WO2008009578A2 - Moteur électromécanique - Google Patents
Moteur électromécanique Download PDFInfo
- Publication number
- WO2008009578A2 WO2008009578A2 PCT/EP2007/056933 EP2007056933W WO2008009578A2 WO 2008009578 A2 WO2008009578 A2 WO 2008009578A2 EP 2007056933 W EP2007056933 W EP 2007056933W WO 2008009578 A2 WO2008009578 A2 WO 2008009578A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electromechanical
- drive ring
- drive
- spring
- motor
- Prior art date
Links
- 230000009471 action Effects 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 2
- 238000003466 welding Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910000639 Spring steel Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 239000006101 laboratory sample Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920000271 Kevlar® Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/105—Cycloid or wobble motors; Harmonic traction motors
Definitions
- Electromechanical motors and in particular piezoelectric ring motors are known from European Patent 1,098,429 Bl and 102005022355.9.
- a known piezoelectric ring motor 1 is shown schematically in FIG.
- the piezoelectric ring motor 1 comprises a drive ring 20, on the sides of which act in a rectangular orientation electromechanical drive elements 10.
- the electromechanical drive elements 10 are designed as piezoelectric multilayer actuators.
- hollow springs 14 are used to mechanically bias the piezoelectric multilayer actuators 10. The hollow springs 14 save space
- the piezoelectric multilayer actuator 10 is typically used in injector applications in motor vehicles with a compressive force of about 600 to 850 N installed.
- the compressive stress is applied between suitably dimensioned end plates 16 for avoiding damaging tensile stresses in the highly dynamic actuator operation and for the mechanically rigid connection to the other generates driving elements and the counter bearing of an actuator.
- the piezoelectric multilayer actuators 10 are installed between end plates 16, end caps 11 and hollow cylindrical springs 14, which together form the aforementioned actuator unit. This can also be seen in the schematic diagram in Fig. 1.
- the spring band is fastened or deflected relative to the electromechanical drive element at the remotest location of the drive ring.
- the spring band selbiges is permanently attached to the cross member and / or drive ring or partially provided circumferentially around drive ring and cross member.
- they are guided in grooves. These grooves are available both on the cross member and on the drive ring. If different spring bands cross on the drive ring, there is another alternative construction It is to guide these spring bands in different depths formed grooves. In this way, the wear of the spring bands is minimized.
- FIG. 2 shows prior art elements of the piezoelectric ring motor shown in FIG. 1.
- the biasing elements 40, 60 are made of metal, such as gangiger spring steel, steel or other suitable resilient metals. Another material alternative is metal alloys, composites such as carbon fiber reinforced plastic (CFRP) or glass fiber reinforced plastic (GRP). It is also conceivable to produce the prestressing elements 40, 60 from Kevlar in the form of fibers or ribbons. For the biasing elements 40, 60 are thus generally suitable materials with high tensile strength and elasticity, which ensure the spring properties for biasing the piezoelectric multilayer actuators 10.
- the spring bands 40 are fixed under tension on the drive ring 20 at a point seen in the direction of action 12 of the piezoelectric Learnschich- taktors 10 vorzuspannenden and based on the vorzuspannenden piezoelectric multilayer actuator 10 at the farthest location P of the drive ring 20th located.
- This arrangement is shown by way of example in FIG.
- the spring band 40 is permanently attached at the point P.
- the attachment of the spring band 40 is achieved by welding, riveting, soldering or in a similarly effective manner. Instead of fastening the spring strips 40 by welding, alternatively, positive connection types can be realized.
- the drive ring 20 and / or the corresponding cross member 50 grooves 22, in which the spring strips 40 are guided.
- crossing spring bands 40 run in different planes. These different levels are provided by means of differently deep grooves 22 in drive ring 20 and cross member 50.
- a harmful frictional contact between the drive ring 20 and the spring strips 40 and between the piezoelectric multilayer actuators 10 and the spring strips 40 should be avoided. Therefore, either the drive ring 20 or the cross member 50 in the vicinity of the support points of the piezoelectric multilayer actuators 10 are designed such that the electrical connections of the piezoelectric multilayer actuators 10, not shown here are short-circuit proof out of the motor housing also not shown.
- the use of the maximum available length for the spring bands 40 has the advantage that the spring rate of the spring bands 40 can be kept typical of a tube spring and still the carrying capacity is increased.
- the following calculation example for a prestressed piezoelectric multilayer actuator 10 of the ring motor 1 with its typical dimensions of about 30 to 60 mm in length and 5 x 5 to 7 x 7 mm 2 cross-section illustrates the facts.
- biasing force F 1,200 N are used.
- the permissible material tension ⁇ is 1000 N / mm 2 . This value is less than a typical elastic limit of spring steel, since the piezoelectric multilayer actuator 10 is in the undeflected state during assembly and adds a dynamic mechanical stress component additively during its operation by the deflection.
- a typical length of a spring band 40 is, for example, 80 mm. Therefore, the spring rate c F of the spring bands 40 for a piezoelectric multilayer actuator 10 is calculated according to FIG A "N 1,2 0 mm Nc F - E - - - 2 0 0 • 1 0 9 - • - - 3,0
- spring wires 60 are used, as shown in Figures 4 and 5.
- this has the same cross-section A as the spring band 40.
- the diameter of an equivalent circular cross section for a spring wire 60 would be approximately 0.87 mm for this example.
- the spring wire 60 is guided along the paths of the spring band 40 shown in Fig. 3. 4, the elements of the ring motor 1 known from FIG. 3 are also identified by the same reference numerals as in FIG.
- the spring wires 60 are fastened and arranged in the same way as the above-described spring strips 40. For further explanation, reference is therefore made to the above description.
- the embodiment shown in Fig. 5 is preferably used.
- the spring wires 60 wrap around the drive ring 20 as frictionless as possible and are fastened to the rear side of the drive ring 20 near the ring-side actuator contact points AP.
- the drive ring 20 is equipped with deflection elements 24, for example in the form of a cylinder.
- the deflecting elements 24 are either attached as a separate part to the drive ring 20 or they are an integral part of the drive ring 20.
- free-lying deflecting full cylinder that is deflecting rollers, or also attached to the drive ring 20 guide rollers used.
- the spring travel extension achieved with the aid of the embodiment shown in FIG. 5 corresponds approximately to the edge length of the drive ring 20. Based on the above calculation example, the effective spring length of the spring wire 60 would then be approximately 120 mm. For the spring rate c F then results according to the following equation
- the spring travel extension allows a further increase in the carrying capacity of the spring wire 60.
- biasing elements 40, 60 are replaced by an approximately twice as long biasing element 40, 60.
- the biasing member 40, 60 at least partially wraps around the cross member 50 and / or the drive ring 20.
- drive ring 20 and cross member 50 are repeatedly wrapped with the spring wire 60 under tensile force standing.
- both the tensile force in the single turn and the cross section of the spring the wire 60 of the number of turns are adapted to realize the desired spring characteristics.
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
L'invention concerne un moteur électromécanique, notamment un moteur annulaire piézoélectrique, dont l'anneau d'entraînement (20) est mis en mouvement par des actionneurs multicouches (10) piézoélectriques. Les actionneurs multicouches (10) piézoélectriques sont précontraints par des éléments de précontrainte (40) qui s'étendent parallèlement au sens d'actionnement (12) de l'actionneur multicouche (10) piézoélectrique, au-delà de l'actionneur multicouche (10) piézoélectrique et au moins partiellement au-dessus de l'anneau (20) d'entraînement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07787215A EP2041813A2 (fr) | 2006-07-17 | 2007-07-09 | Moteur électromécanique |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006032995.3 | 2006-07-17 | ||
DE102006032995A DE102006032995A1 (de) | 2006-07-17 | 2006-07-17 | Elektromechanischer Motor |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2008009578A2 true WO2008009578A2 (fr) | 2008-01-24 |
WO2008009578A3 WO2008009578A3 (fr) | 2008-03-27 |
Family
ID=38822039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/056933 WO2008009578A2 (fr) | 2006-07-17 | 2007-07-09 | Moteur électromécanique |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2041813A2 (fr) |
DE (1) | DE102006032995A1 (fr) |
WO (1) | WO2008009578A2 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10580959B2 (en) | 2014-07-23 | 2020-03-03 | Physik Instrumente (Pi) Gmbh & Co. Kg | Actuator system |
US11165369B2 (en) | 2018-01-15 | 2021-11-02 | Cts Corporation | Pre-loaded piezoelectric stack actuator |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006045293B4 (de) | 2006-09-26 | 2012-03-29 | Noliac A/S | Festkörperaktor-Antriebsvorrichtung |
DE102010060736B4 (de) | 2010-11-23 | 2015-04-02 | Gottfried Wilhelm Leibniz Universität Hannover | Verfahren zur Herstellung eines Piezoaktors |
DE102019118426A1 (de) * | 2019-07-08 | 2021-01-14 | Picofine GmbH | Antriebsvorrichtung und -verfahren zur linearen oder rotatorischen Positionierung |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5079471A (en) * | 1990-06-04 | 1992-01-07 | Martin Marietta Corporation | High torque harmonic traction motor |
WO1995004378A1 (fr) * | 1993-08-02 | 1995-02-09 | Bonneville Scientific Incorporated | Moteurs actionneurs de champ a entrainement direct |
DE4435996A1 (de) * | 1994-10-08 | 1996-04-11 | Bosch Gmbh Robert | Drehantrieb |
DE19650900A1 (de) * | 1996-12-07 | 1998-06-10 | Bosch Gmbh Robert | Piezoelektrischer Aktuator |
WO2001032368A1 (fr) * | 1999-10-31 | 2001-05-10 | Nanomotion Ltd. | Moteurs piezo-electriques et configurations d'entrainements par les moteurs |
-
2006
- 2006-07-17 DE DE102006032995A patent/DE102006032995A1/de not_active Ceased
-
2007
- 2007-07-09 WO PCT/EP2007/056933 patent/WO2008009578A2/fr active Application Filing
- 2007-07-09 EP EP07787215A patent/EP2041813A2/fr not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5079471A (en) * | 1990-06-04 | 1992-01-07 | Martin Marietta Corporation | High torque harmonic traction motor |
WO1995004378A1 (fr) * | 1993-08-02 | 1995-02-09 | Bonneville Scientific Incorporated | Moteurs actionneurs de champ a entrainement direct |
DE4435996A1 (de) * | 1994-10-08 | 1996-04-11 | Bosch Gmbh Robert | Drehantrieb |
DE19650900A1 (de) * | 1996-12-07 | 1998-06-10 | Bosch Gmbh Robert | Piezoelektrischer Aktuator |
WO2001032368A1 (fr) * | 1999-10-31 | 2001-05-10 | Nanomotion Ltd. | Moteurs piezo-electriques et configurations d'entrainements par les moteurs |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10580959B2 (en) | 2014-07-23 | 2020-03-03 | Physik Instrumente (Pi) Gmbh & Co. Kg | Actuator system |
US11165369B2 (en) | 2018-01-15 | 2021-11-02 | Cts Corporation | Pre-loaded piezoelectric stack actuator |
Also Published As
Publication number | Publication date |
---|---|
EP2041813A2 (fr) | 2009-04-01 |
DE102006032995A1 (de) | 2008-01-31 |
WO2008009578A3 (fr) | 2008-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4026459A1 (de) | Tuerverstaerkerrohr | |
DE102011016540A1 (de) | Federungsanordnung für Radaufhängungen von Kraftfahrzeugen | |
DE102013002714A1 (de) | Drehfedersystem für eine Radaufhängung eines Kraftfahrzeugs | |
DE102012005395A1 (de) | Federungsanordnung für eine Radaufhängung eines Kraftfahrzeuges | |
WO2008009578A2 (fr) | Moteur électromécanique | |
DE102010042222A1 (de) | Fahrzeug | |
DE19540913C1 (de) | Stromabnehmer für die Energieübertragung zwischen einem Fahrdraht und einem Triebwagen | |
DE10026169A1 (de) | Verwendung eines elastischen Konstruktionselements als Torsionsfeder | |
EP3455495A1 (fr) | Dispositif actionneur bistable comprenant un élément à mémoire de forme | |
EP2472137B1 (fr) | Elément de ressort à lame et agencement de ressort à lame | |
WO2008009577A1 (fr) | Moteur électromécanique | |
EP1519072B1 (fr) | Ressort tubulaire pour un actionneur | |
DE102007012167A1 (de) | Drillelastisches und biegesteifes Stabelement zum Lagern und Führen einer beweglichen Klappe gegenüber einem Flügel eines Luftfahrzeugs | |
DE10347265B4 (de) | Wankstabilisator für das Fahrwerk eines Kraftfahrzeuges | |
DE102005054313A1 (de) | Federvorrichtung | |
DE102007004035A1 (de) | Schlauchförmiger Rollbalg | |
EP1619364B1 (fr) | Antivibrateur | |
DE10201801C2 (de) | Flexible Verbindungseinrichtung für zwei Rohrteile, insbesondere bei Abgasanlagen von Kraftfahrzeugen | |
EP1441144A2 (fr) | Ressort à torsion ou ressort à flexion fabriqué de barres individuelles | |
DE102005046174A1 (de) | Spannfeder | |
DE102005019102A1 (de) | Jaquardmaschine mit bistabilem Element zum Heben und Senken von Kettfäden | |
DE102016001014A1 (de) | Aufspulmaschine | |
EP2041811A2 (fr) | Servomoteur électromécanique | |
EP2072861B1 (fr) | Sécurité anti-rotation doté d'un égalisation de la tolérance | |
DE102022204290A1 (de) | Drehwinkelbegrenzungsanordnung und Lenksystem für ein Kraftfahrzeug |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07787215 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007787215 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |