WO2008013993A2 - Processes for the synthesis of o-desmethylvenlafaxine - Google Patents

Processes for the synthesis of o-desmethylvenlafaxine Download PDF

Info

Publication number
WO2008013993A2
WO2008013993A2 PCT/US2007/017009 US2007017009W WO2008013993A2 WO 2008013993 A2 WO2008013993 A2 WO 2008013993A2 US 2007017009 W US2007017009 W US 2007017009W WO 2008013993 A2 WO2008013993 A2 WO 2008013993A2
Authority
WO
WIPO (PCT)
Prior art keywords
cobc
obc
organic solvent
cyclohexanone
group
Prior art date
Application number
PCT/US2007/017009
Other languages
French (fr)
Other versions
WO2008013993A3 (en
Inventor
Valerie Niddam-Hildesheim
Natalia Shenkar
Tamar Nidam
Original Assignee
Teva Pharmaceutical Industries Ltd.
Teva Pharmaceuticals Usa, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teva Pharmaceutical Industries Ltd., Teva Pharmaceuticals Usa, Inc. filed Critical Teva Pharmaceutical Industries Ltd.
Priority to PCT/US2007/017009 priority Critical patent/WO2008013993A2/en
Priority to EP07810899A priority patent/EP1934167A2/en
Priority to CA002656166A priority patent/CA2656166A1/en
Priority to JP2008527229A priority patent/JP4763788B2/en
Publication of WO2008013993A2 publication Critical patent/WO2008013993A2/en
Publication of WO2008013993A3 publication Critical patent/WO2008013993A3/en
Priority to IL196405A priority patent/IL196405A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/46Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C215/64Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with rings other than six-membered aromatic rings being part of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/32Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring
    • C07C255/36Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the invention encompasses processes for the synthesis of O- desmethyrvenlafaxine.
  • Venlafaxine ( ⁇ )-l-[2-(Dimethylamino)-l-(4-methoxyphenyl) ethyl] cyclohexanol is the first of a class of anti-depressants. Venlafaxine acts by inhibiting re-uptake of norepinephrine and serotonin, and is an alternative to the tricyclic antidepressants and selective re-uptake inhibitors. Venlafaxine has the following chemical formula, Formula I:
  • O-desmethylvenlafaxine 4-[2-(dimethylamino)-l-(l- hydroxycyclohexyl)ethyl]phenol, is reported to be a metabolite of venlafaxine and has been reported to inhibit norepinephrine and serotonin uptake. See Klamerus, K. J. et al., "Introduction of the Composite Parameter to the Pharmacokinetics of Venlafaxine and its Active O-Desmethyl Metabolite," J. Clin. Pharmacol. 32:716-724 (1992).
  • O- desmethylvenlafaxine has the following chemical formula, Formula II:
  • MCC methyl benzyl cyanide
  • CMBC cyclohexyl methylbenzyl cyanide
  • DDMV didesmethyl venlafaxine
  • ODV O-desmethylvenlafaxine
  • the present invention provides a process for preparing cyclohexylbenzylcyanide (COBC) comprising reacting hydroxybenzylcyanide (OBC) with cyclohexanone, preferably the reaction comprises combining OBC, an organic solvent, preferably a dry organic solvent, a base and cyclohexanone.
  • OBC hydroxybenzylcyanide
  • the present invention provides a process for obtaining cyclohexylbenzylcyanide (COBC) comprising reacting hydroxybenzylcyanide (OBC) with cyclohexanone in the presence of a phase transfer catalyst and a base.
  • COBC cyclohexylbenzylcyanide
  • the present invention provides a process for obtaining O-desmethylvenlafaxine comprising preparing COBC as described above, and further converting the COBC to O-desmethylvenlafaxine.
  • the present invention provides a process for preparing tridesmethyl venlafaxine (TDMV) comprising: reducing COBC, preferably the step of reducing COBC comprises combining COBC, a reducing agent, an organic solvent and a Lewis acid catalyst, preferably boron trifiuoride (BF 3 ), to create a reaction mixture, optionally followed by recovery of the TDMV from the reaction mixture.
  • reducing COBC preferably the step of reducing COBC comprises combining COBC, a reducing agent, an organic solvent and a Lewis acid catalyst, preferably boron trifiuoride (BF 3 ), to create a reaction mixture, optionally followed by recovery of the TDMV from the reaction mixture.
  • the present invention provides a process for obtaining O-desmethylvenlafaxine comprising preparing TDMV as described above, and further converting the TDMV to O-desmethylvenlafaxine.
  • the present invention provides a process for preparing O-desmethylvenlafaxine comprising: reacting hydroxybenzylcyanide
  • the step of reacting with cyclohexanone comprises combining OBC, an organic solvent, a base and cyclohexanone; reducing
  • the step of reducing COBC comprises combining a reducing agent, an organic solvent and a Lewis acid catalyst, preferably boron trifluoride (BF3), to create a reaction mixture; optionally recovering TDMV from the reaction mixture and converting the TDMV to O-desmethylvenlafaxine.
  • a Lewis acid catalyst preferably boron trifluoride (BF3)
  • the present invention provides a process for preparing O-desmethylvenlafaxine comprising: providing a mixture of hydroxybenzylcyanide (OBC), a phase transfer catalyst, a base and cyclohexanone, to obtain COBC; reducing COBC, preferably the step of reducing COBC comprises combining a reducing agent, an organic solvent and a Lewis acid catalyst, preferably boron trifluoride (BF3), to create a reaction mixture; optionally recovering TDMV from the reaction mixture and converting the TDMV to O-desmethylvenlafaxine.
  • OBC hydroxybenzylcyanide
  • a phase transfer catalyst e.g., boron trifluoride (BF3)
  • the present invention provides a process of preparing O-desmethyl venlafaxine (ODV) comprising combining hydroxybenzylcyanid (OBC) with a protecting reagent to obtain a hydroxyl protected hydroxybenzylcyanide (POBC), converting POBC to hydroxy protected O- desmethylvenlafaxine (PODV), and deprotecting PODV to form ODV.
  • OCV O-desmethyl venlafaxine
  • POBC hydroxyl protected hydroxybenzylcyanide
  • OBC hydroxybenzyl cyanide
  • PCOBC hydroxyl protected cyclcohexylbenzylcyanide
  • a hydroxyl protected tridesmethyl venlafaxine PTDMV. Also provided is a process of preparing PTDMV.
  • PTDMV hydroxyl protected O- desmethyl venlafaxine
  • each of the other embodiments provide one of each of the following compounds in isolated form: cyclohexylbenzylcyanide (COBC), hydroxyl protected 4-hydroxybenzylcyanide (POBC), hydroxyl protected cyclohexylbenzylcyanide (PCOBC), hydroxyl protected tridesmethyl venlafaxine (PTDMV), and hydroxyl protected O-desmethyl venlafaxine (PODV).
  • COBC cyclohexylbenzylcyanide
  • POBC hydroxyl protected 4-hydroxybenzylcyanide
  • PCOBC hydroxyl protected cyclohexylbenzylcyanide
  • PTDMV hydroxyl protected tridesmethyl venlafaxine
  • PODV hydroxyl protected O-desmethyl venlafaxine
  • COBC may be obtained by any of the processes described below.
  • COBC is substantially pure, preferably at least 95% pure, more preferably at least 99% pure.
  • the invention encompasses a synthetic route for obtaining O- desmethylvenlafaxine, from hydroxybe ⁇ zylcyanide (OBC) and cyclohexylbenzylcyanide (COBC).
  • OBC hydroxybe ⁇ zylcyanide
  • COBC cyclohexylbenzylcyanide
  • hydroxybenzylcyanide or OBC refers to the compound 4-hydroxybenzylcyanide and cyclohexylbenzylcyanide or COBC refers to the compound 4-[l-cyano-l-(l-hydroxycyclohexyl)methyl]phenol.
  • the term “reduced pressure” refers to a pressure less than atmospheric pressure.
  • the term “substantially pure” means a compound of very high purity as is understood by one of skill in the art, such as a purity of about 95%, or greater, as determined, for example, by EDPLC area percent.
  • room temperature or “RT” means the ambient temperature of an typical laboratory, which is usually about that of Standard Temperature and Pressure (STP).
  • STP Standard Temperature and Pressure
  • an “isolated” compound means the compound has been separated from the reaction mixture in which it was formed.
  • OBC O-desmethyl venlafaxine
  • a protected hydroxybenzylcyanide (POBC) intermediate is condensed with cyclohexanone to form the protected intermediate (hydroxy)cyclohexylbenzylcyanide (PCOBC)- Further, the cyano group on the PCOBC is subjected to reduction, to form the protected intermediate tridesmethyl venlafaxine (PTDMV) which is then subjected to selective alkylation to produce O- desmethylvenlafaxine (ODV).
  • PTDMV tridesmethyl venlafaxine
  • the present invention provides a process for preparing cyclohexylbenzylcyanide (COBC) comprising reacting hydroxybenzylcyanide (OBC) with cyclohexanone, preferably in the presence of an organic solvent and/or a base.
  • the organic solvent is preferably a "dry organic solvent.”
  • dry organic solvent refers to an organic solvent that is essentially free of water such that the amount of residual water, if detectable, does not interfere with the reaction (e.g. by destroying catalysts) in a manner that prevents the benefits of the present invention from being realized.
  • Such dry organic solvent useful in the process of the present invention preferably comprises less about 1% by weight, more preferably less than about 0.1% by weight water, such as about 0.05% by weight to about 0.1% by weight of water.
  • a suitable organic solvent is selected from the group consisting of: ethers, polar aprotic solvents, aromatic hydrocarbons, and alcohols, acetonitrile, and mixtures thereof. More preferably, the ethers contain 2-8 carbon atoms, more preferably 4-8 carbon atoms, or are selected from the group consisting of: diisopropyl ether, diethyl ether, dioxane, tetrahydrofuran (THF); preferably, the polar aprotic solvents are selected from the group consisting of dimethylformamide (DMF), dimethylacetamide (DMA) and dimethy.lsulfoxide (DMSO); and the aromatic hydrocarbons are selected from the group consisting of toluene, xylene, and benzene; preferably the aromatic hydrocarbons contain 6-14 carbon atoms, more preferably from 6-10 carbon atoms, even more preferably toluene, xylene or benzene; preferably, the alcohols
  • the organic solvent is selected from the group consisting of: tetrahydrofuran (THF), dimethylformamide (DMF), dimethylacetamide (DMA) and dimethylsulfoxide (DMSO).
  • the organic solvent is a dry organic solvent.
  • the organic solvent can be employed as such, or it can be employed in mixture with another organic solvent such as methanol or toluene.
  • the cyclohexanone is present in an amount of about 1 to about 2 moles per mole of OBC, more preferably from about 1.1 mole to about 1.5 mole per mole of OBC.
  • the base is an inorganic base. More preferably, the inorganic base is an alkali metal base.
  • a suitable base for use in the process of the present invention is selected from the group consisting of: lithium diisopropyl amide (LDA), lithium bis (trimethyl silyl) amide (LiN[(CH3) 3 Si]2), sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH), cesium hydroxide (CsOH), sodium hydride (NaH), potassium hydride (KH), cesium hydride (CsH), potassium tert butoxide (t-BuOK), lithium tert butoxide (t-BuOLi), butyl lithium (BuLi) and sodium metoxide (NaOMe).
  • LDA lithium diisopropyl amide
  • KOH lithium bis (trimethyl silyl) amide
  • LiN[(CH3) 3 Si]2 sodium hydroxide
  • KOH potassium hydroxide
  • LiOH lithium hydro
  • the base is preferably lithium diisopropyl amide (LDA), and when the organic solvent is a polar aprotic solvent, such as for example DMSO, the base is preferably sodium methoxide (NaOMe).
  • the base is present in an amount of about 1 to about 5 moles per mole of OBC, more preferably in an amount of about 1.5 to about 3.5 moles per mole of OBC, even more preferably the amount is from about 2 to about 3 moles per mole of OBC.
  • a solution or a slurry of hydroxybenzylcyanide (OBC) and an organic solvent may be first combined with a base, followed by combining the obtained reaction mixture with cyclohexanone, to obtain COBC.
  • the initial reaction mixture may be cooled prior to adding cyclohexanone, preferably cooling is to a temperature of about -50 0 C to about -80 0 C, preferably about -65°C.
  • cyclohexanone is added to the reaction mixture in a dropwise manner.
  • the mixture may be further maintained, preferably at a constant temperature of about -40 0 C to about 35 0 C, preferably with stirring, for a sufficient time to obtain a useful amount of COBC, which is generally at least 10 minutes, preferably at least 45 min, more preferably from about 1 hour to an overnight period (about 8 to 18 hours), even more preferably from about 2 hours to about 5 hours.
  • COBC may be further recovered from the reaction mixture by any method known in the art.
  • recovery of COBC from the reaction mixture comprises the steps of extracting COBC from the reaction mixture, preferably with ethylacetate, washing the obtained organic layer, preferably with a saturated ammonium chloride solution and brine, and evaporating the solvent, preferably under reduced pressure, to obtain crude COBC.
  • Such recovery may further comprise the steps of slurrying the crude COBC in a chlorinated hydrocarbon, preferably methylene chloride, filtering the slurry, washing the solid with methylene chloride, and drying to obtain substantially pure COBC.
  • the present invention provides a process for obtaining cyclohexylbenzylcyanide (COBC) from a mixture of hydroxybenzylcyanide (OBC), a phase transfer catalyst, a base and cyclohexanone.
  • COBC cyclohexylbenzylcyanide
  • the phase transfer catalyst is selected from the group consisting of: tetrabutylammonium hydrogensulphate; a tetraalkylammonium halide wherein the alkyl group can be the same or different and contains from 1 to 6, such as for example tetrabutylammonium bromide, tetrabutylammonium chloride, or tetrabutylammonium iodide; benzyltriethyl ammonium chloride; a quaternary ammonium salt; a quaternary phosphonium salt and a crown ether. More preferably, the phase transfer catalyst is tetrabutylammonium bromide (TBAB).
  • TBAB tetrabutylammonium bromide
  • the base in this embodiment is preferably an inorganic base.
  • Suitable inorganic bases are, for example, metal oxides and metal carbonates.
  • the inorganic base is selected from the group consisting of: NaOH, KOH, LiOH, CsOH,
  • bases suitable for use in the process of the invention are, for example, metal alkanoxides such as sodium methoxide (NaOMe) or sodium ethanoxide (NaOEt).
  • the base is present in an amount of about 0.5 to about 3 mole per mole of OBC, more preferably from about 1 mole to about 2 mole per mole of OBC.
  • the cyclohexanone is present in an amount of about 1 to about 2 moles per mole of OBC, more preferably from about 1.1 mole to about 1.5 mole per mole of OBC.
  • the reaction may occur with or without the presence of an organic solvent or water. Preferably, the reaction occurs in the presence of water.
  • reaction mixture is maintained, preferably with stirring, for a sufficient period of time to obtain a useful amount of COBC.
  • a sufficient period of time may be from about 1 hour to about 24 hours, preferably an overnight period
  • the present invention also provides hydroxyl protected hydroxybenzylcyanide (POBC) of the following formula:
  • POBC wherein X is a hydroxyl protecting group.
  • the hydroxyl protecting group may be removed by deprotection.
  • the hydroxyl group on the 4-hydroxybenzylcyanide (OBC) may be prepared by a process comprising combining OBC with a protecting reagent to form a reaction mixture, optionally in an organic solvent and in the presence of a catalyst, a base or both, to obtain the hydroxyl protected POBC.
  • a suitable protecting agent can be any known hydroxyl protecting agent. Suitable hydroxyl protecting groups are listed in T.W. Greene, Protecting Groups in Organic Synthesis, (2 nd Ed.), which is incorporated herein by reference.
  • the hydroxyl protecting group can be a silyl, acetyl, or 3,4-dihydro-2H- puran (DHP).
  • the silyl protecting group is preferably tert-butyldimethylsilyl (TBDMS).
  • TDMS tert-butyldimethylsilyl
  • the protection reaction may be carried out at any suitable temperature depending on reagent used, preferably the temperature is between about 0 0 C to about 100 0 C, more preferably between about room temperature to about 55°C.
  • a preferred base added to the reaction mixture is selected from the group selected from imidazole, pyridine, triethylamine, lutidine, and dimethylaminopyridine.
  • a catalyst may be added to the mixture, such as for example Pyridinium p-toluene sulfonate (PPTS).
  • PPTS Pyridinium p-toluene sulfonate
  • POBC is substantially pure, preferably at least 95% pure, more preferably at least 99% pure.
  • PCOBC hydroxyl protected cyclohexylbenzylcyanide
  • PCOBC wherein X is as described above.
  • PCOBC is substantially pure, preferably at least 95% pure, more preferably at least 99% pure.
  • the present invention provides a process for preparing a hydroxyl protected COBC (PCOBC), according to the processes for preparing COBC, wherein the starting material 4-hydroxybenzylcyanide (OBC) is a hydroxyl protected OBC (POBC) as described in the scheme above.
  • the present invention provides a process for obtaining O-desmethylvenlafaxine comprising preparing COBC or PCOBC in any of the methods described above, and further converting them to O- desmethylvenlafaxine.
  • O- desmethyl venlafaxine, salts thereof or hydroxyl protected derivatives thereof may be prepared from hydroxybenzylcyanide by first protecting the hydroxyl group on the hydroxybenzylcyanide (OBC).
  • OBC hydroxybenzylcyanide
  • POBC hydroxyl protected cyclohexylbenzylcyanide
  • PTDMV tridesmethyl venlafaxine
  • PODV hydroxyl protected O- desmethyl venlafaxine
  • the protected POBC may be converted by any of the above processes to a hydroxyl protected PCOBC, which can be reduced to a hydroxyl protected
  • the protected PTDMV may be methylated to obtain the hydroxyl protected PODV.
  • the PODV is preferably deprotected with an appropriate deprotecting agent depending on the protecting group used.
  • an appropriate deprotecting agent can be an acid, such as for example methanesulfonic acid.
  • the present invention also provides a process for preparing tridesmethyl venlafaxine (TDMV).
  • TDMV may be prepared by reducing COBC.
  • COBC is combined with a reducing agent in the presence of an organic solvent and/or a Lewis acid catalyst, preferably boron trifluoride (BF 3 ) to create a reaction mixture.
  • a Lewis acid catalyst preferably boron trifluoride (BF 3 )
  • TDMV may be further recovered from the reaction mixture.
  • a solution of COBC, a reducing agent and an organic solvent are combined with a Lewis acid catalyst to obtain a reaction mixture, followed by recovery of the TDMV from the reaction mixture.
  • the solution of COBC, reducing agent and organic solvent is cooled prior to combining it with a Lewis acid catalyst.
  • a preferred temperature to which the mixture is cooled is to a temperature of less than about 1O 0 C, more preferably from about -1O 0 C to about 1O 0 C.
  • a preferred Lewis acid catalyst is boron trifluoride (BF 3 ). When BF 3 is used, it is preferably added as a complex in ether (BF 3 Et 2 O), or else the complex may be formed in situ.
  • COBC may be prepared by precipitation from a mixture of hydroxybenzylcyanide (OBC), an organic solvent, a base and cyelohexanone; or from a mixture of hydroxybenzylcyanide (OBC), a phase transfer catalyst, a base and cyclohexanone.
  • OBC hydroxybenzylcyanide
  • OBC hydroxybenzylcyanide
  • phase transfer catalyst a base and cyclohexanone
  • the reducing agent is selected from the group consisting of: sodium borohydride (NaBH 4 ), lithium borohydride (LiBH 4 ), lithium aluminum hydride (LiAlH 4 ), L-selectride (lithium tri-sec-butylborohydride), and borane. More preferably, the reducing agent is NaBH 4 .
  • the reduction can be performed by hydrogenation in the presence of a catalyst, e.g. Ni, Co, Pd/C, or Pt catalyst.
  • a catalyst e.g. Ni, Co, Pd/C, or Pt catalyst.
  • the organic solvent is a dry organic solvent.
  • the organic solvent is as described above. More preferably, the organic solvent is THF.
  • the reducing agent is present in an amount of about 1 to about 10 moles per mole of COBC, more preferably in an amount of about 4 to about
  • BF 3 is an amount of about 1 to about 5 moles per mole of COBC, more preferably from about 2 to about 3 mole per mole of COBC.
  • the reaction mixture in the process of the present invention may be maintained, preferably at a constant temperature, such as at room temperature, preferably while stirring, for a sufficient period of time to obtain TDMV.
  • a preferred period of time is from about 1 hour to about 24 hours, more preferably from about 3 hours to about 12 hours, even more preferably, from about 8 hours to about 10 hours.
  • TDMV may then be recovered from the reaction mixture by any method known in the art.
  • recovery of TDMV from the reaction mixture comprises the steps of basifying and optionally extracting TDMV from the reaction mixture, preferably with ethylacetate, washing the obtained organic solution, preferably with water and/or brine, and drying to obtain TDMV, preferably by evaporating the solvent for example under reduced pressure.
  • the present invention also provides the hydroxyl protected tridesmethyl venlafaxine (PTDMV) of the following formula:
  • PCOBC wherein X is as described above.
  • PCOBC is substantially pure, preferably at least 95% pure, more preferably at least 99% pure.
  • the present invention provides a process for preparing hydroxyl protected tridesmethyl venlafaxine (PTDMV), according to the preparation of TDMV, wherein the starting material the hydroxyl protected PCOBC as described above.
  • PTDMV hydroxyl protected tridesmethyl venlafaxine
  • the present invention provides a process for preparing O-desmethylvenlafaxine comprising preparing TDMV or PTDMV as described above, and further converting them to O-desmethylvenlafaxine.
  • the conversion of TDMV to O-desmethylvenlafaxine can be performed, for example as described in co-pending United States Patent Application No. --/—,—, filed July 26, 2007, entitled “Processes for the Synthesis of O- Desmethylvenlafaxine"(Atty Docket No 1662/03304), which is incorporated herein by reference.
  • TDMV may be combined with an organic solvent and a methylating agent to form a mixture, and recovering the O-desmethylvenlafaxine from the mixture.
  • TDMV may be subjected to selective reductive animation to produce O-desmethylvenlafaxine ("ODV").
  • O-desmethylvenlafaxine PTDMV is converted to PO- desmethylvenlafaxine in a similar manner.
  • the present invention provides a process for preparing O-desmethylvenlafaxine comprising: reacting hydroxybenzylcyanide (OBC) with cyclohexanone, preferably the step of reacting with cyclohexanone comprises combining OBC, an organic solvent, a base and cyclohexanone; reducing COBC, preferably the step of reducing COBC comprises combining a reducing agent, an organic solvent and boron trifluoride (BF3) to create a reaction mixture; recovering TDMV from the reaction mixture and converting the TDMV to O- desmethylvenlafaxine.
  • OBC hydroxybenzylcyanide
  • reducing COBC preferably the step of reducing COBC comprises combining a reducing agent, an organic solvent and boron trifluoride (BF3) to create a reaction mixture
  • recovering TDMV from the reaction mixture and converting the TDMV to O- desmethylvenlafaxine.
  • the present invention provides a process for preparing O-desmethylvenlafaxine comprising: providing a mixture of hydroxybenzylcyanide (OBC), a phase transfer catalyst, a base and cyclohexanone, to obtain COBC; reducing COBC, preferably the step of reducing COBC comprises combining a reducing agent, an organic solvent and boron trifluoride (BF 3 ) to create a reaction mixture; recovering TDMV from the reaction mixture and converting the TDMV to O-desmethylvenlafaxine.
  • OBC hydroxybenzylcyanide
  • a phase transfer catalyst a phase transfer catalyst
  • a base and cyclohexanone to obtain COBC
  • reducing COBC preferably the step of reducing COBC comprises combining a reducing agent, an organic solvent and boron trifluoride (BF 3 ) to create a reaction mixture
  • recovering TDMV from the reaction mixture and converting the TDMV to O-desmethylvenlafaxine.
  • O-desmethyl venlafaxine may be prepared by any of the above processes wherein the starting material is a hydroxyl protected intermediate as described above.
  • the present invention also provides the hydroxyl protected O-desmethyl venlafaxine (PODV).
  • PODV O-desmethyl venlafaxine
  • the O-desmethyl venlafaxine prepared by any of above process can be prepared in the form of a salt, preferably a succinate salt.
  • Mobile phase composition and flow rate may be varied in order to achieve the required system suitability.
  • reaction mixture was stirred 3 hours at room temperature and then quenched with 10%HCl. MeOH was removed under reduced pressure and the aqueous phase was basified with ammonium hydroxide (25%) and extracted with EtOAc. The organic phase was washed with water, brine, dried over Na 2 SO 4 and evaporated under reduced pressure to get 0.4 g of TDMV.
  • TDMV 0.5 g, 2.12 mmol
  • Methyl iodide (0.26 ml, 4.3 mmol) and triethylamine (0.66 ml, 4.73 mmol) were added.
  • the reaction mixture was stirred under nitrogen atmosphere at room temperature for 6 hours.
  • methyl iodide 0.5 ml
  • NEt 3 1.2 ml
  • OBC 5g, 37 mmol
  • 11 g of TBDMS-Cl, 12g of imidazole and 25ml of CH2CI 2 were stirred together for 2 hours at ambient temperature under N 2 atmosphere.
  • the product was washed with brine, a 10% aqueous solution of citric acid, brine and dried over MgSO 4 . After removal of the solvent 4g of product was obtained.
  • OBC-DHP (0.74g, 3.4 mmol)
  • cyclohexanone 0.5 g
  • TBAB 0.5 g
  • NaOH a 10% aqueous solution of NaOH
  • OBC-DHP (3.25g, 15 mmol) was dissolved in dry THF under N 2 and cooled to -8O 0 C.
  • reaction mixture is stirred 3 hours at room temperature and then quenched with 10%HCl. MeOH is removed under reduced pressure and the aqueous phase is basified with ammonium hydroxide (25%) and extracted with EtOAc. The organic phase is washed with water, brine, dried over Na 2 SO 4 and evaporated under reduced pressure to get PTDMV.
  • the reaction mixture is quenched with formic acid and water.
  • the organic phase is basified with NaOH (25%), washed with water and evaporated under reduced pressure to get PTDMV.

Abstract

The present invention describes processes for the preparation of O-desmethylvenlafaxine and the intermediates cyclohexylbenzylcyanide and tridesmethylvenlafaxine, which may be used as intermediates in preparing O- desmethylvenlafaxine.

Description

PROCESSES FOR THE SYNTHESIS OF O DE SMETH YL VENLAFAXINE
CROSS REFERENCE TO RELATED APPLICATIONS [1] The present application claims the benefit of the following United
States Provisional Patent Application Nos.: 60/833,616, filed July 26, 2006; 60/837,879, filed August 14, 2006; 60/849,216, filed October 3, 2006; 60/843,998, filed September 11, 2006; 60/849,255, filed October 3, 2006; 60/906,639, filed March 12, 2007; and 60/906,879, filed March 13, 2007. The contents of these applications are incorporated herein by reference.
FIELD OF THE INVENTION
[2] The invention encompasses processes for the synthesis of O- desmethyrvenlafaxine.
BACKGROUND OF THE INVENTION
[3] Venlafaxine, (±)-l-[2-(Dimethylamino)-l-(4-methoxyphenyl) ethyl] cyclohexanol is the first of a class of anti-depressants. Venlafaxine acts by inhibiting re-uptake of norepinephrine and serotonin, and is an alternative to the tricyclic antidepressants and selective re-uptake inhibitors. Venlafaxine has the following chemical formula, Formula I:
Figure imgf000002_0001
Formula I
[4] O-desmethylvenlafaxine, 4-[2-(dimethylamino)-l-(l- hydroxycyclohexyl)ethyl]phenol, is reported to be a metabolite of venlafaxine and has been reported to inhibit norepinephrine and serotonin uptake. See Klamerus, K. J. et al., "Introduction of the Composite Parameter to the Pharmacokinetics of Venlafaxine and its Active O-Desmethyl Metabolite," J. Clin. Pharmacol. 32:716-724 (1992). O- desmethylvenlafaxine has the following chemical formula, Formula II:
Figure imgf000003_0001
C16H25NO2 MoI. WL: 283.3B
Formula II
[5] Processes for the synthesis of O-desmethylvenlafaxine, comprising a step of demethylation of the methoxy group of venlafaxine, are described in U.S. patent No. 7,026,50S and 6,689,912, and in U.S. publication No. 2005/0197392. [6] The synthesis disclosed in the above references is performed according to the following scheme:
Figure imgf000003_0002
Veπlafaxiπe VNL ODV
Wherein "MBC" refers to methyl benzyl cyanide, "CMBC" refers to cyclohexyl methylbenzyl cyanide, "DDMV" refers to didesmethyl venlafaxine, and "ODV" refers to O-desmethylvenlafaxine.
[7] However, the processes disclosed in the above US patents and US patent applications all remain problematic when applied to industrial scale production. Further, the process disclosed in US Application Publication No. 2005/0197392 uses lithiumdiphenyl phosphine, a compound which handling and use in industrial scale processes is extremely dangerous. Also, the process disclosed in US Patent No 6,689,912 uses methanol as a solvent, which use is problematic when traces of methanol remain and in subsequent process steps when high temperatures are applied. [8] There is a need in the art for a new synthetic route for obtaining O- desmethylvenlafaxine, using a precursor of venlafaxine to obtain O- desmethylvenlafaxine rather than by preparing venlafaxine and subsequently demethylating venlafaxine to obtain O-desmethyl venlafaxine.
SUMMARY OF THE INVENTION
[9] In one embodiment, there is provided cyclohexylbenzylcyanide
(COBC) of the formula:
Figure imgf000004_0001
COBC
[10] In another embodiment, the present invention provides a process for preparing cyclohexylbenzylcyanide (COBC) comprising reacting hydroxybenzylcyanide (OBC) with cyclohexanone, preferably the reaction comprises combining OBC, an organic solvent, preferably a dry organic solvent, a base and cyclohexanone.
[11] In another embodiment, the present invention provides a process for obtaining cyclohexylbenzylcyanide (COBC) comprising reacting hydroxybenzylcyanide (OBC) with cyclohexanone in the presence of a phase transfer catalyst and a base.
[12] In another embodiment, the present invention provides a process for obtaining O-desmethylvenlafaxine comprising preparing COBC as described above, and further converting the COBC to O-desmethylvenlafaxine. [13] In another embodiment, the present invention provides a process for preparing tridesmethyl venlafaxine (TDMV) comprising: reducing COBC, preferably the step of reducing COBC comprises combining COBC, a reducing agent, an organic solvent and a Lewis acid catalyst, preferably boron trifiuoride (BF3), to create a reaction mixture, optionally followed by recovery of the TDMV from the reaction mixture.
[14] In another embodiment, the present invention provides a process for obtaining O-desmethylvenlafaxine comprising preparing TDMV as described above, and further converting the TDMV to O-desmethylvenlafaxine.
[15] In another embodiment, the present invention provides a process for preparing O-desmethylvenlafaxine comprising: reacting hydroxybenzylcyanide
(OBC) with cyclohexanone, preferably the step of reacting with cyclohexanone comprises combining OBC, an organic solvent, a base and cyclohexanone; reducing
COBC, preferably the step of reducing COBC comprises combining a reducing agent, an organic solvent and a Lewis acid catalyst, preferably boron trifluoride (BF3), to create a reaction mixture; optionally recovering TDMV from the reaction mixture and converting the TDMV to O-desmethylvenlafaxine.
[16J In. another embodiment, the present invention provides a process for preparing O-desmethylvenlafaxine comprising: providing a mixture of hydroxybenzylcyanide (OBC), a phase transfer catalyst, a base and cyclohexanone, to obtain COBC; reducing COBC, preferably the step of reducing COBC comprises combining a reducing agent, an organic solvent and a Lewis acid catalyst, preferably boron trifluoride (BF3), to create a reaction mixture; optionally recovering TDMV from the reaction mixture and converting the TDMV to O-desmethylvenlafaxine.
[17] In another embodiment, the present invention provides a process of preparing O-desmethyl venlafaxine (ODV) comprising combining hydroxybenzylcyanid (OBC) with a protecting reagent to obtain a hydroxyl protected hydroxybenzylcyanide (POBC), converting POBC to hydroxy protected O- desmethylvenlafaxine (PODV), and deprotecting PODV to form ODV.
[18] In yet another embodiment there is provided a hydroxyl protected hydroxybenzylcyanide (POBC). Also provided is a process of preparing POBC from hydroxybenzyl cyanide (OBC).
[19] In another embodiment there is provided a hydroxyl protected cyclcohexylbenzylcyanide (PCOBC). Also provided is a process of preparing
PCOBC.
[20] In another embodiment there is provided a hydroxyl protected tridesmethyl venlafaxine (PTDMV). Also provided is a process of preparing
PTDMV). [21] In another embodiment there is provided a hydroxyl protected O- desmethyl venlafaxine (PODV).
[22] In yet other embodiments of the invention each of the other embodiments provide one of each of the following compounds in isolated form: cyclohexylbenzylcyanide (COBC), hydroxyl protected 4-hydroxybenzylcyanide (POBC), hydroxyl protected cyclohexylbenzylcyanide (PCOBC), hydroxyl protected tridesmethyl venlafaxine (PTDMV), and hydroxyl protected O-desmethyl venlafaxine (PODV).
DETAILED DESCRIPTION OF THE INVENTION [23] In one embodiment of the invention there is provided a cyclohexylbenzylcyanide compound COBC of the following formula
Figure imgf000006_0001
COBC
COBC may be obtained by any of the processes described below. Preferably, COBC is substantially pure, preferably at least 95% pure, more preferably at least 99% pure. [24] The invention encompasses a synthetic route for obtaining O- desmethylvenlafaxine, from hydroxybeπzylcyanide (OBC) and cyclohexylbenzylcyanide (COBC). As used herein, hydroxybenzylcyanide or OBC refers to the compound 4-hydroxybenzylcyanide and cyclohexylbenzylcyanide or COBC refers to the compound 4-[l-cyano-l-(l-hydroxycyclohexyl)methyl]phenol. [25] As used herein, the term "reduced pressure" refers to a pressure less than atmospheric pressure. As used herein, the term "substantially pure" means a compound of very high purity as is understood by one of skill in the art, such as a purity of about 95%, or greater, as determined, for example, by EDPLC area percent. As used herein the term "room temperature" or "RT" means the ambient temperature of an typical laboratory, which is usually about that of Standard Temperature and Pressure (STP). As used herein, an "isolated" compound means the compound has been separated from the reaction mixture in which it was formed. 126J In the process of the invention, the intermediate hydroxybenzylcyanide
(OBC) is condensed with cyclohexanone to form the intermediate (hydroxy)cyclohexylbenzylcyanide (COBC). Further, the cyano group on the COBC is subjected to reduction, to form the intermediate tridesmethyl venlafaxine (TDMV) which is then subjected to selective alkylation to produce O-desmethyl venlafaxine (ODV).
[27] Alternatively, a protected hydroxybenzylcyanide (POBC) intermediate is condensed with cyclohexanone to form the protected intermediate (hydroxy)cyclohexylbenzylcyanide (PCOBC)- Further, the cyano group on the PCOBC is subjected to reduction, to form the protected intermediate tridesmethyl venlafaxine (PTDMV) which is then subjected to selective alkylation to produce O- desmethylvenlafaxine (ODV).
[28] The two pathways are as described in the following scheme:
Figure imgf000007_0001
wherein X is a hydroxyl protecting group.
[29] In one embodiment, the present invention provides a process for preparing cyclohexylbenzylcyanide (COBC) comprising reacting hydroxybenzylcyanide (OBC) with cyclohexanone, preferably in the presence of an organic solvent and/or a base. The organic solvent is preferably a "dry organic solvent." As used herein the term "dry organic solvent" refers to an organic solvent that is essentially free of water such that the amount of residual water, if detectable, does not interfere with the reaction (e.g. by destroying catalysts) in a manner that prevents the benefits of the present invention from being realized. Such dry organic solvent useful in the process of the present invention preferably comprises less about 1% by weight, more preferably less than about 0.1% by weight water, such as about 0.05% by weight to about 0.1% by weight of water.
[30] A suitable organic solvent is selected from the group consisting of: ethers, polar aprotic solvents, aromatic hydrocarbons, and alcohols, acetonitrile, and mixtures thereof. More preferably, the ethers contain 2-8 carbon atoms, more preferably 4-8 carbon atoms, or are selected from the group consisting of: diisopropyl ether, diethyl ether, dioxane, tetrahydrofuran (THF); preferably, the polar aprotic solvents are selected from the group consisting of dimethylformamide (DMF), dimethylacetamide (DMA) and dimethy.lsulfoxide (DMSO); and the aromatic hydrocarbons are selected from the group consisting of toluene, xylene, and benzene; preferably the aromatic hydrocarbons contain 6-14 carbon atoms, more preferably from 6-10 carbon atoms, even more preferably toluene, xylene or benzene; preferably, the alcohols contain 1-6 carbon atoms, more preferably 1-4 carbon atoms or are selected from the group consisting of methanol, ethanol,.isopropanol (IPA), and butanol. Most preferably, the organic solvent is selected from the group consisting of: tetrahydrofuran (THF), dimethylformamide (DMF), dimethylacetamide (DMA) and dimethylsulfoxide (DMSO). Preferably, the organic solvent is a dry organic solvent. [311 The organic solvent can be employed as such, or it can be employed in mixture with another organic solvent such as methanol or toluene. [32] Preferably, the cyclohexanone is present in an amount of about 1 to about 2 moles per mole of OBC, more preferably from about 1.1 mole to about 1.5 mole per mole of OBC.
[33] Preferably, the base is an inorganic base. More preferably, the inorganic base is an alkali metal base. A suitable base for use in the process of the present invention is selected from the group consisting of: lithium diisopropyl amide (LDA), lithium bis (trimethyl silyl) amide (LiN[(CH3)3Si]2), sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH), cesium hydroxide (CsOH), sodium hydride (NaH), potassium hydride (KH), cesium hydride (CsH), potassium tert butoxide (t-BuOK), lithium tert butoxide (t-BuOLi), butyl lithium (BuLi) and sodium metoxide (NaOMe). When the organic solvent is tetrahydrofuran (THF), the base is preferably lithium diisopropyl amide (LDA), and when the organic solvent is a polar aprotic solvent, such as for example DMSO, the base is preferably sodium methoxide (NaOMe). [34] Preferably, the base is present in an amount of about 1 to about 5 moles per mole of OBC, more preferably in an amount of about 1.5 to about 3.5 moles per mole of OBC, even more preferably the amount is from about 2 to about 3 moles per mole of OBC.
[35] In one embodiment of the invention, a solution or a slurry of hydroxybenzylcyanide (OBC) and an organic solvent may be first combined with a base, followed by combining the obtained reaction mixture with cyclohexanone, to obtain COBC. The initial reaction mixture may be cooled prior to adding cyclohexanone, preferably cooling is to a temperature of about -500C to about -800C, preferably about -65°C. Preferably, cyclohexanone is added to the reaction mixture in a dropwise manner.
[36] After combining the reaction mixture with cyclohexanone, the mixture may be further maintained, preferably at a constant temperature of about -400C to about 350C, preferably with stirring, for a sufficient time to obtain a useful amount of COBC, which is generally at least 10 minutes, preferably at least 45 min, more preferably from about 1 hour to an overnight period (about 8 to 18 hours), even more preferably from about 2 hours to about 5 hours.
[37] COBC may be further recovered from the reaction mixture by any method known in the art. In one embodiment, recovery of COBC from the reaction mixture comprises the steps of extracting COBC from the reaction mixture, preferably with ethylacetate, washing the obtained organic layer, preferably with a saturated ammonium chloride solution and brine, and evaporating the solvent, preferably under reduced pressure, to obtain crude COBC. Such recovery may further comprise the steps of slurrying the crude COBC in a chlorinated hydrocarbon, preferably methylene chloride, filtering the slurry, washing the solid with methylene chloride, and drying to obtain substantially pure COBC.
[38] In another embodiment, the present invention provides a process for obtaining cyclohexylbenzylcyanide (COBC) from a mixture of hydroxybenzylcyanide (OBC), a phase transfer catalyst, a base and cyclohexanone. [39] Preferably, the phase transfer catalyst is selected from the group consisting of: tetrabutylammonium hydrogensulphate; a tetraalkylammonium halide wherein the alkyl group can be the same or different and contains from 1 to 6, such as for example tetrabutylammonium bromide, tetrabutylammonium chloride, or tetrabutylammonium iodide; benzyltriethyl ammonium chloride; a quaternary ammonium salt; a quaternary phosphonium salt and a crown ether. More preferably, the phase transfer catalyst is tetrabutylammonium bromide (TBAB).
[40] The base in this embodiment is preferably an inorganic base. Suitable inorganic bases are, for example, metal oxides and metal carbonates. Preferably, the inorganic base is selected from the group consisting of: NaOH, KOH, LiOH, CsOH,
K2CO3, Na2CO3, and Cs2Cθ3. Other bases suitable for use in the process of the invention are, for example, metal alkanoxides such as sodium methoxide (NaOMe) or sodium ethanoxide (NaOEt). Preferably, the base is present in an amount of about 0.5 to about 3 mole per mole of OBC, more preferably from about 1 mole to about 2 mole per mole of OBC.
[41] Preferably, the cyclohexanone is present in an amount of about 1 to about 2 moles per mole of OBC, more preferably from about 1.1 mole to about 1.5 mole per mole of OBC.
[42] The reaction may occur with or without the presence of an organic solvent or water. Preferably, the reaction occurs in the presence of water.
[43] Preferably, the reaction mixture is maintained, preferably with stirring, for a sufficient period of time to obtain a useful amount of COBC. A sufficient period of time may be from about 1 hour to about 24 hours, preferably an overnight period
(about 8 to about 18 hours). One of ordinary skill in the art could easily monitor the reaction to determine whether a sufficient period of time has elapsed.
[44] The present invention also provides hydroxyl protected hydroxybenzylcyanide (POBC) of the following formula:
Figure imgf000010_0001
POBC wherein X is a hydroxyl protecting group. The hydroxyl protecting group may be removed by deprotection.
[45] The hydroxyl group on the 4-hydroxybenzylcyanide (OBC) may be prepared by a process comprising combining OBC with a protecting reagent to form a reaction mixture, optionally in an organic solvent and in the presence of a catalyst, a base or both, to obtain the hydroxyl protected POBC. [46] A suitable protecting agent can be any known hydroxyl protecting agent. Suitable hydroxyl protecting groups are listed in T.W. Greene, Protecting Groups in Organic Synthesis, (2nd Ed.), which is incorporated herein by reference. Preferably, the hydroxyl protecting group can be a silyl, acetyl, or 3,4-dihydro-2H- puran (DHP). The silyl protecting group is preferably tert-butyldimethylsilyl (TBDMS). The protection reaction may be carried out at any suitable temperature depending on reagent used, preferably the temperature is between about 00C to about 1000C, more preferably between about room temperature to about 55°C. A preferred base added to the reaction mixture is selected from the group selected from imidazole, pyridine, triethylamine, lutidine, and dimethylaminopyridine. A catalyst may be added to the mixture, such as for example Pyridinium p-toluene sulfonate (PPTS). [47] Preferably, POBC is substantially pure, preferably at least 95% pure, more preferably at least 99% pure.
[48] The present invention also provides hydroxyl protected cyclohexylbenzylcyanide (PCOBC). of the following formula:
Figure imgf000011_0001
PCOBC wherein X is as described above. Preferably, PCOBC is substantially pure, preferably at least 95% pure, more preferably at least 99% pure.
[49] In another embodiment, the present invention provides a process for preparing a hydroxyl protected COBC (PCOBC), according to the processes for preparing COBC, wherein the starting material 4-hydroxybenzylcyanide (OBC) is a hydroxyl protected OBC (POBC) as described in the scheme above. [50] In another embodiment, the present invention provides a process for obtaining O-desmethylvenlafaxine comprising preparing COBC or PCOBC in any of the methods described above, and further converting them to O- desmethylvenlafaxine.
[51] In another embodiment of the process of the present invention O- desmethyl venlafaxine, salts thereof or hydroxyl protected derivatives thereof may be prepared from hydroxybenzylcyanide by first protecting the hydroxyl group on the hydroxybenzylcyanide (OBC). The hydroxyl protected hydroxybenzylcyanide
(POBC) may then be condensed with cyclohexanone to obtain a hydroxyl protected cyclohexylbenzylcyanide (PCOBC) which is reduced to form the hydroxyl protected tridesmethyl venlafaxine (PTDMV) and methylated to form a hydroxyl protected O- desmethyl venlafaxine (PODV) as is shown in the schematic above.
[52] The protected POBC may be converted by any of the above processes to a hydroxyl protected PCOBC, which can be reduced to a hydroxyl protected
PTDMV by a process described above, and the protected PTDMV may be methylated to obtain the hydroxyl protected PODV. Subsequently, the PODV is preferably deprotected with an appropriate deprotecting agent depending on the protecting group used. Preferably such deprotection agent can be an acid, such as for example methanesulfonic acid.
[53] The present invention also provides a process for preparing tridesmethyl venlafaxine (TDMV). TDMV may be prepared by reducing COBC.
Preferably, COBC is combined with a reducing agent in the presence of an organic solvent and/or a Lewis acid catalyst, preferably boron trifluoride (BF3) to create a reaction mixture. TDMV may be further recovered from the reaction mixture.
[54] In one embodiment, a solution of COBC, a reducing agent and an organic solvent are combined with a Lewis acid catalyst to obtain a reaction mixture, followed by recovery of the TDMV from the reaction mixture.
[55] Preferably, the solution of COBC, reducing agent and organic solvent is cooled prior to combining it with a Lewis acid catalyst. A preferred temperature to which the mixture is cooled is to a temperature of less than about 1O0C, more preferably from about -1O0C to about 1O0C.
[56] A preferred Lewis acid catalyst is boron trifluoride (BF3). When BF3 is used, it is preferably added as a complex in ether (BF3Et2O), or else the complex may be formed in situ.
[57] In some embodiments, COBC may be prepared by precipitation from a mixture of hydroxybenzylcyanide (OBC), an organic solvent, a base and cyelohexanone; or from a mixture of hydroxybenzylcyanide (OBC), a phase transfer catalyst, a base and cyclohexanone.
[58] Preferably, the reducing agent is selected from the group consisting of: sodium borohydride (NaBH4), lithium borohydride (LiBH4), lithium aluminum hydride (LiAlH4), L-selectride (lithium tri-sec-butylborohydride), and borane. More preferably, the reducing agent is NaBH4.
[59] Alternatively, the reduction can be performed by hydrogenation in the presence of a catalyst, e.g. Ni, Co, Pd/C, or Pt catalyst.
[60] Preferably, the organic solvent is a dry organic solvent. The organic solvent is as described above. More preferably, the organic solvent is THF.
[61] Preferably, the reducing agent is present in an amount of about 1 to about 10 moles per mole of COBC, more preferably in an amount of about 4 to about
10 moles per mole of COBC. A preferred amount of the Lewis acid catalyst, such as
BF3, is an amount of about 1 to about 5 moles per mole of COBC, more preferably from about 2 to about 3 mole per mole of COBC.
[62] The reaction mixture in the process of the present invention may be maintained, preferably at a constant temperature, such as at room temperature, preferably while stirring, for a sufficient period of time to obtain TDMV. A preferred period of time is from about 1 hour to about 24 hours, more preferably from about 3 hours to about 12 hours, even more preferably, from about 8 hours to about 10 hours.
[63] TDMV may then be recovered from the reaction mixture by any method known in the art. In one embodiment, recovery of TDMV from the reaction mixture comprises the steps of basifying and optionally extracting TDMV from the reaction mixture, preferably with ethylacetate, washing the obtained organic solution, preferably with water and/or brine, and drying to obtain TDMV, preferably by evaporating the solvent for example under reduced pressure.
[64] The present invention also provides the hydroxyl protected tridesmethyl venlafaxine (PTDMV) of the following formula:
Figure imgf000013_0001
PTDMV wherein X is as described above. Preferably, PCOBC is substantially pure, preferably at least 95% pure, more preferably at least 99% pure.
[65] In another embodiment, the present invention provides a process for preparing hydroxyl protected tridesmethyl venlafaxine (PTDMV), according to the preparation of TDMV, wherein the starting material the hydroxyl protected PCOBC as described above.
[66] In another embodiment, the present invention provides a process for preparing O-desmethylvenlafaxine comprising preparing TDMV or PTDMV as described above, and further converting them to O-desmethylvenlafaxine. [67] The conversion of TDMV to O-desmethylvenlafaxine can be performed, for example as described in co-pending United States Patent Application No. --/—,—, filed July 26, 2007, entitled "Processes for the Synthesis of O- Desmethylvenlafaxine"(Atty Docket No 1662/03304), which is incorporated herein by reference. For example, TDMV may be combined with an organic solvent and a methylating agent to form a mixture, and recovering the O-desmethylvenlafaxine from the mixture. Also, TDMV may be subjected to selective reductive animation to produce O-desmethylvenlafaxine ("ODV"). PTDMV is converted to PO- desmethylvenlafaxine in a similar manner.
[68] In another embodiment, the present invention provides a process for preparing O-desmethylvenlafaxine comprising: reacting hydroxybenzylcyanide (OBC) with cyclohexanone, preferably the step of reacting with cyclohexanone comprises combining OBC, an organic solvent, a base and cyclohexanone; reducing COBC, preferably the step of reducing COBC comprises combining a reducing agent, an organic solvent and boron trifluoride (BF3) to create a reaction mixture; recovering TDMV from the reaction mixture and converting the TDMV to O- desmethylvenlafaxine.
[69] In another embodiment, the present invention provides a process for preparing O-desmethylvenlafaxine comprising: providing a mixture of hydroxybenzylcyanide (OBC), a phase transfer catalyst, a base and cyclohexanone, to obtain COBC; reducing COBC, preferably the step of reducing COBC comprises combining a reducing agent, an organic solvent and boron trifluoride (BF3) to create a reaction mixture; recovering TDMV from the reaction mixture and converting the TDMV to O-desmethylvenlafaxine.
[70] In another embodiment of the present invention a hydroxyl protected
O-desmethyl venlafaxine (PODV) may be prepared by any of the above processes wherein the starting material is a hydroxyl protected intermediate as described above. The present invention also provides the hydroxyl protected O-desmethyl venlafaxine (PODV). [71] The O-desmethyl venlafaxine prepared by any of above process can be prepared in the form of a salt, preferably a succinate salt.
[72] Having described the invention with reference to certain preferred embodiments, other embodiments will become apparent to one skilled in the art from consideration of the specification. The invention is further defined by reference to the following examples describing in detail the synthesis of the compound COBC, tridesmethyl venlafaxine and further their conversion to O-desmethylvenlafaxine. It will be apparent to those skilled in the art that many modifications, both to materials and methods, may be practiced without departing from the scope of the invention.
EXAMPLES
HPLC Method: Column & Packing: Zorbax SB C-18 4.6*250mm Part No.28105-020 or equivalent column
Column Temperature: 25°C Buffer Add 4.0ml of trifluoroacetic acid and 7.0ml of triethylamine to IL of water adjust the pH to3.0 with triethylamine.
Eluent:
Reservoir A 30%Acetonitrile and 70% Buffer Reservoir B To a mixture of 700ml Acetonitrile and 300ml buffer add 1.6ml of trifluoroacetic acid and 2.9ml of triethylamine measure the pH it should be about 3.0 (correct the pH with triethylamine or trifluoroacetic acid if necessary).
Gradient Time Reservoir A Reservoir B
0 100% 0%
21 min 100% 0%
55 min 45% 55%
Equilibrium time: lOmin
Flow Rate: 1.0 ml/min
Detector: 230 nm
Sample Volume: 10 μl Diluent: Eluent A
Mobile phase composition and flow rate may be varied in order to achieve the required system suitability.
Sample Preparation
Weigh accurately about 10 mg of sample in a 20ml amber volumetric flask. Dissolve with eluent A.
Method
Inject the sample solutions into the chromatograph, continuing the chromatogram of sample up to the end of the gradient. Determine the areas for each peak in each solution using a suitable integrator.
Calculation
Impurity Profile Determination area impurity in sample , ΛΛ
% impurity = — x 100
Total area
Preparation of COBC
Example 1:
A 100 ml, three necked flask equipped with Nitrogen inlet, thermometer and mechanical stirrer was charged with OBC (2g, 15 mmol) and THF (15 ml). This solution was cooled to -78°C and LDA (2M in THF, 16.5 ml, 33 mmol) was added slowly, keeping temperature under -65°C. A white solid precipitated during LDA addition. After the end of the addition, the mixture was stirred for 30 minutes. Cyclohexanone (1.62 g, 16.5 mmol) was then added, and the mixture continued in the same conditions for 5 hours. The reaction was quenched by pouring it into 100 ml of a saturated ammonium chloride solution containing ice.
The product was extracted to EtOAc (3x30 ml). The organic layer was washed with a saturated ammonium chloride solution and brine. Finally the solvent was evaporated under reduced pressure to get 3.5 g of a mixture of OBC (30%) and COBC (60%) (Yield =60%).
This mixture was suspended in 10 ml methylene chloride, where a solid precipitated. The slurry was stirred at room temperature for 2 hours, the solid filtered, washed with methylene chloride and vacuum dried at room temperature, to get 1.9g COBC (purity 99% by HPLC area, yield=55%).
Example 2:
A 100 ml, three necked flask equipped with Nitrogen inlet, thermometer and magnetic stirrer was charged with OBC (5g, 37.5 mmol) and DMSO (5 ml). The contents of the flask were stirred to complete dissolving (brown color). KOH (3.2g , 56 mmol ) was added and the reaction mixture stirred vigorously (exothermic).
Cyclohexanone (5.52 g, 56 mmol) was then added dropwise. The reaction was quenched with HCl 5% and methylene chloride was added. The layers were separated and a solid precipitated. The solid was then filtered under reduced pressure and washed with a small amount of methylene chloride to yield 3.2g of COBC.
Example 3:
A 100 ml three necked flask equipped with nitrogen inlet, thermometer and mechanical stirrer was charged with OBC (2g, 15 mmol), toluene (15 ml) and DMF (2ml). The reaction mixture was stirred at about room temperature (RT) until dissolution was complete and NaH (1.2g, 30 mmol) was added. Cyclohexanone (1.7 g, 17.3 mmol) was then added dropwise. The reaction was stirred at RT for an additional lhr to get 21% COBC (% area HPLC).
Example 4:
A 100 ml three necked flask equipped with nitrogen inlet, thermometer and mechanical stirrer was charged with OBC (2g, 15 mmol), THF (30 ml) and DMF (2ml). The reaction mixture was stirred at RT until dissolution was complete and t- BuOK (3.3 g, 30 mmol) was added. Cyclohexanone (1.65 g, 16.8 mmol) was then added dropwise and the reaction was stirred at RT for an additional 3.5hrs to get 19%COBC (% area HPLC).
Example 5:
A 100 ml three necked flask equipped with nitrogen inlet, thermometer and mechanical stirrer was charged with OBC (2g, 15 mmol), THF (15 ml) and DMF (2ml). The mixture was stirred at RT until complete dissolution and NaH (1.2g, 30 mmol) was added. Cyclohexanone (1.7 g, 17.3 mmol) was then added dropwise and the reaction was stirred at RT for and additional 2hrs to get 34%COBC (% area HPLC). Example 6:
A 100 ml three necked flask equipped with nitrogen inlet, thermometer and mechanical stirrer was charged with OBC (2g, 15 mmol) MeOH (15 ml) and DMF (2ml). The reaction mixture was stirred at RT until complete dissolution and NaOCH3 (1.7g, 30 mmol) was added. Cyclohexanone (1.7 g, 17.3 mmol) was then added dropwise and the reaction was stirred at RT overnight to obtain 30% COBC (% area HPLC).
Example 7:
A 100 ml three necked flask equipped with nitrogen inlet, thermometer and mechanical stirrer was charged with OBC (2g, 15 mmol), MeOH (10 ml) and DMSO (10ml). The reaction mixture was stirred at RT until complete dissolution and NaOCH3 (1.7g, 30 mmol) was added. Cyclohexanone (1.7 g, 17.3 mmol) was added dropwise. The reaction was stirred at RT overnight to obtain 32% COBC (% area HPLC).
Example 8:
A 100 ml, three necked flask equipped with nitrogen inlet, thermometer and mechanical stirrer was charged with OBC (2g, 15 mmol) and DMSO (10ml). The reaction mixture was stirred at RT until complete dissolution and NaOCTb (2.65g, 47 mmol) was added. Cyclohexanone (2 g, 20.37 mmol) was then added dropwise. The reaction was stirred at RT 10 min to get 43% COBC (% area HPLC).
Example 9:
A 100 ml three necked flask equipped with nitrogen inlet, thermometer and mechanical stirrer was charged with OBC (2g, 15 mmol) and DMSO (10ml). The reaction mixture was stirred at RT until complete dissolution and NaOCHj (Ig, 17.6 mmol) was added. Cyclohexanone (2 g, 20.37 mmol) was then added dropwise. The reaction was stirred at RT 45 min to get 55% of COBC (% area HPLC).
Example 10:
A 100 ml three necked flask equipped with nitrogen inlet, thermometer and mechanical stirrer was charged with OBC (2g, 15 mmol) and DMSO (10ml). The reaction mixture was stirred at RT until complete dissolution and LiOH (Ig, 23.8 mmol) was added. Cyclohexanone (2 g, 20.37 mmol) was then added dropwise. The reaction was stirred at RT S.5hrs to get 35% of COBC (% area HPLC).
Example 11 :
A 100 ml three necked flask equipped with, thermometer and mechanical stirrer was charged with OBC (2g, 15 mmol), cyclohexanone (1.7 g, 17.3 mmol), TBAB (0.26g) and NaOH (6ml 10%). The reaction was stirred at RT overnight to get 44% COBC (HPLC).
Example 12:
A 100 ml three necked flask equipped with nitrogen inlet, thermometer and mechanical stirrer was charged with OBC (2g, 15 mmol) and THF (15ml). The reaction mixture was stirred at RT until complete dissolution and t-BuOLi (2g, 25 mmol) was added. Cyclohexanone (2 g, 20.37 mmol) was then added dropwise. The reaction was stirred at RT 45min to get 19% COBC (% area HPLC).
Example 13:
A 100 ml three necked flask equipped with nitrogen inlet, thermometer and mechanical stirrer was charged with OBC (2g, 15 mmol), THF(15ml) and DMF (1.5ml). The reaction mixture was stirred at RT until complete dissolution and t- BuOLi (2.5g, 30 mmol) was added. Cyclohexanone (2 g, 20.37 mmol) was then added dropwise. The reaction was stirred at RT 1.15 hr to get 23.5% COBC (% area HPLC).
Example 14:
A 100 ml three necked flask equipped with thermometer and mechanical stirrer was charged with OBC (2g, 15 mmol) and cyclohexanone (2 g, 20.37 mmol), TBAB (0.5g) and NaOH (13ml 10%) were added. The reaction was stirred at RT overnight to get 40%COBC (% area HPLC).
Example 15:
A 100 ml three necked flask equipped with thermometer and mechanical stirrer was charged with OBC (2g, 15 mmol) and cyclohexanone (2.2g, 22.4 mmol). Water (10ml), TBAB (0.3g) and KOH (1.9g, 30.5 mmol) were then added. The reaction was stirred at RT overnight to get 39% COBC (% area HPLC). Example 16:
A 100 ml three necked flask equipped with thermometer and mechanical stirrer was charged with OBC (2g, 15 mmol) and cyclohexanone (2 .2g, 22.4 mmol). Water (10ml), TBAB(0.3gr) and LiOH (2g, 47.6mmol) were then added. The reaction was stirred at RT overnight to get 39% COBC (% area HPLC)-
Example 17:
A 100 ml three necked flask equipped with thermometer and mechanical stirrer was charged with OBC (2g, 15 mmol), DMA (10ml) and LiOH (2g, 47.7 mmol). Cyclohexanone (2.2g, 22.4 mmol) was then added dropwise. The reaction mixture was stirred at RT overnight to get 10% COBC (% area HPLC).
Preparation of TDMV
Example 18:
AlOO ml three necked flask equipped with nitrogen inlet thermometer and mechanical stirrer was charged with COBC (2 g, 8.64 mmol), MeOH (50 ml) and CoCl anhydrous (2.25 g, 17.32 mmol). The resulting solution was cooled to-10°C with an ice-bath. NaBH4 (3.35 g, 88.62mmol) was added portionwise at this temperature. The ice-bath was removed one hour after the end of addition.
The reaction mixture was stirred 3 hours at room temperature and then quenched with 10%HCl. MeOH was removed under reduced pressure and the aqueous phase was basified with ammonium hydroxide (25%) and extracted with EtOAc. The organic phase was washed with water, brine, dried over Na2SO4 and evaporated under reduced pressure to get 0.4 g of TDMV.
Example 19:
A 100 ml three necked flask equipped with nitrogen inlet thermometer and mechanical stirrer was charged with NaBH4 (1.2 g, 31.74 mmol) THF (10ml). This solution was cooled to 100C with an ice-bath. BF3Et2O (3.95g, 27.86mmol) and COBC (2 g, 8.64 mmol) were then added. The reaction mixture was stirred at room temperature overnight.
The reaction mixture was quenched with formic acid and water. The organic phase was basified with NaOH (25%), washed with water and evaporated under reduced pressure to get TDMV. Preparation of O-desmethylvenlafaxine
Example 20:
TDMV (0.5 g, 2.12 mmol) was suspended in CH2Cl2. Methyl iodide (0.26 ml, 4.3 mmol) and triethylamine (0.66 ml, 4.73 mmol) were added. The reaction mixture was stirred under nitrogen atmosphere at room temperature for 6 hours. At this stage methyl iodide (0.5 ml) and NEt3 (1.2 ml) were added. The addition caused the temperature to rise. After 16 hours, HPLC analysis indicated the presence of ODV.
Preparation of POBC
Example 21 : Preparation of OBC-DHP
OBC (0.5g, 3.7 mmol) was dissolved at room temperature in 3,4-dihydro-2H- pyran (DHP) (approx. 2 ml) under N2. Pyridinium p-toluene sulfonate (PPTS, catalytic amount) was added and heated to 55°C for 45 min. The end of reaction was determined by TLC (eluent EtOAc:Hex 1:1). The product was extracted in EtOAc, washed with brine and dried over MgSO4. A pale yellow powder was obtained (0.74g, purity= 98% by area % of HPLC, yield= 91%)
Example 22: Preparation of OBC-TBDMS
OBC (5g, 37 mmol), 11 g of TBDMS-Cl, 12g of imidazole and 25ml of CH2CI2 were stirred together for 2 hours at ambient temperature under N2 atmosphere. The product was washed with brine, a 10% aqueous solution of citric acid, brine and dried over MgSO4. After removal of the solvent 4g of product was obtained.
Preparation of PCOBC
Example 23: Preparation of COBC-DHP
OBC-DHP (0.74g, 3.4 mmol), cyclohexanone (0.5 g), TBAB (0.15g) and a 10% aqueous solution of NaOH (4 ml) were mixed and stirred at room temperature, forming two phases. After 30 minutes of stirring, the organic phase was analyzed by HPLC, containing 46% COBC-DHP and 48% unreacted OBC-DHP.
Example 24:
OBC-DHP (3.25g, 15 mmol) was dissolved in dry THF under N2 and cooled to -8O0C. LDA 2M in THF/heptane/ethyl benzene (8 ml, 16 mmol) was added dropwise, keeping the temperature under -600C. The mixture was stirred at -8O0C for 30 minutes. Cyclohexanone (1.65g, 16.5 mmol) was added dropwise. After 1 hour stirring a sample was analyzed by HPLC, containing 41% COBC-DHP and 42% unreacted OBC-DHP.
Preparation of PTDMV
Example 25:
A 100 ml three necked flask equipped with nitrogen inlet thermometer and mechanical stirrer is charged with PCOBC (8.64 mmol), MeOH (50 ml) and CoCl anhydrous (17.32 mmol). The resulting solution is cooled to-10°C with an ice-bath. NaBH4 (88.62mm.ol) is added portionwise at this temperature. The ice-bath is removed one hour after the end of addition.
The reaction mixture is stirred 3 hours at room temperature and then quenched with 10%HCl. MeOH is removed under reduced pressure and the aqueous phase is basified with ammonium hydroxide (25%) and extracted with EtOAc. The organic phase is washed with water, brine, dried over Na2SO4 and evaporated under reduced pressure to get PTDMV.
Example 26:
A 100 ml three necked flask equipped with nitrogen inlet thermometer and mechanical stirrer is charged with NaBH4 (31.74 mmol) and THF (10ml). This solution is cooled tolO°C with an ice-bath. BF3Et2O (27.86mmol) and PCOBC (8.64 mmol) are then added. The reaction mixture is stirred at room temperature overnight.
The reaction mixture is quenched with formic acid and water. The organic phase is basified with NaOH (25%), washed with water and evaporated under reduced pressure to get PTDMV.
Preparation of PODV
Example 27:
P-TDMV (2.12 mmol) is suspended in CH2Cl2. Methyl iodide (4.3 mmol) and triethylamine (4.73 mmol) are added. The reaction mixture is stirred under nitrogen atmosphere at room temperature for 6 hours. At this stage methyl iodide (0.5 ml) and NEt3 (1.2 ml) are added. After 16 hours, HPLC analysis indicated the presence of PODV.
Preparation of O-desmethylvenlafaxine
Example 28:
PODV (2.12 mmol) is suspended in THF in presence of methanesulfonic acid (6 mmol). The reaction is stirred at ambient temperature overnight. To the mixture so- obtained is first added EtOAc and the organic phase is washed with brine, Na2CO3 saturated and water. The organic phase is then concentrated under reduced pressure to get ODV.

Claims

What is claimed is:
1. Cyclohexylbenzylcyanide (COBC) of the following formula
Figure imgf000024_0001
2. The cyclohexylbenzylcyanide compound of claim Error! Reference source not found.1, wherein the cyclohexylbenzylcyanide is at least 95% pure.
3. A process of preparing cyclohexylbenzylcyanide (COBC) of claim 1 or claim 2 comprising reacting hydroxybenzylcyanide (OBC) with cyclohexanone.
4. The process of claim 3, wherein the reaction comprises combining OBC, an organic solvent, a base and cyclohexanone.
5. The process of claim 4, wherein the organic solvent is selected from the group consisting of: C2-8 ethers, polar aprotic solvents, aromatic hydrocarbons, C1^ alcohols, and acetonitrile.
6. The process of claim 5, wherein the organic solvent is selected from the group consisting of: diisopropyl ether, diethylether, dioxane, tetrahydrofuran (THF), dimethylformamide (DMF), dimethylacetamide (DMA), dimethylsulfoxide (DMSO), toluene, xylene, benzene, methanol, ethanol, isopropanol, butanol and acetonitrile.
7. The process of claim 6, wherein the organic solvent is selected from the group consisting of: diisopropyl ether, dioxane, tetrahydrofuran (TE-F), dimethylformamide (DMF), dimethylacetamide (DMA), dimethylsulfoxide (DMSO), xylene, benzene, methanol, ethanol, isopropanol, butanol and acetonitrile.
8. The process of claim 7, wherein the organic solvent is selected from the group consisting of: THF, DMF, DMA, and DMSO.
9. The process of any of claims 4 to 8, wherein the organic solvent is a dry organic solvent.
10. The process of any of claims 3 to 9, wherein the cyclohexanone is present in an amount of about 1 to about 2 moles per mole of OBC.
11. The process of claim 10, wherein the cyclohexanone is present in an amount of about 1.1 to about 1.5 moles per mole OBC.
12. The process of any of claims 4 to 11 , wherein the base is an inorganic base.
13. The process of any of claims 4 to 11 , wherein the base is selected from the group consisting of: lithium diisopropyl amide (LDA), lithium bis (trimethyl silyl) amide (LiNt(CH3 ^Si]2), sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH), cesium hydroxide (CsOH), sodium hydride (NaH), potassium hydride (KH), cesium hydride (CsH), potassium tert butoxide (t-BuOK), lithium tert butoxide (t-BuOLi), butyl lithium (BuLi) and sodium metoxide (NaOMe).
14. The process of any of claims 4 to 13, wherein the base is present in an amount of about 1 to about 5 moles per mole of OBC.
15. The process of claiml 4, wherein the base is present in an amount of about 1.5 to about 3.5 moles per mole of OBC.
16. The process of any of claims 4 to 15, wherein the combining step comprises combining a solution or a slurry of OBC, the organic solvent and the base, followed by combining the obtained reaction mixture with cyclohexanone.
17. The process of claim 16, wherein the cyclohexanone is added to the reaction mixture in a dropwise manner.
18. The process of any of claims 4 to 17, wherein the reaction mixture is maintained for a period of at least 10 minutes.
19. The process of claim 18, wherein the period is from about 1 hour to about 18 hours.
20. The process of claim 19, wherein the mixture is maintained at a temperature of about -4O0C to about 35°C.
21. The process of any of claims 3 to 20, comprising reacting OBC and cyclohexanone in the presence of a phase transfer catalyst and abase.
22. The process of claim 21 , wherein the phase transfer catalyst is selected from the group consisting of: tetrabutylammonium hydrogensulphate, a tetraalkylaπunonium halide wherein the alkyl group can be the same or different and contains from 1 to 6, benzyltriethyl ammonium chloride, a quaternary ammonium salt, a quaternary phosphonium salt and a crown ether.
23. The process of claim 22, wherein the phase transfer catalyst is tetrabutyl ammonium bromide (TBAB).
24. The process of any of claims 21 to 23, wherein the base is an inorganic base.
25. The process of any of claims 21 to 23, wherein the base is selected from the group consisting of: NaOH, KOH, LiOH, CsOH, K2CO3, Na2CO3, Cs2CO3, sodium metoxide (NaOMe), and sodium ethoxide (NaOEt).
26. The process of any of claims 21 to 25, wherein the base is present in an amount of about 0.5 to about 3 mole per mole of OBC.
27. The process of claim 26, wherein cyclohexanone is present in an amount of about 1 to about 2 moles per mole of OBC.
28. The process of any of claims 21 to 27, wherein the reaction mixture is maintained for a sufficient period of time to obtain COBC.
29. The process of claim 28, wherein the period of time is from about 1 hour to about 24 hours.
30. The process of claim 29, wherein the period of time is from about 8 hours to about 18 hours.
31. The process of claim 30, wherein the mixture is maintained at a temperature of about -4O0C to about 35°C.
32. The process of any of claims 3 to 31 , further comprising converting COBC to O-desmethylvenlafaxine or a salt thereof.
33. The process of claim 32, wherein the O-desmethyl vanlafaxine salt is a succinic acid salt.
34. The process of any of claims 3 to 33, wherein the hydroxybenzylcyanide (OBC) is a hydroxyl protected hydroxybenzylcyanide (POBC) to obtain hydroxyl protected cyclohexylbenzylcyanide (PCOBC).
35. Hydroxyl protected hydroxybenzylcyanide (POBC) of the following formula:
Figure imgf000027_0001
POBC wherein X is a hydroxyl protecting group.
36. The hydroxyl protected hydroxybenzylcyanide (POBC) of claim 35 , wherein the protecting reagent is selected from the group consisting of dihydropuran and TBDMS.
37. The hydroxyl protected hydroxybenzylcyanide (POBC) of any of claims 35 or 36, having a purity of at least 95%.
38. A process for preparing the hydroxyl protected hydroxybenzylcyanide (POBC) of any of claims 35 to 37 comprising combining OBC with a protecting reagent.
39. Hydroxyl protected cyclobenzylcyanide (PCOBC) of the following formula:
Figure imgf000027_0002
PCOBC wherein X is a hydroxyl protecting group.
40. The hydroxyl protected cyclobenzylcyanide of claim 39, wherein the protecting reagent is selected from the group consisting of dihydropuran and TBDMS.
41. The hydroxyl protected cyclobenzylcyanide (PCOBC) of any of claim 39 or 40, having a purity of at least 95%.
42. A process of preparing the hydroxyl protected cyclobenzylcyanide (PCOBC) of any of claims 39 to 41 comprising reacting hydroxyl protected hydroxybenzylcyanide (POBC) with cyclohexanone.
43. The process of claim 42, wherein the reaction comprises combining POBC, an organic solvent, a base and cyclohexanone.
44. The process of claim 42, comprising reacting POBC and cyclohexanone in the presence of a phase transfer catalyst and a base.
45. The process of any of claims 42 to 44, further comprising converting PCOBC to O-desmethylvenlafaxine or a salt thereof.
46. The process of claim 45, wherein the O-desmethylvenlafaxine salt is a succinic acid salt.
47. A process for preparing tridesmethyl venlafaxine (TDMV) comprising reducing COBC.
48. The process of claim 47, wherein the reduction of COBC comprises combining COBC with a reducing agent, an organic solvent and a Lewis acid catalyst.
49. The process of claim 48, wherein the combining step comprises combining COBC, a reducing agent and an organic solvent to form a solution, followed by combining the solution with the Lewis acid catalyst.
50. The process of claim 49, wherein the solution is cooled to a temperature less than about 100C prior to combining the solution with the Lewis acid catalyst.
51. The process of any of claims 48 to 50, wherein the Lewis acid catalyst is boron trifluoride (BF3).
52. The process of any of claims 48 to 51, wherein the reducing agent is selected from the group consisting of: sodium borohydride (NaBH4), lithium borohydride (LiBH4), lithium aluminum hydride (LiAlH), L-selectride, and borane.
53. The process of claim 52, wherein the reducing agent is NaBH4.
54. The process of any of claims 48 to 53, wherein the organic solvent is selected from the group consisting of: C2-8 ethers, polar aprotic solvents, aromatic hydrocarbons, and
Figure imgf000028_0001
alcohols, and acetonitrile.
55. The process of claim 54, wherein the organic solvent is selected from the group consisting of: diisopropyl ether, dioxane, tetrahydrofuran (THF), dimethylformamide (DMF), dimethylacetamide (DMA), dimethylsulfoxide (DMSO), xylene and benzene.
56. The process of claim 55, wherein the organic solvent is THF.
57. The process of any of claims 48 to 56, wherein the organic solvent is a dry organic solvent.
58. The process of any of claims 48 to 57, wherein the reducing agent is present in an amount of about 1 to about 10 moles per mole" of COBC and the Lewis acid catalyst is BF3, present in an amount of about 1 to about 5 moles per mole of COBC.
59. The process of any of claims 48 to 58, wherein the reaction mixture is maintained for a sufficient period of time to obtain TDMV.
60. The process of claim 59, wherein the period of time is from about 1 hour to about 24 hours.
61. The process of claim 60, wherein the mixture is maintained at a temperature of about 15°C to about 350C.
62. The process of any of claims 47 to 61 , wherein the reduction is carried out by hydrogenation in the presence of a catalyst.
63. The process of claim 62, wherein the catalyst is a Ni, Co, VdJC, or Pt catalyst.
64. The process of any of claims 47 to 63, further comprising converting TDMV to O-desmethylvenlafaxine or a salt thereof.
65. The process of claim 64, wherein the O-desmethylvenlafaxine salt is a succinic acid salt.
66. Hydroxyl protected tridesmethyl venlafaxine (PTDMV) of the following formula:
Figure imgf000029_0001
PTDMV wherein X is a hydroxyl protecting group.
67. The hydroxyl protected tridesmethyl venlafaxine of claim 66, wherein the protecting group is selected from the group consisting of dihydropuran and TBDMS.
68. The hydroxyl protected tridesmethyl venlafaxine (PTDMV) of any of claim 66 or 67, having a purity of at least 95%.
69. A process of preparing the hydroxyl protected tridesmethyl venlafaxine (PTDMV) of any of claims 66 to 68 comprising reducing PCOBC.
70. The process of claim 69, further comprising converting PTDMV to O- desmethylvenlafaxine or a salt thereof.
71. The process of claim 70, wherein the O-desmethylvenlafaxine salt is a succinic acid salt.
72. A process of preparing O-desmethyl venlafaxine (ODV) comprising: a) reacting hy.droxybenzylcyanide (OBC) with cyclohexanone to obtain cyclohexylbenzylcyanide (COBC); b) reducing the cyano group of COBC to obtain tri-desmethyl venlafaxine (TDMV); and c) converting TDMV to ODV.
73. The process of claim 72, wherein the reaction of step a) comprises combining OBC, an organic solvent, a base, and cyclohexanone.
74. The process of claim 72, wherein the reaction of step a) comprises providing a mixture of hydroxybenzylcyanide (OBC), a phase transfer catalyst, a base and cyclohexanone, to obtain COBC.
75. The process of any of claims 72 to 74, wherein reducing COBC in step b) comprises combining COBC with a reducing agent, an organic solvent and a Lewis acid catalyst to create a reaction mixture.
76. The process of claim 75, wherein the Lewis acid catalyst is boron fluoride (BF3).
77. The process of any of claims 72 to 76, wherein converting TDMV to ODV comprises selectively alkylating TDMV.
78. The process of claim 77, wherein converting TDMV to ODV comprises combining TDMV with a methylating agent.
79. The process of claim 78, wherein converting TDMV to ODV is in the presence of a base.
80. The process of claim 79, wherein the base is triethylamine.
81. The process of any of claims 72 to 80, further comprising converting ODV to a ODV salt.
82. The process of claim 81, wherein the ODV salt is succinic acid salt.
83. A process of preparing O-desmethyl venlafaxine (ODV) comprising combining hydroxybenzylcyanid (OBC) with a protecting reagent to obtain a hydroxyl protected hydroxybenzylcyanide (POBC), reacting POBC with cyclohexanone to obtain hydroxyl protected cyclohexylbenzylcyanide (PCOBC), reducing PCOBC to obtain hydroxyl protected tridesmethyl venlafaxine (PTDMV), converting PTDMV to hydroxyl protected O- desmethylvenlafaxine (PODV), and deprotecting PODV to form ODV.
84. The process of claim 83, wherein OBC and the protecting reagent are provided in a mixture further comprising an organic solvent, a catalyst, a base or a mixture thereof.
85. The process of any of claims 83 or 84, wherein the protecting reagent is selected from the group consisting of dihydropuran and TBDMS-Cl.
86. Use of OBC or COBC, either in a hydroxyl protected or unprotected form, in a process for the preparation of TDMV or for the preparation of O- desmethylvenlafaxine (ODV).
87. Use of PTDMV for the preparation of O-desmethylvenlafaxine (ODV).
PCT/US2007/017009 2006-07-26 2007-07-26 Processes for the synthesis of o-desmethylvenlafaxine WO2008013993A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/US2007/017009 WO2008013993A2 (en) 2006-07-26 2007-07-26 Processes for the synthesis of o-desmethylvenlafaxine
EP07810899A EP1934167A2 (en) 2006-07-26 2007-07-26 Processes for the synthesis of o-desmethylvenlafaxine
CA002656166A CA2656166A1 (en) 2006-07-26 2007-07-26 Processes for the synthesis of o-desmethylvenlafaxine
JP2008527229A JP4763788B2 (en) 2006-07-26 2007-07-26 Method for synthesizing O-desmethylvenlafaxine
IL196405A IL196405A0 (en) 2006-07-26 2009-01-08 Processes for the synthesus of o-desmethylvenlafaxine

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
US83361606P 2006-07-26 2006-07-26
US60/833,616 2006-07-26
US83787906P 2006-08-14 2006-08-14
US60/837,879 2006-08-14
US84399806P 2006-09-11 2006-09-11
US60/843,998 2006-09-11
US84925506P 2006-10-03 2006-10-03
US84921606P 2006-10-03 2006-10-03
US60/849,255 2006-10-03
US60/849,216 2006-10-03
US90663907P 2007-03-12 2007-03-12
US60/906,639 2007-03-12
US90687907P 2007-03-13 2007-03-13
US60/906,879 2007-03-13
PCT/US2007/017009 WO2008013993A2 (en) 2006-07-26 2007-07-26 Processes for the synthesis of o-desmethylvenlafaxine

Publications (2)

Publication Number Publication Date
WO2008013993A2 true WO2008013993A2 (en) 2008-01-31
WO2008013993A3 WO2008013993A3 (en) 2008-04-10

Family

ID=39750811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/017009 WO2008013993A2 (en) 2006-07-26 2007-07-26 Processes for the synthesis of o-desmethylvenlafaxine

Country Status (4)

Country Link
JP (1) JP4763788B2 (en)
CA (1) CA2656166A1 (en)
IL (1) IL196405A0 (en)
WO (1) WO2008013993A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109012737A (en) * 2018-06-19 2018-12-18 马学英 A kind of process for catalytic synthesis of antidepressant intermediate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0112669A2 (en) * 1982-12-13 1984-07-04 American Home Products Corporation Phenethylamine derivatives and intermediates therefor
WO2000032555A1 (en) * 1998-12-01 2000-06-08 Sepracor Inc. Derivatives of (+)-venlafaxine and methods of preparing and using the same
WO2000059851A1 (en) * 1999-04-06 2000-10-12 Sepracor Inc. Derivatives of venlafaxine and methods of preparing and using the same
EP1219591A1 (en) * 2000-12-27 2002-07-03 Bayer Aktiengesellschaft Process for preparing 2-(4-trifluoromethoxyphenyl)ethylamine and 4-bromomethyl- and 4-chloromethyl- -1trifluoromethoxybenzene
US20020120164A1 (en) * 2001-02-28 2002-08-29 Council Of Scientific And Industrial Research Process for the preparation of 1-[cyano(aryl)methyl] cyclohexanol
WO2003000652A1 (en) * 2001-06-22 2003-01-03 Wyeth Process for preparation of cyclohexanol derivatives
US20040106818A1 (en) * 2002-11-29 2004-06-03 Lan Zhiyin Process for the preparation of cyclohexanol derivatives
WO2007000294A1 (en) * 2005-06-29 2007-01-04 Wyeth Process for the preparation of 1-[cyano (4-hydroxyphenyl)methyl]cyclohexanol compounds

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3494954A (en) * 1967-06-19 1970-02-10 Cutter Lab 3,3-bis(phenyl)-2-(4-hydroxyphenyl)acrylonitriles
JPS57149257A (en) * 1981-03-13 1982-09-14 Nissan Chem Ind Ltd 4-benzyloxyphenylacetamide
ZA839073B (en) * 1982-12-13 1984-09-26 American Home Prod Phenethylamine derivatives and intermediates therefor
JPH10204057A (en) * 1997-01-27 1998-08-04 Tosoh Corp Halogenated thioformate derivative and its production
TWI228118B (en) * 2000-08-30 2005-02-21 Ciba Sc Holding Ag Process for the preparation of substituted phenylacetonitriles
EP1343750B1 (en) * 2000-12-20 2005-01-26 Ciba SC Holding AG Process for the preparation of phenethylamine derivatives
AU2002250058B2 (en) * 2001-02-12 2007-08-16 Wyeth Llc Novel succinate salt of O-desmethyl-venlafaxine
UA80543C2 (en) * 2001-12-04 2007-10-10 Wyeth Corp Method for the preparation of o-desmethylvenlafaxine
EP1870395A1 (en) * 2006-06-19 2007-12-26 KRKA, D.D., Novo Mesto Process for preparation of o-desmethylvenlafaxine and its analogue

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0112669A2 (en) * 1982-12-13 1984-07-04 American Home Products Corporation Phenethylamine derivatives and intermediates therefor
WO2000032555A1 (en) * 1998-12-01 2000-06-08 Sepracor Inc. Derivatives of (+)-venlafaxine and methods of preparing and using the same
WO2000059851A1 (en) * 1999-04-06 2000-10-12 Sepracor Inc. Derivatives of venlafaxine and methods of preparing and using the same
EP1219591A1 (en) * 2000-12-27 2002-07-03 Bayer Aktiengesellschaft Process for preparing 2-(4-trifluoromethoxyphenyl)ethylamine and 4-bromomethyl- and 4-chloromethyl- -1trifluoromethoxybenzene
US20020120164A1 (en) * 2001-02-28 2002-08-29 Council Of Scientific And Industrial Research Process for the preparation of 1-[cyano(aryl)methyl] cyclohexanol
WO2003000652A1 (en) * 2001-06-22 2003-01-03 Wyeth Process for preparation of cyclohexanol derivatives
US20040106818A1 (en) * 2002-11-29 2004-06-03 Lan Zhiyin Process for the preparation of cyclohexanol derivatives
WO2007000294A1 (en) * 2005-06-29 2007-01-04 Wyeth Process for the preparation of 1-[cyano (4-hydroxyphenyl)methyl]cyclohexanol compounds

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DATABASE BEILSTEIN BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT-MAIN, DE; XP002466133 retrieved from XFIRE Database accession no. BRN 4915303 & BULL SOC CHIM FR, 1967, pages 2110-2116, *
DATABASE BEILSTEIN BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT-MAIN, DE; XP002466134 retrieved from XFIRE Database accession no. BRN 509825 & JUSTUS LIEBIGS ANN CHEM, vol. 322, 1902, page 160, *
DATABASE BEILSTEIN BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT-MAIN, DE; XP002466135 retrieved from XFIRE Database accession no. BRN 8340448 & J ORG CHEM, vol. 64, no. 13, 1999, pages 4887-4892, *
DATABASE BEILSTEIN BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT-MAIN, DE; XP002466136 retrieved from XFIRE Database accession no. BRN 8551248 & J MED CHEM, vol. 42, no. 22, 1999, pages 4680-4694, *
DATABASE BEILSTEIN BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT-MAIN, DE; XP002466137 retrieved from XFIRE Database accession no. BRN 3314063 & ORG LETT, vol. 8, no. 5, 2006, pages 1007-1009, *
DATABASE BEILSTEIN BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT-MAIN, DE; XP002466138 retrieved from XFIRE Database accession no. BRN 3252517 & YAKUGAKU ZASSHI, vol. 59, 1939, pages 547-549, *
M MIYAKAWA, T S SCANLAN: "Synthesis of [125I]-, [2H]-, and [3H]-labeled 3-Iodothyroamine (T1AM)" SYNTHETIC COMMUNICATIONS, vol. 36, 1 March 2006 (2006-03-01), pages 891-902, XP002466132 *
YARDLEY J P ET AL: "2-PHENYL-2-(1-HYDROXYCYCLOALKYL)ETHYLAMIN E DERIVATIVES: SYNTHESIS AND ANTIDEPRESSANT ACTIVITY" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 33, 1990, pages 2899-2905, XP000891765 ISSN: 0022-2623 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109012737A (en) * 2018-06-19 2018-12-18 马学英 A kind of process for catalytic synthesis of antidepressant intermediate

Also Published As

Publication number Publication date
IL196405A0 (en) 2009-11-18
WO2008013993A3 (en) 2008-04-10
JP2008545807A (en) 2008-12-18
CA2656166A1 (en) 2008-01-31
JP4763788B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
EP1934167A2 (en) Processes for the synthesis of o-desmethylvenlafaxine
US11040932B2 (en) Synthesis of cannabigerol
TWI518060B (en) Intermediates for the synthesis of benzindene prostaglandins and preparations thereof
US8669399B2 (en) Process for preparing substituted 3-(1-amino-2-methylpentane-3-yl)phenyl compounds
WO2007047972A2 (en) Process for the preparation of highly pure 1-[2-dimethylamino-(4-methoxyphenyl) ethyl]cyclohexanol hydrochloride
US20080221356A1 (en) Processes for the synthesis of O-desmethylvenlafaxine
WO2008013993A2 (en) Processes for the synthesis of o-desmethylvenlafaxine
WO2008013995A2 (en) Tridesmethylvenlafaxine and processes for the synthesis of o-desmethylvenlafaxine
US20090069601A1 (en) Processes for the synthesis of O-desmethylvenlafaxine
EP1201647B1 (en) Process for producing 4-cyano-4oxobutanoate and 4-cyano-3-hydroxybutanoate
US20090137846A1 (en) Processes for the synthesis of O-Desmethylvenlafaxine
WO2012089177A1 (en) Method of producing (2r,3r)-na-dimethyl-3-(3-hydroxyphenyi)-2-methylpentylamine (tapentadol)
CA2380854A1 (en) A process for the preparation of venlafaxin
US10882805B2 (en) Processes for preparing 4-methyl-5-nonanone and 4-methyl-5-nonanol
WO2008013994A2 (en) Processes for the synthesis of o-desmethylvenlafaxine
US20110295038A1 (en) Process for the Preparation of Substituted 1-aminomethyl-2-phenyl-cyclohexane Compounds
JP4396025B2 (en) Process for producing 4-methoxymethyl-2,3,5,6-tetrafluorobenzenemethanol
CN110511147A (en) A kind of restoring method of nitroolefin
MX2008004089A (en) Processes for the synthesis of o-desmethylvenlafaxine
KR20170115941A (en) Production method of tetrahydro-2h-pyran derivatives

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008527229

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007810899

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2656166

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10545/DELNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU