WO2008009578A2 - Moteur électromécanique - Google Patents

Moteur électromécanique Download PDF

Info

Publication number
WO2008009578A2
WO2008009578A2 PCT/EP2007/056933 EP2007056933W WO2008009578A2 WO 2008009578 A2 WO2008009578 A2 WO 2008009578A2 EP 2007056933 W EP2007056933 W EP 2007056933W WO 2008009578 A2 WO2008009578 A2 WO 2008009578A2
Authority
WO
WIPO (PCT)
Prior art keywords
electromechanical
drive ring
drive
spring
motor
Prior art date
Application number
PCT/EP2007/056933
Other languages
German (de)
English (en)
Other versions
WO2008009578A3 (fr
Inventor
Bernhard Gottlieb
Andreas Kappel
Tim Schwebel
Carsten Wallenhauer
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP07787215A priority Critical patent/EP2041813A2/fr
Publication of WO2008009578A2 publication Critical patent/WO2008009578A2/fr
Publication of WO2008009578A3 publication Critical patent/WO2008009578A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/105Cycloid or wobble motors; Harmonic traction motors

Definitions

  • Electromechanical motors and in particular piezoelectric ring motors are known from European Patent 1,098,429 Bl and 102005022355.9.
  • a known piezoelectric ring motor 1 is shown schematically in FIG.
  • the piezoelectric ring motor 1 comprises a drive ring 20, on the sides of which act in a rectangular orientation electromechanical drive elements 10.
  • the electromechanical drive elements 10 are designed as piezoelectric multilayer actuators.
  • hollow springs 14 are used to mechanically bias the piezoelectric multilayer actuators 10. The hollow springs 14 save space
  • the piezoelectric multilayer actuator 10 is typically used in injector applications in motor vehicles with a compressive force of about 600 to 850 N installed.
  • the compressive stress is applied between suitably dimensioned end plates 16 for avoiding damaging tensile stresses in the highly dynamic actuator operation and for the mechanically rigid connection to the other generates driving elements and the counter bearing of an actuator.
  • the piezoelectric multilayer actuators 10 are installed between end plates 16, end caps 11 and hollow cylindrical springs 14, which together form the aforementioned actuator unit. This can also be seen in the schematic diagram in Fig. 1.
  • the spring band is fastened or deflected relative to the electromechanical drive element at the remotest location of the drive ring.
  • the spring band selbiges is permanently attached to the cross member and / or drive ring or partially provided circumferentially around drive ring and cross member.
  • they are guided in grooves. These grooves are available both on the cross member and on the drive ring. If different spring bands cross on the drive ring, there is another alternative construction It is to guide these spring bands in different depths formed grooves. In this way, the wear of the spring bands is minimized.
  • FIG. 2 shows prior art elements of the piezoelectric ring motor shown in FIG. 1.
  • the biasing elements 40, 60 are made of metal, such as gangiger spring steel, steel or other suitable resilient metals. Another material alternative is metal alloys, composites such as carbon fiber reinforced plastic (CFRP) or glass fiber reinforced plastic (GRP). It is also conceivable to produce the prestressing elements 40, 60 from Kevlar in the form of fibers or ribbons. For the biasing elements 40, 60 are thus generally suitable materials with high tensile strength and elasticity, which ensure the spring properties for biasing the piezoelectric multilayer actuators 10.
  • the spring bands 40 are fixed under tension on the drive ring 20 at a point seen in the direction of action 12 of the piezoelectric Learnschich- taktors 10 vorzuspannenden and based on the vorzuspannenden piezoelectric multilayer actuator 10 at the farthest location P of the drive ring 20th located.
  • This arrangement is shown by way of example in FIG.
  • the spring band 40 is permanently attached at the point P.
  • the attachment of the spring band 40 is achieved by welding, riveting, soldering or in a similarly effective manner. Instead of fastening the spring strips 40 by welding, alternatively, positive connection types can be realized.
  • the drive ring 20 and / or the corresponding cross member 50 grooves 22, in which the spring strips 40 are guided.
  • crossing spring bands 40 run in different planes. These different levels are provided by means of differently deep grooves 22 in drive ring 20 and cross member 50.
  • a harmful frictional contact between the drive ring 20 and the spring strips 40 and between the piezoelectric multilayer actuators 10 and the spring strips 40 should be avoided. Therefore, either the drive ring 20 or the cross member 50 in the vicinity of the support points of the piezoelectric multilayer actuators 10 are designed such that the electrical connections of the piezoelectric multilayer actuators 10, not shown here are short-circuit proof out of the motor housing also not shown.
  • the use of the maximum available length for the spring bands 40 has the advantage that the spring rate of the spring bands 40 can be kept typical of a tube spring and still the carrying capacity is increased.
  • the following calculation example for a prestressed piezoelectric multilayer actuator 10 of the ring motor 1 with its typical dimensions of about 30 to 60 mm in length and 5 x 5 to 7 x 7 mm 2 cross-section illustrates the facts.
  • biasing force F 1,200 N are used.
  • the permissible material tension ⁇ is 1000 N / mm 2 . This value is less than a typical elastic limit of spring steel, since the piezoelectric multilayer actuator 10 is in the undeflected state during assembly and adds a dynamic mechanical stress component additively during its operation by the deflection.
  • a typical length of a spring band 40 is, for example, 80 mm. Therefore, the spring rate c F of the spring bands 40 for a piezoelectric multilayer actuator 10 is calculated according to FIG A "N 1,2 0 mm Nc F - E - - - 2 0 0 • 1 0 9 - • - - 3,0
  • spring wires 60 are used, as shown in Figures 4 and 5.
  • this has the same cross-section A as the spring band 40.
  • the diameter of an equivalent circular cross section for a spring wire 60 would be approximately 0.87 mm for this example.
  • the spring wire 60 is guided along the paths of the spring band 40 shown in Fig. 3. 4, the elements of the ring motor 1 known from FIG. 3 are also identified by the same reference numerals as in FIG.
  • the spring wires 60 are fastened and arranged in the same way as the above-described spring strips 40. For further explanation, reference is therefore made to the above description.
  • the embodiment shown in Fig. 5 is preferably used.
  • the spring wires 60 wrap around the drive ring 20 as frictionless as possible and are fastened to the rear side of the drive ring 20 near the ring-side actuator contact points AP.
  • the drive ring 20 is equipped with deflection elements 24, for example in the form of a cylinder.
  • the deflecting elements 24 are either attached as a separate part to the drive ring 20 or they are an integral part of the drive ring 20.
  • free-lying deflecting full cylinder that is deflecting rollers, or also attached to the drive ring 20 guide rollers used.
  • the spring travel extension achieved with the aid of the embodiment shown in FIG. 5 corresponds approximately to the edge length of the drive ring 20. Based on the above calculation example, the effective spring length of the spring wire 60 would then be approximately 120 mm. For the spring rate c F then results according to the following equation
  • the spring travel extension allows a further increase in the carrying capacity of the spring wire 60.
  • biasing elements 40, 60 are replaced by an approximately twice as long biasing element 40, 60.
  • the biasing member 40, 60 at least partially wraps around the cross member 50 and / or the drive ring 20.
  • drive ring 20 and cross member 50 are repeatedly wrapped with the spring wire 60 under tensile force standing.
  • both the tensile force in the single turn and the cross section of the spring the wire 60 of the number of turns are adapted to realize the desired spring characteristics.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

L'invention concerne un moteur électromécanique, notamment un moteur annulaire piézoélectrique, dont l'anneau d'entraînement (20) est mis en mouvement par des actionneurs multicouches (10) piézoélectriques. Les actionneurs multicouches (10) piézoélectriques sont précontraints par des éléments de précontrainte (40) qui s'étendent parallèlement au sens d'actionnement (12) de l'actionneur multicouche (10) piézoélectrique, au-delà de l'actionneur multicouche (10) piézoélectrique et au moins partiellement au-dessus de l'anneau (20) d'entraînement.
PCT/EP2007/056933 2006-07-17 2007-07-09 Moteur électromécanique WO2008009578A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07787215A EP2041813A2 (fr) 2006-07-17 2007-07-09 Moteur électromécanique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006032995.3 2006-07-17
DE102006032995A DE102006032995A1 (de) 2006-07-17 2006-07-17 Elektromechanischer Motor

Publications (2)

Publication Number Publication Date
WO2008009578A2 true WO2008009578A2 (fr) 2008-01-24
WO2008009578A3 WO2008009578A3 (fr) 2008-03-27

Family

ID=38822039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/056933 WO2008009578A2 (fr) 2006-07-17 2007-07-09 Moteur électromécanique

Country Status (3)

Country Link
EP (1) EP2041813A2 (fr)
DE (1) DE102006032995A1 (fr)
WO (1) WO2008009578A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10580959B2 (en) 2014-07-23 2020-03-03 Physik Instrumente (Pi) Gmbh & Co. Kg Actuator system
US11165369B2 (en) 2018-01-15 2021-11-02 Cts Corporation Pre-loaded piezoelectric stack actuator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006045293B4 (de) 2006-09-26 2012-03-29 Noliac A/S Festkörperaktor-Antriebsvorrichtung
DE102010060736B4 (de) 2010-11-23 2015-04-02 Gottfried Wilhelm Leibniz Universität Hannover Verfahren zur Herstellung eines Piezoaktors
DE102019118426A1 (de) * 2019-07-08 2021-01-14 Picofine GmbH Antriebsvorrichtung und -verfahren zur linearen oder rotatorischen Positionierung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079471A (en) * 1990-06-04 1992-01-07 Martin Marietta Corporation High torque harmonic traction motor
WO1995004378A1 (fr) * 1993-08-02 1995-02-09 Bonneville Scientific Incorporated Moteurs actionneurs de champ a entrainement direct
DE4435996A1 (de) * 1994-10-08 1996-04-11 Bosch Gmbh Robert Drehantrieb
DE19650900A1 (de) * 1996-12-07 1998-06-10 Bosch Gmbh Robert Piezoelektrischer Aktuator
WO2001032368A1 (fr) * 1999-10-31 2001-05-10 Nanomotion Ltd. Moteurs piezo-electriques et configurations d'entrainements par les moteurs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079471A (en) * 1990-06-04 1992-01-07 Martin Marietta Corporation High torque harmonic traction motor
WO1995004378A1 (fr) * 1993-08-02 1995-02-09 Bonneville Scientific Incorporated Moteurs actionneurs de champ a entrainement direct
DE4435996A1 (de) * 1994-10-08 1996-04-11 Bosch Gmbh Robert Drehantrieb
DE19650900A1 (de) * 1996-12-07 1998-06-10 Bosch Gmbh Robert Piezoelektrischer Aktuator
WO2001032368A1 (fr) * 1999-10-31 2001-05-10 Nanomotion Ltd. Moteurs piezo-electriques et configurations d'entrainements par les moteurs

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10580959B2 (en) 2014-07-23 2020-03-03 Physik Instrumente (Pi) Gmbh & Co. Kg Actuator system
US11165369B2 (en) 2018-01-15 2021-11-02 Cts Corporation Pre-loaded piezoelectric stack actuator

Also Published As

Publication number Publication date
EP2041813A2 (fr) 2009-04-01
DE102006032995A1 (de) 2008-01-31
WO2008009578A3 (fr) 2008-03-27

Similar Documents

Publication Publication Date Title
DE4026459A1 (de) Tuerverstaerkerrohr
DE102011016540A1 (de) Federungsanordnung für Radaufhängungen von Kraftfahrzeugen
DE102013002714A1 (de) Drehfedersystem für eine Radaufhängung eines Kraftfahrzeugs
DE102012005395A1 (de) Federungsanordnung für eine Radaufhängung eines Kraftfahrzeuges
WO2008009578A2 (fr) Moteur électromécanique
DE102010042222A1 (de) Fahrzeug
DE19540913C1 (de) Stromabnehmer für die Energieübertragung zwischen einem Fahrdraht und einem Triebwagen
DE10026169A1 (de) Verwendung eines elastischen Konstruktionselements als Torsionsfeder
EP3455495A1 (fr) Dispositif actionneur bistable comprenant un élément à mémoire de forme
EP2472137B1 (fr) Elément de ressort à lame et agencement de ressort à lame
WO2008009577A1 (fr) Moteur électromécanique
EP1519072B1 (fr) Ressort tubulaire pour un actionneur
DE102007012167A1 (de) Drillelastisches und biegesteifes Stabelement zum Lagern und Führen einer beweglichen Klappe gegenüber einem Flügel eines Luftfahrzeugs
DE10347265B4 (de) Wankstabilisator für das Fahrwerk eines Kraftfahrzeuges
DE102005054313A1 (de) Federvorrichtung
DE102007004035A1 (de) Schlauchförmiger Rollbalg
EP1619364B1 (fr) Antivibrateur
DE10201801C2 (de) Flexible Verbindungseinrichtung für zwei Rohrteile, insbesondere bei Abgasanlagen von Kraftfahrzeugen
EP1441144A2 (fr) Ressort à torsion ou ressort à flexion fabriqué de barres individuelles
DE102005046174A1 (de) Spannfeder
DE102005019102A1 (de) Jaquardmaschine mit bistabilem Element zum Heben und Senken von Kettfäden
DE102016001014A1 (de) Aufspulmaschine
EP2041811A2 (fr) Servomoteur électromécanique
EP2072861B1 (fr) Sécurité anti-rotation doté d'un égalisation de la tolérance
DE102022204290A1 (de) Drehwinkelbegrenzungsanordnung und Lenksystem für ein Kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07787215

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007787215

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU