JP2009261493A - Ultrasonic diagnostic method and apparatus - Google Patents

Ultrasonic diagnostic method and apparatus Download PDF

Info

Publication number
JP2009261493A
JP2009261493A JP2008112254A JP2008112254A JP2009261493A JP 2009261493 A JP2009261493 A JP 2009261493A JP 2008112254 A JP2008112254 A JP 2008112254A JP 2008112254 A JP2008112254 A JP 2008112254A JP 2009261493 A JP2009261493 A JP 2009261493A
Authority
JP
Japan
Prior art keywords
region
interest
ultrasonic
distortion information
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008112254A
Other languages
Japanese (ja)
Inventor
Takeshi Hanyu
武 羽生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Priority to JP2008112254A priority Critical patent/JP2009261493A/en
Publication of JP2009261493A publication Critical patent/JP2009261493A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately diagnose hardness in an ultrasonic diagnostic apparatus by a so-called ultrasonic elastography method for combining the hardness of living tissue by a color and displaying it in tomographic images from reception signals (reflection echoes) before and after pressurizing an object with an ultrasonic probe. <P>SOLUTION: Separately from a region ROI1 of interest, a region ROI2 of non-interest to be the reference of hardness is set in the area of fixed hardness of a muscle or the like, the relative ratio of the distortion information before and after pressurization in respective pixels inside the region ROI1 of interest and the distortion information in the region ROI2 of non-interest to be the reference is obtained, and color display corresponding to the relative ratio is performed. Thus, it is not needed to include the living tissue to be the reference of the hardness in the region ROI1 of interest to be actually gazed, the region ROI1 of interest does not become large unnecessarily, and tissue distortion images are obtained just by analyzing a small data amount. Further, by being the relative ratio, even when the setting of the region of interest is varied by operators and diagnosing parts, etc., the hardness is accurately diagnosed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、撮影対象内に超音波を入射し、反射波から前記撮影対象の2次元断層画像を撮影する、いわゆる超音波エコーと称される超音波診断方法および装置に関し、特に被検体を超音波探触子で押圧しつつ超音波を送受信し、組織弾性像を得て生体組織の硬さを定量的に計測する、いわゆる超音波エラストグラフィ法によるものに関する。   The present invention relates to an ultrasonic diagnostic method and apparatus called a so-called ultrasonic echo, in which an ultrasonic wave is incident on an imaging target and a two-dimensional tomographic image of the imaging target is captured from a reflected wave. The present invention relates to a so-called ultrasonic elastography method in which ultrasonic waves are transmitted and received while being pressed by an acoustic probe, and a tissue elasticity image is obtained to quantitatively measure the hardness of a living tissue.

超音波診断装置は、体表、或いは経食道、経膣、経鼻、経腸等から生体内の軟組織の断層像を無侵襲に得る医療用画像機器である。この超音波診断装置は、他の医療用画像機器に比べ、小型で安価、X線などの被爆がなく安全性が高い、ドップラー効果を応用して血流イメージングが可能等の特長を有し、心臓、冠動脈等の循環器系、胃腸等の消化器系、肝臓、膵臓、腎臓、脾臓、胆嚢等内科系、前立腺、膀胱等の泌尿器系、および産婦人科系などで広く利用されている。   The ultrasonic diagnostic apparatus is a medical imaging device that non-invasively obtains a tomographic image of soft tissue in a living body from the body surface, transesophagus, transvaginal, nasal, enteral or the like. This ultrasonic diagnostic device is smaller and cheaper than other medical imaging devices, has no safety such as X-ray exposure, has high safety, and allows blood flow imaging by applying the Doppler effect. It is widely used in cardiovascular systems such as the heart and coronary arteries, gastrointestinal and other digestive systems, liver, pancreas, kidney, spleen, gallbladder and other internal medicine systems, prostate and bladder and other urological systems, and gynecological systems.

このような超音波診断装置においては、生体情報の取得に利用する技術として、体内に超音波を放射して音響インピーダンスが異なる組織境界での反射エコーを輝度変調して2次元断層像を得る超音波断層像(Bモード)方式、反射エコー信号の強度を輝度変調して走査位置に応じて表示するAモード方式、時間による反射点の変化を画像として表示するMモード方式、血流の前記ドップラー効果を利用して血流速を計測するドップラー血流計測等がある。   In such an ultrasonic diagnostic apparatus, as a technique used to acquire biological information, an ultrasonic wave is radiated into the body, and reflected echoes at tissue boundaries having different acoustic impedances are intensity-modulated to obtain a two-dimensional tomographic image. Acoustic tomogram (B mode) method, A mode method for intensity-modulating the intensity of the reflected echo signal and displaying it according to the scanning position, M mode method for displaying the change of the reflection point with time as an image, and the Doppler of blood flow There is Doppler blood flow measurement that measures blood flow velocity using the effect.

一方、高調波信号を用いたハーモニックイメージング診断は、従来のBモード診断では得られない鮮明な診断像が得られることから、標準的な診断モダリティとなりつつある。超音波が生体内の組織で反射すると、基本周波数の整数倍に相当する高調波成分(ハーモニック成分)が生じることが知られている。そこで、このハーモニック成分だけを抽出して画像化することで(この画像化はハーモニックイメージングと呼ばれる)、基本波に比べてサイドローブレベルが小さいことから、S/Nが良く、コントラストおよび分解能が良くなること、周波数が高くなることによってビーム幅が細くなり、横方向分解能が良くなること、近距離では音圧が小さく、音圧の変動が少ないので、多重反射が起こらないこと、焦点以遠の減衰は基本波並みであり、高調波の周波数を基本波とする超音波に比べて深速度を大きく取れること等の多くの効果を得ることができる。   On the other hand, harmonic imaging diagnosis using harmonic signals is becoming a standard diagnostic modality because a clear diagnostic image that cannot be obtained by the conventional B-mode diagnosis is obtained. It is known that when an ultrasonic wave is reflected by a tissue in a living body, a harmonic component (harmonic component) corresponding to an integral multiple of the fundamental frequency is generated. Therefore, by extracting only this harmonic component and imaging it (this imaging is called harmonic imaging), the side lobe level is smaller than the fundamental wave, so the S / N is good and the contrast and resolution are good. The higher the frequency, the narrower the beam width, the better the lateral resolution, the lower the sound pressure at short distances, and the less the fluctuation of the sound pressure, the absence of multiple reflections, the attenuation beyond the focal point Is equivalent to the fundamental wave, and many effects can be obtained, such as a higher depth speed than an ultrasonic wave having a harmonic frequency as a fundamental wave.

そのような1枚1枚の断層画像の画質向上に加え、心臓や血管等の循環器系およびその他の動きのある臓器の場合、当該臓器を構成する生体組織の動きを断層像にして観察し、当該臓器の機能をリアルタイムに診断することが行われている。これは、X線装置の場合には、長時間の観察は放射線の被爆量が増大するので、経時的にも非侵襲な超音波診断装置の大きなメリットである。   In addition to improving the image quality of each tomographic image, in the case of a circulatory system such as the heart and blood vessels and other organs with movement, the movement of the living tissue constituting the organ is observed as a tomographic image. Diagnosing the function of the organ in real time has been performed. In the case of an X-ray apparatus, this is a great merit of a non-invasive ultrasonic diagnostic apparatus over time because the amount of radiation exposure increases for long-term observation.

そのような動きの観察において、組織形状だけではなく、組織の硬さ情報、すなわち弾性特性を画像化して診断に利用する分野がある。これは、組織の弾性特性が病理状態と深く関係しており、たとえば乳癌や甲状腺癌などの硬化性癌、ならびに肝硬変や動脈硬化症などは、正常組織よりも病変部分が硬くなることが知られており、医療従事者による触診のみではなく、定量的に硬さ情報を得ることで、診断の精度を向上させることができるからである。   In the observation of such movement, there is a field in which not only the tissue shape but also tissue hardness information, that is, an elastic characteristic is imaged and used for diagnosis. This is because the elastic properties of tissues are closely related to the pathological state. For example, sclerosing cancers such as breast cancer and thyroid cancer, and cirrhosis and arteriosclerosis are known to have harder lesions than normal tissues. This is because the accuracy of diagnosis can be improved not only by palpation by medical personnel but also by quantitatively obtaining hardness information.

前記の弾性特性の計測方法としては、体表から静的な圧力を加えて組織をわずかに圧縮変形させ(超音波探触子を体表から1〜2mm沈み込ませる程度)、その圧力を加えた前後の断層画像における対応点の移動(ずれ)量から組織内部の歪みを計測し、歪みから弾性特性を評価する超音波エラストグラフィと呼ばれる手法が用いられている。すなわち、同じ圧力を加えても、硬い組織では生じる歪みが小さく、軟らかい組織では歪みが大きいことを利用している。このような超音波エラストグラフィ法は、生体疾患の良悪性診断においては、簡便かつ極めて有用であるが、現時点ではその画像取得に手技依存があり、個人差のない評価の標準化が求められている。   As a method for measuring the elastic property, a static pressure is applied from the body surface to slightly compress and deform the tissue (an extent that the ultrasonic probe is submerged 1 to 2 mm from the body surface), and the pressure is applied. In addition, a technique called ultrasonic elastography is used in which the strain inside the tissue is measured from the amount of movement (deviation) of the corresponding points in the previous and next tomographic images, and the elastic characteristics are evaluated from the strain. That is, even when the same pressure is applied, the strain generated in a hard tissue is small, and the strain is large in a soft tissue. Such an ultrasonic elastography method is simple and extremely useful in benign / malignant diagnosis of a biological disease, but at present, there is a technique dependence on image acquisition, and standardization of evaluation without individual differences is required. .

具体的には、現在臨床にて使用されているエラストグラフィは、相対的歪み分布であり、設定したROI(Region of Interest:関心領域)の中での歪みの平均を緑、それよりも硬いものを青、柔らかいものを赤と表示したものである。したがって、ROIを病変部をぎりぎりに囲むように設定すると、実際には硬い組織であっても、そのROI内での歪みの平均である緑に表示の可能性が高まる。これに対して、病変部と、その周囲との硬さの差を正確に検出するためには、ROIを充分広くして、該ROIにその周囲の正常組織を含めておく必要がある。しかしながら、それでは病変組織を標的にして絞り込み、観察診断するには、診断視野の制約が発生するので、非常に不便であった。   Specifically, the elastography currently used in clinical practice is a relative strain distribution, and the average strain within a set ROI (Region of Interest) is green and harder than that. Is blue and soft is red. Therefore, if the ROI is set so as to surround the lesion part, the possibility of displaying in green, which is the average of the distortion in the ROI, is increased even if the tissue is actually hard. On the other hand, in order to accurately detect the difference in hardness between the lesioned part and the surrounding area, it is necessary to make the ROI sufficiently wide and include the surrounding normal tissue in the ROI. However, it is very inconvenient to narrow down the target lesion tissue and to observe and diagnose it, because the diagnostic visual field is restricted.

ここで、特許文献1には、一旦設定したROI中の組織歪み像の中心座標または重心座標に、ROIの中心座標または重心座標が一致するように、ROIを適宜拡大または縮小させながら移動させてゆくことで、ROIを生体の動きに追従させるという方法が提案されている。
特開2007−125152号公報
Here, in Patent Document 1, the ROI is moved while being enlarged or reduced as appropriate so that the center coordinates or center of gravity coordinates of the ROI coincide with the center coordinates or center of gravity coordinates of the tissue strain image in the ROI once set. A method of making the ROI follow the movement of the living body by moving is proposed.
JP 2007-125152 A

特許文献1の手法では、ROIは適切な大きさに維持されているが、硬さのレベルとしては、従来と同様にそのROIの中での相対比較であり、正確な診断に達することが困難である。また、特許文献1の手法では、全画面を分析してROIを決定しているので、得られた多量のデータを分析するために時間がかかるという問題もある。   In the method of Patent Document 1, the ROI is maintained at an appropriate size, but the hardness level is a relative comparison within the ROI as in the conventional case, and it is difficult to reach an accurate diagnosis. It is. Further, in the method of Patent Document 1, since the ROI is determined by analyzing the entire screen, there is a problem that it takes time to analyze a large amount of obtained data.

本発明の目的は、分析すべきデータ量が不必要に大きくならずに、関心領域(ROI)中の組織の硬さのレベルを正確に診断することができる超音波診断方法および装置を提供することである。   An object of the present invention is to provide an ultrasonic diagnostic method and apparatus capable of accurately diagnosing the level of tissue hardness in a region of interest (ROI) without unnecessarily increasing the amount of data to be analyzed. That is.

本発明の超音波診断方法は、被検体を押圧し、その押圧の前後で超音波を送受信し、その受信信号(反射エコー)に基づいて断層像を再構成するとともに、前記押圧の前後の受信信号から、前記被検体に関する歪み情報を取得し、その歪み情報を前記断層像に付加した画像を作成する超音波診断方法において、前記超音波の受信範囲内で、注視すべき関心領域および前記関心領域に重ならない比較参照用の非関心領域を設定する工程と、設定された前記関心領域および非関心領域において、前記歪み情報を取得する工程と、取得された前記非関心領域における歪み情報に予め定める演算を行って基準値を求める工程と、前記関心領域における歪み情報を前記基準値で除した値等の前記関心領域における歪み情報と前記基準値との間で予め定める演算を行った結果を前記断層像に付加する工程とを含むことを特徴とする。   The ultrasonic diagnostic method of the present invention presses a subject, transmits and receives ultrasonic waves before and after the pressing, reconstructs a tomographic image based on the received signal (reflection echo), and receives the signals before and after the pressing. In the ultrasonic diagnostic method for acquiring distortion information about the subject from a signal and creating an image in which the distortion information is added to the tomographic image, the region of interest to be watched and the interest within the ultrasonic reception range A non-interesting region for comparison reference that does not overlap the region, a step of acquiring the distortion information in the set region of interest and the non-interesting region, and a distortion information in the acquired non-interesting region in advance. Performing a predetermined calculation to obtain a reference value, and determining in advance between the distortion information in the region of interest such as a value obtained by dividing distortion information in the region of interest by the reference value and the reference value The results of calculation, characterized in that it comprises a step of adding to the tomographic image.

また、本発明の超音波診断装置は、被検体を押圧し、その押圧の前後で超音波の送受信を行う超音波探触子と、前記超音波探触子の受信信号(反射エコー)に基づいて断層像を再構成するとともに、前記押圧の前後の受信信号から、前記被検体に関する歪み情報を取得し、その歪み情報を前記断層像に付加した画像を作成する画像処理部と、前記画像処理部による作成画像を表示する表示部とを備える超音波診断装置において、前記表示部の表示画像上で、前記超音波探触子による超音波の受信範囲内で注視すべき関心領域および前記関心領域に重ならない比較参照用の非関心領域を設定する設定部とを備え、前記画像処理部は、前記設定部で設定された前記関心領域および非関心領域において、前記歪み情報を取得し、さらに、取得された前記非関心領域における歪み情報に予め定める演算を行って基準値を求める基準値設定部と、前記関心領域における歪み情報と前記基準値との間で予め定める演算を行った結果を前記断層像に付加する演算処理部とを含むことを特徴とする。   The ultrasonic diagnostic apparatus of the present invention is based on an ultrasonic probe that presses a subject and transmits / receives ultrasonic waves before and after the pressing, and a reception signal (reflection echo) of the ultrasonic probe. An image processing unit that reconstructs a tomographic image, acquires distortion information about the subject from reception signals before and after the pressing, and creates an image in which the distortion information is added to the tomographic image; and the image processing A region of interest and a region of interest to be watched within an ultrasonic reception range of the ultrasonic probe on the display image of the display unit A non-interesting region for comparison reference that does not overlap with the image processing unit, the image processing unit acquires the distortion information in the region of interest and the non-interesting region set by the setting unit, and Acquired A reference value setting unit that obtains a reference value by performing a predetermined calculation on the distortion information in the non-interesting region, and a result of performing a predetermined calculation between the distortion information in the region of interest and the reference value in the tomographic image And an arithmetic processing unit to be added.

上記の構成によれば、超音波探触子で被検体を押圧し、その押圧の前後で前記超音波探触子から超音波を送受信し、その受信信号(反射エコー)に基づいて画像処理部が断層像を再構成するとともに、前記押圧の前後の受信信号から、前記被検体に関する歪み情報を取得し、その歪み情報を前記断層像に付加した画像を作成し、表示部に表示させる、いわゆる超音波エラストグラフィ法による超音波診断方法および装置において、前記表示部の表示画像上で、設定部が、前記超音波探触子の有効撮像領域内で、病変部分を含むと予想され、注視すべき関心領域および前記関心領域に重ならず、病変部分を含まないと予想され、比較参照用の非関心領域を設定し、前記画像処理部は、前記設定部で設定された前記関心領域および非関心領域において前記歪み情報を取得し、基準値設定部が、取得された前記非関心領域における歪み情報に、平均値を求めたり、相互に比較して最小値よりわずかに大きな値を求めたりする等の予め定める演算を行って基準値を求め、演算処理部が、前記基準値を前記関心領域における歪み情報で除した値等の前記関心領域における歪み情報と前記基準値との間で予め定める演算を行った結果を前記断層像に付加する。   According to the above configuration, the object is pressed by the ultrasonic probe, ultrasonic waves are transmitted / received from the ultrasonic probe before and after the pressing, and the image processing unit is based on the received signal (reflection echo) Reconstructs a tomographic image, acquires distortion information about the subject from reception signals before and after the pressing, creates an image in which the distortion information is added to the tomographic image, and displays it on a display unit. In the ultrasonic diagnostic method and apparatus using the ultrasonic elastography method, the setting unit is expected to include a lesioned part within the effective imaging region of the ultrasonic probe on the display image of the display unit, and gazes The region of interest and the region of interest do not overlap and are expected not to include a lesion, and set a non-region of interest for comparison and reference, and the image processing unit sets the region of interest and non-region set by the setting unit. In the area of interest The reference value setting unit obtains an average value for the obtained distortion information in the non-interest region, or obtains a value slightly larger than the minimum value compared with each other, etc. A predetermined calculation is performed to obtain a reference value, and the calculation processing unit performs a predetermined calculation between the distortion information in the region of interest such as a value obtained by dividing the reference value by the distortion information in the region of interest and the reference value. The result obtained is added to the tomographic image.

したがって、関心領域(ROI)が不必要に大きくならず、このため少ないデータ量を分析するだけで、関心領域中の組織歪み像を得ることができるとともに、その得られた組織歪み像は、該関心領域中での歪み量の相対比較で得られるのではなく、比較の対象が該関心領域と離間した非関心領域における筋肉などの組織の歪み量との比較で得られるので、操作者や診断部位等によって該関心領域の設定にばらつきがあっても、硬さのレベルを正確に診断することができる。   Therefore, the region of interest (ROI) does not become unnecessarily large, so that it is possible to obtain a tissue strain image in the region of interest only by analyzing a small amount of data. It is not obtained by relative comparison of the amount of strain in the region of interest, but is compared with the amount of strain of tissue such as muscle in the non-region of interest separated from the region of interest. Even if the setting of the region of interest varies depending on the region or the like, the hardness level can be accurately diagnosed.

さらにまた、本発明の超音波診断方法では、前記非関心領域は、筋肉の領域であることを特徴とする。   Furthermore, in the ultrasonic diagnostic method of the present invention, the non-interest area is a muscle area.

上記の構成によれば、本願発明者の経験的に、筋肉は、老若男女を問わず、硬さが一定しており、しかも骨のように硬すぎて基準とならなかったりするようなことはなく、柔らかい脂肪と、硬い腫瘍との間の硬さを有する。また、筋肉には、一般的に腫瘍が出来難い。   According to the above configuration, according to the experience of the inventor of the present application, the muscle has a constant hardness regardless of age or sex, and it is too hard to be a standard because it is too hard like a bone. Rather, it has a hardness between soft fat and a hard tumor. Also, muscles are generally difficult to form tumors.

したがって、基準値としては好適である。   Therefore, it is suitable as a reference value.

また、本発明の超音波診断方法では、前記基準値は、前記非関心領域における歪み情報を相互に比較することで得られる最小値よりわずかに大きな値であることを特徴とする。   In the ultrasonic diagnostic method of the present invention, the reference value is a value slightly larger than a minimum value obtained by comparing distortion information in the non-interest region with each other.

上記の構成によれば、前記のように筋肉の硬さは比較的一定しているけれども、最小値である骨を除外するために、その最小値よりわずかに大きな値を用いることで、前記非関心領域に含まれてしまった骨などを除外して基準値を設定することができる。   According to the above configuration, although the muscle hardness is relatively constant as described above, by using a value slightly larger than the minimum value in order to exclude the bone having the minimum value, The reference value can be set by excluding bones and the like included in the region of interest.

さらにまた、本発明の超音波診断装置では、前記設定部は、前記超音波探触子による超音波の受信範囲内で、前記関心領域に重ならない領域を、予め定める範囲毎に走査し、前記歪みの最も小さい領域よりわずかに大きな領域を前記非関心領域に設定することを特徴とする。   Furthermore, in the ultrasonic diagnostic apparatus of the present invention, the setting unit scans a region that does not overlap the region of interest within the ultrasonic reception range by the ultrasonic probe for each predetermined range, A region slightly larger than a region with the smallest distortion is set as the non-interest region.

上記の構成によれば、演算量は増えるが、前記非関心領域を自動設定することができる。   According to said structure, although the amount of calculations increases, the said non-interest area | region can be set automatically.

本発明の超音波診断方法および装置は、以上のように、超音波探触子で被検体を押圧し、その押圧の前後で前記超音波探触子から超音波を送受信し、その受信信号(反射エコー)に基づいて画像処理部が断層像を再構成するとともに、前記押圧の前後の受信信号から、前記被検体に関する歪み情報を取得し、その歪み情報を前記断層像に付加した画像を作成し、表示部に表示させる、いわゆる超音波エラストグラフィ法による超音波診断方法および装置において、前記表示部の表示画像上で、設定部が、前記超音波探触子の有効撮像領域内で、病変部分を含むと予想され、注視すべき関心領域および前記関心領域に重ならず、病変部分を含まないと予想され、比較参照用の非関心領域を設定し、前記画像処理部は、前記設定部で設定された前記関心領域および非関心領域において前記歪み情報を取得し、基準値設定部が、取得された前記非関心領域における歪み情報に予め定める演算を行って基準値を求め、演算処理部が、前記関心領域における歪み情報と前記基準値との間で予め定める演算を行った結果を前記断層像に付加する。   As described above, the ultrasonic diagnostic method and apparatus of the present invention presses a subject with an ultrasonic probe, transmits and receives ultrasonic waves from the ultrasonic probe before and after the pressing, and receives a received signal ( The image processing unit reconstructs the tomographic image based on the reflection echo), acquires distortion information about the subject from the received signals before and after the pressing, and creates an image in which the distortion information is added to the tomographic image In the ultrasonic diagnostic method and apparatus based on the so-called ultrasonic elastography method to be displayed on the display unit, the setting unit on the display image of the display unit has a lesion in the effective imaging region of the ultrasonic probe. A region of interest to be observed and an area of interest that is not overlapped with the region of interest and is not expected to include a lesioned part, and sets a non-interesting region for comparison reference, and the image processing unit includes the setting unit Before set in The distortion information is acquired in the region of interest and the non-interest region, the reference value setting unit performs a predetermined calculation on the acquired distortion information in the non-region of interest to obtain a reference value, and the arithmetic processing unit A result obtained by performing a predetermined calculation between the distortion information and the reference value is added to the tomographic image.

それゆえ、関心領域(ROI)が不必要に大きくならず、このため少ないデータ量を分析するだけで、関心領域中の組織歪み像を得ることができるとともに、その得られた組織歪み像は、該関心領域中での歪み量の相対比較で得られるのではなく、比較の対象が該関心領域と離間した非関心領域における筋肉などの組織の歪み量との比較で得られるので、操作者や診断部位等によって該関心領域の設定にばらつきがあっても、硬さのレベルを正確に診断することができる。   Therefore, the region of interest (ROI) does not become unnecessarily large, so that it is possible to obtain a tissue strain image in the region of interest only by analyzing a small amount of data. Rather than being obtained by relative comparison of the amount of strain in the region of interest, the comparison target is obtained by comparing with the amount of strain of tissue such as muscle in a non-region of interest separated from the region of interest. Even if the setting of the region of interest varies depending on the diagnosis site or the like, the hardness level can be accurately diagnosed.

[実施の形態1]
図1は、本発明の実施の一形態に係る超音波診断装置1の電気的構成を示すブロック図である。この超音波診断装置1は、超音波探触子2、超音波送受信部(T/R)3、アナログ/デジタル変換部(ADC)4、画像処理部(DSP)5、中央演算処理部(CPU)6、入力操作部7、画像走査部(VDP)8、画像表示部(TV)9などを備えて構成される。この超音波診断装置1は、大略的に、被検体の生体組織を超音波探触子2で押圧し、その押圧前後で前記超音波探触子2から超音波を送受信し、その受信信号(反射エコー)に基づいて画像処理部5が断層像を再構成するとともに、前記押圧の前後の受信信号から、前記被検体に関する歪み情報を取得し、その歪み情報に基づく弾性像を前記断層像に付加した画像を作成し、表示部9に表示させる、いわゆる超音波エラストグラフィ法による超音波診断装置である。
[Embodiment 1]
FIG. 1 is a block diagram showing an electrical configuration of an ultrasonic diagnostic apparatus 1 according to an embodiment of the present invention. The ultrasonic diagnostic apparatus 1 includes an ultrasonic probe 2, an ultrasonic transmission / reception unit (T / R) 3, an analog / digital conversion unit (ADC) 4, an image processing unit (DSP) 5, and a central processing unit (CPU). ) 6, an input operation unit 7, an image scanning unit (VDP) 8, an image display unit (TV) 9, and the like. In general, the ultrasonic diagnostic apparatus 1 presses a living tissue of a subject with an ultrasonic probe 2, transmits and receives ultrasonic waves from the ultrasonic probe 2 before and after the pressing, and receives a received signal ( The image processing unit 5 reconstructs a tomographic image based on the reflected echo), acquires distortion information about the subject from the received signals before and after the pressing, and converts the elastic image based on the distortion information into the tomographic image. This is an ultrasonic diagnostic apparatus using a so-called ultrasonic elastography method that creates an added image and displays it on the display unit 9.

前記歪み情報は、生体組織の硬さを示す情報(弾性値)であり、超音波探触子2で被検体の生体組織を少々押圧し(生体内方向を距離方向と定義し、この方向に1〜2mm程度)、押圧前後の生体組織内部の点の変位分布を空間微分して得られる変位(変形)量を、その生体組織の大きさで除した情報である。すなわち、押圧前後の画像の対応点を探索し、得られた対応点の変位(移動)量を前記対応点の大きさで除した値であり、生体組織が軟らかいと、測定される歪み量が大きく、該歪み情報は大きくなり、生体組織が硬いと、測定される歪み量が小さく、該歪み情報は小さくなる。   The strain information is information (elasticity value) indicating the hardness of the living tissue, and the living body tissue of the subject is slightly pressed by the ultrasonic probe 2 (the in-vivo direction is defined as the distance direction, and this direction is This is information obtained by dividing the displacement (deformation) amount obtained by spatial differentiation of the displacement distribution of the points inside the living tissue before and after pressing by the size of the living tissue. That is, the corresponding point of the image before and after pressing is searched, and the obtained displacement (movement) amount of the corresponding point is divided by the size of the corresponding point. If the living tissue is soft, the measured strain amount is The strain information is large and the strain information is large. When the living tissue is hard, the strain amount to be measured is small and the strain information is small.

一方、前記弾性像とは、前記歪み情報の大きさを色調に変調して得られるものであり、前記断層像に硬さに応じた色が付加されたものである。たとえば、歪み量が大きい(軟らかい)組織を「赤」に変換し、歪み量が小さくなるにつれて、赤から橙、黄、黄緑、緑、青に変換し、最も歪み量が小さい(硬い)組織を「濃青」に変換する。   On the other hand, the elastic image is obtained by modulating the magnitude of the distortion information to a color tone, and is obtained by adding a color corresponding to hardness to the tomographic image. For example, a tissue with a large amount of strain (soft) is converted to “red”, and as the amount of strain decreases, it changes from red to orange, yellow, yellow-green, green, and blue, and the tissue with the least amount of strain (hard) Is converted to “dark blue”.

中央演算処理部6は、入力操作部7から入力された指示に従い、信号の制御や演算を行う。入力操作部7は、操作者が後述するROIの領域設定、数値の入力、歪み率の解析実行などの操作を行うものであり、キーボード、各種スイッチ、トラックボール、マウス等で構成される。また、中央演算処理部6は、演算等を行う工程で利用する記憶部(ROM、RAM、HDD等)や、超音波送受信部3が取得した画像情報を登録する記憶部(データベース)等も備えている。   The central processing unit 6 performs signal control and calculation in accordance with instructions input from the input operation unit 7. The input operation unit 7 is used by the operator to perform operations such as ROI region setting, numerical value input, and distortion rate analysis execution, which will be described later, and includes a keyboard, various switches, a trackball, a mouse, and the like. The central processing unit 6 also includes a storage unit (ROM, RAM, HDD, etc.) used in a process for performing calculations, a storage unit (database) for registering image information acquired by the ultrasonic transmission / reception unit 3 and the like. ing.

上述のように構成される超音波診断装置1において、注目すべきは、本実施の形態では、前記入力操作部7から、画像走査部8を介して、医師や検査技師などの操作者によって、前記表示部9に表示される画像上で、図2で示す超音波探触子2の有効撮像領域9a内で、病変部分を含むと予想され、注視すべき関心領域ROI1と、前記関心領域ROI1に重ならず、病変部分を含まないと予想される比較参照用の非関心領域ROI2との2つの領域ROI1,ROI2が入力されることである。   In the ultrasonic diagnostic apparatus 1 configured as described above, it should be noted that in the present embodiment, from the input operation unit 7 via the image scanning unit 8 by an operator such as a doctor or a laboratory technician. On the image displayed on the display unit 9, a region of interest ROI1 that is expected to include a lesion portion within the effective imaging region 9a of the ultrasound probe 2 shown in FIG. The two regions ROI1 and ROI2 that are not overlapped with each other and are not expected to include a lesion portion and the non-interesting region ROI2 for comparison reference are input.

前記有効撮像領域9aとしては、たとえば2cmの幅のリニア7MHzの超音波探触子2が使用される場合、この図2で示すように、たとえば前記距離方向(深さ方向)に9cm、方位方向(走査方向)に12cmの両方位共に充分な領域を有する。その中で、前記関心領域ROI1としては、たとえば乳癌の場合、4〜5mmが癌であるかどうかを詳しく検査すべき基準であるので、最小で0.5〜1cm、最大で成長した腫瘍の3cm程度に設定される。一方、前記非関心領域ROI2としては、後述するように筋肉と思われる部分を広く取込むために、0.5〜2cm程度に設定される。これらの領域ROI1,ROI2の形状等は、操作者が任意に指定することができる。   As the effective imaging region 9a, for example, when a linear 7 MHz ultrasonic probe 2 having a width of 2 cm is used, for example, 9 cm in the distance direction (depth direction) and the azimuth direction as shown in FIG. Both have a sufficient area of 12 cm in the (scanning direction). Among them, as the region of interest ROI1, for example, in the case of breast cancer, 4 to 5 mm is a standard to be examined in detail as to whether or not it is a cancer, so a minimum of 0.5 to 1 cm and a maximum of 3 cm of a tumor that has grown Set to degree. On the other hand, the non-region of interest ROI2 is set to about 0.5 to 2 cm in order to capture a wide range of muscles as will be described later. The operator can arbitrarily specify the shapes and the like of these regions ROI1 and ROI2.

これに対応して、前記画像処理部5には、超音波送受信部3から送られる超音波信号を整相して、その受信信号強度を輝度に変換して前記断層像(Bモード像)を作成する断層画像作成部5a、前記超音波送受信部3から送られる超音波信号から、前記のようにして歪み情報を得る歪み演算部5b、および算出された歪み情報を色調変調した前記弾性像を作成し、前記断層画像に合成する色調変換部5cなどの前記超音波エラストグラフィ法による通常の超音波診断装置に設けられる構成とともに、設定部5d、基準値設定部5e、および演算処理部5fが設けられる。   Correspondingly, the image processing unit 5 phasing the ultrasonic signal sent from the ultrasonic transmission / reception unit 3 and converting the received signal intensity into luminance to display the tomographic image (B-mode image). The tomographic image creation unit 5a to be created, the distortion calculation unit 5b that obtains distortion information from the ultrasonic signal sent from the ultrasonic transmission / reception unit 3, and the elastic image obtained by color-modulating the calculated distortion information. A setting unit 5d, a reference value setting unit 5e, and an arithmetic processing unit 5f are provided in a normal ultrasonic diagnostic apparatus using the ultrasonic elastography method such as a color tone conversion unit 5c that is created and combined with the tomographic image. Provided.

前記設定部5dは、前記合成画像上にポインタ等を画像化するとともに、前記領域ROI1,ROI2を合成画像上に設定する。前記基準値設定部5eは、その設定された前記非関心領域ROI2内の各画素について、前記歪み演算部5bから歪み情報を取得し、取得した歪み情報に、平均値を求めたり、相互に比較して最小値よりわずかに大きな値を求めたりする等の予め定める演算を行って、前記生体組織の硬さの基準とすべき基準値THを求める。前記演算処理部5fは、前記基準値THを、前記関心領域ROI1における各画素の歪み情報Aで除した値等の前記関心領域ROI1における歪み情報Aと前記基準値THとの間で予め定める演算を行った結果Bを求める。たとえば、前記基準値THが筋肉の0.02とすれば、悪性腫瘍の場合で歪み情報Aは0.002となり、演算結果Bは10となる。   The setting unit 5d images a pointer or the like on the composite image and sets the regions ROI1 and ROI2 on the composite image. The reference value setting unit 5e acquires distortion information from the distortion calculation unit 5b for each pixel in the set non-interest region ROI2, and obtains an average value for the acquired distortion information or compares them with each other. Then, a predetermined calculation such as obtaining a value slightly larger than the minimum value is performed to obtain a reference value TH to be used as a reference for the hardness of the living tissue. The arithmetic processing unit 5f calculates in advance between the distortion information A in the region of interest ROI1 such as a value obtained by dividing the reference value TH by the distortion information A of each pixel in the region of interest ROI1 and the reference value TH. B is obtained as a result of the above. For example, if the reference value TH is 0.02 for muscle, the distortion information A is 0.002 and the calculation result B is 10 in the case of a malignant tumor.

ここで、前記超音波エラストグラフィ法による通常の超音波診断装置では、前記歪み演算部5bで得られた前記歪み情報が色調変換部5cに入力されるが、それに代えて、本実施の形態で注目すべきは、前記演算処理部5fでの演算結果Bが入力されて前記弾性像が作成され、断層像に付加されることである。なお、断層像への弾性像の合成は、この画像処理部5内で行われてもよく、画像走査部8で行われてもよい。以上のような本実施の形態による超音波エラストグラフィ法による合成画像の作成手順を、図4で示す。   Here, in the normal ultrasonic diagnostic apparatus using the ultrasonic elastography method, the distortion information obtained by the distortion calculation unit 5b is input to the color tone conversion unit 5c. Instead, in the present embodiment, It should be noted that the calculation result B in the calculation processing unit 5f is input and the elastic image is created and added to the tomographic image. Note that the synthesis of the elastic image to the tomographic image may be performed in the image processing unit 5 or may be performed by the image scanning unit 8. FIG. 4 shows a procedure for creating a composite image by the ultrasonic elastography method according to the present embodiment as described above.

このように硬さの基準値THを、関心領域ROI1とは別の非関心領域ROI2から求め、該関心領域ROI1内に前記基準値THを求めるための生体組織を含めないようにすることで、該関心領域ROI1が不必要に大きくならず、このため少ないデータ量を分析するだけで、該関心領域ROI1中の組織歪み像を得ることができる。たとえば、関心領域ROIが1つで、その中での硬さの相対比が求められている従来の超音波診断装置では、前記有効撮像領域9aが15×15cmに対して、ROIは、乳癌検診で5×5cm、甲状腺癌検診で7×7cmの大面積である(ただし、前記の寸法は、有効撮像領域9aでの寸法であり、実際の表示部9の表示画面のサイズが、12インチであるのか、14インチであるのか等によって、実際に表示されるROIの大きさは異なる)。   Thus, by obtaining the hardness reference value TH from the non-interest region ROI2 different from the region of interest ROI1, and not including the living tissue for obtaining the reference value TH in the region of interest ROI1, The region of interest ROI1 does not become unnecessarily large, and therefore a tissue strain image in the region of interest ROI1 can be obtained by analyzing a small amount of data. For example, in a conventional ultrasonic diagnostic apparatus in which the region of interest ROI is one and the relative ratio of hardness is required, the effective imaging region 9a is 15 × 15 cm, while the ROI is breast cancer screening. 5 × 5 cm and 7 × 7 cm in thyroid cancer screening (however, the above dimensions are those in the effective imaging area 9a, and the display screen size of the actual display unit 9 is 12 inches) The size of the ROI actually displayed differs depending on whether it is 14 inches or not).

また、本発明の超音波診断方法では、前記基準値THに、前記非関心領域ROI2における歪み情報を相互に比較することで得られる最小値よりわずかに大きな値を用いることで、前記非関心領域ROI2に含まれてしまった骨などを除外して基準値THを設定することができる。   In the ultrasonic diagnostic method of the present invention, the reference value TH is a value slightly larger than the minimum value obtained by comparing distortion information in the non-interest region ROI2 with each other. The reference value TH can be set by excluding bones included in the ROI 2.

さらにまた、本実施の形態では、得られた組織歪み像は、該関心領域ROI1中での歪み量の相対比較で得られるのではなく、比較の対象が該関心領域ROI1と離間した非関心領域ROI2における筋肉などの組織の歪み量との比較で得られるので、操作者や診断部位等によって該関心領域ROI1の設定にばらつきがあっても、硬さのレベルを正確に診断することができる。また、不適切な圧迫量や圧迫速度は、偽陰性の原因となり、診断の精度を低下させてしまうのに対して、本実施の形態のように2つの領域ROI1,ROI2の相対比較で硬さを求めることで、使用者はそのような不適切な操作を容易に認識することができ、適切な操作を行わせることができる。   Furthermore, in the present embodiment, the obtained tissue strain image is not obtained by relative comparison of the strain amount in the region of interest ROI1, but is a non-region of interest in which the comparison target is separated from the region of interest ROI1. Since it is obtained by comparison with the strain amount of the tissue such as muscle in the ROI 2, even if the setting of the region of interest ROI1 varies depending on the operator, the diagnosis site, etc., the hardness level can be diagnosed accurately. In addition, an inappropriate compression amount and compression speed cause false negatives and reduce the accuracy of diagnosis. On the other hand, as in the present embodiment, the hardness of the two regions ROI1 and ROI2 is relatively compared. Therefore, the user can easily recognize such an inappropriate operation and perform an appropriate operation.

一方、図3は、押圧力と各生体組織の歪みとの関係を示すグラフである。このグラフの生体組織の中では、水や粘液の入った嚢胞が最も柔らかく、脂肪細胞、筋肉、良性の腫瘍、各種悪性の腫瘍1,2の順で硬く、骨は硬すぎて、殆ど変形無しとなっている。ここで、前記超音波探触子2による前記のような広い探索範囲(=前記有効撮像領域9a)には、多くの場合、骨、筋肉、脂肪細胞等が映り込んでくる。たとえば、乳房の場合、肋骨、大胸筋、脂肪などである。   On the other hand, FIG. 3 is a graph showing the relationship between the pressing force and the strain of each biological tissue. Among the biological tissues in this graph, the cysts with water and mucus are the softest, fat cells, muscles, benign tumors, various malignant tumors 1 and 2 are hard in this order, the bones are too hard, and almost no deformation It has become. Here, in the above-described wide search range (= the effective imaging area 9a) by the ultrasonic probe 2, bones, muscles, fat cells and the like are often reflected. For example, in the case of a breast, it is a rib, a great pectoral muscle, fat, etc.

そこで、本願発明者は、これらの生体組織の内、疲労等で若干硬さが変ることもあるが、検診等の一定の条件下では、老若男女の差によってもあまり硬さが変化しないことが経験上得られており、しかも病変ができにくい筋肉に着目し、病変部分を含まないと予想される比較参照用の前記非関心領域ROI2を筋肉の領域、たとえば乳房の場合には変形が小さい大胸筋に設定し、上述のようにして求められる硬さの基準値THをこの筋肉の硬さに設定する。これによって、骨のように硬すぎて基準とならなかったりするようなことはなく、柔らかい脂肪と、硬い腫瘍との区別が可能になり、基準値THとしては好適である。   Therefore, the inventor of the present application may slightly change the hardness due to fatigue or the like among these biological tissues, but under certain conditions such as a medical examination, the hardness may not change so much due to the difference between gender. Focusing on muscles that have been obtained through experience and are unlikely to cause lesions, the non-interesting region ROI2 for comparison and reference that is expected not to include a lesioned portion is used as a muscle region, for example, in the case of a breast, a large deformation is small. The pectoral muscle is set, and the hardness reference value TH obtained as described above is set to the muscle hardness. As a result, the bone is not too hard to be used as a reference, and it is possible to distinguish soft fat from a hard tumor, which is suitable as the reference value TH.

[実施の形態2]
図5は、本発明の実施の他の形態に係る超音波診断装置における機能を説明するための図である。本実施の形態には、上述の超音波診断装置1の構成を用いることができ、前記画像処理部5における設定部5dの機能が異なるだけである。すなわち、上述の実施形態では、前記非関心領域ROI2は操作者によって設定されたけれども(具体的には、断層像中でグレーのベタ領域を捜す)、本実施の形態では、該設定部5dが前記有効撮像領域9a上を掃引し、自動設定することである。具体的には、設定部5dは、前記有効撮像領域9aを、たとえば1×1cmの前記非関心領域ROI2に対応した大きさの領域に分割し、その内、前記関心領域ROI1に係らない部分で前記歪み演算部5bから歪み情報を取得し、図6で示すように、得られたデータを相互に比較し、骨の0.00を除く最小値の次位の値を、前記基準値設定部5eに基準値THとして設定させるとともに、その領域を非関心領域ROI2に設定する。前記1×1cmの所定の分割領域内での歪み情報は、該領域内の各画素の平均値から求められてもよく、最大値や最小値、或いは最も頻度が高い値が用いられてもよい。
[Embodiment 2]
FIG. 5 is a diagram for explaining functions in an ultrasonic diagnostic apparatus according to another embodiment of the present invention. In the present embodiment, the configuration of the above-described ultrasonic diagnostic apparatus 1 can be used, and only the function of the setting unit 5d in the image processing unit 5 is different. That is, in the above-described embodiment, although the non-interest region ROI2 is set by the operator (specifically, a gray solid region is searched in the tomographic image), in the present embodiment, the setting unit 5d The effective imaging area 9a is swept and automatically set. Specifically, the setting unit 5d divides the effective imaging region 9a into regions having a size corresponding to the non-region of interest ROI2 of 1 × 1 cm, for example, in a portion not related to the region of interest ROI1. As shown in FIG. 6, the distortion information is acquired from the distortion calculation unit 5b, the obtained data are compared with each other, and the next value of the minimum value excluding the bone 0.00 is set as the reference value setting unit. 5e is set as the reference value TH, and the region is set as the non-interest region ROI2. The distortion information in the predetermined divided area of 1 × 1 cm may be obtained from the average value of each pixel in the area, and the maximum value, the minimum value, or the most frequently used value may be used. .

図6では、各分割領域に、ROI−2の#1,#2,・・・#n,#(n+1),・・・,#Nというようなコード番号が指定され、前記歪み演算部5bから、各分割領域における歪み情報が順次読出され、前記コード番号に対応付けて記憶される。この処理が最後の分割領域#Nまで一巡すると、前記骨の0.00に、最小値の0.01が除外され、次の値0.02が前記基準値THに設定され、またその値の分割領域#(n+1)が非関心領域ROI2に設定される。なお、歪み情報が同じ値の分割領域が複数存在する場合には、その同じ値の分割領域が最も多く集合している部分の中央の領域を前記非関心領域ROI2に設定することが好ましい。   In FIG. 6, code numbers such as # 1, # 2,... #N, # (n + 1),..., #N of ROI-2 are designated for each divided region, and the distortion calculation unit 5b. Thus, distortion information in each divided area is sequentially read out and stored in association with the code number. When this process is completed until the last divided region #N, the minimum value 0.01 is excluded from 0.00 of the bone, and the next value 0.02 is set as the reference value TH. The divided area # (n + 1) is set as the non-interest area ROI2. When there are a plurality of divided regions having the same value in the distortion information, it is preferable to set the central region of the portion where the divided regions having the same value gather most as the non-interest region ROI2.

このように構成することで、設定部5dでの演算量は増加するが、前記非関心領域ROI2に、歪みの再現性の良い部位を自動的に判別して設定することができる。また、前記基準値THに、最小値よりわずかに大きな値を用いることで、骨などを除外して該基準値THを設定することができる。   With this configuration, the amount of calculation in the setting unit 5d increases, but a region with good reproducibility of distortion can be automatically determined and set in the non-interest region ROI2. Further, by using a value slightly larger than the minimum value as the reference value TH, the reference value TH can be set by excluding bones and the like.

また、設定部5dが非関心領域ROI2を完全に自動設定してしまうのではなく、たとえば図6の例で、前記歪み情報が0.02の値の分割領域#(n+1)が、前記基準値THとして、カラー表示の枠(たとえば、黄色)で表示され、その画面を見て、操作者が、骨などが入り交じっている領域などで好ましくないと判断して却下(N判断)すると、次の該当領域がカラー枠表示され、確定(Y判断)されるまで順次繰返すというような、半自動で設定するようにしてもよい。   In addition, the setting unit 5d does not automatically set the non-interest region ROI2, but, for example, in the example of FIG. 6, the divided region # (n + 1) having the distortion information value of 0.02 is the reference value. When TH is displayed in a color display frame (for example, yellow) and the operator sees the screen and judges that it is not desirable in a region where bones and the like are mixed, the next rejection (N judgment) These areas may be set semi-automatically, such that the corresponding area is displayed in a color frame and repeated until it is confirmed (Y judgment).

このように構成することで、操作者は、前記基準値THとして各自が納得できる値を設定して得られた硬さ情報に関する弾性像を得ることができ、柔軟性のある診断が可能になる。これは、生体組織の硬さにおいて、癌は正常組織と比べると硬いと言われるが、硬ければ硬い程、癌であるわけでもなく、石灰化は硬いが良性であることもあるので、一概に硬い程悪性とはならず、上記のように基準値THおよび非関心領域ROI2の設定に自由度を持たせることは好適である。また、病変組織の形状が、ぎざぎざした不定形であるのか等の他の情報も診断には有用で、前記関心領域ROI1中の形状認識および前記の硬さ情報に組合わせて診断を行うことで、診断の精度を一層向上することができる。   By configuring in this way, the operator can obtain an elastic image related to the hardness information obtained by setting a value that can be accepted by the operator as the reference value TH, thereby enabling a flexible diagnosis. . This is because cancer is said to be harder than normal tissue in terms of the hardness of living tissue, but the harder it is, the less it is not cancer, and the calcification may be hard but benign. It is preferable that the setting of the reference value TH and the non-interest area ROI2 has a degree of freedom as described above. In addition, other information such as whether the shape of the diseased tissue is jagged and irregular is also useful for diagnosis, and by performing the diagnosis in combination with the shape recognition in the region of interest ROI1 and the hardness information. The accuracy of diagnosis can be further improved.

本発明の実施の一形態に係る超音波診断装置の電気的構成を示すブロック図である。1 is a block diagram showing an electrical configuration of an ultrasonic diagnostic apparatus according to an embodiment of the present invention. エコー画面上で、病変部分を含むと予想され、注視すべき関心領域と、本発明で設定される病変部分を含まないと予想される比較参照用の非関心領域とを説明するための図である。On the echo screen, it is a diagram for explaining a region of interest that is expected to include a lesion part and a non-interest region for comparison reference that is expected not to include a lesion part set in the present invention. is there. 押圧力と各生体組織の歪みとの関係を示すグラフである。It is a graph which shows the relationship between pressing force and distortion of each biological tissue. 本発明の実施の一形態の超音波エラストグラフィ法による合成画像の作成手順を説明するためのフローチャートである。It is a flowchart for demonstrating the preparation procedure of the synthesized image by the ultrasonic elastography method of one Embodiment of this invention. 本発明の実施の他の形態に係る超音波診断装置における機能を説明するための図である。It is a figure for demonstrating the function in the ultrasonic diagnosing device which concerns on other embodiment of this invention. 本発明の実施の他の形態に係る超音波診断装置における機能を説明するための図である。It is a figure for demonstrating the function in the ultrasonic diagnosing device which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1 超音波診断装置
2 超音波探触子
3 超音波送受信部(T/R)
4 アナログ/デジタル変換部(ADC)
5 画像処理部(DSP)
5a 断層画像作成部
5b 歪み演算部
5c 色調変換部
5d 設定部
5e 基準値設定部
5f 演算処理部
6 中央演算処理部(CPU)
7 入力操作部
8 画像走査部(VDP)
9 画像表示部(TV)
9a 有効撮像領域
ROI1 関心領域
ROI2 非関心領域
1 Ultrasonic diagnostic device 2 Ultrasonic probe 3 Ultrasonic transceiver (T / R)
4 Analog / digital converter (ADC)
5 Image processing unit (DSP)
5a Tomographic image creation unit 5b Distortion calculation unit 5c Color tone conversion unit 5d Setting unit 5e Reference value setting unit 5f Calculation processing unit 6 Central calculation processing unit (CPU)
7 Input operation unit 8 Image scanning unit (VDP)
9 Image display (TV)
9a Effective imaging region ROI1 Region of interest ROI2 Non-region of interest

Claims (5)

被検体を押圧し、その押圧の前後で超音波を送受信し、その受信信号に基づいて断層像を再構成するとともに、前記押圧の前後の受信信号から、前記被検体に関する歪み情報を取得し、その歪み情報を前記断層像に付加した画像を作成する超音波診断方法において、
前記超音波の受信範囲内で、注視すべき関心領域および前記関心領域に重ならない比較参照用の非関心領域を設定する工程と、
設定された前記関心領域および非関心領域において、前記歪み情報を取得する工程と、
取得された前記非関心領域における歪み情報に予め定める演算を行って基準値を求める工程と、
前記関心領域における歪み情報と前記基準値との間で予め定める演算を行った結果を前記断層像に付加する工程とを含むことを特徴とする超音波診断方法。
Pressing the subject, transmitting and receiving ultrasonic waves before and after the pressing, reconstructing a tomographic image based on the received signal, obtaining distortion information about the subject from the received signals before and after the pressing, In an ultrasonic diagnostic method for creating an image in which distortion information is added to the tomographic image,
Setting a region of interest to be watched and a non-region of interest for comparison reference that does not overlap the region of interest within the ultrasound reception range;
Obtaining the distortion information in the set region of interest and non-region of interest;
Obtaining a reference value by performing a predetermined calculation on the distortion information in the acquired non-interest area;
And adding a result obtained by performing a predetermined calculation between the distortion information in the region of interest and the reference value to the tomographic image.
前記非関心領域は、筋肉の領域であることを特徴とする請求項1記載の超音波診断方法。   The ultrasonic diagnostic method according to claim 1, wherein the non-interest region is a muscle region. 前記基準値は、前記非関心領域における歪み情報を相互に比較することで得られる最小値よりわずかに大きな値であることを特徴とする請求項1記載の超音波診断方法。   The ultrasonic diagnostic method according to claim 1, wherein the reference value is a value slightly larger than a minimum value obtained by comparing distortion information in the non-interest area with each other. 被検体を押圧し、その押圧の前後で超音波の送受信を行う超音波探触子と、
前記超音波探触子の受信信号に基づいて断層像を再構成するとともに、前記押圧の前後の受信信号から、前記被検体に関する歪み情報を取得し、その歪み情報を前記断層像に付加した画像を作成する画像処理部と、
前記画像処理部による作成画像を表示する表示部と、
前記表示部の表示画像上で、前記超音波探触子による超音波の受信範囲内で、注視すべき関心領域および前記関心領域に重ならない比較参照用の非関心領域を設定する設定部とを備え、
前記画像処理部は、前記設定部で設定された前記関心領域および非関心領域において、前記歪み情報を取得し、さらに、取得された前記非関心領域における歪み情報に予め定める演算を行って基準値を求める基準値設定部と、前記関心領域における歪み情報と前記基準値との間で予め定める演算を行った結果を前記断層像に付加する演算処理部とを含むことを特徴とする超音波診断装置。
An ultrasonic probe that presses the subject and transmits and receives ultrasonic waves before and after the pressing;
An image obtained by reconstructing a tomogram based on the reception signal of the ultrasonic probe, acquiring distortion information about the subject from the reception signals before and after the pressing, and adding the distortion information to the tomogram An image processing unit for creating
A display unit for displaying a created image by the image processing unit;
A setting unit configured to set a region of interest to be watched and a non-interesting region for comparison reference that does not overlap the region of interest within the ultrasonic reception range of the ultrasonic probe on the display image of the display unit; Prepared,
The image processing unit acquires the distortion information in the region of interest and non-interest region set by the setting unit, and further performs a predetermined calculation on the acquired distortion information in the non-interest region to obtain a reference value An ultrasonic diagnosis, comprising: a reference value setting unit for obtaining a calculation result; and a calculation processing unit for adding a result of a predetermined calculation between distortion information in the region of interest and the reference value to the tomographic image. apparatus.
前記設定部は、前記超音波探触子による超音波の受信範囲内で、前記関心領域に重ならない領域を、予め定める範囲毎に走査し、前記歪みの最も小さい領域よりわずかに大きな領域を前記非関心領域に設定することを特徴とする請求項1記載の超音波診断装置。   The setting unit scans a region that does not overlap the region of interest within the ultrasonic reception range of the ultrasonic probe for each predetermined range, and sets a region slightly larger than the region with the smallest distortion to the region. The ultrasonic diagnostic apparatus according to claim 1, wherein the ultrasonic diagnostic apparatus is set in a non-interest area.
JP2008112254A 2008-04-23 2008-04-23 Ultrasonic diagnostic method and apparatus Pending JP2009261493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008112254A JP2009261493A (en) 2008-04-23 2008-04-23 Ultrasonic diagnostic method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008112254A JP2009261493A (en) 2008-04-23 2008-04-23 Ultrasonic diagnostic method and apparatus

Publications (1)

Publication Number Publication Date
JP2009261493A true JP2009261493A (en) 2009-11-12

Family

ID=41388126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008112254A Pending JP2009261493A (en) 2008-04-23 2008-04-23 Ultrasonic diagnostic method and apparatus

Country Status (1)

Country Link
JP (1) JP2009261493A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129237A1 (en) * 2010-04-15 2011-10-20 株式会社 日立メディコ Ultrasonic diagnostic device
JP2012086002A (en) * 2010-05-31 2012-05-10 National Institute Of Advanced Industrial Science & Technology Ultrasonic biological tissue measurement apparatus
CN102920485A (en) * 2012-10-30 2013-02-13 浙江大学 Estimation method for biological tissue two-dimensional displacement field in ultrasonic elastography
WO2017104627A1 (en) * 2015-12-18 2017-06-22 オリンパス株式会社 Ultrasonic observation device, operation method for ultrasonic observation device, and operation program for ultrasonic observation device
US10783642B2 (en) 2018-08-02 2020-09-22 Hitachi, Ltd. Ultrasonic diagnostic apparatus and ultrasonic image processing method
CN111833383A (en) * 2020-07-27 2020-10-27 西南石油大学 Two-dimensional joint local displacement fitting region growing Bayesian motion tracking algorithm
US11234672B2 (en) 2016-09-12 2022-02-01 Samsung Medison Co., Ltd. Ultrasonic imaging apparatus and method for controlling the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129237A1 (en) * 2010-04-15 2011-10-20 株式会社 日立メディコ Ultrasonic diagnostic device
JP2012086002A (en) * 2010-05-31 2012-05-10 National Institute Of Advanced Industrial Science & Technology Ultrasonic biological tissue measurement apparatus
CN102920485A (en) * 2012-10-30 2013-02-13 浙江大学 Estimation method for biological tissue two-dimensional displacement field in ultrasonic elastography
WO2017104627A1 (en) * 2015-12-18 2017-06-22 オリンパス株式会社 Ultrasonic observation device, operation method for ultrasonic observation device, and operation program for ultrasonic observation device
CN108366781A (en) * 2015-12-18 2018-08-03 奥林巴斯株式会社 Ultrasound observation apparatus, the start method of ultrasound observation apparatus and ultrasound observation apparatus make dynamic program
JPWO2017104627A1 (en) * 2015-12-18 2018-10-04 オリンパス株式会社 Ultrasonic observation apparatus, operation method of ultrasonic observation apparatus, and operation program of ultrasonic observation apparatus
US11071523B2 (en) 2015-12-18 2021-07-27 Olympus Corporation Ultrasound observation device, operation method of ultrasound observation device, and computer-readable recording medium
US11234672B2 (en) 2016-09-12 2022-02-01 Samsung Medison Co., Ltd. Ultrasonic imaging apparatus and method for controlling the same
US10783642B2 (en) 2018-08-02 2020-09-22 Hitachi, Ltd. Ultrasonic diagnostic apparatus and ultrasonic image processing method
CN111833383A (en) * 2020-07-27 2020-10-27 西南石油大学 Two-dimensional joint local displacement fitting region growing Bayesian motion tracking algorithm

Similar Documents

Publication Publication Date Title
US11801033B2 (en) Medical diagnostic apparatus and medical analysis method
JP6367425B2 (en) Ultrasonic diagnostic equipment
Dietrich et al. Strain elastography-how to do it?
JP5303147B2 (en) Ultrasonic diagnostic device for generating elastic images
JP6594245B2 (en) Hardness deriving device, medical imaging system, hardness deriving method, and hardness deriving program
JP4919972B2 (en) Elastic image display method and elastic image display device
US10772608B2 (en) Medical image diagnostic apparatus and medical information display control method
Park et al. Usefulness of acoustic radiation force impulse elastography in the differential diagnosis of benign and malignant solid pancreatic lesions
JP5294340B2 (en) Ultrasonic diagnostic equipment
JP5285616B2 (en) Ultrasonic diagnostic apparatus, operating method thereof and ultrasonic diagnostic imaging program
JP5209025B2 (en) Ultrasonic diagnostic equipment
JPWO2007046272A6 (en) Ultrasonic diagnostic device for generating elastic images
US20100014738A1 (en) Method and system for breast cancer screening
US20050283076A1 (en) Non-invasive diagnosis of breast cancer using real-time ultrasound strain imaging
JP5984243B2 (en) Ultrasonic diagnostic apparatus, medical image processing apparatus, and program
JP2007282932A (en) Method of generating elastic image and ultrasonograph
WO2006123742A1 (en) Image diagnosing device
EP2260766A1 (en) Ultrasonic diagnosis apparatus and medical image processing method
JP2003061964A (en) Ultrasonic diagnostic apparatus
JP6352013B2 (en) Ultrasonic diagnostic apparatus, image processing apparatus, and image processing program
JP2013144050A (en) Ultrasonic diagnostic apparatus, medical image processing apparatus, and ultrasonic diagnostic apparatus control program
JP2009261493A (en) Ultrasonic diagnostic method and apparatus
US20150173721A1 (en) Ultrasound diagnostic apparatus, medical image processing apparatus and image processing method
CN108135579A (en) Diagnostic ultrasound equipment and attenuation characteristic measuring method
Shipley et al. Automated quantitative volumetric breast ultrasound data-acquisition system