WO2008007570A1 - Lead-free glass composition - Google Patents

Lead-free glass composition Download PDF

Info

Publication number
WO2008007570A1
WO2008007570A1 PCT/JP2007/063159 JP2007063159W WO2008007570A1 WO 2008007570 A1 WO2008007570 A1 WO 2008007570A1 JP 2007063159 W JP2007063159 W JP 2007063159W WO 2008007570 A1 WO2008007570 A1 WO 2008007570A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
free glass
glass
total
content
Prior art date
Application number
PCT/JP2007/063159
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Kumano
Ichiro Uchiyama
Original Assignee
Nihon Yamamura Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co., Ltd. filed Critical Nihon Yamamura Glass Co., Ltd.
Publication of WO2008007570A1 publication Critical patent/WO2008007570A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/38Dielectric or insulating layers

Definitions

  • the present invention relates to a lead-free glass composition and a glass for a plasma display panel dielectric layer in which the lead-free glass composition is used.
  • CTR cathode ray tube image display devices
  • a plasma display panel (hereinafter also referred to as “PDP”) is well-colored, has a clear image, and is relatively easy to enlarge!
  • glass plates are arranged on the front side and the back side.
  • the front side glass plate (hereinafter also referred to as “front plate”) and the back side glass plate (hereinafter referred to as “back plate”).
  • back plate Is also formed by providing an electrode on one side of a glass substrate using, for example, soda lime glass or high strain point glass.
  • the front plate and the rear plate are arranged on the PDP with their surfaces on which electrodes are formed facing each other.
  • Linear electrodes are used for the electrodes of the front plate and the back plate, and the electrode surfaces of the front plate and the back plate are formed in a stripe shape in which a large number of linear electrodes are arranged in parallel.
  • the front plate and the rear plate are arranged with their linear electrodes orthogonal to each other so as to form a lattice when the front force of the PDP is viewed.
  • this electrode is further covered with a glass layer called a dielectric layer.
  • a glass wall called a partition that partitions the electrodes is usually provided on the back plate.
  • the dielectric layer of the front plate (hereinafter also referred to as “front dielectric layer”) is separated from the dielectric layer of the back plate (hereinafter also referred to as “back dielectric layer”) by the partition of the back plate. It is supported in the state.
  • a space is defined by the front dielectric layer, the back dielectric layer, and the barrier ribs, and a phosphor is arranged in the space to form a display cell.
  • the phosphor of the display cell is emitted by plasma discharge between the front and back electrodes. I am making it light.
  • the dielectric layer and the partition are usually formed by sintering a paste or green sheet containing powdery glass on a glass substrate. For this reason, the glass used for these dielectric layers and partition walls must have a low softening temperature (softening point) that can be sintered on a glass substrate. It has a soft spot below C.
  • the dielectric layer particularly the dielectric layer of the front plate, is required not only to be baked at a low temperature, but also to have a high transparency (light transmittance) as the obtained dielectric layer. .
  • a glass containing a large amount of lead oxide is known as a low softening point glass having a low and softening point as described above.
  • lead-free, low-soft spot glass that can suppress problems in waste disposal and the working environment is desired.
  • bismuth is a rare metal and, in recent years, bismuth is not as likely as lead, but there are concerns about adverse effects on the environment, and it is desired to reduce the use of bismuth. It ’s like that!
  • Such problems are not limited to lead-free glass compositions used for PDP dielectric layer glass, but also low softness that requires high light transmittance while suppressing bismuth content. This is a common problem with lead-free glass compositions.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-128430
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2000-313635
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-47778
  • the present invention has an object to improve light transmittance while suppressing the bismuth content in a lead-free glass composition having a low soft spot of 600 ° C or lower. .
  • a lead-free glass composition such as a zinc borate-based lead-free glass composition, which contains less bismuth, contains a relatively large amount of ZnO as a component for lowering the soft spot. It is composed.
  • the present inventors have found that in a lead-free glass composition in which the use of bismuth is suppressed, the light transmittance can be improved by reducing the amount of ZnO. And we are earnest about the composition of lead-free glass with B 2 O and SiO as the main components.
  • the present invention solves the above problems by mass% in terms of oxide,
  • MgO and CaO at least one kind is total 0.1 to 15%
  • SrO and BaO at least one kind is total 0.1 to 20
  • the lead-free glass composition is characterized in that the total content of MgO, CaO, SrO and BaO is 0.2 to 25% and ZnO is 0 to 15%.
  • Pb-free glass composition of the present invention the mass 0/0 compositions force in terms of oxide other than ZnO, SiO force S5 ⁇ 30%, BO force 30 to 60%, Al O mosquitoes ⁇ ⁇ 25%, Li Any of 0, Na O and KO
  • the lead-free glass composition of the present invention can suppress the ZnO content, the light transmittance of the glass can be improved.
  • the present invention it is possible to provide a lead-free glass composition capable of improving the light transmittance while suppressing the amount of bismuth used.
  • a lead-free glass composition used for forming a dielectric layer of a front plate of a plasma display panel (PDP) according to a preferred embodiment of the present invention will be described below.
  • the lead-free glass composition in the present embodiment contains SiO, B 2 O, and Al 2 O.
  • the lead-free glass composition of this embodiment contains ZnO as an optional component.
  • the SiO is an essential component necessary for the stability of the glass, and the content thereof is oxide conversion.
  • the calculated mass% is 5-30%.
  • This SiO content is in this range when the SiO content is less than 5%.
  • Firing is difficult, and firing on a glass substrate is difficult.
  • the glass has too high a viscosity, and in the case where a dielectric layer is formed using powdered glass, it is difficult to remove bubbles, which may reduce light transmission.
  • the SiO content is preferably 5 to 25%, more preferably.
  • the B 2 O is also an essential component necessary for the stability of the glass, and the content thereof is oxide conversion.
  • the calculated mass% is 30-60%.
  • This B 2 O content is in this range when the B 2 O content is less than 30%.
  • the lead-free glass becomes unstable, and the lead-free glass that is formed crystallizes to reduce light transmission. It is for letting you lower. 600 ° C or less when BO force exceeds 60%
  • Firing is difficult, and firing on a glass substrate is difficult.
  • the strength of the glass may also reduce the chemical durability of the glass.
  • the B 2 O content is preferably 33 to 60%.
  • the power is 35-57% and 40-55%!
  • AlO is also an essential component necessary for the stability of glass, and its content is determined by oxide conversion.
  • the calculated mass% is 1-25%.
  • the Al O content is in this range when the Al O content is less than 1%.
  • the lead-free glass becomes unstable, and the lead-free glass that is formed crystallizes to lower the light transmittance. If it contains more than 25% Al O force, 600 ° C or more
  • the content of Al 2 O is preferably 3 to 23%, more preferably.
  • it is 5 to 20%, and more preferably 7 to 15%.
  • Li 0, Na 2 O and ⁇ ⁇ are effective components for reducing the melting of glass, and these Li 0,
  • the lead-free glass composition contains at least one of Na O and ⁇ ⁇
  • the content is 5 to 20% in total in terms of mass% in terms of acid chloride.
  • the total content power of one or more of 2 2 and K ⁇ Such a range is that the total content is 5%
  • the soft spot of the lead-free glass composition exceeds 600 ° C., and firing on the glass substrate becomes difficult.
  • the thermal expansion coefficient becomes too large, warping during firing, causing cracks and making firing itself difficult.
  • coloring yellowing due to reaction with the electrode occurs.
  • Shishika also has an oxide-based mass% of LiO content of X, NaO content of X, and KO.
  • the MgO and CaO are effective components for suppressing the crystallization of glass and improving the light transmittance, and any one or more of these MgO and CaO is contained in the lead-free glass composition. It is essential. Moreover, the content is 0.1 to 15% in total in terms of mass% in terms of oxide. The total content of one or more of MgO and CaO is within this range because when the total content is less than 0.1%, the lead-free glass becomes unstable and the lead-free glass formed This is because crystallization causes a decrease in light transmittance.
  • the content of one or more of MgO and CaO is preferably 0.1 to 10% in total, more preferably 0.2 to 8%, and 0.2 to 0.2%. It is more preferably 5%.
  • the SrO and BaO are effective components for suppressing crystallization of glass and improving the light transmittance, and any one or more of these SrO and BaO are contained in the lead-free glass composition. It is essential. Moreover, the content is 0.1 to 20% in total in the mass% of oxide conversion. The total content of one or more of SrO and BaO is in this range. If the total content is less than 0.1%, the lead-free glass becomes unstable and lead-free formed. This is because the glass crystallizes to reduce the light transmission.
  • the content of one or more of SrO and BaO is preferably 0.1 to 15% in total, more preferably 0.2 to 10%, and 0.3 to 0.3%. ⁇ 8% Power S More preferred.
  • MgO and CaO and one or more of SrO and BaO are the sum of them, that is, the total of MgO, CaO, SrO, and BaO.
  • the calculated mass% should be 0.2 to 25%.
  • the total amount of MgO, CaO, SrO, and BaO is 0.2% to 23% in terms of oxide in terms that the above characteristics can be balanced in a range suitable for the formation of a PDP dielectric layer.
  • Power S is preferable, more preferably 0.4 to 20%, and still more preferably 0.6 to 15%.
  • ZnO is an optional component, and can reduce the glass melting while suppressing the change in the thermal expansion coefficient of the glass.
  • this ZnO may cause the lead-free glass to become unstable, lead to crystallization of the lead-free glass that is formed, and may reduce light transmission. Therefore, the content is 0 to 15% in terms of mass% in terms of oxide, more preferably 13% or less, and further preferably 10% or less.
  • the lead-free glass composition of the present embodiment can contain other components than those described above as long as the effects of the present invention are not impaired.
  • the other components include components such as CuO and impurity components that suppress yellowing due to reaction with the electrode when forming a PDP dielectric layer.
  • this CuO is contained in a lead-free glass composition, it is preferably 0.1 to 1% in terms of mass% in terms of oxide.
  • the lead-free glass composition has a low softness of 600 ° C or less while keeping 2 3 substantially 0% (composition not containing Bi 2 O).
  • lead-free glass is formed using these lead-free glass compositions, all raw materials are mixed and melted at a temperature of, for example, 1000 to 1300 ° C to produce a uniform glass, and the glass is then ball milled.
  • a glass having a uniform property can be obtained by making the powder by a pulverizing means such as.
  • the powder produced as described above general binder resin and solvent, etc. It is possible to form a glass film having a uniform thickness by applying paste onto the glass substrate by screen printing or the like, drying and sintering.
  • a glass sheet having a uniform thickness can be formed by producing a green sheet using the powder glass produced as described above, pressing the glass sheet onto a glass substrate, and sintering the green sheet.
  • the PDP front plate is used as a lead-free glass for a dielectric layer.
  • Lead-free glass for the dielectric layer of the PDP front plate is strongly demanded to be lead-free and to have a low softening point that can be sintered on a glass substrate.
  • the use of the lead-free glass composition of the present invention is not limited to the dielectric layer of the PDP front plate.
  • the lead-free glass composition of the present invention can also be used for the dielectric layer of the PDP rear plate and the partition.
  • the strength and appearance of the PDP back plate can be adjusted by, for example, mixing a lead-free glass composition and an oxide ceramics filler for the dielectric layer and partition walls.
  • this oxide ceramic filler a single or mixed mixture of silica, alumina, titania, zircoure, etc. can be used.
  • the lead-free glass composition is not limited to the PDP application as illustrated above but can be used for applications other than the PDP.
  • the compounding materials used to produce the lead-free glass compositions of the examples and comparative examples are as follows.
  • Compounding material SiO ,: H BO, Al O, ZnO, MgCO, CaCO, SrCO, BaCO, Li C O, Na CO, K CO, CuO
  • the above compounding materials were prepared so as to have the compositions shown in Tables 1 and 2, and after mixing, they were melted at a temperature of about 1000 to 1300 ° C for 1 to 2 hours using a platinum crucible. The molten glass was quenched with a stainless steel cooling roll to produce glass flakes.
  • the glass flakes were pulverized, and powder glass having an average particle size of 1 to 3 m was prepared by air classification.
  • the powder glass was used as a sample for differential thermal analysis (DTA).
  • a cylindrical sample having a diameter of 5 mm X a length of 15 mm was prepared and used as a sample for measuring a thermal expansion coefficient.
  • a glass paste was prepared from the powdered glass and a vehicle mainly composed of ethylcellulose and tervineol.
  • the obtained glass paste was screen-printed on a glass substrate (trade name “PD-200” manufactured by Asahi Glass Co., Ltd.) to a thickness of 30 m after sintering.
  • a light transmittance measurement sample having a thickness of 30 ⁇ m was fired at a temperature 5 ° C. higher than the soft spot of the lead-free glass composition for 30 minutes.
  • the glass paste used for the preparation of the light transmittance measurement sample was used as an observation sample for the reaction (yellowing) with the electrode.
  • Powder glass samples using the lead-free powder glass of each Example and Comparative Example were used for 20 ° CZ min in an atmospheric environment using DTA (model name “Cho 0-8120”) manufactured by Rigaku Corporation. Differential thermal analysis measurement was performed at the rate of temperature increase, and the point at which the endothermic peak during softening was completed was determined by the tangential method and was defined as the softening point. The results are shown in Tables 1 and 2.
  • thermomechanical analyzer manufactured by Rigaku Corporation (trade name ⁇ TMA8 310 ") and the coefficient of thermal expansion was measured.
  • the thermal expansion curve was measured by raising the temperature from room temperature at 10 ° C Zmin, and the values of thermal expansion coefficients observed from 50 ° C to 350 ° C were averaged for each example and comparative example.
  • the coefficient of thermal expansion of the lead-free powder glass The results are also shown in Tables 1 and 2. (Normally, the thermal expansion coefficient is within a range of 60 ⁇ 85 X 10- 7 Z ° C, sintering time of cracks and fissures, problems such as warping can sufficiently reduce the possibility of occurrence.)
  • a silver electrode is formed on a glass substrate (trade name “PD-200” manufactured by Asahi Glass Co., Ltd.), and a glass paste is screen-printed on this glass substrate, which is 5 ° C higher than the soft spot. After firing at temperature for 30 minutes, the occurrence of yellowing in the silver electrode portion was visually observed.
  • a glass substrate trade name “PD-200” manufactured by Asahi Glass Co., Ltd.
  • a lead-free glass composition characterized by having a composition of ⁇ 25% and ZnO of 0 ⁇ 15% has a low softness of 600 ° C. or less while suppressing (or without using) bismuth. It can be seen that at the saddle point, the force is excellent in light transmittance.
  • the Li O content is X
  • the Na O content is X
  • the K 2 O content is X
  • Li 2 O, Na 2 O and K 2 O are in a composition ratio satisfying (X + X) ZX ⁇ 1

Abstract

The object is to reduce the amount of bismuth used and improve the light transmission rate in a lead-free glass composition having a softening point as low as 600˚C or lower. Disclosed is a lead-free glass composition having the following composition in terms of oxides (by mass): 5-30% of SiO2; 30-60% of B2O3; 1-25% of Al2O3; 5-20% of at least one member selected from Li2O, Na2O and K2O in total; 0.1-15% of at least one member selected from MgO and CaO in total; and 0.1-20% of at least one member selected from SrO and BaO in total, wherein the total amount of MgO, CaO, SrO and BaO is 0.2-25% by mass and the amount of ZnO is 0-15% by mass.

Description

無鉛ガラス組成物  Lead-free glass composition
技術分野  Technical field
[0001] 本発明は、無鉛ガラス組成物と、無鉛ガラス組成物が用いられるプラズマディスプレ ィパネル誘電体層用ガラスに関する。  [0001] The present invention relates to a lead-free glass composition and a glass for a plasma display panel dielectric layer in which the lead-free glass composition is used.
背景技術  Background art
[0002] 画像表示装置にお!、ては、近年の高画質化、省スペース化、省エネルギー化の流 れの中で、陰極線管式画像表示装置(以下「CRT」ともいう)に代わり、フラットパネル ディスプレイが用いられるようになって 、る。  [0002] In the trend of high image quality, space saving, and energy saving in recent years, instead of cathode ray tube image display devices (hereinafter also referred to as “CRT”), image display devices are flat. Panel displays are being used.
特に、プラズマディスプレイパネル (以下「PDP」ともいう)は、発色がよく画像も鮮明 であり、大画面化が比較的容易であると!/、う点力 広く用いられて 、る。  In particular, a plasma display panel (hereinafter also referred to as “PDP”) is well-colored, has a clear image, and is relatively easy to enlarge!
[0003] この PDPには、前面側と背面側とにガラス板が配されており、この前面側のガラス 板 (以下「前面板」ともいう)と背面側のガラス板 (以下「背面板」ともいう)とは、例えば 、ソーダライムガラスや高歪点ガラスなどが用いられたガラス基板の一面側に電極が 設けられて形成されている。そして、この前面板と背面板とは、互いに電極が形成さ れた面を対向させて PDPに配されて 、る。 [0003] In this PDP, glass plates are arranged on the front side and the back side. The front side glass plate (hereinafter also referred to as "front plate") and the back side glass plate (hereinafter referred to as "back plate"). Is also formed by providing an electrode on one side of a glass substrate using, for example, soda lime glass or high strain point glass. The front plate and the rear plate are arranged on the PDP with their surfaces on which electrodes are formed facing each other.
この前面板と背面板の電極には、線状電極が用いられており、前面板と背面板の 電極面は、線状電極が平行に多数本配されたストライプ状に形成されている。そして 、前面板と背面板は、 PDPを正面力 見た場合に格子状となるように互いの線状電 極を直交させて配されている。また、前面板、背面板のそれぞれのガラス板において は、この電極がさらに誘電体層と呼ばれるガラスの層で被覆されている。また、通常、 背面板には、電極間を仕切る隔壁と呼ばれるガラス壁が立設されている。  Linear electrodes are used for the electrodes of the front plate and the back plate, and the electrode surfaces of the front plate and the back plate are formed in a stripe shape in which a large number of linear electrodes are arranged in parallel. The front plate and the rear plate are arranged with their linear electrodes orthogonal to each other so as to form a lattice when the front force of the PDP is viewed. In each of the front plate and the back plate, this electrode is further covered with a glass layer called a dielectric layer. In addition, a glass wall called a partition that partitions the electrodes is usually provided on the back plate.
そして、 PDPにおいては、この前面板の誘電体層(以下「前面誘電体層」ともいう) が背面板の隔壁により背面板の誘電体層(以下「背面誘電体層」ともいう)力 離間し た状態で支持されている。このことにより、前面誘電体層と背面誘電体層と隔壁とによ り空間が画定されており、該空間に蛍光体が配されて表示セルが形成されている。そ して、前面側と背面側との電極間のプラズマ放電によりこの表示セルの蛍光体を発 光させている。 In the PDP, the dielectric layer of the front plate (hereinafter also referred to as “front dielectric layer”) is separated from the dielectric layer of the back plate (hereinafter also referred to as “back dielectric layer”) by the partition of the back plate. It is supported in the state. Thus, a space is defined by the front dielectric layer, the back dielectric layer, and the barrier ribs, and a phosphor is arranged in the space to form a display cell. The phosphor of the display cell is emitted by plasma discharge between the front and back electrodes. I am making it light.
[0004] この誘電体層や隔壁は、通常、粉末状のガラスを含むペーストやグリーンシートを ガラス基板上で焼結することにより形成されている。そのため、これらの誘電体層や 隔壁に用いられるガラスは、ガラス基板上で焼結し得る低 ヽ軟化温度 (軟化点)を有 することが必要であり、通常、これらに用いられるガラスは 600°C以下の軟ィ匕点を有し ている。  [0004] The dielectric layer and the partition are usually formed by sintering a paste or green sheet containing powdery glass on a glass substrate. For this reason, the glass used for these dielectric layers and partition walls must have a low softening temperature (softening point) that can be sintered on a glass substrate. It has a soft spot below C.
また、この誘電体層、特に、前面板の誘電体層においては、低い温度で焼成できる ことのみならず、得られる誘電体層として、透明性 (光透過率)の高いものが求められ ている。  In addition, the dielectric layer, particularly the dielectric layer of the front plate, is required not only to be baked at a low temperature, but also to have a high transparency (light transmittance) as the obtained dielectric layer. .
[0005] ところで、従来、上記のような低 、軟化点を有する低軟化点ガラスとして酸化鉛を多 く含んだガラスが知られている。しかし、近年においては、環境意識の高まりから、廃 棄処理、作業環境における問題を抑制することができる無鉛系の低軟ィ匕点ガラスが 望まれている。  By the way, conventionally, a glass containing a large amount of lead oxide is known as a low softening point glass having a low and softening point as described above. However, in recent years, with increasing environmental awareness, lead-free, low-soft spot glass that can suppress problems in waste disposal and the working environment is desired.
この無鉛系の低軟ィ匕点ガラスのためのガラス組成物として、近年、酸ィ匕ビスマスと酸 化ホウ素とを主たる成分とするビスマス系無鉛ガラス組成物が用いられるようになって きている。(下記特許文献 1参照)  In recent years, bismuth-based lead-free glass compositions mainly composed of bismuth oxide and boron oxide have been used as glass compositions for this lead-free low soft spot glass. . (See Patent Document 1 below)
しかし、ビスマスは、希少金属であるとともに、近年、ビスマスも鉛ほどではないが環 境に悪影響を及ぼすことが懸念されるようになってきており、ビスマスの使用も低減さ せることが要望されるようになって!/ヽる。  However, bismuth is a rare metal and, in recent years, bismuth is not as likely as lead, but there are concerns about adverse effects on the environment, and it is desired to reduce the use of bismuth. It ’s like that!
このようなことから、近年、ホウ酸亜鉛系無鉛ガラス組成物を用いることが検討され てきている。(下記特許文献 2、 3参照)  For these reasons, in recent years, the use of zinc borate-based lead-free glass compositions has been studied. (See Patent Documents 2 and 3 below)
しかし、このホウ酸亜鉛系無鉛ガラス組成物については、十分向上された光透過率 となるものが見出されていない。  However, no zinc borate-based lead-free glass composition has been found that has a sufficiently improved light transmittance.
すなわち、従来の無鉛ガラス組成物においては、ビスマスの含有量を抑制しつつ P DPの誘電体層用ガラスなどに求められる優れた光透過率となるものが見出されてい ない。  In other words, no conventional lead-free glass composition has been found that has the excellent light transmittance required for PDP dielectric layer glass while suppressing the bismuth content.
なお、このような問題は、 PDP誘電体層用ガラスに用いられる無鉛ガラス組成物の みならず、ビスマスの含有量を抑制しつつ高い光透過率となることが求められる低軟 化点の無鉛ガラス組成物に共通の問題である。 Such problems are not limited to lead-free glass compositions used for PDP dielectric layer glass, but also low softness that requires high light transmittance while suppressing bismuth content. This is a common problem with lead-free glass compositions.
[0006] 特許文献 1 :日本国特開 2003— 128430号公報  [0006] Patent Document 1: Japanese Unexamined Patent Publication No. 2003-128430
特許文献 2 :日本国特開 2000— 313635号公報  Patent Document 2: Japanese Unexamined Patent Publication No. 2000-313635
特許文献 3 :日本国特開 2005— 47778号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-47778
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は、上記問題点に鑑み、 600°C以下の低い軟ィ匕点を有する無鉛ガラス組成 物において、ビスマスの含有量を抑制しつつ光透過率を向上させることを課題として いる。 [0007] In view of the above problems, the present invention has an object to improve light transmittance while suppressing the bismuth content in a lead-free glass composition having a low soft spot of 600 ° C or lower. .
課題を解決するための手段  Means for solving the problem
[0008] ホウ酸亜鉛系無鉛ガラス組成物などのビスマスの使用が抑制されて ヽる無鉛ガラス 組成物にぉ 、ては、低軟ィ匕点化のための成分として ZnOが比較的多く含有された組 成となっている。このことに対し、本発明者らは、ビスマスの使用が抑制されている無 鉛ガラス組成物では、この ZnOの量を低減させることで光透過率を向上させ得ること を見出した。そして、 B Oと SiOを主たる成分とした無鉛ガラスの組成について鋭意 [0008] A lead-free glass composition, such as a zinc borate-based lead-free glass composition, which contains less bismuth, contains a relatively large amount of ZnO as a component for lowering the soft spot. It is composed. In contrast, the present inventors have found that in a lead-free glass composition in which the use of bismuth is suppressed, the light transmittance can be improved by reducing the amount of ZnO. And we are earnest about the composition of lead-free glass with B 2 O and SiO as the main components.
2 3 2  2 3 2
検討を行った結果、本発明の完成に到ったのである。  As a result of study, the present invention has been completed.
すなわち本発明は、前記課題を解決すベぐ酸化物換算の質量%で、 SiO力 〜  That is, the present invention solves the above problems by mass% in terms of oxide,
2 2
30%、 B O力 30〜60%、 Al O力^〜 25%、 Li 0、 Na O及び Κ Οの何れか 1種以30%, B O force 30-60%, Al O force ^ -25%, Li 0, Na O and Κ Ο One or more
2 3 2 3 2 2 2 上が合計 5〜20%、 MgO及び CaOの何れ力 1種以上が合計 0. 1〜15%、 SrO及 び BaOの何れ力 1種以上が合計 0. 1〜20%、し力も、 MgO、 CaO、 SrO及び BaO の合計が 0. 2〜25%で、 ZnOが 0〜15%となる組成であることを特徴とする無鉛ガ ラス組成物を提供する。 2 3 2 3 2 2 2 Above 5 to 20% in total, MgO and CaO at least one kind is total 0.1 to 15%, SrO and BaO at least one kind is total 0.1 to 20 The lead-free glass composition is characterized in that the total content of MgO, CaO, SrO and BaO is 0.2 to 25% and ZnO is 0 to 15%.
発明の効果  The invention's effect
[0009] 本発明の無鉛ガラス組成物は、 ZnO以外の組成力 酸化物換算の質量0 /0で、 SiO 力 S5〜30%、 B O力 30〜60%、 Al Oカ^〜 25%、 Li 0、 Na O及び K Oの何れ[0009] Pb-free glass composition of the present invention, the mass 0/0 compositions force in terms of oxide other than ZnO, SiO force S5~30%, BO force 30 to 60%, Al O mosquitoes ^ ~ 25%, Li Any of 0, Na O and KO
2 2 3 2 3 2 2 2 力 1種以上が合計 5〜20%、 MgO及び CaOの何れか 1種以上が合計 0. 1〜15%、 SrO及び BaOの何れ力 1種以上が合計 0. 1〜20%で、し力も、 MgO、 CaO、 SrO 及び BaOの合計が 0. 2〜25%である。このこと力 無鉛ガラス組成物を ZnOの含有 量を抑制しつつも軟ィ匕点の低 、ものとさせ得る。 2 2 3 2 3 2 2 2 Force One or more types total 5 to 20%, one or more of MgO and CaO total 0.1 to 15%, one type of SrO and BaO one or more total 0. 1-20%, and the strength is MgO, CaO, SrO And the total of BaO is 0.2-25%. This force can make the lead-free glass composition have a low soft spot while suppressing the ZnO content.
したがって、本発明の無鉛ガラス組成物は、 ZnOの含有量を抑制させ得ることから 、ガラスの光透過率を向上させ得る。  Therefore, since the lead-free glass composition of the present invention can suppress the ZnO content, the light transmittance of the glass can be improved.
すなわち、本発明によれば、ビスマスの使用量を抑制しつつも光透過率を向上させ 得る無鉛ガラス組成物を提供し得る。  That is, according to the present invention, it is possible to provide a lead-free glass composition capable of improving the light transmittance while suppressing the amount of bismuth used.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下に、本発明の好まし 、実施の形態にっ 、てプラズマディスプレイパネル(PDP )の前面板の誘電体層の形成に用いられる無鉛ガラス組成物を説明する。 [0010] A lead-free glass composition used for forming a dielectric layer of a front plate of a plasma display panel (PDP) according to a preferred embodiment of the present invention will be described below.
本実施形態における無鉛ガラス組成物には、 SiO、 B O、 Al Oが含有されている  The lead-free glass composition in the present embodiment contains SiO, B 2 O, and Al 2 O.
2 2 3 2 3  2 2 3 2 3
。また、 Li 0、 Na O及び Κ Οの何れか 1種以上、ならびに、 MgO及び CaOの何れ  . In addition, any one or more of Li 0, Na O and Κ な ら び に, and any of MgO and CaO
2 2 2  2 2 2
力 1種以上が含有されている。さらには、 SrO及び BaOの何れか 1種以上が含有され ている。  Contains at least one kind of force. Furthermore, at least one of SrO and BaO is contained.
また、本実施形態の無鉛ガラス組成物は、任意成分として ZnOが含有されている。  Moreover, the lead-free glass composition of this embodiment contains ZnO as an optional component.
[0011] 前記 SiOは、ガラスの安定ィ匕に必要な必須成分であり、その含有量は、酸化物換 [0011] The SiO is an essential component necessary for the stability of the glass, and the content thereof is oxide conversion.
2  2
算の質量%で 5〜30%とされる。  The calculated mass% is 5-30%.
この SiOの含有量がこのような範囲であるのは、 SiOの含有量が 5%未満の場合 This SiO content is in this range when the SiO content is less than 5%.
2 2 twenty two
には、無鉛ガラスが不安定になり、形成される無鉛ガラスが結晶化して光透過性を低 下させてしまうためである。 SiO力 30%を超えて含有される場合には、 600°C以下  This is because the lead-free glass becomes unstable, and the lead-free glass that is formed crystallizes to reduce light transmission. 600 ° C or less when SiO power exceeds 30%
2  2
での焼成が困難となり、ガラス基板上での焼成が困難となる。し力も、ガラスの粘度が 高くなりすぎて、粉末ガラスを用いて誘電体層を形成する場合などにおいて泡が抜け 難くなつて光透過性を低下させてしまうおそれがある。  Firing is difficult, and firing on a glass substrate is difficult. In addition, the glass has too high a viscosity, and in the case where a dielectric layer is formed using powdered glass, it is difficult to remove bubbles, which may reduce light transmission.
このような点において、 SiOの含有量は、 5〜25%であることが好ましぐより好まし  In this respect, the SiO content is preferably 5 to 25%, more preferably.
2  2
くは、 10〜25%であり、 15〜25%であることがさらに好ましい。  Or 10-25%, more preferably 15-25%.
[0012] 前記 B Oも、ガラスの安定ィ匕に必要な必須成分であり、その含有量は、酸化物換 [0012] The B 2 O is also an essential component necessary for the stability of the glass, and the content thereof is oxide conversion.
2 3  twenty three
算の質量%で 30〜60%とされる。  The calculated mass% is 30-60%.
この B Oの含有量がこのような範囲であるのは、 B Oの含有量が 30%未満の場合 This B 2 O content is in this range when the B 2 O content is less than 30%.
2 3 2 3 2 3 2 3
には、無鉛ガラスが不安定になり、形成される無鉛ガラスが結晶化して光透過性を低 下させてしまうためである。 B O力 60%を超えて含有される場合には、 600°C以下 The lead-free glass becomes unstable, and the lead-free glass that is formed crystallizes to reduce light transmission. It is for letting you lower. 600 ° C or less when BO force exceeds 60%
2 3  twenty three
での焼成が困難となり、ガラス基板上での焼成が困難となる。し力も、ガラスの化学的 耐久性を低下させてしまうおそれがある。  Firing is difficult, and firing on a glass substrate is difficult. The strength of the glass may also reduce the chemical durability of the glass.
このような点において、 B Oの含有量は、 33〜60%であること力 子ましく、より好ま  In this respect, the B 2 O content is preferably 33 to 60%.
2 3  twenty three
しくは、 35〜57%であり、 40〜55%であること力さらに好まし!/、。  More preferably, the power is 35-57% and 40-55%!
[0013] 前記 Al Oも、ガラスの安定ィ匕に必要な必須成分であり、その含有量は、酸化物換 [0013] AlO is also an essential component necessary for the stability of glass, and its content is determined by oxide conversion.
2 3  twenty three
算の質量%で 1〜25%とされる。  The calculated mass% is 1-25%.
この Al Oの含有量がこのような範囲であるのは、 Al Oの含有量が 1%未満の場合  The Al O content is in this range when the Al O content is less than 1%.
2 3 2 3  2 3 2 3
には、無鉛ガラスが不安定になり、形成される無鉛ガラスが結晶化して光透過性を低 下させてしまうためである。 Al O力 25%を超えて含有される場合には、 600°C以  This is because the lead-free glass becomes unstable, and the lead-free glass that is formed crystallizes to lower the light transmittance. If it contains more than 25% Al O force, 600 ° C or more
2 3  twenty three
下での焼成が困難となり、ガラス基板上での焼成が困難となる。  Firing below becomes difficult, and firing on a glass substrate becomes difficult.
このような点において、 Al Oの含有量は、 3〜23%であることが好ましぐより好ま  In this respect, the content of Al 2 O is preferably 3 to 23%, more preferably.
2 3  twenty three
しくは、 5〜20%であり、 7〜15%であることがさらに好ましい。  Alternatively, it is 5 to 20%, and more preferably 7 to 15%.
[0014] 前記 Li 0、 Na O及び Κ Οは、ガラスの低融化に有効な成分であり、これら Li 0、 [0014] The Li 0, Na 2 O and Κ Ο are effective components for reducing the melting of glass, and these Li 0,
2 2 2 2 2 2 2 2
Na O及び Κ Οの何れか 1種以上を無鉛ガラス組成物に含有させることが必須である It is essential that the lead-free glass composition contains at least one of Na O and Κ Ο
2 2  twenty two
。また、その含有量は、酸ィ匕物換算の質量%で合計 5〜20%である。 Li 0、 Na O及  . Moreover, the content is 5 to 20% in total in terms of mass% in terms of acid chloride. Li 0, Na O and
2 2 び K Οの一種以上の合計含有量力このような範囲とされるのは、合計含有量が 5%  The total content power of one or more of 2 2 and K 力 Such a range is that the total content is 5%
2  2
未満の場合は、無鉛ガラス組成物の軟ィ匕点が 600°Cを超えてしまい、ガラス基板上 での焼成が困難となるためである。  If it is less than 1, the soft spot of the lead-free glass composition exceeds 600 ° C., and firing on the glass substrate becomes difficult.
一方、 Li 0、 Na O及び Κ Οの一種以上が、合計 20%を超えて含有される場合に  On the other hand, when one or more of Li 0, Na O and Κ Ο is contained in excess of 20% in total
2 2 2  2 2 2
は、熱膨張係数が大きくなりすぎて焼成時に反り、割れを発生させたりして焼成自体 が困難となる。しかも、誘電体層を形成する場合に、電極と反応による着色 (黄変)が 生じる可能性が高くなる。  The thermal expansion coefficient becomes too large, warping during firing, causing cracks and making firing itself difficult. In addition, when the dielectric layer is formed, there is a high possibility that coloring (yellowing) due to reaction with the electrode occurs.
このような点において、 Li 0、 Na O及び Κ Οの何れ力 1種以上の含有量は、合計  In this respect, the content of one or more of Li 0, Na O and 及 び Ο
2 2 2  2 2 2
で 7〜18%であることが好ましぐより好ましくは、 9〜16%であり、 10〜15%であるこ とがさらに好ましい。  More preferably, it is 7 to 18%, more preferably 9 to 16%, and further preferably 10 to 15%.
[0015] しカゝも、酸化物換算の質量%で Li Oの含有量を X、 Na Oの含有量を X 、 K Oの  [0015] Shishika also has an oxide-based mass% of LiO content of X, NaO content of X, and KO.
2 Li 2 Na 2 含有量を Xとしたときに、これら Li 0、 Na O及び Κ Οが、(X +Χ ) /Χ ≤ 1の 関係を満足させる組成比で無鉛ガラス組成物に含有されている場合には上記の黄 変をより確実に抑制させることができ、無鉛ガラス組成物を、 PDPの誘電体層の形成 に好適なものとさせ得る。 2 When Li 2 Na 2 content is X, these Li 0, Na O and Κ Ο are (X +)) / Χ ≤ 1 When it is contained in a lead-free glass composition at a composition ratio that satisfies the relationship, the above yellowing can be more reliably suppressed, and the lead-free glass composition is suitable for forming a dielectric layer of a PDP. Can be.
[0016] 前記 MgO及び CaOは、ガラスの結晶化を抑制し、光透過率を向上させるのに有効 な成分であり、これら MgO及び CaOの何れ力 1種以上を無鉛ガラス組成物に含有さ せることが必須である。また、その含有量は、酸化物換算の質量%で合計 0. 1〜15 %である。 MgO及び CaOの何れか 1種以上の合計含有量がこのような範囲とされる のは、合計含有量が 0. 1%未満の場合は、無鉛ガラスが不安定になり、形成される 無鉛ガラスが結晶化して光透過性を低下させてしまうためである。 [0016] The MgO and CaO are effective components for suppressing the crystallization of glass and improving the light transmittance, and any one or more of these MgO and CaO is contained in the lead-free glass composition. It is essential. Moreover, the content is 0.1 to 15% in total in terms of mass% in terms of oxide. The total content of one or more of MgO and CaO is within this range because when the total content is less than 0.1%, the lead-free glass becomes unstable and the lead-free glass formed This is because crystallization causes a decrease in light transmittance.
一方、 MgO及び CaOの何れか 1種以上力 合計 15%を超えて含有される場合に は、 600°C以下での焼成が困難となり、ガラス基板上での焼成が困難となる。  On the other hand, when one or more of MgO and CaO is contained exceeding 15% in total force, firing at 600 ° C. or less becomes difficult, and firing on a glass substrate becomes difficult.
このような点において、 MgO及び CaOの何れ力 1種以上の含有量は、合計で 0. 1 〜10%であること力好ましく、より好ましくは、 0. 2〜8%であり、 0. 2〜5%であること 力 Sさらに好ましい。  In such a point, the content of one or more of MgO and CaO is preferably 0.1 to 10% in total, more preferably 0.2 to 8%, and 0.2 to 0.2%. It is more preferably 5%.
[0017] 前記 SrO及び BaOは、ガラスの結晶化を抑制し、光透過率を向上させるのに有効 な成分であり、これら SrO及び BaOの何れか 1種以上を無鉛ガラス組成物に含有さ せることが必須である。また、その含有量は、酸化物換算の質量%で合計 0. 1〜20 %である。 SrO及び BaOの何れ力 1種以上の合計含有量がこのような範囲とされるの は、合計含有量が 0. 1%未満の場合は、無鉛ガラスが不安定になり、形成される無 鉛ガラスが結晶化して光透過性を低下させてしまうためである。  [0017] The SrO and BaO are effective components for suppressing crystallization of glass and improving the light transmittance, and any one or more of these SrO and BaO are contained in the lead-free glass composition. It is essential. Moreover, the content is 0.1 to 20% in total in the mass% of oxide conversion. The total content of one or more of SrO and BaO is in this range. If the total content is less than 0.1%, the lead-free glass becomes unstable and lead-free formed. This is because the glass crystallizes to reduce the light transmission.
一方、 SrO及び BaOの何れか 1種以上力 合計 20%を超えて含有される場合には 、熱膨張係数が大きくなりすぎて焼成時に反り、割れを発生させたりして焼成自体が 困難となる。  On the other hand, if one or more of SrO and BaO is contained exceeding 20% in total strength, the thermal expansion coefficient becomes too large, warping during firing, causing cracks and making firing itself difficult. .
このような点において、 SrO及び BaOの何れ力 1種以上の含有量は、合計で 0. 1 〜15%であることが好ましぐより好ましくは 0. 2〜10%であり、 0. 3〜8%であること 力 Sさらに好ましい。  In such a point, the content of one or more of SrO and BaO is preferably 0.1 to 15% in total, more preferably 0.2 to 10%, and 0.3 to 0.3%. ~ 8% Power S More preferred.
[0018] なお、上記の MgO及び CaOの何れ力 1種以上と SrO及び BaOの何れ力 1種以上 とは、それらの合計、すなわち MgO、 CaO、 SrO及び BaOの合計として、酸化物換 算の質量%で 0. 2〜25%とする必要がある。 [0018] Note that one or more of MgO and CaO and one or more of SrO and BaO are the sum of them, that is, the total of MgO, CaO, SrO, and BaO. The calculated mass% should be 0.2 to 25%.
これらの範囲外では、ガラスの安定性、 600°C以下の軟ィ匕点、高い光透過性、熱膨 張係数の適正化、ならびに、化学的耐久性などの特性においてバランスの取れた無 鉛ガラスとすることができな 、ためである。  Outside these ranges, lead-free balance in properties such as glass stability, soft spot below 600 ° C, high light transmission, optimization of thermal expansion coefficient, and chemical durability. This is because it cannot be made of glass.
上記のような特性を PDPの誘電体層の形成に好適な範囲においてバランスさせ得 る点において、 MgO、 CaO、 SrO及び BaOの合計量は、酸化物換算の質量%で 0. 2〜23%であること力 S好ましく、より好ましくは 0. 4〜20%であり、 0. 6〜15%である ことがさらに好ましい。  The total amount of MgO, CaO, SrO, and BaO is 0.2% to 23% in terms of oxide in terms that the above characteristics can be balanced in a range suitable for the formation of a PDP dielectric layer. Power S is preferable, more preferably 0.4 to 20%, and still more preferably 0.6 to 15%.
[0019] 前記 ZnOは、任意成分であり、ガラスの熱膨張係数が変化することを抑制しつつガ ラスを低融化させることができる。しかし、この ZnOは、無鉛ガラスを不安定にさせて、 形成される無鉛ガラスの結晶化をまねき、光透過性を低下させるおそれがある。した がって、その含有量は、酸化物換算の質量%で 0〜15%であり、より好ましくは 13% 以下であり、 10%以下であることがさらに好ましい。  [0019] ZnO is an optional component, and can reduce the glass melting while suppressing the change in the thermal expansion coefficient of the glass. However, this ZnO may cause the lead-free glass to become unstable, lead to crystallization of the lead-free glass that is formed, and may reduce light transmission. Therefore, the content is 0 to 15% in terms of mass% in terms of oxide, more preferably 13% or less, and further preferably 10% or less.
[0020] また、本実施形態の無鉛ガラス組成物には、本発明の効果を損ねない範囲におい て上記に示したもの以外の他成分を含有させることができる。  [0020] In addition, the lead-free glass composition of the present embodiment can contain other components than those described above as long as the effects of the present invention are not impaired.
この他成分としては、 PDPの誘電体層を形成する場合に、電極との反応による黄変 を抑制させる CuOなどの成分や不純物成分などを例示できる。この CuOを無鉛ガラ ス組成物に含有させる場合には、酸化物換算の質量%で 0. 1〜1%であることが好 ましい。  Examples of the other components include components such as CuO and impurity components that suppress yellowing due to reaction with the electrode when forming a PDP dielectric layer. When this CuO is contained in a lead-free glass composition, it is preferably 0.1 to 1% in terms of mass% in terms of oxide.
[0021] 本発明の無鉛ガラス組成物を上記のような組成とすることにより、 Bi Oの含有量を  [0021] By setting the lead-free glass composition of the present invention to the composition as described above, the content of BiO is reduced.
2 3  twenty three
、例えば、酸ィヒ物換算の質量%で5%以下に抑制しつつ、さらには、 Bi Oの含有量  For example, while suppressing to 5% or less by mass% in terms of acid hydrate, further, the content of BiO
2 3 を実質 0% (Bi Oを含まない組成)としつつ、無鉛ガラス組成物を 600°C以下の低軟  The lead-free glass composition has a low softness of 600 ° C or less while keeping 2 3 substantially 0% (composition not containing Bi 2 O).
2 3  twenty three
化点で光透過性に優れたものとし得る。  It can be excellent in light transmittance at the conversion point.
[0022] これらの無鉛ガラス組成物を用いて無鉛ガラスを形成する場合は、すべての原料を 、例えば 1000〜1300°Cの温度で、混合溶融して均一なガラスを作製し、該ガラスを ボールミルなどの粉砕手段により粉末とすることで均一な性状のガラスを得ることがで きる。 [0022] When lead-free glass is formed using these lead-free glass compositions, all raw materials are mixed and melted at a temperature of, for example, 1000 to 1300 ° C to produce a uniform glass, and the glass is then ball milled. A glass having a uniform property can be obtained by making the powder by a pulverizing means such as.
また、上記のように作製された粉末を、一般的なバインダー榭脂ならびに溶剤など を用いてペーストイ匕し、スクリーン印刷法などによりガラス基板上に塗布、乾燥して焼 結することで均一な厚みのガラス膜を形成させることができる。 In addition, the powder produced as described above, general binder resin and solvent, etc. It is possible to form a glass film having a uniform thickness by applying paste onto the glass substrate by screen printing or the like, drying and sintering.
また、上記のように作製された粉末ガラスを用いてグリーンシートを作製し、ガラス基 板上に圧着させて焼結することで均一な厚みのガラス膜を形成させることができる。  In addition, a glass sheet having a uniform thickness can be formed by producing a green sheet using the powder glass produced as described above, pressing the glass sheet onto a glass substrate, and sintering the green sheet.
[0023] 本実施形態においては、 PDP前面板の誘電体層用無鉛ガラスに用いる場合を例 に説明した。 In the present embodiment, the case where the PDP front plate is used as a lead-free glass for a dielectric layer has been described as an example.
PDP前面板の誘電体層用無鉛ガラスは、無鉛系であること、ガラス基板上で焼結し 得る低軟化点を有することが強く要望され、しかも、光透過性の向上が強く求められ ていることから、本発明の無鉛ガラス組成物を用いることでその効果を顕著に発揮さ せ得る。  Lead-free glass for the dielectric layer of the PDP front plate is strongly demanded to be lead-free and to have a low softening point that can be sintered on a glass substrate. In addition, there is a strong demand for improved light transmission. Therefore, the effect can be remarkably exhibited by using the lead-free glass composition of the present invention.
しかし、本発明の無鉛ガラス組成物は、その用途を、 PDP前面板の誘電体層用に 限定されるものではなぐ例えば、 PDP背面板の誘電体層用や隔壁に用いることもで きる。  However, the use of the lead-free glass composition of the present invention is not limited to the dielectric layer of the PDP front plate. For example, the lead-free glass composition of the present invention can also be used for the dielectric layer of the PDP rear plate and the partition.
この PDP背面板の誘電体層用や隔壁には、例えば、無鉛ガラス組成物とともに酸 化物セラミックスフイラ一を混合して用いることにより強度や外観の調整を行うことがで きる。  The strength and appearance of the PDP back plate can be adjusted by, for example, mixing a lead-free glass composition and an oxide ceramics filler for the dielectric layer and partition walls.
この酸化物セラミックスフイラ一としては、シリカ、アルミナ、チタ二了、ジルコユアなど を単独または複数混合したものを用いることができる。  As this oxide ceramic filler, a single or mixed mixture of silica, alumina, titania, zircoure, etc. can be used.
また、本発明においては、無鉛ガラス組成物を上記例示のように PDP用途に限定 するものでもなく PDP以外の用途にも使用することができる。  In the present invention, the lead-free glass composition is not limited to the PDP application as illustrated above but can be used for applications other than the PDP.
実施例  Example
[0024] 次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定され るものではない。  Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
(実施例 1〜15、比較例 1〜: LO)  (Examples 1 to 15, Comparative Example 1 to: LO)
<配合材料 >  <Combination material>
各実施例、比較例の無鉛ガラス組成物を作製すべく用いた配合材料は、以下のと おり。  The compounding materials used to produce the lead-free glass compositions of the examples and comparative examples are as follows.
配合材料: SiO、: H BO、 Al O、 ZnO、 MgCO、 CaCO、 SrCO、 BaCO、 Li C O、 Na CO、 K CO、 CuO Compounding material: SiO ,: H BO, Al O, ZnO, MgCO, CaCO, SrCO, BaCO, Li C O, Na CO, K CO, CuO
3 2 3 2 3  3 2 3 2 3
<無鉛ガラス組成物の作製 >  <Preparation of lead-free glass composition>
表 1、 2に示す組成となるよう上記配合材料を調合し、混合の後、白金ルツボを用い て約 1000〜 1300°Cの温度で 1〜2時間溶融した。該溶融したガラスをステンレス製 の冷却ロールにて急冷し、ガラスフレークを作製した。  The above compounding materials were prepared so as to have the compositions shown in Tables 1 and 2, and after mixing, they were melted at a temperature of about 1000 to 1300 ° C for 1 to 2 hours using a platinum crucible. The molten glass was quenched with a stainless steel cooling roll to produce glass flakes.
次いで、ガラスフレークを粉砕して気流分級により平均粒径 1〜3 mの粉末ガラス を作製した。  Next, the glass flakes were pulverized, and powder glass having an average particle size of 1 to 3 m was prepared by air classification.
<評価試料の作製 > <Preparation of evaluation sample>
上記粉末ガラスを示差熱分析 (DTA)用試料とした。  The powder glass was used as a sample for differential thermal analysis (DTA).
また、上記粉末ガラスをプレス成型し、焼成した後、直径 5mm X長さ 15mmの円柱 状試料を作製し、熱膨張係数測定用試料とした。  Further, after the above powder glass was press-molded and fired, a cylindrical sample having a diameter of 5 mm X a length of 15 mm was prepared and used as a sample for measuring a thermal expansion coefficient.
また、上記粉末ガラスとェチルセルロース、タービネオールを主成分とするビヒクル とによりガラスペーストを作製した。  Further, a glass paste was prepared from the powdered glass and a vehicle mainly composed of ethylcellulose and tervineol.
得られた、ガラスペーストをガラス基板 (旭硝子社 (株)製、商品名「PD— 200」)上 に、焼結後に 30 mの厚さとなるようスクリーン印刷して、各実施例、比較例の無鉛 ガラス組成物の軟ィ匕点よりも 5°C高 、温度で 30分間焼成して厚さ 30 μ mの光透過率 測定試料とした。  The obtained glass paste was screen-printed on a glass substrate (trade name “PD-200” manufactured by Asahi Glass Co., Ltd.) to a thickness of 30 m after sintering. A light transmittance measurement sample having a thickness of 30 μm was fired at a temperature 5 ° C. higher than the soft spot of the lead-free glass composition for 30 minutes.
さらに、光透過率測定試料の作製に用いたガラスペーストを電極との反応 (黄変)の 観察用試料とした。  Furthermore, the glass paste used for the preparation of the light transmittance measurement sample was used as an observation sample for the reaction (yellowing) with the electrode.
(評価) (Evaluation)
1)軟化点  1) Softening point
各実施例、比較例の無鉛粉末ガラスを用いた粉末ガラス試料を、理学電機 (株) 社製 DTA (型名「丁0— 8120」)を用ぃて、大気雰囲気下において 20°CZ分の昇温 速度で示差熱分析測定を行い、軟ィ匕時の吸熱ピークが終了した点を接線法により求 め軟ィ匕点とした。結果を、表 1、 2に併せて示す。  Powder glass samples using the lead-free powder glass of each Example and Comparative Example were used for 20 ° CZ min in an atmospheric environment using DTA (model name “Cho 0-8120”) manufactured by Rigaku Corporation. Differential thermal analysis measurement was performed at the rate of temperature increase, and the point at which the endothermic peak during softening was completed was determined by the tangential method and was defined as the softening point. The results are shown in Tables 1 and 2.
2)熱膨張係数  2) Thermal expansion coefficient
各実施例、比較例の無鉛粉末ガラスを用いたロッド状試料と石英ガラスにより形成 された標準試料とを用いて、理学電機 (株)社製の熱機械分析装置 (商品名「TMA8 310」)で熱膨張係数を測定した。測定においては、室温から 10°CZminで昇温して 熱膨張曲線の測定を行い、 50°Cから 350°Cまでに観測される熱膨張係数の値を平 均して各実施例、比較例の無鉛粉末ガラスの熱膨張係数とした。結果を、表 1、 2に 併せて示す。(なお、通常、この熱膨張係数が 60〜85 X 10— 7Z°Cの範囲内であれ ば、焼成時の割れやひび、反りなどの問題が発生するおそれを十分低減し得る。 )Using a rod-shaped sample made of lead-free powder glass of each example and comparative example and a standard sample made of quartz glass, a thermomechanical analyzer manufactured by Rigaku Corporation (trade name `` TMA8 310 ") and the coefficient of thermal expansion was measured. In the measurement, the thermal expansion curve was measured by raising the temperature from room temperature at 10 ° C Zmin, and the values of thermal expansion coefficients observed from 50 ° C to 350 ° C were averaged for each example and comparative example. The coefficient of thermal expansion of the lead-free powder glass. The results are also shown in Tables 1 and 2. (Normally, the thermal expansion coefficient is within a range of 60~85 X 10- 7 Z ° C, sintering time of cracks and fissures, problems such as warping can sufficiently reduce the possibility of occurrence.)
3)光透過率 3) Light transmittance
各実施例、比較例の厚さ 30 mのガラス膜を形成した試験片を (株)日立ハイテク ノロジーズ社製分光光度計 (型名 Γυ- 3010 (積分球なし)」)を用いて、 550nmの 光透過率を求めた。結果を、表 1、 2に併せて示す。  Using a spectrophotometer manufactured by Hitachi High-Technologies Corporation (model name Γυ-3010 (without integrating sphere)), a test piece on which a glass film having a thickness of 30 m was formed in each example and comparative example. The light transmittance was determined. The results are shown in Tables 1 and 2.
4)黄変  4) Yellowing
ガラス基板 (旭硝子 (株)社製、商品名「PD— 200」)上に銀電極を形成し、このガラ ス基板上に、ガラスペーストをスクリーン印刷し、軟ィ匕点よりも 5°C高い温度で 30分間 焼成した後、銀電極の部分における黄変の発生を目視にて観察した。  A silver electrode is formed on a glass substrate (trade name “PD-200” manufactured by Asahi Glass Co., Ltd.), and a glass paste is screen-printed on this glass substrate, which is 5 ° C higher than the soft spot. After firing at temperature for 30 minutes, the occurrence of yellowing in the silver electrode portion was visually observed.
観察の結果、黄変が全く見られな力 たものを「〇」、僅かに黄変が観察されたもの を「△」、明らかに黄変が観察されたものを「X」として判定した。結果を、表 1、 2に併 せて示す。  As a result of the observation, a force with no yellowing was judged as “◯”, a slight yellowing was observed as “Δ”, and a clear yellowing was judged as “X”. The results are shown in Tables 1 and 2.
[表 1] [table 1]
Figure imgf000012_0001
Figure imgf000012_0001
[0027] [表 2] [0027] [Table 2]
Figure imgf000012_0002
Figure imgf000012_0002
[0028] この表から、酸化物換算の質量0 /0で、 SiO力 〜 30%、 B Oが 30〜60%、 Al O [0028] From this table, the mass 0/0 terms of oxides, SiO force ~ 30%, BO is 30 to 60%, Al O
2 2 3 2 3 力 Sl〜25%、 Li 0、 Na O及び K Oの何れ力 1種以上が合計 5〜20%、 MgO及び C aOの何れか 1種以上が合計 0. 1〜15%、 SrO及び BaOの何れか 1種以上が合計 0 . 1〜20%、し力も、 MgO、 CaO、 SrO及び BaOの合計が 0. 2〜25%で、 ZnOが 0 〜 15 %となる組成であることを特徴とする無鉛ガラス組成物は、ビスマスの使用量を 抑制させつつ(あるいは用いることなく)、 600°C以下の低い軟ィ匕点で、し力も、優れ た光透過率となることがわかる。 2 2 3 2 3 Force Sl ~ 25%, Li 0, Na O and KO any one or more total 5 ~ 20%, MgO and C Any one or more of aO is a total of 0.1 to 15%, and one or more of SrO and BaO is a total of 0.1 to 20%, and the total force of MgO, CaO, SrO and BaO is 0.2. A lead-free glass composition characterized by having a composition of ˜25% and ZnO of 0˜15% has a low softness of 600 ° C. or less while suppressing (or without using) bismuth. It can be seen that at the saddle point, the force is excellent in light transmittance.
さらに、 Li Oの含有量を X、 Na Oの含有量を X 、 K Oの含有量を Xとしたときに  Furthermore, when the Li O content is X, the Na O content is X, and the K 2 O content is X,
2 Li 2 Na 2 K 2 Li 2 Na 2 K
、Li O、Na O及びK Oが、(X +X ) ZX ≤ 1を満足させる組成比である場合 , Li 2 O, Na 2 O and K 2 O are in a composition ratio satisfying (X + X) ZX ≤ 1
2 2 2 Li Na K  2 2 2 Li Na K
には、黄変 (電極との反応)をより確実に抑制させることができ、無鉛ガラス組成物を Ρ DPの誘電体層の形成に好適なものとさせ得ることもわかる。 It can also be seen that yellowing (reaction with the electrode) can be more reliably suppressed, and that the lead-free glass composition can be made suitable for forming a dielectric layer of DP.

Claims

請求の範囲 The scope of the claims
[1] 酸化物換算の質量0 /0で、 SiO力 〜 30%、 B O力 0〜60%、 Al O力^〜 25% [1] in a weight 0/0 terms of oxides, SiO force ~ 30%, BO force 0 to 60%, Al O force ^ ~ 25%
2 2 3 2 3  2 2 3 2 3
、 Li 0、 Na O及び Κ Οの何れ力 1種以上が合計 5〜20%、 MgO及び CaOの何れ  , Li 0, Na O, and 力 何 れ Any one or more total 5 to 20%, MgO or CaO
2 2 2  2 2 2
力 1種以上が合計 0. 1〜15%、 SrO及び BaOの何れか 1種以上が合計 0. 1〜20% 、し力も、 MgO、 CaO、 SrO及び BaOの合計が 0. 2〜25%で、 ZnOが 0〜15%とな る組成であることを特徴とする無鉛ガラス組成物。  Force 1 or more types total 0.1 to 15%, SrO and BaO any one or more types total 0.1 to 20%, force also MgO, CaO, SrO and BaO total 0.2 to 25% A lead-free glass composition having a composition in which ZnO is 0 to 15%.
[2] 酸化物換算の質量%で、 Li Oの含有量を X、 Na Oの含有量を X 、 K Oの含有 [2] Oxygen equivalent mass%, Li O content X, Na O content X, K O content
2 Li 2 Na 2  2 Li 2 Na 2
量を Xとしたときに、 Li 0、 Na O及び Κ Ο力 下記式を満足させる組成比である請 When the amount is X, Li 0, Na O and Κ Repulsive force
Κ 2 2 2 Κ 2 2 2
求項 1記載の無鉛ガラス組成物。  The lead-free glass composition according to claim 1.
(X +Χ ) /Χ ≤ 1  (X + Χ) / Χ ≤ 1
Li Na K  Li Na K
[3] 酸ィ匕物換算の質量%で、さらに、 CuOを 0. 1〜1%含有する組成である請求項 1ま たは 2に記載の無鉛ガラス組成物。  [3] The lead-free glass composition according to [1] or [2], wherein the composition further contains 0.1 to 1% of CuO in mass% in terms of acid oxide.
[4] プラズマディスプレイパネルの誘電体層の形成に用いられるプラズマディスプレイ パネル誘電体層用無鉛ガラスであって、請求項 1乃至 3の何れかの無鉛ガラス組成 物が用いられて ヽることを特徴とするプラズマディスプレイパネル誘電体層用無鉛ガ ラス。 [4] A lead-free glass for a dielectric layer of a plasma display panel used for forming a dielectric layer of a plasma display panel, wherein the lead-free glass composition according to any one of claims 1 to 3 is used. Lead-free glass for dielectric layers of plasma display panels.
[5] プラズマディスプレイパネルの前面板の誘電体層の形成に用いられる請求項 4に 記載のプラズマディスプレイパネル誘電体層用無鉛ガラス。  5. The lead-free glass for a dielectric layer of a plasma display panel according to claim 4, which is used for forming a dielectric layer of a front plate of the plasma display panel.
PCT/JP2007/063159 2006-07-14 2007-06-29 Lead-free glass composition WO2008007570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-194452 2006-07-14
JP2006194452A JP2008019145A (en) 2006-07-14 2006-07-14 Lead-free glass composition

Publications (1)

Publication Number Publication Date
WO2008007570A1 true WO2008007570A1 (en) 2008-01-17

Family

ID=38923132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063159 WO2008007570A1 (en) 2006-07-14 2007-06-29 Lead-free glass composition

Country Status (2)

Country Link
JP (1) JP2008019145A (en)
WO (1) WO2008007570A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2589577A4 (en) * 2010-06-29 2014-04-16 Central Glass Co Ltd Low-melting-point glass composition and conductive paste material using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101309328B1 (en) 2009-12-28 2013-09-16 파나소닉 주식회사 Plasma display panel
WO2013176022A1 (en) 2012-05-25 2013-11-28 東レ株式会社 Partition paste, method for manufacturing member having partitions, and members having partition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192168A (en) * 1997-09-19 1999-04-06 Nippon Yamamura Glass Kk Glass composition for photosensitive glass paste
JP2000313635A (en) * 1999-04-26 2000-11-14 Nippon Electric Glass Co Ltd Material for plasma display panel
JP2001080934A (en) * 1999-09-07 2001-03-27 Nippon Electric Glass Co Ltd Material for plasma display panel and glass powder
JP2003192376A (en) * 2001-12-27 2003-07-09 Asahi Glass Co Ltd Low-melting glass, glass ceramic composition and plasma display panel back substrate
JP2006151763A (en) * 2004-11-30 2006-06-15 Central Glass Co Ltd Lead-free low melting glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192168A (en) * 1997-09-19 1999-04-06 Nippon Yamamura Glass Kk Glass composition for photosensitive glass paste
JP2000313635A (en) * 1999-04-26 2000-11-14 Nippon Electric Glass Co Ltd Material for plasma display panel
JP2001080934A (en) * 1999-09-07 2001-03-27 Nippon Electric Glass Co Ltd Material for plasma display panel and glass powder
JP2003192376A (en) * 2001-12-27 2003-07-09 Asahi Glass Co Ltd Low-melting glass, glass ceramic composition and plasma display panel back substrate
JP2006151763A (en) * 2004-11-30 2006-06-15 Central Glass Co Ltd Lead-free low melting glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2589577A4 (en) * 2010-06-29 2014-04-16 Central Glass Co Ltd Low-melting-point glass composition and conductive paste material using same
US8808582B2 (en) 2010-06-29 2014-08-19 Central Glass Company, Limited Low-melting-point glass composition and conductive paste material using same

Also Published As

Publication number Publication date
JP2008019145A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP5413562B2 (en) Sealing material
CN101376561B (en) Low-melting point lead-less glasses powder for frit slurry, and preparation and use thereof
US6355586B1 (en) Low melting point glass and glass ceramic composition
JP2995728B2 (en) Low dielectric constant glass composition
JP5212884B2 (en) Bismuth-based sealing material and bismuth-based paste material
WO2006068030A1 (en) Glass for coating electrode
JP2007039269A (en) Glass for covering electrode, and plasma display device
JP2008094705A (en) Sealing material
JP2005213103A (en) Sealing composition
JP4791746B2 (en) Lead-free borosilicate glass frit and its glass paste
JP2008030994A (en) Bismuth-based lead-free powdered glass
JP2007126319A (en) Bismuth-based lead-free glass composition
WO2008007570A1 (en) Lead-free glass composition
JP4324965B2 (en) Insulation material for display tube
JP2007246382A (en) Dielectric material for plasma display panel
WO2006132102A1 (en) Zinc phosphate based lead-free glass composition
JP2008308393A (en) Lead-free low softening point glass, lead-free low softening point glass composition, lead-free low softening point glass paste, and fluorescent display tube
JP2008088046A (en) Glass composition for forming supporting frame, and supporting frame forming material
KR20080044771A (en) Dielectric powder for display device
JP2009040676A (en) Process for producing electrode-formed glass substrate
JP2000264676A (en) Low melting point glass
JP2006182589A (en) Bismuth-based lead-free glass composition
WO2008007596A1 (en) Lead-free low-melting glass
JPWO2008117797A1 (en) Lead-free glass composition
KR100715968B1 (en) Non-Pb Borate glass composition with low melting point for plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767943

Country of ref document: EP

Kind code of ref document: A1