WO2008012298A1 - Diodes organiques électroluminescentes blanches à base de molécules dérivées du phosphole. - Google Patents

Diodes organiques électroluminescentes blanches à base de molécules dérivées du phosphole. Download PDF

Info

Publication number
WO2008012298A1
WO2008012298A1 PCT/EP2007/057604 EP2007057604W WO2008012298A1 WO 2008012298 A1 WO2008012298 A1 WO 2008012298A1 EP 2007057604 W EP2007057604 W EP 2007057604W WO 2008012298 A1 WO2008012298 A1 WO 2008012298A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphole
white
electroluminescent organic
diode according
dopant
Prior art date
Application number
PCT/EP2007/057604
Other languages
English (en)
Inventor
Noella Lemaitre
Bernard Geffroy
Omrane Fadhel
Muriel Hissler
Régis Reau
Original Assignee
Commissariat A L'energie Atomique
Universite De Rennes 1
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique, Universite De Rennes 1 filed Critical Commissariat A L'energie Atomique
Priority to US12/374,881 priority Critical patent/US20090236978A1/en
Priority to EP07787846A priority patent/EP2047534B1/fr
Priority to JP2009521247A priority patent/JP2009545151A/ja
Priority to AT07787846T priority patent/ATE502405T1/de
Priority to CA002658908A priority patent/CA2658908A1/fr
Priority to DE602007013245T priority patent/DE602007013245D1/de
Publication of WO2008012298A1 publication Critical patent/WO2008012298A1/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6568Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms
    • C07F9/65685Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms the ring phosphorus atom being part of a phosphine oxide or thioxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the invention relates to white electroluminescent organic diodes whose emitted light comes from a mixture of colors provided by at least two phosphor materials.
  • Electroluminescence is a phenomenon whereby electrical excitation gives rise to the emission of electromagnetic radiation.
  • An organic light - emitting diode operates by exciton creation. To create excitons, a layer of phosphor material is sandwiched between a cathode electrode and anode electrode. Electrons are injected from the cathode while holes are injected from the anode. The electrons and holes move in the phosphor material and meet to form excitons which are excited and bonded electron-hole pairs. When the electron and the hole of an exciton combine, a photon can be emitted.
  • Electroluminescent organic diodes have been of increasing interest in recent years because of their low operating voltage, high luminance, large viewing angle and ability to lead to color devices. and dishes. Thanks to these properties, the first applications envisaged for these diodes, also called OLEDs (for “organic light-emitting diode”), were monochrome and then color display devices.
  • OLEDs for “organic light-emitting diode”
  • White OLEDs or WOLEDs are good candidates for the next generation of light sources, replacing incandescent lamps, thanks to their high energy-saving potential, their high efficiency and their high efficiency. possibility of driving to fine and flexible devices.
  • White OLEDs are now considered as a low-cost light source for rear lighting of LCD devices, for home lighting, etc.
  • the white OLEDs used must have high efficiency and brightness, as well as chromatic coordinates close to those of the D65, the standard illuminant of the International Commission on Illumination (see document [1] cited in end of the description), which are (0.313-0.329) under daylight.
  • the width of the emission spectrum of chromophores conventionally used in OLEDs represents about one third of the visible spectrum, an efficient white emission that is very difficult to obtain from a single molecule.
  • a composite white light can be obtained by mixing the three primary colors (blue, green and red) or two complementary colors in the right proportions at the same time. within the same diode. Reference can be made to documents [2] and [3].
  • the subject of the invention is therefore a white electroluminescent organic diode providing, under the effect of an electric polarization, a white light composed of a mixture of at least a first color and a second color respectively emitted by a first phosphor material and by a second phosphor material, characterized in that at least one of these phosphor materials is a material with phosphole base, this material being fluorescent type or phosphorescent type.
  • FIG. schematic view in cross-section of a white light-emitting diode according to the invention
  • FIG. 2 is a representation of the chromatic coordinates of diodes using phosphole derivatives and showing the influence of these derivatives
  • FIG. 3 represents electroluminescence spectra of the diodes using phosphole derivatives
  • Figure 5 shows diode electroluminescence spectra using phosphole derivatives
  • FIG. 6 is a representation of the chromatic coordinates of diodes using phosphole derivatives and showing the influence of these derivatives.
  • white electroluminescent organic diodes are made using a family of phosphole-derived molecules present in the diodes in the form of a polymer-based material incorporating the main chain or pendant chain phospholines, or directly based on small molecules.
  • These molecules can be fluorescent or phosphorescent and can be used as dopants of an emitter layer or a transport layer, as well as as an emitting monolayer.
  • a fluorescent molecule derived from phosphole can be represented as follows:
  • R alkyl, alkoxy, aryloxy, alkylthio, arylthio, a polar group (-SO 3 H, ammonium groups, ...)
  • the molecular engineering that can be developed around this family of compounds by chemical modification of the reactive phosphorus atom or the nature of the substituents or the nature of the ligands and the metal center when it is an organometallic complex, allows to modify the absorption and emission wavelengths of the molecules. It is thus possible to modulate the emission of these molecules and to adjust them so as to obtain either three primary colors or two complementary colors and thus obtain a white of good optical quality.
  • the modulation of the emission proportions of the three primary colors or the two complementary colors must then be done by varying the doping percentages in the case of a doped system, or by varying the thickness and the position of the monolayers. phosphole. This makes it possible to obtain a white composite emission color. Effective white diodes with chromatic coordinates close to D65 (0.313-0.329) are thus produced, by doping a blue emitting matrix with a phosphole derivative.
  • All the diodes presented are obtained by thermal evaporation under vacuum ( ⁇ 10 ⁇ 6 Torr) of small organic molecules on glass-ITO substrates at deposition rates of the order of 0.2 to 0.3 nm / s.
  • the doped layers are produced by thermal coevaporation of the matrix and the dopant.
  • the organic materials used are commercial with the exception of phosphole derivatives, materials synthesized in the context of the invention.
  • Hole injection (CuPc) and hole transport (NPB) and electron (AIq 3 ) layers are used for producing the example diodes.
  • Figure 1 is a schematic sectional view of a white light emitting diode according to the invention. It consists of a stack comprising a transparent glass substrate 1, a transparent electrode 2 serving as anode, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6 and an electrode 7 serving as a cathode.
  • the transparent electrode 2 is for example a layer of ITO (mixed oxide of tin and indium) 100 to 200 nm thick.
  • the hole injection layer 3 may be made of copper phthalocyanine (or CuPc) and have a thickness of 10 nm.
  • the hole-transporting layer 4 may be N, N '-bis- (1-naphthyl) -N, N'-diphenyl-1'-biphenyl 1-4-4 '-diamine or (NPB) and have 50 nm d 'thickness.
  • the light-emitting layer 5 may be a DPVBi layer (forming a blue matrix) doped with a phosphole derivative according to the invention. Its thickness can be 50 nm.
  • the electron transport layer 6 may be a layer of tris (8-hydroxyquinoline) aluminum (or Alq 3 ) and be 10 nm thick.
  • the cathode 7 may be formed by a 1.2 nm thick layer of lithium fluoride and a layer of 100 nm of aluminum thickness deposited successively on the layer 6.
  • the current-voltage-luminance (I-V-L) characteristics as well as the electroluminescence spectra of the diodes are recorded under air at ambient temperature, without encapsulation of the devices.
  • the chromatic coordinates (x, y) of the International Commission on Illumination (CIE) of the diodes are given according to the 1931 convention.
  • Diode 1 is a blue reference diode for which the DPVBi matrix has not been doped. Its chromatic coordinates are (0.155, 0.130) and its quantum efficiency is 3.6%. The doping is given in% by weight of the dopant relative to the matrix. ⁇ em max is the wavelength of the maximum emission.
  • the realized diode 2 has chromatic coordinates of (0.222, 0.344).
  • the emission color of this diode is therefore green-blue as shown in Figure 2 which is a representation of the color coordinates of diodes 1 to 4 in the CIE diagram of 1931. In this diagram, the areas red (R), green (V) and blue (B) were indicated.
  • Replacing the AuCl substituent of the P atom with a sulfur atom (molecule 2) makes it possible to shift the emission of the dopant from 500 to 548 nm and thus to obtain white diodes.
  • FIG. 3 represents the electroluminescence spectra of diodes 3 and 4.
  • the ordinate axis represents the spectral luminance L ⁇ in watts per steradian and per m 2 .
  • the abscissa axis represents the wavelength ⁇ .
  • Curve 11 has been drawn for diode 3 and curve 12 has been drawn for diode 4.
  • Modulating the respective emissions of the matrix and the dopant (see FIG. 3) by varying the percentage of doping makes it possible to adjust the chromatic coordinates of the diodes to obtain a white of good optical quality.
  • the chromaticity coordinates of the diodes go from (0.305; 0.391) to (0.260; slightly green to better quality white.
  • the molecules of Example 1 can also be used as a dopant of a transport of the diode described above, for example the hole transport layer.
  • the hole transport layer is in NPB.
  • Table 2 gives the performances and the chromatic coordinates of the diode 5 made by doping the NPB with the molecule 2 at the rate of 0.25% by weight.
  • Table 2 Figure 4 is a representation of the color coordinates of diodes 1 to 5 in the CIE diagram of 1931.
  • the doping of the transport layer in place of the blue matrix by the molecule 2 can also lead to a white diode, as evidenced by the diode 5 whose chromatic coordinates are (0.281, 0.348). Aligning the (x; y) coordinates of diodes 1, 3, 4 and 5 on the same line shows that the emission of the dopant is similar to that found in NPB or DPVBi (see Figure 4).
  • the color of the diode is a composite color of two components: blue from DPVBi (diode 1) and orange-yellow from the dopant (molecule 2).
  • the quantum efficiency of diode 5 is 2.8%, a yield similar to that of diodes 3 and 4. This proves that the doping can be carried out in the blue matrix but also in the transport layer.
  • the emission of the diode 6 is white. As for that of the diode 7, it is white-yellow as shown by their chromatic coordinates indicated in FIG.
  • the redshift of the emission of molecule 3 by substitution of its lateral thiophene groups has thus made it possible to obtain efficient white diodes with chromatic coordinates that are closer to those of D65, the CIE standard illuminant of reference under light. of the day, and which are (0.313, 0.329).
  • the phosphole derivatives are preferentially used as a complement to a blue emitter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

L'invention concerne une diode organique électroluminescente blanche, fournissant, sous l'effet d'une polarisation électrique, une lumière blanche composée du mélange d'au moins une première couleur et une deuxième couleur émises respectivement par un premier matériau luminophore et par un deuxième matériau luminophore. Au moins l'un de ces matériaux luminophores est un matériau à base de phosphole, ce matériau étant de type fluorescent ou de type phosphorescent.

Description

DIODES ORGANIQUES ELECTROLUMINESCENTES BLANCHES A BASE DE MOLÉCULES DÉRIVÉES DU PHOSPHOLE
DESCRIPTION
DOMAINE TECHNIQUE
L' invention se rapporte à des diodes organiques électroluminescentes blanches dont la lumière émise provient d'un mélange de couleurs fournies par au moins deux matériaux luminophores.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
L' électroluminescence est un phénomène par lequel une excitation électrique donne lieu à l'émission d'un rayonnement électromagnétique. Une diode électroluminescente organique fonctionne par création d' excitons. Pour créer des excitons, une couche de matériau luminophore est prise en sandwich entre une électrode de cathode et une électrode d'anode. Des électrons sont injectés à partir de la cathode tandis que des trous sont injectés à partir de l'anode. Les électrons et les trous se déplacent dans le matériau luminophore et se rencontrent pour former des excitons qui sont des paires électron-trou excités et liés. Lorsque l'électron et le trou d'un exciton se combinent, un photon peut être émis.
Les diodes organiques électroluminescentes ont connu un intérêt croissant ces dernières années à cause de leur faible tension de fonctionnement, leur forte luminance, leur angle de vue important ainsi qu'à leur capacité à conduire à des dispositifs en couleurs et plats. Grâce à ces propriétés, les premières applications envisagées pour ces diodes, encore appelées OLED (pour « organic light-emitting diode ») , ont été des dispositifs d'affichage monochromes puis en couleurs .
Le domaine de l'affichage n'est plus seulement en considération. En effet les OLED blanches ou WOLED (pour « White OLED ») sont de bons candidats pour la prochaine génération de sources lumineuses, en remplacement des lampes à incandescence, grâce à leur fort potentiel d'économie d'énergie, leur grande efficacité et leur possibilité de conduire à des dispositifs fins et flexibles. Les OLED blanches sont donc maintenant envisagées comme source lumineuse de faible coût pour la réalisation d'éclairage arrière de dispositifs LCD, pour l'éclairage domestique, etc. Pour toutes ces applications, les OLED blanches employées doivent posséder une grande efficacité et une grande luminosité, ainsi que des coordonnées chromatiques proches de celles du D65, illuminant standard de la Commission Internationale de l'Eclairage (voir le document [1] cité à la fin de la description), qui sont (0,313-0,329) sous lumière du jour.
La largeur du spectre d'émission des chromophores classiquement utilisés dans les OLED représentant environ un tiers du spectre visible, une émission blanche efficace et très difficilement obtenue à partir d'une molécule unique. Cependant, une lumière blanche composite peut être obtenue en mélangeant les trois couleurs primaires (bleu, vert et rouge) ou deux couleurs complémentaires dans les bonnes proportions au sein d'une même diode. On peut se référer à ce sujet aux documents [2] et [3] .
L'obtention de lumière blanche par émission des trois couleurs bleu (B) , Vert (V) et rouge (R) a été décrite dans l'art antérieur. Ainsi, le document US 2003/099860 divulgue la combinaison d'une émission bleue provenant du 4, 4' -bis (2, 2-diphénylvinyl) biphényle ou DPVBi avec des émissions rouges et vertes provenant respectivement du [2-méthyl-6- [2- (2, 3, 6, 7- tétrahydro -IH, 5H-benzo[ij] quinolizin-9-yl) éthényl]- 4H-pyranne-4-ylidène] propane-dinitrite ou DCM2 et de la coumarine 6. Dans ce cas, la diode blanche est constituée des différentes couches émissives R, V, B ainsi que de couches de transport dans une structure multicouche. Une autre approche peut également être employée dans laquelle les émetteurs bleu, vert et rouge sont pixelisés au sein d'un dispositif comme le divulgue le document US 2003/197 665.
L'utilisation de deux chromophores émettant des couleurs complémentaires pour la réalisation de diodes organiques électroluminescentes blanches a déjà été divulguée dans les documents US 2004/0 241 491, US 2004/ 185 300 et EP-A-I 381 096. Ces documents utilisent l'association d'une couche émettrice bleue avec un dérivé de rubrène ou de pérylène comme émetteur jaune orangé de façon à produire de la lumière blanche. Les émetteurs jaunes orangés peuvent être utilisés comme dopant de la couche émettrice bleue ou d'une couche de transport, ainsi qu'en couche émettrice continue. Par ailleurs, des dérivés de phospholes ont été testés en tant qu'émetteur ou matrice d'un dopant rouge, le 4- (dicyanométhylène) -2-t-butyl-6 (1, 1, 7, 7- tétraméthyljulolidyl-9-enyl) -4H-pyranne ou DCJTB, en structure multicouche entre deux électrodes (voir les documents [4] et [5]). Le document JP 2003-231741 A
(correspondant au document US 2005/042 195) divulgue la synthèse et la caractérisation de polymères contenant un fragment benzophosphole . Ces polymères sont décrits comme potentiellement intéressants en tant que composés émissifs dans des OLED.
EXPOSE DE L'INVENTION
II est proposé par la présente invention d'utiliser des matériaux (polymères ou molécules) dérivés du phosphole pour la réalisation de diodes organiques électroluminescentes blanches. L'ingénierie moléculaire pouvant être réalisée sur cette famille de composés permet l'obtention de molécules fluorescentes et phosphorescentes efficaces, ainsi que la modulation de leur longueur d'onde d'émission. Cette modulation permet d'ajuster la couleur d'émission des molécules et ainsi d'obtenir une lumière blanche de bonne qualité.
L'invention a donc pour objet une diode organique électroluminescente blanche, fournissant, sous l'effet d'une polarisation électrique, une lumière blanche composée du mélange d' au moins une première couleur et une deuxième couleur émises respectivement par un premier matériau luminophore et par un deuxième matériau luminophore, caractérisée en ce qu'au moins l'un de ces matériaux luminophores est un matériau à base de phosphole, ce matériau étant de type fluorescent ou de type phosphorescent.
BRÈVE DESCRIPTION DES DESSINS L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels : - la figure 1 est une vue schématique et en coupe transversale d'une diode électroluminescente blanche selon l'invention,
- la figure 2 est une représentation des coordonnées chromatiques de diodes utilisant des dérivés du phosphole et montrant l'influence de ces dérivés, la figure 3 représente des spectres d' électroluminescence des diodes utilisant des dérivés du phosphole, - la figure 4 est une représentation des coordonnées chromatiques de diodes utilisant des dérivés du phosphole et montrant l'influence de ces dérivés, la figure 5 représente des spectres d' électroluminescence de diodes utilisant des dérivés du phosphole,
- la figure 6 est une représentation des coordonnées chromatiques de diodes utilisant des dérivés du phosphole et montrant l'influence de ces dérivés. EXPOSE DETAILLE DE MODES DE REALISATION PARTICULIERS
Selon la présente invention, on réalise des diodes organiques électroluminescentes blanches en utilisant une famille de molécules dérivées du phosphole et présentes dans les diodes sous la forme d'un matériau à base de polymère incorporant les motifs phospholes en chaîne principale ou en chaîne pendante, ou directement à base de petites molécules.
Ces molécules peuvent être fluorescentes ou phosphorescentes et être utilisées en tant que dopants d'une couche émettrice ou d'une couche de transport, ainsi qu'en tant que monocouche émettrice.
Une molécule fluorescente dérivée du phosphole peut être représentée comme suit :
Figure imgf000007_0001
R = alkyl, alkoxy, aryloxy, alkylthio, arylthio, un groupement polaire (-SO3H, groupements ammonium, ...) MLn = AuCl, W(CO)5, =S,=0
Une molécule phosphorescente dérivée du phosphole peut être représentée comme suit :
Figure imgf000008_0001
avec M'Ln' = PtX (pyridine) , Ir (bipyridine) CI2, ...
L' ingénierie moléculaire qui peut être développée autour de cette famille de composés par modification chimique de l'atome de phosphore réactif ou de la nature des substituants ou de la nature des ligands et du centre métallique quand il s'agit de complexe organométallique, permet de modifier les longueurs d'onde d'absorption et d'émission des molécules. Il est ainsi possible de moduler l'émission de ces molécules et de les ajuster de façon à obtenir soit trois couleurs primaires soit deux couleurs complémentaires et ainsi obtenir un blanc de bonne qualité optique.
Dans le cas où l'on utilise des polymères intégrant des motifs phospholes, leur préparation peut se faire conformément à l'enseignement du document [6]. La réalisation de WOLED multicouches à base d' oligomères contenant un cycle phosphole se fait par évaporation thermique sous vide. Le phosphole peut être déposé en couche mince émettrice ou en tant que dopant d'une matrice émettrice ou d'une couche de transport. Dans le cas d'un polymère, la mise en œuvre du dépôt peut se faire par voie humide (dépôt à la tournette ou « spin coating », ...) . Les dérivés du phosphole utilisés sont choisis en fonction de la couleur des émetteurs souhaités et leurs propriétés optiques peuvent être ajustées par modification chimique.
La modulation des proportions de l'émission des trois couleurs primaires ou des deux couleurs complémentaires doit ensuite se faire par variation des pourcentages de dopage dans le cas d'un système dopé, ou par variation de l'épaisseur et de la position des monocouches de phosphole. Ceci permet l'obtention d'une couleur d'émission composite blanche. Des diodes blanches efficaces avec des coordonnées chromatiques proches du D65 (0,313-0,329) sont ainsi réalisées, par dopage d'une matrice émettrice bleue par un dérivé du phosphole.
Les exemples qui suivent illustrent la réalisation de WOLED conformément à l'invention et présentent les caractéristiques de ces dernières.
Toutes les diodes présentées sont obtenues par évaporation thermique sous vide (< 10~6 Torr) de petites molécules organiques sur des substrats verre — ITO à des vitesses de dépôt de l'ordre de 0,2 à 0,3 nm/s. Les couches dopées sont réalisées par co- évaporation thermique de la matrice et du dopant. Les matériaux organiques utilisés sont commerciaux à l'exception des dérivés de phosphole, matériaux synthétisés dans le cadre de l'invention. Des couches d'injection de trous (CuPc) et de transport de trous (NPB) et d'électrons (AIq3) sont utilisées pour la réalisation des diodes présentées en exemple.
La figure 1 est une vue schématique et en coupe d'une diode électroluminescente blanche selon l'invention. Elle est constituée par un empilement comprenant un substrat transparent en verre 1, une électrode transparente 2 servant d'anode, une couche d'injection de trous 3, une couche de transport de trou 4, une couche émettrice de lumière 5, une couche de transport d'électrons 6 et une électrode 7 servant de cathode. L'électrode transparente 2 est par exemple une couche d' ITO (oxyde mixte d' étain et d' indium) de 100 à 200 nm d'épaisseur. La couche d'injection de trous 3 peut être en phthalocyanine de cuivre (ou CuPc) et avoir 10 nm d'épaisseur. La couche de transport de trous 4 peut être en N, N' -bis- (1-naphthyl) -N, N' - diphényl-1.1' biphényl 1-4-4' -diamine ou (NPB) et avoir 50 nm d'épaisseur. La couche émettrice de lumière 5 peut être une couche de DPVBi (formant une matrice bleue) dopée par un dérivé du phosphole, conformément à l'invention. Son épaisseur peut être de 50 nm. La couche de transport d'électrons 6 peut être une couche de tris (8-hydroxyquinoline) aluminium (ou AIq3) et avoir 10 nm d'épaisseur. La cathode 7 peut être formée par une couche de 1,2 nm d'épaisseur de fluorure de lithium et une couche de 100 nm d'épaisseur d'aluminium déposées successivement sur la couche 6.
Les caractéristiques courant-tension- luminance (I-V-L) ainsi que les spectres d' électroluminescence des diodes sont enregistrés sous air à température ambiante, sans encapsulation des dispositifs. Les coordonnés chromatiques (x ; y) de la Commission Internationale de l'Eclairage (CIE) des diodes sont données selon la convention de 1931.
Premier exemple de réalisation Les deux molécules fluorescentes suivantes ont été utilisées à différents pourcentages de dopage dans la matrice bleue DPVBi de la diode décrite ci- dessus et représentée à la figure 1.
Molécule 1 Molécule 2
Figure imgf000011_0001
Le tableau 1 regroupe les performances et les coordonnées chromatiques des différentes diodes réalisées. La diode 1 est une diode bleue de référence pour laquelle la matrice DPVBi n'a pas été dopée. Ses coordonnées chromatiques sont (0,155 ; 0,130) et son efficacité quantique est de 3,6%. Le dopage est donné en % en poids du dopant par rapport à la matrice. λemmax est la longueur d'onde du maximum d'émission.
λem max Efficacités
Diode CIE Couleur (nm) % cd/A ImAV X y
1/ DPVBi 452 3,6 4,0 1,2 0,155 0,130 bleu
2/ DPVBi : molécule 1 476 / 500 2,4 5,8 1,9 0,222 0,344 vert-bleu
(0,4%)
3/ DPVBi : molécule 2 444 / 548 2,7 7,0 2,3 0,305 0,391 Blanc-vert
(0,2%)
4/ DPVBi : molécule 2 444 / 548 2,7 6,1 2,0 0,260 0,310 blanc
(0,1%) Tableau 1
La diode 2 réalisée possède des coordonnées chromatiques de (0,222 ; 0,344). La couleur d'émission de cette diode est donc vert-bleu comme le montre la figure 2 qui est une représentation des coordonnées chromatiques des diodes 1 à 4 dans le diagramme CIE de 1931. Dans ce diagramme, les zones rouge (R), verte (V) et bleu (B) ont été indiquées. Le remplacement du substituant AuCl de l'atome de P par un atome de soufre (molécule 2) permet de décaler l'émission du dopant de 500 à 548 nm et ainsi d'obtenir des diodes blanches.
La figure 3 représente les spectres d' électroluminescence des diodes 3 et 4. L'axe des ordonnées représente la luminance spectrale Lλ en watts par stéradian et par m2. L'axe des abscisses représente la longueur d'onde λ. La courbe 11 a été tracée pour la diode 3 et la courbe 12 a été tracée pour la diode 4.
La modulation des émissions respectives de la matrice et du dopant (voir la figure 3) en jouant sur le pourcentage de dopage permet d'ajuster les coordonnées chromatiques des diodes pour obtenir un blanc de bonne qualité optique. Ainsi, en diminuant le pourcentage de dopage de la diode 3 de 0,2 % à 0,1 % pour obtenir la diode 4, les coordonnées chromatiques des diodes passent de (0,305 ; 0,391) à (0,260 ; 0,310) soit d'un blanc légèrement vert à un blanc de meilleure qualité optique. Deuxième exemple de réalisation Les molécules de l'exemple 1 peuvent également être utilisées comme dopant d'une couche de transport de la diode décrite ci-dessus, par exemple la couche de transport de trous. Pour cette diode, la couche de transport de trous est en NPB. Le tableau 2 donne les performances et les coordonnées chromatiques de la diode 5 réalisée en dopant le NPB par la molécule 2 à raison de 0,25% en poids.
Figure imgf000013_0001
Tableau 2 La figure 4 est une représentation des coordonnées chromatiques des diodes 1 à 5 dans le diagramme CIE de 1931.
Le dopage de la couche de transport à la place de la matrice bleue par la molécule 2 peut également conduire à une diode blanche, comme le prouve la diode 5 dont les coordonnées chromatiques sont (0,281 ; 0,348). L'alignement des coordonnées (x ; y) des diodes 1, 3, 4 et 5 sur une même droite montre que l'émission du dopant est similaire qu'il se trouve dans le NPB ou le DPVBi (voir la figure 4) . La couleur de la diode est une couleur composite de deux constituants : le bleu provenant du DPVBi (diode 1) et du jaune orangé provenant du dopant (molécule 2). L'efficacité quantique de la diode 5 est de 2,8 %, rendement similaire à celui des diodes 3 et 4. Ceci prouve que le dopage peut être réalisé dans la matrice bleue mais également dans la couche de transport .
Troisième exemple de réalisation Dans cet exemple de réalisation, le dopant utilisé dans la couche de transport de trous est la molécule 3 qui, par rapport à la molécule 2, possède des groupements méthyles en position 4 sur les cycle thiophènes .
Molécule 3
Figure imgf000014_0001
Cette substitution des cycles thiophènes de la molécule 3 par un groupement donneur faible méthyle permet d' obtenir un léger décalage vers le rouge de l'émission du dopant, comme le montrent les spectres d' électroluminescence des diodes 6 et 7, en comparaison de celui de la diode 5. La figure 5 représente les spectres d' électroluminescence des diodes 5 (courbe 13), 6 (courbe 14) et 7 (courbe 15). De plus il en résulte des diodes ayant de très bonnes efficacités quantiques, de 3,6 à 3, 9% pour des pourcentages en poids de dopage dans le NPB de 0,2% et 0,4% respectivement, comme le montre le tableau 3. λem max Efficacités
Diode CIE Couleur (nm) % cd/A ImAV X y
6/ NPB : molécule 3 456 / 564 3,6 /,δ 2,0 0,282 0,306 blanc
(0,20%)
7/ NPB : molécule 3 456 / 568 3,9 10,0 2,6 0,362 0,411 blanc -jaune
(0,40%)
Tableau 3
L'émission de la diode 6 est blanche. Quant à celle de la diode 7, elle est blanc-jaune comme le montrent leurs coordonnées chromatiques indiquées sur la figure 6.
Le décalage vers le rouge de l'émission de la molécule 3 par substitution de ses groupes thiophènes latéraux a ainsi permis d'obtenir des diodes blanches efficaces avec des coordonnées chromatiques plus proches de celles du D65, l'illuminant standard CIE de référence sous lumière du jour, et qui sont (0,313 ; 0,329) .
Dans les exemples présentés ci-dessus, les dérivés du phosphole sont préférentiellement utilisés comme complément d'un émetteur bleu.
REFERENCES
[1] « White Organic hight-Emitting Devices for Solid-State Lighting », B. W. D'Andrade et al., Adv. Mater. 2004, 16, No. 18, 1585-1595.
[2] « Blue and white emitting organic diodes based on anthracene derivative », Z. L. Zhang et al., Synthetic Metals 137 (2003), pages 1141-1142.
[3] « Highly-bright white organic light- emitting diodes based on a single émission layer », C. H. Chuen et al., Appl . Phys . Lett., Vol. 81, No. 24, 9 décembre 2002, pages 4499 à 4501.
[4] « First Examples of Organophosphorus- Containing Materials for Light-Emitting Diodes », C. Fave et al., J. Am. Chem. Soc, 2003, 125, pages 9254- 9255.
[5] « Toward functional pi-conjugated organophosphorus materials : design of phosphole-based oligomers for électroluminescent devices », H. C. Su et al., J. Am. Chem.. Soc, 2006, 128(3), pages 983 à 995.
[6] « Synthesis and Properties of First Well-Defined Phosphole-Containing π-Conjugated Polymers", Y. Morisaki et al., Macromolecules 2003, 36, 2594-2597.

Claims

REVENDICATIONS
1. Diode organique électroluminescente blanche, fournissant, sous l'effet d'une polarisation électrique, une lumière blanche composée du mélange d' au moins une première couleur et une deuxième couleur émises respectivement par un premier matériau luminophore et par un deuxième matériau luminophore, caractérisée en ce qu'au moins l'un de ces matériaux luminophores est un matériau à base de phosphole, ce matériau étant de type fluorescent ou de type phosphorescent .
2. Diode organique électroluminescente blanche selon la revendication 1, caractérisée en ce que le matériau de type fluorescent à base de phosphole présente la structure chimique suivante :
Figure imgf000017_0001
R = alkyl, alkoxy, aryloxy, alkylthio, arylthio, ou un groupement polaire
MLn = AuCl, W(CO)5, =S,=0
3. Diode organique électroluminescente blanche selon la revendication 1, caractérisée en ce que le matériau de type phosphorescent à base de phosphole présente la structure chimique suivante :
Figure imgf000018_0001
avec M1Ln' = PtX (pyridine) ou Ir (bipyridine) CI2.
4. Diode organique électroluminescente blanche selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le matériau à base de phosphole est présent sous forme de couche dans la diode .
5. Diode organique électroluminescente blanche selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le matériau à base de phosphole est présent en tant que dopant d'une matrice émissive constituée par l'autre matériau luminophore.
6. Diode organique électroluminescente blanche selon l'une quelconque des revendications 1 à
3, caractérisée en ce que le matériau à base de phosphole est présent en tant que dopant d'une couche de transport d'électrons ou d'une couche de transport de trous que comporte la diode.
7. Diode organique électroluminescente blanche selon la revendication 5, caractérisée en ce que le matériau à base de phosphole est :
Figure imgf000019_0001
la matrice émissive étant en DPVBi
8. Diode organique électroluminescente blanche selon la revendication 6, caractérisée en ce que le matériau de base de phosphole est :
Figure imgf000019_0002
et est présent en tant que dopant d'une couche de transport de trous en NPB.
9. Diode organique électroluminescente blanche selon la revendication 6, caractérisé en ce que le matériau à base de phosphole est :
Figure imgf000019_0003
et est présent en tant que dopant d'une couche de transport de trous en NPB.
PCT/EP2007/057604 2006-07-27 2007-07-24 Diodes organiques électroluminescentes blanches à base de molécules dérivées du phosphole. WO2008012298A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/374,881 US20090236978A1 (en) 2006-07-27 2007-07-24 White electroluminescent organic diodes based on molecules derived from phosphole
EP07787846A EP2047534B1 (fr) 2006-07-27 2007-07-24 Diodes organiques électroluminescentes blanches à base de molécules dérivées du phosphole.
JP2009521247A JP2009545151A (ja) 2006-07-27 2007-07-24 ホスホール(phosphole)から得られる分子に基づく白色有機elダイオード
AT07787846T ATE502405T1 (de) 2006-07-27 2007-07-24 Weisselektrolumineszente organische dioden auf der basis von aus phosphol abgeleiteten molekülen
CA002658908A CA2658908A1 (fr) 2006-07-27 2007-07-24 Diodes organiques electroluminescentes blanches a base de molecules derivees du phosphole
DE602007013245T DE602007013245D1 (de) 2006-07-27 2007-07-24 Weisselektrolumineszente organische dioden auf der basis von aus phosphol abgeleiteten molekülen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0653146 2006-07-27
FR0653146A FR2904474B1 (fr) 2006-07-27 2006-07-27 Diodes organiques electroluminescentes blanches a base de molecules derivees du phosphole

Publications (1)

Publication Number Publication Date
WO2008012298A1 true WO2008012298A1 (fr) 2008-01-31

Family

ID=37775549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/057604 WO2008012298A1 (fr) 2006-07-27 2007-07-24 Diodes organiques électroluminescentes blanches à base de molécules dérivées du phosphole.

Country Status (9)

Country Link
US (1) US20090236978A1 (fr)
EP (1) EP2047534B1 (fr)
JP (1) JP2009545151A (fr)
KR (1) KR20090034902A (fr)
AT (1) ATE502405T1 (fr)
CA (1) CA2658908A1 (fr)
DE (1) DE602007013245D1 (fr)
FR (1) FR2904474B1 (fr)
WO (1) WO2008012298A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101763422B1 (ko) 2008-11-11 2017-07-31 메르크 파텐트 게엠베하 유기 전계발광 소자

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010033548A1 (de) * 2010-08-05 2012-02-09 Merck Patent Gmbh Materialien für elektronische Vorrichtungen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030099860A1 (en) * 2001-10-18 2003-05-29 Ming-Der Lin White light emitting organic electroluminescent device and method for fabricating the same
JP2003231741A (ja) 2001-12-07 2003-08-19 Sumitomo Chem Co Ltd 新規ポリマーおよびそれを用いた高分子発光素子
US20040046495A1 (en) * 2002-09-09 2004-03-11 Kuan-Chang Peng Organic electroluminescent device and method for manufacturing the same
FR2873586A1 (fr) * 2004-07-30 2006-02-03 Centre Nat Rech Scient Derives phospholes complexes a des metaux, et leurs utilisations pharmaceutiques

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696177B1 (en) * 2000-08-30 2004-02-24 Eastman Kodak Company White organic electroluminescent devices with improved stability and efficiency
JP4067286B2 (ja) * 2000-09-21 2008-03-26 富士フイルム株式会社 発光素子及びイリジウム錯体
TW200613515A (en) * 2004-06-26 2006-05-01 Merck Patent Gmbh Compounds for organic electronic devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030099860A1 (en) * 2001-10-18 2003-05-29 Ming-Der Lin White light emitting organic electroluminescent device and method for fabricating the same
JP2003231741A (ja) 2001-12-07 2003-08-19 Sumitomo Chem Co Ltd 新規ポリマーおよびそれを用いた高分子発光素子
US20050042195A1 (en) 2001-12-07 2005-02-24 Sumitomo Chemical Company, Limited New polymer and polymer light-emitting device using the same
US20040046495A1 (en) * 2002-09-09 2004-03-11 Kuan-Chang Peng Organic electroluminescent device and method for manufacturing the same
FR2873586A1 (fr) * 2004-07-30 2006-02-03 Centre Nat Rech Scient Derives phospholes complexes a des metaux, et leurs utilisations pharmaceutiques

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
D'ANDRADE B. W.; FORREST S. R.: "White organic light-emitting devices for solid-state lighting", ADVANCED MATERIALS, vol. 16, 16 September 2004 (2004-09-16), pages 1585 - 1595, XP002423195 *
FAVE, C., CHO T.-Y.; HISSLER M.; CHEN C.-W., LUH T.-Y.; WU C.-C.; REAU R.: "First Examples of organophosphorous-Containing Materials for light-Emitting Diodes", JOURNAL OF THE AMERICAN CHEMICALSOCIETY, vol. 125, 2003, pages 9254 - 9255, XP002423194 *
HISSLER M ET AL: "Organophosphorus pi-conjugated materials: the rise of a new field", JOURNAL OF ORGANOMETALLIC CHEMISTRY, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH, vol. 690, no. 10, 16 May 2005 (2005-05-16), pages 2482 - 2487, XP004877382, ISSN: 0022-328X *
SU HAI-CHING ; FADHEL OMRANE ; YANG CHIH-JEN ; CHO TING-YI ; FAVE CLAIRE ; HISSLER MURIEL ; WU CHUNG-CHIH ; REAU REGIS: "Toward functional pi -conjugated organophosphorus materials: Design of phosphole-based oligomers for electroluminescent devices", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 128, 25 January 2006 (2006-01-25), pages 983 - 995, XP002423193 *
THOMAS BAUMGARTNER: "$$Öpi$$ -Conjugated Heterocyclic fused Bithiophene Materials", JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS, KLUWER ACADEMIC PUBLISHERS-PLENUM PUBLISHERS, NE, vol. 15, no. 4, 22 April 2006 (2006-04-22), pages 389 - 409, XP019400784, ISSN: 1574-1451 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101763422B1 (ko) 2008-11-11 2017-07-31 메르크 파텐트 게엠베하 유기 전계발광 소자

Also Published As

Publication number Publication date
ATE502405T1 (de) 2011-04-15
EP2047534B1 (fr) 2011-03-16
FR2904474A1 (fr) 2008-02-01
EP2047534A1 (fr) 2009-04-15
CA2658908A1 (fr) 2008-01-31
JP2009545151A (ja) 2009-12-17
US20090236978A1 (en) 2009-09-24
FR2904474B1 (fr) 2008-10-24
KR20090034902A (ko) 2009-04-08
DE602007013245D1 (de) 2011-04-28

Similar Documents

Publication Publication Date Title
Ma et al. High color‐rendering index and stable white light‐emitting diodes by assembling two broadband emissive self‐trapped excitons
JP4511024B2 (ja) 高透明性非金属カソード
US6420031B1 (en) Highly transparent non-metallic cathodes
KR101166264B1 (ko) 유기 엘이디의 인광성 도펀트로서의 사이클로메탈화 금속복합체
US5861219A (en) Organic light emitting devices containing a metal complex of 5-hydroxy-quinoxaline as a host material
US20210135142A1 (en) Organic electroluminescent device based on exciplex and excimer system
JP2002514230A (ja) 赤色発光有機発光素子(oled)
JP2001527688A (ja) 保護層を含有する有機発光デバイス
WO1998028767A9 (fr) Dispositif organique luminescent contenant une couche de protection
US20080238308A1 (en) Method and Apparatus for Light Emission Utilizing an OLED with a Microcavity
KR20070004641A (ko) 조정할 수 있는 전기성 및 전계발광 특성을 가진 유기 재료
EP2047534B1 (fr) Diodes organiques électroluminescentes blanches à base de molécules dérivées du phosphole.
US7491451B2 (en) Electroluminescent polymer nanocomposite material, method of manufacturing the same and organic light emitting display apparatus having the same
JP2008198387A (ja) 有機el素子及びその製造方法
JP7342679B2 (ja) インキ組成物、発光層及び電界発光素子
KR20220052294A (ko) 플라즈몬 oled를 위한 에너지 준위 및 디바이스 구조
Basha et al. Preparation and characterization of ruthenium based organic composites for optoelectronic device application
Gupta et al. Voltage tunable white light generation from combined emission of monomer and electromer in phenanthroimidazole based OLED
FR2702870A1 (fr) Ecran électroluminescent.
US20240172462A1 (en) Organic electroluminescent devices
US20230042189A1 (en) Integrated oled lighting for automobile applications
Pan et al. Color tunable and very-high color rendering white organic light-emitting diodes employing a heavy-metal-free single emitter
JPH0347890A (ja) 有機エレクトロルミネッセンス素子
Lee et al. White light emitting electrophosphorescent devices with solution processed emission layer
Mydlak et al. The Basics of Organic Light-Emitting Diodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07787846

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020097001389

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2658908

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12374881

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007787846

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009521247

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU