WO2008007733A1 - Rubber composition for conveyor belt and conveyor belt - Google Patents

Rubber composition for conveyor belt and conveyor belt Download PDF

Info

Publication number
WO2008007733A1
WO2008007733A1 PCT/JP2007/063894 JP2007063894W WO2008007733A1 WO 2008007733 A1 WO2008007733 A1 WO 2008007733A1 JP 2007063894 W JP2007063894 W JP 2007063894W WO 2008007733 A1 WO2008007733 A1 WO 2008007733A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
conveyor belt
mass
parts
rubber composition
Prior art date
Application number
PCT/JP2007/063894
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Miyaji
Hiroaki Watanabe
Original Assignee
The Yokohama Rubber Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Yokohama Rubber Co., Ltd. filed Critical The Yokohama Rubber Co., Ltd.
Priority to AU2007273485A priority Critical patent/AU2007273485B2/en
Priority to CN2007800267928A priority patent/CN101490159B/en
Publication of WO2008007733A1 publication Critical patent/WO2008007733A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur

Definitions

  • the present invention relates to a rubber composition for a conveyor belt and a conveyor belt.
  • Comparator belts are often used for transportation of materials, etc.! /, But due to increased transport volume, improved transport efficiency, etc., there has been a demand for larger size and higher strength. Some km of things have also appeared.
  • Patent Document 1 discloses that a belt inner surface rubber that is in contact with the pulley of a conveyor belt in a conveyor belt used in a conveyance system for an article that is wound around a driving pulley and an idle pulley and travels.
  • Conveyor belts used in the conveyance system of goods that run around the drive pulley and idle pulley, and the inner rubber of the conveyor belt is made of natural rubber 40 ⁇ : LOO parts by weight, BR rubber 60 "Conveyor belt characterized in that 20 to 55 parts by weight of carbon black is blended with respect to a polymer of ⁇ 0 parts by weight.”
  • Patent Document 2 states that "in a conveyor belt provided with a cover rubber in contact with the belt support member on at least one of the upper and lower surfaces of the core layer, the cover rubber includes silica and a silane coupling agent. "Compare belt characterized by containing”. "
  • a rubber composition for a conveyor belt containing 30 to 65 parts by mass of carbon black having colloidal characteristics shown below with respect to 100 parts by mass of a rubber component.
  • N SA Nitrogen adsorption specific surface area
  • IA Iodine adsorption
  • DBP Dibutyl phthalate
  • Patent Document 4 states in claim 1 that “a rubber selected from the group consisting of the following: (a) natural rubber, rubber derived from a gen-based monomer, and mixtures thereof;
  • R is a divalent acyclic aliphatic group having about 2 to 16 carbon atoms, a cycloaliphatic group having about 5 to 20 carbon atoms, and about 6 to 18 carbon atoms. Or an aromatic aromatic group having from about 7 to 24 carbon atoms, wherein these divalent groups may contain heteroatoms where 0, N and S forces are also selected;
  • X is 0 Or an integer from 1 to 3; and
  • Y is hydrogen or —CH.
  • R 1 is an alkylene group having 1 to 20 carbon atoms, a cycloalkylene group having 6 to 24 carbon atoms, an arylene group having 6 to 18 carbon atoms, or 7 to 25 carbons.
  • a rubber compound having improved vulcanization resistance comprising a bisbenzothiazolyldithio compound.
  • claim 2 in the form of a tire, hose, belt or shoe sole. The listed rubber compound. Is described.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 139523
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-10215
  • Patent Document 3 Japanese Unexamined Patent Application Publication No. 2004-18752
  • Patent Document 4 Japanese Patent Laid-Open No. 10-77361
  • the conveyor belt using the rubber composition for the conveyor belt described in Patent Document 3 has a high energy loss index, and therefore, due to differences in the belt operation line (for example, the gradient of the line or bending), In some cases, power consumption is not sufficiently reduced.
  • the belt using the compound described in Patent Document 4 has a tendency to be inferior in wear resistance when the natural rubber (NR) is more than 80 parts by mass. Also, if the NR is less than 25 parts by mass, the 25% modulus ( ⁇ ) decreases, the energy loss index ( ⁇ ) increases, and the consumption
  • an object of the present invention is to provide a rubber composition for a conveyor belt and a conveyor belt capable of maintaining basic physical properties such as high breaking strength and wear resistance and sufficiently reducing power consumption. To do.
  • a rubber component comprising a specific proportion of natural rubber (NR) and polybutadiene rubber (BR), carbon black, silica, and silane coupling
  • NR natural rubber
  • BR polybutadiene rubber
  • a rubber composition containing a specific amount of an agent and diethylene glycol, and a conveyor belt that forms a back surface using a rubber composition having specific values of loss factor tan ⁇ and energy loss index ( ⁇ ⁇ ) are high.
  • the inventors have found that the basic physical properties such as breaking strength and wear resistance can be maintained and the power consumption can be sufficiently reduced, and the present invention has been completed.
  • the present invention provides the following (1) to (15).
  • (1) Contains a rubber component consisting of NR and BR, carbon black, silica, a silane coupling agent, and diethylene glycol,
  • the amount ratio of NR and BR in the rubber component (NRZBR) force is 80Z20 to 25Z75, the content force of the carbon black is 15 to 35 parts by mass with respect to 100 parts by mass of the rubber component,
  • the content force of the silica is 5 to 25 parts by mass with respect to 100 parts by mass of the rubber component,
  • the content force of the silane coupling agent is 0.5 to 3 parts by mass with respect to 100 parts by mass of the rubber component,
  • the rubber composition for a conveyor belt which is 0.5 to 4.5 parts by mass with respect to 100 parts by mass of the rubber component.
  • composition according to (1) further comprising 1,3 bis (citraconimidomethyl) benzene and ⁇ or hexamethylene-1,6 bis (thiosulfate) disodium salt-hydrate
  • a rubber composition for a conveyor belt comprising 1,3 bis (citraconimidomethyl) benzene and ⁇ or hexamethylene-1,6 bis (thiosulfate) disodium salt-hydrate
  • N SA Nitrogen adsorption specific surface area
  • the rubber composition for a conveyor belt according to any one of to (3).
  • a conveyor belt having a top cover rubber layer, a reinforcing layer, and a bottom cover rubber layer force
  • a conveyor belt wherein at least the back surface of the lower surface cover rubber layer is formed of the rubber composition for a conveyor belt according to any one of (1) to (5) above.
  • the tensile stress (MPa) at 25% elongation The tensile stress (MPa) at 25% elongation.
  • the rubber composition for a conveyor belt according to the above (7) comprising a rubber component comprising NR and BR, carbon black, silica, a silane coupling agent, and diethylene glycol.
  • (10) Contains a rubber component consisting of NR and BR, carbon black, silica, a silane coupling agent, and diethylene glycol,
  • the amount ratio of NR and BR in the rubber component (NRZBR) force is 80Z20 to 25Z75, the content force of the carbon black is 15 to 35 parts by mass with respect to 100 parts by mass of the rubber component,
  • the content force of the silica is 5 to 25 parts by mass with respect to 100 parts by mass of the rubber component,
  • the content force of the silane coupling agent is 0.5 to 3 parts by mass with respect to 100 parts by mass of the rubber component,
  • the content power of the diethylene glycol The rubber composition for a conveyor belt according to the above (7), which is 0.5 to 4.5 parts by mass with respect to 100 parts by mass of the rubber component.
  • the nitrogen adsorption specific surface area (N SA) of the silica is 100
  • a conveyor belt having a top cover rubber layer, a reinforcing layer, and a bottom cover rubber layer force
  • FIG. 1 is a cross-sectional view schematically showing an example of a preferred embodiment of the first conveyor belt of the present invention.
  • the rubber composition for a conveyor belt according to the first aspect of the present invention includes a rubber component having NR and BR strength, carbon black And silica, a silane coupling agent, and diethylene glycol,
  • the ratio of NR and BR in the rubber component (NRZBR) force is 0Z20-25Z75
  • the carbon black content is 15-35 parts by mass with respect to 100 parts by mass of the rubber component
  • the silica content The amount is 5 to 25 parts by mass with respect to 100 parts by mass of the rubber component
  • the content of the silane coupling agent is 0.5 to 3 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber component is composed of NR and BR.
  • the ratio of NR and BR in the rubber component (NRZBR) force is 0 ⁇ 20 ⁇ 25 ⁇ 75, preferably 70/30 ⁇ 50/50, more preferably 70/30 ⁇ 60/40! / ⁇ .
  • the resulting rubber composition for the first conveyor belt of the present invention has good rupture strength, wear resistance, and deviation after vulcanization, and the conveyor belt is good.
  • the basic physical properties can be maintained. This is considered to be because the compatibility between NR and BR is improved and the reinforcement is further improved.
  • BR preferably has a weight average molecular weight of 500,000 or more, more preferably 550,000 or more.
  • the weight average molecular weight force is in the range, the resulting rubber composition for the first conveyor belt of the present invention has improved rupture strength and tear strength after vulcanization, and better wear resistance.
  • BR is a terminal-modified polymer.
  • Preferable is butadiene rubber.
  • the terminal-modified polybutadiene rubber is not particularly limited as long as the terminal is modified BR.
  • a BR terminal modification method for example, a method of modifying the BR terminal (active terminal) using a denaturant can be used.
  • a modifier examples include halogenated tin such as tin tetrachloride and tin tetrabromide; halogenated organic tin compound such as tributyltin chloride;
  • the compound include: a silicon compound such as triethylsilane; an isocyanate group-containing compound such as phenyl isocyanate; an amidy compound such as N-methylpyrrolidone (NMP); a ratata compound; a urea compound; and an isocyanuric acid derivative.
  • the loss coefficient tan ⁇ and energy threshold index ( ⁇ ⁇ ) described later after vulcanization of the rubber composition for the first conveyor belt of the present invention obtained are obtained. Since both are in a favorable range, power consumption can be sufficiently reduced. This is thought to be because the modified end portion contributes to crosslinking and thus the crosslinking density after vulcanization increases.
  • terminal-modified polybutadiene having a weight average molecular weight of 500,000 or more.
  • Nipol BR1250H weight average molecular weight: 570,000, NMP-modified manufactured by Nippon Zeon.
  • the carbon black is not particularly limited, but is preferably one containing GPF (General Purpose Furnace), and may contain other carbon blacks shown below.
  • GPF General Purpose Furnace
  • Furnace sAF (Super Abrasion Furnace), ISAF (Intermediate super Abrasion Furnace), FEF (Fast Extruding Furnace), SRF (Semi—Rein forcing Furnace), FT (Fine Thermal), MT (Medium Thermal), etc. It is.
  • GPF Commercially available products can be used as such carbon black.
  • Specific examples of GPF include Asahi # 55 (Asahi Carbon Co., Ltd.), Seast V (Tokai Carbon Co., Ltd.), Dia Black G (Mitsubishi Corporation), etc. Carbon Black), Show Black N339 (Showa Cabot) and the like.
  • ISAF Show Black N220 (manufactured by Showa Cabot)
  • SAF is Seast 9 (manufactured by Tokai Carbon Co., Ltd.)
  • FEF is HTC # 100 (Nichinka Carbon Co., Ltd.)
  • SRF is Asahi # 50 ( Asahi Carbon Co., Ltd.)
  • Mitsubishi Dia Black R Mitsubishi Chemical Co., Ltd.
  • FT include Asahi # 15 (Asahi Carbon Co.) and HTC # 20 (Nisshin Carbon Co.).
  • the content of such carbon black is 15 to 35 parts by mass with respect to 100 parts by mass of the rubber component, and 20 to 30 parts by mass. It is more preferable that the amount is 25 to 30 parts by mass.
  • the resulting rubber composition for the first conveyor belt of the present invention will have good rupture strength and abrasion resistance after vulcanization, so that the basic physical properties as a conveyor belt can be obtained.
  • the loss coefficient tan ⁇ and energy loss index ( ⁇ ⁇ ), both of which will be described later, are both in a favorable range, so that the power consumption can be sufficiently reduced. This is considered to be because the intermolecular interaction between the carbon black and the rubber component is large and the reinforcing property is improved.
  • the first conveyor belt of the present invention is formed from the rubber composition obtained by using at least GPF as such a carbon black.
  • the energy loss index becomes better.
  • the silica is not particularly limited, and specific examples thereof include fumed silica, calcined silica, precipitated silica, ground silica, fused silica, anhydrous fine powder caustic acid, hydrous fine powder caustic acid, hydrous aluminum silicate, hydrous key. An acid calcium etc. are mentioned.
  • hydrous fine powdered caic acid is preferable because the resulting rubber composition for the first conveyor belt of the present invention has better rupture strength and wear resistance after vulcanization.
  • hydrous fine powdered caic acid examples include -Pupseal AQ (manufactured by Nippon Silica Kogyo Co., Ltd.), Toxeal GU (manufactured by Tokuyama Co., Ltd.) and the like.
  • the content of such silica is 5 to 25 parts by mass and 10 to 20 parts by mass with respect to 100 parts by mass of the rubber component. Is preferred.
  • the loss coefficient tan ⁇ and energy loss index ( ⁇ ⁇ ), which will be described later, after vulcanization of the rubber composition for the first conveyor belt of the present invention to be obtained are good. Therefore, the power consumption can be sufficiently reduced. This is thought to be because the intermolecular interaction between silica and the rubber component can be made smaller than that of carbon black.
  • such a silica has a nitrogen adsorption specific surface area (NSA) of 100 to 250 m.
  • NSA nitrogen adsorption specific surface area
  • the nitrogen adsorption specific surface area is a surrogate property of the surface area that silica can use for adsorption with rubber molecules, and is measured by the amount of nitrogen adsorbed on the silica surface.
  • the loss coefficient tan ⁇ and energy loss index ( ⁇ ⁇ ) described later after vulcanization of the obtained rubber composition for the first conveyor belt of the present invention are both better ranges. Therefore, power consumption can be reduced more sufficiently.
  • the silane coupling agent is preferably a polysulfide silane coupling agent used for rubber applications.
  • polysulfide-based silane coupling agent examples include bis (3-triethoxysilylpropyl) tetrasulfide and bis (3-triethoxysilylpropyl) disulfide.
  • the power of being bis (3-triethoxysilylpropyl) tetrasulfide is preferable because the resulting rubber composition for the first conveyor belt of the present invention has a better breaking strength after vulcanization.
  • silane coupling agent a commercially available product can be used. Specific examples include bis (3 triethoxysilylpropyl) tetrasulfide (Si69, manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (Si75, manufactured by Degussa), and the like.
  • the content of such a silane coupling agent is 0.5 to 3 parts by mass with respect to 100 parts by mass of the rubber component. ⁇ 2 parts by weight are preferred.
  • the resulting rubber composition for the first conveyor belt of the present invention has good rupture strength after vulcanization. This is considered to be because the chemical bond between the silane coupling agent and the silica increases.
  • the diethylene glycol is a compound represented by a chemical formula of (CH OHCH) O
  • diethylene glycol a commercial product manufactured by Nippon Shokubai Co., Ltd. can be used.
  • the content of the diethylene glycol is 0.5 to 4.5 parts by mass with respect to 100 parts by mass of the rubber component, and 0.5 to 2 It is preferable that the amount is 0.6 parts by mass, more preferably 1.8 to 1.8 parts by mass.
  • the loss coefficient tan ⁇ and energy loss index ( ⁇ ⁇ ) described later of the obtained rubber composition for the first conveyor belt of the present invention are both in a favorable range.
  • the power consumption can be sufficiently reduced. This is considered to be because the interaction between molecules between silica and the rubber component can be reduced.
  • the rubber composition for the first conveyor belt of the present invention includes 1, 3 screws in addition to the components described above.
  • One preferred embodiment contains (citraconimidomethyl) benzene and ⁇ ⁇ ⁇ or hexamethylene 1,6 bis (thiosulfate) disodium salt-hydrate.
  • 1,3 bis (citraconimidomethyl) benzene is a compound represented by the following formula (1)
  • hexamethylene 1,6 bis (thiosulfate) disodium salt-hydrate is represented by the following formula: It is a compound represented by (2).
  • the energy loss index ( ⁇ ) described later of the obtained rubber composition for the first conveyor belt of the present invention is further reduced, and the power consumption can be more sufficiently reduced. Can do.
  • the amount of the rubber component is preferably 0.1 to 2 parts by mass, more preferably 0.2 to 1 part by mass with respect to 100 parts by mass of the rubber component.
  • this content is the total when 1,3-bis (citraconimidomethyl) benzene and hexamethylene-1,6-bis (thiosulfate) disodium salt-hydrate are both included. Refers to the content.
  • PERKALINK 900 manufactured by FLEXSYS can be used as 1,3-bis (citraconimidomethyl) benzene, and hexamethylene-1,6-bis (thiosulfate) disodium salt-hydrate.
  • DURALINK HTS manufactured by FLEXSYS can be used.
  • the rubber composition for the first conveyor belt of the present invention may contain a crosslinking agent or a vulcanization retarder such as a vulcanizing agent, a vulcanization aid, and a vulcanization accelerator in addition to the above-described components. Furthermore, various compounding agents may be contained as long as the object of the present invention is not impaired.
  • Examples of the vulcanizing agent include xio, organic peroxide, metal oxide, and phenol. Examples thereof include vulcanizing agents such as rosin and quinone dioxime.
  • thio-based vulcanizing agent examples include powder, precipitation, high dispersibility, surface treatment, insoluble, dimorpholine disulfide, alkylphenol disulfide, and the like.
  • organic peroxide vulcanizing agents include benzoyl peroxide, t-butyl hydroperoxide, 2,4-dichlorobenzoic peroxide, 2,5 dimethyl-2,5 Examples include di (t-butylperoxy) hexane, 2,5 dimethylhexane 2,5 di (veroxylbenzoate), and the like.
  • vulcanization accelerator examples include vulcanization accelerators such as aldehyde'ammonia, guazine, thiurea, thiazole, sulfenamide, thiuram, and dithiocarnomate.
  • aldehyde 'ammonia-based vulcanization accelerator examples include hexamethyltetramine (H).
  • guanidine vulcanization accelerator examples include diphenyl darazine and the like.
  • thiourea vulcanization accelerator examples include ethylene thiourea.
  • thiazole-based vulcanization accelerator examples include dibenzothiazyl disulfide (DM), 2-mercaptobenzothiazole and its Zn salt.
  • sulfenamide-based vulcanization accelerator examples include N-cyclohexyl-2-benzothiazolylsulfenamide (CZ), N-tbutyl-2-benzothiazolylsulfenamide (NS). Etc.
  • thiuram vulcanization accelerator examples include tetramethylthiuram disulfide (TMTD), dipentamethylene thiuram tetrasulfide and the like.
  • dithiocarbamate-based vulcanization accelerator examples include Na dimethyl dithiocarbamate, Zn dimethyldithiocarbamate, Te dimethyl dithiocarbamate, and the like. Mate, Cu-dimethinoresidiocarbamate, Fe-dimethinoresidiocarbamate, pipecoline pipecolyldithiocarbamate, and the like.
  • vulcanization aid general rubber aids can be used together, and examples thereof include zinc white, stearic acid, oleic acid, and Zn salts thereof.
  • the total content of the vulcanizing agent, the vulcanization accelerator and the vulcanization aid is 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component. Is more preferably 0.5 to 5 parts by mass.
  • the resulting rubber composition for the first conveyor belt of the present invention has a better rupture strength after vulcanization, and the loss coefficient tan ⁇ and energy loss index ( ⁇ ⁇ ) described later are also improved. Better.
  • vulcanization retarder examples include, for example, organic acids such as phthalic anhydride, benzoic acid, salicylic acid, and acetylsalicylic acid; -Troso compounds such as polymers of naphthylamine, trosotrimethyl monodihydroquinoline; halides such as trichloromelanin; 2-mercaptobenzimidazole; santoguard PVI: and the like.
  • organic acids such as phthalic anhydride, benzoic acid, salicylic acid, and acetylsalicylic acid
  • -Troso compounds such as polymers of naphthylamine, trosotrimethyl monodihydroquinoline
  • halides such as trichloromelanin
  • 2-mercaptobenzimidazole 2-mercaptobenzimidazole
  • santoguard PVI and the like.
  • the content is preferably 0.1 to 0.3 parts by mass with respect to 100 parts by mass of the rubber component, and 0.1 to 0.2 parts by mass. Is more preferable.
  • the content range is within this range, the scorch stability when the conveyor belt is extruded from the resulting rubber composition for the first conveyor belt of the present invention is improved, and the productivity is improved.
  • the compounding agent include, for example, reinforcing agents (fillers) other than the above-described carbon black, anti-aging agents, antioxidants, pigments (dyes), plasticizers, thixotropic agents, Examples include ultraviolet absorbers, flame retardants, solvents, surfactants (including leveling agents), dispersants, dehydrating agents, antifungal agents, adhesion-imparting agents, antistatic agents, and processing aids.
  • those generally used for rubber compositions can be used. Their blending amounts are not particularly limited and can be arbitrarily selected.
  • the rubber composition for the first conveyor belt of the present invention is manufactured by adding the above-described rubber component, carbon black, silica, silane coupling agent, diethylene glycol, and various compounding agents as required, and kneading with a Banbury mixer or the like. Then, a vulcanizing agent, a vulcanization aid, and a vulcanization accelerator can be kneaded with a kneading roll machine or the like. Further, vulcanization can be carried out under the usual conditions. Specifically, for example, it is carried out by heating under conditions of a temperature of about 140 to 150 ° C. for 0.5 hours.
  • the conveyor belt according to the first aspect of the present invention (hereinafter sometimes simply referred to as “the first conveyor belt of the present invention") is a conveyor belt comprising an upper cover rubber layer, a reinforcing layer, and a lower cover rubber layer.
  • the conveyor belt is formed from the rubber composition for the first conveyor belt of the present invention described above.
  • the force for explaining the first conveyor belt of the present invention with reference to FIG. 1 The structure of the first conveyor belt of the present invention is the rubber composition for the first conveyor belt of the present invention described above on the back surface of the bottom cover rubber layer. If you use a thing, it is not limited to this.
  • FIG. 1 is a cross-sectional view schematically showing an example of a preferred embodiment of the first conveyor belt of the present invention.
  • 1 is a conveyor belt
  • 2 is a top cover rubber layer
  • 3 is a reinforcing layer
  • 4 is a bottom cover rubber layer
  • 5 is a transporting surface
  • 11 and 16 are outer layers
  • 12 and 15 are inner layers.
  • the conveyor belt 1 has a reinforcing layer 3 as a central layer, and an upper cover rubber layer 2 and a lower cover rubber layer 4 are provided on both sides thereof, and the upper cover rubber layer 2 includes an outer layer 11 and an inner layer.
  • the two-layer force of 12 is also configured, and the bottom cover rubber layer 4 is also configured of the two-layer force of the outer layer 16 and the inner layer 15.
  • the outer layer and the inner layer (the outer layer 11 and the inner layer 12, the outer layer 16 and the inner layer 15) of the upper cover rubber layer 2 and the lower cover rubber layer 4 may be formed using different rubber compositions.
  • the upper cover rubber layer 2 is composed of two layers of an outer layer 11 and an inner layer 12.
  • the number of layers constituting the upper cover rubber layer 2 is It is not limited to 2 and may be 1 or 3 or more. In the case of 3 or more, these layers may be formed using different rubber compositions. The same applies to the bottom cover rubber layer 4.
  • the outer layer 11 constituting the transported material carrying surface 5 of the upper cover rubber layer 2 is also formed with a rubber composition having excellent heat resistance, wear resistance, oil resistance, etc. Therefore, the upper cover rubber layer 2 Is preferably composed of two-layer force.
  • the outer layer 16 constituting the back surface of the lower cover rubber layer 4 is the first competition of the present invention described above.
  • the inner layer 15 of the lower cover rubber layer 4 is formed from other rubber composition covers because the manufacturing cost and the adhesion to the reinforcing layer 3 are important. Desirably, because the cover rubber layer 4 is composed of two-layer force, it is preferable.
  • the core of the reinforcing layer 3 is not particularly limited, and those used for ordinary competitor belts can be appropriately selected and used, and specific examples thereof include those that have the power of cotton and chemical fibers or synthetic fibers. Examples include rubber paste coated and infiltrated, RFL-treated one folded, special woven nylon canvas, steel cord, etc. These can be used alone or in combination. May be used.
  • the shape of the reinforcing layer 3 is not particularly limited, and may be a sheet shape as shown in FIG. 1. Wire-shaped reinforcing wires may be embedded in parallel.
  • the rubber composition for forming the inner layer 12 of the upper surface cover rubber layer 2 and the inner layer 15 of the lower surface cover rubber 4 is not particularly limited, and a rubber composition used for a normal competitor belt can be appropriately selected and used. These may be used alone or in combination of two or more.
  • the rubber composition for forming the outer layer 11 of the upper cover rubber layer 2 is not particularly limited, and a rubber composition used for an ordinary conveyor belt has a basic characteristic (for example, heat resistance) required for the outer layer. , Wear resistance, oil resistance, etc.) can be appropriately selected and used.
  • the back surface of the lower surface cover rubber layer is formed of the rubber composition for the first conveyor belt of the present invention, so that the basic physical properties such as high breaking strength and wear resistance are maintained.
  • the power consumption can be sufficiently reduced.
  • the thickness force of the lower cover rubber layer is preferably 5 to 20 mm, more preferably 6 to 15 mm.
  • the thickness of the bottom cover rubber layer refers to the total thickness of these layers when the bottom cover rubber layer is composed of an inner layer and an outer layer.
  • the thickness of the bottom cover rubber layer is within this range, even when a high-temperature transported article is used for transport, it is possible to prevent belt curling (cutting) caused by rubber deterioration or the like.
  • the method for producing the first conveyor belt of the present invention is not particularly limited, and is usually used. Etc. can be adopted.
  • the raw materials are kneaded using a roll, an adader, a Banbury mixer, etc., then formed into a sheet shape for each cover rubber layer using a calendar, etc., and then each layer obtained
  • a method in which the reinforcing layers are laminated in a predetermined order and pressed at a temperature of 140 to 170 ° C. for 10 to 60 minutes is preferably exemplified.
  • the rubber composition for a conveyor belt according to the second aspect of the present invention (hereinafter sometimes simply referred to as "the second rubber composition for a conveyor belt of the present invention") is measured at a measurement temperature of 20 ° C.
  • the loss factor tan ⁇ measured by stretching 10% and giving a vibration with an amplitude of ⁇ 2% at a frequency of 10 Hz is 0.04 to 0.07.
  • the rubber composition has an energy loss index ( ⁇ ) represented by the following formula [1] of 0.080 or less.
  • the tensile stress (MPa) at 25% elongation The tensile stress (MPa) at 25% elongation.
  • the second aspect of the present invention focuses on energy loss in the belt compressor device (system), particularly energy loss that occurs when the conveyor belt crosses the roller during operation, and by reducing this energy loss, the belt compressor is reduced. The power consumption of the entire device is reduced.
  • the loss coefficient tan ⁇ is the storage elastic modulus E 'representing the dynamic properties of the rubber composition and the loss elastic modulus ⁇ ⁇
  • the ratio of tan S E “/ ⁇ ', the smaller the value, the smaller the amount of energy (energy loss) dissipated as heat during the deformation of the rubber composition. It can be used as a measure of rusty loss.
  • the tan ⁇ value is set within a specific range so that both low power consumption and basic physical properties such as breaking strength and elongation at break can be achieved, and that the composite belt can be used for a conveyor line requiring a high physical property. It is said.
  • the loss coefficient tan ⁇ of the rubber composition for the second conveyor belt of the present invention is 0.04 to 0.07, preferably 0.05 to 0.07, and preferably 0.05 to 0.0.
  • the force of becoming 065 is more preferable, and the force of 0.055 to 0.065 is more preferable! / ⁇ .
  • the loss factor tan ⁇ is a strip shape (length: 20 mm) from a vulcanized product obtained by vulcanizing the rubber composition for the second conveyor belt of the present invention at 148 ° C for 30 minutes. (X width 5mm X thickness 2mm) Using a test piece cut out at a measurement temperature of 20 ° C, stretched 10% and measured the loss factor when measured by giving a vibration with an amplitude of ⁇ 2% at a frequency of 10Hz. Say.
  • the energy loss index ( ⁇ ) is expressed by the above equation [1].
  • the above formula [1] is considered to be effective in the evaluation of the force used as an index of the friction reduction efficiency with the road surface used in the field of conventional tires, and the power consumption reduction of the rubber composition for the conveyor belt.
  • SpGr in the above formula [1] indicates a specific gravity (g / cm 3 ) at 20 ° C. If this value is small, the total mass can be reduced, and the same low power consumption effect as a small load can be obtained.
  • tan ⁇ in the above equation [1] affects the energy loss due to deformation of the rubber composition at the time of overcoming the roller, as described above. This value is small! /, And a low power consumption effect is obtained.
  • ⁇ in the above equation [1] is a force vector indicating a tensile stress (MPa) at 25% elongation.
  • M represents the rubber composition for the second conveyor belt of the present invention at 148 ° C., 30
  • the energy loss effect number ( ⁇ ⁇ ) shown in the above formula [1] of the rubber composition for the second conveyor belt of the present invention is 0.080 or less and 0.07 or less.
  • a force of less than 0.07 is more preferred than S, and a force of 0.030 to 0.065 is even more preferred! /.
  • the rubber yarn for a second conveyor belt according to the present invention has a loss coefficient tan ⁇ measured under a predetermined condition of 0.04 to 0.07, and energy represented by the above formula [1].
  • the rubber composition has a loss index ( ⁇ 11) of 0.080 or less.
  • the value of the loss factor tan ⁇ is defined in the range of 0.04 to 0.07 is simply the energy loss index ( ⁇ This is because even if ⁇ ) is 0.080 or less, if tan ⁇ is less than 0.04, basic physical properties such as breaking strength and breaking elongation cannot be secured.
  • the rubber composition for the second conveyor belt of the present invention preferably contains a rubber component composed of NR and BR.
  • a rubber component consisting of NR and BR the rubber composition for the second conveyor belt of the present invention has good rupture strength and abrasion resistance after vulcanization, and maintains the basic physical properties as a competitor belt. be able to.
  • BR those detailed in the rubber composition for the first conveyor belt of the present invention can be used, and for the same reason as in the rubber composition for the first conveyor belt of the present invention, the weight average is used. It is preferable that the molecular weight is 500,000 or more, and end-modified polybutadiene is preferable.
  • the rubber composition for the second conveyor belt of the present invention preferably contains a rubber component having NR and BR strength, carbon black, silica, a silane coupling agent, and diethylene glycol. .
  • a rubber component having NR and BR strength carbon black, silica, a silane coupling agent, and diethylene glycol.
  • the rubber composition for the second conveyor belt of the present invention has any rupture strength and abrasion resistance after vulcanization.
  • the basic physical properties of the conveyor belt can be maintained and the loss factor tan ⁇ and Since the energy loss index ( ⁇ ) is in a better range, the power consumption can be reduced more sufficiently.
  • the rubber composition for the second conveyor belt of the present invention contains a rubber component having NR and BR force, carbon black, silica, a silane coupling agent, and diethylene glycol, and the rubber component
  • the ratio of NR to BR (NRZBR) force is 0 to 20 to 25 to 75
  • the carbon black content is 15 to 35 parts by mass with respect to 100 parts by mass of the rubber component
  • the silica content is the rubber.
  • the content of the silane coupling agent is 0.5 to 3 parts by mass with respect to 100 parts by mass of the rubber component, and the content of the diethylene glycol is the above
  • the amount is preferably 0.5 to 4.5 parts by mass with respect to 100 parts by mass of the rubber component.
  • the amount it (NR / BR) of NR and BR in the rubber component is more preferable than a force S of 70/30 to 50/50, More preferably, it is 70 / 30-60 / 40.
  • the carbon black content is more preferably 25-30 parts by mass, more preferably 20-30 parts by mass with respect to 100 parts by mass of the rubber component.
  • the content of the silica is more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the rubber component.
  • the content of the silane coupling agent is more preferably 1 to 2 parts by mass with respect to 100 parts by mass of the rubber component.
  • the diethylene glycol content is 0 with respect to 100 parts by mass of the rubber component. More preferably, it is 5 to 2 parts by mass, and still more preferably 0.6 to 1.8 parts by mass.
  • the silica has a nitrogen adsorption specific surface area (NSA) of 100 as in the case of the rubber composition for the first conveyor belt of the present invention.
  • ⁇ 250M 2 is more preferable to use those preferred instrument 125 ⁇ 200m 2 Zg to use one of the Zg.
  • the rubber composition for the second conveyor belt of the present invention is the same as the rubber composition for the first conveyor belt of the present invention, such as 1,3 bis (citraconimidomethyl) benzene and Z or hexamethylene 1,6 bis. It is one of the preferred embodiments to contain (thiosulfate) disodium salt-hydrate.
  • 1,3 bis (citraconimidmethyl) benzene is a compound represented by the above formula (1)
  • Disodium salt dihydrate is a compound represented by the above formula (2).
  • the energy loss index ( ⁇ ⁇ ) of the obtained rubber composition for the second conveyor belt of the present invention becomes smaller, and the power consumption can be more sufficiently reduced.
  • the obtained rubber composition for the second conveyor belt of the present invention has an improved tensile stress (M) at 25% elongation and a smaller loss factor tan ⁇ .
  • the amount of the rubber component is preferably 0.1 to 2 parts by mass, more preferably 0.2 to 1 part by mass with respect to 100 parts by mass of the rubber component.
  • This content is the total content when both 1,3bis (citraconimidomethyl) benzene and hexamethylene-1,6-bis (thiosulfate) disodium salt-hydrate are contained. Say quantity.
  • the rubber composition for the second conveyor belt of the present invention includes a vulcanizing agent, a vulcanizing agent, in addition to the components described above. It may contain a crosslinking agent and a vulcanization retarder such as a vulcanization aid and a vulcanization accelerator, and may further contain various compounding agents as long as the object of the present invention is not impaired.
  • vulcanizing agents vulcanizing agents, vulcanization aids, vulcanization accelerators, vulcanization retarders and various compounding agents
  • the competitor belt according to the second aspect of the present invention is a conveyor belt comprising an upper cover rubber layer, a reinforcing layer, and a lower cover rubber layer.
  • the conveyor belt is formed by the rubber composition for the second conveyor belt of the present invention described above. That is, the second conveyor belt of the present invention is used in the above-described first conveyor belt of the present invention, and instead of the rubber composition for the first conveyor belt of the present invention, the rubber for the second conveyor belt of the present invention.
  • the composition is used, and the other configuration is the same as that of the first conveyor of the present invention.
  • the back surface of the lower surface cover rubber layer is formed of the rubber composition for the second conveyor belt of the present invention, so that the basic physical properties such as high breaking strength and wear resistance are maintained.
  • the power consumption can be sufficiently reduced.
  • the method for producing the second conveyor belt of the present invention is not particularly limited, and a commonly used method or the like can be adopted, and the second conveyor belt can be produced by the same method as the first conveyor belt of the present invention.
  • Each rubber composition for a conveyor belt was prepared with the composition components (parts by mass) shown in Table 1 below with respect to 100 parts by mass of the rubber components. About each obtained rubber composition, the various physical properties after vulcanization were measured and evaluated by the method shown below. The results are shown in Table 1 below.
  • Reference Examples 1 and 2 were prepared by preparing rubber compositions similar to Example 5 and Comparative Example 2 described in JP-A-11 139523. Both reference examples are silica, Since it contained tylene glycol and a silane coupling agent, it became a comparative example, and physical properties other than abrasion resistance were measured and evaluated by the methods shown below.
  • Each obtained rubber composition was vulcanized at 148 ° C. for 30 minutes to prepare a vulcanized rubber composition.
  • a tensile test at a tensile speed of 500 mmZ was performed in accordance with JIS K6251-2004 using a test piece punched out from each vulcanized rubber composition prepared in the shape of No. 3 dumbbell, and its breaking strength (T
  • breaking strength is 14 MPa or more, it can be evaluated as having a high breaking strength.
  • a DIN abrasion test was conducted in accordance with JIS-K6264-2-2005 using a test piece cut out from each prepared vulcanized rubber composition into a disc shape (diameter: 16.2 mm X thickness: 6 mm). The amount of wear (mm 3 ) when the DIN wear test was performed at room temperature was measured.
  • each vulcanized rubber composition into strips (length 20mm x width 5mm x thickness 2mm)!
  • the loss factor t an ⁇ using a viscoelastic spectrometer manufactured by Toyo Seiki Seisakusho was measured. The measurement was performed by extending 10% at a measurement temperature of 20 ° C. and applying a vibration with an amplitude of ⁇ 2% at a frequency of 10 Hz.
  • the energy loss index ( ⁇ ) of each vulcanized rubber composition was determined from the above formula [1].
  • composition components such as the rubber component shown in Table 1 above, those shown below were used.
  • NR Natural Rubber
  • VCR617 Polybutadiene rubber
  • BRl Nipol BR1220 (weight average molecular weight: 460,000, terminal unmodified, manufactured by Nippon Zeon)
  • BR2 Nipol BR1250H (weight average molecular weight: 570,000, terminal NMP modified, manufactured by Nippon Zeon)
  • GPF Diablack G, manufactured by Mitsubishi Chemical Corporation
  • Silica 2 Hydrous fine powdered caic acid (Nitrogen adsorption specific surface area (N SA): 120 m 2 / g, Toxeal G
  • Silane coupling agent bis (3-triethoxysilylpropyl) tetrasulfide (Si69, manufactured by Degussa)
  • Vulcanizing agent 1 Sulfur (oil-treated sulfur, manufactured by Hosoi Chemical Co., Ltd.)
  • Vulcanization accelerator 1 N-tert butyl 2-benzothiazolylsulfenamide (Noxera I NS, manufactured by Ouchi Shinsei Chemical Co., Ltd.)
  • Anti-reversion agent 1 1, 3 Bis (citraconimidomethyl) benzene (PERKALIN K 900, manufactured by FLEXSYS)
  • Reversion inhibitor 2 Hexamethylene 1, 6 bis (thiosulfate) disodium salt-hydrate (DURALINK HTS, manufactured by FLEXSYS)
  • the rubber compositions obtained in Examples 1 to 26 maintain the basic physical properties such as high rupture strength and wear resistance and reduce power consumption from the physical properties after vulcanization. It has become a component that it is a rubber thread and a composition suitable for a competitor belt that can be sufficiently planned.
  • a rubber composition containing no diethylene glycol or the like (Comparative Examples 1 to 5)
  • a rubber composition containing a rubber component with a low NR ratio Comparative Example 6
  • a high V amount of carbon black a rubber composition
  • the rubber composition (Comparative Example 8) and the rubber compositions of Reference Examples 1 and 2 have a high energy loss index ( ⁇ ) due to their physical properties after vulcanization. It has become a component that the rubber composition is insufficient in reducing power consumption.
  • the M is improved and the loss factor tan ⁇ is reduced, so that the energy loss index ( ⁇ ) is smaller.
  • the rubber compositions obtained in Examples 18 to 21 containing silica containing an anti-reversion agent and having a nitrogen adsorption specific surface area in a suitable range are as follows:
  • the rubber yarn and the composition suitable for the conveyor belt can reduce power consumption more sufficiently. However, it was divided.
  • the rubber compositions obtained in Examples 24 to 26 containing BR having a weight average molecular weight of 500,000 or more and having a terminal-modified polybutadiene as a BR have improved wrinkles and a loss factor.
  • the energy loss index ( ⁇ ⁇ ⁇ ) is further reduced, and it is found that the rubber yarn is suitable for a conveyor belt that can further reduce power consumption.

Abstract

Disclosed are a rubber composition for a conveyor belt and a conveyor belt which can maintain basic physical properties such as high rupture strength and high wear resistance and can reduce the power consumption to a satisfactory level. The rubber composition comprises a rubber component comprising natural rubber (NR) and polybutadiene rubber (BR), carbon black, silica, a silane coupling agent and diethylene glycol, wherein the ratio between the amount of natural rubber and the amount of polybutadiene rubber (NR/BR) in the rubber component is 80/20 to 25/75, the content of carbon black is 15 to 35 parts by mass based on 100 parts by mass of the rubber component, the content of silica is 5 to 25 parts by mass based on 100 parts by mass or the rubber component, the content of the silane coupling agent is 0.5 to 3 parts by mass based on 100 parts by mass of the rubber component, and the content of diethylene glycol is 0.5 to 4.5 parts by mass based on 100 parts by mass of the rubber component.

Description

明 細 書  Specification
コンべャベルト用ゴム組成物およびコンべャベルト  Rubber composition for conveyor belt and conveyor belt
技術分野  Technical field
[0001] 本発明は、コンペャベルト用ゴム組成物およびコンペャベルトに関する。  [0001] The present invention relates to a rubber composition for a conveyor belt and a conveyor belt.
背景技術  Background art
[0002] コンペャベルトは、資材等の輸送によく用いられて!/、るが、輸送量の増大、輸送効 率の向上等により、大型化および高強力化が要請され、近年には、全長が数 kmにも 及ぶものも登場してきて 、る。  [0002] Comparator belts are often used for transportation of materials, etc.! /, But due to increased transport volume, improved transport efficiency, etc., there has been a demand for larger size and higher strength. Some km of things have also appeared.
このため、設備コスト、消費電力が膨らんでおり、低コストおよび低消費電力のベル トコンべャシステムが求められており、特に、ベルトを構成するゴム特性の改良により For this reason, equipment costs and power consumption are increasing, and there is a need for belt conveyor systems that are low in cost and low power consumption.
、ベルトコンペャの低コストィ匕および低消費電力化が検討されて 、る。 Lower cost and lower power consumption of belt competitors are being studied.
[0003] 例えば、特許文献 1には、「駆動プーリーと遊動プーリー間に巻き掛けされて走行 する物品の搬送システムに供されるコンベアベルトにあって、コンベアベルトの前記 プーリーに接触するベルト内面ゴムの物性ロスファクター(tan δ )及び動的弾性率( E' )を、夫々 0. 04≤tan 6≤0. 12、 E' ≥
Figure imgf000002_0001
としたことを特徴とするコ ンベアベルト。」および「駆動プーリーと遊動プーリー間に巻き掛けされて走行する物 品の搬送システムに供されるコンベアベルトにあって、コンベアベルトの内面ゴムを、 天然ゴム 40〜: LOO重量部、 BRゴム 60〜0重量部からなるポリマーに対して、カーボ ンブラックを 20〜55重量部配合したことを特徴とするコンベアベルト。」が記載されて いる。
[0003] For example, Patent Document 1 discloses that a belt inner surface rubber that is in contact with the pulley of a conveyor belt in a conveyor belt used in a conveyance system for an article that is wound around a driving pulley and an idle pulley and travels. The physical property loss factor (tan δ) and dynamic elastic modulus (E ') of 0.04≤tan 6≤0.12, E'≥
Figure imgf000002_0001
Conveyor belt characterized by that. ”And“ Conveyor belts used in the conveyance system of goods that run around the drive pulley and idle pulley, and the inner rubber of the conveyor belt is made of natural rubber 40 ~: LOO parts by weight, BR rubber 60 "Conveyor belt characterized in that 20 to 55 parts by weight of carbon black is blended with respect to a polymer of ~ 0 parts by weight."
[0004] また、特許文献 2には、「芯体層の少なくとも上下いずれか一面側に、ベルト支持部 材と接するカバーゴムを備えてなるコンペャベルトにおいて、該カバーゴムに、シリカ およびシランカップリング剤が含有されてなることを特徴とするコンペャベルト。」が記 載されている。  [0004] Further, Patent Document 2 states that "in a conveyor belt provided with a cover rubber in contact with the belt support member on at least one of the upper and lower surfaces of the core layer, the cover rubber includes silica and a silane coupling agent. "Compare belt characterized by containing". "
[0005] 更に、本出願人により、「ゴム成分 100質量部に対し、以下に示すコロイダル特性を 持つカーボンブラックを 30〜65質量部含有するコンペャベルト用ゴム組成物。  Further, according to the present applicant, “a rubber composition for a conveyor belt containing 30 to 65 parts by mass of carbon black having colloidal characteristics shown below with respect to 100 parts by mass of a rubber component.
1)窒素吸着比表面積 (N SA)が 80 (m2/g)以下 2)ヨウ素吸着量 (IA)が 70 (mg/g)以下 1) Nitrogen adsorption specific surface area (N SA) is 80 (m 2 / g) or less 2) Iodine adsorption (IA) 70 (mg / g) or less
3)ジブチルフタレート(DBP)吸油量が 100 (cm3 ZlOOg)以上」や、「周波数 10 Hz、動歪み 2%、 20°Cにおける損失係数 tan S力 0. 120超 0. 200以下であるコン べャベルト用ゴム組成物。」などが提案されている(特許文献 3参照。;)。 3) Dibutyl phthalate (DBP) oil absorption of 100 (cm 3 ZlOOg) or higher ”or“ loss factor at frequency 10 Hz, dynamic strain 2%, 20 ° C A rubber composition for a belt is proposed (see Patent Document 3;).
更に、特許文献 4には、請求項 1に「次の:(a)天然ゴム、ジェン系単量体から誘導 されるゴムおよびそれらの混合物より成る群から選ばれるゴム;  Further, Patent Document 4 states in claim 1 that “a rubber selected from the group consisting of the following: (a) natural rubber, rubber derived from a gen-based monomer, and mixtures thereof;
(b)約 0. 1力 約 lOphrの、次の一般式(I): (b) about 0.1 force about lOphr of the following general formula (I):
[化 1] Y
Figure imgf000003_0001
[Chemical 1] Y
Figure imgf000003_0001
(式中、 Rは二価の、約 2から 16個の炭素原子を有する非環状脂肪族基、約 5から 20 個の炭素原子を有する環状脂肪族基、約 6から 18個の炭素原子を有する芳香族基 または約 7から 24個の炭素原子を有するアルキル芳香族基であり、ここでこれら二価 の基は 0、 Nおよび S力も選ばれるヘテロ原子を含んでいてもよく; Xは 0、または 1か ら 3の整数であり;そして Yは水素または- CHである。)を有するビスマレインイミドィ匕 (Wherein R is a divalent acyclic aliphatic group having about 2 to 16 carbon atoms, a cycloaliphatic group having about 5 to 20 carbon atoms, and about 6 to 18 carbon atoms. Or an aromatic aromatic group having from about 7 to 24 carbon atoms, wherein these divalent groups may contain heteroatoms where 0, N and S forces are also selected; X is 0 Or an integer from 1 to 3; and Y is hydrogen or —CH.)
3  Three
合物、および (c)約 0. 1力も約 lOphrの、次の一般式 (Π): Compound, and (c) about 0.1 force also about lOphr of the following general formula (Π):
[化 2] [Chemical 2]
IIII
Figure imgf000003_0002
Figure imgf000003_0002
(式中、 R1は 1から 20個の炭素原子を有するアルキレン基、 6から 24個の炭素原子を 有するシクロアルキレン基、 6から 18個の炭素原子を有するァリーレン基、 7から 25個 の炭素原子を有するアルカリ一レン基および次式: Wherein R 1 is an alkylene group having 1 to 20 carbon atoms, a cycloalkylene group having 6 to 24 carbon atoms, an arylene group having 6 to 18 carbon atoms, or 7 to 25 carbons. Alkali monolene group having atoms and the following formula:
[化 3] [Chemical 3]
- - ^ -J-O-i-R1 -?- で示される二価の基より成る群力 選ばれる。)を有するビスべンゾチアゾリルジチォ 化合物を含んでなる改善された加硫もどり抵抗性を有するゴムコンパゥンド。」が記載 され、請求項 2に「タイヤ、ホース、ベルトまたは靴底の形状をしている、請求項 1に記 載のゴムコンパウンド。」が記載されている。 --^ -JOiR 1 -?-A group force consisting of a divalent group represented by-is selected. A rubber compound having improved vulcanization resistance comprising a bisbenzothiazolyldithio compound. And claim 2 in the form of a tire, hose, belt or shoe sole. The listed rubber compound. Is described.
[0007] 特許文献 1 :特開平 11 139523号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 11 139523
特許文献 2 :特開 2004— 10215号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-10215
特許文献 3 :特開 2004— 18752号公報  Patent Document 3: Japanese Unexamined Patent Application Publication No. 2004-18752
特許文献 4:特開平 10— 77361号公報  Patent Document 4: Japanese Patent Laid-Open No. 10-77361
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] し力しながら、特許文献 1に記載のコンペャベルトは、 tan δ値を小さくして低消費 電力化を目的としたものであるが、 tan δ値を小さくしすぎると破断強度 (Τ [0008] However, the competitor belt described in Patent Document 1 aims to reduce power consumption by reducing the tan δ value. However, if the tan δ value is too small, the breaking strength (Τ
Β )および 破断伸び (Ε )も低下し、引裂き強さおよび耐疲労性に劣る場合があるため、コンペ  Β) and elongation at break (Ε) are also reduced, which may result in inferior tear strength and fatigue resistance.
Β  Β
ャベルトの走行時にカバーゴム等の表面破壊が進行し、コンペャベルトの表面故障 を引き起こし、稼動が安定しない問題があった。  When the cover belt was running, the surface of the cover rubber, etc., was destroyed, causing a surface failure of the conveyor belt, resulting in unstable operation.
また、特許文献 2に記載のコンペャベルトは、エネルギーロス指数が高くなるため、 消費電力の低減が十分ではない問題があった。  In addition, the conveyor belt described in Patent Document 2 has a problem that power consumption is not sufficiently reduced because the energy loss index is high.
更に、特許文献 3に記載のコンべャベルト用ゴム組成物を用 ヽたコンべャベルトは 、エネルギーロス指数が高くなるため、ベルト稼動ラインの相違 (例えば、ラインの勾 配や曲がり等)によって、消費電力の低減が十分ではない場合があった。  Furthermore, the conveyor belt using the rubber composition for the conveyor belt described in Patent Document 3 has a high energy loss index, and therefore, due to differences in the belt operation line (for example, the gradient of the line or bending), In some cases, power consumption is not sufficiently reduced.
更に、特許文献 4に記載のコンパウンドを用いたベルトは、天然ゴム (NR)が 80質 量部より多いと耐摩耗性が劣ることが分力 た。また、 NRが 25質量部より少ない場 合は 25%モジュラス (Μ )が低下し、エネルギーロス指数(Δ Η)が大きくなり、消費  Furthermore, the belt using the compound described in Patent Document 4 has a tendency to be inferior in wear resistance when the natural rubber (NR) is more than 80 parts by mass. Also, if the NR is less than 25 parts by mass, the 25% modulus (Μ) decreases, the energy loss index (ΔΗ) increases, and the consumption
25  twenty five
電力の低減が図れないという問題があることが分力つた。更に、引用文献 4に記載コ ンパウンドはシリカを含有するがシランカップリング剤およびジエチレングリコールを 含有しないため、損失係数 tan δおよびエネルギーロス指数( Δ Η)が大きくなり、消 費電力の低減が図れないという問題があることが分力つた。  There was a problem that the power could not be reduced. Furthermore, since the compound described in Reference 4 contains silica but does not contain a silane coupling agent and diethylene glycol, the loss factor tan δ and energy loss index (Δ Η) increase, and power consumption cannot be reduced. That was the problem.
[0009] そこで、本発明は、高破断強度、耐摩耗性等の基本物性を維持し、消費電力の低 減を十分に図ることができるコンペャベルト用ゴム組成物およびコンペャベルトを提 供することを課題とする。 [0009] Accordingly, an object of the present invention is to provide a rubber composition for a conveyor belt and a conveyor belt capable of maintaining basic physical properties such as high breaking strength and wear resistance and sufficiently reducing power consumption. To do.
課題を解決するための手段 [0010] 本発明者は、上記課題を解決するために鋭意検討した結果、特定割合の天然ゴム (NR)およびポリブタジエンゴム(BR)からなるゴム成分と、カーボンブラックと、シリカ と、シランカップリング剤と、ジエチレングリコールとを特定量含有するゴム組成物、な らびに、損失係数 tan δおよびエネルギーロス指数( Δ Η)が特定の値となるゴム組成 物を用いて裏面表面を形成するコンペャベルトが高破断強度、耐摩耗性等の基本 物性を維持し、消費電力の低減を十分に図ることができることを見出し、本発明を完 成させた。 Means for solving the problem [0010] As a result of intensive studies to solve the above problems, the present inventor has found that a rubber component comprising a specific proportion of natural rubber (NR) and polybutadiene rubber (BR), carbon black, silica, and silane coupling A rubber composition containing a specific amount of an agent and diethylene glycol, and a conveyor belt that forms a back surface using a rubber composition having specific values of loss factor tan δ and energy loss index (Δ Η) are high. The inventors have found that the basic physical properties such as breaking strength and wear resistance can be maintained and the power consumption can be sufficiently reduced, and the present invention has been completed.
[0011] 即ち、本発明は、下記(1)〜(15)を提供する。  That is, the present invention provides the following (1) to (15).
(1) NRおよび BRからなるゴム成分と、カーボンブラックと、シリカと、シランカツプリ ング剤と、ジエチレングリコールとを含有し、  (1) Contains a rubber component consisting of NR and BR, carbon black, silica, a silane coupling agent, and diethylene glycol,
上記ゴム成分中の NRと BRとの量比(NRZBR)力 80Z20〜25Z75であり、 上記カーボンブラックの含有量力 上記ゴム成分 100質量部に対して 15〜35質量 部であり、  The amount ratio of NR and BR in the rubber component (NRZBR) force is 80Z20 to 25Z75, the content force of the carbon black is 15 to 35 parts by mass with respect to 100 parts by mass of the rubber component,
上記シリカの含有量力 上記ゴム成分 100質量部に対して 5〜25質量部であり、 上記シランカップリング剤の含有量力 上記ゴム成分 100質量部に対して 0. 5〜3 質量部であり、  The content force of the silica is 5 to 25 parts by mass with respect to 100 parts by mass of the rubber component, The content force of the silane coupling agent is 0.5 to 3 parts by mass with respect to 100 parts by mass of the rubber component,
上記ジエチレングリコールの含有量力 上記ゴム成分 100質量部に対して 0. 5〜4 . 5質量部である、コンペャベルト用ゴム組成物。  Content power of the diethylene glycol The rubber composition for a conveyor belt, which is 0.5 to 4.5 parts by mass with respect to 100 parts by mass of the rubber component.
(2)更に、 1, 3 ビス (シトラコンイミドメチル)ベンゼン、および Ζまたは、へキサメ チレン— 1, 6 ビス (チォサルフェート)ニナトリウム塩-水和物を含有する、上記(1 )に記載のコンペャベルト用ゴム組成物。  (2) The composition according to (1), further comprising 1,3 bis (citraconimidomethyl) benzene and Ζ or hexamethylene-1,6 bis (thiosulfate) disodium salt-hydrate A rubber composition for a conveyor belt.
(3)上記 1, 3 ビス (シトラコンイミドメチル)ベンゼン、および Ζまたは、上記へキサ メチレン 1, 6 ビス(チォサルフェート)ニナトリウム塩-水和物の含有量力 上記 ゴム成分 100質量部に対して 0. 1〜2質量部である、上記(2)に記載のコンペャべ ルト用ゴム組成物。  (3) Content power of the above 1,3 bis (citraconimidomethyl) benzene and Ζ or hexamethylene 1,6 bis (thiosulfate) disodium salt-hydrate 0.1. The rubber composition for a conveyor according to the above (2), which is 1 to 2 parts by mass.
(4)上記シリカの窒素吸着比表面積 (N SA)が、 100〜250m  (4) Nitrogen adsorption specific surface area (N SA) of the above silica is 100-250m
2 2Zgである上記(1)A 2 2 Zg above (1)
〜(3)のいずれかに記載のコンペャベルト用ゴム組成物。 The rubber composition for a conveyor belt according to any one of to (3).
(5)上記ポリブタジエンゴム(BR)力 末端変性ポリブタジエンゴムである上記(1)〜 (4)のいずれかに記載のコンペャベルト用ゴム組成物。 (5) The above-mentioned polybutadiene rubber (BR) force The rubber composition for a conveyor belt according to any one of (4).
[0012] (6)上面カバーゴム層、補強層および下面カバーゴム層力 なるコンペャベルトで あって、 (6) A conveyor belt having a top cover rubber layer, a reinforcing layer, and a bottom cover rubber layer force,
上記下面カバーゴム層の少なくとも裏面表面が、上記(1)〜(5)の 、ずれかに記載 のコンペャベルト用ゴム組成物により形成される、コンべャベルト。  A conveyor belt, wherein at least the back surface of the lower surface cover rubber layer is formed of the rubber composition for a conveyor belt according to any one of (1) to (5) above.
[0013] (7) 20°Cの測定温度下で、 10%伸張させ、振幅 ± 2%の振動を振動数 10Hzで与 えて測定した損失係数 tan δが 0. 04〜0. 07となり、  [0013] (7) The loss factor tan δ measured by extending 10% at a measurement temperature of 20 ° C and giving a vibration with an amplitude of ± 2% at a frequency of 10 Hz was 0.04 to 0.07.
下記式 [1]に示すエネルギーロス指数(Δ Η)が 0. 080以下となる、コンペャベルト 用ゴム組成物。  A rubber composition for a conveyor belt having an energy loss index (ΔΔ) represented by the following formula [1] of 0.080 or less.
A H= (SpGr X tan 6 ) /M [1]  A H = (SpGr X tan 6) / M [1]
25  twenty five
ここで、 SpGrは、 20°Cでの比重(g/cm3 )、 tan δは、 20°Cの測定温度下で、 10 %伸張させ、振幅 ± 2%の振動を振動数 10Hzで与えて測定した損失係数、 M は、 Where SpGr is specific gravity (g / cm 3 ) at 20 ° C, tan δ is 10% stretched at a measurement temperature of 20 ° C, and a vibration with an amplitude of ± 2% is given at a frequency of 10Hz. The measured loss factor, M, is
25 twenty five
25%伸び時における引張応力(MPa)である。 The tensile stress (MPa) at 25% elongation.
(8) NRおよび BRからなるゴム成分を含有する上記(7)に記載のコンペャベルト用 ゴム組成物。  (8) The rubber composition for a conveyor belt according to the above (7), which contains a rubber component consisting of NR and BR.
(9) NRおよび BRからなるゴム成分と、カーボンブラックと、シリカと、シランカツプリ ング剤と、ジエチレングリコールとを含有する上記(7)に記載のコンペャベルト用ゴム 組成物。  (9) The rubber composition for a conveyor belt according to the above (7), comprising a rubber component comprising NR and BR, carbon black, silica, a silane coupling agent, and diethylene glycol.
(10) NRおよび BRからなるゴム成分と、カーボンブラックと、シリカと、シランカツプリ ング剤と、ジエチレングリコールとを含有し、  (10) Contains a rubber component consisting of NR and BR, carbon black, silica, a silane coupling agent, and diethylene glycol,
上記ゴム成分中の NRと BRとの量比(NRZBR)力 80Z20〜25Z75であり、 上記カーボンブラックの含有量力 上記ゴム成分 100質量部に対して 15〜35質量 部であり、  The amount ratio of NR and BR in the rubber component (NRZBR) force is 80Z20 to 25Z75, the content force of the carbon black is 15 to 35 parts by mass with respect to 100 parts by mass of the rubber component,
上記シリカの含有量力 上記ゴム成分 100質量部に対して 5〜25質量部であり、 上記シランカップリング剤の含有量力 上記ゴム成分 100質量部に対して 0. 5〜3 質量部であり、  The content force of the silica is 5 to 25 parts by mass with respect to 100 parts by mass of the rubber component, The content force of the silane coupling agent is 0.5 to 3 parts by mass with respect to 100 parts by mass of the rubber component,
上記ジエチレングリコールの含有量力 上記ゴム成分 100質量部に対して 0. 5〜4 . 5質量部である、上記(7)に記載のコンペャベルト用ゴム組成物。 (11)上記シリカの窒素吸着比表面積 (N SA)が、 100 The content power of the diethylene glycol The rubber composition for a conveyor belt according to the above (7), which is 0.5 to 4.5 parts by mass with respect to 100 parts by mass of the rubber component. (11) The nitrogen adsorption specific surface area (N SA) of the silica is 100
2 〜250m2Zgである上記(92 to 250m 2 Zg above (9
)または(10)に記載のコンペャベルト用ゴム組成物。 ) Or (10) a rubber composition for a conveyor belt.
(12)上記ポリブタジエンゴム(BR)力 末端変性ポリブタジエンゴムである上記(8) 〜(11)のいずれかに記載のコンペャベルト用ゴム組成物。  (12) The rubber composition for a conveyor belt according to any one of the above (8) to (11), which is a polybutadiene rubber (BR) force.
[0014] (13)更に、 1, 3 ビス(シトラコンイミドメチル)ベンゼン、および Zまたは、へキサメ チレン—1, 6—ビス (チォサルフェート)ニナトリウム塩-水和物を含有する上記(7) 〜(12)のいずれかに記載のコンペャベルト用ゴム組成物。  (13) The above (7), further comprising 1, 3 bis (citraconimidomethyl) benzene and Z or hexamethylene-1,6-bis (thiosulfate) disodium salt-hydrate The rubber composition for a conveyor belt according to any one of to (12).
(14)上記 1, 3 ビス (シトラコンイミドメチル)ベンゼン、および Zまたは、上記へキ サメチレン 1, 6 ビス(チォサルフェート)ニナトリウム塩-水和物の含有量力 上 記ゴム成分 100質量部に対して 0. 1〜2質量部である、上記(13)に記載のコンペャ ベルト用ゴム組成物。  (14) Content power of 1,3 bis (citraconimidomethyl) benzene and Z or hexamethylene 1,6 bis (thiosulfate) disodium salt-hydrate Above 100 parts by weight of rubber component The rubber composition for a conveyor belt according to the above (13), which is 0.1 to 2 parts by mass.
[0015] (15)上面カバーゴム層、補強層および下面カバーゴム層力 なるコンペャベルト であって、  [0015] (15) A conveyor belt having a top cover rubber layer, a reinforcing layer, and a bottom cover rubber layer force,
上記下面カバーゴム層の少なくとも裏面表面力 上記(7)〜(14)の 、ずれかに記 載のコンペャベルト用ゴム組成物により形成される、コンべャベルト。 発明の効果  A conveyor belt formed of the rubber composition for a conveyor belt according to any one of the above (7) to (14), wherein at least the back surface force of the lower surface cover rubber layer. The invention's effect
[0016] 以下に説明するように、本発明によれば、高破断強度、耐摩耗性等の基本物性を 維持し、消費電力の低減を十分に図ることができるコンペャベルトを提供することが できるため有用である。  [0016] As described below, according to the present invention, it is possible to provide a conveyor belt that can maintain basic physical properties such as high breaking strength and wear resistance and can sufficiently reduce power consumption. Useful.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]図 1は、本発明の第 1コンペャベルトの好適な実施態様の一例を模式的に示し た断面図である。  FIG. 1 is a cross-sectional view schematically showing an example of a preferred embodiment of the first conveyor belt of the present invention.
符号の説明  Explanation of symbols
[0018] 1 :コンペャベルト [0018] 1: Competition belt
2 :上面カバーゴム層  2: Top cover rubber layer
3 :補強層  3: Reinforcement layer
4 :下面カノく一ゴム層  4: Bottom rubber layer
5 :運搬物搬送面 11、 16 :外層 5: Conveying surface 11, 16: Outer layer
12、 15 :内層  12, 15: Inner layer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下に、本発明を詳細に説明する。 [0019] The present invention is described in detail below.
本発明の第 1の態様に係るコンペャベルト用ゴム組成物(以下、単に「本発明の第 1コンペャベルト用ゴム組成物」という場合がある。)は、 NRおよび BR力もなるゴム成 分と、カーボンブラックと、シリカと、シランカップリング剤と、ジエチレングリコールとを 含有し、  The rubber composition for a conveyor belt according to the first aspect of the present invention (hereinafter sometimes simply referred to as “the first rubber composition for a conveyor belt of the present invention”) includes a rubber component having NR and BR strength, carbon black And silica, a silane coupling agent, and diethylene glycol,
上記ゴム成分中の NRと BRとの量比(NRZBR)力 0Z20〜25Z75であり、上記 カーボンブラックの含有量が上記ゴム成分 100質量部に対して 15〜35質量部であり 、上記シリカの含有量が上記ゴム成分 100質量部に対して 5〜25質量部であり、上 記シランカップリング剤の含有量が上記ゴム成分 100質量部に対して 0. 5〜3質量 部であり、上記ジエチレングリコールの含有量が上記ゴム成分 100質量部に対して 0 . 5〜4. 5質量部である、ゴム組成物である。  The ratio of NR and BR in the rubber component (NRZBR) force is 0Z20-25Z75, the carbon black content is 15-35 parts by mass with respect to 100 parts by mass of the rubber component, and the silica content The amount is 5 to 25 parts by mass with respect to 100 parts by mass of the rubber component, and the content of the silane coupling agent is 0.5 to 3 parts by mass with respect to 100 parts by mass of the rubber component. Is a rubber composition having a content of 0.5 to 4.5 parts by mass with respect to 100 parts by mass of the rubber component.
次に、本発明の第 1コンペャベルト用ゴム組成物の各成分について詳述する。  Next, each component of the rubber composition for the first conveyor belt of the present invention will be described in detail.
[0020] (ゴム成分) [0020] (Rubber component)
上記ゴム成分は、 NRおよび BRからなる。  The rubber component is composed of NR and BR.
上記ゴム成分中の NRと BRとの量比(NRZBR)力 0Ζ20〜25Ζ75であり、 70 /30〜50/50であるの力好ましく、 70/30〜60/40であるの力より好まし!/ヽ。  The ratio of NR and BR in the rubber component (NRZBR) force is 0Ζ20 ~ 25Ζ75, preferably 70/30 ~ 50/50, more preferably 70/30 ~ 60/40! / ヽ.
NRおよび BRの含有割合が上述の範囲であると、得られる本発明の第 1コンペャ ベルト用ゴム組成物の加硫後の破断強度および耐摩耗性カ^、ずれも良好となり、コ ンべャベルトとしての基本物性を維持することができる。これは、 NRと BRの相溶性が 良好となり、補強性がより向上するためであると考えられる。  When the content ratio of NR and BR is in the above range, the resulting rubber composition for the first conveyor belt of the present invention has good rupture strength, wear resistance, and deviation after vulcanization, and the conveyor belt is good. The basic physical properties can be maintained. This is considered to be because the compatibility between NR and BR is improved and the reinforcement is further improved.
[0021] 本発明の第 1コンペャベルト用ゴム組成物においては、 BRは、重量平均分子量が 50万以上であるのが好ましぐ 55万以上であるのがより好ましい。重量平均分子量 力 の範囲であると、得られる本発明の第 1コンペャベルト用ゴム組成物の加硫後の 破断強度および引裂き強さが向上し、耐摩耗性もより良好となる。  [0021] In the rubber composition for the first conveyor belt of the present invention, BR preferably has a weight average molecular weight of 500,000 or more, more preferably 550,000 or more. When the weight average molecular weight force is in the range, the resulting rubber composition for the first conveyor belt of the present invention has improved rupture strength and tear strength after vulcanization, and better wear resistance.
[0022] また、本発明の第 1コンペャベルト用ゴム組成物においては、 BRは、末端変性ポリ ブタジエンゴムであるのが好まし 、。 [0022] In the rubber composition for the first conveyor belt of the present invention, BR is a terminal-modified polymer. Preferable is butadiene rubber.
末端変性ポリブタジエンゴムは、末端が変性された BRであれば特に限定されな ヽ 。また、 BRの末端変性方法としては、例えば、変性剤を使用して BRの末端 (活性末 端)を変性する方法を用いることができる。  The terminal-modified polybutadiene rubber is not particularly limited as long as the terminal is modified BR. In addition, as a BR terminal modification method, for example, a method of modifying the BR terminal (active terminal) using a denaturant can be used.
このような変性剤としては、具体的には、例えば、四塩化スズ、四臭化スズなどのハ ロゲンィ匕スズ;トリブチルスズクロライドなどのハロゲンィ匕有機スズィ匕合物;四塩ィ匕ケィ 素、クロロトリエチルシランなどのケィ素化合物;フエ-ルイソシァネートなどのイソシァ ネート基含有化合物; N—メチルピロリドン (NMP)などのアミドィ匕合物;ラタタム化合 物;尿素化合物;イソシァヌル酸誘導体;等が挙げられる。  Specific examples of such a modifier include halogenated tin such as tin tetrachloride and tin tetrabromide; halogenated organic tin compound such as tributyltin chloride; Examples of the compound include: a silicon compound such as triethylsilane; an isocyanate group-containing compound such as phenyl isocyanate; an amidy compound such as N-methylpyrrolidone (NMP); a ratata compound; a urea compound; and an isocyanuric acid derivative.
[0023] このような末端変性ポリブタジエンゴムを用いることにより、得られる本発明の第 1コ ンべャベルト用ゴム組成物の加硫後の後述する損失係数 tan δおよびエネルギー口 ス指数(Δ Η)がいずれも良好な範囲となるため、消費電力の低減を十分に図ること ができる。これは、変性した末端部分が架橋に寄与するため、加硫後の架橋密度が 上がるためであると考えられる。 [0023] By using such a terminal-modified polybutadiene rubber, the loss coefficient tan δ and energy threshold index (Δ Η) described later after vulcanization of the rubber composition for the first conveyor belt of the present invention obtained are obtained. Since both are in a favorable range, power consumption can be sufficiently reduced. This is thought to be because the modified end portion contributes to crosslinking and thus the crosslinking density after vulcanization increases.
[0024] 重量平均分子量が 50万以上である末端変性ポリブタジエンとしては市販品を用い ることがでさる。 [0024] Commercially available products can be used as the terminal-modified polybutadiene having a weight average molecular weight of 500,000 or more.
具体的には、例えば、 日本ゼオン社製の Nipol BR1250H (重量平均分子量: 57 万、 NMP変性)等が挙げられる。  Specific examples include Nipol BR1250H (weight average molecular weight: 570,000, NMP-modified) manufactured by Nippon Zeon.
[0025] (カーボンブラック) [0025] (Carbon black)
上記カーボンブラックは、特に限定されないが、 GPF (General Purpose Furna ce)を含むものであるのが好ましぐ以下に示すその他のカーボンブラックを含むもの であってもよい。  The carbon black is not particularly limited, but is preferably one containing GPF (General Purpose Furnace), and may contain other carbon blacks shown below.
[0026] その他のカーボンブラックとしては、具体的には、例えば、 HAF (High Abrasion  [0026] Specifically, as other carbon black, for example, HAF (High Abrasion
Furnace)、 sAF (Super Abrasion Furnace)、 ISAF (Intermediate super Abrasion Furnace)、 FEF (Fast Extruding Furnace)、 SRF (Semi— Rein forcing Furnace)、 FT (Fine Thermal)、 MT (Medium Thermal)等 »、挙げら れる。  Furnace), sAF (Super Abrasion Furnace), ISAF (Intermediate super Abrasion Furnace), FEF (Fast Extruding Furnace), SRF (Semi—Rein forcing Furnace), FT (Fine Thermal), MT (Medium Thermal), etc. It is.
[0027] このようなカーボンブラックとしては、巿販品を用いることができる。 具体的には、 GPFとしては旭 # 55 (旭カーボン社製)、シースト V (東海カーボン社 製)、ダイアブラック G (三菱ィ匕学社製)等が例示され、 HAFとしてはシースト 3 (東海 カーボン社製)、ショウブラック N339 (昭和キャボット社製)等が例示される。 [0027] Commercially available products can be used as such carbon black. Specific examples of GPF include Asahi # 55 (Asahi Carbon Co., Ltd.), Seast V (Tokai Carbon Co., Ltd.), Dia Black G (Mitsubishi Corporation), etc. Carbon Black), Show Black N339 (Showa Cabot) and the like.
また、 ISAFとしてはショウブラック N220 (昭和キャボット社製)、 SAFとしてはシー スト 9 (東海カーボン社製)、 FEFとしては HTC # 100 (新日化カーボン社製)、 SRF としては旭 # 50 (旭カーボン社製)や三菱ダイアブラック R (三菱化学社製)、 FTとし ては旭 # 15 (旭カーボン社製)や HTC # 20 (新日化カーボン社製)等が例示される  In addition, ISAF is Show Black N220 (manufactured by Showa Cabot), SAF is Seast 9 (manufactured by Tokai Carbon Co., Ltd.), FEF is HTC # 100 (Nichinka Carbon Co., Ltd.), and SRF is Asahi # 50 ( Asahi Carbon Co., Ltd.), Mitsubishi Dia Black R (Mitsubishi Chemical Co., Ltd.), and FT include Asahi # 15 (Asahi Carbon Co.) and HTC # 20 (Nisshin Carbon Co.).
[0028] 本発明の第 1コンペャベルト用ゴム組成物においては、このようなカーボンブラック の含有量は、上記ゴム成分 100質量部に対して、 15〜35質量部であり、 20〜30質 量部であるのが好ましぐ 25〜30質量部であるのがより好ましい。 [0028] In the rubber composition for the first conveyor belt of the present invention, the content of such carbon black is 15 to 35 parts by mass with respect to 100 parts by mass of the rubber component, and 20 to 30 parts by mass. It is more preferable that the amount is 25 to 30 parts by mass.
カーボンブラックの含有量が上述の範囲であると、得られる本発明の第 1コンペャ ベルト用ゴム組成物の加硫後の破断強度および耐摩耗性がいずれも良好となるため コンペャベルトとしての基本物性を維持でき、また、後述する損失係数 tan δおよび エネルギーロス指数( Δ Η)がいずれも良好な範囲となるため消費電力の低減を十分 に図ることができる。これは、カーボンブラックと上記ゴム成分との間の分子間の相互 作用が大きぐ補強性が向上するためであると考えられる。  If the carbon black content is within the above range, the resulting rubber composition for the first conveyor belt of the present invention will have good rupture strength and abrasion resistance after vulcanization, so that the basic physical properties as a conveyor belt can be obtained. In addition, the loss coefficient tan δ and energy loss index (Δ Η), both of which will be described later, are both in a favorable range, so that the power consumption can be sufficiently reduced. This is considered to be because the intermolecular interaction between the carbon black and the rubber component is large and the reinforcing property is improved.
[0029] また、本発明の第 1コンペャベルト用ゴム組成物においては、このようなカーボンブ ラックとして、少なくとも GPFを用いることにより、得られるゴム組成物から形成される 本発明の第 1のコンべャベルトのエネルギーロス指数がより良好となる。  [0029] In the rubber composition for the first conveyor belt of the present invention, the first conveyor belt of the present invention is formed from the rubber composition obtained by using at least GPF as such a carbon black. The energy loss index becomes better.
[0030] (シリカ)  [0030] (Silica)
上記シリカは、特に限定されないが、その具体例としては、ヒュームドシリカ、焼成シ リカ、沈降シリカ、粉砕シリカ、溶融シリカ、無水微粉ケィ酸、含水微粉ケィ酸、含水ケ ィ酸アルミニウム、含水ケィ酸カルシウム等が挙げられる。  The silica is not particularly limited, and specific examples thereof include fumed silica, calcined silica, precipitated silica, ground silica, fused silica, anhydrous fine powder caustic acid, hydrous fine powder caustic acid, hydrous aluminum silicate, hydrous key. An acid calcium etc. are mentioned.
これらのうち、含水微粉ケィ酸であるのが、得られる本発明の第 1コンペャベルト用 ゴム組成物の加硫後の破断強度および耐摩耗性がより良好となる理由力 好ましい  Of these, hydrous fine powdered caic acid is preferable because the resulting rubber composition for the first conveyor belt of the present invention has better rupture strength and wear resistance after vulcanization.
[0031] このようなシリカとしては、巿販品を用いることができる。 具体的には、含水微粉ケィ酸として、 -ップシール AQ (日本シリカ工業社製)、トク シール GU (トクャマ社製)等が例示される。 [0031] Commercially available products can be used as such silica. Specifically, examples of the hydrous fine powdered caic acid include -Pupseal AQ (manufactured by Nippon Silica Kogyo Co., Ltd.), Toxeal GU (manufactured by Tokuyama Co., Ltd.) and the like.
[0032] 本発明の第 1コンペャベルト用ゴム組成物においては、このようなシリカの含有量は 、上記ゴム成分 100質量部に対して、 5〜25質量部であり、 10〜20質量部であるの が好ましい。 [0032] In the rubber composition for the first conveyor belt of the present invention, the content of such silica is 5 to 25 parts by mass and 10 to 20 parts by mass with respect to 100 parts by mass of the rubber component. Is preferred.
シリカの含有量が上述の範囲であると、得られる本発明の第 1コンペャベルト用ゴム 組成物の加硫後の後述する損失係数 tan δおよびエネルギーロス指数 ( Δ Η)カ^、 ずれも良好な範囲となるため、消費電力の低減を十分に図ることができる。これは、 シリカと上記ゴム成分との間の分子間の相互作用をカーボンブラックに比べ小さくす ることができるためであると考えられる。  When the silica content is in the above-mentioned range, the loss coefficient tan δ and energy loss index (Δ Η), which will be described later, after vulcanization of the rubber composition for the first conveyor belt of the present invention to be obtained are good. Therefore, the power consumption can be sufficiently reduced. This is thought to be because the intermolecular interaction between silica and the rubber component can be made smaller than that of carbon black.
[0033] 本発明の第 1コンペャベルト用ゴム糸且成物においては、このようなシリカとして、窒 素吸着比表面積 (N SA)が 100〜250m [0033] In the rubber yarn composite for the first conveyor belt of the present invention, such a silica has a nitrogen adsorption specific surface area (NSA) of 100 to 250 m.
2 2Zgのものを用いるのが好ましぐ 125-2It is preferable to use 2 2 Zg 125-2
OOm2Zgのものを用いるのがより好まし 、。 I prefer to use OOm 2 Zg.
ここで、窒素吸着比表面積は、シリカがゴム分子との吸着に利用できる表面積の代 用特性であり、シリカ表面への窒素吸着量で測定される。この値が上記範囲であると 、得られる本発明の第 1コンべャベルト用ゴム組成物の加硫後の後述する損失係数 t an δおよびエネルギーロス指数( Δ Η)がいずれもより良好な範囲となるため、消費 電力の低減をより十分に図ることができる。  Here, the nitrogen adsorption specific surface area is a surrogate property of the surface area that silica can use for adsorption with rubber molecules, and is measured by the amount of nitrogen adsorbed on the silica surface. When this value is in the above range, the loss coefficient tan δ and energy loss index (Δ Η) described later after vulcanization of the obtained rubber composition for the first conveyor belt of the present invention are both better ranges. Therefore, power consumption can be reduced more sufficiently.
[0034] (シランカップリング剤) [0034] (Silane coupling agent)
上記シランカップリング剤は、ゴム用途に使用されるポリスルフイド系シランカツプリ ング剤を用いるのが好まし 、。  The silane coupling agent is preferably a polysulfide silane coupling agent used for rubber applications.
上記ポリスルフイド系シランカップリング剤としては、具体的には、例えば、ビス(3— トリエトキシシリルプロピル)テトラスルフイド、ビス(3—トリエトキシシリルプロピル)ジス ルフイド等が挙げられる。  Specific examples of the polysulfide-based silane coupling agent include bis (3-triethoxysilylpropyl) tetrasulfide and bis (3-triethoxysilylpropyl) disulfide.
中でも、ビス(3—トリエトキシシリルプロピル)テトラスルフイドであるの力 得られる本 発明の第 1コンべャベルト用ゴム組成物の加硫後の破断強度がより良好となる理由 力 好ましい。  Among them, the power of being bis (3-triethoxysilylpropyl) tetrasulfide is preferable because the resulting rubber composition for the first conveyor belt of the present invention has a better breaking strength after vulcanization.
[0035] このようなシランカップリング剤としては、市販品を用いることができる。 具体的には、ビス(3 トリエトキシシリルプロピル)テトラスルフイド(Si69、デグッサ 社製)、ビス(3—トリエトキシシリルプロピル)ジスルフイド (Si75、デグッサ社製)等が 例示される。 [0035] As such a silane coupling agent, a commercially available product can be used. Specific examples include bis (3 triethoxysilylpropyl) tetrasulfide (Si69, manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (Si75, manufactured by Degussa), and the like.
[0036] 本発明の第 1コンペャベルト用ゴム組成物においては、このようなシランカップリン グ剤の含有量は、上記ゴム成分 100質量部に対して、 0. 5〜3質量部であり、 1〜2 質量部であるのが好まし 、。  [0036] In the rubber composition for a first conveyor belt of the present invention, the content of such a silane coupling agent is 0.5 to 3 parts by mass with respect to 100 parts by mass of the rubber component. ~ 2 parts by weight are preferred.
シランカップリング剤の含有量が上述の範囲であると、得られる本発明の第 1コンペ ャベルト用ゴム組成物の加硫後の破断強度が良好となる。これは、シランカップリング 剤と上記シリカとの化学結合が増大するためであると考えられる。  When the content of the silane coupling agent is in the above range, the resulting rubber composition for the first conveyor belt of the present invention has good rupture strength after vulcanization. This is considered to be because the chemical bond between the silane coupling agent and the silica increases.
[0037] (ジエチレングリコール) [0037] (Diethylene glycol)
上記ジエチレングリコールは、(CH OHCH ) Oの化学式で表される化合物である  The diethylene glycol is a compound represented by a chemical formula of (CH OHCH) O
2 2 2 上記ジエチレングリコールとしては、 日本触媒社製の市販品を用いることができる。  2 2 2 As the diethylene glycol, a commercial product manufactured by Nippon Shokubai Co., Ltd. can be used.
[0038] 本発明の第 1コンペャベルト用ゴム組成物においては、上記ジエチレングリコール の含有量は、上記ゴム成分 100質量部に対して、 0. 5〜4. 5質量部であり、 0. 5〜2 質量部であるのが好ましぐ 0. 6〜1. 8質量部であるのがより好ましい。  [0038] In the rubber composition for a first conveyor belt of the present invention, the content of the diethylene glycol is 0.5 to 4.5 parts by mass with respect to 100 parts by mass of the rubber component, and 0.5 to 2 It is preferable that the amount is 0.6 parts by mass, more preferably 1.8 to 1.8 parts by mass.
ジエチレングリコールの含有量が上述の範囲であると、得られる本発明の第 1コン べャベルト用ゴム組成物の後述する損失係数 tan δおよびエネルギーロス指数( Δ Η)がいずれも良好な範囲となるため消費電力の低減を十分に図ることができる。こ れは、シリカと上記ゴム成分との間の分子間の相互作用を低減することができるため であると考えられる。  If the content of diethylene glycol is in the above range, the loss coefficient tan δ and energy loss index (Δ Η) described later of the obtained rubber composition for the first conveyor belt of the present invention are both in a favorable range. The power consumption can be sufficiently reduced. This is considered to be because the interaction between molecules between silica and the rubber component can be reduced.
[0039] 本発明の第 1コンペャベルト用ゴム組成物は、上述した各成分以外に、 1, 3 ビス  [0039] The rubber composition for the first conveyor belt of the present invention includes 1, 3 screws in addition to the components described above.
(シトラコンイミドメチル)ベンゼン、および Ζまたは、へキサメチレン 1, 6 ビス(チ ォサルフェート)ニナトリウム塩-水和物を含有するのが好ましい態様の 1つである。 ここで、 1, 3 ビス (シトラコンイミドメチル)ベンゼンは、下記式(1)で表されれる化 合物であり、へキサメチレン 1, 6 ビス(チォサルフェート)ニナトリウム塩-水和物 は下記式 (2)で表される化合物である。  One preferred embodiment contains (citraconimidomethyl) benzene and メ チ ル or hexamethylene 1,6 bis (thiosulfate) disodium salt-hydrate. Here, 1,3 bis (citraconimidomethyl) benzene is a compound represented by the following formula (1), and hexamethylene 1,6 bis (thiosulfate) disodium salt-hydrate is represented by the following formula: It is a compound represented by (2).
[0040] [化 4]
Figure imgf000013_0001
[0040] [Chemical 4]
Figure imgf000013_0001
Na+ "O3S-S- (CH2) -S-SO3" Na+ · 2H20 ( 2 ) Na + "O3S-S- (CH 2 ) -S-SO3" Na + · 2H 2 0 (2)
[0041] これらの化合物を含有することにより、得られる本発明の第 1コンペャベルト用ゴム 組成物の後述するエネルギーロス指数( Δ Η)がより小さくなり、消費電力の低減をよ り十分に図ることができる。 [0041] By containing these compounds, the energy loss index (ΔΗ) described later of the obtained rubber composition for the first conveyor belt of the present invention is further reduced, and the power consumption can be more sufficiently reduced. Can do.
これは、得られる本発明の第 1コンペャベルト用ゴム組成物の後述する 25%伸び 時における引張応力(M )が向上し、損失係数 tan δが小さくなるためであるが、こ  This is because the tensile stress (M) at 25% elongation described later of the obtained rubber composition for the first conveyor belt of the present invention is improved and the loss factor tan δ is reduced.
25  twenty five
れらの化合物がゴム組成物のリバ一ジョン (加硫戻り)を防止する試薬 (リバ一ジョン 防止剤)であることを鑑みれば、意外な効果である。  In view of the fact that these compounds are reagents (reversion inhibitors) that prevent reversion (reversion) of the rubber composition, this is an unexpected effect.
[0042] 本発明の第 1コンペャベルト用ゴム組成物においては、これらの化合物の含有量は[0042] In the rubber composition for the first conveyor belt of the present invention, the content of these compounds is
、上記ゴム成分 100質量部に対して、 0. 1〜2質量部であるのが好ましぐ 0. 2〜1 質量部であるのがより好ましい。 The amount of the rubber component is preferably 0.1 to 2 parts by mass, more preferably 0.2 to 1 part by mass with respect to 100 parts by mass of the rubber component.
なお、この含有量は、 1, 3—ビス(シトラコンイミドメチル)ベンゼンおよびへキサメチ レン—1, 6—ビス (チォサルフェート)ニナトリウム塩-水和物をいずれも含有する場 合は、合計の含有量をいう。  In addition, this content is the total when 1,3-bis (citraconimidomethyl) benzene and hexamethylene-1,6-bis (thiosulfate) disodium salt-hydrate are both included. Refers to the content.
[0043] 本発明の第 1コンペャベルト用ゴム組成物においては、これらの化合物として巿販 品を用いることができる。 [0043] In the rubber composition for the first conveyor belt of the present invention, commercially available products can be used as these compounds.
具体的には、 1, 3—ビス(シトラコンイミドメチル)ベンゼンとしては、 FLEXSYS社 製の PERKALINK 900を用いることができ、へキサメチレン一 1, 6—ビス(チォサ ルフェート)ニナトリウム塩-水和物としては、 FLEXSYS社製の DURALINK HTS を用いることができる。  Specifically, PERKALINK 900 manufactured by FLEXSYS can be used as 1,3-bis (citraconimidomethyl) benzene, and hexamethylene-1,6-bis (thiosulfate) disodium salt-hydrate. For example, DURALINK HTS manufactured by FLEXSYS can be used.
[0044] 本発明の第 1コンペャベルト用ゴム組成物は、上述した各成分以外に、加硫剤、加 硫助剤、加硫促進剤等の架橋剤や加硫遅延剤を含有していてもよぐ更に、本発明 の目的を損わない範囲で、各種配合剤を含有していてもよい。  [0044] The rubber composition for the first conveyor belt of the present invention may contain a crosslinking agent or a vulcanization retarder such as a vulcanizing agent, a vulcanization aid, and a vulcanization accelerator in addition to the above-described components. Furthermore, various compounding agents may be contained as long as the object of the present invention is not impaired.
[0045] 加硫剤としては、例えば、ィォゥ系、有機過酸化物系、金属酸化物系、フ ノール 榭脂、キノンジォキシム等の加硫剤が挙げられる。 [0045] Examples of the vulcanizing agent include xio, organic peroxide, metal oxide, and phenol. Examples thereof include vulcanizing agents such as rosin and quinone dioxime.
ィォゥ系加硫剤としては、具体的には、例えば、粉末ィォゥ、沈降性ィォゥ、高分散 性ィォゥ、表面処理ィォゥ、不溶性ィォゥ、ジモルフオリンジサルファイド、アルキルフ ェノールジサルファイド等が挙げられる。  Specific examples of the thio-based vulcanizing agent include powder, precipitation, high dispersibility, surface treatment, insoluble, dimorpholine disulfide, alkylphenol disulfide, and the like.
有機過酸化物系の加硫剤としては、具体的には、例えば、ベンゾィルパーォキサイ ド、 tーブチルヒドロパーオキサイド、 2, 4ージクロ口ベンゾィルパーオキサイド、 2, 5 ジメチルー 2, 5 ジ(t ブチルパーォキシ)へキサン、 2, 5 ジメチルへキサン 2, 5 ジ (バーオキシルベンゾエート)等が挙げられる。  Specific examples of organic peroxide vulcanizing agents include benzoyl peroxide, t-butyl hydroperoxide, 2,4-dichlorobenzoic peroxide, 2,5 dimethyl-2,5 Examples include di (t-butylperoxy) hexane, 2,5 dimethylhexane 2,5 di (veroxylbenzoate), and the like.
その他として、酸化マグネシウム、リサージ、 p キノンジォキシム、 p ジベンゾィル キノンジォキシム、ポリ一 p ジニトロソベンゼン、メチレンジァ-リン等が挙げられる。 加硫促進剤としては、例えば、アルデヒド'アンモニア系、グァ-ジン系、チォゥレア 系、チアゾール系、スルフェンアミド系、チウラム系、ジチォカルノ ミン酸塩系等の加 硫促進剤が挙げられる。  Other examples include magnesium oxide, risurge, p-quinonedioxime, p-dibenzoylquinonedioxime, poly-p-dinitrosobenzene, and methylenedialine. Examples of the vulcanization accelerator include vulcanization accelerators such as aldehyde'ammonia, guazine, thiurea, thiazole, sulfenamide, thiuram, and dithiocarnomate.
アルデヒド'アンモニア系加硫促進剤としては、具体的には、例えば、へキサメチレ ンテトラミン (H)等が挙げられる。  Specific examples of the aldehyde 'ammonia-based vulcanization accelerator include hexamethyltetramine (H).
グァ-ジン系加硫促進剤としては、具体的には、例えば、ジフエニルダァ-ジン等 が挙げられる。  Specific examples of the guanidine vulcanization accelerator include diphenyl darazine and the like.
チォゥレア系加硫促進剤としては、具体的には、例えば、エチレンチォゥレア等が 挙げられる。  Specific examples of the thiourea vulcanization accelerator include ethylene thiourea.
チアゾール系加硫促進剤としては、具体的には、例えば、ジベンゾチアジルジスル フイド(DM)、 2—メルカプトべンゾチアゾールおよびその Zn塩等が挙げられる。 スルフェンアミド系加硫促進剤としては、具体的には、例えば、 N—シクロへキシル - 2-ベンゾチアゾリルスルフェンアミド(CZ)、 N— t ブチル— 2—ベンゾチアゾリ ルスルフェンアミド (NS)等が挙げられる。  Specific examples of the thiazole-based vulcanization accelerator include dibenzothiazyl disulfide (DM), 2-mercaptobenzothiazole and its Zn salt. Specific examples of the sulfenamide-based vulcanization accelerator include N-cyclohexyl-2-benzothiazolylsulfenamide (CZ), N-tbutyl-2-benzothiazolylsulfenamide (NS). Etc.
チウラム系加硫促進剤としては、具体的には、例えば、テトラメチルチウラムジスル フイド (TMTD)、ジペンタメチレンチウラムテトラスルフイド等が挙げられる。  Specific examples of the thiuram vulcanization accelerator include tetramethylthiuram disulfide (TMTD), dipentamethylene thiuram tetrasulfide and the like.
ジチォ力ルバミン酸塩系加硫促進剤としては、具体的には、例えば、 Na ジメチル ジチォカーバメート、 Zn ジメチルジチォカーバメート、 Te ジェチルジチォカーバ メート、 Cu—ジメチノレジチォカーバメート、 Fe—ジメチノレジチォカーバメート、ピペコ リンピペコリルジチォカーバメート等が挙げられる。 Specific examples of the dithiocarbamate-based vulcanization accelerator include Na dimethyl dithiocarbamate, Zn dimethyldithiocarbamate, Te dimethyl dithiocarbamate, and the like. Mate, Cu-dimethinoresidiocarbamate, Fe-dimethinoresidiocarbamate, pipecoline pipecolyldithiocarbamate, and the like.
[0047] 加硫助剤としては、一般的なゴム用助剤を併せて用いることができ、例えば、亜鉛 華、ステアリン酸やォレイン酸およびこれらの Zn塩等が挙げられる。  [0047] As the vulcanization aid, general rubber aids can be used together, and examples thereof include zinc white, stearic acid, oleic acid, and Zn salts thereof.
[0048] このような加硫剤、加硫促進剤および加硫助剤を含有する場合の合計の含有量は 、上記ゴム成分 100質量部に対して、 0. 1〜10質量部であるのが好ましぐ 0. 5〜5 質量部であるのがより好ましい。含有量の範囲がこの範囲であると、得られる本発明 の第 1コンペャベルト用ゴム組成物の加硫後の破断強度がより良好となり、後述する 損失係数 tan δおよびエネルギーロス指数( Δ Η)もより良好となる。  [0048] The total content of the vulcanizing agent, the vulcanization accelerator and the vulcanization aid is 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component. Is more preferably 0.5 to 5 parts by mass. When the content range is within this range, the resulting rubber composition for the first conveyor belt of the present invention has a better rupture strength after vulcanization, and the loss coefficient tan δ and energy loss index (Δ Η) described later are also improved. Better.
[0049] 加硫遅延剤としては、具体的には、例えば、無水フタル酸、安息香酸、サリチル酸、 ァセチルサリチル酸などの有機酸; Ν— -トロソージフエ-ルァミン、 Ν— -トロソーフ ェ-ルー β—ナフチルァミン、 トロソートリメチル一ジヒドロキノリンの重合体な どの-トロソ化合物;トリクロルメラニンなどのハロゲン化物; 2—メルカプトベンツイミダ ゾール;サントガード PVI:等が挙げられる。  [0049] Specific examples of the vulcanization retarder include, for example, organic acids such as phthalic anhydride, benzoic acid, salicylic acid, and acetylsalicylic acid; -Troso compounds such as polymers of naphthylamine, trosotrimethyl monodihydroquinoline; halides such as trichloromelanin; 2-mercaptobenzimidazole; santoguard PVI: and the like.
加硫遅延剤を含有する場合の含有量は、上記ゴム成分 100質量部に対して、 0. 1 〜0. 3質量部であるのが好ましぐ 0. 1〜0. 2質量部であるのがより好ましい。含有 量の範囲がこの範囲であると、得られる本発明の第 1コンペャベルト用ゴム組成物か らコンペャベルトを押出加ェする際のスコーチ安定性が向上し、生産性が向上する。  In the case of containing a vulcanization retarder, the content is preferably 0.1 to 0.3 parts by mass with respect to 100 parts by mass of the rubber component, and 0.1 to 0.2 parts by mass. Is more preferable. When the content range is within this range, the scorch stability when the conveyor belt is extruded from the resulting rubber composition for the first conveyor belt of the present invention is improved, and the productivity is improved.
[0050] 配合剤としては、具体的には、例えば、上述したカーボンブラック以外の補強剤(充 填剤)、老化防止剤、酸化防止剤、顔料 (染料)、可塑剤、揺変成付与剤、紫外線吸 収剤、難燃剤、溶剤、界面活性剤 (レべリング剤を含む)、分散剤、脱水剤、防鲭剤、 接着付与剤、帯電防止剤、加工助剤等が挙げられる。  [0050] Specific examples of the compounding agent include, for example, reinforcing agents (fillers) other than the above-described carbon black, anti-aging agents, antioxidants, pigments (dyes), plasticizers, thixotropic agents, Examples include ultraviolet absorbers, flame retardants, solvents, surfactants (including leveling agents), dispersants, dehydrating agents, antifungal agents, adhesion-imparting agents, antistatic agents, and processing aids.
これらの配合剤は、ゴム用組成物用の一般的なものを用いることができる。それらの 配合量も特に制限されず、任意に選択できる。  As these compounding agents, those generally used for rubber compositions can be used. Their blending amounts are not particularly limited and can be arbitrarily selected.
[0051] 本発明の第 1コンペャベルト用ゴム組成物の製造は、上述したゴム成分、カーボン ブラック、シリカ、シランカップリング剤およびジエチレングリコールならびに所望により 含有する各種配合剤を加え、バンバリ一ミキサー等で混練し、ついで、混練ロール機 等で加硫剤、加硫助剤、加硫促進剤を混練して行うことができる。 また、加硫は、通常行われる条件で行うことができる。具体的には、例えば、温度 14 0〜150°C程度、 0. 5時間の条件下、加熱することにより行われる。 [0051] The rubber composition for the first conveyor belt of the present invention is manufactured by adding the above-described rubber component, carbon black, silica, silane coupling agent, diethylene glycol, and various compounding agents as required, and kneading with a Banbury mixer or the like. Then, a vulcanizing agent, a vulcanization aid, and a vulcanization accelerator can be kneaded with a kneading roll machine or the like. Further, vulcanization can be carried out under the usual conditions. Specifically, for example, it is carried out by heating under conditions of a temperature of about 140 to 150 ° C. for 0.5 hours.
[0052] 本発明の第 1の態様に係るコンペャベルト(以下、単に「本発明の第 1コンペャベル ト」という場合がある。)は、上面カバーゴム層、補強層および下面カバーゴム層から なるコンペャベルトであって、該下面カバーゴム層の少なくとも裏面表面力 上述した 本発明の第 1コンべャベルト用ゴム組成物により形成されるコンべャベルトである。 以下に、図 1を用いて本発明の第 1コンペャベルトを説明する力 本発明の第 1コン べャベルトの構造は、下面カバーゴム層の裏面表面に上述した本発明の第 1コンペ ャベルト用ゴム組成物を用いて ヽれば特にこれに限定されな 、。  [0052] The conveyor belt according to the first aspect of the present invention (hereinafter sometimes simply referred to as "the first conveyor belt of the present invention") is a conveyor belt comprising an upper cover rubber layer, a reinforcing layer, and a lower cover rubber layer. In this case, the conveyor belt is formed from the rubber composition for the first conveyor belt of the present invention described above. Hereinafter, the force for explaining the first conveyor belt of the present invention with reference to FIG. 1 The structure of the first conveyor belt of the present invention is the rubber composition for the first conveyor belt of the present invention described above on the back surface of the bottom cover rubber layer. If you use a thing, it is not limited to this.
[0053] 図 1は、本発明の第 1コンペャベルトの好適な実施態様の一例を模式的に示した断 面図である。図 1において、 1はコンペャベルト、 2は上面カバーゴム層、 3は補強層、 4は下面カバーゴム層、 5は運搬物搬送面、 11および 16は外層、 12および 15は内 層である。  FIG. 1 is a cross-sectional view schematically showing an example of a preferred embodiment of the first conveyor belt of the present invention. In FIG. 1, 1 is a conveyor belt, 2 is a top cover rubber layer, 3 is a reinforcing layer, 4 is a bottom cover rubber layer, 5 is a transporting surface, 11 and 16 are outer layers, and 12 and 15 are inner layers.
図 1に示すように、コンペャベルト 1は、補強層 3を中心層とし、その両側に上面カバ 一ゴム層 2と下面カバーゴム層 4が設けられており、上面カバーゴム層 2は外層 11と 内層 12の 2層力も構成され、下面カバーゴム層 4は外層 16と内層 15の 2層力も構成 されている。ここで、上面カバーゴム層 2および下面カバーゴム層 4の外層と内層(外 層 11と内層 12、外層 16と内層 15)は、それぞれ互いに異なるゴム組成物を用いて 形成されていてもよい。  As shown in FIG. 1, the conveyor belt 1 has a reinforcing layer 3 as a central layer, and an upper cover rubber layer 2 and a lower cover rubber layer 4 are provided on both sides thereof, and the upper cover rubber layer 2 includes an outer layer 11 and an inner layer. The two-layer force of 12 is also configured, and the bottom cover rubber layer 4 is also configured of the two-layer force of the outer layer 16 and the inner layer 15. Here, the outer layer and the inner layer (the outer layer 11 and the inner layer 12, the outer layer 16 and the inner layer 15) of the upper cover rubber layer 2 and the lower cover rubber layer 4 may be formed using different rubber compositions.
[0054] 図 1において、上面カバーゴム層 2は、外層 11と内層 12の 2層から構成されている 力 本発明の第 1コンペャベルトにおいては、上面カバーゴム層 2を構成する層の数 は、 2に限定されず、 1でもよく、 3以上であってもよい。そして、 3以上の場合にも、こ れらの層は、互いに異なるゴム組成物を用いて形成されてもよい。また、下面カバー ゴム層 4も同様である。  In FIG. 1, the upper cover rubber layer 2 is composed of two layers of an outer layer 11 and an inner layer 12. In the first conveyor belt of the present invention, the number of layers constituting the upper cover rubber layer 2 is It is not limited to 2 and may be 1 or 3 or more. In the case of 3 or more, these layers may be formed using different rubber compositions. The same applies to the bottom cover rubber layer 4.
上面カバーゴム層 2の運搬物搬送面 5を構成する外層 11は、耐熱性、耐摩耗性、 耐油性等に優れたゴム組成物力も形成されるのが望まし 、ため、上面カバーゴム層 2は 2層力 構成されて 、ることが好まし 、。  It is desirable that the outer layer 11 constituting the transported material carrying surface 5 of the upper cover rubber layer 2 is also formed with a rubber composition having excellent heat resistance, wear resistance, oil resistance, etc. Therefore, the upper cover rubber layer 2 Is preferably composed of two-layer force.
下面カバーゴム層 4の裏面表面を構成する外層 16は上述した本発明の第 1コンペ ャベルト用ゴム組成物により形成され、また、下面カバーゴム層 4の内層 15は製造コ ストや補強層 3との接着性が重視されることから他のゴム組成物カゝら形成されるのが 望まし 、ため、カバーゴム層 4は 2層力 構成されて 、ることが好まし 、。 The outer layer 16 constituting the back surface of the lower cover rubber layer 4 is the first competition of the present invention described above. The inner layer 15 of the lower cover rubber layer 4 is formed from other rubber composition covers because the manufacturing cost and the adhesion to the reinforcing layer 3 are important. Desirably, because the cover rubber layer 4 is composed of two-layer force, it is preferable.
[0055] 補強層 3の芯体は特に限定されず、通常のコンペャベルトに用いられるものを適宜 選択して用いることができ、その具体例としては、綿布と化学繊維または合成繊維と 力もなるものにゴム糊を塗布、浸潤させたもの、 RFL処理したものを折り畳んだもの、 特殊織のナイロン帆布、スチールコード等が挙げられ、これらを一種単独で用いても よぐ 2種以上のものを積層して用いてもよい。  [0055] The core of the reinforcing layer 3 is not particularly limited, and those used for ordinary competitor belts can be appropriately selected and used, and specific examples thereof include those that have the power of cotton and chemical fibers or synthetic fibers. Examples include rubber paste coated and infiltrated, RFL-treated one folded, special woven nylon canvas, steel cord, etc. These can be used alone or in combination. May be used.
また、補強層 3の形状は特に限定されず、図 1に示すようにシート状であってもよぐ ワイヤー状の補強線を並列に埋込むものであってもよい。  In addition, the shape of the reinforcing layer 3 is not particularly limited, and may be a sheet shape as shown in FIG. 1. Wire-shaped reinforcing wires may be embedded in parallel.
[0056] 上面カバーゴム層 2の内層 12および下面カバーゴム 4の内層 15を形成するゴム組 成物は特に限定されず、通常のコンペャベルトに用いられるゴム組成物を適宜選択 して用いることができ、一種単独で用いてもよぐ 2種以上のものを混合して用いても よい。  [0056] The rubber composition for forming the inner layer 12 of the upper surface cover rubber layer 2 and the inner layer 15 of the lower surface cover rubber 4 is not particularly limited, and a rubber composition used for a normal competitor belt can be appropriately selected and used. These may be used alone or in combination of two or more.
[0057] 上面カバーゴム層 2の外層 11を形成するゴム組成物は特に限定されず、通常のコ ンべャベルトに用いられるゴム組成物を、該外層に要求される基本特性 (例えば、耐 熱性、耐摩耗性、耐油性等)に応じて適宜選択して用いることができる。  [0057] The rubber composition for forming the outer layer 11 of the upper cover rubber layer 2 is not particularly limited, and a rubber composition used for an ordinary conveyor belt has a basic characteristic (for example, heat resistance) required for the outer layer. , Wear resistance, oil resistance, etc.) can be appropriately selected and used.
[0058] 本発明の第 1コンペャベルトは、下面カバーゴム層の少なくとも裏面表面が本発明 の第 1コンペャベルト用ゴム組成物により形成されるため、高破断強度、耐摩耗性等 の基本物性を維持し、消費電力の低減を十分に図ることができる。 [0058] In the first conveyor belt of the present invention, at least the back surface of the lower surface cover rubber layer is formed of the rubber composition for the first conveyor belt of the present invention, so that the basic physical properties such as high breaking strength and wear resistance are maintained. Thus, the power consumption can be sufficiently reduced.
[0059] 本発明の第 1コンペャベルトにおいては、下面カバーゴム層の厚さ力 5〜20mm であるのが好ましぐ 6〜15mmであるのがより好ましい。ここで、下面カバーゴム層の 厚さは、下面カバーゴム層が内層および外層で構成されている場合は、これらの層 の合計の層厚をいう。 In the first conveyor belt of the present invention, the thickness force of the lower cover rubber layer is preferably 5 to 20 mm, more preferably 6 to 15 mm. Here, the thickness of the bottom cover rubber layer refers to the total thickness of these layers when the bottom cover rubber layer is composed of an inner layer and an outer layer.
下面カバーゴム層の厚さがこの範囲であると、高温の運搬物を搬送に用いる場合 であっても、ゴムの劣化等により生ずるベルトの反り返り(カツビング)を防ぐことができ る。  When the thickness of the bottom cover rubber layer is within this range, even when a high-temperature transported article is used for transport, it is possible to prevent belt curling (cutting) caused by rubber deterioration or the like.
[0060] 本発明の第 1コンペャベルトの製造方法は特に限定されず、通常用いられる方法 等を採用することができる。 [0060] The method for producing the first conveyor belt of the present invention is not particularly limited, and is usually used. Etc. can be adopted.
具体的には、まず、ロール、エーダー、バンバリ一ミキサー等を用いて原料を混練り した後、カレンダ一等を用いて各カバーゴム層用にシート状に成形し、次に、得られ た各層を補強層を挟み込むように所定の順序で積層し、 140〜170°Cの温度で 10 〜60分間加圧する方法が好適に例示される。  Specifically, first, the raw materials are kneaded using a roll, an adader, a Banbury mixer, etc., then formed into a sheet shape for each cover rubber layer using a calendar, etc., and then each layer obtained A method in which the reinforcing layers are laminated in a predetermined order and pressed at a temperature of 140 to 170 ° C. for 10 to 60 minutes is preferably exemplified.
[0061] 本発明の第 2の態様に係るコンペャベルト用ゴム組成物(以下、単に「本発明の第 2コンペャベルト用ゴム組成物」という場合がある。)は、 20°Cの測定温度下で、 10% 伸張させ、振幅 ± 2%の振動を振動数 10Hzで与えて測定した損失係数 tan δが 0. 04〜0. 07となり、 [0061] The rubber composition for a conveyor belt according to the second aspect of the present invention (hereinafter sometimes simply referred to as "the second rubber composition for a conveyor belt of the present invention") is measured at a measurement temperature of 20 ° C. The loss factor tan δ measured by stretching 10% and giving a vibration with an amplitude of ± 2% at a frequency of 10 Hz is 0.04 to 0.07.
下記式 [1]に示すエネルギーロス指数(Δ Η)が 0. 080以下となる、ゴム組成物で ある。  The rubber composition has an energy loss index (ΔΗ) represented by the following formula [1] of 0.080 or less.
A H= (SpGr X tan 6 ) /M [1]  A H = (SpGr X tan 6) / M [1]
25  twenty five
ここで、 SpGrは、 20°Cでの比重(g/cm3 )、 tan δは、 20°Cの測定温度下で、 10 %伸張させ、振幅 ± 2%の振動を振動数 10Hzで与えて測定した損失係数、 M は、 Where SpGr is specific gravity (g / cm 3 ) at 20 ° C, tan δ is 10% stretched at a measurement temperature of 20 ° C, and a vibration with an amplitude of ± 2% is given at a frequency of 10Hz. The measured loss factor, M, is
25 twenty five
25%伸び時における引張応力(MPa)である。 The tensile stress (MPa) at 25% elongation.
[0062] 本発明の第 2の態様は、ベルトコンペャ装置(システム)におけるエネルギーロス、 特に、稼動時にコンペャベルトがローラを乗り越える際に生じるエネルギーロスに注 目し、このエネルギーロスを低減することにより、ベルトコンペャ装置全体の消費電力 の低減を図るものである。 [0062] The second aspect of the present invention focuses on energy loss in the belt compressor device (system), particularly energy loss that occurs when the conveyor belt crosses the roller during operation, and by reducing this energy loss, the belt compressor is reduced. The power consumption of the entire device is reduced.
次に、本発明の第 2コンペャベルト用ゴム組成物で規定する各物性値について詳 述する。  Next, each physical property value defined by the rubber composition for the second conveyor belt of the present invention will be described in detail.
[0063] (損失係数 tan δ ) [0063] (loss factor tan δ)
損失係数 tan δは、ゴム組成物の動的性質を表す貯蔵弾性率 E' と損失弾性率 Ε The loss coefficient tan δ is the storage elastic modulus E 'representing the dynamic properties of the rubber composition and the loss elastic modulus 弾 性
" との比、 tan S =E" /Έ' で表され、この値が小さいほどゴム組成物の変形の間 に熱として散逸されるエネルギー量(エネルギーロス量)が小さいことを意味し、エネ ルギーロスの尺度として用いることができる。 The ratio of tan S = E "/ Έ ', the smaller the value, the smaller the amount of energy (energy loss) dissipated as heat during the deformation of the rubber composition. It can be used as a measure of rusty loss.
一方、 tan δ値が小さいと低消費電力化が可能になると考えられるが、 [発明が解 決しようとする課題]でも述べたように、 tan δ値をあまりに小さくしすぎると破断強度( T )および破断伸び (E )も低下するため、コンペャベルトの稼動が安定しない。On the other hand, if the tan δ value is small, power consumption can be reduced. However, as described in [Problems to be solved by the invention], if the tan δ value is too small, the breaking strength ( Since the T) and elongation at break (E) also decrease, the operation of the conveyor belt is not stable.
B B B B
したがって、本発明では、低消費電力化と破断強度、破断伸び等の基本物性とを 両立し、高物性のコンペャベルトが要求されるコンペャラインにも用いることができる ように、 tan δ値を特定の範囲としている。  Therefore, in the present invention, the tan δ value is set within a specific range so that both low power consumption and basic physical properties such as breaking strength and elongation at break can be achieved, and that the composite belt can be used for a conveyor line requiring a high physical property. It is said.
[0064] そこで、本発明の第 2コンペャベルト用ゴム組成物の損失係数 tan δは、 0. 04〜0 . 07となり、 0. 05〜0. 07となるの力好ましく、 0. 05〜0. 065となるの力 ^より好ましく 、 0. 055〜0. 065であるの力更に好まし!/ヽ。 [0064] Therefore, the loss coefficient tan δ of the rubber composition for the second conveyor belt of the present invention is 0.04 to 0.07, preferably 0.05 to 0.07, and preferably 0.05 to 0.0. The force of becoming 065 is more preferable, and the force of 0.055 to 0.065 is more preferable! / ヽ.
なお、本発明において、損失係数 tan δは、本発明の第 2コンペャベルト用ゴム組 成物を 148°C、 30分の条件で加硫させて得られた加硫物から短冊状 (長さ 20mm X 幅 5mm X厚み 2mm)に切り抜いた試験片を用い、 20°Cの測定温度下で、 10%伸 張させ、振幅 ± 2%の振動を振動数 10Hzで与えて測定した時の損失係数をいう。  In the present invention, the loss factor tan δ is a strip shape (length: 20 mm) from a vulcanized product obtained by vulcanizing the rubber composition for the second conveyor belt of the present invention at 148 ° C for 30 minutes. (X width 5mm X thickness 2mm) Using a test piece cut out at a measurement temperature of 20 ° C, stretched 10% and measured the loss factor when measured by giving a vibration with an amplitude of ± 2% at a frequency of 10Hz. Say.
[0065] (エネルギーロス指数( Δ H) ) [0065] (Energy Loss Index (ΔH))
エネルギーロス指数( Δ Η)は、上記式 [1]により表される。  The energy loss index (ΔΗ) is expressed by the above equation [1].
上記式 [1]は、従来タイヤの分野で用いられている路面との摩擦低減効率の目安と なる式である力、コンペャベルト用ゴム組成物の消費電力の低減評価においても有 効と考えられる。  The above formula [1] is considered to be effective in the evaluation of the force used as an index of the friction reduction efficiency with the road surface used in the field of conventional tires, and the power consumption reduction of the rubber composition for the conveyor belt.
上記式 [1]中の SpGrは、 20°Cでの比重(g/cm3 )を示す。この値が小さいと総質 量の低減が可能になることから小負荷と同等の低消費電力効果が得られる。 SpGr in the above formula [1] indicates a specific gravity (g / cm 3 ) at 20 ° C. If this value is small, the total mass can be reduced, and the same low power consumption effect as a small load can be obtained.
また、上記式 [1]中の tan δは、上述したように、ローラ乗り越え時のゴム組成物の 変形によるエネルギーロスに影響する。この値が小さ!/、と低消費電力効果が得られる また、上記式 [1]中の Μ は、 25%伸び時における引張応力(MPa)を示す力 ベ  In addition, tan δ in the above equation [1] affects the energy loss due to deformation of the rubber composition at the time of overcoming the roller, as described above. This value is small! /, And a low power consumption effect is obtained. In addition, Μ in the above equation [1] is a force vector indicating a tensile stress (MPa) at 25% elongation.
25  twenty five
ルト剛性としての硬度の代用特性と考えることができるため、ゴム組成物の橈みの大 小に影響する。この値が大きいと橈みが小さくなり低消費電力効果が得られる。なお 、本発明において、 M は、本発明の第 2コンペャベルト用ゴム組成物を 148°C、 30  Since it can be considered as a substitute characteristic of hardness as the default stiffness, it affects the amount of stagnation of the rubber composition. When this value is large, the stagnation is reduced and a low power consumption effect is obtained. In the present invention, M represents the rubber composition for the second conveyor belt of the present invention at 148 ° C., 30
25  twenty five
分の条件で加硫させて得られた加硫物から 3号ダンベル状に打ち抜いた試験片を用 い、 JIS K6251- 2004に準じて、引張速度 500mmZ分での引張試験を行い、 25 %伸び時における引張応力(M ) [MPa]を室温にて測定した値である。 したがって、上記式 [1]の技術的な意義は、 SpGrと tan δの積を Μ で除すること Using a test piece punched out in the shape of No. 3 dumbbell from a vulcanized product obtained by vulcanization under the conditions of min., According to JIS K6251-2004, a tensile test was performed at a tensile speed of 500 mmZ, and 25% elongation was achieved. The tensile stress (M) [MPa] at the time measured at room temperature. Therefore, the technical significance of the above equation [1] is that the product of SpGr and tan δ is divided by Μ.
25  twenty five
により、これらの物性に基づいて、ゴム組成物がローラを乗り越える時のエネルギー口 スを総合的に判断でき、コンペャベルト用のゴム組成物が、消費電力の低減を図るコ ンべャベルトに適しているか否かの指標となることにある。  Therefore, based on these physical properties, it is possible to comprehensively determine the energy intensity when the rubber composition gets over the roller, and whether the rubber composition for the conveyor belt is suitable for a conveyor belt that reduces power consumption. It is to be an indicator of whether or not.
[0066] そこで、本発明の第 2コンペャベルト用ゴム組成物の上記式 [1]に示すエネルギー ロス旨数(Δ Ρί)は、 0. 080以下となり、 0. 07以下となるの力 子ましく、 0. 07未満と なるの力 Sより好ましく、 0. 030〜0. 065であるの力更に好まし!/、。  [0066] Therefore, the energy loss effect number (Δ Ρί) shown in the above formula [1] of the rubber composition for the second conveyor belt of the present invention is 0.080 or less and 0.07 or less. A force of less than 0.07 is more preferred than S, and a force of 0.030 to 0.065 is even more preferred! /.
[0067] 本発明の第 2コンペャベルト用ゴム糸且成物は、上述したように、所定の条件で測定 した損失係数 tan δが 0. 04〜0. 07となり、上記式 [1]に示すエネルギーロス指数( 厶11)が0. 080以下となるゴム組成物である。  [0067] As described above, the rubber yarn for a second conveyor belt according to the present invention has a loss coefficient tan δ measured under a predetermined condition of 0.04 to 0.07, and energy represented by the above formula [1]. The rubber composition has a loss index (厶 11) of 0.080 or less.
ここで、上記式 [1]中に tan δが規定されているにも関わらず、損失係数 tan δの値 を 0. 04〜0. 07の範囲に規定したのは、単にエネルギーロス指数(Δ Η)が 0. 080 以下であっても、 tan δが 0. 04未満であると、破断強度、破断伸び等の基本物性が 担保できないためである。  Here, despite the fact that tan δ is defined in the above formula [1], the value of the loss factor tan δ is defined in the range of 0.04 to 0.07 is simply the energy loss index (Δ This is because even if Η) is 0.080 or less, if tan δ is less than 0.04, basic physical properties such as breaking strength and breaking elongation cannot be secured.
[0068] 本発明の第 2コンペャベルト用ゴム組成物は、 NRおよび BRからなるゴム成分を含 有しているのが好ましい。 NRおよび BRからなるゴム成分を含有することにより、本発 明の第 2コンペャベルト用ゴム組成物の加硫後の破断強度および耐摩耗性がいず れも良好となり、コンペャベルトとしての基本物性を維持することができる。  [0068] The rubber composition for the second conveyor belt of the present invention preferably contains a rubber component composed of NR and BR. By containing a rubber component consisting of NR and BR, the rubber composition for the second conveyor belt of the present invention has good rupture strength and abrasion resistance after vulcanization, and maintains the basic physical properties as a competitor belt. be able to.
ここで、 BRとしては、本発明の第 1コンペャベルト用ゴム組成物において詳述したも のを用いることができ、本発明の第 1コンペャベルト用ゴム組成物における理由と同 様の理由から、重量平均分子量が 50万以上であるのが好ましぐまた、末端変性ポリ ブタジエンであるのが好まし 、。  Here, as BR, those detailed in the rubber composition for the first conveyor belt of the present invention can be used, and for the same reason as in the rubber composition for the first conveyor belt of the present invention, the weight average is used. It is preferable that the molecular weight is 500,000 or more, and end-modified polybutadiene is preferable.
[0069] また、本発明の第 2コンペャベルト用ゴム組成物は、 NRおよび BR力 なるゴム成 分と、カーボンブラックと、シリカと、シランカップリング剤と、ジエチレングリコールとを 含有しているのが好ましい。 NRおよび BRのみならず、カーボンブラック、シリカ、シラ ンカップリング剤およびジエチレングリコールを含有することにより、本発明の第 2コン べャベルト用ゴム組成物の加硫後の破断強度および耐摩耗性がいずれも良好となる ためコンペャベルトとしての基本物性を維持できるとともに、損失係数 tan δおよびェ ネルギーロス指数( Δ Η)がより良好な範囲となるため消費電力の低減をより十分に 図ることができる。 [0069] The rubber composition for the second conveyor belt of the present invention preferably contains a rubber component having NR and BR strength, carbon black, silica, a silane coupling agent, and diethylene glycol. . By containing not only NR and BR, but also carbon black, silica, silane coupling agent and diethylene glycol, the rubber composition for the second conveyor belt of the present invention has any rupture strength and abrasion resistance after vulcanization. As a result, the basic physical properties of the conveyor belt can be maintained and the loss factor tan δ and Since the energy loss index (ΔΗ) is in a better range, the power consumption can be reduced more sufficiently.
ここで、カーボンブラック、シリカ、シランカップリング剤およびジエチレングリコール としては、本発明の第 1コンペャベルト用ゴム組成物において詳述したものを用いる ことができる。  Here, as carbon black, silica, silane coupling agent, and diethylene glycol, those detailed in the rubber composition for the first conveyor belt of the present invention can be used.
[0070] 更に、本発明の第 2コンペャベルト用ゴム組成物は、 NRおよび BR力 なるゴム成 分と、カーボンブラックと、シリカと、シランカップリング剤と、ジエチレングリコールとを 含有し、上記ゴム成分中の NRと BRとの量比(NRZBR)力 0Ζ20〜25Ζ75であり 、上記カーボンブラックの含有量が上記ゴム成分 100質量部に対して 15〜35質量 部であり、上記シリカの含有量が上記ゴム成分 100質量部に対して 5〜25質量部で あり、上記シランカップリング剤の含有量が上記ゴム成分 100質量部に対して 0. 5〜 3質量部であり、上記ジエチレングリコールの含有量が上記ゴム成分 100質量部に対 して 0. 5〜4. 5質量部であるのが好ましい。カーボンブラック、シリカ、シランカツプリ ング剤およびジエチレングリコールを特定量含有することにより、本発明の第 2コンペ ャベルト用ゴム組成物の加硫後の破断強度および耐摩耗性がいずれも良好となるた めコンペャベルトとしての基本物性を維持できるとともに、損失係数 tan δおよびエネ ルギーロス指数( Δ Η)が更に良好な範囲となるため消費電力の低減を更に十分に 図ることができる。  [0070] Further, the rubber composition for the second conveyor belt of the present invention contains a rubber component having NR and BR force, carbon black, silica, a silane coupling agent, and diethylene glycol, and the rubber component The ratio of NR to BR (NRZBR) force is 0 to 20 to 25 to 75, the carbon black content is 15 to 35 parts by mass with respect to 100 parts by mass of the rubber component, and the silica content is the rubber. It is 5 to 25 parts by mass with respect to 100 parts by mass of the component, the content of the silane coupling agent is 0.5 to 3 parts by mass with respect to 100 parts by mass of the rubber component, and the content of the diethylene glycol is the above The amount is preferably 0.5 to 4.5 parts by mass with respect to 100 parts by mass of the rubber component. By containing specific amounts of carbon black, silica, silane coupling agent, and diethylene glycol, the rubber composition for the second conveyor belt of the present invention has good rupture strength and abrasion resistance after vulcanization, so that it can be used as a conveyor belt. In addition to maintaining the basic physical properties, the loss factor tan δ and the energy loss index (Δ Η) are in a better range, so the power consumption can be further reduced.
[0071] 本発明の第 2コンペャベルト用ゴム組成物においては、上記ゴム成分中の NRと BR との量 it (NR/BR)は、 70/30〜50/50であるの力 Sより好ましく、 70/30〜60/ 40であるのが更に好ましい。  [0071] In the rubber composition for a second conveyor belt of the present invention, the amount it (NR / BR) of NR and BR in the rubber component is more preferable than a force S of 70/30 to 50/50, More preferably, it is 70 / 30-60 / 40.
また、上記カーボンブラックの含有量は、上記ゴム成分 100質量部に対して、 20〜 30質量部であるのがより好ましぐ 25〜30質量部であるのが更に好ましい。  The carbon black content is more preferably 25-30 parts by mass, more preferably 20-30 parts by mass with respect to 100 parts by mass of the rubber component.
また、上記シリカの含有量は、上記ゴム成分 100質量部に対して、 10〜20質量部 であるのがより好ましい。  Further, the content of the silica is more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the rubber component.
また、上記シランカップリング剤の含有量は、上記ゴム成分 100質量部に対して、 1 〜2質量部であるのがより好ましい。  In addition, the content of the silane coupling agent is more preferably 1 to 2 parts by mass with respect to 100 parts by mass of the rubber component.
また、上記ジエチレングリコールの含有量は、上記ゴム成分 100質量部に対して、 0 . 5〜2質量部であるのがより好ましぐ 0. 6〜1. 8質量部であるのが更に好ましい。 The diethylene glycol content is 0 with respect to 100 parts by mass of the rubber component. More preferably, it is 5 to 2 parts by mass, and still more preferably 0.6 to 1.8 parts by mass.
[0072] また、本発明の第 2コンペャベルト用ゴム組成物においては、本発明の第 1コンペ ャベルト用ゴム組成物と同様、上記シリカとして、窒素吸着比表面積 (N SA)が 100 [0072] Further, in the rubber composition for the second conveyor belt of the present invention, the silica has a nitrogen adsorption specific surface area (NSA) of 100 as in the case of the rubber composition for the first conveyor belt of the present invention.
2 2
〜250m2Zgのものを用いるのが好ましぐ 125〜200m2Zgのものを用いるのがより 好ましい。 ~250M 2 is more preferable to use those preferred instrument 125~200m 2 Zg to use one of the Zg.
[0073] 本発明の第 2コンペャベルト用ゴム組成物は、本発明の第 1コンペャベルト用ゴム 組成物と同様、 1, 3 ビス (シトラコンイミドメチル)ベンゼン、および Zまたは、へキサ メチレン 1, 6 ビス(チォサルフェート)ニナトリウム塩-水和物を含有するのが好 ましい態様の 1つである。  [0073] The rubber composition for the second conveyor belt of the present invention is the same as the rubber composition for the first conveyor belt of the present invention, such as 1,3 bis (citraconimidomethyl) benzene and Z or hexamethylene 1,6 bis. It is one of the preferred embodiments to contain (thiosulfate) disodium salt-hydrate.
ここで、本発明の第 1コンペャベルト用ゴム組成物と同様、 1, 3 ビス (シトラコンィ ミドメチル)ベンゼンは、上記式(1)で表されれる化合物であり、へキサメチレン 1, 6 ビス (チォサルフ ート)ニナトリウム塩二水和物は上記式(2)で表される化合物 である。  Here, similarly to the rubber composition for the first conveyor belt of the present invention, 1,3 bis (citraconimidmethyl) benzene is a compound represented by the above formula (1), and hexamethylene 1,6 bis (thiosulfate). ) Disodium salt dihydrate is a compound represented by the above formula (2).
[0074] これらの化合物を含有することにより、得られる本発明の第 2コンペャベルト用ゴム 組成物のエネルギーロス指数( Δ Η)がより小さくなり、消費電力の低減をより十分に 図ることができる。  [0074] By containing these compounds, the energy loss index (Δ の) of the obtained rubber composition for the second conveyor belt of the present invention becomes smaller, and the power consumption can be more sufficiently reduced.
これは、得られる本発明の第 2コンペャベルト用ゴム組成物の 25%伸び時における 引張応力(M )が向上し、損失係数 tan δが小さくなるためであるが、これらの化合  This is because the obtained rubber composition for the second conveyor belt of the present invention has an improved tensile stress (M) at 25% elongation and a smaller loss factor tan δ.
25  twenty five
物がゴム組成物のリバ一ジョン防止剤であることを鑑みれば、意外な効果である。  In view of the fact that the product is an anti-reversion agent for rubber compositions, this is an unexpected effect.
[0075] 本発明の第 2コンペャベルト用ゴム組成物においては、これらの化合物の含有量は[0075] In the rubber composition for the second conveyor belt of the present invention, the content of these compounds is
、上記ゴム成分 100質量部に対して、 0. 1〜2質量部であるのが好ましぐ 0. 2〜1 質量部であるのがより好ましい。 The amount of the rubber component is preferably 0.1 to 2 parts by mass, more preferably 0.2 to 1 part by mass with respect to 100 parts by mass of the rubber component.
なお、この含有量は、 1, 3 ビス(シトラコンイミドメチル)ベンゼンおよびへキサメチ レン—1, 6—ビス (チォサルフェート)ニナトリウム塩-水和物をいずれも含有する場 合は、合計の含有量をいう。  This content is the total content when both 1,3bis (citraconimidomethyl) benzene and hexamethylene-1,6-bis (thiosulfate) disodium salt-hydrate are contained. Say quantity.
[0076] 本発明の第 2コンペャベルト用ゴム組成物においては、これらの化合物として、本 発明の第 1コンペャベルト用ゴム組成物と同様の市販品を用いることができる。 In the rubber composition for the second conveyor belt of the present invention, commercially available products similar to the rubber composition for the first conveyor belt of the present invention can be used as these compounds.
[0077] 本発明の第 2コンペャベルト用ゴム組成物は、上述した各成分以外に、加硫剤、加 硫助剤、加硫促進剤等の架橋剤や加硫遅延剤を含有していてもよぐ更に、本発明 の目的を損わない範囲で、各種配合剤を含有していてもよい。 [0077] The rubber composition for the second conveyor belt of the present invention includes a vulcanizing agent, a vulcanizing agent, in addition to the components described above. It may contain a crosslinking agent and a vulcanization retarder such as a vulcanization aid and a vulcanization accelerator, and may further contain various compounding agents as long as the object of the present invention is not impaired.
ここで、加硫剤、加硫助剤、加硫促進剤、加硫遅延剤および各種の配合剤としては Here, as vulcanizing agents, vulcanization aids, vulcanization accelerators, vulcanization retarders and various compounding agents
、本発明の第 1コンペャベルト用ゴム組成物において詳述したものを用いることがで きる。 Those detailed in the rubber composition for the first conveyor belt of the present invention can be used.
[0078] 本発明の第 2の態様に係るコンペャベルト(以下、単に「本発明の第 2コンペャベル ト」という場合がある。)は、上面カバーゴム層、補強層および下面カバーゴム層から なるコンペャベルトであって、該下面カバーゴム層の少なくとも裏面表面力 上述した 本発明の第 2コンべャベルト用ゴム組成物により形成されるコンべャベルトである。 即ち、本発明の第 2コンペャベルトは、上述した本発明の第 1コンペャベルトにおい て用 、た本発明の第 1コンべャベルト用ゴム組成物に代えて、本発明の第 2コンべャ ベルト用ゴム組成物を用いるものであり、それ以外の構成は本発明の第 1コンべャベ ルトと同様である。  The competitor belt according to the second aspect of the present invention (hereinafter sometimes simply referred to as “second conveyor belt of the present invention”) is a conveyor belt comprising an upper cover rubber layer, a reinforcing layer, and a lower cover rubber layer. In this case, the conveyor belt is formed by the rubber composition for the second conveyor belt of the present invention described above. That is, the second conveyor belt of the present invention is used in the above-described first conveyor belt of the present invention, and instead of the rubber composition for the first conveyor belt of the present invention, the rubber for the second conveyor belt of the present invention. The composition is used, and the other configuration is the same as that of the first conveyor of the present invention.
[0079] 本発明の第 2コンペャベルトは、下面カバーゴム層の少なくとも裏面表面が本発明 の第 2コンペャベルト用ゴム組成物により形成されるため、高破断強度、耐摩耗性等 の基本物性を維持し、消費電力の低減を十分に図ることができる。  [0079] In the second conveyor belt of the present invention, at least the back surface of the lower surface cover rubber layer is formed of the rubber composition for the second conveyor belt of the present invention, so that the basic physical properties such as high breaking strength and wear resistance are maintained. Thus, the power consumption can be sufficiently reduced.
[0080] 本発明の第 2コンペャベルトの製造方法は特に限定されず、通常用いられる方法 等を採用することができ、本発明の第 1コンペャベルトと同様の方法により製造するこ とがでさる。  [0080] The method for producing the second conveyor belt of the present invention is not particularly limited, and a commonly used method or the like can be adopted, and the second conveyor belt can be produced by the same method as the first conveyor belt of the present invention.
実施例  Example
[0081] 以下に実施例を挙げ、本発明のコンペャベルト用ゴム組成物について更に詳細に 説明するが、本発明はこれらに限定されない。  [0081] The rubber composition for a conveyor belt of the present invention will be described in more detail below with reference to examples, but the present invention is not limited to these.
(実施例 1〜26、比較例 1〜8、参考例 1および 2)  (Examples 1 to 26, Comparative Examples 1 to 8, Reference Examples 1 and 2)
ゴム成分 100質量部に対して、下記第 1表に示す組成成分 (質量部)で、各コンペ ャベルト用ゴム組成物を調製した。得られた各ゴム組成物について、加硫後の各種 物性を以下に示す方法により測定し評価した。その結果を下記第 1表に示す。  Each rubber composition for a conveyor belt was prepared with the composition components (parts by mass) shown in Table 1 below with respect to 100 parts by mass of the rubber components. About each obtained rubber composition, the various physical properties after vulcanization were measured and evaluated by the method shown below. The results are shown in Table 1 below.
なお、参考例 1および 2は、特開平 11 139523号公報に記載の実施例 5および 比較例 2と同様のゴム組成物を調製したものである。いずれの参考例もシリカ、ジェ チレングリコールおよびシランカップリング剤を含有して 、な 、ため比較例となり、耐 摩耗性以外の物性を以下に示す方法により測定し評価した。 Reference Examples 1 and 2 were prepared by preparing rubber compositions similar to Example 5 and Comparative Example 2 described in JP-A-11 139523. Both reference examples are silica, Since it contained tylene glycol and a silane coupling agent, it became a comparative example, and physical properties other than abrasion resistance were measured and evaluated by the methods shown below.
[0082] <加硫後の物性 >  [0082] <Physical properties after vulcanization>
(1)破断強度  (1) Breaking strength
得られた各ゴム組成物を、 148°C、 30分間、加硫し、加硫ゴム組成物を調製した。 調製した各加硫ゴム組成物から 3号ダンベル状に打ち抜 、た試験片を用い、 JIS K6251-2004に準じて、引張速度 500mmZ分での引張試験を行い、破断強度 (T  Each obtained rubber composition was vulcanized at 148 ° C. for 30 minutes to prepare a vulcanized rubber composition. A tensile test at a tensile speed of 500 mmZ was performed in accordance with JIS K6251-2004 using a test piece punched out from each vulcanized rubber composition prepared in the shape of No. 3 dumbbell, and its breaking strength (T
B  B
) [MPa]を室温にて測定した。  ) [MPa] was measured at room temperature.
破断強度が 14MPa以上であれば、高破断強度を有するものとして評価できる。  If the breaking strength is 14 MPa or more, it can be evaluated as having a high breaking strength.
[0083] (2)耐摩耗性 [0083] (2) Abrasion resistance
調製した各加硫ゴム組成物から円板状 (直径 16. 2mm X厚さ 6mm)に切り抜いた 試験片を用い、 JIS—K6264— 2-2005に準じて、 DIN摩耗試験を行った。室温で D IN摩耗試験を行った際の摩耗量 (mm3)を測定した。 A DIN abrasion test was conducted in accordance with JIS-K6264-2-2005 using a test piece cut out from each prepared vulcanized rubber composition into a disc shape (diameter: 16.2 mm X thickness: 6 mm). The amount of wear (mm 3 ) when the DIN wear test was performed at room temperature was measured.
その結果、摩耗量が 120mm3以下であったものは、耐摩耗性を有するものとして「 〇」と評価した。 As a result, those whose wear amount was 120 mm 3 or less were evaluated as “◯” as having wear resistance.
[0084] (3)損失係数 tan δ [0084] (3) Loss coefficient tan δ
調製した各加硫ゴム組成物から短冊状 (長さ 20mm X幅 5mm X厚み 2mm)に切り 抜!、た試験片を用い、東洋精機製作所製粘弾性スぺクトロメータを用いて損失係数 t an δを測定した。測定は、 20°Cの測定温度下で、 10%伸張させ、振幅 ± 2%の振 動を振動数 10Hzで与えて行った。  Cut out each vulcanized rubber composition into strips (length 20mm x width 5mm x thickness 2mm)! Using the test piece, the loss factor t an δ using a viscoelastic spectrometer manufactured by Toyo Seiki Seisakusho Was measured. The measurement was performed by extending 10% at a measurement temperature of 20 ° C. and applying a vibration with an amplitude of ± 2% at a frequency of 10 Hz.
[0085] (4)エネルギーロス指数( Δ H) [0085] (4) Energy loss index (ΔH)
調製した各加硫ゴム組成物の比重を測定した。  The specific gravity of each prepared vulcanized rubber composition was measured.
また、調製した各加硫ゴム組成物から 3号ダンベル状に打ち抜 ヽた試験片を用い、 JIS K6251- 2004に準じて、引張速度 500mmZ分での引張試験を行い、 25%伸 び時における引張応力(M ) [MPa]を室温にて測定した。  Also, using a test piece punched from each vulcanized rubber composition prepared in the shape of No. 3 dumbbell, a tensile test was conducted at a tensile speed of 500 mmZ according to JIS K6251-2004, and at 25% elongation Tensile stress (M) [MPa] was measured at room temperature.
25  twenty five
次いで、比重、 M 、および上記で測定した損失係数 tan δの値を用い、調製した  Then, using specific gravity, M and the value of loss factor tan δ measured above, it was prepared
25  twenty five
各加硫ゴム組成物のエネルギーロス指数( Δ Η)を、上記式 [1]から求めた。  The energy loss index (ΔΗ) of each vulcanized rubber composition was determined from the above formula [1].
[0086] [表 1] 第 1表 (その 1 ) [0086] [Table 1] Table 1 (Part 1)
Figure imgf000025_0001
Figure imgf000025_0001
[0087] [表 2]  [0087] [Table 2]
第 1表 (その 2)  Table 1 (Part 2)
Figure imgf000025_0002
Figure imgf000025_0002
[0088] [表 3] 第 1表 (その 3) [0088] [Table 3] Table 1 (Part 3)
Figure imgf000026_0001
Figure imgf000026_0001
[0089] [表 4]  [0089] [Table 4]
第 1表 (その 4 )  Table 1 (Part 4)
Figure imgf000026_0002
Figure imgf000026_0002
[0090] [表 5] 第 1表 (その 5 ) [0090] [Table 5] Table 1 (Part 5)
Figure imgf000027_0001
Figure imgf000027_0001
[0091] [表 6]  [0091] [Table 6]
第 1表 (その 6)  Table 1 (Part 6)
Figure imgf000027_0002
Figure imgf000027_0002
[0092] 上記第 1表に示すゴム成分等の各組成成分としては、以下に示すものを用いた。 '天然ゴム(NR): RSS # 3 [0092] As the composition components such as the rubber component shown in Table 1 above, those shown below were used. 'Natural Rubber (NR): RSS # 3
•ポリブタジエンゴム (VCR): VCR617 (宇部興産社製)  • Polybutadiene rubber (VCR): VCR617 (manufactured by Ube Industries)
•BRl :Nipol BR1220 (重量平均分子量: 46万、末端未変性、日本ゼオン社製) •BR2 :Nipol BR1250H (重量平均分子量: 57万、末端 NMP変性、日本ゼオン 社製)  • BRl: Nipol BR1220 (weight average molecular weight: 460,000, terminal unmodified, manufactured by Nippon Zeon) • BR2: Nipol BR1250H (weight average molecular weight: 570,000, terminal NMP modified, manufactured by Nippon Zeon)
•カーボンブラック 1 :HAF (ショウブラック N339、昭和キャボット社製)  • Carbon Black 1: HAF (Show Black N339, Showa Cabot)
'カーボンブラック 2: GPF (ダイアブラック G、三菱化学社製)  'Carbon black 2: GPF (Diablack G, manufactured by Mitsubishi Chemical Corporation)
•シリカ 1 :含水微粉ケィ酸 (窒素吸着比表面積 (N SA) : 202m2/g、 -ップシール • Silica 1: Hydrous fine powdered caic acid (Nitrogen adsorption specific surface area (N SA): 202m 2 / g, -Pseal
2  2
AQ、日本シリカ工業社製)  AQ, manufactured by Nippon Silica Industry Co., Ltd.)
•シリカ 2 :含水微粉ケィ酸 (窒素吸着比表面積 (N SA) : 120m2/g、トクシール G Silica 2: Hydrous fine powdered caic acid (Nitrogen adsorption specific surface area (N SA): 120 m 2 / g, Toxeal G
2  2
Uゝトクャマ社製)  (Made by Uto Tokama)
•シリカ 3 :含水微粉ケィ酸 (窒素吸着比表面積 (N SA) : 144m2/g、 Zeosil 165 ・ Silica 3: Hydrous fine powdered caic acid (Nitrogen adsorption specific surface area (N SA): 144m 2 / g, Zeosil 165
2  2
GR、 Rhodia Silica korea社製)  GR, manufactured by Rhodia Silica korea)
•シリカ 4 :含水微粉ケィ酸 (窒素吸着比表面積 (N SA) : 159m2/g、 Ultrasil 700 • Silica 4: Hydrous fine powdered caic acid (Nitrogen adsorption specific surface area (N SA): 159m 2 / g, Ultrasil 700
2  2
0GR、 United Silica Industrial社製;)  0GR, manufactured by United Silica Industrial;)
•ジエチレングリコール:日本触媒社製  • Diethylene glycol: manufactured by Nippon Shokubai Co., Ltd.
•シランカップリング剤:ビス (3 -トリエトキシシリルプロピル)テトラスルフイド(Si69、 デグッサ社製)  • Silane coupling agent: bis (3-triethoxysilylpropyl) tetrasulfide (Si69, manufactured by Degussa)
•加硫剤 1 :硫黄 (油処理硫黄、細井化学工業社製)  • Vulcanizing agent 1: Sulfur (oil-treated sulfur, manufactured by Hosoi Chemical Co., Ltd.)
•加硫促進剤 1: N— tert ブチル 2—ベンゾチアゾリルスルフェンアミド(ノクセラ 一 NS、大内新興化学工業社製)  • Vulcanization accelerator 1: N-tert butyl 2-benzothiazolylsulfenamide (Noxera I NS, manufactured by Ouchi Shinsei Chemical Co., Ltd.)
.リバージョン防止剤 1: 1, 3 ビス(シトラコンイミドメチル)ベンゼン(PERKALIN K 900、 FLEXSYS社製)  Anti-reversion agent 1: 1, 3 Bis (citraconimidomethyl) benzene (PERKALIN K 900, manufactured by FLEXSYS)
•リバ一ジョン防止剤 2:へキサメチレン 1, 6 ビス(チォサルフェート)ニナトリウム 塩-水和物(DURALINK HTS、 FLEXSYS社製)  • Reversion inhibitor 2: Hexamethylene 1, 6 bis (thiosulfate) disodium salt-hydrate (DURALINK HTS, manufactured by FLEXSYS)
第 1表に示す結果より、実施例 1〜26で得られたゴム組成物は、加硫後の各物性 から、高破断強度、耐摩耗性等の基本物性を維持し、消費電力の低減を十分に図る ことができるコンペャベルトに適したゴム糸且成物であることが分力つた。 これに対し、ジエチレングリコール等を含有しないゴム組成物(比較例 1〜5)、 NR の割合が少ないゴム成分を含有するゴム組成物(比較例 6)、カーボンブラック量の多 V、ゴム組成物(比較例 7)およびシリカ量の多 、ゴム組成物(比較例 8)ならびに参考 例 1および 2のゴム組成物は、加硫後の各物性から、いずれもエネルギーロス指数( Δ Η)が高ぐ消費電力の低減が不十分となるゴム組成物であることが分力つた。 From the results shown in Table 1, the rubber compositions obtained in Examples 1 to 26 maintain the basic physical properties such as high rupture strength and wear resistance and reduce power consumption from the physical properties after vulcanization. It has become a component that it is a rubber thread and a composition suitable for a competitor belt that can be sufficiently planned. In contrast, a rubber composition containing no diethylene glycol or the like (Comparative Examples 1 to 5), a rubber composition containing a rubber component with a low NR ratio (Comparative Example 6), a high V amount of carbon black, a rubber composition ( The rubber composition (Comparative Example 8) and the rubber compositions of Reference Examples 1 and 2 have a high energy loss index (ΔΗ) due to their physical properties after vulcanization. It has become a component that the rubber composition is insufficient in reducing power consumption.
[0094] また、リーバージョン防止剤を含有する実施例 13〜21で得られたゴム組成物は、 M が向上し、損失係数 tan δが小さくなるため、エネルギーロス指数( Δ Η)がより小[0094] Further, in the rubber compositions obtained in Examples 13 to 21 containing the anti-reversion agent, the M is improved and the loss factor tan δ is reduced, so that the energy loss index (ΔΗ) is smaller.
25 twenty five
さくなり、消費電力の低減をより十分に図ることができるコンペャベルトに適したゴム 糸且成物であることが分力つた。  As a result, it has become a component that it is a rubber thread suitable for a conveyor belt that can sufficiently reduce power consumption.
特に、リバ一ジョン防止剤を含有し、かつ、窒素吸着比表面積が好適範囲(125〜 200m2/g)であるシリカを含有する実施例 18〜21で得られたゴム組成物は、 M が In particular, the rubber compositions obtained in Examples 18 to 21 containing silica containing an anti-reversion agent and having a nitrogen adsorption specific surface area in a suitable range (125 to 200 m 2 / g) are as follows:
25 向上し、損失係数 tan δが小さくなるため、エネルギーロス指数(Δ Η)がより小さくな り、消費電力の低減をより十分に図ることができるコンペャベルトに適したゴム糸且成物 であることが分力つた。  25 Since the loss factor tan δ is improved and the energy loss index (Δ Η) is smaller, the rubber yarn and the composition suitable for the conveyor belt can reduce power consumption more sufficiently. However, it was divided.
[0095] 更に、 BRとして、重量平均分子量が 50万以上であり、末端が変性されたポリブタジ ェンを含有する実施例 24〜26で得られたゴム組成物は、 Μ が向上し、損失係数 ta  [0095] Furthermore, the rubber compositions obtained in Examples 24 to 26 containing BR having a weight average molecular weight of 500,000 or more and having a terminal-modified polybutadiene as a BR have improved wrinkles and a loss factor. ta
25  twenty five
η δが小さくなるため、エネルギーロス指数(Δ Η)が更に小さくなり、消費電力の低減 をより十分に図ることができるコンペャベルトに適したゴム糸且成物であることが分かつ  Since η δ is reduced, the energy loss index (Δ 更 に) is further reduced, and it is found that the rubber yarn is suitable for a conveyor belt that can further reduce power consumption.

Claims

請求の範囲 The scope of the claims
[1] 天然ゴム (NR)およびポリブタジエンゴム(BR)からなるゴム成分と、カーボンブラッ クと、シリカと、シランカップリング剤と、ジエチレングリコールとを含有し、  [1] Contains a rubber component made of natural rubber (NR) and polybutadiene rubber (BR), carbon black, silica, silane coupling agent, and diethylene glycol.
前記ゴム成分中の天然ゴムとポリブタジエンゴムとの量比(NRZBR) 1S 80/20 〜25Z75であり、  The ratio of natural rubber to polybutadiene rubber in the rubber component (NRZBR) is 1S 80/20 to 25Z75,
前記カーボンブラックの含有量が、前記ゴム成分 100質量部に対して 15〜35質量 部であり、  The carbon black content is 15 to 35 parts by mass with respect to 100 parts by mass of the rubber component,
前記シリカの含有量が、前記ゴム成分 100質量部に対して 5〜25質量部であり、 前記シランカップリング剤の含有量力 前記ゴム成分 100質量部に対して 0. 5〜3 質量部であり、  The silica content is 5 to 25 parts by mass with respect to 100 parts by mass of the rubber component, and the content force of the silane coupling agent is 0.5 to 3 parts by mass with respect to 100 parts by mass of the rubber component. ,
前記ジエチレングリコールの含有量力 前記ゴム成分 100質量部に対して 0. 5〜4 Content power of the diethylene glycol 0.5 to 4 to 100 parts by mass of the rubber component
. 5質量部である、コンペャベルト用ゴム組成物。 A rubber composition for a conveyor belt, which is 5 parts by mass.
[2] 更に、 1, 3—ビス (シトラコンイミドメチル)ベンゼン、および Zまたは、へキサメチレ ン— 1, 6—ビス(チォサルフェート)ニナトリウム塩-水和物を含有する、請求項 1に 記載のコンペャベルト用ゴム組成物。 [2] The composition according to claim 1, further comprising 1,3-bis (citraconimidomethyl) benzene and Z or hexamethylene-1,6-bis (thiosulfate) disodium salt-hydrate. A rubber composition for a conveyor belt.
[3] 前記 1, 3—ビス (シトラコンイミドメチル)ベンゼン、および Zまたは、前記へキサメチ レン—1, 6—ビス(チォサルフェート)ニナトリウム塩-水和物の含有量力 前記ゴム 成分 100質量部に対して 0. 1〜2質量部である、請求項 2に記載のコンペャベルト 用ゴム組成物。 [3] Content power of the 1,3-bis (citraconimidomethyl) benzene and Z or the hexamethylene-1,6-bis (thiosulfate) disodium salt-hydrate 100 parts by mass of the rubber component The rubber composition for a conveyor belt according to claim 2, wherein the rubber composition is 0.1 to 2 parts by mass relative to the mass.
[4] 前記シリカの窒素吸着比表面積 (N SA)が、 100〜250m2Zgである請求項 1〜3 [4] The nitrogen adsorption specific surface area (NSA) of the silica is 100 to 250 m 2 Zg.
2  2
のいずれかに記載のコンペャベルト用ゴム組成物。  A rubber composition for a conveyor belt according to any one of the above.
[5] 前記ポリブタジエンゴム(BR)力 末端変性ポリブタジエンゴムである請求項 1〜4の [5] The polybutadiene rubber (BR) force is a terminally modified polybutadiene rubber.
V、ずれかに記載のコンペャベルト用ゴム組成物。 V, rubber composition for a conveyor belt according to any one of the above.
[6] 上面カバーゴム層、補強層および下面カバーゴム層からなるコンペャベルトであつ て、 [6] A conveyor belt comprising an upper cover rubber layer, a reinforcing layer, and a lower cover rubber layer,
前記下面カバーゴム層の少なくとも裏面表面力 請求項 1〜5のいずれかに記載の コンべャベルト用ゴム組成物により形成される、コンべャベルト。  A conveyor belt formed by the rubber composition for a conveyor belt according to any one of claims 1 to 5, wherein at least a back surface force of the lower surface cover rubber layer.
[7] 20°Cの測定温度下で、 10%伸張させ、振幅 ± 2%の振動を振動数 10Hzで与えて 柳』定した損失係数 tan δ力 SO. 04-0. 07となり、 [7] At a measurement temperature of 20 ° C, stretch 10% and give a vibration with an amplitude of ± 2% at a frequency of 10Hz. Yanagi's determined loss factor tan δ force SO. 04-0.
下記式 [1]に示すエネルギーロス指数(Δ Η)が 0. 080以下となる、コンペャベルト 用ゴム組成物。  A rubber composition for a conveyor belt having an energy loss index (ΔΔ) represented by the following formula [1] of 0.080 or less.
Δ Η= (SpGr X tan δ ) /Μ [1]  Δ Η = (SpGr X tan δ) / Μ [1]
25  twenty five
ここで、 SpGrは、 20°Cでの比重(g/cm3 )、 tan δは、 20°Cの測定温度下で、 10 %伸張させ、振幅 ± 2%の振動を振動数 10Hzで与えて測定した損失係数、 M は、 Where SpGr is specific gravity (g / cm 3 ) at 20 ° C, tan δ is 10% stretched at a measurement temperature of 20 ° C, and a vibration with an amplitude of ± 2% is given at a frequency of 10Hz. The measured loss factor, M, is
25 twenty five
25%伸び時における引張応力(MPa)である。 The tensile stress (MPa) at 25% elongation.
[8] 天然ゴム (NR)およびポリブタジエンゴム (BR)からなるゴム成分を含有する請求項[8] Claims containing a rubber component comprising natural rubber (NR) and polybutadiene rubber (BR)
7に記載のコンべャベルト用ゴム組成物。 8. The rubber composition for a conveyor belt according to 7.
[9] 天然ゴム (NR)およびポリブタジエンゴム(BR)からなるゴム成分と、カーボンブラッ クと、シリカと、シランカップリング剤と、ジエチレングリコールとを含有する請求項 7に 記載のコンペャベルト用ゴム組成物。 [9] The rubber composition for a conveyor belt according to claim 7, comprising a rubber component comprising natural rubber (NR) and polybutadiene rubber (BR), carbon black, silica, a silane coupling agent, and diethylene glycol. .
[10] 天然ゴム (NR)およびポリブタジエンゴム(BR)からなるゴム成分と、カーボンブラッ クと、シリカと、シランカップリング剤と、ジエチレングリコールとを含有し、 [10] A rubber component comprising natural rubber (NR) and polybutadiene rubber (BR), carbon black, silica, a silane coupling agent, and diethylene glycol.
前記ゴム成分中の天然ゴムとポリブタジエンゴムとの量比(NRZBR) 1S 80/20 Ratio of natural rubber to polybutadiene rubber in the rubber component (NRZBR) 1S 80/20
〜25Z75であり、 ~ 25Z75,
前記カーボンブラックの含有量が、前記ゴム成分 100質量部に対して 15〜35質量 部であり、  The carbon black content is 15 to 35 parts by mass with respect to 100 parts by mass of the rubber component,
前記シリカの含有量が、前記ゴム成分 100質量部に対して 5〜25質量部であり、 前記シランカップリング剤の含有量力 前記ゴム成分 100質量部に対して 0. 5〜3 質量部であり、  The silica content is 5 to 25 parts by mass with respect to 100 parts by mass of the rubber component, and the content force of the silane coupling agent is 0.5 to 3 parts by mass with respect to 100 parts by mass of the rubber component. ,
前記ジエチレングリコールの含有量力 前記ゴム成分 100質量部に対して 0. 5〜4 . 5質量部である、請求項 7に記載のコンペャベルト用ゴム組成物。  The rubber composition for a conveyor belt according to claim 7, wherein the content power of the diethylene glycol is 0.5 to 4.5 parts by mass with respect to 100 parts by mass of the rubber component.
[11] 前記シリカの窒素吸着比表面積 (N SA)が、 100〜250m [11] The silica has a nitrogen adsorption specific surface area (N SA) of 100 to 250 m.
2 2Zgである請求項 9また は 10に記載のコンペャベルト用ゴム組成物。 The rubber composition for a conveyor belt according to claim 9 or 10, wherein the rubber composition is 2 2 Zg.
[12] 前記ポリブタジエンゴム(BR)力 末端変性ポリブタジエンゴムである請求項 8〜11 のいずれかに記載のコンペャベルト用ゴム組成物。 12. The rubber composition for a conveyor belt according to any one of claims 8 to 11, wherein the rubber composition is a polybutadiene rubber (BR) force terminal-modified polybutadiene rubber.
[13] 更に、 1, 3—ビス (シトラコンイミドメチル)ベンゼン、および Zまたは、へキサメチレ ンー 1 , 6—ビス(チォサルフェート)ニナトリウム塩-水和物を含有する請求項 7〜 12 のいずれかに記載のコンペャベルト用ゴム組成物。 [13] In addition, 1,3-bis (citraconimidomethyl) benzene and Z or hexamethyle The rubber composition for a conveyor belt according to any one of claims 7 to 12, comprising N-1,6-bis (thiosulfate) disodium salt-hydrate.
[14] 前記 1, 3—ビス (シトラコンイミドメチル)ベンゼン、および Ζまたは、前記へキサメチ レン—1, 6—ビス(チォサルフェート)ニナトリウム塩-水和物の含有量力 前記ゴム 成分 100質量部に対して 0. 1〜2質量部である、請求項 13に記載のコンペャベルト 用ゴム組成物。 [14] Content power of the 1,3-bis (citraconimidomethyl) benzene and Ζ or hexamethylene-1,6-bis (thiosulfate) disodium salt-hydrate 100 parts by mass of the rubber component 14. The rubber composition for a conveyor belt according to claim 13, wherein the rubber composition is 0.1 to 2 parts by mass relative to the mass.
[15] 上面カバーゴム層、補強層および下面カバーゴム層からなるコンペャベルトであつ て、  [15] A conveyor belt comprising an upper cover rubber layer, a reinforcing layer, and a lower cover rubber layer,
前記下面カバーゴム層の少なくとも裏面表面力 請求項 7〜14のいずれかに記載 のコンペャベルト用ゴム組成物により形成される、コンべャベルト。  A conveyor belt formed by the rubber composition for a conveyor belt according to any one of claims 7 to 14, wherein at least the back surface force of the lower surface cover rubber layer.
PCT/JP2007/063894 2006-07-14 2007-07-12 Rubber composition for conveyor belt and conveyor belt WO2008007733A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2007273485A AU2007273485B2 (en) 2006-07-14 2007-07-12 Rubber composition for conveyor belt and conveyor belt
CN2007800267928A CN101490159B (en) 2006-07-14 2007-07-12 Rubber composition for conveyor belt and conveyor belt

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-194693 2006-07-14
JP2006194693 2006-07-14
JP2007079313A JP4286298B2 (en) 2006-07-14 2007-03-26 Rubber composition for conveyor belt and conveyor belt
JP2007-079313 2007-03-26

Publications (1)

Publication Number Publication Date
WO2008007733A1 true WO2008007733A1 (en) 2008-01-17

Family

ID=38923289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063894 WO2008007733A1 (en) 2006-07-14 2007-07-12 Rubber composition for conveyor belt and conveyor belt

Country Status (4)

Country Link
JP (1) JP4286298B2 (en)
CN (1) CN101490159B (en)
AU (1) AU2007273485B2 (en)
WO (1) WO2008007733A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105415A1 (en) * 2007-02-27 2008-09-04 Ube Industries, Ltd. Rubber composition for belt, and rubber belt
JP2010006859A (en) * 2008-06-24 2010-01-14 Yokohama Rubber Co Ltd:The Rubber composition for conveyor belt and conveyor belt
WO2014188677A1 (en) * 2013-05-23 2014-11-27 株式会社ブリヂストン Rubber composition, rubber composition for conveyor belt, conveyor belt, and belt conveyor device
WO2015083746A1 (en) * 2013-12-03 2015-06-11 バンドー化学株式会社 Conveyor belt
US9403643B2 (en) 2013-04-15 2016-08-02 The Yokohama Rubber Co., Ltd. Rubber composition for conveyor belt, and conveyor belt
US9752018B2 (en) 2014-05-14 2017-09-05 The Yokohama Rubber Co., Ltd. Rubber composition for conveyor belt, and conveyor belt
US9783367B2 (en) 2012-08-23 2017-10-10 The Yokohama Rubber Co., Ltd. Conveyor belt

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5358980B2 (en) * 2008-03-07 2013-12-04 株式会社ブリヂストン Rubber composition for conveyor belt and conveyor belt
JP5482071B2 (en) * 2009-10-02 2014-04-23 横浜ゴム株式会社 Rubber composition for conveyor belt and conveyor belt
KR101509797B1 (en) * 2009-11-10 2015-04-06 현대자동차주식회사 Composites of anti vibration rubbers improving sound absorbability/insulation and Anti vibration rubbers
JP5587694B2 (en) * 2010-07-20 2014-09-10 住友ゴム工業株式会社 Rubber composition for tire, method for producing the same, and pneumatic tire
JP5545102B2 (en) * 2010-07-30 2014-07-09 戸田工業株式会社 Hydrophobic silica particle powder, production method thereof, and rubber composition using the hydrophobic silica particle powder
JP5961476B2 (en) * 2012-08-03 2016-08-02 株式会社ブリヂストン Rubber composition for conveyor belt, conveyor belt and belt conveyor
JP5902935B2 (en) * 2011-12-12 2016-04-13 株式会社ブリヂストン Rubber composition for conveyor belt, conveyor belt and belt conveyor
EP2792709B1 (en) * 2011-12-12 2020-02-05 Bridgestone Corporation Rubber composition for conveyor belts, conveyor belt, and belt conveyor
JP6077921B2 (en) * 2013-04-18 2017-02-08 横浜ゴム株式会社 Coated rubber composition for conveyor belt, laminate and conveyor belt
CN106573729B (en) * 2014-08-07 2019-04-26 阪东化学株式会社 Conveyer belt, the manufacturing method of conveyer belt and rubber composition
CN104311896B (en) * 2014-09-29 2017-02-08 青岛福凯橡塑新材料有限公司 High-strength and high-wear resistance H type covering rubber for steel cord conveyor belt
JP6500398B2 (en) * 2014-11-17 2019-04-17 横浜ゴム株式会社 Conveyor belt
JP6758027B2 (en) * 2015-06-22 2020-09-23 株式会社ブリヂストン Rubber compositions, laminates, and conveyor belts
AU2017404208B2 (en) * 2017-03-14 2020-02-27 The Yokohama Rubber Co., Ltd. Conveyor belt rubber composition and conveyor belt
JP6952234B2 (en) * 2017-05-10 2021-10-20 横浜ゴム株式会社 Rubber composition for conveyor belts and conveyor belts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198547A (en) * 1982-05-16 1983-11-18 Bando Chem Ind Ltd Rubber composition
JPH1077361A (en) * 1996-08-09 1998-03-24 Goodyear Tire & Rubber Co:The Rubber compound having improved cure-reversion resistance
JP2001026670A (en) * 1999-07-15 2001-01-30 Bridgestone Corp Rubber composition for belt
JP2005075956A (en) * 2003-09-01 2005-03-24 Bridgestone Corp Tire for two-wheeled vehicle
JP2006104372A (en) * 2004-10-07 2006-04-20 Bridgestone Corp Rubber composition for belt and belt
JP2006124474A (en) * 2004-10-27 2006-05-18 Sumitomo Rubber Ind Ltd Rubber composition for covering steel cord and steel cord covered with the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620875B2 (en) * 2001-09-04 2003-09-16 Uniroyal Chemical Company, Inc. Rubber compositions and method for increasing the mooney scorch value

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198547A (en) * 1982-05-16 1983-11-18 Bando Chem Ind Ltd Rubber composition
JPH1077361A (en) * 1996-08-09 1998-03-24 Goodyear Tire & Rubber Co:The Rubber compound having improved cure-reversion resistance
JP2001026670A (en) * 1999-07-15 2001-01-30 Bridgestone Corp Rubber composition for belt
JP2005075956A (en) * 2003-09-01 2005-03-24 Bridgestone Corp Tire for two-wheeled vehicle
JP2006104372A (en) * 2004-10-07 2006-04-20 Bridgestone Corp Rubber composition for belt and belt
JP2006124474A (en) * 2004-10-27 2006-05-18 Sumitomo Rubber Ind Ltd Rubber composition for covering steel cord and steel cord covered with the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105415A1 (en) * 2007-02-27 2008-09-04 Ube Industries, Ltd. Rubber composition for belt, and rubber belt
US7872066B2 (en) 2007-02-27 2011-01-18 Ube Industries, Ltd Rubber composition for belt use and rubber belt
JP2010006859A (en) * 2008-06-24 2010-01-14 Yokohama Rubber Co Ltd:The Rubber composition for conveyor belt and conveyor belt
US9783367B2 (en) 2012-08-23 2017-10-10 The Yokohama Rubber Co., Ltd. Conveyor belt
US9403643B2 (en) 2013-04-15 2016-08-02 The Yokohama Rubber Co., Ltd. Rubber composition for conveyor belt, and conveyor belt
WO2014188677A1 (en) * 2013-05-23 2014-11-27 株式会社ブリヂストン Rubber composition, rubber composition for conveyor belt, conveyor belt, and belt conveyor device
JP2014227503A (en) * 2013-05-23 2014-12-08 株式会社ブリヂストン Rubber composition, rubber composition for conveyor belt, conveyor belt, and belt conveyor device
AU2014269810B2 (en) * 2013-05-23 2016-11-17 Bridgestone Corporation Rubber composition, rubber composition for conveyor belt, conveyor belt, and belt conveyor device
US9617404B2 (en) 2013-05-23 2017-04-11 Bridgestone Corporation Rubber composition, conveyor belt rubber composition, conveyor belt, and belt conveyor device
WO2015083746A1 (en) * 2013-12-03 2015-06-11 バンドー化学株式会社 Conveyor belt
US9752018B2 (en) 2014-05-14 2017-09-05 The Yokohama Rubber Co., Ltd. Rubber composition for conveyor belt, and conveyor belt

Also Published As

Publication number Publication date
CN101490159B (en) 2012-11-14
AU2007273485A1 (en) 2008-01-17
AU2007273485B2 (en) 2011-03-03
JP2008038133A (en) 2008-02-21
JP4286298B2 (en) 2009-06-24
CN101490159A (en) 2009-07-22

Similar Documents

Publication Publication Date Title
WO2008007733A1 (en) Rubber composition for conveyor belt and conveyor belt
JP5999014B2 (en) Rubber composition for conveyor belt and conveyor belt
JP5487567B2 (en) Rubber composition for conveyor belt and conveyor belt
US8785541B2 (en) Rubber composition and run-flat tire using same
JP2010095584A (en) Rubber composition for conveyer belt and conveyer belt
CA2925928A1 (en) Rubber compositions and uses thereof
JP5148968B2 (en) tire
WO2012032896A1 (en) Rubber composition for conveyor belt and conveyor belt
WO2015163168A1 (en) Coating rubber composition for conveyor belt
JP4561046B2 (en) Rubber composition for conveyor belt and conveyor belt
JP5044912B2 (en) Rubber composition
JP2004018752A (en) Rubber composition for conveyer belt, and conveyer belt
WO2018110396A1 (en) Rubber composition, cover rubber for conveyer belt, and conveyer belt
EP3483210A1 (en) Rubber composition, conveyor belt, and belt conveyor
JP2010013262A (en) Rubber composition for conveyor belt, method for manufacturing the same, and conveyor belt
JP5515461B2 (en) Rubber composition for conveyor belt and conveyor belt
JP5482071B2 (en) Rubber composition for conveyor belt and conveyor belt
JP6772702B2 (en) Rubber composition for conveyor belts and conveyor belts
JP6316289B2 (en) Pneumatic tire
US20200190290A1 (en) Rubber composition, inner peripheral cover rubber, conveyor belt, and belt conveyor
JP2008095073A (en) Rubber composition for crawler, crawler tread using it or rubber crawler with crawler base
JP7485925B2 (en) Rubber composition for conveyor belt and conveyor belt
JP2005264150A (en) Sidewall-reinforcing rubber composition and run flat tire using the same
WO2018194063A1 (en) Rubber composition for inner-layer member of tire, and heavy-duty pneumatic tire obtained using same
JP2021181543A (en) Rubber composition for conveyor belt and conveyor belt

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780026792.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790688

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007273485

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007273485

Country of ref document: AU

Date of ref document: 20070712

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790688

Country of ref document: EP

Kind code of ref document: A1