WO2008015063A1 - Procédé de détermination de l'axe de rotation et du centre de rotation d'une roue de véhicule - Google Patents

Procédé de détermination de l'axe de rotation et du centre de rotation d'une roue de véhicule Download PDF

Info

Publication number
WO2008015063A1
WO2008015063A1 PCT/EP2007/056621 EP2007056621W WO2008015063A1 WO 2008015063 A1 WO2008015063 A1 WO 2008015063A1 EP 2007056621 W EP2007056621 W EP 2007056621W WO 2008015063 A1 WO2008015063 A1 WO 2008015063A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
vehicle
features
trajectory
analysis
Prior art date
Application number
PCT/EP2007/056621
Other languages
German (de)
English (en)
Inventor
Volker Uffenkamp
Guenter Nobis
Steffen Abraham
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US12/160,354 priority Critical patent/US8150144B2/en
Priority to CN2007800284783A priority patent/CN101568798B/zh
Priority to EP07786976.6A priority patent/EP2049870B1/fr
Publication of WO2008015063A1 publication Critical patent/WO2008015063A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/275Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing wheel alignment
    • G01B11/2755Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing wheel alignment using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/14One or more cameras or other optical devices capable of acquiring a two-dimensional image
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/20Vehicle in a state of translatory motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/30Reference markings, reflector, scale or other passive device

Definitions

  • the invention relates to a method for determining the geometric position of the axis of rotation and the center of rotation of a vehicle wheel in a measuring station coordinate system by means of at least two in position and location of each associated image recording units during the drive of the vehicle and this downstream, the recorded image information processing Evaluation device including a plurality of present on the wheel or for the measurement attached wheel features and at least one attached to the body or attached for the measurement body feature, synchronously recorded 2D coordinates of the wheel features and the at least one body feature and calculates their 3D coordinates at certain time intervals be and in a predetermined reference time or corresponding reference position of the vehicle wheel, taking into account the relative to the reference position of the at least one body feature penetrategeleg be re-calculated.
  • a method of this kind is given in DE 100 50 653 Al.
  • the driving axis and furthermore wheel and axle geometry data are determined with the aid of cameras, a reference coordinate system at the test station and optical features on the vehicle wheel and on the body, wherein the vehicle drives past the optical measuring device with the image recording units.
  • Similar methods for the optical measurement of wheel and axle geometry data are also shown in DE 199 34 864 A1 and DE 197 57 760 A1, wherein the measurement also takes place in passing of the vehicle.
  • the abovementioned methods are based on the measurement of features present on the vehicle or specifically for the measurement, with at least one not only being used in addition to wheel features
  • Body feature and a reference feature arrangement for referencing the measuring device are provided.
  • To determine the Radfebene be recorded with the measuring devices continuously time-synchronous images at (with respect to the rotation angle) different wheel positions and different vehicle positions.
  • the trajectory of the vehicle relative to the reference feature arrangement is determined with the temporally successive coordinates of the features present on the body.
  • the Radcarde is determined taking into account the vehicle movement. It is possible to determine the amount of a shape error of the wheel rim (rim beat) and take into account. With this information, the vehicle coordinate system and the wheel and axle geometry data can now be calculated. A description of the method for determining the Radcarde in detail is not disclosed.
  • roller sets or counter-rotating sliding plates have been used to spin the wheels when the vehicle is stationary.
  • the wheels of the vehicle rotate in roller prisms, wherein the vehicle is stationary.
  • the wheels are provided outside the axis of rotation with an optically registrable marking, which synchronizes with two during the rotation of the wheel
  • the object of the invention is to provide a method for determining the axis of rotation and the center of rotation of a vehicle wheel, with which reliable and accurate measurement results are obtained during a journey, in particular also on a real roadway.
  • the trajectories of the wheel features and the at least one body feature are subjected to at least one of the influencing variables steering angle, steering movement, road surface unevenness, speed change during evaluation of an analysis and that correction values or compensation functions for correcting the effects are obtained from the analysis.
  • the main advantages of the invention are a precise determination of the axis of rotation and the center of rotation of a wheel while driving on a real road.
  • additional mechanical devices such as roller sets or sliding plates for rotation of the wheel at silent - A -
  • the method can be used for determining the rim impact compensation during the driveaway of a vehicle on an axle measuring station, in the case of an axle quick survey, e.g. As part of the
  • the method is basically also applicable to alternative optical axis measuring systems, such as e.g. Wheel alignment systems with fringe projection.
  • Various embodiments for the evaluation and an accurate determination of the axis of rotation and the center of rotation of the vehicle wheel are that the analysis of the trajectories is performed before the recalculation of the 3D coordinates or during a common compensation calculation in the recalculation.
  • a substantial elimination of erroneous effects of influencing variables is achieved by determining roll angle data from the difference in the trajectory of the body features of the left and the right side of the vehicle as correction values or compensation functions.
  • axle measuring station is designed as a lifting platform, negative effects of mass and acceleration forces on the lifting platform can thereby be at least largely excluded in the derivation of the measurement results, that dynamic and / or quasi-static movement data of the lifting platform with the vehicle located thereon from an analysis of the movement path at least a measuring feature present on or attached to the lifting platform.
  • a limited complexity of the compensation functions is achieved by detecting higher dynamic processes over the course of time of the trajectory of the wheel features and / or body features and hiding them for further data analysis.
  • an advantageous procedure is that the correction data is provided via a vehicle database already present in an axle measuring system for the relevant vehicle type.
  • a further advantageous procedure consists in that in the absence of specific vehicle data, the relevant vehicle is automatically assigned to a predefined vehicle class and the correction data to be applied is provided by the database, wherein a classification of the vehicles according to chassis-relevant parameters is provided.
  • the compensation calculation carried out on the basis of the compensation functions relates to the entire vehicle, respectively to the front axle and the rear axle or to each individual wheel.
  • FIG. 3 coordinates of four wheel features in eight rolling positions of the wheel according to FIG. 2 after a recalculation into a reference position
  • Fig. 4 shows the projection of trajectories of body features and the center of gravity of
  • FIG. 6 shows a representation of the course of a distance between two body features and the center of gravity of the wheel features over the image number during extension and retraction.
  • FIG. 1 shows in the left half of the image the trajectory of two wheel features 10, namely an inner wheel feature 10.1 located closer to a turning center and an outer wheel feature 10.2 located on the outer circumference, which are arranged at a height h above the rolling path s.
  • an inner wheel feature 10.1 located closer to a turning center
  • an outer wheel feature 10.2 located on the outer circumference, which are arranged at a height h above the rolling path s.
  • the trajectories 11 During a rotational movement of the wheel when the vehicle is stationary (eg vehicle dug) here are the trajectories 11 circular paths.
  • the trajectory 12 of the inner wheel feature 10.1 is shown with the vehicle moving and thereby rolling wheel, as a trajectory 12, assuming a straight-line vehicle movement on an ideal plane, a Cycloid yields.
  • Fig. 2 shows the coordinates of four wheel features 10.1 in eight Abrollpositionen the vehicle wheel on the taxiway s, while in Fig. 3, the coordinates of the four wheel features of FIG. 2 in the eight Abrollpositionen of the vehicle wheel after recalculation is shown in a reference position.
  • FIG. 4 shows the projection of the trajectories of a body feature (dash-dotted line) with compensation curve (solid line) and the center of gravity of wheel features (dashed line) also with compensation curve (solid line) in the road plane x, y.
  • Fig. 5 the speed of a body feature and the center of gravity of the wheel features expressed by a speed-proportional size over the image number is reproduced instead of the time, wherein also a respective Au Dermaticianskurve is entered. From the different speed curve, the steering movement can be determined.
  • a distance ⁇ h between body features and the center of gravity of the wheel features is shown above the image number.
  • a positive travel "+” means a rebound on acceleration and a negative travel "-" a compression on deceleration, as indicated by the double arrows.
  • the wheel features move as shown outside of the center of rotation on trajectories 12 in the form of cycloids and the body features on rectilinear trajectories along the driveway.
  • the respective cycloids are composed of the rotational movement of the wheel feature about the center of rotation and the traveled travel path or taxiway s, as shown in FIG.
  • time-synchronized two-dimensional coordinates (2D coordinates) of the wheel and body features are detected in the measuring range of the wheel alignment system and their respective three-dimensional coordinates (3D coordinates) are calculated.
  • 3D coordinates of the wheel and body features are measured at certain time intervals corresponding to the measurement frequency along the cycloids 12 of the wheel features 10 and trajectories of the body features.
  • a first step all coordinates of the wheel characteristics measured chronologically one after the other are set to a predetermined reference time or corresponding time Reference position of the vehicle wheel recalculated taking into account the distance traveled relative to the reference position of the body features track.
  • the wheel features 10 are then arranged on circular paths 11 about the spatial axis of rotation of the vehicle wheel. This results in a result which corresponds to the rotation of each wheel feature when the vehicle is stationary, as shown by the recalculation of FIG. 3 from the illustration according to FIG. Due to the dimensional error of the vehicle wheel or the spatial position of the wheel features on the vehicle wheel, the wheel features 10 move on parallel planes of rotation to the plane of rotation of the vehicle wheel. From the back-calculated 3D coordinates of the wheel features 10, the rotation center of the vehicle wheel and taking into account the distances of the parallel planes of rotation, the rotation center is now determined taking into account the parallelism of the planes of rotation of the individual wheel features.
  • Road bumps cause a change in the movement of the wheel and body features especially in the direction perpendicular to the road (z-direction). Different unevenness at the wheel contact points lead to roll and / or pitching movements of the
  • Vehicle change the wheel load distribution or compression state of the individual wheel. Stronger changes in the roadway profile cause dynamic mass forces, which in particular a spring movement of the body (spring elements in the suspension) and the tire result. - Speed changes cause acceleration or deceleration forces, in particular, a spring movement of the body (spring elements in the suspension) and the tire result.
  • the wheel alignment station is designed as a lifting platform, said dynamic mass and acceleration forces can even cause the lift to move.
  • an analysis of the trajectories of the wheel and body features is carried out in order to record the effects of said action mechanisms in the current measurement.
  • the result of the analysis are correction values or compensation functions which are then used to correct the effects of, for example, road bumps, steering movements or speed changes in the measured 3D coordinates before retroactive accounting.
  • the following correction values or compensation functions are determined and then used for the measured value correction:
  • a parameter e.g. Steering angle or travel
  • another parameter e.g. the route
  • hide out of the measured measured value course for further analysis outside a permissible level.
  • the analysis of the acceleration or braking deceleration of the vehicle may be mentioned, which can be derived from the path / time course or the speed / time course with the known physical relationships.
  • the time measurement is done over the trigger time of the image measuring units, (i.e., the time that lies between two consecutive images). This trigger time is a specified and defined period of time for the measuring system.
  • a representation about the order of the images is equivalent to a time representation (see Fig. 5).
  • correction factors or correction functions are used to further improve the accuracy, which determine the dependence of the track and camber angles on the deflection load. stand and take into account the steering angle.
  • correction functions are vehicle-specific. It is therefore intended to provide the correction data before the correction calculation via the vehicle database already present in an axle measuring system for the specific vehicle type. A vehicle identification is carried out as standard before the start of a wheel alignment.
  • the specific vehicle is automatically assigned to a predefined vehicle class and the vehicle bank provides the correction data to be applied thereto.
  • a classification of the vehicles according to chassis-related parameters such as. Drive type (for example, front-wheel drive, rear-wheel drive), vehicle class (for example, sports car, sedan, SUV) or vehicle size (for example, small car, middle class, upper class) provided.
  • the analysis of the trajectories of the wheel and body features is not carried out in individual steps, as described above, but in a common compensation calculation, as is known from the field of 3D image measurement technology.
  • this compensation calculation can refer to the entire vehicle, respectively to the front axle and the rear axle or to each individual wheel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

L'invention concerne un procédé de détermination de l'axe de rotation et du centre de rotation d'une roue de véhicule au moyen d'au moins deux unités de prise de vue associées l'une à l'autre en position et en situation pendant le déplacement du véhicule, et un dispositif d'évaluation postérieur à celles-ci traitant les informations d'image enregistrées, avec l'intégration de plusieurs caractéristiques de roue (10) présentes sur la roue ou appliquées pour la mesure, et d'au moins une caractéristique de carrosserie présente sur la carrosserie ou appliquée pour la mesure. Des coordonnées 2D des caractéristiques de roue (10) et d'au moins une caractéristique de carrosserie sont enregistrées de façon synchrone. De là, leurs coordonnées 3D sont calculées à certains intervalles de temps, puis recalculées à un instant de référence déterminé auparavant ou à une position de référence correspondante de la roue de véhicule en tenant compte du trajet parcouru par rapport à la position de référence par la au moins une caractéristique de carrosserie. L'invention vise à obtenir des résultats de mesure les moins erronés possibles, en particulier lors d'un déplacement sur une chaussée réelle. À cet effet, lors de l'évaluation d'une analyse concernant les répercussions, les parties courbes des caractéristiques de roue (10) et de la au moins une caractéristique de carrosserie sont soumises à au moins un des facteurs d'influence suivants : angle de braquage, mouvement de braquage, déformation de la chaussée, changement de vitesse. De plus, l'analyse permet de déterminer des valeurs de correction ou des fonctions de compensation résultent pour corriger les répercussions.
PCT/EP2007/056621 2006-07-31 2007-07-02 Procédé de détermination de l'axe de rotation et du centre de rotation d'une roue de véhicule WO2008015063A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/160,354 US8150144B2 (en) 2006-07-31 2007-07-02 Method for determining the rotational axis and the center of rotation of a vehicle wheel
CN2007800284783A CN101568798B (zh) 2006-07-31 2007-07-02 用于确定车轮旋转轴线与旋转中心的方法
EP07786976.6A EP2049870B1 (fr) 2006-07-31 2007-07-02 Procédé de détermination de l'axe de rotation et du centre de rotation d'une roue de véhicule

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006035924.0 2006-07-31
DE102006035924A DE102006035924A1 (de) 2006-07-31 2006-07-31 Verfahren zum Bestimmen der Drehachse und des Drehzentrums eines Fahrzeugrads

Publications (1)

Publication Number Publication Date
WO2008015063A1 true WO2008015063A1 (fr) 2008-02-07

Family

ID=38458107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/056621 WO2008015063A1 (fr) 2006-07-31 2007-07-02 Procédé de détermination de l'axe de rotation et du centre de rotation d'une roue de véhicule

Country Status (5)

Country Link
US (1) US8150144B2 (fr)
EP (1) EP2049870B1 (fr)
CN (1) CN101568798B (fr)
DE (1) DE102006035924A1 (fr)
WO (1) WO2008015063A1 (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008024395A1 (de) * 2008-05-20 2009-12-03 Universität Karlsruhe (Th) Verfahren zur Objekterfassung
DE102008042145A1 (de) 2008-09-17 2010-03-18 Robert Bosch Gmbh Verfahren und Messanordnung zum Bestimmen der Rad-oder Achsgeometrie eines Fahrzeugs
DE102008058771A1 (de) * 2008-11-24 2010-05-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zur Unwuchtprüfung an mindestens einem Rad eines Kraftfahrzeugs
CN101963490B (zh) * 2010-09-03 2012-06-06 暨南大学 基于激光自混合干涉的确定旋转体旋转中心的方法
DE102013200910A1 (de) * 2013-01-22 2014-07-24 Robert Bosch Gmbh Verfahren und Vorrichtung zur Fahrzeugvermessung
US9377379B2 (en) 2013-03-08 2016-06-28 Keith Lee Method, system and apparatus for assessing wheel condition on a vehicle
US20140253908A1 (en) * 2013-03-08 2014-09-11 Keith Lee Method, system and apparatus for assessing wheel condition on a vehicle
WO2014151666A1 (fr) 2013-03-15 2014-09-25 Hunter Engineering Company Procédé de détermination de paramètres d'un objet en rotation dans un motif projeté
DE102014204809A1 (de) * 2014-03-14 2015-09-17 Robert Bosch Gmbh Verfahren und Vorrichtung zum Überprüfen der Radaufhängung eines Fahrzeugs
KR102005875B1 (ko) * 2015-01-07 2019-07-31 스냅-온 인코포레이티드 롤링 가상의 휠 스핀들 캘리브레이션
US10473458B2 (en) * 2015-10-06 2019-11-12 Snap-On Incorporated Self-calibrating wheel aligner with improved portability
KR102152622B1 (ko) * 2015-11-12 2020-09-07 현대자동차 주식회사 타이어 동하중 반경 측정 장치 및 방법
DE102016112712A1 (de) * 2016-07-12 2018-01-18 Dürr Assembly Products GmbH Verfahren zur Bestimmung von Parametern der Fahrwerkgeometrie von Rädern einer nicht gelenkten Achse, Verwendung des Verfahrens, Prüfstand für ein Fahrzeug sowie eine Messeinheit
US11243074B2 (en) 2018-04-30 2022-02-08 BPG Sales and Technology Investments, LLC Vehicle alignment and sensor calibration system
US11597091B2 (en) 2018-04-30 2023-03-07 BPG Sales and Technology Investments, LLC Robotic target alignment for vehicle sensor calibration
US11835646B2 (en) 2018-04-30 2023-12-05 BPG Sales and Technology Investments, LLC Target alignment for vehicle sensor calibration
US11781860B2 (en) 2018-04-30 2023-10-10 BPG Sales and Technology Investments, LLC Mobile vehicular alignment for sensor calibration
US11624608B2 (en) 2018-04-30 2023-04-11 BPG Sales and Technology Investments, LLC Vehicular alignment for sensor calibration
EP3850306A4 (fr) 2018-09-13 2022-09-21 Snap-On Incorporated Dispositif d'alignement automobile à précision améliorée et à positionnement continu à l'aide d'un calcul de direction d'entraînement
CN109874099B (zh) * 2019-01-28 2020-11-03 行目数据科技有限公司 一种联网车载设备流量控制系统
CN110398966B (zh) * 2019-07-22 2022-08-16 广州小鹏汽车科技有限公司 一种路径跟踪控制方法及路径跟踪系统
CN111401194B (zh) * 2020-03-10 2023-09-22 北京百度网讯科技有限公司 用于自动驾驶车辆的数据处理方法和装置
WO2021257515A1 (fr) 2020-06-15 2021-12-23 Snap-On Incorporated Appareil et procédé d'étalonnage et d'alignement de capteurs automobiles
CN113063546B (zh) * 2021-03-26 2024-08-02 河南科技大学 一种轴承保持架质心运动轨迹测量方法、装置、系统
CN113334389B (zh) * 2021-08-02 2021-11-09 宝信软件(南京)有限公司 一种钢管管端机器人轨迹自适应及纠偏系统及方法
CN114739301A (zh) * 2022-04-07 2022-07-12 深圳市道通科技股份有限公司 车身高度测量方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19757760A1 (de) * 1997-12-23 1999-07-01 Bosch Gmbh Robert Vorrichtung zum Bestimmen der Rad- und/oder Achsgeometrie von Kraftfahrzeugen
DE19934864A1 (de) * 1999-07-24 2001-02-08 Bosch Gmbh Robert Vorrichtung zum Bestimmen der Rad- und/oder Achsgeometrie von Kraftfahrzeugen
EP1092967A2 (fr) * 1999-10-15 2001-04-18 Robert Bosch Gmbh Procédé et dispositif d'essai de l'installation de freinage d'un véhicule
WO2001038843A1 (fr) * 1999-11-24 2001-05-31 N.V. Krypton Electronic Engineering Procedure permettant de determiner le comportement dynamique d'un vehicule sur un banc d'essai

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4212426C1 (en) 1992-04-14 1993-07-01 Wolfgang 3407 Gleichen De Brunk Measurement of tracking and camber of vehicle wheel axles - recording markers on rotating wheels using synchronised video cameras, image evaluation of marker positions
US6064750A (en) * 1997-01-10 2000-05-16 Hunter Engineering Company Apparatus and method for determining vehicle wheel alignment measurements from three dimensional wheel positions and orientations
DE10050653A1 (de) 2000-10-13 2002-05-02 Bosch Gmbh Robert Vorrichtung zum Bestimmen der Rad-und/oder Achsgeometrie
DE102005017624A1 (de) 2005-04-15 2006-10-19 Robert Bosch Gmbh Verfahren zum Bestimmen der Rad- und/oder Achsgeometrie von Kraftfahrzeugen
US7444752B2 (en) * 2005-09-28 2008-11-04 Hunter Engineering Company Method and apparatus for vehicle service system optical target

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19757760A1 (de) * 1997-12-23 1999-07-01 Bosch Gmbh Robert Vorrichtung zum Bestimmen der Rad- und/oder Achsgeometrie von Kraftfahrzeugen
DE19934864A1 (de) * 1999-07-24 2001-02-08 Bosch Gmbh Robert Vorrichtung zum Bestimmen der Rad- und/oder Achsgeometrie von Kraftfahrzeugen
EP1092967A2 (fr) * 1999-10-15 2001-04-18 Robert Bosch Gmbh Procédé et dispositif d'essai de l'installation de freinage d'un véhicule
WO2001038843A1 (fr) * 1999-11-24 2001-05-31 N.V. Krypton Electronic Engineering Procedure permettant de determiner le comportement dynamique d'un vehicule sur un banc d'essai

Also Published As

Publication number Publication date
US8150144B2 (en) 2012-04-03
CN101568798B (zh) 2011-06-08
EP2049870B1 (fr) 2014-03-05
EP2049870A1 (fr) 2009-04-22
US20110052041A1 (en) 2011-03-03
CN101568798A (zh) 2009-10-28
DE102006035924A1 (de) 2008-02-07

Similar Documents

Publication Publication Date Title
EP2049870B1 (fr) Procédé de détermination de l'axe de rotation et du centre de rotation d'une roue de véhicule
EP1042643B1 (fr) Dispositif de determination de la geometrie de roues et/ou d'essieux de vehicules a moteur
EP2321618B1 (fr) Dispositif et procédé de détermination et de réglage de la géométrie d'un châssis de véhicule à moteur
WO2001007862A1 (fr) Installation permettant de determiner la geometrie d'une roue et/ou d'un essieu de vehicules automobiles
DE102005063082A1 (de) Verfahren zur optischen Fahrwerksvermessung
WO2008046715A1 (fr) Procédé pour déterminer l'axe de rotation d'une roue d'un véhicule
EP2948748A1 (fr) Dispositif et procédé pour la surveillance et le calibrage d'un dispositif de mesure de la profondeur des sculptures d'un pneu
DE102005063083A1 (de) Verfahren zur optischen Fahrwerksvermessung
EP3612794B1 (fr) Procédé et dispositif de contrôle de la géométrie des trains roulants
DE102008054975A1 (de) Verfahren zur Fahrwerksvermessung sowie Vorrichtung zum Vermessen der Fahrwerksgeometrie eines Fahrzeugs
WO2009118211A1 (fr) Tête de mesure pour un système de réglage de la géométrie d'un véhicule, système de réglage de la géométrie d'un véhicule, ainsi que procédé de détermination des paramètres de position de têtes de mesure d'un système de réglage de la géométrie d'un véhicule
DE102012215754A1 (de) Verfahren und Vorrichtung zur Fahrzeugvermessung
WO2002031437A1 (fr) Dispositif pour determiner la geometrie d'une roue et/ou d'un essieu
DE102014016121A1 (de) Verfahren zur Bestimmung eines Höhenprofils einer Fahrbahn und Verfahren zur Bestimmung einer Fahrzeugposition
DE102012200303A1 (de) Verfahren zur Bestimmung der tatsächlich zurückgelegten Wegstrecke eines Rades
EP1092967B1 (fr) Procédé et dispositif d'essai de l'installation de freinage d'un véhicule
WO2002003027A1 (fr) Donnees de geometrie de roue, donnees de geometrie d'essieu, donnees de mouvement de carrosserie avec marques de roues realisees des la fabrication
AT525694B1 (de) Verfahren zur bestimmung der geschwindigkeit und/oder bewegungsrichtung eines fahrzeugs
DE102017208810A1 (de) Vorrichtung und Verfahren zur Messung der Profiltiefe eines Reifens
DE102008046104A1 (de) Vorrichtung und Verfahren zur Spurvermessung von Fahrzeugen
DE102018201463A1 (de) Verfahren zum Betreiben eines Kraftfahrzeugs sowie entsprechendes Kraftfahrzeug
WO2023117846A1 (fr) Procédé et dispositif de mesure d'une voie
AT512762B1 (de) Verfahren und Anordnung zur Fahrdynamikbewertung
DE102007019367A1 (de) Bildgestützte Kalibrierung von Fahrzeug-Tachographen mittels Messmarken
DE102017105097A1 (de) Vorrichtung und Verfahren zur Ermittlung des Sturz- und Spurwinkels

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780028478.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007786976

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07786976

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12160354

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: RU