WO2008007630A1 - Méthode et appareil de recherche de protéine - Google Patents

Méthode et appareil de recherche de protéine Download PDF

Info

Publication number
WO2008007630A1
WO2008007630A1 PCT/JP2007/063640 JP2007063640W WO2008007630A1 WO 2008007630 A1 WO2008007630 A1 WO 2008007630A1 JP 2007063640 W JP2007063640 W JP 2007063640W WO 2008007630 A1 WO2008007630 A1 WO 2008007630A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
data
information
target protein
expression level
Prior art date
Application number
PCT/JP2007/063640
Other languages
English (en)
French (fr)
Inventor
Reiji Teramoto
Hirotaka Minagawa
Kenichi Kamijo
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2008524780A priority Critical patent/JPWO2008007630A1/ja
Priority to US12/373,675 priority patent/US20090319450A1/en
Publication of WO2008007630A1 publication Critical patent/WO2008007630A1/ja

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/20Supervised data analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/30Unsupervised data analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44773Multi-stage electrophoresis, e.g. two-dimensional electrophoresis

Definitions

  • the present invention relates to a method and an apparatus for searching for a protein directly or indirectly related to information such as clinical information.
  • proteome analysis generally refers to analysis in which a sample derived from a biological tissue or the like separates various types of proteins and the like present in the sample into components, and each separated component is identified.
  • An example of a specific method for proteome analysis is to visualize a sample by preparing a sample, separating the protein by two-dimensional electrophoresis, and staining the gel obtained by two-dimensional electrophoresis. By extracting each spot and performing mass spectrometry (MS) on the extract obtained by further enzyme treatment, etc., it is estimated what kind of protein is contained in the sample! There is a thing. Each visualized spot corresponds to each separated protein.
  • Proteome analysis methods include two-dimensional electrophoresis and mass spectrometry, which are described here, as well as two-dimensional electrophoresis and mass spectrometry after appropriate sample preparation. There is also a way to do only one. Furthermore, there are methods using other protein identification methods.
  • 2D-DIGE 2-Dimensional Fluorescence D ifference Gel Electrophoresis
  • 2D-DIGE is a technique for profiling protein expression and modification information, and is suitable for quantitative comparison of proteins between samples.
  • mass spectrometry technique often used in proteomic analysis
  • SELDI chip Analysis is a technique suitable for protein profiling, and this method is used to quantitatively compare proteins between mass spectral force samples.
  • a protein that can cause a significant difference in expression level between a normal individual and an affected individual is called a marker protein.
  • search for marker proteins the relationship between clinical information such as disease state and treatment history and the expression level of the protein is investigated, and statistical processing is performed to search for proteins that have a significant relationship with the clinical information. become.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-38377 [A1]
  • Patent Document 1 A method for designing functional nucleic acid sequences is disclosed.
  • oligonucleotides are extracted from the sequence of the target gene, which is mRNA (messenger RNA), and the sequence is used as input data for the design candidate sequence, which is characterized by the kernel method from known training sequences and design candidate sequences.
  • the training sequence is an oligonucleotide sequence that is already effective in controlling gene expression.
  • those disclosed in Japanese Patent Application Laid-Open No. 2003-38377 function from design candidate sequences by comparison with known functional nucleic acid sequences. Therefore, even if the nucleic acid sequence is replaced with an amino acid sequence, it cannot be used for the purpose of searching for a marker protein based on information such as clinical information.
  • Patent Document 2 discloses the use of machine learning for classification and prediction of genetic diseases.
  • Stochastic gradient boosting which is one of the methods in machine learning, is an extension of gradient boosting.
  • the stochastic gradient boosting method is described in Reference [B3] (Non-Patent Document 3)
  • the gradient boosting method is described in Reference [B4] (Non-Patent Document 4).
  • the probability gradient boosting method and the gradient boosting method are both ensemble learning.
  • the typical method of ensemble learning is the boosting method described in Ref. [B5] (Non-Patent Document 5).
  • Pugging described in Ref. [B6] (Non-Patent Document 6) is known.
  • decision trees or regression trees are often used, and these are described in [B7] (Non-patent Document 7).
  • Patent Document 1 [A1] JP 2003-38377 A
  • Patent Literature 2 [A2] WO2002Z47007 (Special Table 2004-524604)
  • Patent Literature 3 [A3] Japanese Patent Laid-Open No. 2004-126857
  • Non-Patent Document 1 [B1] John M. Luk et al .: "Proteomic profiling of he patocellular carcinoma in Cnmese cohort reveals heat— shock prote ins (Hsp27, Hsp70, GRP78) up— regulation and their associated prognostic values," Proteomics , 2006, 6, 1049— 1057
  • Non-Patent Document 2 [B2] O. Troyanskaya, M. Cantor, G. Sherlock, P.
  • Non-patent document 3 [B3] J. Friedman: “Stochastic gradient boosting, Computational Statistics and Data Analysis, 2002, 367—378
  • Non-patent document 4 [B4] J. Friedman:“ Greedy Function Approximation: A Gradient Boosting Machine ,, The Annals of Statistics, 2001, 1189-1232
  • Non-Patent Document 5 [B5] Y. Freund, RE Schapire: "A decision—theoretic generalization of on—line learning and an application to boosting,..., Journal of Computer and System Sciences, 1997, 23—27 E6: [B6] Leo Breiman: "Bagging Predictors, ..., Machine Learning, 1996, 123-140
  • Non-Patent Document 7 [B7] Andreas Buja and Yung— Seop Lee: “Data mining criteria for tree— based regression and classification, Proceeding s of the seventh ACM SIGKDD international conference on Know ledge discovery and data mining, Pages: 27— 36, 2001
  • a method for quantitative protein comparison between a sample from an affected individual and a sample from a normal individual such as the method of Luk et al. [B1], from the viewpoint of searching for a marker protein.
  • an object of the present invention is to use a biologically important protein such as a marker protein as a target protein from information such as protein expression data obtained by two-dimensional electrophoresis. It is to provide a new analysis method that can be searched.
  • Another object of the present invention is to consider biologically important proteins such as marker proteins from information such as protein expression data obtained by two-dimensional electrophoresis in view of the above-mentioned problems.
  • the object is to provide a new analysis device that can be searched as a protein.
  • the protein search method of the present invention is a protein search method for searching for a protein directly or indirectly related to information as a target protein based on protein expression profiling data obtained by proteome analysis. Based on the importance of the protein obtained using supervised learning from the protein expression level and information in the profiling data, The relevant protein is determined as the target protein, and the performance of the target protein is evaluated based on the evaluation data.
  • a first protein search device of the present invention is a protein search device that searches for a protein related to information as a target protein based on protein expression profiling data obtained by proteome analysis!
  • Data storage means for storing protein expression data and information obtained by proteome analysis
  • target protein search means for determining a target protein from the protein expression data and information using supervised learning
  • determined target protein Target protein storage means for storing the expression level of white matter
  • prediction model learning means by the target protein for learning the prediction model using the determined expression level and information of the target protein and prediction model storage means for storing the prediction model Evaluation data storage means for storing data for evaluating the performance of the prediction model, and the prediction model based on the evaluation data
  • Predictive model verification means for evaluating.
  • the second protein search apparatus of the present invention is a protein search apparatus that searches for a protein related to information as a target protein based on protein expression profiling data obtained by proteome analysis!
  • Data storage means for storing protein expression data and information acquired by proteome analysis, data dividing means for dividing protein expression data into training data and verification data used for target protein search, and storing training data.
  • Target protein storage means for storing the target protein, and the target protein for learning the prediction model using the determined target protein expression level and information.
  • Predictive model learning means based on white matter
  • predictive model storage means for storing the predictive model
  • predictive model verifying means for evaluating the predictive model based on the verification data.
  • a target protein such as a marker protein
  • the threshold for judging whether or not the target protein strength can be reasonably determined.
  • FIG. 1 is a block diagram showing a configuration of a marker protein search device according to a first embodiment.
  • FIG. 2 is a flowchart showing an example of a processing procedure in the marker protein search apparatus shown in FIG. 1.
  • FIG. 3 is a flowchart showing an example of a missing value complement processing procedure.
  • FIG. 4 is a flowchart showing an example of a processing procedure of a probability gradient boosting method.
  • FIG. 5 is a block diagram showing a configuration of a marker protein search device according to a second embodiment.
  • FIG. 6 is a flowchart showing an example of a processing procedure in the marker protein search apparatus shown in FIG. 5.
  • FIG. 7 is a block diagram showing a configuration of a marker protein search apparatus according to a third embodiment.
  • FIG. 8 is a flowchart showing an example of a processing procedure in the marker protein search apparatus shown in FIG.
  • the case of exhaustively searching for marker proteins directly or indirectly related to clinical information will be described as an example as a target protein that is a protein directly or indirectly related to information.
  • the marker protein is exhaustively searched by using ensemble learning for the protein expression level obtained by proteome analysis.
  • FIG. 1 shows the configuration of the marker protein search apparatus of the first embodiment.
  • This marker protein search device searches for a biologically important protein, that is, a marker protein, from protein expression data obtained by two-dimensional electrophoresis or the like.
  • the marker protein search apparatus shown in the figure is roughly divided into an input device 1 such as a keyboard and a pointing device, a data processing device 2 operated by program control, a storage device 3 for storing information, and a display device. And an output device 4 such as a printer.
  • the data processing device 2 includes a missing value complementing unit 21 that supplements the value of the expression level of the missing protein, a data dividing unit 22 that divides all data into training data and verification data, and a training data.
  • the marker protein search unit 23 that searches for marker proteins from the data
  • the prediction model learning unit 24 that learns the prediction model using the expression level of the marker protein and clinical information, etc., and the classification performance of the prediction model is evaluated based on the verification data
  • the missing value complementing unit 21 is also called missing value complementing means
  • the data dividing unit 22 is also called data dividing means
  • the marker protein searching unit 23 is also called target protein searching means
  • the prediction model learning unit 24 is predicted.
  • the verification unit 25 is also called prediction model verification means.
  • the storage device 3 includes a data storage unit 31 that stores protein expression levels, clinical information, and the like, a training data storage unit 32 that stores training data divided by the data division unit 22, and a data division unit.
  • a prediction model storage unit 36 for storing the prediction model learned by using.
  • the data storage unit 31 is also called a data storage unit
  • the training data storage unit 32 is also called a training data storage unit
  • the verification data storage unit 33 is also called a verification data storage unit
  • the marker protein storage unit 35 is It is also called a target protein storage means
  • the prediction model storage unit 36 is also called a prediction model storage unit.
  • FIG. 2 is a flowchart showing an example of a processing procedure for searching for a marker protein.
  • An execution instruction is given to the marker protein search device by the input device 1, and the expression level of the protein is input to the data storage unit 31 via the input device 1 in step A1.
  • the input expression level is stored in the data storage unit 31.
  • the amount of protein expressed here can be obtained, for example, by the protein expression profiling data obtained by proteome analysis.
  • a proteome analysis method for example, a method using two-dimensional electrophoresis and Z or mass spectrometry can be used.
  • information reflecting the state of the protein such as chemical modification of the protein such as phosphate and sugar chain modification can be used.
  • Clinical information corresponding to the protein expression level is also stored in the data storage unit 31 via the input device 1 and the data processing device 2.
  • the protein expression level is obtained when a sample is analyzed by proteome analysis.
  • the clinical information corresponding to the protein expression level is information on the individual who provided the sample. It is referred to as clinical information, including information on so-called clinical figures, information on disease states, information on drug efficacy, and information on how long an individual survived after sampling.
  • step A2 the missing value complementing unit 21 performs missing value complementing of the protein expression level, and the protein expression level that has been subjected to missing value complementing is stored in the data storage unit 31.
  • step B1 the expression level of the protein before missing value complementation is input from the data storage unit 31 to the missing value complementation unit 21.
  • the missing value complementer 21 performs step B2. Then, select the M proteins whose expression level is deficient at a predetermined ratio, and set the number of proteins K to be used for missing value compensation in step B3.
  • step B6 the missing amount is complemented by a weighted average according to the distance. The weighted average is the weight and the protein expression level is X.
  • the data dividing unit 22 next receives the protein expression data of all the samples after the missing value compensation from the data storage unit 31, and in step A3, it performs the best. Search for proteins and divide these protein expression data into training data used to learn the prediction model and validation data to evaluate the performance of the prediction model that also learned the training data power.
  • the training data is stored in the training data storage unit 32, and the verification data is stored in the verification data storage unit 33.
  • step A4 the marker protein search unit 23 receives clinical information corresponding to the protein expression level in the training data storage unit 32 force training data, and the parameter storage unit 3 4 force also learns the probability gradient boosting method.
  • the parameters used in the above are received, and the parameters of the probability boosting method when the lower learning machine is a regression tree are set.
  • the marker protein search unit 23 calculates the importance of each protein as an index of the marker protein by supervised learning.
  • the protein expression level is used as an attribute
  • clinical information is used in supervised learning. Learning is performed by the probability boosting method as an objective function.
  • step A6 calculate the importance for the attribute.
  • step A7 an attribute is selected based on the importance.
  • the expression level of the protein given importance is stored in the marker protein storage unit 35 together with clinical information.
  • step C1 a set D of protein expression levels and clinical information is input from the training data storage unit 32 to the marker protein search unit 23.
  • N is the number of sets, ie, the number of samples from which expression is obtained for the protein of interest.
  • is protein expression level and y is clinical information.
  • Clinical information includes disease and normality, disease grade, and survival time.
  • a loss function L is a classification problem that identifies a class such as disease or normal, where F (x) is the discriminant function.
  • the clinical information when the clinical information is a discrete value, for example, a logarithmic function can be used as the loss function, and when the clinical information is a continuous value, for example, a true value is predicted as the loss function.
  • the square of the difference between the values or the absolute value of the difference between the true value and the predicted value can be used.
  • the clinical information is survival time, use the Cox proportional hazards model as a loss function.
  • the resampling number S and the reduction parameter V can be introduced to avoid overlearning of the original data.
  • step C3 the discriminant function F and the number of iterations m are initialized as follows.
  • step C4 the number of data to be learned n is initialized as follows using the regression tree, which is a lower learning machine.
  • n l (10).
  • step C5 the slope of the loss function L is calculated by the following equation.
  • step C6 following step C5, add 1 to n, and in step C7, determine whether n has reached N. If n ⁇ N, return to step C5 Thus, the operation of calculating the slope of the loss function in step C5 is continued until n becomes N.
  • step S8 the data is resampled s times to generate a duplicate data set, and in step C9, the set of duplicate data and the gradient of the loss function is set.
  • the set R is learned by the regression tree T.
  • step C10 the discriminant function is updated as follows.
  • F (T (x), ⁇ , T (x)) F (T ( ⁇ ), ⁇ , ⁇ ( ⁇ )) + ⁇ ( ⁇ ) (13) mlmm— 1 1 m— 1 m
  • step CIO in step CI 1, 1 is added to M.
  • step C12 it is determined whether m has reached M, and if m ⁇ M, the process returns to step C4. Continue from C5 to Step C10 until m becomes M.
  • the importance V of protein p depends on the learning process of the regression tree of the above probability gradient boosting method.
  • V (T) is the importance of learning the 111th regression tree and is defined by the following equation: p m
  • the prediction model learning unit 24 receives the protein expression level and clinical information of the training data, receives the protein expression level from the marker protein storage unit 35, and has supervised learning such as support vector machines or unsupervised clustering. By learning, a prediction model is learned. The prediction model after learning is stored in the prediction model storage unit 36.
  • the verification unit 25 receives the prediction model from the prediction model storage unit 36, receives the verification data from the verification data storage unit 33, and receives the verification data. Predict the floor information. The prediction result is output from the output device 4.
  • the protein associated with the clinical information can be searched from more proteins by complementing the expression level of the missing protein. This has the effect of increasing the possibility of discovering a marker protein that has not been discovered so far.
  • FIG. 5 shows a configuration of the marker protein search device of the second embodiment.
  • the marker protein search device shown in Fig. 5 is suitable for the case where all the protein expression levels in a sample can be measured, or when only the protein whose expression level can be measured is targeted for analysis.
  • the difference is that a missing value complement is not provided.
  • FIG. 6 is a flowchart showing an example of the marker protein search process in the apparatus shown in FIG. 5.
  • a process for complementing the missing value is provided. The difference is only in the point.
  • the apparatus shown in FIG. 5 executes the marker protein search process in the same manner as the apparatus shown in FIG. 1 except that missing values in expression levels are not complemented.
  • FIG. 7 shows a configuration of the marker protein search device of the third embodiment.
  • the marker protein search device shown in Fig. 7 searches for marker proteins using all data that does not divide expression level profile data into training data and verification data, and uses marker data based on separately prepared evaluation data. This is to evaluate the prediction performance.
  • the apparatus shown in FIG. 7 does not include a data dividing unit, a training data storage unit, and a verification data storage unit. Instead, an evaluation data storage unit 37 is provided in the storage device 3. ing.
  • the marker protein search unit 23, which is also called target protein search means determines the marker protein from the protein expression data and clinical information stored in the data storage unit 31 using supervised learning.
  • the evaluation data storage unit 37 is also called evaluation data storage means and stores evaluation data used for evaluating the performance of the prediction model.
  • FIG. 8 is a flowchart showing an example of marker protein search processing in the apparatus shown in FIG.
  • An execution instruction is given by the input device 1, and in step A1, the protein expression level and the corresponding clinical information are input to the data storage unit 31 via the input device 1. And stored in the data storage unit 31.
  • the marker protein search unit 23 receives clinical information corresponding to the protein expression level of the training data from the data storage unit 31, and receives parameters from the parameter storage unit 34 for use in learning of the probability gradient boosting method. And set the parameters of the probability boosting method when the lower learning machine is a regression tree. Then, after setting the parameters in this way, the marker protein search unit 23 calculates the importance of each protein as an index of the marker protein.
  • learning is performed by the probability boosting method using the protein expression level as an attribute and clinical information as an objective function.
  • the importance for the attribute is calculated.
  • step A7 the marker protein search unit 23 selects an attribute based on the importance. Thereafter, the expression level of the protein given importance is stored in the marker protein storage unit 35. Thereafter, in step A8, the predictive model learning unit 24 receives the protein expression level and the clinical information from the data storage unit 31, receives the protein expression level from the marker protein storage unit 35, The prediction model is learned by supervised learning or unsupervised learning such as clustering. The predicted model after learning is stored in the predicted model storage unit 36. Subsequently, in step A10, the verification unit 25 receives the prediction model from the prediction model storage unit 36, receives the evaluation data from the evaluation data storage unit 37, and performs prediction on the clinical information of the evaluation data. The prediction result is output from the output device 4.
  • the marker protein search method of each embodiment described above is also realized by reading a computer program for realizing the method into a computer such as a personal computer or a workstation and executing the program. it can.
  • a program for searching for a marker protein is read into a computer by a recording medium such as a magnetic tape or a CD-ROM or via a network.
  • a computer generally has a CPU (Central Processing Unit), an external storage device for storing programs and data, a main memory, input devices such as a keyboard and a mouse, a CRT (Cathode Ray Tube) and a liquid crystal display.
  • a hard disk device is used as the external storage device.
  • a recording medium storing a program for executing a marker protein search is loaded into a reading device, the recording medium force program is read out and stored in an external storage device, and the program stored in the external storage device
  • the above-described marker protein searching method is executed by the CPU executing the program or downloading the program to the external storage device via the network and executing the program stored in the external storage device. Executed.
  • a step of dividing the profiling data into training data and verification data used for target protein search is further provided, and in the determination step, protein expression in the training data is performed. Based on the importance of the protein obtained using supervised learning from the quantity and clinical information, the protein related to the clinical information is determined as the target protein and the verification data is used as the evaluation data at the stage of evaluation. Also good.
  • the method may further comprise the step of supplementing the deficient value of the protein expression level by using the expression level of other proteins.
  • Still another object of the present invention is to make it possible to search the relationship between the expression level of a plurality of proteins and clinical information without setting a threshold by the stochastic gradient boosting method, and to detect the deficiency of the protein expression level. It is an object of the present invention to provide a protein search method that can enhance the comprehensiveness of proteins that can be compared between groups by performing value complementation.
  • Still another object of the present invention is to set a threshold value by a stochastic gradient boosting method. It is possible to search for the relationship between the expression level of multiple proteins and clinical information, etc., and to complement the missing value of the protein expression level to improve the comprehensiveness of the proteins that can be compared between groups.
  • the object is to provide a protein search device.
  • proteome analysis was performed on samples of cancerous and noncancerous samples of liver cancer in the liver by fluorescence-labeled two-dimensional difference gel electrophoresis.
  • a protein search was performed using the procedure described in the first embodiment.
  • the number of proteins that can be analyzed without missing value complementation was 101, and when the missing value of 20% force was supplemented, it became 658, which makes it possible to analyze more than 6 times the number of proteins.
  • Comprehensiveness has improved dramatically.
  • 25 missing values and 20% missing values were complemented. was able to detect 42 automatically.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Theoretical Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Public Health (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Bioethics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

明 細 書
蛋白質探索方法及び装置
技術分野
[0001] 本発明は、臨床情報等の情報と直接あるいは間接的に関連する蛋白質を探索する 方法及び装置に関する。
背景技術
[0002] 近年、質量分析法や 2次元電気泳動法などを用いたプロテオーム解析と呼ばれる 蛋白質の網羅的解析技術の向上により、蛋白質の機能解析や疾患診断に有用なマ 一力一蛋白質などの探索が活発に行われている。プロテオーム解析とは、一般には 、生体組織などに由来したサンプルから、そのサンプル中に存在する多種類の蛋白 質などを成分に分離し、分離した各成分をそれぞれを同定する解析のことを指す。
[0003] プロテオーム解析の具体的な手法の一例を挙げれば、サンプル調製後、 2次元電 気泳動を行って蛋白質を分離し、 2次元電気泳動で得られたゲルを染色することによ つて可視化される各スポットを抜き出し、さらに酵素処理などを行って得た抽出物に 対して質量分析 (MS)を行うことにより、サンプル中にどのような蛋白質が含まれて!/ヽ たかを推定する、というものがある。可視化されたスポットは、それぞれ、分離された各 蛋白質に相当するものである。プロテオーム解析の手法としては、ここで述べた 2次 元電気泳動と質量分析とを組み合わせた方法のほかに、適切な試料前処理を行つ た上で、 2次元電気泳動と質量分析のいずれか一方のみを行う方法もある。さらには 、他の蛋白質同定手法を用いる方法もある。
[0004] プロテオーム解析でよく用いられる 2次元電気泳動の手法としては、 2D— DIGE ( 蛍光標識 2次元ディファレンスゲル電気泳動; 2— Dimensional Fluorescence D ifference Gel Electrophoresis)がある。 2D— DIGEは、蛋白質の発現、修飾情 報のプロフアイリングを行う技術であり、サンプル間の蛋白質の定量的な比較を行う のに適している。また、プロテオーム解析でよく用いられる質量分析の手法としては、 SELDI (表面ェンハンス型レーザー脱離イオン化; Surface— enhanced laser d esorption/ionization)チップを用いる方法がある。 SELDIチップを用いる質量分 析は、蛋白質のプロフアイリングを行うのに適した技術であり、この手法を用いて、質 量スペクトル力 サンプル間の蛋白質の定量的な比較が行われて 、る。
[0005] ところで、ヒトを含む動物にお!、て、疾患に罹患して ヽる個体から得られるサンプル と正常な個体力 得られるサンプルでとでは、特定の蛋白質の発現量について有意 の差がある場合があることが知られて 、る。
[0006] そこで、疾患の診断に、個体力 得られた蛋白質の定量を行うことが有効である。ま た、このような診断等を行うために、疾患ごとに、どのような蛋白質において正常な個 体と罹患した個体との間で発現量の有意の差があるかを突き止めることが重要である 。そのように正常な個体と罹患した個体との間で発現量に有意の差が生じうるものを マーカー蛋白質と呼ぶ。マーカー蛋白質の探索においては、病態や治療履歴など の臨床情報と蛋白質の発現量との関係を調べ、統計的な処理を行って、臨床情報に 対して有意な関連性を示す蛋白質を探索することになる。
[0007] 罹患した個体からのサンプルと正常な個体からのサンプルとの間の蛋白質の定量 的な比較を行う方法の例として、 John M. Lukらによる方法がある [B1] (非特許 文献 1)。 Lukらの方法では、 2次元電気泳動法によって得られた蛋白質発現量を、 ANOVA (分散分析; analysis of variance)や t検定で用いられる統計検定量を 指標として、比較する。 Lukらは、この方法を用いて、統計検定量の上位 3個の蛋白 質のみに着目して、肝癌における癌部と非癌部の分類性能の評価と、既存のマーカ 一蛋白質や臨床情報との相関関係の評価を行っている。
[0008] 本発明に隣接する技術のものである力 特開 2003— 38377号公報 [A1] (特許文 献 1)には、 RNA (リボ核酸)干渉現象などを用いた遺伝子発現制御において用いら れる機能性核酸配列を設計する方法が開示されている。この方法では、 mRNA (メッ センジャー RNA)である標的遺伝子の配列からオリゴヌクレオチドを抽出してその配 列を設計候補配列の入力データとし、既知の訓練配列と設計候補配列とからカーネ ル法により特徴抽出を行い、さらに教師あり学習を行うことによって、標的遺伝子に対 して有効な機能性核酸配列を予測する。訓練配列は、遺伝子発現制御において既 に有効とされているオリゴヌクレオチドの配列である。結局、特開 2003— 38377公報 に開示のものは、既知の機能性核酸配列との比較によって設計候補配列から機能 性核酸配列を予測するものであり、したがって、核酸配列をアミノ酸配列に置き換え たとしても、臨床情報などの情報に基づいてマーカー蛋白質を探索する目的では、 使用することができない。
[0009] 本発明に関連する技術として、 WO2002Z047007 [A2] (特許文献 2)には、遺 伝的疾患の分類及び予測のために、機械学習を用いることを開示している。
[0010] O. Troyanskayaらは、近傍法に基づく欠損値補完法を開示している [B2] (非 特許文献 2)。同様に特開 2004— 126857号公報 [A3]は、遺伝子発現データにお ける欠損値を k—最近傍法を用いて推定することを開示して 、る。
[0011] 機械学習における手法の一つである確率勾配ブースティング法は、勾配ブースティ ング法を発展させたものである。確率勾配ブースティング法については文献 [B3] (非 特許文献 3)に、勾配ブースティング法については文献 [B4] (非特許文献 4)に記載 されている。確率勾配ブースティング法、勾配ブースティング法は、いずれもアンサン ブル学習の 1つである力 アンサンブル学習の代表的な方式としては、文献 [B5] (非 特許文献 5)に記載されたブースティングと、文献 [B6] (非特許文献 6)に記載された パギングが知られている。アンサンブル学習の下位学習機械としては、決定木'回帰 木を用いる場合が多ぐこれらについては、文献 [B7] (非特許文献 7)に記載されて いる。
[0012] 以下、本明細書中で引用した参考文献を列挙する。
特許文献 1 : [A1] 特開 2003— 38377号公報
特許文献 2 : [A2] WO2002Z〇47007 (特表 2004— 524604号公報) 特許文献 3 : [A3] 特開 2004— 126857号公報
非特許文献 1 : [B1] John M. Luk et al. : "Proteomic profiling of he patocellular carcinoma in Cnmese cohort reveals heat— shock prote ins (Hsp27, Hsp70, GRP78) up— regulation and their associated prognostic values, " Proteomics, 2006, 6, 1049— 1057
非特許文献 2 : [B2] O. Troyanskaya, M. Cantor, G. Sherlock, P.
Brown, T. Hastie, R. Tib shir ani, D. Botstein, and R. B. Al tman: "Missing value estimation methods for DNA microarrays, Bioinformatics, 2001, 17, 520— 525
非特言午文献 3 : [B3] J. Friedman: "Stochastic gradient boosting, Co mputational Statistics and Data Analysis, 2002, 367— 378 非特許文献 4: [B4] J. Friedman: "Greedy Function Approximation: A Gradient Boosting Machine,,, The Annals of Statistics, 2001, 1189- 1232
非特許文献 5 : [B5] Y. Freund, R. E. Schapire : "A decision— theor etic generalization of on— line learning and an application to boost ing,,, Journal of Computer and System Sciences, 1997, 23— 27 非特言午文献 6 : [B6] Leo Breiman: "Bagging Predictors,,, Machine Lea rning, 1996, 123— 140
非特許文献 7 : [B7] Andreas Buja and Yung— Seop Lee : "Data minin g criteria for tree— based regression and classification, Proceeding s of the seventh ACM SIGKDD international conference on Know ledge discovery and data mining, Pages: 27— 36, 2001
発明の開示
発明が解決しょうとする課題
[0013] Lukらの方法 [B1]のような、罹患した個体からのサンプルと正常な個体からのサン プルとの間の蛋白質の定量的な比較を行う方法では、マーカー蛋白質の探索という 観点からは、以下に示すような解決すべき課題がある。
[0014] まず、群間での各蛋白質の発現量と臨床情報等との関連性を独立に検定して、臨 床情報等との関連性の有無を判断しているため、検定統計量には閾値依存性が見 られることになるが、その閾値の設定根拠の合理性は極めて乏しい。また、個々の蛋 白質ごとに独立して統計的な検定を行うため、複数の蛋白質の発現量が臨床情報等 と関連している場合には、有効ではない。一般に、病態や薬効のメカニズムには多数 の生体分子が複雑に関与することが知られているため、上述した手法は、マーカー 蛋白質の探索方法として適切とは言えない。
[0015] 2次元電気泳動法を用いる場合には、実験において再現性の低下が不可避である ことやノイズ混入があること、さら〖こは、電気泳動イメージを画像として取り込んで処理 する際の画像処理技術の限界により、各サンプル間における同一蛋白質に相当する スポットの対応関係を得ることは困難である。したがって、群間で比較可能な蛋白質 の網羅性が著しく低下する可能性がある。その上、 2次元電気泳動法により蛋白質を 展開した段階に観測されるスポットや、質量分析法によって計測された質量スぺタト ルの段階に観測されるピークに相当する蛋白質が具体的に何であるかは、不明であ る。そのため、スポットやピークに相当するアミノ酸配列の同定を行って蛋白質の素性 を明らかにする必要があるが、この作業には膨大な時間と労力を要する。
[0016] またプロテオーム解析により、蛋白質発現プロフアイリングデータとして、 1つのサン プルから多数の蛋白質についてのそれぞれの発現量のデータが得られる力 データ の欠損も起こりうる。データの欠損とは、いくつかの蛋白質についてその蛋白質がサ ンプル中に実際には含まれているはずであるにもかかわらず、発現量のデータが得 られないことをいう。このような欠損は、例えば、測定における分解能の不足や、画像 処理上の限界、電気泳動イメージにおけるノイズやゴミの付着などの理由によって起 こり得る。マーカー蛋白質探索における網羅性を向上するためには、このようなデー タの欠損も考慮する必要があり、場合によっては、欠損値の補完を行う必要がある。
[0017] 本発明の目的は、上述した問題点を鑑み、 2次元電気泳動などによって得られた蛋 白質の発現データなどの情報から、マーカー蛋白質など、生物学的に重要な蛋白質 を目標蛋白質として探索することができる新し 、解析手法を提供することにある。
[0018] 本発明の別の目的は、上述した問題点を鑑み、 2次元電気泳動などによって得ら れた蛋白質の発現データなどの情報から、マーカー蛋白質など、生物学的に重要な 蛋白質を目標蛋白質として探索することができる新 、解析装置を提供することにあ る。
課題を解決するための手段
[0019] 本発明の蛋白質探索方法は、プロテオーム解析によって取得された蛋白質発現プ ロフアイリングデータに基づいて、情報と直接あるいは間接的に関連する蛋白質を目 標蛋白質として探索する蛋白質探索方法であって、プロフアイリングデータでの蛋白 質発現量と情報とから教師あり学習を用いて得られる蛋白質の重要度に基づき、情 報と関連する蛋白質を目標蛋白質として決定し、評価データにより目標蛋白質の性 能を評価する。
[0020] 本発明の第 1の蛋白質探索装置は、プロテオーム解析によって取得された蛋白質 発現プロフアイリングデータに基づ!/、て、情報と関連する蛋白質を目標蛋白質として 探索する蛋白質探索装置であって、プロテオーム解析によって取得された蛋白質発 現データと情報を記憶するデータ記憶手段と、蛋白質発現データ及び情報から教師 あり学習を用いて目標蛋白質を決定する目標蛋白質探索手段と、決定された目標蛋 白質の発現量を記憶する目標蛋白質記憶手段と、決定された目標蛋白質の発現量 と情報とを用いて予測モデルを学習する目標蛋白質による予測モデル学習手段と、 予測モデルを記憶する予測モデル記憶手段と、予測モデルの性能を評価するため のデータを記憶する評価データ記憶手段と、評価データによって予測モデルを評価 する予測モデル検証手段と、を有する。
[0021] 本発明の第 2の蛋白質探索装置は、プロテオーム解析によって取得された蛋白質 発現プロフアイリングデータに基づ!/、て、情報と関連する蛋白質を目標蛋白質として 探索する蛋白質探索装置であって、プロテオーム解析によって取得された蛋白質発 現データと情報を記憶するデータ記憶手段と、蛋白質発現データを目標蛋白質探索 に用いる訓練データと検証データとに分割するデータ分割手段と、訓練データを記 憶する訓練データ記憶手段と、検証データを記憶する検証データ記憶手段と、訓練 データ及び情報とから教師あり学習を用いて目標蛋白質を決定する目標蛋白質探 索手段と、決定された目標蛋白質の発現量を記憶する目標蛋白質記憶手段と、決 定された目標蛋白質の発現量と情報とを用いて予測モデルを学習する目標蛋白質 による予測モデル学習手段と、予測モデルを記憶する予測モデル記憶手段と、検証 データによって予測モデルを評価する予測モデル検証手段と、を有する。
[0022] 本発明によれば、一例として、例えば臨床情報などの情報に対して複数の蛋白質 の発現量が関連する場合であっても、マーカー蛋白質などの目標蛋白質の探索が 可能になり、また、目標蛋白質力どうかを判断する閾値も合理的に決定できるように なる。
図面の簡単な説明 [図 1]第 1の実施形態のマーカー蛋白質探索装置の構成を示すブロック図である。
[図 2]図 1に示したマーカー蛋白質探索装置での処理手順の一例を示すフローチヤ ートである。
[図 3]欠損値補完の処理手順の一例を示すフローチャートである。
[図 4]確率勾配ブースティング法の処理手順の一例を示すフローチャートである。
[図 5]第 2の実施形態のマーカー蛋白質探索装置の構成を示すブロック図である。
[図 6]図 5に示したマーカー蛋白質探索装置での処理手順の一例を示すフローチヤ ートである。
[図 7]第 3の実施形態のマーカー蛋白質探索装置の構成を示すブロック図である。
[図 8]図 7に示したマーカー蛋白質探索装置での処理手順の一例を示すフローチヤ ートである。
符号の説明
1 入力装置
2 データ処理装置
3 記憶装置
4 出力装置
21 欠損値補完部
22 データ分割部
23 マーカー蛋白質探索部
24 予測モデル学習部
25 検証部
31 データ記憶部
32 訓練データ記憶部
33 検証データ記憶部
34 パラメータ記憶部
35 マーカー蛋白質記憶部
36 予測モデル記憶部
37 評価データ記憶部 発明を実施するための最良の形態
[0025] 次に、本発明の実施形態を説明する。以下では、情報と直接あるいは間接的に関 連する蛋白質である目標蛋白質として、臨床情報と直接あるいは間接的に関連する マーカー蛋白質を網羅的に探索する場合を例に挙げて説明する。ここでは、プロテ オーム解析によって得られる蛋白質の発現量に対するアンサンブル学習を用いるこ とによって、マーカー蛋白質を網羅的に探索する。
[0026] 図 1は、第 1の実施形態のマーカー蛋白質探索装置の構成を示している。このマー カー蛋白質探索装置は、 2次元電気泳動などによって得られた蛋白質の発現データ から、生物学的に重要な蛋白質すなわちマーカー蛋白質として探索するものである。
[0027] 図示されるマーカー蛋白質探索装置は、大別すると、キーボードやポインティング デバイスなどの入力装置 1と、プログラム制御により動作するデータ処理装置 2と、情 報を記憶する記憶装置 3と、表示装置やプリンタなどの出力装置 4と、から構成されて いる。
[0028] データ処理装置 2は、欠損している蛋白質の発現量の値を補完する欠損値補完部 21と、全データを訓練データと検証データとに分割するデータ分割部 22と、訓練デ ータからマーカー蛋白質を探索するマーカー蛋白質探索部 23と、マーカー蛋白質 の発現量と臨床情報等とを用いて、予測モデルを学習する予測モデル学習部 24と、 検証データによって予測モデルの分類性能を評価する検証部 25と、を備えて!/、る。 ここで欠損値補完部 21は欠損値補完手段とも呼ばれ、データ分割部 22はデータ分 割手段とも呼ばれ、マーカー蛋白質探索部 23は目標蛋白質探索手段とも呼ばれ、 予測モデル学習部 24は予測モデル学習手段とも呼ばれ、検証部 25は予測モデル 検証手段とも呼ばれる。
[0029] 記憶装置 3は、蛋白質発現量と臨床情報等とを格納するデータ記憶部 31と、デー タ分割部 22によって分割された訓練データを格納する訓練データ記憶部 32と、デ ータ分割部 22によって分割された検証データを格納する検証データ記憶部 33と、マ 一力一蛋白質探索部 23でのマーカー蛋白質探索に用いる学習パラメータを格納す るパラメータ記憶部 34と、探索されたマーカー蛋白質情報及び臨床情報を格納する マーカー蛋白質記憶部 35と、訓練データにおいてマーカー蛋白質と臨床情報とを 用いて学習された予測モデルを格納する予測モデル記憶部 36と、を備えている。こ こで、データ記憶部 31はデータ記憶手段とも呼ばれ、訓練データ記憶部 32は訓練 データ記憶手段とも呼ばれ、検証データ記憶部 33は検証データ記憶手段とも呼ば れ、マーカー蛋白質記憶部 35は目標蛋白質記憶手段とも呼ばれ、予測モデル記憶 部 36は予測モデル記憶部とも呼ばれる。
[0030] 次に、図 1に示したマーカー蛋白質探索装置を用いたマーカー蛋白質の探索につ いて説明する。図 2は、ここでのマーカー蛋白質の探索の処理手順の一例を示すフ ローチャートである。
[0031] マーカー蛋白質探索装置に対しては、入力装置 1によって実行指示が与えられ、ス テツプ A1において、入力装置 1を介し、データ記憶部 31に蛋白質の発現量が入力 される。入力された発現量は、データ記憶部 31に格納される。ここでの蛋白質の発 現量は、例えば、プロテオーム解析によって取得された蛋白質発現プロフアイリング データ力も得られるものである。プロテオーム解析の手法としては、例えば、二次元 電気泳動及び Zまたは質量分析を用いる方法が利用できる。また、蛋白質の発現量 の代わりに、あるいは蛋白質の発現量と併用して、蛋白質のリン酸ィ匕などの化学修飾 や糖鎖修飾といった蛋白質の状態を反映した情報を用いることができる。蛋白質の 発現量に対応する臨床情報も入力装置 1及びデータ処理装置 2を介して、データ記 憶部 31に格納される。蛋白質の発現量は、プロテオーム解析によってあるサンプル を解析したときに得られるものであるが、蛋白質の発現量に対応する臨床情報は、そ のサンプルを提供した個体に関する情報のことである。いわゆる臨床数値に関する 情報や病態に関する情報、薬効に関する情報、サンプル採取後にその個体がどれ だけ生存したかの生存時間に関する情報などを含めて臨床情報と呼んでいる。
[0032] 次に、ステップ A2において、欠損値補完部 21により、蛋白質発現量の欠損値補完 が行われ、欠損値補完がなされた蛋白質発現量は、データ記憶部 31に記憶される。
[0033] ここで、図 3を参照して、 k 近傍法による具体的な欠損値補完の方法について、 説明する。
[0034] まず、ステップ B1において、データ記憶部 31から、欠損値補完を行う前の蛋白質 の発現量が欠損値補完部 21に入力される。欠損値補完部 21は、ステップ B2におい て、あら力じめ定められた割合で、発現量が欠損している M個の蛋白質を選択し、ス テツプ B3において、欠損値補完に用いる蛋白質数 Kを設定する。その後、ステップ B 4において、 m= lとして mを初期化し、ステップ B5において、欠損していないサンプ ルにおける発現量を用いて、ユークリッド距離を計算し、近傍にある蛋白質 K個を探 索し、ステップ B6において、距離に応じた重み付き平均により、欠損量を補完する。 重み付き平均は、重みを 、蛋白質発現量を Xとすると、
[0035] [数 1]
κ )
!=1 により、求められる。その後、ステップ B7において、 mに 1をカ卩算し、ステップ B8にお いて、 mが Mに達したかどうかを判断する。ここで m< Mであれば、ステップ B5に戻り 、 m=Mであれば、処理を終了する。その結果、ステップ B4, B5に示す処理が、発 現量が欠損している M個の蛋白質の各々に対して行われることになる。
[0036] 欠損値の補完が行われると、次に、データ分割部 22は、データ記憶部 31から、欠 損値補完後の全サンプルの蛋白質発現データを受け取り、ステップ A3において、マ 一力一蛋白質を探索し、これらの蛋白質発現データを、予測モデルを学習するのに 用いる訓練データと、訓練データ力も学習した予測モデルの性能を評価するための 検証データとに分割する。訓練データは訓練データ記憶部 32に格納され、検証デ ータは検証データ記憶部 33に格納される。
[0037] 次に、マーカー蛋白質探索部 23は、ステップ A4において、訓練データ記憶部 32 力 訓練データの蛋白質発現量と対応する臨床情報を受け取り、パラメータ記憶部 3 4力も確率勾配ブースティング法の学習に用いるパラメータを受け取り、下位学習機 械を回帰木とした場合の確率ブースティング法のパラメータを設定する。そしてその ようにパラメータを設定した後、マーカー蛋白質探索部 23は、教師あり学習によって 、各蛋白質のマーカー蛋白質の指標となる重要度を算出する。重要度の算出では、 ステップ A5において、蛋白質発現量を属性とし、臨床情報を教師あり学習における 目的関数として、確率ブースティング法により学習を行う。確率ブースティング法の学 習過程において、ステップ A6に示すように、属性に対する重要度を算出する。そして 、ステップ A7において、重要度に基づいて、属性を選択する。その後、重要度が与 えられた蛋白質の発現量は、臨床情報とともにマーカー蛋白質記憶部 35に記憶さ れる。
[0038] 以下、図 4を参照して、確率勾配ブースティング法による重要度の算出方法につい て、具体的に説明する。
[0039] まず、ステップ C1において、訓練データ記憶部 32からマーカー蛋白質探索部 23 に、蛋白質の発現量と臨床情報との組の集合 Dが入力される。組の数、すなわち注 目している蛋白質について発現量を得たサンプルの数は Nである。
[0040] D= { (x , y ) , · ··, (x , y ) } (2)
1 1 Ν Ν
ここで、 χは蛋白質発現量、 yは臨床情報である。臨床情報には、疾患や正常、病 態の悪性度、生存時間などがある。次に、ステップ C2において、臨床情報の種類に 適した損失関数 L、学習の反復回数 M、リサンプリング数 s、縮小パラメータ Vを設定 する。損失関数 Lは、判別関数を F (x)とすると、疾患や正常のようなクラスを識別す るような分類問題では、
L = log (l + exp (- 2yF (x) ) ) (3)
を用いることができる。また、回帰問題においては、
L= (y-F (x) ) 2 (4)
あるいは
L= I y-F (x) I (5)
を用いることができる。
[0041] すなわち、臨床情報が離散値である場合には、損失関数として例えば対数関数を 用いることができ、臨床情報が連続値である場合には、損失関数として、例えば、真 の値と予測値との差の二乗または真の値と予測値の差の絶対値を用いることができ る。さらに、臨床情報が生存時間の場合には、損失関数として、 Cox比例ハザードモ デルを利用するようにしてもょ 、。
[0042] 設定可能なリサンプリング数 sと縮小パラメータ Vの大きさの範囲は、 Ks≤N (6),
0< v≤1 (7)
である。ここで、リサンプリング数 Sと縮小パラメータ Vは、元のデータに対する過学習 を回避するために導入して ヽる。
[0043] 次に、ステップ C3において、判別関数 F、反復回数 mを以下のように初期化する。
0
[0044] F =0 (8),
Figure imgf000014_0001
ステップ C4において、下位学習機械である回帰木により、学習するデータ数 nを以 下のように初期化する。
[0045] n=l (10).
ステップ C5において、損失関数 Lの勾配を以下の式により計算する。
[0046] [数 2]
Figure imgf000014_0002
ステップ C5に引き続くステップ C6にお!/、て nに 1を加算し、ステップ C7にお!/、て n が Nに達したかどうかを判定して、 n<Nであればステップ C5に戻ることにより、ステツ プ C5における損失関数の勾配の算出の操作を、 nが Nになるまで続ける。
[0047] ステップ C7において n=Nとなったら、次に、ステップ S8において、データのリサン プリングを s回行い、複製データ集合を生成し、ステップ C9において、複製データと 損失関数の勾配の組の集合 Rを回帰木 T により学習する。
[0048] [数 3]
= {( , ),···,( , )} (12) ステップ C10において、判別関数を次のように更新する。
[0049] F (T (x), ···, T (x))=F (T (χ), ···, Τ (χ)) + νΤ (χ) (13) m l m m— 1 1 m— 1 m
ステップ CIOの後、ステップ CI 1において、 Mに 1をカ卩算し、ステップ C12において 、 mが Mに達したかどうかを判断して、 m<Mであればステップ C4に戻ることにより、 ステップ C5からステップ C 10までの操作を、 mが Mになるまで続ける。 [0050] 蛋白質 pの重要度 Vは、上記の確率勾配ブースティング法の回帰木の学習過程に
P
おいて、以下の式で計算する。
[0051] 画
Figure imgf000015_0001
ここで、 V (T )は111番目の回帰木を学習する際の重要度であり、以下の式で定義 p m
される。
[0052] [数 5]
Figure imgf000015_0002
ここで、 J は m番目の回帰木の非終端ノードの数、 I [t=p]はノード tにおいて、分 岐する蛋白質力 ¾のとき、 1となる指示変数、 δ t2はノード tで分割する際の平均二乗 誤差の改善量である。すなわち、学習過程の全ての回帰木で分岐変数にならなかつ た蛋白質は、その重要度が 0になるため、臨床情報の変数に対して全く寄与しておら ず、臨床情報等と関連性がないことを意味する。
[0053] 本実施形態では、注目した蛋白質の重要度の算出法として、ここで説明した確率 勾配ブースティング法だけでなぐ他の方法、例えば、ブースティング、パギングなど のアンサンブル学習も用いることが可能である。ただし、データ数が少数の場合は、 確率勾配ブースティング法を用いることが望ま 、。
[0054] 以上のようにして、マーカー蛋白質探索部 23において、訓練データ力も各蛋白質 のマーカー蛋白質としての指標となる重要度が算出されたら、次に、ステップ A8にお いて、予測モデル学習部 24は、訓練データ記憶部 32から訓練データの蛋白質発現 量と臨床情報とを受け取り、マーカー蛋白質記憶部 35から蛋白質の発現量を受け取 つて、サポートベクターマシンなどの教師あり学習、あるいはクラスタリングなどの教師 なし学習により、予測モデルを学習する。学習後の予測モデルは、予測モデル記憶 部 36に記憶される。
[0055] その後、ステップ A9にお 、て、検証部 25が、予測モデル記憶部 36から予測モデ ルを受け取り、検証データ記憶部 33から検証データを受け取って、検証データの臨 床情報に対して、予測を行う。予測結果は、出力装置 4から出力される。
[0056] 以上説明した第 1の実施形態のマーカー蛋白質探索装置では、欠損している蛋白 質の発現量を補完することによって、より多くの蛋白質の中から臨床情報と関連する 蛋白質を探索できるため、これまで発見されていなかったマーカー蛋白質を発見で きる可能性が高まる効果がある。
[0057] 図 5は、第 2の実施形態のマーカー蛋白質探索装置の構成を示している。図 5に示 すマーカー蛋白質探索装置は、サンプルにおける蛋白質の発現量が全て測定でき る場合、あるいは発現量を測定可能な蛋白質のみを解析対象とする場合に適合した ものであり、図 1に示した第 1の実施形態のマーカー蛋白質探索装置と比較すると、 欠損値補完部を備えていない点で相違する。図 6は、図 5に示した装置におけるマー カー蛋白質探索処理の一例を示すフローチャートであり、図 2に示した第 1の実施形 態における処理と比べると、欠損値を補完する処理が設けられて 、な 、点のみで相 違する。図 5に示した装置は、発現量における欠損値の補完を行わない点以外は、 図 1に示した装置と同様にしてマーカー蛋白質の探索処理を実行する。
[0058] 図 7は、第 3の実施形態のマーカー蛋白質探索装置の構成を示している。図 7に示 すマーカー蛋白質探索装置は、発現量プロファイルデータを訓練データと検証デー タとに分割することなぐ全データを用いてマーカー蛋白質の探索を行い、別途準備 された評価データによって、マーカー蛋白質による予測性能を評価するものである。 図 7に示す装置は、図 5に示す装置と比較すると、データ分割部、訓練データ記憶部 及び検証データ記憶部を備えず、その代わりに記憶装置 3内に評価データ記憶部 3 7が設けられている。ここでは、目標蛋白質探索手段とも呼ばれるマーカー蛋白質探 索部 23は、データ記憶部 31内に格納された蛋白質発現データ及び臨床情報から、 教師あり学習を用いてマーカー蛋白質を決定する。評価データ記憶部 37は、評価 データ記憶手段とも呼ばれるものであって、予測モデルの性能を評価するために用 Vヽられる評価データを記憶する。
[0059] 図 8は、図 7に示した装置におけるマーカー蛋白質探索処理の一例を示すフロー チャートである。入力装置 1によって実行指示が与えられ、ステップ A1において、入 力装置 1を介し、データ記憶部 31に蛋白質の発現量と対応する臨床情報とが入力さ れ、データ記憶部 31に格納される。次に、マーカー蛋白質探索部 23は、ステップ A4 において、データ記憶部 31から訓練データの蛋白質発現量と対応する臨床情報を 受け取り、パラメータ記憶部 34から確率勾配ブースティング法の学習に用いるパラメ ータを受け取り、下位学習機械を回帰木とした場合の確率ブースティング法のパラメ ータを設定する。そしてそのようにパラメータを設定した後、マーカー蛋白質探索部 2 3は、各蛋白質のマーカー蛋白質の指標となる重要度を算出する。重要度の算出で は、ステップ A5にお 、て、蛋白質発現量を属性とし、臨床情報を目的関数として、確 率ブースティング法により学習を行う。確率ブースティング法の学習過程において、ス テツプ A6に示すように、属性に対する重要度を算出する。
[0060] 次に、マーカー蛋白質探索部 23は、ステップ A7において、重要度に基づいて、属 性を選択する。その後、重要度が与えられた蛋白質の発現量は、マーカー蛋白質記 憶部 35に記憶される。その後、ステップ A8において、予測モデル学習部 24は、デ ータ記憶部 31から蛋白質発現量と臨床情報とを受け取り、マーカー蛋白質記憶部 3 5から蛋白質の発現量を受け取って、サポートベクターマシンなどの教師あり学習、あ るいはクラスタリングなどの教師なし学習により、予測モデルを学習する。学習後の予 測モデルは、予測モデル記憶部 36に記憶される。続いて、ステップ A10において、 検証部 25が、予測モデル記憶部 36から予測モデルを受け取り、評価データ記憶部 37から評価データを受け取って、評価データの臨床情報に対して、予測を行う。予 測結果は、出力装置 4から出力される。
[0061] なお、第 3の実施形態においても、第 1の実施形態と同様に、欠損値補完部 21を 設けて欠損値の補完を行う構成とすることも可能である。
[0062] 上述した各実施形態のマーカー蛋白質探索方法は、それを実現するための計算 機プログラムを、パーソナルコンピュータやワークステーションなどの計算機に読み込 ませ、そのプログラムを実行させることによつても実現できる。マーカー蛋白質探索を 行うためのプログラムは、磁気テープや CD—ROMなどの記録媒体によって、あるい はネットワークを介して、計算機に読み込まれる。このような計算機は、一般に、 CPU (中央処理装置)と、プログラムやデータを格納するための外部記憶装置と、主メモリ と、キーボードやマウスなどの入力装置と、 CRT (陰極線管)や液晶表示装置 (LCD) などの表示装置あるいは出力装置と、磁気テープや CD— ROM等の記録媒体を読 み取る読み取り装置と、ネットワークに接続するための通信インタフェースと、力 構 成されている。外部記憶装置としては、例えば、ハードディスク装置が用いられる。
[0063] この計算機では、マーカー蛋白質探索を実行するためのプログラムを格納した記 録媒体を読み取り装置に装着し記録媒体力 プログラムを読み出して外部記憶装置 に格納し、外部記憶装置に格納されたプログラムを CPUが実行することにより、ある いは、ネットワークを介してプログラムを外部記憶装置にダウンロードし、外部記憶装 置に格納されたプログラムを CPUが実行することにより、上述したマーカー蛋白質探 索方法が実行される。
[0064] 上述した各実施形態によれば、複数の蛋白質の発現量が臨床情報と関連する場 合であっても、目標蛋白質としてのマーカー蛋白質の探索が可能になり、また、マー カー蛋白質かどうかを判断する閾値も合理的に決定できるようになる。また、質量分 析器などによるアミノ酸配列決定により同定すべきマーカー蛋白質を効率的に決定 することが可能になり、蛋白質同定に要する時間と労力を大幅に削減することができ る。欠損値補完を行うことにより、群間で比較可能な蛋白質の網羅性が高まり、より多 くの生物学的知見を得ることができる。
[0065] 別の実施形態の蛋白質探索方法では、プロフアイリングデータを目標蛋白質探索 に用いる訓練データと検証データとに分割する段階をさらに設け、決定する段階に おいて、訓練データでの蛋白質発現量と臨床情報とから教師あり学習を用いて得ら れる蛋白質の重要度に基づき、臨床情報と関連する蛋白質を目標蛋白質として決定 し、評価する段階において、評価データとして検証データを用いるようにしてもよい。 また、さらに別の実施形態では、蛋白質発現量の欠損値を他の蛋白質の発現量を用 V、て補完する段階をさらに有して 、てもよ!/、。
[0066] 本発明のさらに別の目的は、確率勾配ブースティング法により、閾値を設定すること なぐ複数の蛋白質の発現量と臨床情報等の関連性を探索可能にし、かつ、蛋白質 発現量の欠損値補完を行い、群間で比較可能な蛋白質の網羅性を高めることができ る、蛋白質の探索方法を提供することにある。
[0067] 本発明のまたさらに別の目的は、確率勾配ブースティング法により、閾値を設定す ることなぐ複数の蛋白質の発現量と臨床情報等の関連性を探索可能にし、かつ、蛋 白質発現量の欠損値補完を行い、群間で比較可能な蛋白質の網羅性を高めること ができる、蛋白質の探索装置を提供することにある。
[0068] この出願は、 2006年 7月 14日に出願された日本国特許出願:特願 2006— 1940 65を基礎とする優先権を主張し、その開示の全てをここに取り込む。
実施例
[0069] 以下、本発明を実施した一例の結果を説明する。
[0070] 肝臓における肝癌の癌部のサンプルと非癌部のサンプルとに対して、蛍光標識 2 次元ディファレンスゲル電気泳動法により、プロテオーム解析を実施した。このプロテ オーム解析の結果を用いて、第 1の実施形態において説明した手順を用いて、蛋白 質の探索を行った。その結果、欠損値補完を行なわない場合に解析可能な蛋白質 数は 101個であった力 20%の欠損値を補完した場合は、 658個となり、 6倍以上の 数の蛋白質が解析可能となり、網羅性が飛躍的に向上した。また、確率勾配ブース ティング法により、癌部と非癌部とを分類するのに有効なマーカー蛋白質を探索した ところ、欠損値補完を行なわない場合は 25個、 20%の欠損値を補完した場合は 42 個を自動的に検出できた。
[0071] 以上、実施形態及び実施例を参照して本発明を説明したが、本発明は上記実施 形態及び実施例に限定されものではない。本発明の構成や詳細には、本発明の範 囲内で当業者が理解し得る様々な変更をすることができる。

Claims

請求の範囲
[1] プロテオーム解析によって取得された蛋白質発現プロフアイリングデータに基づい て、情報と直接ある!/、は間接的に関連する蛋白質を目標蛋白質として探索する蛋白 質探索方法であって、
前記プロフアイリングデータでの蛋白質発現量と前記情報とから教師あり学習を用
V、て得られる蛋白質の重要度に基づき、前記情報と関連する蛋白質を目標蛋白質と して決定し、
評価データにより前記目標蛋白質の性能を評価する、
蛋白質探索方法。
[2] 前記プロフアイリングデータを目標蛋白質探索に用いる訓練データと検証データと に分割することをさらに備え、
前記情報と関連する蛋白質を前記目標蛋白質として決定する際に、前記訓練デー タでの蛋白質発現量と前記情報とから教師あり学習を用いて得られる蛋白質の重要 度に基づき、前記情報と関連する蛋白質を前記目標蛋白質として決定し、
前記目標蛋白質の性能を評価する際に、前記評価データとして前記検証データを 用いる、
請求項 1に記載の方法。
[3] 前記蛋白質発現量の欠損値を他の蛋白質の発現量を用いて補完する段階をさら に有する、請求項 1または 2に記載の方法。
[4] 蛋白質発現量の欠損値を k 近傍法により補完する、請求項 3に記載の方法。
[5] 前記重要度は、アンサンブル学習の下位学習機械の決定木あるいは回帰木による 学習過程に生成される分岐変数と目的変数に対する改善度とを利用して計算される
、請求項 1乃至 4のいずれか 1項に記載の方法。
[6] 前記重要度は、ブースティング、パギング、勾配ブースティング法及び確率勾配ブ ースティング法のうちの 1つを用いて計算される、請求項 1乃至 5のいずれ力 1項に記 載の方法。
[7] 前記情報は臨床情報であり、前記目標蛋白質はマーカー蛋白質である、請求項 1 乃至 6の 、ずれか 1項に記載の方法。
[8] 前記臨床情報が離散値である場合に、前記教師あり学習における損失関数として 対数関数を用いる、請求項 7に記載の方法。
[9] 前記臨床情報が連続値である場合に、損失関数として、真の値と予測値との差の 二乗または真の値と予測値の差の絶対値を用いる、請求項 7に記載の方法。
[10] 前記臨床情報が生存時間の場合に、損失関数に Cox比例ハザードモデルを利用 する、請求項 7に記載の方法。
[11] 前記プロテオーム解析は、質量分析法及び Zまたは 2次元電気泳動法によって行 われる、請求項 1乃至 10のいずれ力 1項に記載の方法。
[12] プロテオーム解析によって取得された蛋白質発現プロフアイリングデータに基づい て、情報と関連する蛋白質を目標蛋白質として探索する蛋白質探索装置であって、 プロテオーム解析によって取得された蛋白質発現データと情報を記憶するデータ 記憶手段と、
前記蛋白質発現データ及び前記情報から教師あり学習を用いて目標蛋白質を決 定する目標蛋白質探索手段と、
前記決定された目標蛋白質の発現量を記憶する目標蛋白質記憶手段と、 前記決定された目標蛋白質の発現量と前記情報とを用いて予測モデルを学習する 目標蛋白質による予測モデル学習手段と、
前記予測モデルを記憶する予測モデル記憶手段と、
前記予測モデルの性能を評価するためのデータを記憶する評価データ記憶手段と 前記評価データによって前記予測モデルを評価する予測モデル検証手段と、 を有する蛋白質探索装置。
[13] プロテオーム解析によって取得された蛋白質発現プロフアイリングデータに基づい て、情報と関連する蛋白質を目標蛋白質として探索する蛋白質探索装置であって、 プロテオーム解析によって取得された蛋白質発現データと情報を記憶するデータ 記憶手段と、
前記蛋白質発現データを目標蛋白質探索に用いる訓練データと検証データとに分 割するデータ分割手段と、 前記訓練データを記憶する訓練データ記憶手段と、
前記検証データを記憶する検証データ記憶手段と、
前記訓練データ及び前記情報とから教師あり学習を用いて目標蛋白質を決定する 目標蛋白質探索手段と、
前記決定された目標蛋白質の発現量を記憶する目標蛋白質記憶手段と、 前記決定された目標蛋白質の発現量と前記情報とを用いて予測モデルを学習する 目標蛋白質による予測モデル学習手段と、
前記予測モデルを記憶する予測モデル記憶手段と、
前記検証データによって前記予測モデルを評価する予測モデル検証手段と、 を有する蛋白質探索装置。
[14] さらに、前記目標蛋白質の発現量の欠損値を他の蛋白質の発現量を用いて補完 する欠損値補完手段をさらに有する、請求項 12または 13に記載の装置。
[15] 前記情報は臨床情報であり、前記目標蛋白質はマーカー蛋白質である、請求項 1 2乃至 14のいずれ力 1項に記載の装置。
[16] コンピュータが読み取り可能な記録媒体であって、
プロテオーム解析によって取得された蛋白質発現プロフアイリングデータに基づい て、情報と直接あるいは間接的に関連する蛋白質を目標蛋白質として探索する処理 をコンピュータに実行させるプログラムであって、前記コンピュータに、前記プロフアイ リングデータでの蛋白質発現量と前記情報とから教師あり学習を用いて得られる蛋白 質の重要度に基づき、前記情報と関連する蛋白質を目標蛋白質として決定する処理 と、評価データにより前記目標蛋白質の性能を評価する処理と、を実行させるプログ ラムを格納した記録媒体。
[17] コンピュータが読み取り可能な記録媒体であって、
プロテオーム解析によって取得された蛋白質発現プロフアイリングデータに基づい て、臨床情報と直接ある 、は間接的に関連する蛋白質を目標蛋白質として探索する 処理をコンピュータに実行させるプログラムであって、前記コンピュータに、前記プロ フアイリングデータを目標蛋白質探索に用いる訓練データと検証データとに分割する 処理と、前記訓練データでの蛋白質発現量と前記情報とから教師あり学習を用いて 得られる蛋白質の重要度に基づき、前記情報と関連する蛋白質を目標蛋白質として 決定する処理と、前記検証データにより前記目標蛋白質の性能を評価する処理と、 を実行させるプログラムを格納した記録媒体。
[18] 前記プログラムは、前記コンピュータに、前記蛋白質発現量の欠損値を他の蛋白 質の発現量を用 、て補完する処理をさらに実行させるものである、請求項 16または 1 7に記載の記録媒体。
[19] 前記情報は臨床情報であり、前記目標蛋白質はマーカー蛋白質である、請求項 1 6乃至 18のいずれ力 1項に記載の記録媒体。
PCT/JP2007/063640 2006-07-14 2007-07-09 Méthode et appareil de recherche de protéine WO2008007630A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008524780A JPWO2008007630A1 (ja) 2006-07-14 2007-07-09 蛋白質探索方法及び装置
US12/373,675 US20090319450A1 (en) 2006-07-14 2007-07-09 Protein search method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006194065 2006-07-14
JP2006-194065 2006-07-14

Publications (1)

Publication Number Publication Date
WO2008007630A1 true WO2008007630A1 (fr) 2008-01-17

Family

ID=38923190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063640 WO2008007630A1 (fr) 2006-07-14 2007-07-09 Méthode et appareil de recherche de protéine

Country Status (4)

Country Link
US (1) US20090319450A1 (ja)
JP (1) JPWO2008007630A1 (ja)
CN (1) CN101517579A (ja)
WO (1) WO2008007630A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534697A (ja) * 2012-10-09 2015-12-03 ファイヴ3 ゲノミクス,エルエルシー 生物学的経路の調節相互作用の学習および同定用のシステムならびに方法
JP2019023621A (ja) * 2017-07-21 2019-02-14 パナソニックIpマネジメント株式会社 表示制御装置、表示制御方法およびプログラム
JP2019521418A (ja) * 2017-02-20 2019-07-25 平安科技(深▲せん▼)有限公司Ping An Technology(Shenzhen)Co.,Ltd. 疾患確率の検出方法、装置、設備およびコンピュータ読み取り可能な記憶媒体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102298674B (zh) * 2010-06-25 2014-03-26 清华大学 基于蛋白质网络的药物靶标确定和/或药物功能确定方法
US9626654B2 (en) * 2015-06-30 2017-04-18 Linkedin Corporation Learning a ranking model using interactions of a user with a jobs list
CN110110906B (zh) * 2019-04-19 2023-04-07 电子科技大学 一种基于Efron近似优化的生存风险建模方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004524604A (ja) * 2000-12-07 2004-08-12 ユーロプロテオーム エージー 遺伝的疾患の分類および予測のため、ならびに分子遺伝的パラメーターと臨床的パラメーターとの関連付けのためのエキスパートシステム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000052802A (ko) * 1996-10-25 2000-08-25 모세 라르센 페터 생물학적 샘플내의 상승 조절 및 하강 조절된 단백질의 특성화를위한 프로테옴 분석

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004524604A (ja) * 2000-12-07 2004-08-12 ユーロプロテオーム エージー 遺伝的疾患の分類および予測のため、ならびに分子遺伝的パラメーターと臨床的パラメーターとの関連付けのためのエキスパートシステム

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ASHLOCK D. ET AL.: "Soft Computing to Bioinformatics", TOKYO DENKI UNIVERSITY PRESS, 20 March 2004 (2004-03-20), pages 337 - 340, XP003020433 *
GOPALAKRISHNAN V. ET AL.: "Rule Learning for Disease-Specific Biomarker Discovery from Clinical Proteomic Spectra", vol. 3916, 28 February 2006, SPRINGER, BERLIN/HEIDELBERG, article "Data Mining for Biomedical Applications/Lecteur Notes in Computer Science", pages: 93 - 105, XP019029441 *
ISHII S.: "Johoron-teki Gakushu Riron -Kikai Gakushu no Somazama na Katachi- /Fukanzen Data no Mondai to Bioinformatics", COMPUTER TODAY, SAIENSU-SHA CO., LTD., no. 114, 1 March 2003 (2003-03-01), pages 35 - 42, XP003020434 *
KAMIJO K. ET AL.: "Proteomics to Joho Kagaku", THE CELL, vol. 38, no. 11, 20 October 2006 (2006-10-20), pages 463 - 466, XP003020435 *
WU B. ET AL.: "Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data", BIOINFORMATICS, vol. 19, no. 13, 2003, pages 1636 - 1643, XP003020436 *
YAMADA T.: "Proteome Kaiseki ni yoru Nanji Gan no Soki Shindanho no Tansaku", NIPPON YAKUGAKUKAI NENKAI KOEN YOSHISHU, vol. 125, no. 1, 5 March 2005 (2005-03-05), pages 221 + ABSTR. NO. S34-3, XP003020432 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534697A (ja) * 2012-10-09 2015-12-03 ファイヴ3 ゲノミクス,エルエルシー 生物学的経路の調節相互作用の学習および同定用のシステムならびに方法
JP2017199389A (ja) * 2012-10-09 2017-11-02 ファイヴ3 ゲノミクス,エルエルシー 生物学的経路の調節相互作用の学習および同定用のシステムならびに方法
JP2018195325A (ja) * 2012-10-09 2018-12-06 ファイヴ3 ゲノミクス,エルエルシー 生物学的経路の調節相互作用の学習および同定用のシステムならびに方法
JP2019521418A (ja) * 2017-02-20 2019-07-25 平安科技(深▲せん▼)有限公司Ping An Technology(Shenzhen)Co.,Ltd. 疾患確率の検出方法、装置、設備およびコンピュータ読み取り可能な記憶媒体
JP2019023621A (ja) * 2017-07-21 2019-02-14 パナソニックIpマネジメント株式会社 表示制御装置、表示制御方法およびプログラム
JP7065422B2 (ja) 2017-07-21 2022-05-12 パナソニックIpマネジメント株式会社 表示制御装置、表示制御方法およびプログラム

Also Published As

Publication number Publication date
CN101517579A (zh) 2009-08-26
JPWO2008007630A1 (ja) 2009-12-10
US20090319450A1 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP5464503B2 (ja) 医療分析システム
White et al. Bioinformatics strategies for proteomic profiling
US20160110496A1 (en) Methods for Classifying Samples Based on Network Modularity
JP2016533182A (ja) 疾患に誘導された変異を同定するための方法およびシステム
Su et al. Data analysis guidelines for single-cell RNA-seq in biomedical studies and clinical applications
US20180166170A1 (en) Generalized computational framework and system for integrative prediction of biomarkers
US9940383B2 (en) Method, an arrangement and a computer program product for analysing a biological or medical sample
Urzúa-Traslaviña et al. Improving gene function predictions using independent transcriptional components
JP6208227B2 (ja) バイオマーカシグネチャを生成するためのシステムおよび方法
WO2008007630A1 (fr) Méthode et appareil de recherche de protéine
Shujaat et al. Cr-prom: A convolutional neural network-based model for the prediction of rice promoters
Ouyang et al. TRACE: transcription factor footprinting using chromatin accessibility data and DNA sequence
JP2023530719A (ja) 表面提示ペプチドを予測するための機械学習技術
KR102543757B1 (ko) 이종 플랫폼의 dna 메틸레이션 데이터를 이용한 암의 예후 예측용 바이오마커 발굴 방법 및 장치
Vijayan et al. Blood-based transcriptomic signature panel identification for cancer diagnosis: benchmarking of feature extraction methods
CN112292464A (zh) 肿瘤功能突变和表位负荷作为免疫治疗反应的改进的预测性生物标志
US20180181705A1 (en) Method, an arrangement and a computer program product for analysing a biological or medical sample
Rasche et al. ARH: predicting splice variants from genome-wide data with modified entropy
US20070271223A1 (en) Method and implementation of reliable consensus feature selection in biomedical discovery
Kumar et al. Bioinformatics in drug design and delivery
Chong et al. SeqControl: process control for DNA sequencing
Saviozzi et al. Microarray probe expression measures, data normalization and statistical validation
KR101906970B1 (ko) 분산 처리를 이용한 핵산 서열의 분석 방법 및 장치, 핵산 서열 분석을 위한 분산 처리 시스템
Berrar et al. Introduction to genomic and proteomic data analysis
JPWO2002048915A1 (ja) 遺伝子間の関連を検出する方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780033987.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07768364

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008524780

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12373675

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07768364

Country of ref document: EP

Kind code of ref document: A1