WO2008010604A1 - Blood vessel imaging device and system for analyzing blood vessel distribution - Google Patents

Blood vessel imaging device and system for analyzing blood vessel distribution Download PDF

Info

Publication number
WO2008010604A1
WO2008010604A1 PCT/JP2007/064619 JP2007064619W WO2008010604A1 WO 2008010604 A1 WO2008010604 A1 WO 2008010604A1 JP 2007064619 W JP2007064619 W JP 2007064619W WO 2008010604 A1 WO2008010604 A1 WO 2008010604A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
blood vessel
region
imaging
hollow body
Prior art date
Application number
PCT/JP2007/064619
Other languages
French (fr)
Japanese (ja)
Inventor
Toshio Okazaki
Original Assignee
School Juridical Person Kitasato Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by School Juridical Person Kitasato Gakuen filed Critical School Juridical Person Kitasato Gakuen
Priority to JP2008525924A priority Critical patent/JPWO2008010604A1/en
Publication of WO2008010604A1 publication Critical patent/WO2008010604A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • A61B5/489Blood vessels

Definitions

  • the present invention provides an apparatus for irradiating a target region including a blood vessel with probe light to image the distribution state of the blood vessel, and based on the imaging result, the blood vessel distribution, the presence / absence of an abnormal region of angiogenesis, and the progress of Z or abnormality
  • devices that irradiate the skin with near-infrared light and image the distribution of blood vessels, and obtain information on the thickness and distribution of blood vessels from the imaging results to determine the presence or absence of tumors (eg, breast cancer)
  • the present invention relates to an analysis system for discriminating the state of tissue inflammation or disease. Background art
  • mammograms mammography
  • echography ultrasonography
  • tissue deformation due to lesions in suspicious areas If any abnormalities are found by these examinations, further examination of the living tissue (such as duct imaging, tumor marker examination, puncture aspiration cytology) will be performed to make a final diagnosis.
  • the method of detecting blood vessels in the living body by irradiating the skin with living tissue and irradiating near infrared light with a wavelength of 700 to 900 nm is used for diagnosis of cardiovascular function, blood volume and It is used for blood pressure measurement or biometric authentication.
  • Patent Document 1 near-infrared light is irradiated on the back of a finger or a hand, and an imaging element such as a CCD (Charge Coupled Device) is placed on the back side of the inside of the body. It describes a method for observing the spatial distribution of the intensity of transmitted light. Near-infrared light has a small absorption coefficient due to the components that make up the human body, but a large absorption due to hemoglobin, so it can be obtained as a dark image in which blood vessels are light-absorbed.
  • CCD Charge Coupled Device
  • JP-A-8-164123 (Patent Document 2) irradiates the skin with two types of light having different wavelengths of 4 00 to 6 00 nm and 6 0 to 80 nm, and reflects the internal reflection.
  • Patent Document 2 JP-A-8-164123 irradiates the skin with two types of light having different wavelengths of 4 00 to 6 00 nm and 6 0 to 80 nm, and reflects the internal reflection.
  • JP 2005-21380 Patent Document 3
  • JP 2005-218684 Patent Document 4
  • An invention relating to a biological information video apparatus that visualizes biological function information of a subject from an acoustic signal generated based on the above is described.
  • this photoacoustic spectroscopic analysis method when visible light, near-infrared light, or mid-infrared light having a predetermined wavelength is irradiated on a subject, glucose, hemoglobin, etc.
  • the present invention relates to a diagnostic apparatus capable of observing and photographing a subcutaneous blood vessel distribution non-invasively and simply and analyzing the photographing result, and an analysis system thereof. Tumors that can be found close to the skin, such as breast cancer and skin cancer, which are difficult to identify, can be easily examined at home.
  • the angiography apparatus of the present invention and the blood vessel distribution analysis system have the following configuration.
  • Probe light emitted from the irradiation unit which includes an irradiation unit that can irradiate probe light toward the inspection target region and an imaging unit that receives scattered light and / or transmitted light from the inspection target region irradiated with the probe light.
  • An angiography apparatus configured to prevent the light from directly entering the imaging unit.
  • An irradiating unit that is provided at or near the edge of the open end and can irradiate probe light toward the inspection target site received in the hollow body;
  • the angiography apparatus as described in 1 above further comprising an imaging unit that receives scattered light and / or transmitted light emitted from the buttocks of the inspection target site irradiated with the probe light into the hollow body.
  • the probe light emitting portion of the irradiating portion is provided in the hollow body, and the probe light or its reflected light is directly applied to the imaging portion by being covered by the inspection target portion received inside the hollow body. 4.
  • a hollow body having an open end in a shape capable of being in close contact with a region to be inspected 2) Provided at or near the edge of the open end and facing the opening in the hollow body or near the region to be inspected Irradiating part that can irradiate probe light toward
  • the blood vessel imaging device further including an imaging unit that receives turbulent light and Z or transmitted light.
  • the probe light emitting portion of the irradiating portion is provided at the edge of the opening end, and is covered with the inspection target portion that is in close contact with the hollow body opening portion, thereby allowing the probe light or its reflected light to the imaging portion. 6.
  • the angiography apparatus according to any one of 1 to 13, further including means for specifying an imaging position.
  • the shooting position is specified by measuring the distance and angle from multiple reference positions.
  • the angiography apparatus according to 14 is specified by measuring the distance and angle from multiple reference positions.
  • the irradiation unit includes a plurality of light source rows or arrays or a plurality of optical fiber open end rows or arrays connected to the light sources.
  • a blood vessel abnormality diagnosis device including the angiography device according to any one of 1 to 18 above, a display device that displays a captured image, and a storage device that stores image data.
  • the image data stored in the storage device includes reference data for the normal part and reference data for the abnormal part. By comparing the captured image with the reference data, an abnormality in the blood vessel image in the captured image is detected. 20.
  • the angiography apparatus according to any one of 1 to 18 or the vascular abnormality diagnosis apparatus and the blood vessel distribution analysis apparatus according to any one of 19 to 20, wherein the angiography apparatus or vascular abnormality diagnosis apparatus comprises: A vascular abnormality diagnosis system that analyzes acquired data to determine vascular abnormalities.
  • a blood vessel distribution analyzing apparatus including means for calculating brightness and darkness of an entire image photographed by any of the devices 1 to 18 and comparing the lightness and darkness of each part of the image to determine blood vessel distribution.
  • the gray scale value at the position with the largest gray scale value in the captured image is obtained, the average gray scale value in the area is obtained while enlarging the area to include the position, and the gray scale value is changed. 3.
  • the blood vessel distribution analyzing apparatus according to the item 2 wherein the boundary of the region corresponding to the inflection point is determined as the blood vessel distribution region boundary.
  • the part to be analyzed is divided into non-overlapping polygonal areas of equal area, and the grayscale value of each area is obtained.
  • the low and high areas are combined with their adjacent areas to make a large area, and each grayscale value is obtained. This step is repeated, and the distribution of blood vessels is determined based on the change in the grayscale value between steps.
  • a breast cancer diagnostic apparatus for diagnosing breast cancer by determining vascular abnormalities using the apparatus according to 26.
  • [2 8] A method for diagnosing breast cancer using the breast cancer diagnostic apparatus according to 27.
  • the angiography apparatus of the present invention and the blood vessel distribution analysis system of the present invention blood vessel distribution can be observed and photographed non-invasively and easily, and the photographing result can be analyzed.
  • Breast cancer and skin cancer, which are difficult to identify, can be easily examined at home for tumors that are close to or close to the skin.
  • FIG. 1 is a schematic diagram showing an embodiment of the angiography apparatus of the present invention.
  • FIG. 2 is a schematic diagram showing the operation principle of the angiography apparatus of FIG.
  • FIG. 3 is a schematic diagram showing a conventional apparatus using reflected light in contrast to the apparatus of FIG.
  • FIG. 4 is an explanatory diagram showing a configuration example of the blood vessel distribution analysis system of the present invention.
  • FIG. 5 is a schematic diagram showing an example of blood vessel distribution between a normal site and an angiogenesis site examined by the blood vessel distribution analysis system of the present invention.
  • FIG. 6 is a diagram (depopulated distribution) showing an outline of region segmentation by the imaged image and distribution analysis system by the angiography apparatus of the present invention.
  • FIG. 7 is a diagram (dense distribution) showing an outline of region segmentation by a captured image and distribution analysis system by the angiography apparatus of the present invention.
  • FIG. 8 is a graph showing changes in the average gray scale value as the selected area of the photographed images in FIGS. 6 and 7 is enlarged.
  • FIG. 9 is a schematic diagram showing an embodiment of the light irradiation unit of the angiography apparatus of the present invention.
  • FIG. 10 (A) is a schematic view showing another embodiment of the angiography apparatus of the present invention, and (B) is a schematic sectional view corresponding to this.
  • FIG. 11 is a schematic diagram showing still another embodiment of the angiography apparatus of the present invention.
  • the angiography apparatus of the present invention and its blood vessel distribution analysis system will be described below.
  • An angiography apparatus of the present invention includes an irradiation unit that can irradiate probe light toward a region to be inspected and an imaging unit that receives scattered light and Z or transmitted light from the region to be inspected by the probe light.
  • the probe light emitted from the camera is configured not to directly enter the imaging unit.
  • it may include various aspects, but typically, as the first aspect
  • An irradiating unit that is provided at or near the edge of the open end and can irradiate probe light toward the inspection target site received in the hollow body
  • the angiography apparatus having an imaging unit that receives scattered light and / or transmitted light emitted from the inside of the examination target irradiated with the probe light into the hollow body, and further, as a second aspect,
  • an irradiating unit that is provided at or near the edge of the opening end and that can irradiate probe light toward the inspection target site facing the opening in the hollow body or the vicinity thereof;
  • FIG. 1 shows an example of the embodiment of the first aspect of the angiography apparatus of the present invention. This is an example in which the hollow body is a cylindrical body, and is largely composed of the following three parts.
  • a hollow body having a shape of an open end that can be in close contact with a region to be inspected, and receiving a part of the region to be inspected when the open end is in close contact with the region to be inspected [cylinder (1) ],
  • An irradiating portion (2) provided at or near the edge of the opening end and capable of irradiating probe light toward the inspection target portion received in the cylinder.
  • An imaging unit (3) that accepts scattered light and Z or transmitted light from the inside of the examination target irradiated with the probe light.
  • the first major feature of the angiography apparatus of the first aspect of the present invention is that the site to be examined is taken into the apparatus (FIG. 2 (B)), and the probe light is taken from its side. By irradiating p, the scattered light and / or transmitted light s from inside the region to be inspected is imaged (Fig. 2 (C)).
  • the imaging apparatus of the present invention has an open end shaped so as to be in close contact with the region to be inspected, and a part of the region to be inspected when the open end is in close contact with the region to be inspected (20).
  • (21) has a hollow body [cylinder (1)] for receiving the inside thereof. If the part to be inspected is a body part rich in elasticity, the opening end should be shaped so that it can be in close contact with it, and the opening end will be pressed against the part to be inspected so that a part of the part to be inspected will be pushed into it. However, preferably, the inside of the hollow body [tubular body (1)] can be decompressed, and the site to be inspected is drawn into the inside. (Refer to Fig. 2 (B) and (C)).
  • the shape of the hollow body [tubular body (1)] is not particularly limited as long as a photographing unit described later can be provided, and may be a cylindrical body such as a cylinder or a rectangular tube, but may be spherical (however, having an open end), Any shape such as hemisphere, truncated cone, truncated pyramid may be used.
  • the hollow body is sufficient if it can take the region to be inspected inside, and as long as it has a hollow portion as long as it is provided. As long as the effect is achieved, a pair of opposing rib-like members may be used.
  • the distance traveled in the region to be inspected differs when the probe light is irradiated from the inner periphery of the open end.
  • the open end diameter of the hollow body (1) is usually about 0.5 to 10 cm, preferably about 1 to 5 cm, although it depends on the size of the region to be examined. If the open end is too small, the inspection efficiency is poor, and the ingestion of the inspection target part into the cylinder does not proceed smoothly. In addition, if the opening end is too large, the probe light absorption in the region to be inspected becomes large and sufficient inspection cannot be performed.
  • the means is not particularly limited.
  • a pipe or the like is pulled out from a part of the cylinder and the other end is connected to the pressure reducing device.
  • the decompression device any means such as a decompression device based on a reciprocating motion of a piston, a rotational motor or an eccentric motor, or a decompression pump based on a cyclone method can be used. A pump is preferred.
  • the switch of the decompression device can be attached to the cylinder or the back of the imaging unit (3), which will be described later, and sucked at the desired position while operating. You can do it.
  • the cylinder, the decompression device, or the pipe connecting them should not be excessively decompressed, or maintained at a certain level, or the inside of the cylinder could be quickly returned to atmospheric pressure at the end of shooting.
  • a hole valve means that can be opened and closed may be provided as appropriate. Any means known to those skilled in the art can be used as the means for adjusting the degree of decompression.
  • the material of the hollow body (1) is not particularly limited, but is preferably made of a material that is easy to process and has a certain pressure resistance, and that at least the inner surface thereof easily absorbs probe light (for example, near infrared rays) described later.
  • the opening is preferably made of a material that is easy to install the light emitting means described later and has excellent adhesion to the region to be examined (for example, skin).
  • Each part may be composed of a separate material to meet these conditions.
  • the degree of decompression depends on the flexibility of the target part, the diameter of the opening end, etc., but the target part should be pulled into the opening end at least about 2 to 5 mm.
  • the pressure may be reduced from atmospheric pressure to about 1 to 100 h Pa. If the pressure becomes higher than this, the subject may feel pain in the decompression area.
  • the irradiating part (2) is provided at or near the opening edge of the hollow body (1) as shown in FIGS.
  • the light emitting means may be arranged along the opening end of the hollow body (1) with the inner side facing the edge.
  • the light emitting means is typically a light emitting diode (LED).
  • Probe light has a wavelength that penetrates biological tissue relatively well and is absorbed by blood vessels, particularly hemoglobin, but near infrared light having a wavelength of 700 to 900 nm is relatively
  • hemoglobin in erythrocytes that flow through blood vessels specifically absorbs near infrared light at 8500 nm, so near infrared light in the above wavelength range is preferable.
  • a light-emitting diode is used by combining multiple wavelength ranges.
  • the absorption wavelength of oxygenated hemoglobin (oxyhemoglobin) 850 nm and the absorption wavelength of deoxygenated hemoglobin (deoxyhemoglobin) 76 0 It may be possible to switch the wavelength of the LED light to be irradiated so that both nm can be measured.
  • the probe light may be a normal light beam or a laser beam.
  • the LEDs As shown in Fig. 1 and Fig. 2 (A), it is preferable to arrange the LEDs evenly along the entire inner circumference. As shown in Fig. 1 and the like, it is preferable to provide them as densely as possible, but they may be provided at intervals. Also, as mentioned above, when using LEDs in multiple wavelength ranges, you can install them in combination. Further, when the inside of the hollow body (1) is depressurized, the surface ⁇ in contact with the target portion is smoothly received as shown in FIG. It may have an inclined shape.
  • the photographing part (3) is provided at a position opposite to the opening as shown in FIG.
  • the hollow body (1) has a rotationally symmetric shape (for example, a cylindrical shape)
  • the hollow body (1) is provided on the surface facing the opening on the axis.
  • the probe light scattered and transmitted from the target site may be extracted from the hollow body (1) through, for example, an optical fiber and guided to an imaging unit provided separately.
  • the irradiation section is typically a circular row as shown in the above example, but it may be an array that extends in two dimensions.
  • the imaging unit (3) typically has a transparent partition (eg, glass or polycarbonate plate) and / or optical system (eg, lens) (4), camera holder ( 5) and imaging means (eg, CCD substrate) (6) Mu
  • the transparent plate is provided for the purpose of avoiding the effects of pressure changes in the cylinder, preventing the pressure reduction in the cylinder from being reduced, and limiting contamination by sebum.
  • the optical system (4), the camera holder (5), and the imaging means (6) can be configured using configurations, materials, and structures known to those skilled in the art. These may be any one that can detect the above-mentioned light, and those that are commercially available as CCD camera units may be used.
  • shooting includes not only still image shooting but also moving image shooting. Therefore, for example, it is possible to obtain a three-dimensional image in the vertical direction of the target portion by performing imaging while sucking the target portion and performing differential processing on the images of the respective frames.
  • the probe light p is emitted from a position facing the inspection target part toward the inspection target part. For this reason, even if the imaging unit is provided at a position opposite to the opening, most of the incident light to the imaging unit is reflected light r from the target surface (for example, the skin surface), and the inside of the target site (for example, Only a small amount of information is available from the skin.
  • the target surface for example, the skin surface
  • the inside of the target site for example, Only a small amount of information is available from the skin.
  • the scattered light and transmitted light from the inside of the target site for example, intradermal
  • the surface of the probe light emitting portion is covered with the target site (becomes in close contact) because reflected light from the surface of the target site does not enter the imaging site as noise.
  • the present invention includes an apparatus that acquires not only the entire region to be examined but also a part of the captured image.
  • the radiographic image data may be input, displayed, or stored in the blood vessel distribution analysis system described below or other display device or storage device (collectively represented as “computer” in FIG. 1). ,.
  • the site to be examined by the angiography apparatus of the present invention is not particularly limited as long as it is an accessible site, but usually the skin of humans or animals, in particular, the hairless or substantially hairless skin surface is preferred. Flexible skin and / or subcutaneous tissue is preferred. It is suitable to be applied to a site rich in subcutaneous fat, for example, the breast and its vicinity, and is particularly suitable for angiography for diagnosis of breast cancer in this respect.
  • the second embodiment of the device of the present invention is as shown in FIG.
  • An irradiating portion provided at or near the edge of the opening end and capable of irradiating the probe light toward the inspection target portion facing the opening in the hollow body or the vicinity thereof (2), 3) irradiated with the probe light And an imaging section (3) for receiving scattered light and Z or transmitted light (indicated by s) emitted from the inside of the inspection target portion into the hollow body.
  • the major difference from the first aspect is that the imaging light is not taken into the hollow body, and the probe light is irradiated from the edge of the opening end or the vicinity thereof to the inspection target part or the vicinity thereof. It is.
  • This aspect is suitable for photographing a blood vessel image at a relatively shallow position as compared to the first aspect. Also, because the target site is not taken into the hollow body, for example, the skin It is suitable for continuous scanning by smoothly scanning the surface of the camera.
  • the position of the irradiation section is not limited, but it is convenient to provide the irradiation section outside the hollow body as shown in FIG.
  • the probe light output can be increased to obtain information up to a deeper part.
  • the hollow body may have a function that its wall surface substantially optically shields between the probe light irradiation unit and the imaging unit (light receiving unit). These materials are determined by the wavelength of the probe light, but an example of near-infrared light is salted blue. However, as shown in FIG.
  • the optical axis is inclined so that the probe light p sufficiently enters the target site under the imaging part. It is preferable to make it incident.
  • the irradiation angle 0 (the probe light incident angle on the surface of the target site) is preferably approximately 10 degrees or more, more preferably 30 degrees or more. If the irradiation angle ⁇ is too large, the depth of penetration into the skin will be small, so 80 ° or less is preferable, and 60 ° or less is more preferable.
  • an irradiation element such as an LED or a plurality of housings that house the LED is arranged in an interlocking manner so that the irradiation angle 0 is variable.
  • a concentric double ring structure with different diameters is provided, and inner and outer rings are arranged. This can be realized by changing the relative vertical relationship between the inner and outer rings by pivotally supporting the LED or other irradiating elements or multiple housings housing them in the center and near the outer periphery. Either ring position can be operated directly from the outside of the hollow body.
  • annular member that is rotatably screwed to the outer periphery of the hollow body is provided, and this is coupled to one of the rings.
  • the other ring is fixed in the hollow body.
  • a lid member that is in close contact with the skin may be provided at the hollow body opening.
  • the lid member is made of a material that transmits light having the same wavelength as the probe light.
  • the apparatus of the present invention may include means for specifying the photographing position (hereinafter referred to as localization means) in both the first aspect and the second aspect.
  • Such localization means can include a variety of powers The following four types of configurations are included.
  • a reference position is set at the time of shooting, and the relative position from the reference position is measured. This is typically based on the same principle as triangulation.
  • the reference position can be selected arbitrarily.
  • the left and right ends of the pelvis (respectively L point and R point) can be used as the reference position.
  • the camera is connected to these reference positions in some way, and when shooting at a certain point P, the photographer manipulates the distance LP from the point L and the distance RP or ZPLR from the point R. And ZPRL are recorded in association with the captured image.
  • the L and R points are fixed points, and the P point exists on the operator's skin surface. Therefore, the position of the P point is almost uniquely determined by the above information (distance or angle). If necessary, a third reference point may be provided to measure the same distance and angle as described above.
  • the coupling between the imaging device and these reference positions may be mechanical, or may use sound, light, radio waves, or the like.
  • Examples of the mechanical configuration include a belt-like member having a size suitable for fitting on the waist and two cord feeding devices provided on the belt-like member.
  • the two cord feeders (Eg 1 and 0 2 ) are fixed at positions corresponding to both ends of the pelvis, for example.
  • the cord feeding device includes a winding shaft for winding the cord therein, and further includes a housing that is provided with an opening for feeding the cord and is rotatably supported around the winding shaft.
  • the take-up shaft is urged in the direction in which the cord is pulled in by a winding spring, for example.
  • Angles ZPCiCs and ZPCsCi can be easily calculated from the rotation angle of the opening and the rotation angle of the take-up shaft of the cord, so that it is possible to specify the shooting position by providing a means to measure these rotation angles Become.
  • a cord is a wire, string, chain, or the like that does not adversely affect measurement when sufficient tension is applied, and can be formed of resin, paper, other fibers, metal, etc. .
  • Examples of configurations using sound, light, radio waves, and the like include, for example, communication means (the same 1 and 2 ) equipped with ultrasonic, light, or radio wave irradiation and reception means as described above in the code sending device. Instead of a belt.
  • the sound part of the imaging apparatus, the force providing a device for detecting the light or radio waves, sound, by providing a device for emitting light or radio waves, each imaging device P Toje and C 2, acoustic, optically histological or electromagnetic coupling, the distance PC e and PC 2 is readily determined (eg if the distance PC i are obtained be multiplied the speed of sound in the ultrasonic propagation time fired from C i. ).
  • angle ZPCsCi can also be easily measured by changing the irradiation angle of ultrasonic waves, light or radio waves, and Z or reception angle using a mechanical drive or an array, so it is possible to specify the shooting position.
  • the approximate shooting position is specified only by the distance P Ci and PC 2, but the angle ZPdC is taken into account when the breasts are raised. 2 , ZPCsCi is also preferably measured together. The Further, the elevation angle from the skin surface to the imaging device may be measured. You can also wear it near the scapula instead of the belt on your waist.
  • a reference position is set at the time of shooting, and the moving distance from the reference position is measured. This is typically based on the same principle as a mechanical or optical mouse.
  • the reference position can be any position, and can be based on physical feature points (positions such as moles) or fixed points (for example, the lower edge between both breasts). It is preferable to record the position. This can also be realized by providing an imaging device in the visible region in the imaging device or providing a character input device so that a visible image can be taken by the imaging device.
  • the ball is typically coupled to the photographing apparatus in a rotatable manner. This can be achieved by sealing the ball in the housing so that a part of it is exposed outside the housing, as seen in the position identification part of the computer mouse, and connecting the housing with the imaging device.
  • the rotation direction and rotation angle of the ball are measured, for example, by irradiating light beams from two or more directions (this method may be a conventional method), and the movement distance and direction are measured by calculation.
  • visible light or infrared light or a laser beam thereof is irradiated onto the skin surface.
  • probe light may be used in combination. Reflected, transmitted, or scattered light is taken into the imaging device (which may be in the hollow body described above or a light receiving unit may be provided separately), and several feature points are identified by a CCD or the like. When the photographic device is moved, these feature points move in the photographic image. By analyzing this, the moving direction and moving distance are measured. Note that the probe light Irradiation, light reception, and position measurement are unitized in an existing optical mouse, and may be used in the present invention.
  • the moving distance can be measured by an acoustic method and a radio wave method.
  • the moving distance can be obtained by irradiating the skin surface with sound waves or electromagnetic waves obliquely, measuring the moving speed by Doppler shift during movement, and integrating this with time.
  • This method can also be used by an optical method if the detection accuracy is high.
  • the configuration in (c) specifies the position based on the captured image.
  • C-1 A configuration that captures a visible image at the time of shooting to identify the position.
  • c-2) It is analyzed at the time of shooting.
  • An example is a configuration that identifies the position based on the blood vessel image.
  • the configuration of (c-1) can be realized, for example, by providing a visible image capturing device in addition to the hollow body described above and capturing a visible image in conjunction with the capturing of a blood vessel image.
  • the visible image may be obtained by superimposing the imaging part as a visible image, or the peripheral image may be taken at a wide angle so that the position can be specified.
  • the configuration of (C-2) is to localize the imaging position by corresponding to the blood vessel in a substantially fixed position.
  • a mark or other coordinates are provided at the target position.
  • a method of sticking a sheet or the like that adheres to the skin on which coordinates or the like are drawn For example, in the case of breast imaging, wear a cup-type bra or the like that has previously drawn the coordinates that can be seen with visible light and the best effort. Shooting is performed by superimposing infrared and visible light on the cup-shaped brassiere and linking the two, making it possible to specify the position of each captured image.
  • a cup-type bra, etc. if a skin-contact type is used, there will be almost no displacement during shooting. preferable. For parts other than the breast, use the same flat sheet.
  • coordinates are drawn with ink that is close to skin color, and infrared imaging and imaging in the wavelength range corresponding to the complementary color of skin color are performed, and the two are linked. Gore.
  • drawing the coordinates with ink use the above-mentioned force-type brassiere as a template or paste the coordinates drawn on the transfer sheet on the breast, peel off the sheet and transfer the coordinates onto the breast can do.
  • the second aspect is preferred. In the latter case, both the first and second aspects are possible.
  • the localization means described above may be combined with either the first aspect or the second aspect, but in particular, it is easy to scan a wide area of the target region for imaging.
  • the blood vessel distribution under the skin of the target site for example, the breast
  • the position information while being a simple device with little burden on the operator. For example, multiple frames are shot per second, and the shot image and position information are recorded together. If the obtained blood vessel image is mapped according to the position information, diagnosis of blood vessel abnormality becomes easier.
  • the probe light emitted from the irradiation unit does not directly enter the imaging unit, and the scattered light or transmission emitted from the target site.
  • a device that receives light at the photographing unit particularly a device in which the irradiation unit and the photographing unit are fixed in a certain positional relationship, particularly a small-sized angiographic device is included in the scope of the present invention.
  • the apparatus of the present invention may further include an apparatus for displaying a captured image.
  • table The captured image is displayed on a display device (CRT, liquid crystal display, etc.), and the operator can view it as a real-time or recorded image.
  • a display device CRT, liquid crystal display, etc.
  • the present invention also includes a blood vessel distribution diagnostic apparatus including a blood vessel distribution analysis system.
  • a blood vessel distribution diagnostic apparatus including a blood vessel distribution analysis system. The configuration will be described below.
  • the blood vessel distribution analysis system includes an entire system for analyzing a captured image.
  • a known method can be used as a method for extracting a dark part or the like from a captured image by image analysis.
  • the brightness of the image may vary depending on the shooting conditions, but the blood vessel distribution can be extracted by subtracting the brightness of the entire image from the brightness of each part of the image. It is also possible to determine the blood vessel distribution area from local changes in brightness.
  • the method is not particularly limited, but as an example of a method for determining the blood vessel distribution area from local changes in light and darkness, the most prominent position (position with a large gray scale value in the photographed image.
  • the gray scale value of simply the darkest point may be stored, and the average gray scale value of the enlarged area may be obtained while enlarging the area to include that portion. .
  • draw circles with radius r centered on the darkest point one after another and find the average grayscale value inside. This allows the average grayscale value to be specified as a function of r for that image.
  • the concentration area of the blood vessel distribution can be defined.
  • the force of expanding the circle drawn around the reference point is taken as an example.
  • the change in the gray scale value is measured two-dimensionally from the reference point in multiple directions, and the gray scale value on each line is calculated.
  • the concentration region of the blood vessel distribution may be defined by looking at the change (for example, the inflection point).
  • the region may be expanded from the brightest point, or the region may be expanded from both.
  • a plurality of reference points which may be grid points corresponding to predetermined coordinates in the photographed image or points that are presumed to be the blood vessel distribution part from the gray scale value) in the image area are taken, and Similar to, it is possible to estimate the concentration area of the blood vessel distribution by calculating the average gray scale value and its change (for example, the inflection point) while expanding the area.
  • the above method eliminates errors caused by non-uniformity of probe light distribution due to the inclination of the measurement device and bias in the target part pull-in, etc., by looking at the rate of change rather than the absolute value of the grayscale value. can do.
  • the distribution of blood vessels can be determined based on the change in the gray scale value.
  • the unit area (divided individual area) ai in one step becomes a part of the corresponding unit area a i + 1 in the next step. If one scale value gi , g i +1 is g;> g i +1 , a brighter region (ie, a region with less blood vessel distribution in the positive image) is captured by expanding the unit region.
  • the blood vessel distribution is sparser for a i + 1 than for a ;
  • the blood vessel distribution is denser in a i + 1 than in a ;
  • the density of blood vessel distribution in each part can be determined.
  • an overall error that can occur when the gray scale values of k regions are simply compared for example, the device pushes the region to be inspected). This avoids the light / dark bias of the entire photographed image that may occur due to the operation, such as the angle at which it is applied.
  • the smallest unit area ie, the first set k areas in the above example
  • the smallest tumor size at which angiogenesis begins should be comparable to the smallest tumor size at which angiogenesis begins.
  • a circular region can be photographed, and a ring-shaped region other than the central region can be determined.
  • the “part to be diagnosed” refers to a partial region of such a captured image.
  • Each unit region is not limited in shape, but is preferably divided into polygons of equal area that do not overlap, for example, a triangle, a rectangle, and a hexagon (particularly, a regular triangle, a square, and a regular hexagon).
  • a square the simplest way is to cut out the captured image as the largest square inscribed in the part to be diagnosed. Is divided into m squares, the gray scale value of each area is obtained, and the highest and lowest values are recorded (step 0). Next, n squares adjacent to the circumference of the unit area showing the highest and lowest values are added, and the average clay scale value is calculated (first step).
  • the number of squares ni added in the first step is 3 ⁇ n ⁇ 8.
  • square number n 3 ... are applied in adjacent, 3 ⁇ 5 ⁇ 7 ... ⁇ ni 2 3 ... ⁇ 8 -.. 1 6 - increased by 2 5 ... range.
  • Sequentially add the grayscale values of all the unit areas find the average value sequentially, and examine the change in the grayscale value between the highest and lowest values.
  • this system has an irradiation unit (2) for irradiating probe light to a hollow body (1) that receives a region to be examined, and an imaging unit (3), and the imaging unit includes an imaging means (6).
  • (1) is connected to the decompression means (8), and these irradiation section (2), decompression means (8), and imaging means (6) are connected to the computer (10) via the control section (12).
  • the control unit (12) is, for example, a switch, and may control all or a part of irradiation, decompression, and imaging, and these may be controlled by a computer (not via the control unit (12)). 10) You can also connect to the configuration.
  • the data obtained by the imaging means (6) may be transmitted directly to the computer (12).
  • the display device (9) is optional, but it is usually necessary when a doctor or the like performs direct image diagnosis.
  • Display device (9) Display that guides the imaging procedure, or a visualization image of the imaging result, for example, “no abnormality”, “needs specialist diagnosis”, etc., may be displayed.
  • the display device (9) may be a touch panel (for example, a liquid crystal panel) integrated with the control unit (12) or the computer (10).
  • a chest image or the like can be presented by computer graphics, and a photographed image can be displayed while pointing the photographing region with a point or the like.
  • a specialist or the like it is possible for a specialist or the like to diagnose the captured image.
  • the imaging system itself may not include the display device, or the display device or the like may be installed in a physically separated place.
  • an operator which may be the subject himself / herself
  • the irradiation unit (2), decompression unit (8), imaging unit (6) and display device (9) automatically irradiate probe light after suction under the control of the computer (10) It is also possible to use a configuration that measures the amount of light and displays the suction status and the appropriateness of the angle with respect to the target part of the device.
  • the imaging means (6) automatically takes images under the control of the computer (10). You may be able to select the best data among them.
  • the computer (10) may include a program for performing an arbitrary image processing step such as superimposing a plurality of data or taking a difference from a plurality of time series data.
  • an angiogenesis site as shown in FIG. 5 can be discriminated, it is possible to discriminate the presence or absence of angiogenesis due to some cause.
  • angiogenesis associated with a tumor starts at a diameter of about 2 mm, and can be identified as a concentration of blood vessels of 2 mm or more. Therefore, the device of the present invention is effective as a diagnostic device for breast cancer. It is.
  • Figure 8 shows the change of the average sag scale value as the selected area is expanded.
  • the upper graph in Fig. 8 shows a collection with no blood vessel distribution (depopulated distribution in Fig. 6), and the lower graph shows a blood vessel collection (dense distribution in Fig. 7).
  • the average grayscale value in the bright area is indicated by ⁇
  • the average grayscale value in the dark area is indicated by ⁇ .
  • the grayscale value starting from the unit area showing the maximum and minimum values eventually converges to the grayscale value of the entire image.
  • Example 2
  • near-infrared light-emitting LEDs (maximum wavelength: 850 nm, manufactured by Nisshin Denshi Kogyo Co., Ltd.) are used on the outer periphery of a vinyl chloride cylinder that does not transmit light with an outer diameter of 43 mm and a height of 100 mm. Attached at an angle of 45 degrees so that near infrared light can be irradiated.
  • a CCD camera (XC-E 150, 768 X 494 pixels, manufactured by Soniichi Co., Ltd., mount: C mount, flange back: 17 through a partition (glass plate) 562mm, outer dimensions: width 29 mm x height 29 mm x depth 32 mm).
  • Example 2 In the same manner as in Example 1, the above device was pressed against the subject's chest and imaging was performed, and a blood vessel image in the vicinity of the skin could be obtained.
  • a light irradiation / light receiving unit of an optical mouse was attached to the same apparatus as in Example 2, and the obtained signal was configured to be input to a computer together with a photographed image.
  • a part of the subject's chest was used as a base point, and the device was moved little by little on the skin surface.
  • the image and position information were recorded simultaneously. By mapping this along the location information, a wide range of angiographic images could be obtained.
  • the angiography apparatus of the present invention can be manufactured at low cost, is easy to downsize and has a simple apparatus configuration, and thus is effective for imaging blood vessels at various sites, particularly blood vessel distribution near the skin surface. Therefore, it is particularly useful as a self-examination device for angiogenesis abnormalities near the skin surface, for example, breast cancer.
  • the photographing unit and the irradiating unit are relatively close to each other, and can be configured substantially integrally. Therefore, it is useful as a simple inspection device in which the subject holds the device in his hand and operates it.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A blood vessel imaging device for noninvasively and simply analyzing the distribution of veins. The device has an irradiation section for emitting probe light toward a target inspection portion and an imaging section for receiving dispersed light and/or transmitted light from the target inspection portion. The device is constructed so that the probe light emitted from the irradiation section does not directly enter the imaging section. Also provided are an analysis device for analyzing the result of imaging by the blood vessel imaging device and an analysis system for the result of imaging.

Description

明細書  Specification
血管撮影装置及び血管分布解析システム 技術分野  Angiography equipment and blood vessel distribution analysis system
本発明は、血管を含む対象部位にプローブ光を照射して血管の分布状態を撮 影する装置並びにその撮影結果に基づいて、 血管分布、血管新生の異常部位の 存否及び Zまたは異常の進行度を診断する装置、 特に、 皮膚に近赤外光を照射 して血管の分布状態を撮影する装置、及び撮影結果より血管の太さや分布状況 に関する情報を得て腫瘍(例えば、 乳ガン) の有無やその他組織の炎症や疾病 の状態を判別するための解析システムに関する。 背景技術  The present invention provides an apparatus for irradiating a target region including a blood vessel with probe light to image the distribution state of the blood vessel, and based on the imaging result, the blood vessel distribution, the presence / absence of an abnormal region of angiogenesis, and the progress of Z or abnormality In particular, devices that irradiate the skin with near-infrared light and image the distribution of blood vessels, and obtain information on the thickness and distribution of blood vessels from the imaging results to determine the presence or absence of tumors (eg, breast cancer) In addition, the present invention relates to an analysis system for discriminating the state of tissue inflammation or disease. Background art
近年、乳ガンは女性の死亡原因の上位を占めており、その早期発見に力が注 がれている。  In recent years, breast cancer has been a leading cause of death among women, and efforts have been focused on early detection.
一般的な乳ガンの検査としては、先ず医師により乳房の触診を行う。触診に より異常なしこりが発見された場合には、 乳房 X線撮影 (マンモグラフィ一) や超音波検査(エコーグラフィー)により疑わしい箇所に病変による組織変形 が認められるか否かを確認する。これらの検査により明らかな異常が認められ た場合には、 さらに生体組織を検査し (乳管撮影、 腫瘍マーカー検査、 穿刺吸 引細胞診など)、 最終的な診断を行う。  As a general examination for breast cancer, a doctor palpates the breast first. If an abnormal lump is detected by palpation, mammograms (mammography) and ultrasonography (echography) should be used to check whether there is tissue deformation due to lesions in suspicious areas. If any abnormalities are found by these examinations, further examination of the living tissue (such as duct imaging, tumor marker examination, puncture aspiration cytology) will be performed to make a final diagnosis.
最近では、 一定年齢以上の女性に対して乳ガンの検査が奨励されているが、 時間的制約など様々な理由から定期健診の受診率は必ずしも高くはなレ、。この ため、乳ガンの早期発見のためには、患者自身で定期的に乳房の自己検診を行 レ、、早い段階で異常を見つけることが重要である。 しカゝし、 素人の触診ではし こりの有無を十分に判別することが難しく、 異常を見過ごしてしまうケース や、そもそも触診では発見できない潜在的な腫瘍もあり、 より確実な自己検診 方法が求められている。 Recently, breast cancer testing has been encouraged for women over a certain age, but due to various reasons such as time constraints, the regular checkup rate is not necessarily high. this Therefore, for early detection of breast cancer, it is important that patients themselves conduct regular self-examination of the breast and find abnormalities at an early stage. However, it is difficult to determine the presence or absence of lumps by palpation by amateurs, and there are cases where abnormalities are overlooked and potential tumors that cannot be detected by palpation in the first place. It has been.
一方、皮膚に生体組織を透過しゃすレ、 7 0 0〜 9 0 0 n mの波長の近赤外光 を照射して生体内の血管を検出する方法が、心血管系機能の診断、血液量や血 圧の測定あるいは生体認証等に用いられている。  On the other hand, the method of detecting blood vessels in the living body by irradiating the skin with living tissue and irradiating near infrared light with a wavelength of 700 to 900 nm is used for diagnosis of cardiovascular function, blood volume and It is used for blood pressure measurement or biometric authentication.
例えば、 特開平 8-164124号公報 (特許文献 1 ) には、 指や手の甲等に近赤外 光を照射し、 その裏側に C C D (Charge Coupled Device)のような撮像素子を 配置して体内を透過してくる光の強度の空間分布を観察する方法が記載され ている。 近赤外光は、 人体を構成する成分による吸収係数は小さいがへモグロ ビンによる吸収は大きいため、 血管部分が光吸収された暗い像として得られ る。  For example, in Japanese Patent Application Laid-Open No. 8-164124 (Patent Document 1), near-infrared light is irradiated on the back of a finger or a hand, and an imaging element such as a CCD (Charge Coupled Device) is placed on the back side of the inside of the body. It describes a method for observing the spatial distribution of the intensity of transmitted light. Near-infrared light has a small absorption coefficient due to the components that make up the human body, but a large absorption due to hemoglobin, so it can be obtained as a dark image in which blood vessels are light-absorbed.
しかし、 近赤外透過光による血管像の導出は、 指や手の甲等の比較的肉厚が 薄い部分でしか用いることができない。 そこで、 光を人体に照射し、 体内に侵 入してから反射してくる光を撮像素子によって捉えて血管像を得る方法も提 案されている (例えば、 特許文献 1 :特開平 8-164125号公報)。  However, derivation of blood vessel images using near-infrared transmitted light can be used only on relatively thin parts such as fingers and backs of hands. In view of this, there has been proposed a method of obtaining a blood vessel image by irradiating a human body with light and capturing the reflected light after entering the body with an imaging device (for example, Patent Document 1: JP-A-8-164125). Issue gazette).
反射光を用いた場合、 血管情報を含む光 (一旦人体に入り込んでから反射し てきた光) のみを捉えることが必要となる。 し力 し、 一般に人体内部からの反 射光強度に比べ皮膚表面での反射光強度が圧倒的に大きいため、後者を何らか のかたちで抑制する必要がある。 例えば、 上記特開平 8- 164125号公報 (特許文 献 1 ) では、 皮膚表面に液体を塗布して直接反射光を低減する処置を行なって いる。 When using reflected light, it is necessary to capture only light that contains blood vessel information (light that has been reflected once it has entered the human body). However, in general, the intensity of reflected light on the skin surface is overwhelmingly higher than the intensity of reflected light from the inside of the human body, so it is necessary to suppress the latter in some way. For example, JP-A-8-164125 (Patent text) In 1), a liquid is applied to the skin surface to reduce the reflected light directly.
また、 特開平 8- 164123号公報 (特許文献 2 ) には、 4 0 0から 6 0 0 n mと 6 0 0から 8 0 0 n mと波長の異なる 2種類の光を皮膚に照射し、体内反射光 成分は前者が後者に比較して少ないことを利用し、両者で得られた画像を差し 弓 Iいて血管像を得る方法が記載されている。  In addition, JP-A-8-164123 (Patent Document 2) irradiates the skin with two types of light having different wavelengths of 4 00 to 6 00 nm and 6 0 to 80 nm, and reflects the internal reflection. A method of obtaining a blood vessel image by using the fact that the former has less light component than the latter and archiving the images obtained by both is described.
このように、 光を用いて血管像を得る場合に、 透過法では適用可能な部位が 限られ、 特に乳ガンの発生部位では限定的にし力利用できなレ、。 また、 反射法 を用いた場合には、皮膚表面からの反射光を抑制するために皮膚表面に液体を 塗布する等の煩雑な手間を要したり、 複数の光源、 フィルタ一、 ダイクロック ミラー、画像解析機構などから構成される高価で複雑な装置が必要とされると いう問題があった。  In this way, when blood vessel images are obtained using light, there are only a limited number of sites that can be used with the transmission method, and the limited use of force is particularly limited at breast cancer sites. In addition, when the reflection method is used, it takes troublesome work such as applying a liquid to the skin surface in order to suppress the reflected light from the skin surface, multiple light sources, filters, dichroic mirrors, There was a problem that an expensive and complicated device composed of an image analysis mechanism or the like was required.
以上の他、例えば、特開 2005- 21380号公報(特許文献 3 )及び特開 2005- 218684 号公報 (特許文献 4 ) には、 特定波長成分を含む光を被検体に照射し、 その光 エネルギーに基づいて発生する音響信号から被験者の生体機能情報を映像化 する生体情報映像装置に関する発明が記載されている。この光音響分光分析法 は、 所定の波長をもつ可視光、 近赤外光、 又は中間赤外光を被検体に照射した 際に、被検体内の血液中に含まれるグルコースやへモグロビンなどの特定物質 がこの照射光のエネルギーを吸収した結果生じる音響波を検出して、 その特定 物質の濃度を定量的に計測するものである。 これにより、組織内における血管 の分布を判定し、組織領域内における異常血管新生を判別し、潜在的腫瘍の位 置を知ることができるとされている。 また、 特表 2004-525684号公報 (特許文 献 5 )には蛍光造影法を用いて腫瘍部位を検査する乳ガン検査用のアプリケー ターを備えた装置が記載されている。 さらに、 特開 2002-272745号公報 (特許 文献 6 ) には被検者の乳房に透光性部材を押し当て、 乳房基部にリング状の照 射手段を設けて前記押当部材を介して撮影する方法が記載されている。 In addition to the above, for example, JP 2005-21380 (Patent Document 3) and JP 2005-218684 (Patent Document 4) irradiate a subject with light containing a specific wavelength component, An invention relating to a biological information video apparatus that visualizes biological function information of a subject from an acoustic signal generated based on the above is described. In this photoacoustic spectroscopic analysis method, when visible light, near-infrared light, or mid-infrared light having a predetermined wavelength is irradiated on a subject, glucose, hemoglobin, etc. contained in blood in the subject The acoustic wave generated as a result of the specific substance absorbing the energy of the irradiation light is detected, and the concentration of the specific substance is quantitatively measured. As a result, the distribution of blood vessels in the tissue can be determined, abnormal angiogenesis in the tissue region can be determined, and the position of a potential tumor can be known. In addition, Special Table 2004-525684 (patent text) Reference 5) describes an apparatus equipped with an applicator for breast cancer examination that examines a tumor site using fluorescence imaging. Further, in Japanese Patent Laid-Open No. 2002-272745 (Patent Document 6), a translucent member is pressed against the breast of a subject, and a ring-shaped irradiating means is provided at the breast base, and imaging is performed through the pressing member. How to do is described.
し力 し、 光音響分光分析法の場合も装置構成が複雑で高価となる。 また、 蛍 光造影法では造影剤の投与が必要である。 また、乳房基部外周に光を照射して 乳房全体像から異常部位を解析する方法は、乳頭近傍像と乳房外周像とで光行 路差が大きい。 さらに、 乳房の形状変化によって散乱光の減衰度が変化する。 このため、 異常部位の特定や診断精度に問題がある。 特開 2002-272745号公報 (特許文献 6 ) は、 この現象を解消ないし軽減するため、 アプリケーターを押 し当てて乳房を圧迫平坦化しているが、装置の大型化を招く上、従来のマンモ グラフィ一と同様な不快感を伴う。 従って、 いずれも、 罹患リスクのある女性 が家庭等で簡便に乳ガンを自己検診する目的には適していない。 発明の開示  However, even in the case of photoacoustic spectroscopy, the apparatus configuration is complicated and expensive. In contrast, fluorescence imaging requires administration of a contrast medium. In addition, in the method of irradiating light to the outer periphery of the breast and analyzing the abnormal part from the whole breast image, the optical path difference is large between the image near the nipple and the outer image of the breast. Furthermore, the degree of attenuation of scattered light changes due to changes in the shape of the breast. For this reason, there are problems in the identification of abnormal sites and the accuracy of diagnosis. In order to eliminate or reduce this phenomenon, Japanese Patent Laid-Open No. 2002-272745 (Patent Document 6) presses and flattens the breast by pressing the applicator. However, this increases the size of the apparatus and increases the conventional mammography. With the same discomfort as one. Therefore, none of them are suitable for the purpose of self-examination of breast cancer easily at home for women at risk. Disclosure of the invention
本発明は、非侵襲的かつ簡便に皮下の血管分布を観察 ·撮影することができ、 その撮影結果を解析することができる診断装置、及びその解析システムに関す るものであり、目視ゃ触診では判別しにくい乳ガンや皮膚ガンなどの皮膚に近 い部分にできる腫瘍の検査を家庭などでも手軽に行うことができる。  The present invention relates to a diagnostic apparatus capable of observing and photographing a subcutaneous blood vessel distribution non-invasively and simply and analyzing the photographing result, and an analysis system thereof. Tumors that can be found close to the skin, such as breast cancer and skin cancer, which are difficult to identify, can be easily examined at home.
本発明の血管撮影装置及びその血管分布解析システムは以下の構成からな る。 [1] 検査対象部位に向けてプローブ光を照射し得る照射部とプローブ光照 射された検査対象部位からの散乱光及び/または透過光を受け入れる撮影部 を備え、照射部から射出されたプローブ光が撮影部に直接入射しないように構 成されていることを特徴とする血管撮影装置。 The angiography apparatus of the present invention and the blood vessel distribution analysis system have the following configuration. [1] Probe light emitted from the irradiation unit, which includes an irradiation unit that can irradiate probe light toward the inspection target region and an imaging unit that receives scattered light and / or transmitted light from the inspection target region irradiated with the probe light. An angiography apparatus configured to prevent the light from directly entering the imaging unit.
[2] 1) 検査対象部位に密着可能な形状の開口端を有し、 前記開口端を検 査対象部位に密着させたときに検査対象部位の一部をその内部に受け入れる 中空体、  [2] 1) A hollow body having an open end that can be in close contact with the region to be inspected, and receiving a part of the region to be inspected when the open end is in close contact with the region to be inspected.
2)前記開口端の縁部またはその近傍に設けられ、 中空体内に受け入れた検査 対象部位に向けてプローブ光を照射し得る照射部、  2) An irradiating unit that is provided at or near the edge of the open end and can irradiate probe light toward the inspection target site received in the hollow body;
3)プローブ光照射された検査対象部位內部から中空体内に向けて射出する散 乱光及び または透過光を受け入れる撮影部を有する前記 1に記載の血管撮 影装置。 3) The angiography apparatus as described in 1 above, further comprising an imaging unit that receives scattered light and / or transmitted light emitted from the buttocks of the inspection target site irradiated with the probe light into the hollow body.
[3] 検査対象部位の一部を中空体内に吸引するための減圧手段をさらに有 する前記 2に記載の血管撮影装置。  [3] The angiography apparatus according to [2], further including a decompression unit for sucking a part of the examination site into the hollow body.
[4] 前記照射部のプローブ光射出部が中空体内に設けられており、 中空体 内部に受け入れられた検査対象部位によつて覆われることによりプローブ光 またはその反射光の前記撮影部への直接入射が妨げられる前記 2または 3に 記載の血管撮影装置。  [4] The probe light emitting portion of the irradiating portion is provided in the hollow body, and the probe light or its reflected light is directly applied to the imaging portion by being covered by the inspection target portion received inside the hollow body. 4. The angiography apparatus according to 2 or 3, wherein incidence is prevented.
[5] 1) 検査対象部位に密着可能な形状の開口端を有する中空体、 2)前記開口端の縁部またはその近傍に設けられ、 中空体内の開口部に面する 検査対象部位またはその近傍に向けてプローブ光を照射し得る照射部、 [5] 1) A hollow body having an open end in a shape capable of being in close contact with a region to be inspected, 2) Provided at or near the edge of the open end and facing the opening in the hollow body or near the region to be inspected Irradiating part that can irradiate probe light toward
3)プローブ光照射された検査対象部位内部から中空体内に向けて射出する散 乱光及び Zまたは透過光を受け入れる撮影部を有する前記 lに記載の血管撮 影装置。 3) Spatter emitted from the inside of the examination target irradiated with the probe light toward the hollow body 2. The blood vessel imaging device according to 1 above, further including an imaging unit that receives turbulent light and Z or transmitted light.
[6] 前記照射部のプローブ光射出部が開口端の縁部に設けられており、 中 空体開口部に密着した検査対象部位によって覆われることによりプローブ光 またはその反射光の前記撮影部への直接入射が妨げられる前記 5に記載の血 管撮影装置。  [6] The probe light emitting portion of the irradiating portion is provided at the edge of the opening end, and is covered with the inspection target portion that is in close contact with the hollow body opening portion, thereby allowing the probe light or its reflected light to the imaging portion. 6. The blood vessel photographing apparatus according to 5 above, wherein direct incidence of light is prevented.
[7] 中空体壁がプローブ光に対して非透過的である前記 2〜 6のいずれか に記載の血管撮影装置。  [7] The angiography apparatus according to any one of 2 to 6, wherein the hollow body wall is impermeable to probe light.
[ 8 ] プローブ光が近赤外光である前記 1〜 7のいずれかに記載の血管撮影 装置。  [8] The angiography apparatus according to any one of 1 to 7, wherein the probe light is near infrared light.
[9] 近赤外光がへモグロビン吸収波長の近赤外光である前記 8に記載の血 管撮影装置。  [9] The blood vessel photographing apparatus according to [8], wherein the near-infrared light is near-infrared light having a hemoglobin absorption wavelength.
[10] 検査対象部位が皮膚及び/または皮下組織である前記 1〜 9のいず れかに記載の血管撮影装置。  [10] The angiography apparatus according to any one of 1 to 9, wherein the site to be examined is skin and / or subcutaneous tissue.
[1 1] 検査対象部位が乳房の一部である前記 10に記載の血管撮影装置。  [1 1] The angiography apparatus according to 10, wherein the examination target part is a part of a breast.
[12] 血管が皮静脈である前記 1〜1 1のいずれかにに記載の血管撮影装 置。  [12] The angiography apparatus according to any one of 1 to 11, wherein the blood vessel is a cutaneous vein.
[13] 撮影部が CCDカメラを含む前記 1〜12のいずれかに記載の血管 撮影装置。  [13] The angiography apparatus according to any one of 1 to 12, wherein the imaging unit includes a CCD camera.
[14] さらに撮影位置を特定する手段を含む前記 1〜 13のいずれかに記 載の血管撮影装置。  [14] The angiography apparatus according to any one of 1 to 13, further including means for specifying an imaging position.
[15] 撮影位置の特定を複数の基準位置からの距離及び角度の計測によつ て行なう前記 14に記載の血管撮影装置。 [15] The shooting position is specified by measuring the distance and angle from multiple reference positions. 15. The angiography apparatus according to 14,
[16] 撮影位置の特定を基準位置からの移動方向及び移動量の計測によつ て行なう前記 14に記載の血管撮影装置。  [16] The angiography apparatus according to 14, wherein the imaging position is specified by measuring a movement direction and a movement amount from the reference position.
[1 7] 撮影位置の特定を撮影画像の解析によつて行なう前記 14に記載の 血管撮影装置。  [1 7] The angiography apparatus according to 14, wherein the imaging position is specified by analyzing the captured image.
[18] 照射部が複数の光源の列またはアレイまたは光源と連結された複数 の光フアイバの開口端の列またはァレイを含む前記 1〜 1 7のいずれかに記 載の血管撮影装置。  [18] The angiography apparatus according to any one of 1 to 17, wherein the irradiation unit includes a plurality of light source rows or arrays or a plurality of optical fiber open end rows or arrays connected to the light sources.
[19] 前記 1〜18のいずれかに記載の血管撮影装置と撮影画像を表示す る表示装置及び または画像データを記憶する記憶装置を含む血管異常診断 装置。  [19] A blood vessel abnormality diagnosis device including the angiography device according to any one of 1 to 18 above, a display device that displays a captured image, and a storage device that stores image data.
[20] 前記記憶装置に記憶された画像データが正常部位の参照データと異 常部位の参照データを含み、撮影画像とこれら参照データとを対比することに より撮影画像中の血管像の異常を判定する前記 1 9に記載の血管異常診断装 置。  [20] The image data stored in the storage device includes reference data for the normal part and reference data for the abnormal part. By comparing the captured image with the reference data, an abnormality in the blood vessel image in the captured image is detected. 20. The apparatus for diagnosing vascular abnormalities as described in 19 above.
[21] 前記 1〜 18のいずれかに記載の血管撮影装置または前記 19〜 2 0のいずれかに記載の血管異常診断装置及び血管分布の解析装置を含み、血管 撮影装置または血管異常診断装置で取得されたデータを解析して血管異常を 判定する血管異常診断システム。  [21] The angiography apparatus according to any one of 1 to 18 or the vascular abnormality diagnosis apparatus and the blood vessel distribution analysis apparatus according to any one of 19 to 20, wherein the angiography apparatus or vascular abnormality diagnosis apparatus comprises: A vascular abnormality diagnosis system that analyzes acquired data to determine vascular abnormalities.
[22] 前記 1〜18のいずれかの装置により撮影した画像全体の明暗を計 算し、 これと画像各部の明暗を比較して血管の分布を判定する手段を含む血管 分布の解析装置。 [ 2 3 ] 撮影した画像中で最もグレースケール値の大きい位置のグレースケ 一ル値を求め、前記位置を含むように領域を拡大しつつ領域内の平均グレース ケール値を求め、 グレースケール値の変曲点に相当する領域の境界をもって血 管分布域境界と判定する前記 2 2に記載の血管分布の解析装置。 [22] A blood vessel distribution analyzing apparatus including means for calculating brightness and darkness of an entire image photographed by any of the devices 1 to 18 and comparing the lightness and darkness of each part of the image to determine blood vessel distribution. [2 3] The gray scale value at the position with the largest gray scale value in the captured image is obtained, the average gray scale value in the area is obtained while enlarging the area to include the position, and the gray scale value is changed. 3. The blood vessel distribution analyzing apparatus according to the item 2, wherein the boundary of the region corresponding to the inflection point is determined as the blood vessel distribution region boundary.
[ 2 4 ] 撮影した画像のうち、解析しょうとする部分を k個の領域に分割し、 各領域のグレースケール値を求め、 次いで、 各領域の面積を拡大しつつ分割数 を減らして各領域のグレースケール値を求め、 このステップを k = 1になるま で繰り返し、 ステツプ間における対応する領域でのグレースケール値の変化に 基づいて血管の分布を判定する手段を含む前記 2 3に記載の血管分布の解析 装置。  [2 4] Of the captured image, divide the part to be analyzed into k areas, obtain the grayscale value of each area, and then reduce the number of divisions while increasing the area of each area. 24. The method according to 23, further including means for determining a distribution of blood vessels based on a change in gray scale value in a corresponding region between steps by repeating this step until k = 1, Blood vessel distribution analysis device.
[ 2 5 ] 撮影した画像のうち、 解析しょうとする部分を、 重なりのない等面 積の多角形領域に分割し、 各領域のグレースケール値を求め、 次いで、 そのう ちの最もグレースケール値の低い領域と高い領域をそれぞれその隣接する領 域とまとめることによって大きな領域とし、それぞれのグレースケール値を求 め、 このステップを繰り返し、 ステップ間におけるグレースケール値の変化に 基づいて血管の分布を判定する手段を含む前記 2 4に記載の血管分布の解析 装置。  [2 5] Of the captured images, the part to be analyzed is divided into non-overlapping polygonal areas of equal area, and the grayscale value of each area is obtained. The low and high areas are combined with their adjacent areas to make a large area, and each grayscale value is obtained. This step is repeated, and the distribution of blood vessels is determined based on the change in the grayscale value between steps. 24. The blood vessel distribution analyzing apparatus according to 24, further comprising means for
[ 2 6 ] 血管分布の解析結果に基づいて血管新生の異常部位の存否及び ま たは異常の進行度を診断する前記 1 9〜2 5のいずれかに記載の装置。  [2 6] The device according to any one of 19 to 25, which diagnoses the presence / absence of an angiogenesis abnormality site and the degree of progression of an abnormality based on an analysis result of blood vessel distribution.
[ 2 7 ] 前記 2 6に記載の装置により血管異常を判定して乳ガンを診断する 乳ガン診断装置。  [2 7] A breast cancer diagnostic apparatus for diagnosing breast cancer by determining vascular abnormalities using the apparatus according to 26.
[ 2 8 ] 前記 2 7に記載の乳ガンの診断装置を用いた乳ガンの診断方法。 本発明の血管撮影装置及びその血管分布解析システムを用いることにより、 非侵襲的かつ簡便に血管分布を観察 ·撮影することができ、 その撮影結果を解 析することができるため、 目視ゃ触診では判別しにくい乳ガンや皮膚ガンなど 皮膚に近レ、部分にできる腫瘍の検査を家庭などでも手軽に行うことができる。 図面の簡単な説明 [2 8] A method for diagnosing breast cancer using the breast cancer diagnostic apparatus according to 27. By using the angiography apparatus of the present invention and the blood vessel distribution analysis system of the present invention, blood vessel distribution can be observed and photographed non-invasively and easily, and the photographing result can be analyzed. Breast cancer and skin cancer, which are difficult to identify, can be easily examined at home for tumors that are close to or close to the skin. Brief Description of Drawings
図 1は、 本発明の血管撮影装置の一態様を示す摸式図である。 FIG. 1 is a schematic diagram showing an embodiment of the angiography apparatus of the present invention.
図 2は、 図 1の血管撮影装置の動作原理を示す摸式図である。 FIG. 2 is a schematic diagram showing the operation principle of the angiography apparatus of FIG.
図 3は、従来技術の反射光による装置を図 1の装置と対比させて示した摸式図 である。 FIG. 3 is a schematic diagram showing a conventional apparatus using reflected light in contrast to the apparatus of FIG.
図 4は、 本発明の血管分布解析システムの構成例を示す説明図である。 FIG. 4 is an explanatory diagram showing a configuration example of the blood vessel distribution analysis system of the present invention.
図 5は、本発明の血管分布解析システムで検査される正常部位と血管新生部位 との血管分布の例を示す摸式図である。 FIG. 5 is a schematic diagram showing an example of blood vessel distribution between a normal site and an angiogenesis site examined by the blood vessel distribution analysis system of the present invention.
図 6は、本発明の血管撮影装置による撮影像及び分布解析システムによる領域 分割の概要を示す図 (過疎分布) である。 FIG. 6 is a diagram (depopulated distribution) showing an outline of region segmentation by the imaged image and distribution analysis system by the angiography apparatus of the present invention.
図 7は、本発明の血管撮影装置による撮影像及び分布解析システムによる領域 分割の概要を示す図 (密集分布) である。 FIG. 7 is a diagram (dense distribution) showing an outline of region segmentation by a captured image and distribution analysis system by the angiography apparatus of the present invention.
図 8は、図 6及び図 7の撮影像の選択領域拡大に伴う平均グレースケール値の 変化を示すグラフである。 FIG. 8 is a graph showing changes in the average gray scale value as the selected area of the photographed images in FIGS. 6 and 7 is enlarged.
図 9は、 本発明の血管撮影装置の光照射部の一態様を示す摸式図である。 図 1 0 (A) は本発明の血管撮影装置の別の態様を示す摸式図であり、 (B ) はこれに対応する模式的な断面図である。 図 1 1は、 本発明の血管撮影装置のさらに別の態様を示す摸式図である。 発明を実施するための最良の形態 FIG. 9 is a schematic diagram showing an embodiment of the light irradiation unit of the angiography apparatus of the present invention. FIG. 10 (A) is a schematic view showing another embodiment of the angiography apparatus of the present invention, and (B) is a schematic sectional view corresponding to this. FIG. 11 is a schematic diagram showing still another embodiment of the angiography apparatus of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の血管撮影装置及びその血管分布解析システムについて、以下に説明 する。  The angiography apparatus of the present invention and its blood vessel distribution analysis system will be described below.
本発明の血管撮影装置は、検査対象部位に向けてプローブ光を照射し得る照 射部とプローブ光照射された検査対象部位からの散乱光及び Zまたは透過光 を受け入れる撮影部を備え、照射部から射出されたプローブ光が撮影部に直接 入射しないように構成されていることを特徴とする。  An angiography apparatus of the present invention includes an irradiation unit that can irradiate probe light toward a region to be inspected and an imaging unit that receives scattered light and Z or transmitted light from the region to be inspected by the probe light. The probe light emitted from the camera is configured not to directly enter the imaging unit.
具体的には、 様々な態様を含み得るが、 典型的には、 第一の態様として Specifically, it may include various aspects, but typically, as the first aspect
1 )検査対象部位に密着可能な形状の開口端を有し、前記開口端を検査対象部 位に密着させたときに検査対象部位の一部をその内部に受け入れる中空体、1) a hollow body having an open end that can be in close contact with the region to be inspected, and receiving a part of the region to be inspected when the open end is in close contact with the region to be inspected;
2 )前記開口端の縁部またはその近傍に設けられ、中空体内に受け入れた検査 対象部位に向けてプローブ光を照射し得る照射部、 2) An irradiating unit that is provided at or near the edge of the open end and can irradiate probe light toward the inspection target site received in the hollow body,
3 )プローブ光照射された検査対象部位内部から中空体内に向けて射出する散 乱光及び/または透過光を受け入れる撮影部を有する前記血管撮影装置を含 み、 さらに、 第二の態様として、 3) including the angiography apparatus having an imaging unit that receives scattered light and / or transmitted light emitted from the inside of the examination target irradiated with the probe light into the hollow body, and further, as a second aspect,
1 ) 検査対象部位に密着可能な形状の開口端を有する中空体、  1) A hollow body having an open end shaped so as to be in close contact with the site to be examined,
2 )前記開口端の縁部またはその近傍に設けられ、中空体内の開口部に面する 検査対象部位またはその近傍に向けてプロ一ブ光を照射し得る照射部、 2) an irradiating unit that is provided at or near the edge of the opening end and that can irradiate probe light toward the inspection target site facing the opening in the hollow body or the vicinity thereof;
3 )プローブ光照射された検査対象部位内部から中空体内に向けて射出する散 乱光及び Zまたは透過光を受け入れる撮影部を有する前記血管撮影装置を含 む。 3) including the angiography apparatus having an imaging unit that receives scattered light and Z or transmitted light emitted from the inside of the examination target irradiated with the probe light into the hollow body. Mu
図 1に、 本発明の血管撮影装置の上記第一の態様の実施形態の一例を示す。 これは、上記中空体が筒体である例であり、大きく以下の 3つの部分から構成 される。  FIG. 1 shows an example of the embodiment of the first aspect of the angiography apparatus of the present invention. This is an example in which the hollow body is a cylindrical body, and is largely composed of the following three parts.
1) 検査対象部位に密着可能な形状の開口端を有し、 前記開口端を検査対象部 位に密着させたときに検査対象部位の一部をその内部に受け入れる中空体〔筒 体 (1)〕、  1) A hollow body having a shape of an open end that can be in close contact with a region to be inspected, and receiving a part of the region to be inspected when the open end is in close contact with the region to be inspected [cylinder (1) ],
2)前記開口端の縁部またはその近傍に設けられ、筒内に受け入れた検査対象 部位に向けてプローブ光を照射し得る照射部 (2)、  2) An irradiating portion (2) provided at or near the edge of the opening end and capable of irradiating probe light toward the inspection target portion received in the cylinder.
3 )プローブ光照射された検査対象部位内部からの散乱光及び Zまたは透過光 を受け入れる撮影部 (3)。 3) An imaging unit (3) that accepts scattered light and Z or transmitted light from the inside of the examination target irradiated with the probe light.
図 2に示すように、本発明の上記第一の態様の血管撮影装置の第一の大きな 特徴は、 検査対象部位を装置内部に取り込み (図 2 (B))、 その側面からプロ ーブ光 pを照射することにより検査対象部位内部からの散乱光及び または 透過光 sを撮影する (図 2 (C)) ことにある。  As shown in FIG. 2, the first major feature of the angiography apparatus of the first aspect of the present invention is that the site to be examined is taken into the apparatus (FIG. 2 (B)), and the probe light is taken from its side. By irradiating p, the scattered light and / or transmitted light s from inside the region to be inspected is imaged (Fig. 2 (C)).
この目的のため、本発明の撮影装置は、検査対象部位に密着可能な形状の開 口端を有し、 前記開口端を検査対象部位 (20) に密着させたときに検査対象 部位の一部 (21) をその内部に受け入れる中空体 〔筒体 (1)〕 を有してい る。 検査対象部位が弾性に富む身体部位である場合、 開口端をこれに密着し得 る形状とし、 開口端を検査対象部位に押し当てることにより、 その内部に検査 対象部位の一部が押し込まれるようにしてもよいが、 好ましくは、 中空体 〔筒 体 (1)〕 の内部を減圧可能として、 検査対象部位がその内部に引き込まれる ようにする (図 2 ( B ) 及び (C ) 参照)。 For this purpose, the imaging apparatus of the present invention has an open end shaped so as to be in close contact with the region to be inspected, and a part of the region to be inspected when the open end is in close contact with the region to be inspected (20). (21) has a hollow body [cylinder (1)] for receiving the inside thereof. If the part to be inspected is a body part rich in elasticity, the opening end should be shaped so that it can be in close contact with it, and the opening end will be pressed against the part to be inspected so that a part of the part to be inspected will be pushed into it. However, preferably, the inside of the hollow body [tubular body (1)] can be decompressed, and the site to be inspected is drawn into the inside. (Refer to Fig. 2 (B) and (C)).
中空体 〔筒体 (1 )〕 の形状は、 後述する撮影部を設け得る限りにおいて特 に限定されず、円筒、角筒等の筒体でもよいが、球状(但し、開口端を有する)、 半球状、 円錐台、 角錐台など任意の形状でよい。 なお、 ここで、 中空体という のは、 内部に検査対象部位を取り込める程度であればよく、 その限りにおいて 少しでも中空部を備えていればよい。 効果を奏する限りにおいては、 対向する リブ状部材の対でもよい。 もっとも、 開口端の断面形状が角形の場合、 プロ一 ブ光を開口端内周から照射した際に検査対象部位内を進む距離が頂点と辺と で異なってくるため、 少なくとも開口端の断面形状は、 円形や楕円形、 特に円 形が望ましい。  The shape of the hollow body [tubular body (1)] is not particularly limited as long as a photographing unit described later can be provided, and may be a cylindrical body such as a cylinder or a rectangular tube, but may be spherical (however, having an open end), Any shape such as hemisphere, truncated cone, truncated pyramid may be used. Here, the hollow body is sufficient if it can take the region to be inspected inside, and as long as it has a hollow portion as long as it is provided. As long as the effect is achieved, a pair of opposing rib-like members may be used. However, when the cross-sectional shape of the open end is square, the distance traveled in the region to be inspected differs when the probe light is irradiated from the inner periphery of the open end. Is preferably circular or elliptical, especially circular.
中空体 (1 ) の開口端直径は、 検査対象部位の大きさにもよるが、 通常は、 0 . 5〜1 0 c m、好ましくは 1〜5 c m程度である。 開口端が小さすぎると 検查効率が悪く、 また、 検査対象部位の筒内への取り込みが円滑に進まない。 また、開口端が大きすぎると検査対象部位内でのプローブ光の吸収が大きくな り十分な検査ができなくなる。  The open end diameter of the hollow body (1) is usually about 0.5 to 10 cm, preferably about 1 to 5 cm, although it depends on the size of the region to be examined. If the open end is too small, the inspection efficiency is poor, and the ingestion of the inspection target part into the cylinder does not proceed smoothly. In addition, if the opening end is too large, the probe light absorption in the region to be inspected becomes large and sufficient inspection cannot be performed.
中空体 (1 ) 内を減圧する場合、 その手段は特に限定されないが、 例えば、 図 1及び 2に示すように、筒体の一部から管等を引き出し、その他端を減圧装 置に接続する。 減圧装置は、 例えば、 ピストンの往復運動による減圧装置、 回 転モータ一または偏心モーター、サイクロン方式による減圧ポンプなどいずれ の手段も用い得るが、乳がんの自己検診のような場合にはモーター式の減圧ポ ンプが好ましい。 き己検診用途の場合、減圧装置のスィツチを筒体や後述する 撮影部 (3 ) の背面などに取り付け、操作しながら所望の位置で吸引できるよ うにしてもよレ、。 また、筒体や減圧装置またはその間を接続する管には、減圧 が過度にならないように、 あるいは、 減圧が一定レベルで維持されたり、撮影 終了時に筒内を迅速に大気圧に戻し得るように、適宜、開閉可能な孔ゃ弁手段 を設けてよい。これらの減圧度の調整手段は当業者には既知のいずれの構成も 利用できる。 When the pressure inside the hollow body (1) is reduced, the means is not particularly limited. For example, as shown in FIGS. 1 and 2, a pipe or the like is pulled out from a part of the cylinder and the other end is connected to the pressure reducing device. . For the decompression device, any means such as a decompression device based on a reciprocating motion of a piston, a rotational motor or an eccentric motor, or a decompression pump based on a cyclone method can be used. A pump is preferred. For self-examination applications, the switch of the decompression device can be attached to the cylinder or the back of the imaging unit (3), which will be described later, and sucked at the desired position while operating. You can do it. In addition, the cylinder, the decompression device, or the pipe connecting them, should not be excessively decompressed, or maintained at a certain level, or the inside of the cylinder could be quickly returned to atmospheric pressure at the end of shooting. A hole valve means that can be opened and closed may be provided as appropriate. Any means known to those skilled in the art can be used as the means for adjusting the degree of decompression.
中空体(1 ) の材質は特に限定されないが、加工が容易で一定の耐圧性を有 し、 少なくともその内面は後述するプローブ光 (例えば、 近赤外線) を吸収し やすい材質とすることが好ましい。 また、開口部は後述する発光手段の設置が 容易で検査対象部位 (例えば、 皮膚) との密着性に優れた材質が好ましい。 こ れらの条件に適うように、 各部分をそれぞれ別個の材料で構成してもよい。 減圧度は、 対象部位の柔軟性、 開口端径などにもよるが、対象部位が最低 2 〜 5 mm程度、 開口端内部に引き込まれればよレ、。 例えば、 対象部位が皮膚の 場合、 l〜1 0 0 h P a程度、 大気圧から減圧すればよい。 これ以上圧力が大 きくなると、 被験者が減圧部に痛みを感じる場合がある。  The material of the hollow body (1) is not particularly limited, but is preferably made of a material that is easy to process and has a certain pressure resistance, and that at least the inner surface thereof easily absorbs probe light (for example, near infrared rays) described later. In addition, the opening is preferably made of a material that is easy to install the light emitting means described later and has excellent adhesion to the region to be examined (for example, skin). Each part may be composed of a separate material to meet these conditions. The degree of decompression depends on the flexibility of the target part, the diameter of the opening end, etc., but the target part should be pulled into the opening end at least about 2 to 5 mm. For example, when the target site is skin, the pressure may be reduced from atmospheric pressure to about 1 to 100 h Pa. If the pressure becomes higher than this, the subject may feel pain in the decompression area.
照射部 (2 ) は、 図 1及び図 2 (A) に示すように中空体 (1 ) の開口端縁 部またはその近傍に設ける。 例えば、 中空体 (1 ) の開口端に沿ってその縁部 に内側を向けて発光手段を配置すればよい。発光手段は典型的には発光ダイォ ード (L E D) である。 プロ一ブ光は、 生体組織を比較的良く透過し、 血管、 特にへモグロビンに吸収される波長が好ましいが、 7 0 0〜9 0 0 n mの波長 の近赤外光は生体組織を比較的良く透過し、一方、血管の中を流れる赤血球中 のヘモグロビンは 8 5 0 n mの近赤外光を特異的に吸収するため、前記波長域 の近赤外光が好ましい。発光ダイォ一ドは複数の波長域を組み合わせて用いて もよい。 例えば、 ヘモグロビンは酸素と結合するとその状態に応じて吸収特性 が変化するため、 酸素化ヘモグロビン (ォキシヘモグロビン) の吸収波長 85 0 nmおよび脱酸素化へモグロビン (デォキシへモグロビン) の吸収波長 76 0 nmの両者について測定できるように照射する LED光の波長を切り替え られるようにしてもよレ、。 また、プローブ光は通常の光線でもレーザー光線で もよい。 The irradiating part (2) is provided at or near the opening edge of the hollow body (1) as shown in FIGS. For example, the light emitting means may be arranged along the opening end of the hollow body (1) with the inner side facing the edge. The light emitting means is typically a light emitting diode (LED). Probe light has a wavelength that penetrates biological tissue relatively well and is absorbed by blood vessels, particularly hemoglobin, but near infrared light having a wavelength of 700 to 900 nm is relatively On the other hand, hemoglobin in erythrocytes that flow through blood vessels specifically absorbs near infrared light at 8500 nm, so near infrared light in the above wavelength range is preferable. A light-emitting diode is used by combining multiple wavelength ranges. Also good. For example, when hemoglobin binds to oxygen, its absorption characteristics change depending on its state. Therefore, the absorption wavelength of oxygenated hemoglobin (oxyhemoglobin) 850 nm and the absorption wavelength of deoxygenated hemoglobin (deoxyhemoglobin) 76 0 It may be possible to switch the wavelength of the LED light to be irradiated so that both nm can be measured. The probe light may be a normal light beam or a laser beam.
なお、 図 1及び図 2 (A) に示すように LEDは内周全周に沿って均等に設 けることが好ましレ、。図 1等に示すように、可能な限り密に設けることが好ま しいが間隔を空けて設けてもよい。 また、前述のように複数の波長域の LED を用いる場合は、それぞれを組み合わせて設置してもょレ、。さらに、中空体( 1 ) 内を減圧にしたときに、その内部に吸引されて隆起した対象部位を円滑に受け 入れ、これと密着するように図 9に示すように対象部位と接する面 Ψが傾斜し た形状を有してもよい。  As shown in Fig. 1 and Fig. 2 (A), it is preferable to arrange the LEDs evenly along the entire inner circumference. As shown in Fig. 1 and the like, it is preferable to provide them as densely as possible, but they may be provided at intervals. Also, as mentioned above, when using LEDs in multiple wavelength ranges, you can install them in combination. Further, when the inside of the hollow body (1) is depressurized, the surface Ψ in contact with the target portion is smoothly received as shown in FIG. It may have an inclined shape.
撮影部(3)は、図 1に示すように開口部と反対側の位置に設ける。例えば、 中空体 (1) が回転対称形状 (例えば、 円筒状) の場合、 その軸上で開口部と 対向する面に設ける。 もっとも、 必要であれば、 対象部位から散乱、 透過して きたプローブ光を、 例えば、 光ファイバ等を通して前記中空体 (1) から引き 出し、別に設けた撮影部に誘導してもよい。 照射部、典型的には上記の例に示 すよに環状の列であるが、 二次元に広がったアレイ状としてもよい。  The photographing part (3) is provided at a position opposite to the opening as shown in FIG. For example, when the hollow body (1) has a rotationally symmetric shape (for example, a cylindrical shape), the hollow body (1) is provided on the surface facing the opening on the axis. However, if necessary, the probe light scattered and transmitted from the target site may be extracted from the hollow body (1) through, for example, an optical fiber and guided to an imaging unit provided separately. The irradiation section is typically a circular row as shown in the above example, but it may be an array that extends in two dimensions.
撮影部 (3) は、 典型的には、 検査対象部から遮断するための透明隔壁 (例 えば、 ガラスやポリカーボネート板) 及ぴ /"または光学系 (例えば、 レンズ) (4)、 カメラホルダー (5) 及び撮像手段 (例えば、 CCD基板) (6) を含 む。 透明板は、 筒内の圧力変化の影響を避け、 筒内の減圧度低下を防ぐ他、 皮 脂による汚染を限定的にする等の目的で設ける。 光学系 (4 )、 カメラホルダ — ( 5 ) 及び撮像手段 (6 ) は当業者には既知の構成、 材料、 構造を用いて構 成することができる。これらは前記のプ口一ブ光を検知し得るものであればよ く、 C C Dカメラュニット等として市販されているものを用いてもょレ、。なお、 本発明において撮影とは静止画の撮影のみならず動画の撮影を含む。 従って、 例えば、対象部位を吸引しつつ撮影を行ない、各コマの像を差分処理すること により対象部位の垂直方向の立体像を得ることもできる。 The imaging unit (3) typically has a transparent partition (eg, glass or polycarbonate plate) and / or optical system (eg, lens) (4), camera holder ( 5) and imaging means (eg, CCD substrate) (6) Mu The transparent plate is provided for the purpose of avoiding the effects of pressure changes in the cylinder, preventing the pressure reduction in the cylinder from being reduced, and limiting contamination by sebum. The optical system (4), the camera holder (5), and the imaging means (6) can be configured using configurations, materials, and structures known to those skilled in the art. These may be any one that can detect the above-mentioned light, and those that are commercially available as CCD camera units may be used. In the present invention, shooting includes not only still image shooting but also moving image shooting. Therefore, for example, it is possible to obtain a three-dimensional image in the vertical direction of the target portion by performing imaging while sucking the target portion and performing differential processing on the images of the respective frames.
. なお、例えば、銀行等で用いられている生体認証システムの場合、 図 3に示 すようにプローブ光 pは検査対象部位と対向する位置から検査対象部位に向 けて照射される。 このため、 仮に開口部と反対側の位置に撮影部を設けても、 撮影部への入射光はほとんどが対象表面 (例えば、皮膚表面) からの反射光 r であり、対象部位内部(例えば、皮内)からの情報はわずかにしか得られない。 これに対し、 本発明では、 対象部位内部 (例えば、 皮内) からの散乱光や透過 光を撮影するため、 対象部位内部 (例えば、 皮内) からの情報を高い効率で取 得できる。特にプローブ光射出部の表面が対象部位で覆われる (密着した状態 になる)場合は、対象部位表面からの反射光が撮影部位にノイズとして混入し ないため好ましい。  For example, in the case of a biometric authentication system used in a bank or the like, as shown in FIG. 3, the probe light p is emitted from a position facing the inspection target part toward the inspection target part. For this reason, even if the imaging unit is provided at a position opposite to the opening, most of the incident light to the imaging unit is reflected light r from the target surface (for example, the skin surface), and the inside of the target site (for example, Only a small amount of information is available from the skin. On the other hand, in the present invention, since the scattered light and transmitted light from the inside of the target site (for example, intradermal) are photographed, information from the inside of the target site (for example, intradermal) can be obtained with high efficiency. In particular, it is preferable that the surface of the probe light emitting portion is covered with the target site (becomes in close contact) because reflected light from the surface of the target site does not enter the imaging site as noise.
上記の場合、対象部位の面積または体積が大きレ、とプローブ光が対象部位の 内部に十分に透過しなかったり、対象部位の内部から散乱してきた光が十分な 光量を有さず、対象部位の中央に関しては良好な画像が得られない場合もあり 得るが、その場合でも、 中央部位を除く輪状部位について有効な情報を得るこ とが可能である。 従って、 本発明は、 検査対象部位全面だけではなく、 その一 部の撮影画像を取得する装置も含む。 In the above case, the area or volume of the target site is large, and the probe light does not sufficiently penetrate into the target site, or the light scattered from inside the target site does not have a sufficient amount of light. In some cases, a good image may not be obtained for the center of the image. Is possible. Therefore, the present invention includes an apparatus that acquires not only the entire region to be examined but also a part of the captured image.
撮影面像データは、以下に述べる血管分布解析システムあるいはその他の表 示装置や記憶装置 (図 1ではまとめて 「コンピュータ」 として表わしている。) に入力、 表示または記憶するようにしてもよレ、。  The radiographic image data may be input, displayed, or stored in the blood vessel distribution analysis system described below or other display device or storage device (collectively represented as “computer” in FIG. 1). ,.
本発明の血管撮影装置による検査対象部位は、アクセス可能な部位であれば 特に限定されないが、通常は、 人間または動物等の皮膚、 特に無毛または実質 的に無毛な皮膚表面が好ましく、特に柔軟性に富んだ皮膚及び/または皮下組 織が好ましい。 皮下脂肪に富む部位、 例えば、 乳房及びその近辺での適用が好 適であり、 この点で乳がんの診断のための血管撮影に特に適している。  The site to be examined by the angiography apparatus of the present invention is not particularly limited as long as it is an accessible site, but usually the skin of humans or animals, in particular, the hairless or substantially hairless skin surface is preferred. Flexible skin and / or subcutaneous tissue is preferred. It is suitable to be applied to a site rich in subcutaneous fat, for example, the breast and its vicinity, and is particularly suitable for angiography for diagnosis of breast cancer in this respect.
本発明の装置の第二の態様は、 図 1 0に示すように  The second embodiment of the device of the present invention is as shown in FIG.
1 ) 検査対象部位に密着可能な形状の開口端を有する中空体 (1 )、  1) A hollow body (1) having an open end that can be closely attached to a region to be examined
2 )前記開口端の縁部またはその近傍に設けられ、 中空体内の開口部に面する 検査対象部位またはその近傍に向けてプローブ光を照射し得る照射部 ( 2 )、 3 )プローブ光照射された検査対象部位内部から中空体内に向けて射出する散 乱光及び Zまたは透過光 (合わせて sで示す。) を受け入れる撮影部 (3 ) を 有する。  2) An irradiating portion provided at or near the edge of the opening end and capable of irradiating the probe light toward the inspection target portion facing the opening in the hollow body or the vicinity thereof (2), 3) irradiated with the probe light And an imaging section (3) for receiving scattered light and Z or transmitted light (indicated by s) emitted from the inside of the inspection target portion into the hollow body.
上記第一の態様との大きな相違点は、中空体内への撮影部位の取り込みを含 まず、前記開口端の縁部またはその近傍から検査対象部位またはその近傍に向 けてプローブ光を照射する点である。  The major difference from the first aspect is that the imaging light is not taken into the hollow body, and the probe light is irradiated from the edge of the opening end or the vicinity thereof to the inspection target part or the vicinity thereof. It is.
この態様は、第一の態様に比較して相対的に浅い位置の血管像を撮影するの に適している。 また、 中空体内に対象部位を取り込まないため、 例えば、 皮膚 の表面を滑らかに走査して連続撮影するのに適している。 This aspect is suitable for photographing a blood vessel image at a relatively shallow position as compared to the first aspect. Also, because the target site is not taken into the hollow body, for example, the skin It is suitable for continuous scanning by smoothly scanning the surface of the camera.
第二の態様において照射部の位置は限定されないが、図 1 0のように中空体 の外側に照射部を設けるのが便利である。 この場合、照射部からのプローブ光 は中空体の壁面により撮影部と完全に遮断されるため、プローブ光出力を高め てより深部までの情報を得ることができる。このように、第二の態様において。 中空体は、 その壁面が実質的にプローブ光照射部と撮影部 (受光部) との間を 光学的に遮蔽する機能を有すればよい。こうした材料はプローブ光の波長によ つて決まるが、 近赤外光についての例としては、 塩ィ匕ビュルが挙げられる。 もっとも、 図 1 1のように中空体の内部に遮蔽部材(2 2 ) を設けることに よって照射部(2 ) と撮影部(3 ) を中空体内に共に設けることも可能である。 図 1 1の場合、第一の態様にも使用できるため、対象部位表面を広く走査し、 特に詳細な検討が必要な場合は吸引を行なってさらに深い部位の撮影を行な うことが可能である。  In the second embodiment, the position of the irradiation section is not limited, but it is convenient to provide the irradiation section outside the hollow body as shown in FIG. In this case, since the probe light from the irradiation unit is completely blocked from the imaging unit by the wall surface of the hollow body, the probe light output can be increased to obtain information up to a deeper part. Thus, in the second aspect. The hollow body may have a function that its wall surface substantially optically shields between the probe light irradiation unit and the imaging unit (light receiving unit). These materials are determined by the wavelength of the probe light, but an example of near-infrared light is salted blue. However, as shown in FIG. 11, by providing the shielding member (2 2) inside the hollow body, it is also possible to provide both the irradiation part (2) and the imaging part (3) in the hollow body. In the case of Fig. 11, it can also be used for the first mode, so it is possible to scan the surface of the target region widely, and if a detailed examination is required, perform aspiration to image a deeper region. is there.
この第二の態様では、 特に図 1 0のように照射部 (2 ) を中空体外部に設け る場合、プローブ光 pが撮影部下の対象部位内に十分に侵入するように光軸を 傾斜させて入射させることが好ましレ、。照射部(2 )を設ける位置にもよる力 照射角 0 (対象部位表面へのプローブ光入射角)が概ね 1 0度以上が好ましく、 3 0度以上がより好ましい。照射角 Θが大きすぎると皮膚内への浸透深度が小 さくなるので 8 0度以下が好ましく、 6 0度以下がより好ましい。 また、 照射 角 0が可変となるように、環状に配置された L E D等の照射素子またはこれを 収納した複数のハウジングが、連動して傾斜する構成をとつてもよい。 このよ うな構成は、例えば、 直径の異なる同心二重のリング構造を設け、 内外のリン グに L E D等の照射素子またはこれを収納した複数のハウジングを、 中心寄 り、外周寄りでそれぞれ軸支し、内外のリングの相対的な上下関係を変化させ ることで実現できる。いずれかのリングの位置を中空体の外部から直接操作で きるようにしてもよレ、。例えば、 中空体外周に回転可能に螺合する環状部材を 設け、 これと前記リングの一方を結合する。他方のリングは中空体内に固定す る。環状部材を回転させることにより、環状部材は中空体外周を上下するので これにより内外リングの相対的な位置が変化して照射素子の傾斜が変化する。 傾斜角の調整はステッピングモータ一等で電気的に行なつてもよい。 In this second embodiment, particularly when the irradiation part (2) is provided outside the hollow body as shown in FIG. 10, the optical axis is inclined so that the probe light p sufficiently enters the target site under the imaging part. It is preferable to make it incident. The force depending on the position where the irradiation part (2) is provided. The irradiation angle 0 (the probe light incident angle on the surface of the target site) is preferably approximately 10 degrees or more, more preferably 30 degrees or more. If the irradiation angle Θ is too large, the depth of penetration into the skin will be small, so 80 ° or less is preferable, and 60 ° or less is more preferable. Further, a configuration may be adopted in which an irradiation element such as an LED or a plurality of housings that house the LED is arranged in an interlocking manner so that the irradiation angle 0 is variable. In such a configuration, for example, a concentric double ring structure with different diameters is provided, and inner and outer rings are arranged. This can be realized by changing the relative vertical relationship between the inner and outer rings by pivotally supporting the LED or other irradiating elements or multiple housings housing them in the center and near the outer periphery. Either ring position can be operated directly from the outside of the hollow body. For example, an annular member that is rotatably screwed to the outer periphery of the hollow body is provided, and this is coupled to one of the rings. The other ring is fixed in the hollow body. By rotating the annular member, the annular member moves up and down on the outer periphery of the hollow body, so that the relative position of the inner and outer rings changes and the inclination of the irradiation element changes. The inclination angle may be adjusted electrically with a stepping motor or the like.
なお、第二の態様においては、 中空体開口部に皮膚と密着する蓋部材を設け てもよい。 蓋部材はプローブ光と同波長の光が透過する材料を用いる。  In the second aspect, a lid member that is in close contact with the skin may be provided at the hollow body opening. The lid member is made of a material that transmits light having the same wavelength as the probe light.
本発明の装置は、上記第一の態様においても第二の態様においても、撮影位 置を特定する手段 (以下、 定位手段という。) を備えてもよい。  The apparatus of the present invention may include means for specifying the photographing position (hereinafter referred to as localization means) in both the first aspect and the second aspect.
このような定位手段はさまざまなものが含まれ得る力 大別すれば以下の四 種類の構成が含まれる。  Such localization means can include a variety of powers The following four types of configurations are included.
(a) 基準位置から相対的位置を測定するもの。 (a) Measuring relative position from the reference position.
(b) 基準位置からの移動量を計測するもの。  (b) Measuring the amount of movement from the reference position.
(c) 撮影像に基づいて位置を特定するもの。  (c) A device that specifies a position based on a photographed image.
(d) 対象部位に印その他の座標を設けるもの。  (d) A mark or other coordinates are provided on the target part.
以下、それぞれについて操作者が自らの乳房付近での血管撮影を行う場合を 例として簡単に説明する。  The following is a brief description of the case where the operator performs angiography near his / her breast as an example.
(a)の構成は、 撮影に際し基準位置を設定し、 そこからの相対的位置を測定 するものである。 これは典型的には三角測量と同様な原理に基づく。 基準位置は任意に選択し得るが、 例えば、 骨盤の左右の端 (それぞれ L点、 R点とする) を基準位置とすることができる。 撮影装置は、 これらの基準位置 と何らかの方法で結合されており、ある位置 P点で撮影した場合、撮影者が操 作することにより、 L点からの距離 L Pと R点から距離 R Pまたは Z P L R及 び Z P R Lが撮影画像と関連づけて記録される。 L点及び R点は固定点であ り、 P点は操作者の皮膚表面に存在するから上記の情報 (距離または角度) に よって P点の位置はほぼ一意的に決定される。必要であれば、 さらに第三の基 準点を設けて上記と同様な距離及び角度を計測してもよい。 In the configuration (a), a reference position is set at the time of shooting, and the relative position from the reference position is measured. This is typically based on the same principle as triangulation. The reference position can be selected arbitrarily. For example, the left and right ends of the pelvis (respectively L point and R point) can be used as the reference position. The camera is connected to these reference positions in some way, and when shooting at a certain point P, the photographer manipulates the distance LP from the point L and the distance RP or ZPLR from the point R. And ZPRL are recorded in association with the captured image. The L and R points are fixed points, and the P point exists on the operator's skin surface. Therefore, the position of the P point is almost uniquely determined by the above information (distance or angle). If necessary, a third reference point may be provided to measure the same distance and angle as described above.
撮影装置とこれらの基準位置との結合は、機械的なものでもよいし、音、光、 電波などを用いたものでもよい。  The coupling between the imaging device and these reference positions may be mechanical, or may use sound, light, radio waves, or the like.
機械的構成の例としては、腰に嵌めるのに適した大きさのベルト状部材とこ れに設けられた二個のコード送り出し装置が挙げられる。操作者がベルトを装 着した際、 二個のコード送り出し装置 (じ1及び0 2) は、 例えば、 骨盤の両 端に相当する位置に固定される。 コード送り出し装置は、内部にコードを巻き 取るための巻き取り軸を有し、 さらに、 コード送り出しのための開口部を備え 前記巻き取り軸を中心として回転可能に軸支されたハウジングを有する。巻き 取り軸は例えば巻きばねなどによってコードを引き込む方向に付勢されてい る。 Examples of the mechanical configuration include a belt-like member having a size suitable for fitting on the waist and two cord feeding devices provided on the belt-like member. When the operator wears the belt, the two cord feeders (Eg 1 and 0 2 ) are fixed at positions corresponding to both ends of the pelvis, for example. The cord feeding device includes a winding shaft for winding the cord therein, and further includes a housing that is provided with an opening for feeding the cord and is rotatably supported around the winding shaft. The take-up shaft is urged in the direction in which the cord is pulled in by a winding spring, for example.
撮影に際しては、それぞれのリール状装置からコードが引き出され撮影装置 と連結される。コード送り出しのための開口部は前記卷き取り軸を中心として 回転可能であるため、撮影装置を移動させると、それに追従して開口部は回転 する。 従って、 コードに十分な張力が生じるように前記付勢力を設定すれば、 巻き取り軸一開口部一撮影装置はほぼ一直線上に並ぶため、 撮影装置 Pと 及び C 2.それぞれのなす角度 Z PCiCsと Z P CSC Lは前述の Z P L R及び ZPRLに相当する。 また、 それぞれのコードの引き出し長さ と PC2 は前述の L P及び RPに相当する。 角度 ZPCiCsと ZPCsCiは開口部の 回転角から、コードの引き出し さ巻き取り軸の回転角から容易に算出可能な ので、これらの回転角を計測する手段を設けることにより撮影位置の特定が可 能となる。 なお、 ここで、 コードと総称するものは、 十分な張力を及ぼしたと きに測定に悪影響を及ぼすおそれのない線、 紐、 鎖等であり、 樹脂、 紙その他 の繊維類、 金属等で形成できる。 When photographing, a cord is pulled out from each reel-like device and connected to the photographing device. Since the opening for feeding the cord can be rotated around the scraping shaft, the opening rotates following the photographing device when the photographing apparatus is moved. Therefore, if the biasing force is set so that sufficient tension is generated in the cord, Since the take-up shaft, the opening, and the photographing device are arranged in a substantially straight line, the angles Z PCiCs and ZP CSC L formed by the photographing devices P and C 2 respectively correspond to the above-mentioned ZPLR and ZPRL. In addition, the length of each cord and PC 2 correspond to the aforementioned LP and RP. Angles ZPCiCs and ZPCsCi can be easily calculated from the rotation angle of the opening and the rotation angle of the take-up shaft of the cord, so that it is possible to specify the shooting position by providing a means to measure these rotation angles Become. Here, what is collectively referred to as a cord is a wire, string, chain, or the like that does not adversely affect measurement when sufficient tension is applied, and can be formed of resin, paper, other fibers, metal, etc. .
音、 光、 電波などを用いた構成の例は、 例えば、 超音波、 光または電波の照 射及び または受信手段を備えた通信手段 (じ1及ぴじ2) を上記のコード送 り出し装置に代えてベルト状に設けたものである。 この場合、撮影装置の一部 に音、 光または電波を検知する装置を設ける力、音、 光または電波を放出する 装置を設けることにより、 撮影装置 Pとじェ及び C2はそれぞれ、 音響的、 光 学的または電磁波的に結合され、距離 PCェ及び PC 2は容易に決定される(例 えば、 C iから発射された超音波の伝播時間に音速を乗じれば距離 P C iが得 られる。)。 角度
Figure imgf000022_0001
ZPCsCiも超音波、 光または電波の照射角及 び Zまたは受信角を機械駆動またはアレイ等を用いて変化させることにより 容易に計測されるため、 撮影位置の特定が可能となる。
Examples of configurations using sound, light, radio waves, and the like include, for example, communication means (the same 1 and 2 ) equipped with ultrasonic, light, or radio wave irradiation and reception means as described above in the code sending device. Instead of a belt. In this case, the sound part of the imaging apparatus, the force providing a device for detecting the light or radio waves, sound, by providing a device for emitting light or radio waves, each imaging device P Toje and C 2, acoustic, optically histological or electromagnetic coupling, the distance PC e and PC 2 is readily determined (eg if the distance PC i are obtained be multiplied the speed of sound in the ultrasonic propagation time fired from C i. ). angle
Figure imgf000022_0001
ZPCsCi can also be easily measured by changing the irradiation angle of ultrasonic waves, light or radio waves, and Z or reception angle using a mechanical drive or an array, so it is possible to specify the shooting position.
なお、 機械的構成の場合も音、 光、 電波などを用いた構成の場合も、 距離 P Ci及び PC 2のみでおおまかな撮影位置は特定されるが、 乳房などの隆起を 考慮して角度 ZPdC2、 ZPCsCiも合わせて測定するのが好ましい。 さ らに、皮膚表面から撮影装置までの仰角を計測してもよい。 また、腰に卷くべ ルトの代わりに肩甲骨付近に装着するようにしてもよレ、。 In both mechanical configurations and configurations using sound, light, radio waves, etc., the approximate shooting position is specified only by the distance P Ci and PC 2, but the angle ZPdC is taken into account when the breasts are raised. 2 , ZPCsCi is also preferably measured together. The Further, the elevation angle from the skin surface to the imaging device may be measured. You can also wear it near the scapula instead of the belt on your waist.
(b)の構成は、 撮影に際し基準位置を設定し、 そこからの移動距離を測定す るものである。これは典型的には機械式マウスや光学マウスと同様な原理に基 づぐ。  In the configuration (b), a reference position is set at the time of shooting, and the moving distance from the reference position is measured. This is typically based on the same principle as a mechanical or optical mouse.
基準位置は任意の位置でよく、身体的な特徴点(黒子などの位置)や定点(例 えば、 両乳房間の下縁部) を基準としてもよレ、が、撮影画像を記録する際に当 該位置を記録することが好ましレ、。 これは、撮影装置によつて可視画像を撮影 できるように可視領域の撮像装置を撮影装置に備えたり、文字入力装置を設け ることによつても実現できる。  The reference position can be any position, and can be based on physical feature points (positions such as moles) or fixed points (for example, the lower edge between both breasts). It is preferable to record the position. This can also be realized by providing an imaging device in the visible region in the imaging device or providing a character input device so that a visible image can be taken by the imaging device.
機械式の場合、典型的には撮影装置に回転可能な形でボールを結合する。 こ れは、 コンピュータ用マウスの位置識別部に見られるように、その一部がハウ ジング外に露出するようにボールをハゥジング中に封じ、当該ハゥジングを撮 影装置と連結することにより実現できる。 ボールの回転方向及び回転角度を、 例えば、二以上の方向から光ビームを照射することにより測定し(この方法は 慣用の方法を用いればよい)、 計算により移動距離及び方向を計測する。  In the case of the mechanical type, the ball is typically coupled to the photographing apparatus in a rotatable manner. This can be achieved by sealing the ball in the housing so that a part of it is exposed outside the housing, as seen in the position identification part of the computer mouse, and connecting the housing with the imaging device. The rotation direction and rotation angle of the ball are measured, for example, by irradiating light beams from two or more directions (this method may be a conventional method), and the movement distance and direction are measured by calculation.
光学式の場合、可視光もしくは赤外光またはこれらのレーザ光を皮膚面に照 射する。 赤外光の場合はプローブ光を併用してもよい。 反射、透過または散乱 した光を撮影装置内(上述の中空体内でもよいしこれとは別に受光部を設けて もよい) に取り込み、 C C D等によっていくつかの特徴点を同定する。撮影装 置を動かしていった場合、撮影画像内でこれらの特徴点が移動するので、 これ を分析することにより移動方向及び移動距離を計測する。 なお、プローブ光の 照射及び受光並びに位置計測については既存の光学マウスにおいてュニット 化されており、 本発明ではこれを用いてもよい。 In the case of the optical type, visible light or infrared light or a laser beam thereof is irradiated onto the skin surface. In the case of infrared light, probe light may be used in combination. Reflected, transmitted, or scattered light is taken into the imaging device (which may be in the hollow body described above or a light receiving unit may be provided separately), and several feature points are identified by a CCD or the like. When the photographic device is moved, these feature points move in the photographic image. By analyzing this, the moving direction and moving distance are measured. Note that the probe light Irradiation, light reception, and position measurement are unitized in an existing optical mouse, and may be used in the present invention.
移動距離の測定は、音響的方法及び電波的方法でも可能である。 例えば、音 波または電磁波を皮膚面に斜めに照射し、移動の際のドップラーシフトにより 移動速度を計測し、 これを時間積分することで移動距離を求めることができ る。 この方法は、 検出精度が高ければ光学的方法でも用いることができる。  The moving distance can be measured by an acoustic method and a radio wave method. For example, the moving distance can be obtained by irradiating the skin surface with sound waves or electromagnetic waves obliquely, measuring the moving speed by Doppler shift during movement, and integrating this with time. This method can also be used by an optical method if the detection accuracy is high.
(c)の構成は、撮影像に基づいて位置を特定するものであり、 (C- 1)撮影時に 可視画像も撮影してその位置を特定 「する構成、 (c-2)撮影時に解析された血 管像に基づいてその位置を特定する構成等が例として挙げられる。  The configuration in (c) specifies the position based on the captured image. (C-1) A configuration that captures a visible image at the time of shooting to identify the position. (c-2) It is analyzed at the time of shooting. An example is a configuration that identifies the position based on the blood vessel image.
(c-1)の構成は、 例えば、 前述の中空体に可視画像撮影装置を併設し、 血管 像の撮影と連動して可視画像を撮影することで実現できる。 この場合、可視画 像は撮影部位を重畳的に可視画像として得るものでも、その周辺画像を広角で 撮影してその位置を特定できるようにしてもよレ、。  The configuration of (c-1) can be realized, for example, by providing a visible image capturing device in addition to the hollow body described above and capturing a visible image in conjunction with the capturing of a blood vessel image. In this case, the visible image may be obtained by superimposing the imaging part as a visible image, or the peripheral image may be taken at a wide angle so that the position can be specified.
(C- 2)の構成は、 実質的に定位置にある血管との対応により撮影位置を定位 するものである。  The configuration of (C-2) is to localize the imaging position by corresponding to the blood vessel in a substantially fixed position.
(d) の構成は、 対象位置に印その他の座標を設けるものである。 このよう な態様の例としては、座標等を描き込んだ皮膚に密着するシート等を貼り付け る方法がある。 例えば、 乳房の撮影の場合、 予め可視光で視認できる座標やマ 一力一を描き込んでおいたカップ型ブラジャー等を装着する。撮影をカップ型 ブラジャーの上から赤外と可視光とで重畳して行なって両者をリンクするこ とにより各撮影像の位置の特定が可能となる。カツプ型ブラジャー等としては 皮膚密着タイプのものを用いれば撮影時の位置ずれがほとんど生じないので 好ましい。 乳房以外の部位については平面状の同様なシートを用いればよレ、。 あるいは、皮膚上に可視域では見えにくレ、、例えば肌色に近いインクで座標 を描き込み、赤外撮影と同時に肌色の補色に相当する波長域での撮影を行なつ て両者をリンクしてもょレ、。インクで座標を描き込むのに際しては前述した力 ップ型ブラジャー等をテンプレートとして用いるか転写シート上に座標を描 き込んだものを乳房上に貼り付け、シートを剥がして乳房上に座標を転写する ことができる。 In the configuration (d), a mark or other coordinates are provided at the target position. As an example of such a mode, there is a method of sticking a sheet or the like that adheres to the skin on which coordinates or the like are drawn. For example, in the case of breast imaging, wear a cup-type bra or the like that has previously drawn the coordinates that can be seen with visible light and the best effort. Shooting is performed by superimposing infrared and visible light on the cup-shaped brassiere and linking the two, making it possible to specify the position of each captured image. As a cup-type bra, etc., if a skin-contact type is used, there will be almost no displacement during shooting. preferable. For parts other than the breast, use the same flat sheet. Alternatively, it is difficult to see on the skin in the visible range, for example, coordinates are drawn with ink that is close to skin color, and infrared imaging and imaging in the wavelength range corresponding to the complementary color of skin color are performed, and the two are linked. Gore. When drawing the coordinates with ink, use the above-mentioned force-type brassiere as a template or paste the coordinates drawn on the transfer sheet on the breast, peel off the sheet and transfer the coordinates onto the breast can do.
カップ型ブラジャー等の上から撮影する場合は上記第二の態様が好ましい 力 後者の場合は第一、 第二いずれの態様も可能である。  When photographing from above a cup-type brassiere or the like, the second aspect is preferred. In the latter case, both the first and second aspects are possible.
上記の定位手段は前記第一の態様、第二の態様のいずれと組み合わせてもよ レ、が、特に、対象部位を広く走査して撮影することが容易前記第二の態様と組 み合わせた場合、 操作者への負担の少ない簡易な装置でありながら対象部位 (例えば、乳房)の皮膚下の血管分布をその位置情報とともに広範囲にわたつ て精度よく得ることが可能となる。 例えば、 1秒間に複数コマの撮影を行い、 撮影像と位置情報とを合わせて記録する。得られた血管像を位置情報に従って マツピングすれば、 血管異常の診断がより容易になる。  The localization means described above may be combined with either the first aspect or the second aspect, but in particular, it is easy to scan a wide area of the target region for imaging. In this case, the blood vessel distribution under the skin of the target site (for example, the breast) can be accurately obtained over a wide range together with the position information while being a simple device with little burden on the operator. For example, multiple frames are shot per second, and the shot image and position information are recorded together. If the obtained blood vessel image is mapped according to the position information, diagnosis of blood vessel abnormality becomes easier.
以上、二つの典型的な態様について本発明の装置の主要部を説明したが、照 射部から射出されたプローブ光が直接撮影部に入射せず、対象部位から射出さ れた散乱光や透過光を撮影部で受光する装置、特に照射部と撮影部とが一定の 位置関係に固定されている装置、特に小型の血管撮影装置は本発明の範囲に含 まれる。  As described above, the main part of the apparatus of the present invention has been described with respect to two typical embodiments. However, the probe light emitted from the irradiation unit does not directly enter the imaging unit, and the scattered light or transmission emitted from the target site. A device that receives light at the photographing unit, particularly a device in which the irradiation unit and the photographing unit are fixed in a certain positional relationship, particularly a small-sized angiographic device is included in the scope of the present invention.
本発明の装置では、 さらに撮影した画像を表示する装置を含んでもよい。 表 示装置 (C R T , 液晶ディスプレイ等) に撮影した画像を表示して、 それを操 作者がリアルタイム 、 または録画像として見ることができる。 The apparatus of the present invention may further include an apparatus for displaying a captured image. table The captured image is displayed on a display device (CRT, liquid crystal display, etc.), and the operator can view it as a real-time or recorded image.
本発明は、 血管分布解析システムを含む血管分布の診断装置も含む。 以下、 その構成について説明する。  The present invention also includes a blood vessel distribution diagnostic apparatus including a blood vessel distribution analysis system. The configuration will be described below.
血管分布解析システムは、撮影画像を画像解析するシステム全般を含む。例 えば、撮影画像から画像解析により暗部等を抽出する手法は、既知の方法が利 用できる。 本発明では、 例えば、 画像全体の明暗を計算し、 これと画像各部の 明暗から血管の分布を判定する方法を取ることができる。  The blood vessel distribution analysis system includes an entire system for analyzing a captured image. For example, a known method can be used as a method for extracting a dark part or the like from a captured image by image analysis. In the present invention, for example, it is possible to take a method of calculating the brightness and darkness of the entire image and determining the distribution of blood vessels from the brightness and darkness of each part of the image.
すなわち、撮影条件によって画像の明暗は異なり得るが、画像各部の明暗か ら画像全体の明暗を差し引くことにより、 血管分布を抽出することができる。 また、 明暗の局所的変化から血管分布域を判定することもできる。  That is, the brightness of the image may vary depending on the shooting conditions, but the blood vessel distribution can be extracted by subtracting the brightness of the entire image from the brightness of each part of the image. It is also possible to determine the blood vessel distribution area from local changes in brightness.
その手法は特に限定されないが、 明暗の局所的変化から血管分布域を判定す る手法の例としては、 撮影した画像中の最も喑ぃ位置 (グレースケール値の大 きい位置。 面積を有してもよいが、 以下、 単に最暗点ともいう。) のグレース ケール値を記憶し、その部分を含むように領域を拡大しつつ拡大された領域の 平均グレースケール値を求める方法を挙げることができる。 例えば、 最暗点を 中心とした半径 rの円を次々に描き、その内部の平均グレースケール値を求め る。 これにより、 当該画像では、 rに対する関数として平均グレースケール値 が規定できる。 r = 0は最暗点なので、 rの増大に連れて平均グレースケール 値は通減していくが、 血管が存在している領域内である限りその減少率は低 レ、。 一方、 前記円が、 血管が分布していない領域に及ぶと平均グレースケール 値は大きく減少する。 すなわち、 平均グレースケール値の減少率の変化を見る ことにより血管分布の集中域を画定できる。 なお、 ここでは、 基準点を中心と して描いた円を拡げる例を挙げた力 基準点から複数の方向に向かって二次元 的にグレースケール値変化を調べ、 各線上でのグレースケール値やその変化 (例えば、 変曲点) 等を見て血管分布の集中域を画定してもよい。 The method is not particularly limited, but as an example of a method for determining the blood vessel distribution area from local changes in light and darkness, the most prominent position (position with a large gray scale value in the photographed image. However, in the following, the gray scale value of simply the darkest point may be stored, and the average gray scale value of the enlarged area may be obtained while enlarging the area to include that portion. . For example, draw circles with radius r centered on the darkest point one after another, and find the average grayscale value inside. This allows the average grayscale value to be specified as a function of r for that image. Since r = 0 is the darkest point, the average grayscale value decreases as r increases, but the rate of decrease is low as long as it is in the region where the blood vessel exists. On the other hand, when the circle reaches an area where blood vessels are not distributed, the average gray scale value is greatly reduced. That is, see the change in the rate of decrease of the average grayscale value Thus, the concentration area of the blood vessel distribution can be defined. In this example, the force of expanding the circle drawn around the reference point is taken as an example. The change in the gray scale value is measured two-dimensionally from the reference point in multiple directions, and the gray scale value on each line is calculated. The concentration region of the blood vessel distribution may be defined by looking at the change (for example, the inflection point).
また、 最喑点から領域を拡げていく以外に、 最明点から領域を拡げていって もよいし、 両者からそれぞれ領域を拡大していってもよい。 あるいは、 画像領 域内に複数の基準点 (撮影画像内の所定の座標に対応する格子点でもよいし、 そのグレースケール値から血管分布部位と取り敢えず推定される点でもよレ、) をとり、 上記と同様に領域を拡大しつつ平均グレースケール値やその変化 (例 えば、 変曲点) 等を計算することにより、 血管分布の集中域を推定することも 可能である。  In addition to expanding the region from the highest point, the region may be expanded from the brightest point, or the region may be expanded from both. Alternatively, a plurality of reference points (which may be grid points corresponding to predetermined coordinates in the photographed image or points that are presumed to be the blood vessel distribution part from the gray scale value) in the image area are taken, and Similar to, it is possible to estimate the concentration area of the blood vessel distribution by calculating the average gray scale value and its change (for example, the inflection point) while expanding the area.
以上の方法では、 グレースケール値の絶対値ではなく変化率を見てレ、るた め、測定装置の傾きや対象部位引き込みの偏り等に起因するプローブ光分布の 不均一に起因する誤差を排除することができる。  The above method eliminates errors caused by non-uniformity of probe light distribution due to the inclination of the measurement device and bias in the target part pull-in, etc., by looking at the rate of change rather than the absolute value of the grayscale value. can do.
また、 本発明では、 より簡便に、 撮影した画像のうち、 診断しょうとする部 分を k個の領域に分割し、 各領域のグレースケール値 (領域内の平均値、 特に 断らない限り本願の他の箇所において同様) を求め、 次いで、 各領域の面積を 拡大しつつ分割数を減らして各領域のグレースケール値を求め、 このステップ を k = 1になるまで繰り返し、 ステップ間における対応する領域でのグレース ケール値の変化に基づいて血管の分布を判定することができる。  Also, in the present invention, the portion to be diagnosed in the captured image is more easily divided into k regions, and the gray scale value of each region (the average value in the region, unless otherwise specified) Then, increase the area of each region and reduce the number of divisions to obtain the grayscale value of each region, repeat this step until k = 1, and then the corresponding region between steps The distribution of blood vessels can be determined based on the change in the gray scale value.
上記の方法では、 あるステップでの単位領域 (分割された個々の領域) a i は次のステップでの対応する単位領域 a i + 1の部分になるが、それぞれのダレ 一スケール値 g i、 g i + 1が g; > g i + 1ならば、 単位領域の拡大によりより明 るい領域(すなわち、 ポジ像では血管分布の少ない領域) が取り込まれたこと になる。 すなわち、 血管分布は a ;よりも a i + 1の方が疎である。 反対に g i < g i + 1ならば、 血管分布は a ;よりも a i + 1の方が密である。 このステップ を k = l (すなわち、 単位領域 =診断しょうとする部分の全体) になるまで繰 り返すことにより、各部分での血管分布の疎密を判定することができる。 この 方法では、隣接する領域間での疎密を判定していくため、単純に k個の領域の グレースケール値を比較した場合に生じ得る全体的な誤差 (例えば、 装置が検 査対象領域に押し当てられる際の角度等、操作により生じ得る撮影画像全体の 明暗のバイアス) を回避できる。 また、 実際上、 がん等の診断では個別の血管 を識別する必要はなく、 その疎密が重要であり、 本発明は効率的ながん等の診 断方法を提供する。 In the above method, the unit area (divided individual area) ai in one step becomes a part of the corresponding unit area a i + 1 in the next step. If one scale value gi , g i +1 is g;> g i +1 , a brighter region (ie, a region with less blood vessel distribution in the positive image) is captured by expanding the unit region. That is, the blood vessel distribution is sparser for a i + 1 than for a ; On the other hand, if gi <g i + 1 , the blood vessel distribution is denser in a i + 1 than in a ; By repeating this step until k = l (ie, unit region = whole part to be diagnosed), the density of blood vessel distribution in each part can be determined. In this method, since the density between adjacent regions is determined, an overall error that can occur when the gray scale values of k regions are simply compared (for example, the device pushes the region to be inspected). This avoids the light / dark bias of the entire photographed image that may occur due to the operation, such as the angle at which it is applied. In practice, it is not necessary to identify individual blood vessels in the diagnosis of cancer and the like, and its density is important, and the present invention provides an efficient diagnosis method for cancer and the like.
ここで、最小の単位領域(すなわち、 上記の例では最初に設定された k個の 領域)は血管新生が始まるとされる腫瘍の最小の大きさに匹敵する程度であれ ばよレ、。 また、 本発明では、 上述のように、 例えば、 円形の領域を撮影し、 そ のうち、 中央部位を除く輪状領域を判定することが可能であるが、 上記におい て 「撮影した画像のうち、 診断しょうとする部分」 とは、 このような撮影画像 の一部領域を指す。  Here, the smallest unit area (ie, the first set k areas in the above example) should be comparable to the smallest tumor size at which angiogenesis begins. In the present invention, as described above, for example, a circular region can be photographed, and a ring-shaped region other than the central region can be determined. The “part to be diagnosed” refers to a partial region of such a captured image.
各単位領域はその形状は限定されなレ、が、重なりのない等しい面積の多角形 に分割することが好ましく、例えば、三角形、 四角形、六角形(特に正三角形、 正方形、 正六角形) にする。 正方形の例で言えば、 最も簡便には撮影した画像 のうち、診断しようとする部分に内接する最大の正方形として切り取り、それ を m個の正方形に分割し、各領域のグレースケール値を求め、最高値と最低値 を記録する (第 0ステップ)。 次にその最高値と最低値を示した単位領域の周 囲に隣接する n個の正方形を加え、 その平均のクレースケール値を算出する (第 1ステップ)。 最高値と最低値の単位領域が、 画像から切り取られた正方 形の辺縁に位置する場合も勘案すると、第 1ステツプで加えられる正方形数 n iは 3≤n ≤ 8である、 順次その周囲に隣接して加えられる正方形数 n 3...は、 3 · 5 · 7… · n i . 2 . 3...≤ 8 - 1 6 - 2 5…の範囲で増加する。 順 次加えられた全ての単位領域のグレースケール値を加算し、 順次平均値を求 め、 その最高値と最低値のグレースケール値の変化を調べていく。 Each unit region is not limited in shape, but is preferably divided into polygons of equal area that do not overlap, for example, a triangle, a rectangle, and a hexagon (particularly, a regular triangle, a square, and a regular hexagon). In the case of a square, the simplest way is to cut out the captured image as the largest square inscribed in the part to be diagnosed. Is divided into m squares, the gray scale value of each area is obtained, and the highest and lowest values are recorded (step 0). Next, n squares adjacent to the circumference of the unit area showing the highest and lowest values are added, and the average clay scale value is calculated (first step). Considering the case where the highest and lowest unit areas are located on the edge of a square cut out from the image, the number of squares ni added in the first step is 3≤n≤8. square number n 3 ... are applied in adjacent, 3 · 5 · 7 ... · ni 2 3 ... ≤ 8 -.. 1 6 - increased by 2 5 ... range. Sequentially add the grayscale values of all the unit areas, find the average value sequentially, and examine the change in the grayscale value between the highest and lowest values.
血管の集中部位を見ている場合、グレースケール値のステップ間での変化は 比較的緩慢である。一方、血管がまばらに分布している場合はステップ間で血 管を含まない領域が取り込まれるため、 ダレ一スケール値の変化が大きくな る。なお、 グレースケール値の最大領域からの変化と共にグレースケール最小 領域からの変化を調べることにより、撮影画像全体の明暗に依存しない判別が 可能となる。  When looking at the concentration of blood vessels, changes in grayscale values between steps are relatively slow. On the other hand, if the blood vessels are sparsely distributed, the region that does not contain blood vessels is captured between steps, and the change in the sag scale value increases. In addition, by examining the change from the minimum grayscale area as well as the change from the maximum grayscale value area, it is possible to determine the entire captured image independent of light and darkness.
これらの画像解析、 領域分割、 グレースケール値の計算、 判定、 部位ごと及 び/または経時的変化の解析のためのデータの蓄積、 さらに、複数のプローブ 光波長を用いる場合は、その切り替え、データの通信等はコンピュータ等の制 御手段により制御することが可能である。また、操作者が操作しやすいように、 上記の装置の任意の部分にスィッチを取り付けてもよいし、装置が、 さらに外 部からの入力装置 (有線、 無線、 光、 超音波等) を有し、 リモコン等により吸 引及びその解除、 プローブ光の照射、 撮影等を制御できるようにしてもよレ、。 このようなシステムの構成図の一例を図 4に示す。すなわち、このシステムは、 検査対象部位を受け入れる中空体(1) にプローブ光を照射する照射部 (2)、 撮影部 (3) を有し、 撮影部は撮像手段 (6) を含み、 中空体 (1) は減圧手 段(8) と連結しており、 これらの照射部(2)、減圧手段(8)、撮像手段(6) は制御部 (12) を介してコンピュータ (10) に接続している。 ここで、 制 御部 (12) は例えばスィッチであり、 照射、 減圧、 撮像のすべてを制御する ものでもその一部を制御するものでもよく、 これらは制御部 (12) を介さず にコンピュータ (10) に接続する構成としてもよレ、。 特に撮像手段 (6) で 得たデータは直接にコンピュータ (12) に伝達してもよレ、。 表示装置 (9) は任意であるが、医師等が直接画像診断する場合には通常必要となる。表示装 置 (9)、 撮影手順をガイ ドする表示を行なったり、 撮影結果の可視化像や例 えば 「異常なし」、 「専門医の診断を要する」 等の判定結果を示してもよい。 ま た、 表示装置 (9) は、 制御部 (12) あるいはさらにコンピュータ (10) と一体化したタツチパネル (例えば、 液晶パネル等) でもよレ、。 Data analysis for these image analysis, region segmentation, grayscale value calculation, judgment, analysis of each region and / or change over time, and switching between multiple probe light wavelengths, data Such communication can be controlled by a control means such as a computer. In addition, a switch may be attached to any part of the above device so that the operator can easily operate it, and the device further has an external input device (wired, wireless, optical, ultrasonic, etc.). However, it may be possible to control suction and release, probe light irradiation, imaging, etc. with a remote control. An example of the configuration diagram of such a system is shown in FIG. In other words, this system has an irradiation unit (2) for irradiating probe light to a hollow body (1) that receives a region to be examined, and an imaging unit (3), and the imaging unit includes an imaging means (6). (1) is connected to the decompression means (8), and these irradiation section (2), decompression means (8), and imaging means (6) are connected to the computer (10) via the control section (12). is doing. Here, the control unit (12) is, for example, a switch, and may control all or a part of irradiation, decompression, and imaging, and these may be controlled by a computer (not via the control unit (12)). 10) You can also connect to the configuration. In particular, the data obtained by the imaging means (6) may be transmitted directly to the computer (12). The display device (9) is optional, but it is usually necessary when a doctor or the like performs direct image diagnosis. Display device (9) Display that guides the imaging procedure, or a visualization image of the imaging result, for example, “no abnormality”, “needs specialist diagnosis”, etc., may be displayed. The display device (9) may be a touch panel (for example, a liquid crystal panel) integrated with the control unit (12) or the computer (10).
特に上述の定位手段を含む場合は、胸部像などをコンピュータグラフィック スにより提示し、その上に撮影部位をポイントなどで指し示しながら撮影像を 表示することができる。また、撮影像を専門医等が診断することが可能である。 この場合、撮影システム自体に表示装置は含まなくてもよいし、 あるいは、表 示装置等は物理的に離れた場所に設置していてもよい。 例えば、操作者(被験 者自身でもよい)が上記の撮影装置を操作して対象部位を撮影し、その画像を 適当な記録媒体に記録して、あるいは、電話線や光ファイバ等の通信回線を通 じて医療機関またはデータ回収機関に送り、これらの機関において医師が診断 することが可能である。 In particular, when the above-mentioned localization means is included, a chest image or the like can be presented by computer graphics, and a photographed image can be displayed while pointing the photographing region with a point or the like. In addition, it is possible for a specialist or the like to diagnose the captured image. In this case, the imaging system itself may not include the display device, or the display device or the like may be installed in a physically separated place. For example, an operator (which may be the subject himself / herself) operates the above-described imaging apparatus to image the target region, and records the image on an appropriate recording medium, or a communication line such as a telephone line or an optical fiber. Sent to medical institutions or data collection agencies through which doctors diagnose Is possible.
また、 照射部 (2)、 減圧手段 (8)、 撮像手段 (6) 及び表示装置 (9) は、 コンピュータ (10) の制御の下、 吸引後に、 プローブ光を自動的に照射し、 CCDカメラで光量を測定して吸引状態や装置の対象部位に対する角度の適 否を表示する構成としてもよいし、 撮像手段 (6) は、 コンピュータ (10) の制御の下、 自動的に撮影を行ない、その中で最適なデータを選択できるよう にしてもよレ、。 さらに、 コンピュータ (10)は複数回のデータを重畳したり、 複数の時系列データから差分を取るような任意の画像処理工程を施すプログ ラムを内蔵していてもよい。  The irradiation unit (2), decompression unit (8), imaging unit (6) and display device (9) automatically irradiate probe light after suction under the control of the computer (10) It is also possible to use a configuration that measures the amount of light and displays the suction status and the appropriateness of the angle with respect to the target part of the device. The imaging means (6) automatically takes images under the control of the computer (10). You may be able to select the best data among them. Further, the computer (10) may include a program for performing an arbitrary image processing step such as superimposing a plurality of data or taking a difference from a plurality of time series data.
本発明によれば、図 5に示すような血管新生部位を判別できるため、何らか の原因による血管新生の有無を判別できる。 例えば、乳がんの場合、腫瘍に伴 う血管新生は、腫瘍の直径が 2 mm程度から始まることから、 2 mm以上の血 管の集中として識別できるため、本発明の装置は乳ガンの診断装置として有効 である。  According to the present invention, since an angiogenesis site as shown in FIG. 5 can be discriminated, it is possible to discriminate the presence or absence of angiogenesis due to some cause. For example, in the case of breast cancer, angiogenesis associated with a tumor starts at a diameter of about 2 mm, and can be identified as a concentration of blood vessels of 2 mm or more. Therefore, the device of the present invention is effective as a diagnostic device for breast cancer. It is.
実施例 Example
以下、 本発明を実施例で説明する。 以下の実施例は、本発明を説明するため にあげた例であり、 これにより本発明を限定するものではない。  Hereinafter, the present invention will be described with reference to examples. The following examples are given to illustrate the present invention and are not intended to limit the present invention.
実施例 1 Example 1
内径 46mm,高さ 100 mmの光を透過しない塩化ビニル製の円筒の開口 部に、 内周に沿って 48個の近赤外発光 LED (極大波長: 850 nm, 日進 電子工業株式会社製) を取り付け、 円筒中心部に向かって近赤外光を照射でき るようにした。 また、 円筒の反対側には、 隔壁 (ガラス板) を介して CCD力 メラ (ソ二一株式会社製 XC-E 150, 768 X 494画素, マウント : Cマウント, フランジバック : 1 7. 562 mm, 外寸法:幅 29mmX高さ 29 mm X奥行き 32 mm) を固定した。 また、 円筒の側面には内径 3 Omm のチューブを貫通させ、 その他端に吸引装置を取り付け円筒内を減圧できるよ うに構成した。 48 near-infrared light-emitting LEDs (maximum wavelength: 850 nm, manufactured by Nisshin Denshi Kogyo Co., Ltd.) along the inner circumference of the opening of a cylinder made of vinyl chloride that does not transmit light with an inner diameter of 46 mm and a height of 100 mm Attach and allow near-infrared light to be emitted toward the center of the cylinder. In addition, on the opposite side of the cylinder, CCD force is applied via a partition (glass plate). Mera (XC-E 150, 768 X 494 pixels, manufactured by Soniichi Co., Ltd., mount: C mount, flange back: 17.56 mm, outer dimensions: width 29 mm x height 29 mm x depth 32 mm) was fixed. In addition, a tube with an inner diameter of 3 Omm was passed through the side of the cylinder, and a suction device was attached to the other end so that the inside of the cylinder could be decompressed.
被験者の胸部に上記の装置を押し当て、 撮影を実施した。 結果を図 6及び 7 に示す。 図 6は血管分布において集合が見られないもの (過疎分布)、 図 7は 血管の集合が見られるもの (密集分布) である。 それぞれグレースケール値が 最高値、 最低値を示す単位領域を選択し、 その隣接する周囲に選択領域を広げ て (最高値の場合: (1) → (2) → (3) → (4) → (5) → (6) → (7)、 最低値の場合: [1] → [2] → [3] → [4] → [5] → [6] → [7])、 平均グレースケール値を算出した。  The above device was pressed against the subject's chest and radiographed. The results are shown in Figs. Fig. 6 shows the case where no set is seen in the blood vessel distribution (depopulated distribution), and Fig. 7 shows the case where a set of blood vessels is seen (crowded distribution). Select the unit area where the gray scale value is the highest value and the lowest value, respectively, and expand the selection area around the adjacent area (in the case of the highest value: (1) → (2) → (3) → (4) → (5) → (6) → (7), for the lowest value: [1] → [2] → [3] → [4] → [5] → [6] → [7]), average grayscale value Was calculated.
この選択領域拡大に伴う平均ダレ一スケール値の変化を図 8に示す。 図 8の 上のグラフは血管分布において集合が見られないもの (図 6の過疎分布)、 下 のグラフは血管の集合が見られるもの (図 7の密集分布) であり、 それぞれの 図においての明部の平均グレースケール値を〇、暗部の平均グレースケール値 を ·で表す。 この図に示すように、 最高値、 最低値を示す単位領域から出発し たグレースケ一ル値は、 最終的には画像全体のグレースケール値に収束する。 グレースケール値が最高値を示す単位領域から、周囲に選択領域を広げるこ とによるグレースケール値の低下が遅いほど血管の集合が著しく、腫瘍が存在 する危険性が増す。経時測定によって血管新生の有無を判断することも可能で ある。 実施例 2 Figure 8 shows the change of the average sag scale value as the selected area is expanded. The upper graph in Fig. 8 shows a collection with no blood vessel distribution (depopulated distribution in Fig. 6), and the lower graph shows a blood vessel collection (dense distribution in Fig. 7). The average grayscale value in the bright area is indicated by 〇, and the average grayscale value in the dark area is indicated by ·. As shown in this figure, the grayscale value starting from the unit area showing the maximum and minimum values eventually converges to the grayscale value of the entire image. The slower the grayscale value decreases from the unit area where the grayscale value is the highest, to the surrounding area, the more the blood vessel aggregates, the greater the risk that a tumor will be present. It is also possible to determine the presence or absence of angiogenesis by measuring over time. Example 2
外径 43mm,高さ 100 mmの光を透過しない塩化ビニル製の円筒の開口 部外周に、 48個の近赤外発光 LED (極大波長: 850 nm, 日進電子工業 株式会社製) を開口面に向かって近赤外光を照射できるように 45度の角度を もって取り付けた。 また、 円筒の開口面と反対側には、 隔壁 (ガラス板) を介 して CCDカメラ(ソ二一株式会社製 XC-E 150, 768 X 494画素, マウント : Cマウント, フランジバック : 1 7. 562mm, 外寸法:幅 29 mmX高さ 29mmX奥行き 32mm) を固定した。  48 near-infrared light-emitting LEDs (maximum wavelength: 850 nm, manufactured by Nisshin Denshi Kogyo Co., Ltd.) are used on the outer periphery of a vinyl chloride cylinder that does not transmit light with an outer diameter of 43 mm and a height of 100 mm. Attached at an angle of 45 degrees so that near infrared light can be irradiated. On the opposite side of the cylindrical opening, a CCD camera (XC-E 150, 768 X 494 pixels, manufactured by Soniichi Co., Ltd., mount: C mount, flange back: 17 through a partition (glass plate) 562mm, outer dimensions: width 29 mm x height 29 mm x depth 32 mm).
実施例 1と同様に被験者の胸部に上記の装置を押し当て、 撮影を実施し、 皮 膚近傍の血管像を得ることができた。  In the same manner as in Example 1, the above device was pressed against the subject's chest and imaging was performed, and a blood vessel image in the vicinity of the skin could be obtained.
実施例 3 Example 3
実施例 2と同様の装置に光学マウスの光照射 *受光ュニットを取り付け、得 られた信号は撮影像とともにコンピュータに入力されるように構成した。 実施例 1と同様に被験者の胸部の一部を基点とし、 装置を皮膚面上において 少しずつ移動させることにより撮影を行い、 撮影と位置情報を同時に記録し た。 これを位置情報に沿ってマッビングすることにより、 広範囲の血管撮影像 を得ることができた。  A light irradiation / light receiving unit of an optical mouse was attached to the same apparatus as in Example 2, and the obtained signal was configured to be input to a computer together with a photographed image. In the same manner as in Example 1, a part of the subject's chest was used as a base point, and the device was moved little by little on the skin surface. The image and position information were recorded simultaneously. By mapping this along the location information, a wide range of angiographic images could be obtained.
比較例 1 Comparative Example 1
図 3に準じた構成とした他は実施例 1と同様の装置で反射光測定により血 管画像を識別しょうとしたが、 CCDカメラに入力するほとんどすべての光は 皮膚表面の反射光であり、 有意な測定は行なうことができなかった。 産業上の利用可能性 Except for the configuration according to Fig. 3, we tried to identify the blood vessel image by measuring the reflected light using the same device as in Example 1, but almost all the light input to the CCD camera was reflected from the skin surface. Significant measurements could not be made. Industrial applicability
本発明の血管撮影装置は廉価に製造可能であり、小型化が容易で装置構成も 簡単であるため、様々な部位の血管、特に皮膚表面付近の血管分布の撮影に有 効である。 このため、 皮膚表面付近の血管新生異常、 例えば、 乳がんの自己検 診装置として特に有用性が高い。 また、 本発明の装置は、 撮影部と照射部とが 比較的近接しており、 実質的に一体に構成できるため小型化が容易である。 従 つて、 被検者が装置を手に保持して操作し、 自ら検査する簡易の検査装置とし て有用である。  The angiography apparatus of the present invention can be manufactured at low cost, is easy to downsize and has a simple apparatus configuration, and thus is effective for imaging blood vessels at various sites, particularly blood vessel distribution near the skin surface. Therefore, it is particularly useful as a self-examination device for angiogenesis abnormalities near the skin surface, for example, breast cancer. In the apparatus of the present invention, the photographing unit and the irradiating unit are relatively close to each other, and can be configured substantially integrally. Therefore, it is useful as a simple inspection device in which the subject holds the device in his hand and operates it.

Claims

請求の範囲 The scope of the claims
1 .検査対象部位に向けてプローブ光を照射し得る照射部とプローブ光照射さ れた検査対象部位からの散乱光及び Zまたは透過光を受け入れる撮影部を備 え、照射部から射出されたプローブ光が撮影部に直接入射しないように構成さ れていることを特徴とする血管撮影装置。 1. A probe emitted from the irradiator, equipped with an irradiator that can irradiate probe light toward the region to be inspected and an imaging unit that accepts scattered light and Z or transmitted light from the region to be inspected by the probe light An angiography apparatus configured to prevent light from directly entering an imaging unit.
2 . 1 ) 検査対象部位に密着可能な形状の開口端を有し、 前記開口端を検査対 象部位に密着させたときに検査対象部位の一部をその内部に受け入れる中空 体、 2.1) A hollow body having an open end that can be brought into close contact with a region to be inspected, and receiving a part of the region to be inspected when the open end is in close contact with the region to be inspected,
2 ) 前記開口端の縁部またはその近傍に設けられ、 中空体内に受け入れた検査 対象部位に向けてプロ一ブ光を照射し得る照射部、  2) An irradiating unit that is provided at or near the edge of the open end and can irradiate probe light toward the inspection target site received in the hollow body,
3 ) プローブ光照射された検査対象部位内部から中空体内に向けて射出する散 乱光及びノまたは透過光を受け入れる撮影部を有する前記 1に記載の血管撮 影装置。  3) The angiography apparatus according to 1 above, further comprising an imaging unit that receives scattered light and light transmitted from the inside of the examination target irradiated with the probe light toward the hollow body.
3 . 検査対象部位の一部を中空体内に吸引するための減圧手段をさらに有する 前記 2に記載の血管撮影装置。 3. The angiography apparatus according to 2 above, further comprising a decompression unit for sucking a part of the examination site into the hollow body.
4 . 前記照射部のプローブ光射出部が中空体内に設けられており、 中空体内部 に受け入れられた検査対象部位によつて覆われることによりプローブ光また はその反射光の前記撮影部への直接入射が妨げられる前記 2または 3に記載 の血管撮影装置。 4. The probe light emitting part of the irradiating part is provided in the hollow body, and the probe light or its reflected light is directly applied to the imaging part by being covered by the inspection object received inside the hollow body. Item 2 or 3 above, where incidence is prevented Angiography device.
5 . 1 ) 検査対象部位に密着可能な形状の開口端を有する中空体、 5.1) A hollow body having an open end shaped so as to be in close contact with a region to be examined,
2 ) 前記開口端の縁部またはその近傍に設けられ、 中空体内の開口部に面する 検査対象部位またはその近傍に向けてプローブ光を照射し得る照射部、 2) An irradiating unit that is provided at or near the edge of the opening end, and that can irradiate probe light toward a region to be inspected or its vicinity facing the opening in the hollow body,
3 ) プローブ光照射された検査対象部位内部から中空体内に向けて射出する散 乱光及び Zまたは透過光を受け入れる撮影部を有する前記 1に記載の血管撮 影装置。 3) The angiography apparatus according to 1 above, further comprising an imaging unit that receives scattered light and Z or transmitted light emitted from the inside of the examination target site irradiated with the probe light toward the hollow body.
6 . 前記照射部のプローブ光射出部が開口端の縁部に設けられており、 中空体 開口部に密着した検査対象部位によつて覆われることによりプローブ光また はその反射光の前記撮影部への直接入射が妨げられる前記 5に記載の血管撮 影装置。 6. The probe light emitting portion of the irradiating portion is provided at the edge of the opening end, and the imaging portion of the probe light or its reflected light is covered by being covered by the inspection object site in close contact with the hollow body opening. 6. The angiography apparatus as described in 5 above, wherein direct incidence on the light is prevented.
7 . 中空体壁がプローブ光に対して非透過的である前記 2〜 6のいずれかに記 載の血管撮影装置。 7. The angiography apparatus according to any one of 2 to 6, wherein the hollow body wall is impermeable to probe light.
8 . プローブ光が近赤外光である、 前記 1〜 7のいずれかに記載の血管撮影装 置。  8. The angiography apparatus according to any one of 1 to 7, wherein the probe light is near infrared light.
9 . 近赤外光がへモグロビン吸収波長の近赤外光である前記 8に記載の血管撮 影装置。 9. The blood vessel imaging device according to 8 above, wherein the near infrared light is near infrared light having a hemoglobin absorption wavelength.
10. 検査対象部位が皮膚及び Zまたは皮下組織である前記 1〜9のいずれか に記載の血管撮影装置。 10. The angiography apparatus according to any one of 1 to 9, wherein the site to be examined is skin and Z or subcutaneous tissue.
1 1. 検査対象部位が乳房の一部である前記 10に記載の血管撮影装置。 1 1. The angiography apparatus as described in 10 above, wherein the region to be examined is a part of the breast.
12. 血管が皮静脈である前記 1〜1 1のいずれかにに記載の血管撮影装置。 12. The angiography apparatus according to any one of 1 to 11, wherein the blood vessel is a cutaneous vein.
13. 撮影部が CCDカメラを含む前記 1〜12のいずれかに記載の血管撮影 装置。 13. The angiography apparatus according to any one of 1 to 12, wherein the imaging unit includes a CCD camera.
14. さらに撮影位置を特定する手段を含む前記 1〜 13のいずれかに記載 の血管撮影装置。 14. The angiography apparatus according to any one of 1 to 13, further including means for specifying an imaging position.
15. 撮影位置の特定を複数の基準位置からの距離及び角度の計測によって 行なう前記 14に記載の血管撮影装置。 15. The angiography apparatus according to 14, wherein the imaging position is specified by measuring distances and angles from a plurality of reference positions.
16. 撮影位置の特定を基準位置からの移動方向及び移動量の計測によって 行なう前記 14に記載の血管撮影装置。 16. The angiography apparatus according to 14, wherein the imaging position is specified by measuring a movement direction and a movement amount from a reference position.
17. 撮影位置の特定を撮影画像の解析によつて行なう前記 14に記載の血 管撮影装置。 17. The blood vessel photographing apparatus as described in 14 above, wherein the photographing position is specified by analyzing the photographed image.
1 8 . 照射部が複数の光源の列またはアレイまたは光源と連結された複数の 光ファイバの開口端の列またはアレイを含む前記 1〜 1 7のいずれかに記載 の血管撮影装置。 18. The angiography apparatus according to any one of 1 to 17, wherein the irradiation unit includes a plurality of light source rows or arrays or a plurality of optical fiber open end rows or arrays connected to the light sources.
1 9 . 前記 1〜 1 8のいずれかに記載の血管撮影装置と撮影画像を表示する表 示装置及び Zまたは画像データを記憶する記憶装置を含む血管異常診断装置。 19. A blood vessel abnormality diagnosis device comprising the angiography device according to any one of 1 to 18 above, a display device that displays a captured image, and a storage device that stores Z or image data.
2 0 . 前記記憶装置に記憶された画像データが正常部位の参照データと異常部 位の参照データを含み、撮影画像とこれら参照データとを対比することにより 撮影画像中の血管像の異常を判定する前記 1 9に記載の血管異常診断装置。 2 0. The image data stored in the storage device includes reference data for the normal part and reference data for the abnormal part, and the abnormalities of the blood vessel image in the captured image are determined by comparing the captured image with these reference data. The vascular abnormality diagnosis device according to 19 above.
2 1 . 前記:!〜 1 8のいずれかに記載の血管撮影装置または前記 1 9〜 2 0の レ、ずれかに記載の血管異常診断装置及び血管分布の解析装置を含み、血管撮影 装置または血管異常診断装置で取得されたデータを解析して血管異常を判定 する血管異常診断システム。 2 1. 1 to 8, including the angiography apparatus according to any one of 1 to 20 and the angiography diagnosis apparatus according to 1 9 to 20 and a blood vessel distribution analysis apparatus according to any one of the deviations, and acquired by an angiography apparatus or an anomaly diagnosis apparatus. A vascular abnormality diagnosis system that analyzes vascular data to determine vascular abnormality.
2 2 . 前記 1〜1 8のいずれかの装置により撮影した面像全体の明暗を計算 し、 これと画像各部の明暗を比較して血管の分布を判定する手段を含む血管分 布の解析装置。 2 2. An apparatus for analyzing a vascular distribution, including means for calculating brightness and darkness of the entire surface image taken by any of the devices 1 to 18 and comparing the brightness and darkness of each part of the image to determine the distribution of blood vessels. .
2 3 . 撮影した画像中で最もグレースケール値の大きい位置のグレースケール 値を求め、前記位置を含むように領域を拡大しつつ領域内の平均グレースケー ル値を求め、 グレースケ一ル値またはその変化をもって血管分布域境界を判定 する前記 2 2に記載の血管分布の解析装置。 2 3. Obtain the grayscale value at the position with the largest grayscale value in the captured image, enlarge the area to include the position, and then add the average grayscale value in the area. 3. The blood vessel distribution analyzing apparatus according to 22., wherein a blood vessel distribution area boundary is determined based on a Grace scale value or a change thereof.
2 4 . 撮影した画像のうち、 解析しょうとする部分を k個の領域に分割し、 各 領域のグレースケール値を求め、 次いで、 各領域の面積を拡大しつつ分割数を 減らして各領域のグレースケール値を求め、 このステップを k = 1になるまで 繰り返し、 ステップ間における対応する領域でのグレースケール値の変化に基 づいて血管の分布を判定する手段を含む、前記 2 3に記載の血管分布の解析装 置。 ' 2 4. Divide the portion of the captured image to be analyzed into k regions, determine the grayscale value of each region, and then reduce the number of divisions while increasing the area of each region. 24. The method according to 23, further including means for obtaining a grayscale value, repeating this step until k = 1, and determining a blood vessel distribution based on a change in the grayscale value in a corresponding region between steps. Blood vessel analysis device. '
2 5 . 撮影した画像のうち > 解析しょうとする部分を、 重なりのない等面積の 多角形領域に分割し、 各領域のグレースケール値を求め、 次いで、 そのうちの 最もグレースケール値の低い領域と高い領域をそれぞれその隣接する領域と まとめることによって大きな領域とし、 それぞれのグレースケール値を求め、 このステップを繰り返し、 ステップ間におけるグレースケール値の変化に基づ いて血管の分布を判定する手段を含む前記 2 4に記載の血管分布の解析装置。 2 5. In the captured image, divide the part to be analyzed into polygonal areas of equal area that do not overlap, determine the grayscale value of each area, and then select the area with the lowest grayscale value. Includes a means to determine each vessel's distribution based on the change in grayscale value between steps, making each grayscale value by determining each grayscale value by combining each high region with its adjacent region. 24. The blood vessel distribution analyzer according to 24.
2 6 . 血管分布の解析結果に基づいて血管新生の異常部位の存否及び /または 異常の進行度を診断する前記 1 9〜2 5のいずれかに記載の装置。 26. The device according to any one of 19 to 25, which diagnoses the presence / absence of an abnormal site of angiogenesis and / or the degree of progression of abnormality based on the analysis result of blood vessel distribution.
2 7 . 前記 2 6に記載の装置により血管異常を判定して乳ガンを診断する乳ガ ン診断装置。 前記 2 7に記載の乳ガンの診断装置を用いた乳ガンの診断方法。 27. A breast cancer diagnostic apparatus for diagnosing breast cancer by determining vascular abnormalities using the apparatus according to 26. 28. A breast cancer diagnostic method using the breast cancer diagnostic apparatus according to 27.
PCT/JP2007/064619 2006-07-19 2007-07-19 Blood vessel imaging device and system for analyzing blood vessel distribution WO2008010604A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008525924A JPWO2008010604A1 (en) 2006-07-19 2007-07-19 Angiography apparatus and blood vessel distribution analysis system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-196792 2006-07-19
JP2006196792 2006-07-19

Publications (1)

Publication Number Publication Date
WO2008010604A1 true WO2008010604A1 (en) 2008-01-24

Family

ID=38956930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064619 WO2008010604A1 (en) 2006-07-19 2007-07-19 Blood vessel imaging device and system for analyzing blood vessel distribution

Country Status (2)

Country Link
JP (1) JPWO2008010604A1 (en)
WO (1) WO2008010604A1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516151A (en) * 2008-03-31 2011-05-26 イマージョン コーポレーション Identification of blood vessel position
JP2011142929A (en) * 2010-01-12 2011-07-28 National Institute Of Advanced Industrial Science & Technology Low-invasive neoangiogenesis measuring device
KR101310464B1 (en) 2012-05-24 2013-09-24 주식회사 에스원 Biometric surveillance system and biometric surveillance method using the same system
WO2014192876A1 (en) * 2013-05-30 2014-12-04 独立行政法人産業技術総合研究所 Imaging system and imaging method
WO2018162735A1 (en) * 2017-03-09 2018-09-13 Smith & Nephew Plc Imaging apparatus and method of imaging blood vessels in a target region of tissue
WO2018168071A1 (en) 2017-03-16 2018-09-20 富士フイルム株式会社 Imaging device, image display system, and image display method
CN108992042A (en) * 2018-08-16 2018-12-14 杭州麦依科技有限公司 A kind of portable vein imager and its control method
US10288590B2 (en) 2013-10-08 2019-05-14 Smith & Nephew Plc PH indicator device and formulation
US11076997B2 (en) 2017-07-25 2021-08-03 Smith & Nephew Plc Restriction of sensor-monitored region for sensor-enabled wound dressings
US11324424B2 (en) 2017-03-09 2022-05-10 Smith & Nephew Plc Apparatus and method for imaging blood in a target region of tissue
US11395872B2 (en) 2008-01-08 2022-07-26 Smith & Nephew, Inc. Sustained variable negative pressure wound treatment and method of controlling same
US11559438B2 (en) 2017-11-15 2023-01-24 Smith & Nephew Plc Integrated sensor enabled wound monitoring and/or therapy dressings and systems
US11596553B2 (en) 2017-09-27 2023-03-07 Smith & Nephew Plc Ph sensing for sensor enabled negative pressure wound monitoring and therapy apparatuses
US11633147B2 (en) 2017-09-10 2023-04-25 Smith & Nephew Plc Sensor enabled wound therapy dressings and systems implementing cybersecurity
US11633153B2 (en) 2017-06-23 2023-04-25 Smith & Nephew Plc Positioning of sensors for sensor enabled wound monitoring or therapy
US11638664B2 (en) 2017-07-25 2023-05-02 Smith & Nephew Plc Biocompatible encapsulation and component stress relief for sensor enabled negative pressure wound therapy dressings
US11690570B2 (en) 2017-03-09 2023-07-04 Smith & Nephew Plc Wound dressing, patch member and method of sensing one or more wound parameters
US11717447B2 (en) 2016-05-13 2023-08-08 Smith & Nephew Plc Sensor enabled wound monitoring and therapy apparatus
US11744741B2 (en) 2008-03-12 2023-09-05 Smith & Nephew, Inc. Negative pressure dressing and method of using same
US11759144B2 (en) 2017-09-10 2023-09-19 Smith & Nephew Plc Systems and methods for inspection of encapsulation and components in sensor equipped wound dressings
US11791030B2 (en) 2017-05-15 2023-10-17 Smith & Nephew Plc Wound analysis device and method
US11839464B2 (en) 2017-09-28 2023-12-12 Smith & Nephew, Plc Neurostimulation and monitoring using sensor enabled wound monitoring and therapy apparatus
US11883262B2 (en) 2017-04-11 2024-01-30 Smith & Nephew Plc Component positioning and stress relief for sensor enabled wound dressings
US11925735B2 (en) 2017-08-10 2024-03-12 Smith & Nephew Plc Positioning of sensors for sensor enabled wound monitoring or therapy
US11931165B2 (en) 2017-09-10 2024-03-19 Smith & Nephew Plc Electrostatic discharge protection for sensors in wound therapy
US11944418B2 (en) 2018-09-12 2024-04-02 Smith & Nephew Plc Device, apparatus and method of determining skin perfusion pressure
US11957545B2 (en) 2017-09-26 2024-04-16 Smith & Nephew Plc Sensor positioning and optical sensing for sensor enabled wound therapy dressings and systems
US11969538B2 (en) 2018-12-21 2024-04-30 T.J.Smith And Nephew, Limited Wound therapy systems and methods with multiple power sources
US12011942B2 (en) 2019-03-18 2024-06-18 Smith & Nephew Plc Rules for sensor integrated substrates
US12016994B2 (en) 2019-10-07 2024-06-25 Smith & Nephew Plc Sensor enabled negative pressure wound monitoring apparatus with different impedances inks
US12033738B2 (en) 2017-05-15 2024-07-09 Smith & Nephew Plc Negative pressure wound therapy system using eulerian video magnification

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111275668B (en) * 2020-01-13 2023-09-15 浙江杜比医疗科技有限公司 Method, system and device for extracting breast blood vessels of NIR (near infrared) image

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932852A (en) * 1982-07-19 1984-02-22 スペクトラスキヤン・インコ−ポレイテツド Nondestructive testing method and diaphanoscopy device
JPH011323A (en) * 1987-06-24 1989-01-05 株式会社日立製作所 switching regulator
JPH07308312A (en) * 1993-09-03 1995-11-28 Ken Ishihara Apparatus for noninvasive hemanalysis and method therefor
JPH11507440A (en) * 1996-04-02 1999-06-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Localization of objects in turbid media using different wavelengths of radiation
US20040147813A1 (en) * 2003-01-24 2004-07-29 Mueller Richard L. Illuminated nipple cup
JP2004242859A (en) * 2003-02-13 2004-09-02 Sysmex Corp Noninvasive organism measuring apparatus
US20050010114A1 (en) * 2001-01-29 2005-01-13 Yissum Research Development Company Of The Hebrew University Of Jerusalem Optical mammography
JP2006051279A (en) * 2004-08-16 2006-02-23 Sony Corp Portable information terminal unit and information providing system
JP2006271843A (en) * 2005-03-30 2006-10-12 Takeo Saito Blood vessel observation probe and blood vessel observation apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5999843A (en) * 1995-01-03 1999-12-07 Omnicorder Technologies, Inc. Detection of cancerous lesions by their effect on the spatial homogeneity of skin temperature
US6615063B1 (en) * 2000-11-27 2003-09-02 The General Hospital Corporation Fluorescence-mediated molecular tomography
JP2003010189A (en) * 2001-07-04 2003-01-14 Communication Research Laboratory Organism function information imaging device
US9131861B2 (en) * 2004-11-30 2015-09-15 Academisch Medisch Centrum Pulsed lighting imaging systems and methods

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932852A (en) * 1982-07-19 1984-02-22 スペクトラスキヤン・インコ−ポレイテツド Nondestructive testing method and diaphanoscopy device
JPH011323A (en) * 1987-06-24 1989-01-05 株式会社日立製作所 switching regulator
JPH07308312A (en) * 1993-09-03 1995-11-28 Ken Ishihara Apparatus for noninvasive hemanalysis and method therefor
JPH11507440A (en) * 1996-04-02 1999-06-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Localization of objects in turbid media using different wavelengths of radiation
US20050010114A1 (en) * 2001-01-29 2005-01-13 Yissum Research Development Company Of The Hebrew University Of Jerusalem Optical mammography
US20040147813A1 (en) * 2003-01-24 2004-07-29 Mueller Richard L. Illuminated nipple cup
JP2004242859A (en) * 2003-02-13 2004-09-02 Sysmex Corp Noninvasive organism measuring apparatus
JP2006051279A (en) * 2004-08-16 2006-02-23 Sony Corp Portable information terminal unit and information providing system
JP2006271843A (en) * 2005-03-30 2006-10-12 Takeo Saito Blood vessel observation probe and blood vessel observation apparatus

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11395872B2 (en) 2008-01-08 2022-07-26 Smith & Nephew, Inc. Sustained variable negative pressure wound treatment and method of controlling same
US11744741B2 (en) 2008-03-12 2023-09-05 Smith & Nephew, Inc. Negative pressure dressing and method of using same
JP2011516151A (en) * 2008-03-31 2011-05-26 イマージョン コーポレーション Identification of blood vessel position
JP2011142929A (en) * 2010-01-12 2011-07-28 National Institute Of Advanced Industrial Science & Technology Low-invasive neoangiogenesis measuring device
KR101310464B1 (en) 2012-05-24 2013-09-24 주식회사 에스원 Biometric surveillance system and biometric surveillance method using the same system
WO2014192876A1 (en) * 2013-05-30 2014-12-04 独立行政法人産業技術総合研究所 Imaging system and imaging method
JPWO2014192876A1 (en) * 2013-05-30 2017-02-23 株式会社ニコン Imaging system and imaging method
US10288590B2 (en) 2013-10-08 2019-05-14 Smith & Nephew Plc PH indicator device and formulation
US11717447B2 (en) 2016-05-13 2023-08-08 Smith & Nephew Plc Sensor enabled wound monitoring and therapy apparatus
US11690570B2 (en) 2017-03-09 2023-07-04 Smith & Nephew Plc Wound dressing, patch member and method of sensing one or more wound parameters
US11324424B2 (en) 2017-03-09 2022-05-10 Smith & Nephew Plc Apparatus and method for imaging blood in a target region of tissue
WO2018162735A1 (en) * 2017-03-09 2018-09-13 Smith & Nephew Plc Imaging apparatus and method of imaging blood vessels in a target region of tissue
KR20190116427A (en) 2017-03-16 2019-10-14 후지필름 가부시키가이샤 Imaging Device, Image Display System, and Image Display Method
US11164311B2 (en) 2017-03-16 2021-11-02 Fujifilm Corporation Imaging apparatus, image display system, and image display method
WO2018168071A1 (en) 2017-03-16 2018-09-20 富士フイルム株式会社 Imaging device, image display system, and image display method
US11883262B2 (en) 2017-04-11 2024-01-30 Smith & Nephew Plc Component positioning and stress relief for sensor enabled wound dressings
US12033738B2 (en) 2017-05-15 2024-07-09 Smith & Nephew Plc Negative pressure wound therapy system using eulerian video magnification
US11791030B2 (en) 2017-05-15 2023-10-17 Smith & Nephew Plc Wound analysis device and method
US11633153B2 (en) 2017-06-23 2023-04-25 Smith & Nephew Plc Positioning of sensors for sensor enabled wound monitoring or therapy
US12102447B2 (en) 2017-06-23 2024-10-01 Smith & Nephew Plc Positioning of sensors for sensor enabled wound monitoring or therapy
US11638664B2 (en) 2017-07-25 2023-05-02 Smith & Nephew Plc Biocompatible encapsulation and component stress relief for sensor enabled negative pressure wound therapy dressings
US11076997B2 (en) 2017-07-25 2021-08-03 Smith & Nephew Plc Restriction of sensor-monitored region for sensor-enabled wound dressings
US11925735B2 (en) 2017-08-10 2024-03-12 Smith & Nephew Plc Positioning of sensors for sensor enabled wound monitoring or therapy
US11759144B2 (en) 2017-09-10 2023-09-19 Smith & Nephew Plc Systems and methods for inspection of encapsulation and components in sensor equipped wound dressings
US12114994B2 (en) 2017-09-10 2024-10-15 Smith & Nephew Plc Sensor enabled wound therapy dressings and systems implementing cybersecurity
US11633147B2 (en) 2017-09-10 2023-04-25 Smith & Nephew Plc Sensor enabled wound therapy dressings and systems implementing cybersecurity
US11931165B2 (en) 2017-09-10 2024-03-19 Smith & Nephew Plc Electrostatic discharge protection for sensors in wound therapy
US11957545B2 (en) 2017-09-26 2024-04-16 Smith & Nephew Plc Sensor positioning and optical sensing for sensor enabled wound therapy dressings and systems
US11596553B2 (en) 2017-09-27 2023-03-07 Smith & Nephew Plc Ph sensing for sensor enabled negative pressure wound monitoring and therapy apparatuses
US12097092B2 (en) 2017-09-27 2024-09-24 Smith & Nephew Plc pH sensing for sensor enabled negative pressure wound monitoring and therapy apparatuses
US11839464B2 (en) 2017-09-28 2023-12-12 Smith & Nephew, Plc Neurostimulation and monitoring using sensor enabled wound monitoring and therapy apparatus
US11559438B2 (en) 2017-11-15 2023-01-24 Smith & Nephew Plc Integrated sensor enabled wound monitoring and/or therapy dressings and systems
CN108992042B (en) * 2018-08-16 2023-10-20 杭州麦依科技有限公司 Portable vein imaging instrument and control method thereof
CN108992042A (en) * 2018-08-16 2018-12-14 杭州麦依科技有限公司 A kind of portable vein imager and its control method
US11944418B2 (en) 2018-09-12 2024-04-02 Smith & Nephew Plc Device, apparatus and method of determining skin perfusion pressure
US11969538B2 (en) 2018-12-21 2024-04-30 T.J.Smith And Nephew, Limited Wound therapy systems and methods with multiple power sources
US12011942B2 (en) 2019-03-18 2024-06-18 Smith & Nephew Plc Rules for sensor integrated substrates
US12016994B2 (en) 2019-10-07 2024-06-25 Smith & Nephew Plc Sensor enabled negative pressure wound monitoring apparatus with different impedances inks

Also Published As

Publication number Publication date
JPWO2008010604A1 (en) 2009-12-17

Similar Documents

Publication Publication Date Title
WO2008010604A1 (en) Blood vessel imaging device and system for analyzing blood vessel distribution
US20210018620A1 (en) Quantitative Imaging System and Uses Thereof
US10321826B2 (en) Optical dynamic imaging system
US7922674B2 (en) Method and device for real time mechanical imaging of prostate
US20090259128A1 (en) Moveable ultrasound elements for use in medical diagnostic equipment
US20120277632A1 (en) Method and a dual-array transducer probe for real time mechanical imaging of prostate
KR101904498B1 (en) A scanner with a plural near-infrared ray image sensor And converting method of several two-dimensional biomedical image following time taken with scanner to diabetic wound diagnosis three-dimensional biomedical image following time
JP6659766B2 (en) Optical measuring device and ultrasonic diagnostic device
EP0447708A2 (en) Apparatus and method for quantitative examination and high-resolution imaging of human tissue
CN112804944B (en) Breast mapping and anomaly localization
CN110403576A (en) Application of the three-dimensional photoacoustic imaging in tumor of breast points-scoring system
JP2009261493A (en) Ultrasonic diagnostic method and apparatus
US20170172487A1 (en) Imaging skin cancer detection device
JP2015123252A (en) Light measurement device for living body, ultrasonic diagnostic device and light measurement method for living body
JP4846181B2 (en) System and method for providing information about chromophores in physiological media
JP2016171910A (en) Ultrasonic diagnostic apparatus and biological examination apparatus
US10357162B1 (en) Imaging system for screening and diagnosis of breast cancer
JP2014239815A (en) Biological examination apparatus and ultrasound diagnostic apparatus
JP2016171909A (en) Ultrasonic diagnostic apparatus and biological examination apparatus
LU102578B1 (en) Application of three-dimensional (3d) photoacoustic imaging in breast tumor scoring system and device
US11751806B2 (en) Biophotonic medical imaging device for detection of abnormalities in human tissue and methods for using same
US20230329653A1 (en) Method and apparatus for breast imaging
JP2017042603A (en) Subject information acquisition apparatus
JP2023099261A (en) Medical information provision device, ultrasonic ct imaging device, and medical information provision system
Nagae et al. Field of View for Imaging Human Limbs [version 1; referees

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07768473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 2008525924

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07768473

Country of ref document: EP

Kind code of ref document: A1