outside temperature is quickly approached.
[0013] 放電加工機の熱変位補正方法に係る本発明の一側面は、 電極 (6) と被加工 物 (W) との極間 (D) に放電を発生させ、 放電エネルギにより被加工物 ( W) の加工を行う放電加工機 (1 ) の熱変位補正方法において、 電極 (6) と被加工物 (W) との所定方向の相対位置に変化を生じさせる第 1および第 2の部位のうち、 温度変化に対する所定方向における熱応答速度の遅い第 1 の部位に、 予め実験的に求められた、 温度変化に伴う電極 (6) と被加工物 (W) との所定方向の相対位置の変化が最も少なくなる風量の外気を送風す ることを特徴とする。  [0013] One aspect of the present invention relating to a thermal displacement correction method for an electric discharge machine is that an electric discharge is generated between the electrode (6) and the work piece (W) (D), and the work piece is generated by the discharge energy. In the thermal displacement correction method of the electric discharge machine (1) that processes (W), the first and second parts that cause changes in the relative positions of the electrode (6) and the workpiece (W) in a predetermined direction Among them, the relative position of the electrode (6) and workpiece (W) in the predetermined direction, which was experimentally obtained in advance, was determined in the first part where the thermal response speed in the predetermined direction with respect to the temperature change was slow It is characterized by blowing the outside air with the least air flow.
[0014] ここで、 例えば、 放電加工機 (1 ) は、 べッド (2) と、 べッド (2) の上 面後側に立設されたコラム (3) と、 ベッド (2) の上面前側に配置され被 加工物 (W) が載置されるテーブル (4) と、 コラム (3) に保持され電極 (6) が装着されるヘッド (5) と、 を有する場合において、 第 1の部位を ベッド (2) またはコラム (3) とすることができる。  [0014] Here, for example, the electric discharge machine (1) includes a bed (2), a column (3) erected on the upper rear side of the bed (2), and a bed (2). And a table (4) on which the work piece (W) is placed and a head (5) held by the column (3) and having the electrode (6) mounted thereon, One part can be a bed (2) or a column (3).
[0015] 放電加工機の熱変位補正方法に係る本発明の他の側面は、 電極 (6) と被加 ェ物 (W) との極間 (D) に放電を発生させ、 放電エネルギにより被加工物 (W) の加工を行う放電加工機 (1 ) の熱変位補正方法において、 電極 (6 ) と被加工物 (W) との水平方向の相対位置に変化を生じさせる第 1および 第 2の部位のうち、 温度変化に対する水平方向における熱応答速度の遅い第 1の部位に、 予め実験的に求められた、 温度変化に伴う電極 (6) と被加工 物 (w) との水平方向の相対位置の変化が最も少なくなる風量の外気を送風 することを特徴とする。 [0015] Another aspect of the present invention relating to a thermal displacement correction method for an electric discharge machine is that an electric discharge is generated between the electrode (6) and the workpiece (W) (D), and the electric energy is covered by the discharge energy. In the thermal displacement correction method of the electric discharge machine (1) that processes the workpiece (W), the first and second that cause a change in the horizontal relative position of the electrode (6) and the workpiece (W). The first part with a slow thermal response speed in the horizontal direction to the temperature change, and the electrode (6) with the temperature change (6) It is characterized by blowing outside air with an air volume that minimizes the change in the relative position of the object (w) in the horizontal direction.
[0016] ここで、 例えば、 放電加工機 (1 ) は、 べッド (2) と、 べッド (2) の上 面後側に立設されたコラム本体 (7) およびコラム本体 (7) の上端面に配 設されたコラム上部 (8) から構成されるコラム (3) と、 ベッド (2) の 上面前側に配置され被加工物 (W) が載置されるテーブル (4) と、 テープ ル (4) の上方に位置するようにコラム上部 (8) の前面に保持され下端に 電極 (6) が装着されるヘッド (5) と、 を有する場合において、 第 1の部 位をベッド (2) とし、 第 2の部位はコラム上部 (8) およびヘッド (5) とすることができる。  Here, for example, the electric discharge machine (1) includes a bed (2), a column body (7) and a column body (7) erected on the rear side of the upper surface of the bed (2). ), The column (3) is composed of the upper part of the column (8), and the table (4) is placed on the front side of the upper surface of the bed (2) on which the workpiece (W) is placed. And a head (5) that is held on the front surface of the column upper part (8) so that it is positioned above the table (4) and the electrode (6) is attached to the lower end of the table (4). The bed (2) can be the second part, the column top (8) and the head (5).
[0017] 放電加工機の熱変位補正方法に係る本発明の更に他の側面は、 電極 (6) と 被加工物 (W) との極間 (D) に放電を発生させ、 放電エネルギにより被加 ェ物 (W) の加工を行う放電加工機 (1 ) の熱変位補正方法において、 電極 (6) と被加工物 (W) との上下方向の相対位置に変化を生じさせる第 1お よび第 2の部位のうち、 温度変化に対する上下方向における熱応答速度の遅 い第 1の部位に、 予め実験的に求められた、 温度変化に伴う電極 (6) と被 加工物 (W) との上下方向の相対位置の変化が最も少なくなる風量の外気を 送風することを特徴とする。  [0017] Still another aspect of the present invention relating to a thermal displacement correction method for an electric discharge machine is to generate an electric discharge between the electrode (6) and the work piece (W) (D), and the electric discharge energy In the thermal displacement correction method of the electric discharge machine (1) that processes the workpiece (W), the first and the second that cause a change in the relative position in the vertical direction between the electrode (6) and the workpiece (W). Of the second part, the first part, which has a slow thermal response speed in the vertical direction with respect to temperature change, is preliminarily experimentally determined between the electrode (6) and workpiece (W) that accompany temperature change. It is characterized by blowing outside air with an air volume that minimizes the change in the relative position in the vertical direction.
[0018] ここで、 例えば、 放電加工機 (1 ) は、 べッド (2) と、 べッド (2) の上 面後側に立設されたコラム本体 (7) およびコラム本体 (7) の上端面に配 設されたコラム上部 (8) から構成されるコラム (3) と、 ベッド (2) の 上面前側に配置され被加工物 (W) が載置されるテーブル (4) と、 テープ ル (4) の上方に位置するようにコラム上部 (8) の前面に保持され下端に 電極 (6) が装着されるヘッド (5) と、 を有する場合において、 第 1の部 位をコラム (3) とし、 第 2の部位はテーブル (4) 、 被加工物 (W) 、 へ ッド (5) 、 および電極 (6) とすることができる。  Here, for example, the electric discharge machine (1) includes a bed (2), a column body (7) and a column body (7) erected on the rear side of the upper surface of the bed (2). ), The column (3) is composed of the upper part of the column (8), and the table (4) is placed on the front side of the upper surface of the bed (2) on which the workpiece (W) is placed. And a head (5) that is held on the front surface of the column upper part (8) so that it is positioned above the table (4) and the electrode (6) is attached to the lower end of the table (4). Column (3) and the second part can be table (4), work piece (W), head (5), and electrode (6).
[0019] また、 第 1の部位の内部に外気を送風する場合において、 内部に空洞 (21 , 7 1 ) を形成し、 かつ、 第 1の部位に開口 (23, 73) を形成し、 空洞 ( 2 1 , 7 1 ) に外気を送風するとともに、 送風された外気を開口 (2 3 , 7 3 ) から外部に排出することとすれば、 内部における送風された外気の流 れが良くなり、 より早く外気温に近づくので、 より好ましい。 [0019] Further, in the case where the outside air is blown inside the first part, a cavity (21, 7 1) is formed inside, and an opening (23, 73) is formed in the first part, If the outside air is blown to (2 1, 7 1) and the blown outside air is discharged to the outside through the opening (2 3, 7 3), the flow of the blown outside air inside will be improved. It is more preferable because it approaches the outside temperature sooner.
[0020] 更に、 送風される外気の風量を一定とすることとすれば、 風量を制御するた めの複雑な機構を必要としないので、 コストを低減することができる。  [0020] Furthermore, if the air volume of the outside air to be blown is made constant, a complicated mechanism for controlling the air volume is not required, and thus the cost can be reduced.
[0021 ] なお本発明において 「電極と被加工物との所定方向の相対位置」 は電極と被 加工物との間の所定方向の間隔すなわち距離をいう。 「所定方向の相対位置 の変化」 は、 温度変化させたときの最大間隔と最小間隔との差をいう。 「熱 応答速度が遅い」 は、 外気温度が変化したときに各部位で全体の温度が変化 後の外気温度と等しい温度になるまでに要する時間が長いことをいい、 「熱 応答速度が速い」 は、 前記要する時間が短いことをいう。  In the present invention, the “relative position in the predetermined direction between the electrode and the workpiece” refers to an interval, that is, a distance in the predetermined direction between the electrode and the workpiece. “Change in relative position in a given direction” refers to the difference between the maximum and minimum intervals when the temperature is changed. “Slow thermal response speed” means that when the outside air temperature changes, it takes a long time for the entire temperature to reach the same temperature as the outside temperature after the change. Means that the time required is short.
[0022] 本発明において 「第 1および第 2の部位」 は、 各部位の前記所定方向におけ る線熱膨張率 (前記所定方向の全長の温度変化による変化率) が同程度であ ることが好ましく、 具体的には、 それぞれの線熱膨張率が、 該第 1および第 2の部位の線熱膨張率の平均値の 7 0 %〜 1 3 0 %の範囲内にあることが好 ましく、 9 0 0/ &〜 1 1 0 %の範囲内にあればより好ましく、 9 5 0/ &〜 1 0 5 %の範囲内にあればさらに好ましい。 なお 「部位」 は複数の構成要素からな るものであっても、 単一の構成要素からなるものであってもよい。 「部位」 が複数の構成要素からなるものである場合で、 特に構成要素が離れて配置さ れている場合には、 温度変化させる前と後とで、 構成要素ごとに所定方向の 全長を測定してそれらを足し合わせ、 温度変化させる前と後との値から所定 方向の線熱膨張率を算出する。 また 「部位」 力 例えば単一の材料によって 形成された錶物等の単一の構成材料からなるものである場合には、 その材料 の線熱膨張率を使用してもよい。 [0022] In the present invention, the "first and second parts" have the same degree of linear thermal expansion in each of the parts in the predetermined direction (rate of change due to temperature change of the total length in the predetermined direction). More specifically, it is preferable that the respective linear thermal expansion coefficients are within a range of 70% to 1300% of the average value of the linear thermal expansion coefficients of the first and second portions. More preferably, it is in the range of 9 0 0 / & to 110%, and more preferably in the range of 9 50 / & to 10 5%. The “part” may be composed of a plurality of constituent elements or may be composed of a single constituent element. Measure the total length in a given direction for each component before and after changing the temperature, especially when the `` part '' is composed of multiple components, especially when the components are spaced apart. Then, the linear thermal expansion coefficient in a predetermined direction is calculated from the values before and after the temperature change. In addition, when the “part” force is composed of a single constituent material such as a saddle made of a single material, the linear thermal expansion coefficient of the material may be used.
[0023] 本発明において 「最も少なくなる風量」 は、 実際に最も少なくなる風量に限 らず、 その風量と同程度の風量、 例えばその風量の ± 1 0 %の範囲内の風量 も含む。  [0023] In the present invention, the "smallest air volume" is not limited to the actual minimum air volume, but also includes an air volume comparable to the air volume, for example, an air volume within a range of ± 10% of the air volume.
なお本願出願人により、 温度変化パターンが異なっても相対位置の変化が最 も少なくなる風量は同じになることが実験で確認されている。 According to the applicant of the present application, even if the temperature change pattern is different, the relative position changes most. It has been confirmed by experiments that the same air volume decreases.
[0024] 本発明では、 前記第 1の部位だけではなく、 第 2の部位にも所定量の外気を 送風してよい。 この場合、 前記第 1の部位に送風する外気の風量は、 第 2の 部位に前記所定量の外気を送風したときに温度変化に伴う前記電極と前記被 加工物との前記所定方向の相対位置の変化が最も少なくなる風量を、 予め実 験的に求めて決定したものとする。  In the present invention, a predetermined amount of outside air may be blown not only to the first part but also to the second part. In this case, the air volume of the outside air blown to the first part is a relative position in the predetermined direction between the electrode and the workpiece due to a temperature change when the predetermined amount of outside air is blown to the second part. It is assumed that the air volume that minimizes the change in the air flow is experimentally determined in advance.
発明の効果  The invention's effect
[0025] 本発明の放電加工機及び放電加工機の熱変位補正方法によれば、 電極と被加 ェ物との所定方向の相対位置に変化を生じさせる第 1および第 2の部位のう ち、 温度変化に対する所定方向における熱応答速度の遅い第 1の部位に、 予 め実験的に求められた風量の外気を送風するので、 熱応答速度の遅い第 1の 部位の熱応答速度を速くすることにより、 前記第 1の部位と第 2の部位とを 略同じ熱応答速度にすることができて、 温度変化に伴う時間毎の熱変位量の ばらつきを抑制できる。 このとき送風する風量が温度変化に伴う電極と被加 ェ物との所定方向の相対位置の変化が最も少なくなるように決定されたもの なので効果的に相対位置の変化すなわち所定方向の相対変位量を抑制でき、 放電加工機の加工精度を向上させることができる。  [0025] According to the electric discharge machine and the thermal displacement correction method for an electric discharge machine of the present invention, one of the first and second parts that cause a change in the relative position of the electrode and the workpiece in a predetermined direction. Because the outside air with the air volume obtained experimentally in advance is blown to the first part where the thermal response speed in the specified direction with respect to the temperature change is slow, the thermal response speed of the first part where the thermal response speed is slow is increased. As a result, the first part and the second part can have substantially the same thermal response speed, and variations in the amount of thermal displacement with time due to temperature changes can be suppressed. The amount of air blown at this time is determined so that the change in the relative position in the predetermined direction between the electrode and the workpiece due to the temperature change is minimized, so the change in the relative position, that is, the relative displacement in the predetermined direction is effective. And the machining accuracy of the electrical discharge machine can be improved.
[0026] また送風される風量が予め実験的に求められた一定の風量なので、 風量を制 御するための複雑な機構を必要としないため、 コストを低減することができ る。  [0026] Further, since the air volume to be blown is a constant air volume obtained experimentally in advance, a complicated mechanism for controlling the air volume is not required, so that the cost can be reduced.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1 ]本実施形態の放電加工機の右側面図である。  FIG. 1 is a right side view of an electric discharge machine according to the present embodiment.
[図 2]異なる風量を送風したときの時間の経過と Y軸方向の相対変位量との関 係を示すグラフである。  FIG. 2 is a graph showing the relationship between the passage of time when different air volumes are blown and the relative displacement in the Y-axis direction.
[図 3]ファンが取り付けられた放電加工機とファンが取り付けられていない放 電加工機とにおける時間の経過と Y軸方向の相対変位量との関係を示すグラ フである。  FIG. 3 is a graph showing the relationship between the passage of time and the amount of relative displacement in the Y-axis direction between an electric discharge machine with a fan attached and an electric discharge machine with no fan attached.
[図 4]外気の温度を 9 °C変化させたときの時間の経過と Y軸方向及び Z軸方向 の相対変位量との関係を示すグラフである。 [Fig. 4] Time course when the outside air temperature is changed by 9 ° C, and the Y-axis and Z-axis directions It is a graph which shows the relationship with relative displacement amount.
符号の説明 Explanation of symbols
1 放電加工機  1 Electric discharge machine
2 べッド部  2 Bed section
2 1 べッド部内空洞  2 1 Cavity in bed
2 2 べッド側ファン  2 2 Bed side fan
2 3 べッド側開口  2 3 Bed opening
3 コラム部  3 Column section
4 テーブル部  4 Table section
5 へッド部  5 Head section
6 電極  6 electrodes
7 コラム本体部  7 Column body
7 1 コラム本体部内空洞  7 1 Column body cavity
7 2 コラム側ファン  7 2 Column side fan
7 3 コラム側開口  7 3 Column side opening
8 コラム上部  8 Column top
8 1 コラム上部内空洞  8 1 Column upper cavity
9 上部  9 Top
1 0 軸部  1 0 Shaft
D 極間  D gap
W 被加工物  W Workpiece
P 作業者  P Worker
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の放電加工機の一実施形態について、 図面を参照して詳細に 説明する。 図 1は本実施形態の放電加工機 1の概略構成側面図である。 なお 本実施形態の放電加工機 1は、 便宜上、 電極 6が位置する側を上側 (図 1の 紙面上側) 、 ベッド部 2が位置する側を下側 (図 1の紙面下側) 、 作業者が 作業する側すなわちコラム部 3とテーブル部 4を介して反対側を前側 (図 1 の紙面右側) とし、 水平方向のうち前後方向 (図 1中左右方向) を Y軸方向 、 上下方向 (図 1中上下方向) を z軸方向として説明する。 また本明細書中 では各部位において熱膨張又は熱収縮による各部位の全長の変化量を 「熱変 位量」 とする。 Hereinafter, an embodiment of an electric discharge machine according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic side view of an electric discharge machine 1 according to this embodiment. Note that, for the sake of convenience, the electric discharge machine 1 of the present embodiment is such that the side on which the electrode 6 is located is the upper side (upper side in FIG. 1), the side on which the bed portion 2 is located is the lower side (lower side in the drawing in FIG. The working side, that is, the opposite side through the column part 3 and the table part 4 is the front side (Fig. 1 In the horizontal direction, the front-rear direction (left-right direction in Fig. 1) is the Y-axis direction, and the up-down direction (up-down direction in Fig. 1) is the z-axis direction. In this specification, the amount of change in the total length of each part due to thermal expansion or contraction at each part is referred to as “thermal displacement”.
[0030] 本実施形態の放電加工機 1は、 図 1に示す如く、 床面に設置されたべッド 部 2と、 べッド部 2の上面後側に立設されたコラム部 3と、 べッド部 2の上 面の、 コラム部 3よりも前側に配置され、 被加工物 Wが載置されるテーブル 部 4と、 テーブル部 4の上方に位置するようにコラム部 3の前面に保持され たへッド部 5と、 へッド部 5の下端に装着された電極 6とから概略構成され ている。 ベッド部 2、 コラム部 3、 テーブル部 4及びヘッド部 5は線熱膨張 率の等しい材料で形成された錶物とする。  As shown in FIG. 1, the electric discharge machine 1 of the present embodiment includes a bed portion 2 installed on the floor surface, a column portion 3 erected on the rear side of the upper surface of the bed portion 2, The upper part of the bed part 2 is arranged in front of the column part 3 and placed on the front side of the column part 3 so as to be positioned above the table part 4 and the table part 4 on which the workpiece W is placed. The head part 5 is generally constituted by a held head part 5 and an electrode 6 attached to the lower end of the head part 5. The bed part 2, the column part 3, the table part 4 and the head part 5 are made of a material made of a material having the same linear thermal expansion coefficient.
[0031 ] ベッド部 2は、 上面が平坦に形成された直方体であって、 内部にベッド部 内空洞 2 1を有している。 コラム部 3は、 ベッド部 2の上面に該上面と略直 角に立設され、 四角柱状で内部にコラム本体部内空洞 7 1を有するコラム本 体部 7と、 コラム本体部 7の上端面に、 上面及び下面がコラム本体部 7と略 直角すなわちベッド部 2の上面と平行になるように配設された略直方体で、 内部にコラム上部内空洞 8 1を有するコラム上部 8とから構成されている。 このときベッド部 2、 コラム本体部 7及びコラム上部 8の空洞 2 1 , 7 1 , 8 1は、 別々に区画して形成されている。  [0031] The bed portion 2 is a rectangular parallelepiped having a flat upper surface, and has a bed portion internal cavity 21 therein. The column section 3 is erected on the upper surface of the bed section 2 substantially perpendicularly to the upper surface, and is a column main body 7 having a rectangular columnar shape and having a column body inner cavity 71 inside, and an upper end surface of the column body section 7. The upper and lower surfaces are substantially rectangular parallelepipeds arranged so that the upper and lower surfaces thereof are substantially perpendicular to the column main body 7, that is, parallel to the upper surface of the bed portion 2, and are composed of a column upper portion 8 having a column upper inner cavity 8 1 inside. Yes. At this time, the cavities 2 1, 7 1, 8 1 of the bed portion 2, the column main body portion 7, and the column upper portion 8 are separately formed.
[0032] ヘッド部 5は、 内部に図示しないモータ等が設置され、 下端に上下方向に 移動可能に装着された電極 6が配設されている。 テーブル部 4は、 上面及び 下面がべッド部 2の上面と平行に形成され、 被加工物 Wが上面内で手動又は 自動で移動可能に構成されている。 そして被加工物 Wは、 内部に加工液が収 容された図示しない加工槽の中に配置される。  [0032] The head unit 5 has a motor (not shown) installed therein, and an electrode 6 mounted on the lower end of the head unit 5 so as to be movable in the vertical direction. The table portion 4 has an upper surface and a lower surface formed in parallel with the upper surface of the bed portion 2, and the workpiece W is configured to be movable manually or automatically within the upper surface. The workpiece W is placed in a processing tank (not shown) in which a machining fluid is stored.
[0033] 上記のように構成された放電加工機 1は、 加工槽に収容された加工液の中 で、 電極 6と被加工物 Wとの極間 Dに、 図示しない電源によって放電を発生 させ、 放電エネルギによって被加工物 Wの放電加工を行う。  [0033] The electric discharge machine 1 configured as described above generates electric discharge by a power source (not shown) in the gap D between the electrode 6 and the workpiece W in the machining liquid stored in the machining tank. The workpiece W is EDMed by the discharge energy.
[0034] 本発明において特徴的なのは、 電極 6と被加工物 Wとの所定方向の相対位置 に変化を生じさせる第 1および第 2の部位のうち、 温度変化に対する所定方 向における熱応答速度の遅い第 1の部位の内部又は外面に、 予め実験的に求 められた、 温度変化に伴う電極と被加工物との前記所定方向の相対位置の変 化が最も少なくなる風量の外気を送風することである。 [0034] A characteristic of the present invention is that the relative position between the electrode 6 and the workpiece W in a predetermined direction. Among the first and second parts that cause a change in temperature, the first part with a slow thermal response speed in a given direction with respect to the temperature change has a temperature change that has been experimentally determined in advance. It is to blow the outside air with the air volume that minimizes the change in the relative position of the electrode and the workpiece in the predetermined direction.
[0035] 本実施形態の放電加工機 1における前記第 1および第 2の部位は、 熱変位を 生じることにより電極と被加工物との相対位置に変化を生じさせることから 、 Y軸方向は第 1の部位をベッド部 2、 第 2の部位をコラム上部 8とヘッド 部 5とを組み合わせてなる上部 9とし、 Z軸方向は第 1の部位をコラム部 3 、 第 2の部位をテーブル部 4、 被加工物 W、 ヘッド部 5及び電極 6とを組み 合わせた軸部 1 0とする。 前側からみて左右方向すなわち紙面奥行き方向で ある X軸方向は、 放電加工機 1が前側からみて左右略対称に構成されている ものであるため、 他の軸方向と比較して左右の熱変位量に差が生じ難いので 、 本実施形態では考慮しないものとする。  [0035] Since the first and second portions in the electric discharge machine 1 of the present embodiment cause a change in the relative position between the electrode and the workpiece by causing thermal displacement, the Y-axis direction is The first part is the bed part 2, the second part is the upper part 9 formed by combining the column upper part 8 and the head part 5, and the first part is the column part 3 and the second part is the table part 4 in the Z-axis direction. The shaft part 10 is a combination of the workpiece W, the head part 5 and the electrode 6. The X-axis direction, which is the left-right direction when viewed from the front side, that is, the depth direction of the paper, is that the electrical discharge machine 1 is configured substantially symmetrically when viewed from the front side. Therefore, in this embodiment, it is not considered.
[0036] 先ず Y軸方向の熱変位補正方法について説明する。 通常、 放電加工機 1のべ ッド部 2は、 上面にコラム部 3等が配設されるため、 強度や安定性を考慮し て、 上部 9と比較して厚み等、 外形が大きく設計されている。 そのためべッ ド部 2の熱容量は、 上部 9の熱容量よりも大きくなり、 放電加工機 1の周囲 において温度変化が生じた場合には、 熱容量の違いにより、 ベッド部 2と上 部 9とは温度変化に差が生じる。 そして温度変化に差が生じると、 ベッド部 2の Y軸方向の全長 (図 1中、 Y 1 ) における熱変位量と、 上部 9の Y軸方 向の全長 (図 1中、 Y 2 ) における熱変位量とが異なる値となり、 これによ り電極 6と被加工物 Wとの Y軸方向の相対位置に変化が生じる。 また上記の ようにベッド部 2の熱容量は、 上部 9の熱容量よりも大きいので、 ベッド部 2と上部 9とを均一な温度にするために要する時間は、 べッド部 2が上部 9 よりも多く必要となる。 すなわちべッド部 2は上部 9よりも熱応答速度が遅 い。  First, a method for correcting thermal displacement in the Y-axis direction will be described. Normally, the bed part 2 of the electrical discharge machine 1 has the column part 3 etc. on the upper surface, so the outer shape such as thickness is designed larger than the upper part 9 in consideration of strength and stability. ing. For this reason, the heat capacity of the bed part 2 is larger than the heat capacity of the upper part 9, and if there is a temperature change around the EDM 1, the bed part 2 and the upper part 9 will There is a difference in change. If there is a difference in temperature change, the amount of thermal displacement of the bed part 2 in the total Y-axis direction (Y1 in Fig. 1) and the total length of the upper 9 in the Y-axis direction (Y2 in Fig. 1) The amount of thermal displacement is different, and this causes a change in the relative position of the electrode 6 and the workpiece W in the Y-axis direction. Further, as described above, the heat capacity of the bed part 2 is larger than that of the upper part 9, so that the time required for the bed part 2 and the upper part 9 to reach a uniform temperature is higher than that of the upper part 9. A lot is needed. That is, bed 2 has a slower thermal response than upper 9.
[0037] そこで本実施形態の放電加工機 1の熱変位補正方法は、 図 1に示す如く、 ベ ッド部 2の前壁に、 予め実験的に求められた、 温度変化に伴う電極 6と被加 ェ物 Wとの Y軸方向の相対位置の変化が最も少なくなる風量の外気を送風す るように設定したべッド側ファン 2 2を取り付けて、 べッド部内空洞 2 1に 、 強制的に外気を送風する。 このときベッド部 2の後壁に送風された外気を 外部に排出するべッド側開口 2 3を形成して、 空洞 2 1の空気の流れを良く することにより、 ベッド部 2をより早く外気温に近づけて熱応答速度を早く する。 Therefore, the thermal displacement correction method of the electric discharge machine 1 according to the present embodiment, as shown in FIG. 1, is applied to the front wall of the bed portion 2 on the front wall of the bed portion 2, which has been experimentally determined in advance, Subject The bed side fan 2 2 set to blow the outside air with the air volume that minimizes the change in the relative position in the Y-axis direction with the object W is installed, and the bed internal cavity 2 1 is forced. To blow outside air. At this time, a bed side opening 23 that discharges the outside air blown to the rear wall of the bed portion 2 to the outside is formed, and the air flow in the cavity 21 is improved, so that the bed portion 2 is removed earlier. Increase the thermal response speed closer to the air temperature.
[0038] 以下、 風量を決定する実験について説明する。 図 2にファン 2 2の回転数 を制御して異なる風量の外気を空洞 2 1に送風したときの時間の経過と Υ軸 方向の相対変位量との関係を示すグラフを示す。 なお図 2中の曲線の番号は 、 小さい番号が少ない風量の曲線であり、 番号が大きくなるにつれて多い風 量の曲線を示す。 ここで Ν ο 1は風量が 0のときの曲線を示す。 また外気の 温度の変化量は 9 °Cとし、 後述する図 3中の外気温の曲線と同じ変化をさせ た。  [0038] Hereinafter, an experiment for determining the air volume will be described. Fig. 2 shows a graph showing the relationship between the passage of time and the relative displacement in the axial direction when outside air with different air volumes is blown into the cavity 21 by controlling the rotational speed of the fan 22. The number of the curve in FIG. 2 is a curve with a small air volume with a small number, and shows a curve with a large air volume as the number increases. Here, Ν ο 1 shows the curve when the air volume is 0. The amount of change in the outside air temperature was 9 ° C, and the same change as the outside air temperature curve in Fig. 3 described later was made.
[0039] 図 2に示す如く、 外気を空洞 2 1に送風すると、 図示しない外気温の変化 と連動して Y軸方向の相対変位量が変化する。 少ない風量 (N o 1〜3 ) の ときには、 ベッド部 2と上部 9との熱応答速度に差があるので、 時間毎のベ ッド部 2の Y軸方向の全長 (図 1中、 Y 1 ) における熱変位量と、 上部の Y 軸方向の全長 (図 1中、 Y 2 ) における熱変位量とに差が生じるため、 外気 温を 9 °C変化させたときの Y軸方向の相対変位量は大きいときには 1 4 m 程度となり、 Y軸方向の相対変位量を充分に抑制できない。  As shown in FIG. 2, when the outside air is blown into the cavity 21, the relative displacement amount in the Y-axis direction changes in conjunction with a change in the outside air temperature (not shown). When the air flow is small (No 1-3), there is a difference in the thermal response speed between the bed 2 and the upper part 9, so the total length of the bed 2 in the Y-axis direction for each hour (Y1 in Fig. 1) ) And the total length of the upper Y-axis direction (Y2 in Fig. 1), the relative displacement in the Y-axis direction when the outside air temperature is changed by 9 ° C. When the amount is large, it is about 14 m, and the relative displacement in the Y-axis direction cannot be sufficiently suppressed.
[0040] 多い風量 (N o 4〜7 ) のときには、 空洞 2 1により多くの外気が送風され るので、 ベッド部 2がより速く外気温に近づき、 ベッド部 2の熱応答速度が 速くなる。 これにより、 ベッド部 2と上部 9との熱応答速度の差が小さくな るので、 時間毎のベッド部 2の Y軸方向の全長 (図 1中、 Y 1 ) における熱 変位量と、 上部 9の Y軸方向の全長 (図 1中、 Y 2 ) における熱変位量との 差を小さくすることができ、 外気温を 9 °C変化させたときの Y軸方向の相対 変位量を 5 m以内に抑制することができる。  [0040] When the air volume is large (No 4-7), a large amount of outside air is blown into the cavity 21, so that the bed 2 approaches the outside temperature faster and the thermal response speed of the bed 2 becomes faster. As a result, the difference in thermal response speed between the bed part 2 and the upper part 9 is reduced, so that the amount of thermal displacement of the bed part 2 in the entire length in the Y-axis direction (Y1 in Fig. 1) and the upper 9 The difference in thermal displacement in the overall length in the Y-axis direction (Y2 in Fig. 1) can be reduced, and the relative displacement in the Y-axis direction when the outside air temperature is changed by 9 ° C is within 5 m. Can be suppressed.
[0041 ] ここで上記多い風量のうち風量 N o 6 , 7のときには、 空洞 2 1に外気がよ り多く入るので、 ベッド部 2が速く外気温に近づき過ぎて、 ベッド部 2の方 が上部 9よりも熱応答速度が速くなつてしまい、 図 2に示す如く、 曲線の時 間周期における位相が逆転する。 本実験においては風量 N o 5又は風量 N o 6のときに、 Y軸方向の相対変位量が最も抑制されているが、 放電加工機 1 にさらに高い加工精度が要求されている場合には、 風量 N o 5と風量 N o 6 との間で風量を細かく設定し、 Y軸方向の相対変位量がさらに抑制される値 を求めることができる。 [0041] Here, when the air volume is No 6 or 7 among the above large air volumes, the outside air is in the cavity 21. Therefore, the bed part 2 quickly approaches the outside air temperature, and the thermal response speed of the bed part 2 becomes faster than that of the upper part 9, so that the phase in the time period of the curve is as shown in FIG. Reverse. In this experiment, when the air volume is N o 5 or N o 6, the relative displacement amount in the Y-axis direction is the most suppressed, but when the EDM 1 is required to have higher machining accuracy, By finely setting the air volume between the air volume N o 5 and the air volume N o 6, a value that can further suppress the relative displacement in the Y-axis direction can be obtained.
[0042] ここで、 図 3に上記のように決定された風量の外気をファン 2 2によって 空洞 2 1に送風したときの時間の経過と Y軸方向の相対変位量との関係を示 すグラフを示す。 このとき外気の温度の変化量は 9 °Cとし、 詳しくは、 2 °C /時で 9 °C上昇させ、 2時間経過後に 2 °C/時で 9 °C降下させた。 さらに 2 時間経過後 2 °C /時で 9 °C上昇させ、 8時間経過後 2 °C /時で 9 °C降下させ た。 そしてさらに 2時間経過後 2 °C/時で 9 °C上昇させ、 2時間経過後 2 °C /時で 9 °C降下させた。 なお図 3中ファン無しの曲線は、 上述した図 2中の N o 1の曲線と同じデータである。  [0042] Here, FIG. 3 is a graph showing the relationship between the passage of time and the relative displacement in the Y-axis direction when the outside air having the air volume determined as described above is blown into the cavity 21 by the fan 22. Indicates. At this time, the change in the temperature of the outside air was 9 ° C. Specifically, the temperature was increased by 9 ° C at 2 ° C / hour, and after 2 hours, it was decreased by 9 ° C at 2 ° C / hour. After 2 hours, the temperature was increased by 9 ° C at 2 ° C / hour, and after 8 hours, the temperature was decreased by 9 ° C at 2 ° C / hour. After 2 hours, the temperature was further increased by 9 ° C at 2 ° C / hour, and after 2 hours, the temperature was decreased by 9 ° C at 2 ° C / hour. Note that the curve without fan in FIG. 3 is the same data as the curve of No 1 in FIG. 2 described above.
[0043] 図 3に示す如く、 ファン 2 2がベッド部 2に取り付けられていない放電加工 機 1では、 外気温の変化に連動して Y軸方向の相対変位量が 1 程度ま で上昇した。 べッド部 2にファン 2 2を取り付けた放電加工機 1では、 外気 温の変化とは時間周期における位相が逆転して Y軸方向の相対変位量は 4 m以内で変化した。  [0043] As shown in FIG. 3, in the electric discharge machine 1 in which the fan 2 2 is not attached to the bed part 2, the relative displacement in the Y-axis direction increased to about 1 in conjunction with the change in the outside air temperature. In EDM 1 with fan 2 2 attached to bed part 2, the phase in the time period was reversed from the change in outside air temperature, and the relative displacement in the Y-axis direction changed within 4 m.
[0044] このように、 前述のように決定された風量の外気をファン 2 2によって空洞 2 1に送風することにより、 べッド部 2の熱応答速度を速くすることができ るため、 べッド部 2と上部 9との熱応答速度の差を小さくすることができ、 べッド部 2と上部 9との時間毎の Y軸方向の熱変位量の差を小さくできる。 これにより Y軸方向の相対変位量が抑制されるので、 放電加工機 1の加工精 度を向上させることができる。 また風量は一定であるため、 風量を制御する ための複雑な機構を必要としないことにより、 コストを低減することができ る。 さらに風量は温度変化に伴う電極 6と被加工物 Wとの Y軸方向の相対位 置の変化が最も少なくなる風量なので、 効果的に前記相対位置の変化すなわ ち Y軸方向の相対変位量を抑制でき、 放電加工機 1の加工精度を向上させる ことができる。 [0044] As described above, since the outside air having the air volume determined as described above is blown into the cavity 21 by the fan 22, the thermal response speed of the bed portion 2 can be increased. The difference in thermal response speed between the head 2 and the upper part 9 can be reduced, and the difference in the amount of thermal displacement between the bed 2 and the upper part 9 in the Y-axis direction for each time can be reduced. As a result, the amount of relative displacement in the Y-axis direction is suppressed, so that the machining accuracy of the electric discharge machine 1 can be improved. In addition, since the air volume is constant, the cost can be reduced by not requiring a complicated mechanism for controlling the air volume. Furthermore, the air flow is the relative position of the electrode 6 and workpiece W in the Y-axis direction as the temperature changes. Therefore, the relative position can be effectively reduced, that is, the relative displacement in the Y-axis direction can be effectively suppressed, and the machining accuracy of the electric discharge machine 1 can be improved.
[0045] 次に Z軸方向の熱変位補正方法について説明する。 通常、 放電加工機 1のコ ラム部 3は、 ヘッド部 5を介して電極 6を所定位置に保持するため、 強度や 安定性を考慮して、 上述した軸部 1 0と比較して外形が大きく設計されてい る。 そのためコラム部 3の熱容量は、 軸部 1 0の熱容量よりも大きくなり、 放電加工機 1の周囲において温度変化が生じた場合には、 熱容量の違いによ り、 コラム部 3と軸部 1 0とは温度変化に差が生じる。 そして温度変化に差 が生じると、 コラム部 3の Z軸方向の大きさ (図 1中、 Z 1 ) における熱変 位量と、 軸部 1 0の Z軸方向の大きさ (図 1中、 Z 2 ) における熱変位量と が異なる値となり、 これにより電極 6と被加工物 Wとの Z軸方向の相対位置 に変化が生じる。 また上記のようにコラム部 3の熱容量は、 軸部 1 0の熱容 量よりも大きいので、 コラム部 3と軸部 1 0とを均一な温度にするために要 する時間は、 コラム部 3が軸部 1 0よりも多く必要となる。 すなわちコラム 部 3は軸部 1 0よりも熱応答速度が遅い。  Next, a method for correcting thermal displacement in the Z-axis direction will be described. In general, the column part 3 of the electric discharge machine 1 holds the electrode 6 in a predetermined position via the head part 5, so that the outer shape is larger than that of the shaft part 10 described above in consideration of strength and stability. Largely designed. For this reason, the heat capacity of the column part 3 is larger than the heat capacity of the shaft part 10, and when a temperature change occurs around the electric discharge machine 1, the column part 3 and the shaft part 10 are affected by the difference in heat capacity. Is different from the temperature change. If there is a difference in temperature change, the amount of thermal displacement in the Z-axis direction of the column 3 (Z 1 in Fig. 1) and the size of the shaft 10 in the Z-axis direction (in Fig. 1, The amount of thermal displacement in Z 2) becomes a different value, which changes the relative position of the electrode 6 and the workpiece W in the Z-axis direction. Also, as described above, the heat capacity of the column part 3 is larger than the heat capacity of the shaft part 10, so the time required to bring the column part 3 and the shaft part 10 to a uniform temperature is equal to the column part 3. Is required more than the shaft portion 10. That is, the column part 3 has a slower thermal response speed than the shaft part 10.
[0046] そこで本実施形態の放電加工機 1の熱変位補正方法は、 図 1に示す如く、 コ ラム本体部 7の後壁下端部に、 予め実験的に求められた、 温度変化に伴う極 間 Dの Z軸方向の相対位置の変化が最も少なくなる風量の外気を送風するよ うに設定したコラム側ファン 7 2を取り付けて、 コラム本体部内空洞 7 1に 、 強制的に外気を送風する。 このときコラム本体部 7の後壁上端部にコラム 側開口 7 3を形成して、 空洞 7 1の通風をより活性させる。 なお本実施形態 の放電加工機 1は、 上述した Y軸方向の熱変位補正への影響を低減するため に、 ファン 7 2による通風は空洞 7 1のみに行なうものとする。 また風量に ついては、 上述した Y軸方向と同様の実験方法にて決定するものとし、 Z軸 方向の実験方法についての説明は省略する。 なお Z軸方向の実験は、 被加工 物 Wを加工液に浸した状態で行い、 加工液の温度をコラム部 7の温度と同じ 温度に制御する等、 実際の加工状態と同様の構成にして行うものとする。 [0047] 図 4に上述のように構成された本実施形態の放電加工機 1において、 外気の 温度を 9 °C変化させたときの時間の経過と Y軸方向及び Z軸方向の相対変位 量との関係を示すグラフを示す。 図 4に示す如く、 Y軸方向の相対変位量は 略 4 . O m以内に抑制することができ、 Z軸方向の相対変位量は略 2 . 5 m以内に抑制することができた。 Therefore, the thermal displacement correction method for the electric discharge machine 1 according to the present embodiment is, as shown in FIG. A column-side fan 72 that is set so as to blow the outside air with an air volume that minimizes the change in the relative position in the Z-axis direction of the space D is attached, and the outside air is forcibly blown into the column body internal cavity 71. At this time, a column side opening 73 is formed at the upper end of the rear wall of the column main body 7 to activate the ventilation of the cavity 71 more. In the electric discharge machine 1 of the present embodiment, ventilation by the fan 72 is performed only in the cavity 71 in order to reduce the influence on the Y-axis direction thermal displacement correction described above. The air volume is determined by the same experimental method as in the Y-axis direction described above, and the description of the experimental method in the Z-axis direction is omitted. The experiment in the Z-axis direction was performed with the workpiece W immersed in the machining fluid, and the machining fluid temperature was controlled to the same temperature as the column 7 temperature. Assumed to be performed. [0047] In the electric discharge machine 1 of the present embodiment configured as described above with reference to FIG. 4, the passage of time and the relative displacement in the Y-axis direction and the Z-axis direction when the outside air temperature is changed by 9 ° C. The graph which shows the relationship with is shown. As shown in FIG. 4, the amount of relative displacement in the Y-axis direction could be suppressed within about 4.5 Om, and the amount of relative displacement in the Z-axis direction could be suppressed within about 2.5 m.
[0048] 上述のように本実施形態の放電加工機 1及び放電加工機 1の熱変位補正方法 によれば、 電極 6と被加工物 Wとの所定方向の相対位置に変化を生じさせる 第 1および第 2の部位のうち、 温度変化に対する前記所定方向の熱応答速度 の遅い第 1の部位の内部又は外面に外気を送風するので、 熱応答速度の遅い 第 1の部位の熱応答速度を速くすることにより、 前記第 1の部位と第 2の部 位とを略同じ熱応答速度にすることができて、 温度変化に伴う時間毎の熱変 位量のばらつきを抑制できる。 このとき送風する風量が温度変化に伴う電極 と被加工物との所定方向の相対位置の変化が最も少なくなるように決定され たものなので効果的に相対位置の変化すなわち所定方向の相対変位量を抑制 でき、 放電加工機の加工精度を向上させることができる。  [0048] As described above, according to the electric discharge machine 1 and the thermal displacement correction method of the electric discharge machine 1 according to the present embodiment, a change is caused in the relative position of the electrode 6 and the workpiece W in a predetermined direction. Among the second parts, the outside air is blown into the first part where the thermal response speed in the predetermined direction with respect to the temperature change is slow, so the thermal response speed of the first part with a slow thermal response speed is increased. By doing so, the first part and the second part can have substantially the same thermal response speed, and variations in the amount of thermal displacement with time due to temperature changes can be suppressed. The amount of air blown at this time is determined so that the change in the relative position in the predetermined direction between the electrode and the workpiece due to the temperature change is minimized, so that the relative position change, that is, the relative displacement in the predetermined direction is effectively determined. It can be suppressed and the machining accuracy of the electric discharge machine can be improved.
[0049] また送風される風量が予め実験的に求められた一定の風量なので、 風量を制 御するための複雑な機構を必要としないため、 コストを低減することができ る。 よって放電加工機は、 被加工物に対して高精度で加工を行うことができ る。  [0049] In addition, since the air volume to be blown is a constant air volume obtained experimentally in advance, a complicated mechanism for controlling the air volume is not required, so that the cost can be reduced. Therefore, the electric discharge machine can process the workpiece with high accuracy.
[0050] なお上記の Y軸方向及び Z軸方向の相対変位量の測定は、 一般的に使用され る測定方法により求めるものとし、 例えば電極 6及び被加工物 Wの位置に基 準球を設置して測定する方法が使用される。  [0050] The above-mentioned measurement of the relative displacement in the Y-axis direction and the Z-axis direction is obtained by a commonly used measurement method. For example, a reference sphere is installed at the position of the electrode 6 and the workpiece W. The method of measuring is used.
[0051 ] また本実施形態の放電加工機 1は、 上述したようにベッド部 2とコラム本体 部 7にファンを取り付けたものであるが、 本発明の放電加工機はこれに限ら れるものではなく、 例えばべッド部のみにファンを取り付けてもよい。  [0051] Further, as described above, the electric discharge machine 1 of the present embodiment has the fan attached to the bed part 2 and the column main body part 7, but the electric discharge machine of the present invention is not limited to this. For example, you may attach a fan only to a bed part.
[0052] また本実施形態の放電加工機 1は、 上述したようにベッド部 2前面にファン 2 2を取り付けたものであるが、 本発明の放電加工機はこれに限られるもの ではなく、 例えば右側面にべッド側ファンを取り付けても、 左側面にベッド 側ファンを取り付けてもよく、 適宜設計変更可能である。 Further, as described above, the electric discharge machine 1 of the present embodiment has the fan 22 attached to the front surface of the bed part 2, but the electric discharge machine of the present invention is not limited to this, for example, Even if the bed side fan is installed on the right side, the bed on the left side A side fan may be attached, and the design can be changed as appropriate.
[0053] また本実施形態の放電加工機 1は、 上述したようにコラム本体部 7後面の下 端部にファン 7 2を取り付けたものであるが、 本発明の放電加工機はこれに 限られるものではなく、 例えば上端部に取り付けても、 前面に取り付けても よく、 適宜設計変更可能である。  [0053] Further, as described above, the electric discharge machine 1 of the present embodiment is such that the fan 72 is attached to the lower end of the rear surface of the column main body 7. However, the electric discharge machine of the present invention is limited to this. For example, it may be attached to the upper end or the front, and the design can be changed as appropriate.
[0054] また本実施形態の放電加工機 1は、 上述したようにコラム本体部及びベッド 部の内部に外気を送風するものであるが、 本発明の放電加工機はこれに限ら れるものではなく、 例えば外面に外気を送風してもよい。  Further, as described above, the electric discharge machine 1 of the present embodiment blows outside air into the column main body and the bed part, but the electric discharge machine of the present invention is not limited to this. For example, outside air may be blown to the outer surface.
[0055] また本実施形態の放電加工機 1は、 上記のように C形フレームと総称され る形状としたが、 本発明の放電加工機及び該放電加工機における熱変位補正 方法はこれに限られるものではなく、 例えば左右両側にコラム本体部を備え た門形フレームと総称される形状であってもよく、 適宜設計変更可能である 。 門形フレームの放電加工機の場合は、 Z軸方向の熱変位を補正するために 、 左右両側のコラムにコラム側ファンを取り付ける。  [0055] Although the electric discharge machine 1 of the present embodiment has a shape collectively referred to as a C-shaped frame as described above, the electric discharge machine of the present invention and the thermal displacement correction method in the electric discharge machine are not limited thereto. For example, it may be a shape generally referred to as a portal frame having column main body portions on both the left and right sides, and the design can be changed as appropriate. In the case of an EDM machine with a portal frame, to correct the thermal displacement in the Z-axis direction, attach the column-side fans to the left and right columns.

Claims

請求の範囲 The scope of the claims
[1 ] 電極と被加工物との極間に放電を発生させ、 放電エネルギにより前記被加工 物の加工を行う放電加工機において、  [1] In an electric discharge machine that generates an electric discharge between an electrode and a workpiece, and processes the workpiece by electric discharge energy.
前記電極と前記被加工物との所定方向の相対位置に変化を生じさせる第 1お よび第 2の部位のうち、 温度変化に対する前記所定方向における熱応答速度 の遅い第 1の部位に、 予め実験的に求められた、 温度変化に伴う前記電極と 前記被加工物との前記所定方向の相対位置の変化が最も少なくなる風量の外 気を送風する送風手段を備えていることを特徴とする放電加工機。  Of the first and second parts that cause a change in the relative position of the electrode and the workpiece in a predetermined direction, the first part having a slow thermal response speed in the predetermined direction with respect to a temperature change is tested in advance. Discharge characterized by comprising a blowing means for blowing outside air having an air volume that minimizes a change in the relative position in the predetermined direction between the electrode and the workpiece in accordance with a temperature change. Processing machine.
[2] 前記放電加工機は、 べッドと、 前記べッドの上面後側に立設されたコラムと 、 前記べッドの上面前側に配置され前記被加工物が載置されるテーブルと、 前記コラムに保持され前記電極が装着されるヘッドと、 を有し、 前記第 1の 部位を前記べッドまたは前記コラムとすることを特徴とする請求項 1に記載 の放電加工機。 [2] The electric discharge machine includes a bed, a column erected on the rear side of the upper surface of the bed, and a table placed on the front side of the upper surface of the bed and on which the workpiece is placed. The electric discharge machine according to claim 1, wherein the first part is the bed or the column.
[3] 電極と被加工物との極間に放電を発生させ、 放電エネルギにより前記被加工 物の加工を行う放電加工機において、  [3] In an electric discharge machine that generates an electric discharge between an electrode and a workpiece, and processes the workpiece by electric discharge energy.
前記電極と前記被加工物との水平方向の相対位置に変化を生じさせる第 1お よび第 2の部位のうち、 温度変化に対する前記水平方向における熱応答速度 の遅い前記第 1の部位に、 予め実験的に求められた、 温度変化に伴う前記電 極と前記被加工物との前記水平方向の相対位置の変化が最も少なくなる風量 の外気を送風する送風手段を備えていることを特徴とする放電加工機。  Of the first and second parts that cause a change in the relative position in the horizontal direction between the electrode and the workpiece, the first part that has a slow thermal response speed in the horizontal direction with respect to a temperature change It is characterized by comprising a blowing means that blows outside air having an air volume that minimizes a change in the relative position in the horizontal direction between the electrode and the work piece, which is experimentally determined, according to a temperature change. Electric discharge machine.
[4] 前記放電加工機は、 べッドと、 前記べッドの上面後側に立設されたコラム本 体と前記コラム本体の上端面に配設されたコラム上部とから構成されるコラ ムと、 前記べッドの上面前側に配置され前記被加工物が載置されるテーブル と、 前記テーブルの上方に位置するように前記コラム上部の前面に保持され 下端に前記電極が装着されるヘッドと、 を有し、 前記第 1の部位を前記べッ ドとし、 前記第 2の部位は前記コラム上部および前記へッドとすることを特 徵とする請求項 3に記載の放電加工機。  [4] The electric discharge machine comprises a bed, a column body erected on the rear side of the upper surface of the bed, and a column upper part disposed on an upper end surface of the column body. A table placed on the front side of the upper surface of the bed and on which the workpiece is placed, and held on the front surface of the upper part of the column so as to be positioned above the table, the electrode is mounted on the lower end. The electric discharge machine according to claim 3, further comprising: a head, wherein the first portion is the bed, and the second portion is the column upper portion and the head. .
[5] 電極と被加工物との極間に放電を発生させ、 放電エネルギにより前記被加工 物の加工を行う放電加工機において、 [5] A discharge is generated between the electrode and the workpiece, and the workpiece is processed by discharge energy. In an electric discharge machine that processes objects,
前記電極と前記被加工物との上下方向の相対位置に変化を生じさせる第 1お よび第 2の部位のうち、 温度変化に対する前記上下方向における熱応答速度 の遅い前記第 1の部位に、 予め実験的に求められた、 温度変化に伴う前記電 極と前記被加工物との前記上下方向の相対位置の変化が最も少なくなる風量 の外気を送風する送風手段を備えていることを特徴とする放電加工機。  Of the first and second parts that cause a change in the relative position in the vertical direction between the electrode and the workpiece, the first part having a slow thermal response speed in the vertical direction with respect to a temperature change is It is characterized by comprising a blowing means for blowing outside air having an air volume that minimizes a change in the relative position in the vertical direction between the electrode and the work piece, which is experimentally determined, according to a temperature change. Electric discharge machine.
[6] 前記放電加工機は、 べッドと、 前記べッドの上面後側に立設されたコラム本 体と前記コラム本体の上端面に配設されたコラム上部とから構成されるコラ ムと、 前記べッドの上面前側に配置され前記被加工物が載置されるテーブル と、 前記テーブルの上方に位置するように前記コラム上部の前面に保持され 下端に前記電極が装着されるヘッドと、 を有し、 前記第 1の部位を前記コラ ムとし、 前記第 2の部位は前記テーブル、 前記被加工物、 前記ヘッド、 およ び前記電極とすることを特徴とする請求項 5に記載の放電加工機。  [6] The electric discharge machine comprises a bed, a column main body erected on the rear side of the upper surface of the bed, and a column upper portion disposed on an upper end surface of the column main body. A table placed on the front side of the upper surface of the bed and on which the workpiece is placed, and held on the front surface of the upper part of the column so as to be positioned above the table, the electrode is mounted on the lower end. 6. The head according to claim 5, wherein the first part is the column, and the second part is the table, the workpiece, the head, and the electrode. The electric discharge machine described in 1.
[7] 前記第 1の部位の内部に外気を送風する場合において、 前記内部に前記外気 が送風される空洞を形成するとともに、 前記第 1の部位に前記送風された外 気を外部に排出する開口を形成することを特徴とする請求項 1乃至請求項 6 に記載の放電加工機。  [7] When the outside air is blown into the first portion, a cavity for blowing the outside air is formed in the inside, and the blown outside air is discharged to the first portion to the outside. The electric discharge machine according to claim 1, wherein an opening is formed.
[8] 電極と被加工物との極間に放電を発生させ、 放電エネルギにより前記被加工 物の加工を行う放電加工機の熱変位補正方法において、  [8] In a thermal displacement correction method for an electric discharge machine, in which an electric discharge is generated between an electrode and a workpiece, and the workpiece is machined by discharge energy.
前記電極と前記被加工物との所定方向の相対位置に変化を生じさせる第 1お よび第 2の部位のうち、 温度変化に対する前記所定方向における熱応答速度 の遅い前記第 1の部位に、 予め実験的に求められた、 温度変化に伴う前記電 極と前記被加工物との前記所定方向の相対位置の変化が最も少なくなる風量 の外気を送風することを特徴とする放電加工機の熱変位補正方法。  Of the first and second parts that cause a change in the relative position of the electrode and the workpiece in a predetermined direction, the first part having a low thermal response speed in the predetermined direction with respect to a temperature change Experimentally determined thermal displacement of an electric discharge machine characterized by blowing air with an air volume that minimizes the change in relative position in the predetermined direction between the electrode and the workpiece with temperature change. Correction method.
[9] 前記放電加工機は、 べッドと、 前記べッドの上面後側に立設されたコラムと 、 前記べッドの上面前側に配置され前記被加工物が載置されるテーブルと、 前記コラムに保持され前記電極が装着されるヘッドと、 を有し、 前記第 1の 部位を前記べッドまたは前記コラムとすることを特徴とする請求項 8に記載 の放電加工機の熱変位補正方法。 [9] The electric discharge machine includes: a bed; a column erected on the rear side of the upper surface of the bed; and a table on which the workpiece is placed and disposed on the front side of the upper surface of the bed. The head that is held by the column and to which the electrode is attached, and wherein the first portion is the bed or the column. Method for correcting thermal displacement of electrical discharge machine.
[10] 電極と被加工物との極間に放電を発生させ、 放電エネルギにより前記被加工 物の加工を行う放電加工機の熱変位補正方法において、  [10] In a thermal displacement correction method for an electric discharge machine that generates an electric discharge between an electrode and a workpiece, and processes the workpiece by electric discharge energy.
前記電極と前記被加工物との水平方向の相対位置に変化を生じさせる第 1お よび第 2の部位のうち、 温度変化に対する前記水平方向における熱応答速度 の遅い前記第 1の部位に、 予め実験的に求められた、 温度変化に伴う前記電 極と前記被加工物との前記水平方向の相対位置の変化が最も少なくなる風量 の外気を送風することを特徴とする放電加工機の熱変位補正方法。  Of the first and second parts that cause a change in the relative position in the horizontal direction between the electrode and the workpiece, the first part that has a slow thermal response speed in the horizontal direction with respect to a temperature change Experimentally obtained thermal displacement of an electric discharge machine that blows outside air with an air volume that minimizes a change in the relative position in the horizontal direction between the electrode and the workpiece due to a temperature change. Correction method.
[1 1 ] 前記放電加工機は、 べッドと、 前記べッドの上面後側に立設されたコラム本 体と前記コラム本体の上端面に配設されたコラム上部とから構成されるコラ ムと、 前記べッドの上面前側に配置され前記被加工物が載置されるテーブル と、 前記テーブルの上方に位置するように前記コラム上部の前面に保持され 下端に前記電極が装着されるヘッドと、 を有し、 前記第 1の部位を前記べッ ドとし、 前記第 2の部位は前記コラム上部および前記へッドとすることを特 徵とする請求項 1 0に記載の放電加工機の熱変位補正方法。  [1 1] The electric discharge machine includes a bed, a column main body erected on the rear side of the upper surface of the bed, and a column upper portion disposed on an upper end surface of the column main body. A column, a table arranged on the front side of the upper surface of the bed and on which the workpiece is placed, and held on the front surface of the column upper portion so as to be positioned above the table, and the electrode is mounted on the lower end. The discharge according to claim 10, characterized in that: the first portion is the bed, and the second portion is the column upper portion and the head. Method for correcting thermal displacement of processing machines.
[12] 電極と被加工物との極間に放電を発生させ、 放電エネルギにより前記被加工 物の加工を行う放電加工機の熱変位補正方法において、  [12] In a method for correcting a thermal displacement of an electric discharge machine, wherein an electric discharge is generated between an electrode and a workpiece, and the workpiece is machined by discharge energy.
前記電極と前記被加工物との上下方向の相対位置に変化を生じさせる第 1お よび第 2の部位のうち、 温度変化に対する前記上下方向における熱応答速度 の遅い前記第 1の部位に、 予め実験的に求められた、 温度変化に伴う前記電 極と前記被加工物との前記上下方向の相対位置の変化が最も少なくなる風量 の外気を送風することを特徴とする放電加工機の熱変位補正方法。  Of the first and second parts that cause a change in the relative position in the vertical direction between the electrode and the workpiece, the first part having a slow thermal response speed in the vertical direction with respect to a temperature change is Experimentally obtained thermal displacement of an electric discharge machine that blows outside air with an air volume that minimizes a change in the relative position in the vertical direction between the electrode and the workpiece with temperature change. Correction method.
[13] 前記放電加工機は、 べッドと、 前記べッドの上面後側に立設されたコラム本 体と前記コラム本体の上端面に配設されたコラム上部とから構成されるコラ ムと、 前記べッドの上面前側に配置され前記被加工物が載置されるテーブル と、 前記テーブルの上方に位置するように前記コラム上部の前面に保持され 下端に前記電極が装着されるヘッドと、 を有し、 前記第 1の部位を前記コラ ムとし、 前記第 2の部位は前記テーブル、 前記被加工物、 前記ヘッド、 およ び前記電極とすることを特徴とする請求項 1 2に記載の放電加工機の熱変位 補正方法。 [13] The electric discharge machine comprises a bed, a column main body erected on the rear side of the upper surface of the bed, and a column upper portion disposed on the upper end surface of the column main body. A table placed on the front side of the upper surface of the bed and on which the workpiece is placed, and held on the front surface of the upper part of the column so as to be positioned above the table, the electrode is mounted on the lower end. And the first part is the column, and the second part is the table, the workpiece, the head, and The method of correcting a thermal displacement of an electric discharge machine according to claim 12, wherein the electrode is the electrode.
[14] 前記第 1の部位の内部に外気を送風する場合において、 前記内部に空洞を形 成し、 かつ、 前記第 1の部位に開口を形成し、 前記空洞に前記外気を送風す るとともに、 前記送風された外気を前記開口から外部に排出することを特徴 とする請求項 8乃至請求項 1 3に記載の放電加工機の熱変位補正方法。  [14] In the case where the outside air is blown into the first portion, a cavity is formed in the inside, an opening is formed in the first portion, and the outside air is blown into the cavity. The method of correcting a thermal displacement of an electric discharge machine according to any one of claims 8 to 13, wherein the blown outside air is discharged to the outside through the opening.
[15] 前記送風される外気の風量を一定とすることを特徴とする請求項 8乃至請求 項 1 4に記載の放電加工機の熱変位補正方法。  15. The method for correcting a thermal displacement of an electric discharge machine according to claim 8, wherein the air volume of the blown outside air is made constant.
PCT/JP2007/000818 2006-08-03 2007-07-31 Electric discharge machine and method for correcting thermal displacement of the electric discharge machine WO2008015786A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006211901A JP5137172B2 (en) 2006-08-03 2006-08-03 Electric discharge machine and method for correcting thermal displacement of electric discharge machine
JP2006-211901 2006-08-03

Publications (1)

Publication Number Publication Date
WO2008015786A1 true WO2008015786A1 (en) 2008-02-07

Family

ID=38996973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000818 WO2008015786A1 (en) 2006-08-03 2007-07-31 Electric discharge machine and method for correcting thermal displacement of the electric discharge machine

Country Status (2)

Country Link
JP (1) JP5137172B2 (en)
WO (1) WO2008015786A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069408A (en) * 2016-11-01 2018-05-10 ファナック株式会社 Wire electric discharge machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5449086B2 (en) * 2010-08-11 2014-03-19 三菱重工業株式会社 Machine Tools
CN107984242B (en) * 2017-12-20 2019-12-27 舒能数控机床有限公司 Digit control machine tool is with heat dissipation base

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55169332U (en) * 1979-05-22 1980-12-05
JPS60191729A (en) * 1983-12-12 1985-09-30 Mitsubishi Electric Corp Electric discharge machining apparatus
JPH01140945A (en) * 1987-11-25 1989-06-02 Makino Milling Mach Co Ltd Machine tool wherein air of room temperature is circulated
JPH0230812B2 (en) * 1983-12-12 1990-07-10 Mitsubishi Electric Corp
JPH05177502A (en) * 1991-12-25 1993-07-20 Mitsubishi Electric Corp Electric discharge machining device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55169332U (en) * 1979-05-22 1980-12-05
JPS60191729A (en) * 1983-12-12 1985-09-30 Mitsubishi Electric Corp Electric discharge machining apparatus
JPH0230812B2 (en) * 1983-12-12 1990-07-10 Mitsubishi Electric Corp
JPH01140945A (en) * 1987-11-25 1989-06-02 Makino Milling Mach Co Ltd Machine tool wherein air of room temperature is circulated
JPH05177502A (en) * 1991-12-25 1993-07-20 Mitsubishi Electric Corp Electric discharge machining device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069408A (en) * 2016-11-01 2018-05-10 ファナック株式会社 Wire electric discharge machine
US10204769B2 (en) 2016-11-01 2019-02-12 Fanuc Corporation Wire electric discharge machine

Also Published As

Publication number Publication date
JP5137172B2 (en) 2013-02-06
JP2008036739A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
US9448552B2 (en) Numerically-controlled machine tool and spindle error compensating method thereof
JP5870143B2 (en) Wire electrical discharge machine with thermal displacement compensation function for upper and lower guides
TWI381902B (en) Working Machinery
JP4846432B2 (en) Displacement and run-out measuring device for spindle device in machine tool
JP7130022B2 (en) Machine Tools
WO2008015786A1 (en) Electric discharge machine and method for correcting thermal displacement of the electric discharge machine
JP5201502B2 (en) Machine tool temperature control device
WO2008010309A1 (en) Machine tool
CN102481674B (en) Method for thermal displacement correction in machine tool, and thermal displacement correction device
Sadasivam et al. Design and fabrication of micro-plasma transferred wire arc additive manufacturing system
JP5144348B2 (en) Processing equipment with temperature controller
JP2003291050A (en) Method and device for controlling temperature of finishing machine
JP2018079520A (en) Temperature adjustment device of machine tool
JP4055074B2 (en) Machine tool control device, machine tool control method, machine tool control program, and computer-readable recording medium recording the machine tool control program
JP2008246620A (en) Machine tool, control program for correcting thermal expansion, and storage medium
JP2006116654A (en) Thermal deformation correction method and thermal deformation correcting device of nc machine tool
JP2006272538A (en) Machine tool and displacement correction method of machine tool
JPH01140945A (en) Machine tool wherein air of room temperature is circulated
JP5306969B2 (en) Air conditioning system
JP2006130590A (en) Machine tool and method for estimating its thermal deformation amount
JP7038304B2 (en) Shape measuring device
JP3122494U (en) Temperature control device
JP4928837B2 (en) Machine Tools
JP2012232385A (en) Numerical control device and machining method
JP2005052917A (en) Method and apparatus for compensating thermal displacement of numerically controlled machine tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790311

Country of ref document: EP

Kind code of ref document: A1