JPH1192168A - Glass composition for photosensitive glass paste - Google Patents

Glass composition for photosensitive glass paste

Info

Publication number
JPH1192168A
JPH1192168A JP27361097A JP27361097A JPH1192168A JP H1192168 A JPH1192168 A JP H1192168A JP 27361097 A JP27361097 A JP 27361097A JP 27361097 A JP27361097 A JP 27361097A JP H1192168 A JPH1192168 A JP H1192168A
Authority
JP
Japan
Prior art keywords
glass
photosensitive
weight
composition
sro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27361097A
Other languages
Japanese (ja)
Other versions
JP3696725B2 (en
Inventor
Toshio Eguchi
利雄 江口
Yoshinori Tanigami
嘉規 谷上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Yamamura Glass Co Ltd
Original Assignee
Nihon Yamamura Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co Ltd filed Critical Nihon Yamamura Glass Co Ltd
Priority to JP27361097A priority Critical patent/JP3696725B2/en
Publication of JPH1192168A publication Critical patent/JPH1192168A/en
Application granted granted Critical
Publication of JP3696725B2 publication Critical patent/JP3696725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a glass compsn. capable of preparing a photosensitive glass paste used for forming a high definition pattern such as barrier ribs in a plasma display panel or a plasma address liq. crystal display, not contg. high toxicity lead, capable of high definition working, less liable to gel and having a long pot life. SOLUTION: The glass compsn. has an oxide compsn. contg., by weight, 3-30% SiO2 , 5-25% Al2 O3 , 28-47% B2 O3 , 0-45% ZnO, 1-25% at least one of MgO and CaO, 1-20% at least one of SrO and BaO, (2%<= MgO+CaO+SrO+ BaO<=32%) and 1-13% at least one among Li2 O, Na2 O and K2 O, and has 70×10<-7> -85×10<-7> /K coefft. of thermal expansion and 450-530 deg.C glass transition temp.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主としてプラズマ
ディスプレイパネル(PDP)やプラズマアドレス液晶
ディスプレイ(PALCD)の製造やその他の電子回路
の製造等における高精細パターン形成に用いられる感光
性ガラスペースト用ガラス組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass for a photosensitive glass paste which is mainly used for forming a high-definition pattern in the production of a plasma display panel (PDP) or a plasma addressed liquid crystal display (PALCD) or other electronic circuits. Composition.

【0002】[0002]

【従来の技術】最近、ディスプレイや電子回路材料は高
精細化が進んでおり、その加工技術の高度化が求められ
ている。例えば将来の壁掛けテレビと目されるPDPに
おけるバリアリブの高精細化を見ると、通常幅約50μ
m、高さ約150 μm、ピッチは42インチVGAで約220
μmであり、これを形成する方法としては従来、厚膜印
刷法が用いられていた。この方法は、低融点鉛ガラスペ
ーストをガラス基板上に多数回印刷・乾燥を繰り返した
後焼成を行うものであるが、この方法で形成されたバリ
アリブは現状でも寸法精度に問題があり、今後予想され
る基板の大型化、バリアリブのアスペクト比(高さ/
幅)の増大には対応できない。厚膜印刷法に代わる新た
なバリアリブ形成法としてサンドブラスト法がある。こ
の方法は、リブ材を2〜3回塗布しその上にドライフィ
ルムレジストを貼り付けた後、露光、エッチングでリブ
となるところを残し、レジストが除去された部分の塗布
層をサンドブラストにより除去してリブの形状にした
後、500 ℃以上の温度で焼成するものである。この方法
では、レジスト膜をフォトリソグラフ法でパターニング
するため、形成されるバリアリブの寸法精度は厚膜印刷
法で形成されたものよりも良いが、1枚当たりのサンド
ブラスト時間が約10分間と長いため、他のバリアリブ形
成法に比べて生産性が悪いといった問題がある。また、
この方法でもバリアリブ材料には多くの場合低融点鉛ガ
ラスが用いられているため、サンドブラストで取り除い
たガラス粉末等の廃棄物の処理が煩雑になるといった問
題、サンドブラスト工程における研磨剤の飛散により作
業室内のクリーン度が低下するという問題がある。サン
ドブラスト法を使わない方法として感光性ドライフィル
ムレジストを用いるアディティブ法がある。これは、フ
ィルムを露光、エッチングして溝を作りそこへリブ材を
流し込んでリブを形成するものであるが、リブ材の流し
込みが困難であるという欠点がある。また、上記3種の
方法で使用されているバリアリブの材料は、上述の様に
殆どが低融点鉛ガラスであるが、この系のガラスを用い
た場合DC(直流)タイプのPDPでは電圧が印加され
るとガラス中の鉛が電極周辺に還元析出するという問題
が指摘されている。更に鉛系のガラスは環境保全、リサ
イクル等の観点からも好ましくなく、この系のガラスを
PDPのバリアリブ用ガラスとして用いること自体が問
題となっている。近年少ない工程で短時間に精度良くバ
リアリブを形成できる方法として、感光性を有するガラ
スペーストを用いるフォトリソグラフ法が開発されてい
るが、所望の高精細バリアリブを作製でき、且つ感光性
ガラスペーストのゲル化等の問題を起こさないガラス組
成は現在まで見出されていない。
2. Description of the Related Art In recent years, display and electronic circuit materials have been increasingly refined, and there is a demand for advanced processing techniques. For example, looking at the high definition of barrier ribs in PDPs, which are considered to be wall-mounted TVs in the future, the width is usually about 50μ.
m, height about 150 μm, pitch is about 220 for 42 inch VGA
μm, and a thick-film printing method has conventionally been used as a method for forming the thickness. According to this method, low-melting lead glass paste is repeatedly printed and dried on a glass substrate and fired after repeated printing.However, the barrier ribs formed by this method still have problems in dimensional accuracy at present and are expected in the future. Substrate size, barrier rib aspect ratio (height /
Width) cannot be accommodated. There is a sandblasting method as a new barrier rib forming method replacing the thick film printing method. According to this method, a rib material is applied two or three times, and a dry film resist is attached thereon, and then a portion where the rib is formed by exposure and etching is removed, and the coating layer where the resist is removed is removed by sandblasting. After firing into a rib shape, it is fired at a temperature of 500 ° C. or more. In this method, since the resist film is patterned by the photolithographic method, the dimensional accuracy of the formed barrier rib is better than that formed by the thick film printing method, but since the sandblasting time per sheet is as long as about 10 minutes. However, there is a problem that productivity is lower than other barrier rib forming methods. Also,
Even in this method, since low melting point lead glass is often used as a barrier rib material, the processing of waste such as glass powder removed by sand blasting becomes complicated, and the scattering of abrasive in the sand blasting process causes a problem in the work room. There is a problem that the degree of cleanliness is reduced. As a method not using the sandblasting method, there is an additive method using a photosensitive dry film resist. In this method, a film is exposed and etched to form a groove, and a rib material is poured into the groove to form a rib. However, there is a drawback that it is difficult to flow the rib material. As described above, most of the materials of the barrier ribs used in the above three methods are low melting point lead glass. However, when a glass of this type is used, a voltage is applied to a DC (direct current) type PDP. Then, it is pointed out that lead in the glass is reduced and precipitated around the electrode. Further, lead-based glass is not preferred from the viewpoint of environmental protection and recycling, and the use of this glass as a barrier rib glass for PDP itself has become a problem. In recent years, a photolithographic method using a photosensitive glass paste has been developed as a method for forming barrier ribs accurately in a short time with a small number of steps. However, a desired high-definition barrier rib can be produced and a gel of the photosensitive glass paste can be formed. A glass composition that does not cause problems such as conversion has not been found to date.

【0003】[0003]

【発明が解決しようとする課題】従って、バリアリブ等
の高精細なパターンを形成するのに、毒性の高い鉛成分
を含むことなく高精細な加工ができ、且つ容易にゲル化
を起こさずにポットライフの長い感光性ガラスペースト
を調製することができるガラス組成物が強く望まれてい
た。
Accordingly, in forming a high-definition pattern such as a barrier rib, a high-definition process can be performed without including a highly toxic lead component, and the pot can be easily formed without causing gelation. A glass composition capable of preparing a photosensitive glass paste having a long life has been strongly desired.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究を重ねた結果、感光性ガラスペー
ストを用いて安定して高精細な加工ができるガラス組成
物を見出し、本発明を完成するに至った。即ち、本発明
の感光性ガラスペースト用ガラス組成物は、酸化物の重
量%表示で、SiO2:3〜30%、Al2O3 :5〜25%、B
2O3:28〜47%、ZnO :0〜45%、MgO 及びCaO のうち
の少なくとも1種:1〜25%、SrO 及びBaO のうちの少
なくとも1種:1〜20%、但し、MgO 、CaO 、SrO 、Ba
O の合計:2〜32%、Li2O、Na2O及びK2O のうちの少な
くとも1種:1〜13%の組成を有し、熱膨張係数が70×
10-7/K〜85×10-7/K、ガラス転移点が450 〜530 ℃
であることを第1の特徴としている。また本発明の感光
性ガラスペースト用ガラス組成物は、酸化物の重量%表
示で、SiO2:5〜25%、Al2O3 :5〜23%、B2O3:30〜
45%、ZnO :0〜42%、MgO及びCaO のうちの少なくと
も1種:1〜15%、SrO 及びBaO のうちの少なくとも1
種:1〜10%、但し、MgO 、CaO 、SrO 、BaO の合計:
2〜20%、Li2O、Na2O及びK2O のうちの少なくとも1
種:3〜12%の組成を有し、熱膨張係数が72×10-7/K
〜80×10-7/K、ガラス転移点が470 〜510 ℃であるこ
とを第2の特徴としている。また、本発明の感光性ガラ
スペースト用ガラス組成物は、上記第2の特徴に加え
て、酸化物の重量%表示で、SiO2:10〜25%、Al2O3
10〜22%、B2O3:30〜40%、ZnO :1〜20%、MgO 及び
CaO のうちの少なくとも1種:5〜12%、SrO及びBaO
のうちの少なくとも1種:3〜7%、但し、MgO 、CaO
、SrO 、BaO の合計:8〜17%、Li2O、Na2O及びK2O
のうちの少なくとも1種:6〜10%の組成を有すること
を第3の特徴としている。また、本発明の感光性ガラス
ペースト用ガラス組成物は、上記第1〜3の何れかの特
徴に加えて、屈折率が1.5 〜1.7 であることを第4の特
徴としている。また、本発明の感光性ガラスペースト用
ガラス組成物は、上記第1〜4の何れかの特徴に加え
て、平均粒径(D50)が1.5 μm〜5μm、最大粒径が
50μm以下の粉末状であることを第5の特徴としてい
る。また、本発明の感光性ガラスペースト用ガラス組成
物は、上記第1〜5の何れかの特徴に加えて、プラズマ
ディスプレイパネル或いはプラズマアドレス液晶ディス
プレイのバリアリブ形成に用いることを第6の特徴とし
ている。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, have found a glass composition which can be stably processed with high precision using a photosensitive glass paste. The present invention has been completed. That is, in the glass composition for a photosensitive glass paste of the present invention, SiO 2 : 3 to 30%, Al 2 O 3 : 5 to 25%, B
2 O 3 : 28 to 47%, ZnO: 0 to 45%, at least one of MgO and CaO: 1 to 25%, at least one of SrO and BaO: 1 to 20%, provided that MgO, CaO, SrO, Ba
O Total: 2~32%, Li 2 O, Na 2 O and K 2 O at least one of: a 1 to 13% of the composition, the thermal expansion coefficient of 70 ×
10 -7 / K to 85 × 10 -7 / K, glass transition point 450 to 530 ° C
Is the first feature. In the glass composition for a photosensitive glass paste of the present invention, SiO 2 : 5 to 25%, Al 2 O 3 : 5 to 23%, and B 2 O 3 : 30 to 30% by weight of oxide.
45%, ZnO: 0 to 42%, at least one of MgO and CaO: 1 to 15%, at least one of SrO and BaO
Species: 1 to 10%, but the total of MgO, CaO, SrO, and BaO:
2~20%, Li 2 O, at least one of Na 2 O and K 2 O
Species: composition of 3-12%, coefficient of thermal expansion 72 × 10 -7 / K
The second feature is that the glass transition point is 47080 × 10 -7 / K and 470 to 510 ° C. Further, the glass composition for a photosensitive glass paste of the present invention has, in addition to the second feature, SiO 2 : 10 to 25% and Al 2 O 3 :
10~22%, B 2 O 3: 30~40%, ZnO: 1~20%, MgO and
At least one of CaO: 5-12%, SrO and BaO
At least one of the following: 3 to 7%, provided that MgO, CaO
, SrO, the sum of the BaO: 8~17%, Li 2 O , Na 2 O and K 2 O
At least one of them has a composition of 6 to 10% as a third feature. Further, the glass composition for a photosensitive glass paste of the present invention has, in addition to any one of the above-described first to third features, a fourth feature in that the refractive index is 1.5 to 1.7. In addition, the glass composition for a photosensitive glass paste of the present invention has an average particle diameter (D 50 ) of 1.5 μm to 5 μm and a maximum particle diameter in addition to any one of the above first to fourth features.
A fifth feature is that the powder is 50 μm or less. Further, the glass composition for a photosensitive glass paste of the present invention has a sixth feature in that it is used for forming a barrier rib of a plasma display panel or a plasma addressed liquid crystal display in addition to any one of the above first to fifth features. .

【0005】[0005]

【発明の実施の形態】本発明の感光性ガラスペースト用
ガラス組成物は、上記したような組成とすることで、ペ
ーストのゲル化を防止し、且つ高精細な加工ができる。
高精細な加工を行うためにはフォトリソグラフ法の露光
時、ペーストを構成する樹脂とガラスとの界面での光散
乱を防止し、光の透過率を増大させることが重要であ
る。ガラスの屈折率と感光性樹脂とのそれとを近似させ
ることでこの課題を達成できるが、本発明のガラス組成
とすることで感光性樹脂の屈折率に近い所望の屈折率が
得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The glass composition for a photosensitive glass paste of the present invention having the above-described composition prevents gelation of the paste and enables high-definition processing.
In order to perform high-definition processing, it is important to prevent light scattering at the interface between the resin and the glass constituting the paste and increase the light transmittance during exposure by the photolithographic method. This problem can be achieved by approximating the refractive index of the glass with that of the photosensitive resin. However, by using the glass composition of the present invention, a desired refractive index close to the refractive index of the photosensitive resin can be obtained.

【0006】先ず、好ましい感光性ガラスペーストを得
るための本発明のガラス組成の限定理由について説明す
る。SiO2は3〜30重量%とする。SiO2はガラスのネット
ワークフォーマーとして必須であると共に低屈折率化に
も有効である。3重量%未満ではガラス転移点、屈伏点
が下がり過ぎると共に熱膨張係数が大きくなり過ぎ、基
材に焼き付けた時にクラックを生じる恐れがある。ま
た、屈折率も大きくなり感光性樹脂との屈折率差が大き
くなることから、高精細な加工が困難になる。更に、ガ
ラスの化学的耐久性も悪くなる。逆に、SiO2が30重量%
を越えるとガラス転移点、屈伏点が上がり過ぎ、例えば
PDP製造の工程で採用されている600 ℃前後の温度で
はガラス基板に焼き付けるのが困難になる。SiO2はガラ
ス転移点、屈伏点、熱膨張係数、屈折率、化学的耐久性
等を考慮すると、5〜25重量%であることがより好まし
く、10〜25重量%であることが更に好ましい
First, the reason for limiting the glass composition of the present invention for obtaining a preferable photosensitive glass paste will be described. SiO 2 is 3 to 30% by weight. SiO 2 is indispensable as a glass network former and is also effective in lowering the refractive index. If it is less than 3% by weight, the glass transition point and the yield point are too low, and the coefficient of thermal expansion is too high, which may cause cracks when baked on a substrate. In addition, since the refractive index increases and the difference in refractive index from the photosensitive resin increases, high-definition processing becomes difficult. Further, the chemical durability of the glass is also deteriorated. Conversely, 30% by weight of SiO 2
If the temperature exceeds the limit, the glass transition point and the sagging point are too high. For example, it is difficult to print on a glass substrate at a temperature of about 600 ° C., which is employed in the PDP manufacturing process. In consideration of the glass transition point, the deformation point, the coefficient of thermal expansion, the refractive index, the chemical durability, and the like, SiO 2 is preferably 5 to 25% by weight, and more preferably 10 to 25% by weight.

【0007】Al2O3 は5〜25重量%とする。Al2O3 は含
有させることでガラス化範囲を広げてガラスを安定化す
る効果があるが、Al2O3 が5重量%未満、或いは25重量
%を越えると失透傾向が大きくなる。またAl2O3 が25重
量%を越えるとガラス転移点、屈伏点が上がり過ぎ、焼
き付けが困難になる。Al2O3 は安定したガラス製造、ガ
ラス転移点、屈伏点等を考慮すると5〜23重量%である
ことがより好ましく、10〜22重量%であることが更に好
ましい。
The content of Al 2 O 3 is 5 to 25% by weight. Although Al 2 O 3 has the effect of expanding the vitrification range and stabilizing the glass by containing Al 2 O 3 , if Al 2 O 3 is less than 5% by weight or exceeds 25% by weight, the tendency to devitrify increases. On the other hand, when the content of Al 2 O 3 exceeds 25% by weight, the glass transition point and the yield point are too high, and baking is difficult. Al 2 O 3 is preferably 5 to 23% by weight, more preferably 10 to 22% by weight in consideration of stable glass production, glass transition point, sag point, and the like.

【0008】B2O3は28〜47重量%とする。B2O3は鉛等の
重金属を含有しないガラスにおいては、低融化のために
必須の成分であると共に低屈折率化にも非常に有効な成
分である。B2O3が28重量%未満ではガラス転移点、屈伏
点が上がり過ぎ、600 ℃前後での温度では焼き付けが困
難になる。逆に、47重量%を越えるとガラスの化学的耐
久性が悪くなる恐れがある。B2O3は低融化、低屈折率
化、化学的耐久性等を考慮すると、30〜45重量%である
ことがより好ましく、30〜40重量%であることが更に好
ましい。
The content of B 2 O 3 is 28 to 47% by weight. B 2 O 3 is an essential component for lowering the melting of glass containing no heavy metal such as lead, and is also a very effective component for lowering the refractive index. If the content of B 2 O 3 is less than 28% by weight, the glass transition point and the yield point are too high, and baking at a temperature of about 600 ° C. becomes difficult. Conversely, if it exceeds 47% by weight, the chemical durability of the glass may be deteriorated. B 2 O 3 is more preferably 30 to 45% by weight, even more preferably 30 to 40% by weight in consideration of low melting, low refractive index, chemical durability and the like.

【0009】ZnO は0〜45重量%とする。ZnO はガラス
の熱膨張係数を大きく変化させることなく低融化させる
成分であるが、45重量%を越えると屈折率が大きくなり
過ぎ感光性樹脂との屈折率差が大きくなる恐れがある。
ZnO は、屈折率等を考慮すると0〜42重量%であること
がより好ましく、低融化、屈折率等を考慮すると1〜20
重量%であることが更に好ましい。
The content of ZnO is from 0 to 45% by weight. ZnO is a component that lowers the melting without significantly changing the thermal expansion coefficient of glass. However, if it exceeds 45% by weight, the refractive index becomes too large, and the refractive index difference from the photosensitive resin may increase.
ZnO is more preferably 0 to 42% by weight in consideration of the refractive index and the like, and 1 to 20% by weight in consideration of low melting, refractive index and the like.
More preferably, it is% by weight.

【0010】MgO 及びCaO はガラスの失透を抑制しガラ
ス化範囲を広げるために有効な成分であり、少なくとも
1種類を含有させることが必須である。MgO とCaO は合
計で1〜25重量%とする。MgO とCaO の合計量が1重量
%未満ではガラスが失透する恐れがある。逆に、この合
計が25重量%を越えるとガラスの化学的耐久性が悪くな
る恐れがある。MgO とCaO の合計量は、安定したガラス
製造、化学的耐久性等を考慮すると、1〜15重量%であ
ることがより好ましく、5〜12重量%であることが更に
好ましい。
[0010] MgO and CaO are effective components for suppressing the devitrification of glass and expanding the vitrification range, and it is essential that at least one of them is contained. MgO and CaO should be 1 to 25% by weight in total. If the total amount of MgO and CaO is less than 1% by weight, the glass may be devitrified. Conversely, if the total exceeds 25% by weight, the chemical durability of the glass may be deteriorated. The total amount of MgO and CaO is preferably 1 to 15% by weight, and more preferably 5 to 12% by weight in consideration of stable glass production, chemical durability and the like.

【0011】SrO 及びBaO はガラス化範囲を広げる効果
があると共にガラスの低融化、熱膨張係数の調整に有効
な成分であり、少なくとも1種を含有させることが必須
である。SrO とBaO は合計で1〜20重量%とする。SrO
とBaO の合計量が1重量%未満では低融化効果が不十分
になると共に失透傾向が大きくなる恐れがある。逆に、
この合計量が20重量%を越えると熱膨張係数が大きくな
り過ぎ、焼き付け時にクラックを生じる恐れがある。ま
た、屈折率も大きくなり過ぎ、感光性樹脂との屈折率差
が大きくなり好ましくない。更にガラスの化学的耐久性
も悪くなる恐れがある。SrO とBaO の合計量は、ガラス
の低融化、安定したガラス製造、熱膨張係数、屈折率、
化学的耐久性等を考慮すると1〜10重量%であることが
より好ましく、3〜7重量%であることが更に好まし
い。
SrO and BaO are components that have the effect of widening the vitrification range and are effective in lowering the glass melting temperature and adjusting the coefficient of thermal expansion. It is essential that at least one of them be contained. The total content of SrO and BaO is 1 to 20% by weight. SrO
If the total amount of BaO and BaO is less than 1% by weight, the effect of lowering melting may be insufficient and the tendency to devitrify may increase. vice versa,
If the total amount exceeds 20% by weight, the coefficient of thermal expansion becomes too large, and cracks may occur during baking. Further, the refractive index becomes too large, and the difference in refractive index from the photosensitive resin becomes large, which is not preferable. Further, the chemical durability of the glass may be deteriorated. The total amount of SrO and BaO depends on low melting of glass, stable glass production, coefficient of thermal expansion, refractive index,
In consideration of chemical durability and the like, the content is more preferably 1 to 10% by weight, and still more preferably 3 to 7% by weight.

【0012】更に、MgO 、CaO 、SrO 、BaO の合計量
は、安定したガラス製造、ガラス転移点、屈伏点、熱膨
張係数、屈折率、化学的耐久性等のバランスを考慮する
と、2〜32重量%とする必要があり、2〜20重量%とす
ることがより好ましく、8〜17重量%とすることが更に
好ましい。
Further, the total amount of MgO, CaO, SrO, and BaO is 2 to 32 in consideration of the balance of stable glass production, glass transition point, yield point, coefficient of thermal expansion, refractive index, chemical durability, and the like. %, More preferably 2 to 20% by weight, even more preferably 8 to 17% by weight.

【0013】Li2O、Na2O及びK2O はガラスの低融化に有
効な成分であり、少なくとも1種を含有させることが必
須である。Li2OとNa2OとK2O は合計で1〜13重量%とす
る。Li2O、Na2O、K2O の合計量が1重量%未満では低融
化の効果が不十分となる恐れがある。逆に、この合計量
が13重量%を越えるとガラスの化学的耐久性が悪くなる
と共に熱膨張係数が大きくなり過ぎる恐れがある。Li
2O、Na2O、K2O の合計量は、ガラスの低融化、化学的耐
久性、熱膨張係数等を考慮すると3〜12重量%であるこ
とがより好ましく、6〜10重量%であることが更に好ま
しい。尚、アルカリ種の選択に特に限定はないが、ガラ
スの低屈折率化、マイグレーションによる悪影響等を考
えた場合にはLi2Oを選択する方が有利である。
Li 2 O, Na 2 O and K 2 O are effective components for lowering the melting of glass, and it is essential to contain at least one of them. Li 2 O, Na 2 O and K 2 O are 1 to 13% by weight in total. If the total amount of Li 2 O, Na 2 O, and K 2 O is less than 1% by weight, the effect of low melting may be insufficient. On the other hand, if the total amount exceeds 13% by weight, the chemical durability of the glass is deteriorated and the coefficient of thermal expansion may be too large. Li
The total amount of 2 O, Na 2 O, and K 2 O is preferably 3 to 12% by weight, and more preferably 6 to 10% by weight in consideration of low melting of glass, chemical durability, coefficient of thermal expansion, and the like. It is even more preferred. Note that there is no particular limitation on the selection of the alkali species, but in view of lowering the refractive index of glass and adverse effects due to migration, it is more advantageous to select Li 2 O.

【0014】次にガラス物性の限定理由について説明す
る。ガラスの熱膨張係数は70×10-7/K〜85×10-7/K
とすることが必要である。熱膨張係数が70×10-7/K未
満或いは85×10-7/Kを越える場合には、通常用いられ
るソーダ石灰ガラス基板或いはPDP用の高歪点ガラス
基板等とのマッチングが悪く、反りが発生する恐れがあ
る。ガラスの熱膨張係数は72×10-7/K〜80×10-7/K
であることがより好ましい。
Next, the reasons for limiting the physical properties of glass will be described. Thermal expansion coefficient of the glass is 70 × 10 -7 / K~85 × 10 -7 / K
It is necessary to If the coefficient of thermal expansion is less than 70 × 10 -7 / K or exceeds 85 × 10 -7 / K, the matching with a soda-lime glass substrate or a high-strain-point glass substrate for PDP which is usually used is poor, and warpage is caused. May occur. Thermal expansion coefficient of the glass is 72 × 10 -7 / K~80 × 10 -7 / K
Is more preferable.

【0015】ガラス転移点は450 〜530 ℃とすることが
必要である。ガラス転移点が450 ℃未満では焼成温度が
低くなり過ぎ、他部材と同時焼成できなくなること、及
び焼成時の脱バインダー性が悪くなることで寸法精度を
悪化させたり、未分解有機成分の残存(残炭)による黒
化が起こる。またPDPにおいては、残炭により放電特
性に悪影響を及ぼす恐れがある。逆に、ガラス転移点が
530 ℃を越えると、PDPやPALCDの製造における
バリアリブ形成において、感光性ガラスペーストを用い
たパターン形成後におけるガラス基板への焼き付けの
際、前記PDPやPALCDの製造工程で採用されてい
る600 ℃前後の温度ではガラス基板に焼き付けられなく
なる恐れがある。ガラス転移点は、脱バインダー性、焼
付性等を考慮すると、470 〜510 ℃であることがより好
ましい。
It is necessary that the glass transition point be 450-530 ° C. If the glass transition point is lower than 450 ° C., the sintering temperature becomes too low, so that sintering cannot be performed simultaneously with other members, and the binder removal property during sintering deteriorates, thereby deteriorating dimensional accuracy and remaining undecomposed organic components ( Blackening due to residual coal) occurs. In PDP, residual charcoal may adversely affect discharge characteristics. Conversely, the glass transition point
If the temperature exceeds 530 ° C., when forming a barrier rib in the production of PDP or PALCD, when printing on a glass substrate after forming a pattern using a photosensitive glass paste, the temperature is about 600 ° C. which is employed in the production process of the PDP or PALCD. At such a temperature, it may not be possible to print on the glass substrate. The glass transition point is more preferably from 470 to 510 ° C. in consideration of the debinding property, baking property and the like.

【0016】また、請求項1〜3に記載の発明におい
て、ガラス組成物の屈折率は1.5 〜1.7 であることが好
ましい。共に用いられる一般的な感光性樹脂の屈折率が
1.4 〜1.7 であるので、ガラス組成物の屈折率を上記の
範囲とすることで、両者の屈折率差をフォトリソグラフ
法で問題とならない範囲まで小さくすることができる。
両者の屈折率差が大きいと光の散乱により高精細な加工
はできない。
Further, in the invention described in claims 1 to 3, it is preferable that the refractive index of the glass composition is 1.5 to 1.7. The refractive index of the common photosensitive resin used together is
Since the refractive index is 1.4 to 1.7, by setting the refractive index of the glass composition within the above range, the difference in refractive index between the two can be reduced to a range that does not cause a problem in the photolithographic method.
If the refractive index difference between the two is large, high-definition processing cannot be performed due to light scattering.

【0017】本発明のガラス組成物を用いた感光性ガラ
スペーストの調製は、主としてバインダーポリマー、光
重合性多官能モノマー(又はオリゴマー)、光重合開始
剤、その他の添加物からなるビヒクル中に本発明のガラ
ス組成物からなる粉末を均一分散させて行う。前記バイ
ンダーポリマーとしては、主成分であるメチルメタクリ
ラートと各種アクリラート、メタクリラート、アクリル
アミド、スチレン、アクリロニトリル等とアクリル酸、
メタクリル酸等との共重合体及びこれに更に各種不飽和
基を付加させたもの等が挙げられる。前記光重合性多官
能モノマー(又はオリゴマー)としては、トリメチロー
ルプロパントリ(メタ)アクリラート、ポリエチレング
リコールジ(メタ)アクリラート、ポリプロピレングリ
コールジ(メタ)アクリラート、ポリアルキレングリコ
ールジ(メタ)アクリラート、(ジ)ペンタエリスリト
ール(トリ〜ヘキサ)アクリラート等が挙げられる。こ
れら光重合性多官能モノマー(又はオリゴマー)は、1
種のみでは特性(感度、解像度、接着性、パターニング
性、現像性等)のバランスがとり難いため、2種以上を
混合して使用することが好ましい。光重合開始剤として
は、ベンゾフェノン系、チオキサントン系、アンスラキ
ノン系、アセトフェノン系、ベンゾインエーテル系等が
挙げられる。その他、感光性ガラスペーストの調製にお
いては、必要に応じて熱重合禁止剤、可塑剤、増粘剤、
増感剤、分散剤、溶剤等を添加物として加えることがで
きる。ここで本発明のガラス組成物からなる粉末の平均
粒径(D50)は1.5 μm〜5μm、最大粒径は50μm以
下とすることが好ましい。平均粒径が1.5 μm未満であ
る場合には、ペーストを作製する際、樹脂分が多く必要
となり、焼成前後での体積収縮が大きくなる結果、高精
細、高アスペクト比の加工が困難になる。逆に、5μm
を越えると相対的に大粒子が多くなり、その結果、タッ
ピング嵩密度も小さくなって高精細な加工が困難にな
る。また、最大粒径が50μmを越えると、微細な加工が
困難になり、例えばPDPの場合のバリアリブの幅を30
μm程度以下とすることが困難になる。ガラスの平均粒
径(D50)及び最大粒径は、それぞれ2〜3μm、30μ
m以下であることがより好ましい。ガラスの粒度分布と
しては、あまりシャープではなく、ある程度の分布を持
った粒度分布とする方がタッピング嵩密度が大きくな
り、よりガラスの詰まった構造となるため、露光時にお
いて下部まで光が到達しやすく、設計通りの加工ができ
る。例えば、D10=0.9 μm、D50=2.6 μm、D90
7.6 μm、最大粒径=22μmで良好な結果が得られてい
る。ガラス粉末の比表面積は粒度と密接な関係にある
が、1.5 〜3.0 m2 /gが好ましい。ガラス粉末の形状
については、ガラスを粉砕したままの状態でも球状化処
理したものでも何れでもよいが、より高精細な加工をす
るには、バーナー処理等で粉末を球状にした方が、光の
散乱が少なくなり、露光時に下部まで光が届くため、好
ましい。
The preparation of the photosensitive glass paste using the glass composition of the present invention is carried out mainly in a vehicle comprising a binder polymer, a photopolymerizable polyfunctional monomer (or oligomer), a photopolymerization initiator and other additives. This is carried out by uniformly dispersing the powder comprising the glass composition of the present invention. As the binder polymer, the main components methyl methacrylate and various acrylates, methacrylate, acrylamide, styrene, acrylonitrile and the like, acrylic acid,
Copolymers with methacrylic acid and the like, and those obtained by further adding various unsaturated groups thereto, and the like are included. Examples of the photopolymerizable polyfunctional monomer (or oligomer) include trimethylolpropane tri (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyalkylene glycol di (meth) acrylate, ) Pentaerythritol (tri-hexa) acrylate and the like. These photopolymerizable polyfunctional monomers (or oligomers) are
It is difficult to balance characteristics (sensitivity, resolution, adhesiveness, patterning properties, developability, etc.) with only the species, so it is preferable to use a mixture of two or more species. Examples of the photopolymerization initiator include benzophenone, thioxanthone, anthraquinone, acetophenone, and benzoin ether. In addition, in the preparation of the photosensitive glass paste, if necessary, thermal polymerization inhibitor, plasticizer, thickener,
Sensitizers, dispersants, solvents and the like can be added as additives. Here, it is preferable that the average particle diameter (D 50 ) of the powder comprising the glass composition of the present invention is 1.5 μm to 5 μm, and the maximum particle diameter is 50 μm or less. When the average particle size is less than 1.5 μm, a large amount of resin is required when preparing the paste, and the volume shrinkage before and after firing becomes large. As a result, high-definition and high-aspect ratio processing becomes difficult. Conversely, 5 μm
When the ratio exceeds, relatively large particles increase, and as a result, the tapping bulk density becomes small, and high-definition processing becomes difficult. On the other hand, if the maximum particle size exceeds 50 μm, fine processing becomes difficult.
It is difficult to reduce the thickness to about μm or less. The average particle size (D 50 ) and the maximum particle size of the glass are 2-3 μm and 30 μm, respectively.
m is more preferable. As the particle size distribution of the glass is not so sharp, a particle size distribution with a certain degree of distribution increases the tapping bulk density and makes the structure more clogged with glass, so that light reaches the lower part during exposure. Easy to process as designed. For example, D 10 = 0.9 μm, D 50 = 2.6 μm, D 90 =
Good results have been obtained with 7.6 μm and a maximum particle size of 22 μm. Although the specific surface area of the glass powder is closely related to the particle size, it is preferably 1.5 to 3.0 m 2 / g. Regarding the shape of the glass powder, any shape may be used as it is in a state in which the glass is pulverized or the glass is subjected to spheroidizing treatment. However, in order to perform higher-definition processing, it is better to make the powder spherical by burner treatment or the like. This is preferable because scattering is reduced and light reaches the lower portion during exposure.

【0018】上記した本発明のガラス組成物は、該ガラ
ス組成物を分散させた感光性ガラスペーストを用いるこ
とで、フォトリソグラフ法による高精細な加工を、鉛等
を含むことなく良好に行うことができるので、プラズマ
ディスプレイパネルやプラズマアドレス液晶ディスプレ
イ製造における高精細なバリアリブの形成に良好に用い
ることができる。また、その他の高精細のパターンを良
好に形成するための感光性ガラスペーストとして用いる
ことができる。
The above-mentioned glass composition of the present invention can perform high-definition processing by photolithography without using lead or the like by using a photosensitive glass paste in which the glass composition is dispersed. Therefore, it can be favorably used for forming a high-definition barrier rib in the production of a plasma display panel or a plasma addressed liquid crystal display. Further, it can be used as a photosensitive glass paste for favorably forming other high-definition patterns.

【0019】尚、本発明の感光性ガラスペースト用ガラ
ス組成物においては、熱膨張係数や電気特性等の微調
整、焼成前後での体積収縮の抑制、着色等の目的で、セ
ラミックス或いはガラス質のフィラー、有機系あるいは
無機系の各種顔料等を添加することも可能である。
In the glass composition for a photosensitive glass paste of the present invention, for the purpose of fine adjustment of the coefficient of thermal expansion and electric properties, suppression of volume shrinkage before and after firing, coloring, etc. It is also possible to add fillers, various organic or inorganic pigments, and the like.

【0020】[0020]

【実施例】以下に、実施例をあげて本発明を更に詳細に
説明するが、本発明はこれらの実施例により何ら限定さ
れるものではない。尚、実施例及び比較例において使用
した原料は、SiO2、Al(OH)3 、H3BO3 、ZnO 、Mg(O
H)2 、CaCO3 、SrCO3 、BaCO3 、Li2CO3、Na2CO3及びK2
CO3 である。また実施例及び比較例において、ガラス転
移点(Tg)、屈伏点(Mg)、熱膨張係数(α)、屈折
率、粒度(平均粒径、最大粒径)、焼付性、クラック及
び精細度は下記の方法により測定または評価した。 (1).ガラス転移点(Tg)、屈伏点(Mg) 粒度(表中において平均粒径と最大粒径で表現)を調整
したガラス粉末約50mgを白金セルに入れ、示差熱分析装
置(DTA)を用いて、アルミナ粉末を標準試料として
室温から20K/min で昇温して得られたDTA曲線よ
り、最初の吸熱の開始点(外挿点)の温度をガラス転移
点、その吸熱の極小値の温度を屈伏点とした。 (2).熱膨張係数(α) ガラスを直径約5mm、長さ15〜20mmのロッド状に加工
し、熱機械分析装置(TMA)を用い、石英ガラスを標
準試料とし室温から10K/min で昇温して得られた熱膨
張曲線より50〜400 ℃の平均値として求めた。 (3).屈折率 屈折率はヘリウムd線を光源とし、示差屈折率計を用い
るVブロック法により測定した。 (4).粒度(平均粒径(D50)、最大粒径(TOP )) ガラス粉末50〜100mg を水中で均一に分散させた後、レ
ーザー散乱式粒度分布測定機を用いて測定した。 (5).焼付性、クラック 粒度調整したガラス粉末を非感光性のビヒクル中に均一
分散させて作製したガラスペーストを、50mm×50mm×2.
8mmtの高歪点ガラス(旭ガラス株式会社製PD-200)基板
上にスクリーン印刷法にて40mm×40mmのベタパターンを
印刷・乾燥した後、空気中で580 〜610 ℃、30分間焼成
して得たサンプルを用いて評価を行った。焼付性は、ガ
ラス基板への融着の可否を目視して観察し評価した(表
中の○は融着可、×は融着不可)。クラックは光学顕微
鏡にてガラス膜を観察し、クラックの有無で評価した
(表中の○はクラックなし、×はクラックあり)。 (6).精細度 粒度調整したガラス粉末を、バインダーポリマーとして
のメチルメタクリラート、スチレン、メタクリル酸の共
重合体(40:30:30)に光重合性多官能モノマーとして
のトリメチロールプロパントリアクリラート、ポリエチ
レングリコールジメタクリラートと光重合開始剤として
のベンゾフェノンと溶剤としてのγ−ブチロラクトンと
を添加してなる感光性ビヒクル中に、均一分散させて作
製した感光性ガラスペーストを、300mm ×300mm ×2.8m
mtの高歪点ガラス(旭ガラス株式会社製PD-200)上にス
クリーン印刷法にて印刷・乾燥を行い、次いでフォトリ
ソグラフ法にてストライプ状に線幅約50μm、高さ約15
0 μm、ピッチ約220 μmのパターンを形成し、モノエ
タノールアミン水溶液に浸漬して現像したものを水洗、
乾燥した後、空気中にて580 〜610 ℃、30分間焼成して
得たサンプルを用いて評価を行った。精細度はパターン
の線幅、高さを光学顕微鏡による観察で評価し、線幅50
μm、高さ150 μmの両方が達成されたものを○、何れ
か一方が達成されたものを△とした。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. The raw materials used in Examples and Comparative Examples were SiO 2 , Al (OH) 3 , H 3 BO 3 , ZnO, Mg (O
H) 2, CaCO 3, SrCO 3, BaCO 3, Li 2 CO 3, Na 2 CO 3 and K 2
CO 3 . In Examples and Comparative Examples, the glass transition point (Tg), the yield point (Mg), the coefficient of thermal expansion (α), the refractive index, the particle size (average particle size, the maximum particle size), the seizure property, the crack and the definition were as follows. It was measured or evaluated by the following method. (1). Glass transition point (Tg), yield point (Mg) Approximately 50 mg of glass powder adjusted for particle size (expressed as average particle size and maximum particle size in the table) is placed in a platinum cell, and is measured using a differential thermal analyzer (DTA). From the DTA curve obtained by raising the temperature from room temperature to 20 K / min using alumina powder as a standard sample, the temperature at the start point (extrapolation point) of the first endotherm is defined as the glass transition point, and the temperature of the minimum value of the endotherm is defined as Yield point. (2). Coefficient of thermal expansion (α) Glass is processed into a rod shape with a diameter of about 5 mm and a length of 15 to 20 mm, and the temperature is raised from room temperature at 10 K / min using a quartz glass as a standard sample using a thermomechanical analyzer (TMA). The average value at 50 to 400 ° C. was obtained from the obtained thermal expansion curve. (3). Refractive index The refractive index was measured by a V-block method using a helium d line as a light source and a differential refractometer. (4). The particle size (average particle size (D 50), maximum particle diameter (TOP)) after the glass powder 50~100mg uniformly dispersed in water was measured using a laser scattering particle size distribution analyzer. (5). Baking properties, cracks A glass paste prepared by uniformly dispersing glass powder with adjusted particle size in a non-photosensitive vehicle is 50 mm × 50 mm × 2.
After printing and drying a 40mm x 40mm solid pattern on a 8mmt high strain point glass (Asahi Glass Co., Ltd. PD-200) substrate by screen printing method, bake in air at 580 ~ 610 ° C for 30 minutes. Evaluation was performed using the obtained sample. The seizure was evaluated by visually observing whether or not fusion to the glass substrate was possible (in the table, ○ indicates fusion was possible, and X indicates fusion was not possible). Cracks were observed by observing the glass film with an optical microscope, and evaluated by the presence or absence of cracks (in the table, o indicates no cracks, and x indicates cracks). (6). Fineness Particle size-adjusted glass powder is added to a copolymer of methyl methacrylate, styrene, and methacrylic acid (40:30:30) as a binder polymer, trimethylolpropane triacrylate as a photopolymerizable polyfunctional monomer, and polyethylene glycol. In a photosensitive vehicle obtained by adding dimethacrylate and benzophenone as a photopolymerization initiator and γ-butyrolactone as a solvent, a photosensitive glass paste prepared by uniformly dispersing, 300 mm × 300 mm × 2.8 m
Printed and dried on a mt high strain point glass (PD-200 manufactured by Asahi Glass Co., Ltd.) by screen printing, and then striped by photolithography to a line width of about 50 μm and a height of about 15 μm.
A pattern with 0 μm and pitch of about 220 μm was formed, washed with monoethanolamine aqueous solution and developed.
After drying, evaluation was performed using a sample obtained by firing in air at 580 to 610 ° C. for 30 minutes. The fineness is evaluated by observing the line width and height of the pattern with an optical microscope, and the line width 50
○ indicates that both the μm and 150 μm height were achieved, and Δ indicates that one of them was achieved.

【0021】実施例1 ガラス組成が、SiO2:20.3重量%、Al2O3 :22.7重量
%、B2O3:33.6重量%、ZnO :2.2 重量%、MgO :4.7
重量%、CaO :4.4 重量%、SrO :3.1 重量%、BaO :
2.5 重量%及びLi2O:6.5 重量%になるように各成分原
料を秤量、混合した。混合した原料を電気炉中の白金ル
ツボに投入して1200℃で2時間溶融し、均質になるよう
に攪拌した後、双ロールで急冷して粉末作製用のガラス
フレークを得ると共に、あらかじめ加熱しておいたホッ
トプレート上に流し出して熱膨張係数、屈折率測定用の
ガラスディスクを得た。ガラスフレークは粉砕・分級に
て粒度調整を行い、D50=2.8 μm、最大粒径=26.2μ
mのガラス粉末を得た。また、上述の方法で各物性を測
定した。実施例1の結果を表1に示す。
Example 1 Glass composition: SiO 2 : 20.3% by weight, Al 2 O 3 : 22.7% by weight, B 2 O 3 : 33.6% by weight, ZnO: 2.2% by weight, MgO: 4.7
Wt%, CaO: 4.4 wt%, SrO: 3.1 wt%, BaO:
Each component material was weighed and mixed so as to be 2.5% by weight and Li 2 O: 6.5% by weight. The mixed raw materials are put into a platinum crucible in an electric furnace, melted at 1200 ° C. for 2 hours, stirred to homogeneity, quenched with twin rolls to obtain glass flakes for powder production, and heated in advance. The glass plate was poured out on a hot plate, and a glass disk for measuring a coefficient of thermal expansion and a refractive index was obtained. The particle size of the glass flakes is adjusted by pulverization and classification. D 50 = 2.8 μm, maximum particle size = 26.2 μ
m of glass powder was obtained. Each physical property was measured by the method described above. Table 1 shows the results of Example 1.

【0022】[0022]

【表1】 [Table 1]

【0023】表1の実施例1に示す様に、ガラス転移点
(Tg)は499 ℃、屈伏点(Mg)は533 ℃、熱膨張係数
(α)は75×10-7/K、屈折率は1.55であった。この粉
末を用いて得られた感光性ガラスペーストは焼付性が良
好で、590 ℃で焼成されたガラス膜中にクラックはな
く、高精細な加工ができた。
As shown in Example 1 of Table 1, the glass transition point (Tg) is 499 ° C., the sag point (Mg) is 533 ° C., the coefficient of thermal expansion (α) is 75 × 10 −7 / K, and the refractive index is Was 1.55. The photosensitive glass paste obtained using this powder had good baking properties, and there was no crack in the glass film fired at 590 ° C., and high-definition processing could be performed.

【0024】実施例2〜15及び比較例1〜4 実施例1と同様に各成分原料を秤量、混合し、電気炉中
の白金ルツボに投入して1200〜1300℃で2時間溶融し、
更に実施例1と同様の方法でガラス粉末、測定用サンプ
ルを得た。実施例2〜15についての結果を表1に示す。
尚、実施例2においては、平均粒径(D50)と最大粒径
(TOP )との3種類の組み合わせにより、実施例2−1
と2−2と2−3のガラス粉末及び測定用サンプルを得
た。
Examples 2 to 15 and Comparative Examples 1 to 4 In the same manner as in Example 1, each component material was weighed and mixed, put into a platinum crucible in an electric furnace and melted at 1200 to 1300 ° C. for 2 hours.
Further, a glass powder and a sample for measurement were obtained in the same manner as in Example 1. Table 1 shows the results of Examples 2 to 15.
In Example 2, the combination of the average particle diameter (D 50 ) and the maximum particle diameter (TOP) was determined in Example 2-1.
And 2-2 and 2-3 glass powders and measurement samples were obtained.

【0025】また比較例についても各成分原料を、実施
例1の場合と同様にして、各成分原料を秤量、混合し、
電気炉中の白金ルツボに投入して1200〜1300℃で2時間
溶融し、更に実施例1と同様の方法でガラス粉末、測定
用サンプルを得た。比較例1〜4についての結果を表2
に示す。
Also, in the comparative example, each component material was weighed and mixed in the same manner as in Example 1,
It was put into a platinum crucible in an electric furnace and melted at 1200 to 1300 ° C. for 2 hours. Further, a glass powder and a measurement sample were obtained in the same manner as in Example 1. Table 2 shows the results of Comparative Examples 1 to 4.
Shown in

【0026】[0026]

【表2】 [Table 2]

【0027】実施例1〜15の本発明のガラス組成物は、
ガラス転移点が474 〜525 ℃、屈伏点が506 〜560 ℃、
熱膨張係数が70×10-7/K〜85×10-7/K、屈折率が1.
50〜1.62の範囲にあり、ソーダ石灰ガラス基板、PDP
用の高歪点ガラス基板とのマッチングが良く、フォトリ
ソグラフ法によるパターニング及び600 ℃前後の焼き付
けで安定して高精細な加工ができる。
The glass compositions of the present invention of Examples 1 to 15
Glass transition point 474-525 ° C, yield point 506-560 ° C,
Thermal expansion coefficient of 70 × 10 -7 / K~85 × 10 -7 / K, a refractive index of 1.
Soda-lime glass substrate, PDP in the range of 50 to 1.62
It has good matching with the high strain point glass substrate, and can perform stable and high-definition processing by patterning by photolithography and baking at around 600 ° C.

【0028】比較例1では、SiO2含有量が30重量%を越
えたため、ガラス転移点が541 ℃、屈伏点が597 ℃と高
く、熱膨張係数は61×10-7/Kと低くなり、ガラス基板
に焼き付けることができなかった。比較例2では、K2O
の含有量が13重量%を越えたため、熱膨張係数が118 ×
10-7/Kと高くなり、ガラス基板に焼き付けることはで
きるものの、ガラス膜中に無数のクラックが発生した比
較例3では、MgO 、CaO 、SrO 、BaO の合計量が32重量
%を越えたため、熱膨張係数が87×10-7/Kと高くな
り、比較例2と同様に、ガラス膜中にクラックが発生し
た。比較例4では、Al2O3 の含有量が25重量%を越えた
ため、ガラス作製中に失透した。
In Comparative Example 1, since the SiO 2 content exceeded 30% by weight, the glass transition point was as high as 541 ° C., the yield point was as high as 597 ° C., and the coefficient of thermal expansion was as low as 61 × 10 −7 / K. It could not be baked on a glass substrate. In Comparative Example 2, K 2 O
Content exceeds 13% by weight, the coefficient of thermal expansion is 118 ×
In Comparative Example 3, in which countless cracks occurred in the glass film, although the total amount of MgO, CaO, SrO, and BaO exceeded 32% by weight, although it was as high as 10 -7 / K and could be baked on a glass substrate. The thermal expansion coefficient was as high as 87 × 10 −7 / K, and cracks occurred in the glass film as in Comparative Example 2. In Comparative Example 4, since the content of Al 2 O 3 exceeded 25% by weight, devitrification occurred during glass production.

【0029】[0029]

【発明の効果】本発明は以上の構成及び作用からなり、
請求項1に記載の感光性ガラスペースト用ガラス組成物
によれば、鉛成分を含まない感光性ガラスペーストを調
製することができる。またこのガラス組成物を用いて得
られる感光性ガラスペーストはゲル化し難く、感光性ガ
ラスペーストのポットライフを長くすることができる。
またこのガラス組成物を用いることで、それが分散せら
れる感光性樹脂の屈折率との差を小さくすることがで
き、よってこのガラス組成物を分散させた感光性ガラス
ペーストを用いることで、フォトリソグラフ法による高
精細な加工を行うことが可能となる。また、このガラス
組成物は600 ℃前後の温度でのガラス基板等への焼き付
けが容易であるので、このガラス組成物を分散させた感
光性ガラスペーストを用いて、プラズマディスプレイパ
ネル(PDP)やプラズマアドレス液晶ディスプレイ
(PALCD)のバリアリブ作製工程等における好まし
い焼き付け温度である600 ℃付近での、ガラス基板への
焼き付けを、クラックの発生なく、高精細なパターン
で、容易に行うことができる。請求項2に記載の感光性
ガラスペースト用ガラス組成物によれば、上記した請求
項1の構成による効果を、一層良好に発揮することがで
きる。請求項3に記載の感光性ガラスペースト用ガラス
組成物によれば、請求項2に記載の構成による効果を、
更に一層良好に発揮することができる。請求項4に記載
の感光性ガラスペースト用ガラス組成物によれば、上記
請求項1〜3の何れかに記載の構成による効果に加え
て、ガラス組成物の屈折率要件を1.5 〜1.7 とすること
でで、ガラス組成物と感光性樹脂の屈折率との差を十分
に小さくすることができ、よってこのガラス組成物と感
光性樹脂とを用いた感光性ガラスペーストを用いること
で、フォトリソグラフ法による一層高精細な加工が可能
となる。請求項5に記載の感光性ガラスペースト用ガラ
ス組成物によれば、上記請求項1〜4の何れかに記載の
構成による効果に加えて、ガラス組成物はその平均粒径
(D50)を1.5 μm〜5μm、最大粒径を50μm以下の
粉末状とすることで、該ガラス組成物が分散する感光性
ガラスペーストの焼成時における体積収縮を小さく抑え
ることができ、またガラス組成物のタッピング嵩密度を
大きくでき、結果として、フォトリソグラフ法による一
層高精細な加工が可能となる。請求項6に記載の感光性
ガラスペースト用ガラス組成物によれば、上記請求項1
〜5の何れかに記載の構成による効果に加えて、請求項
1〜5の何れかに記載のガラス組成物を感光性ガラスペ
ーストとして、プラズマディスプレイパネル或いはプラ
ズマアドレス液晶ディスプレイのバリアリブ形成に用い
ると、フォトリソグラフ法による高精細なバリアリブの
形成が可能となる。
The present invention has the above configuration and operation,
According to the glass composition for a photosensitive glass paste according to the first aspect, a photosensitive glass paste containing no lead component can be prepared. Further, the photosensitive glass paste obtained by using this glass composition is unlikely to gel, and the pot life of the photosensitive glass paste can be extended.
In addition, by using this glass composition, the difference between the refractive index of the photosensitive resin in which the glass composition is dispersed and the refractive index of the photosensitive resin in which the glass composition is dispersed can be reduced. High-definition processing by the lithographic method can be performed. Further, since the glass composition can be easily baked on a glass substrate or the like at a temperature of about 600 ° C., a plasma display panel (PDP) or a plasma display panel (PDP) can be formed using a photosensitive glass paste in which the glass composition is dispersed. Baking on a glass substrate at around 600 ° C., which is a preferable baking temperature in a barrier rib manufacturing step of an address liquid crystal display (PALCD), can be easily performed with a high-definition pattern without generation of cracks. According to the glass composition for a photosensitive glass paste according to the second aspect, the effect of the configuration of the first aspect can be more favorably exhibited. According to the glass composition for a photosensitive glass paste of the third aspect, the effect of the configuration of the second aspect,
It can be exhibited even better. According to the glass composition for a photosensitive glass paste according to the fourth aspect, in addition to the effect of the configuration according to any one of the first to third aspects, the refractive index requirement of the glass composition is set to 1.5 to 1.7. Thereby, the difference between the refractive index of the glass composition and the refractive index of the photosensitive resin can be sufficiently reduced, and therefore, by using a photosensitive glass paste using the glass composition and the photosensitive resin, photolithography can be performed. Higher definition processing by the method becomes possible. According to the glass composition for a photosensitive glass paste according to the fifth aspect, in addition to the effect of the configuration according to any one of the first to fourth aspects, the glass composition has an average particle diameter (D 50 ). By making the powder form having a particle size of 1.5 μm to 5 μm and a maximum particle size of 50 μm or less, the volume shrinkage of the photosensitive glass paste in which the glass composition is dispersed during firing can be suppressed small, and the tapping volume of the glass composition can be reduced. The density can be increased, and as a result, higher-definition processing by the photolithographic method can be performed. According to the glass composition for a photosensitive glass paste according to the sixth aspect, the first aspect is provided.
The glass composition according to any one of claims 1 to 5 is used as a photosensitive glass paste for forming a barrier rib of a plasma display panel or a plasma addressed liquid crystal display, in addition to the effect of the configuration according to any one of claims 1 to 5. In addition, a high definition barrier rib can be formed by a photolithographic method.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 酸化物の重量%表示で、 SiO2 : 3〜30% Al2O3 : 5〜25% B2O3 : 28〜47% ZnO : 0〜45% MgO 及びCaO のうちの少なくとも1種: 1〜25% SrO 及びBaO のうちの少なくとも1種: 1〜20% 但し、MgO 、CaO 、SrO 、BaO の合計: 2〜32% Li2O、Na2O及びK2O のうちの少なくとも1種: 1〜13
% の組成を有し、熱膨張係数が70×10-7/K〜85×10-7
K、ガラス転移点が450〜530 ℃であることを特徴とす
る感光性ガラスペースト用ガラス組成物。
In claim 1 the weight% of oxides display, SiO 2: 3~30% Al 2 O 3: 5~25% B 2 O 3: 28~47% ZnO: of 0 to 45% MgO and CaO at least one: 1 to 25% SrO and BaO of the at least one: 1-20%, however, MgO, CaO, SrO, the sum of the BaO: 2~32% Li 2 O, Na 2 O and K 2 O At least one of them: 1 to 13
% And a coefficient of thermal expansion of 70 × 10 −7 / K to 85 × 10 −7 /
K. A glass composition for a photosensitive glass paste, which has a glass transition point of 450 to 530 ° C.
【請求項2】 酸化物の重量%表示で、 SiO2 : 5〜25% Al2O3 : 5〜23% B2O3 : 30〜45% ZnO : 0〜42% MgO 及びCaO のうちの少なくとも1種: 1〜15% SrO 及びBaO のうちの少なくとも1種: 1〜10% 但し、MgO 、CaO 、SrO 、BaO の合計: 2〜20% Li2O、Na2O及びK2O のうちの少なくとも1種: 3〜12
% の組成を有し、熱膨張係数が72×10-7/K〜80×10-7
K、ガラス転移点が470〜510 ℃であることを特徴とす
る感光性ガラスペースト用ガラス組成物。
In wherein weight percent on the oxide display, SiO 2: 5~25% Al 2 O 3: 5~23% B 2 O 3: 30~45% ZnO: of 0-42% MgO and CaO at least one: 1 to 15% SrO and BaO of the at least one: 1-10%, however, MgO, CaO, SrO, the sum of the BaO: 2~20% Li 2 O, Na 2 O and K 2 O At least one of them: 3-12
% And a coefficient of thermal expansion of 72 × 10 −7 / K to 80 × 10 −7 /
K. A glass composition for a photosensitive glass paste, which has a glass transition point of 470 to 510 ° C.
【請求項3】 酸化物の重量%表示で、 SiO2 : 10〜25% Al2O3 : 10〜22% B2O3 : 30〜40% ZnO : 1〜20% MgO 及びCaO のうちの少なくとも1種: 5〜12% SrO 及びBaO のうちの少なくとも1種: 3〜7% 但し、MgO 、CaO 、SrO 、BaO の合計: 8〜17% Li2O、Na2O及びK2O のうちの少なくとも1種: 6〜10
% の組成を有することを特徴とする請求項2に記載の感光
性ガラスペースト用ガラス組成物。
In 3. weight percent on the oxide display, SiO 2: 10~25% Al 2 O 3: 10~22% B 2 O 3: 30~40% ZnO: of 1 to 20% MgO and CaO at least one: 5 to 12% SrO and BaO of the at least one: 3-7%, however, MgO, CaO, SrO, the sum of the BaO: 8~17% Li 2 O, Na 2 O and K 2 O At least one of them: 6-10
3. The glass composition for a photosensitive glass paste according to claim 2, wherein the composition has a composition of 3%.
【請求項4】 屈折率が1.5 〜1.7 であることを特徴と
する請求項1〜3の何れかに記載の感光性ガラスペース
ト用ガラス組成物。
4. The glass composition for a photosensitive glass paste according to claim 1, having a refractive index of 1.5 to 1.7.
【請求項5】 平均粒径(D50)が1.5 μm〜5μm、
最大粒径が50μm以下の粉末状であることを特徴とする
請求項1〜4の何れかに記載の感光性ガラスペースト用
ガラス組成物。
5. An average particle size (D 50 ) of 1.5 μm to 5 μm,
The glass composition for a photosensitive glass paste according to any one of claims 1 to 4, wherein the glass composition is a powder having a maximum particle size of 50 µm or less.
【請求項6】 プラズマディスプレイパネル或いはプラ
ズマアドレス液晶ディスプレイのバリアリブ形成に用い
ることを特徴とする請求項1〜5の何れかに記載の感光
性ガラスペースト用ガラス組成物。
6. The glass composition for a photosensitive glass paste according to claim 1, which is used for forming a barrier rib of a plasma display panel or a plasma addressed liquid crystal display.
JP27361097A 1997-09-19 1997-09-19 Glass composition for photosensitive glass paste Expired - Fee Related JP3696725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27361097A JP3696725B2 (en) 1997-09-19 1997-09-19 Glass composition for photosensitive glass paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27361097A JP3696725B2 (en) 1997-09-19 1997-09-19 Glass composition for photosensitive glass paste

Publications (2)

Publication Number Publication Date
JPH1192168A true JPH1192168A (en) 1999-04-06
JP3696725B2 JP3696725B2 (en) 2005-09-21

Family

ID=17530155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27361097A Expired - Fee Related JP3696725B2 (en) 1997-09-19 1997-09-19 Glass composition for photosensitive glass paste

Country Status (1)

Country Link
JP (1) JP3696725B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417123B1 (en) * 2000-08-14 2002-07-09 Nippon Electric Glass Co., Ltd. Dielectric composition useful for light transparent layer in PDP
JP2002255585A (en) * 2001-03-01 2002-09-11 Hitachi Ltd Glass substrate for information recording disk and information recording disk using the glass substrate
JP2005314128A (en) * 2004-04-27 2005-11-10 Nippon Electric Glass Co Ltd Dielectric structure of plasma display panel
WO2006068030A1 (en) * 2004-12-21 2006-06-29 Asahi Glass Company, Limited Glass for coating electrode
JP2006206353A (en) * 2005-01-26 2006-08-10 Central Glass Co Ltd Lead-free low melting point glass
CN100334024C (en) * 2003-11-06 2007-08-29 旭硝子株式会社 Glass for forming barrier ribs and plasma displaying panel
WO2008007570A1 (en) * 2006-07-14 2008-01-17 Nihon Yamamura Glass Co., Ltd. Lead-free glass composition
KR100882769B1 (en) * 2006-09-20 2009-02-09 아사히 가라스 가부시키가이샤 Lead free glass for forming barrier rib, glass ceramics composition for forming barrier rib and plasma display panel
JPWO2008117797A1 (en) * 2007-03-27 2010-07-15 日本山村硝子株式会社 Lead-free glass composition
US7910507B2 (en) * 2006-12-28 2011-03-22 Central Glass Company, Limited Glass ceramic material for plasma display
US8183168B2 (en) 2007-07-13 2012-05-22 Asahi Glass Company, Limited Process for producing electrode-formed glass substrate
CN104803599A (en) * 2014-01-29 2015-07-29 Lg伊诺特有限公司 Glass composition for photo-conversion member and ceramic photo-conversion member using the same
CN104829129A (en) * 2014-02-10 2015-08-12 Lg伊诺特有限公司 Glass composition for high-reliability ceramic phoshpor plate and ceramic phosphor plate using the same
US20150284287A1 (en) * 2012-05-25 2015-10-08 Toray Industries, Inc. Barrier rib paste, method of manufacturing member including barrier rib, and member including barrier rib
JP2019127404A (en) * 2018-01-23 2019-08-01 Agc株式会社 Glass, method for producing glass, conductive paste, and solar cell

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417123B1 (en) * 2000-08-14 2002-07-09 Nippon Electric Glass Co., Ltd. Dielectric composition useful for light transparent layer in PDP
JP2002255585A (en) * 2001-03-01 2002-09-11 Hitachi Ltd Glass substrate for information recording disk and information recording disk using the glass substrate
US7326666B2 (en) * 2003-11-06 2008-02-05 Asahi Glass Company, Limited Glass for forming barrier ribs, and plasma display panel
CN100334024C (en) * 2003-11-06 2007-08-29 旭硝子株式会社 Glass for forming barrier ribs and plasma displaying panel
JP2005314128A (en) * 2004-04-27 2005-11-10 Nippon Electric Glass Co Ltd Dielectric structure of plasma display panel
WO2006068030A1 (en) * 2004-12-21 2006-06-29 Asahi Glass Company, Limited Glass for coating electrode
US7452607B2 (en) 2004-12-21 2008-11-18 Asahi Glass Company, Limited Glass for covering electrode
JP2006206353A (en) * 2005-01-26 2006-08-10 Central Glass Co Ltd Lead-free low melting point glass
WO2008007570A1 (en) * 2006-07-14 2008-01-17 Nihon Yamamura Glass Co., Ltd. Lead-free glass composition
KR100882769B1 (en) * 2006-09-20 2009-02-09 아사히 가라스 가부시키가이샤 Lead free glass for forming barrier rib, glass ceramics composition for forming barrier rib and plasma display panel
US7910507B2 (en) * 2006-12-28 2011-03-22 Central Glass Company, Limited Glass ceramic material for plasma display
JPWO2008117797A1 (en) * 2007-03-27 2010-07-15 日本山村硝子株式会社 Lead-free glass composition
US8183168B2 (en) 2007-07-13 2012-05-22 Asahi Glass Company, Limited Process for producing electrode-formed glass substrate
US20150284287A1 (en) * 2012-05-25 2015-10-08 Toray Industries, Inc. Barrier rib paste, method of manufacturing member including barrier rib, and member including barrier rib
US9481601B2 (en) * 2012-05-25 2016-11-01 Toray Industries, Inc. Barrier rib paste, method of manufacturing member including barrier rib, and member including barrier rib
CN104803599A (en) * 2014-01-29 2015-07-29 Lg伊诺特有限公司 Glass composition for photo-conversion member and ceramic photo-conversion member using the same
CN104829129A (en) * 2014-02-10 2015-08-12 Lg伊诺特有限公司 Glass composition for high-reliability ceramic phoshpor plate and ceramic phosphor plate using the same
CN104829129B (en) * 2014-02-10 2019-06-04 Lg伊诺特有限公司 Glass composition for high reliability ceramics phosphor plate and the ceramic phosphor plate using it
JP2019127404A (en) * 2018-01-23 2019-08-01 Agc株式会社 Glass, method for producing glass, conductive paste, and solar cell

Also Published As

Publication number Publication date
JP3696725B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
JPH1192168A (en) Glass composition for photosensitive glass paste
KR100522067B1 (en) Plasma Display and Method for Manufacturing The Same
KR101018602B1 (en) Lead-free bismuth glass
KR20050021240A (en) Photosensitive Conductive Composition and Plasma Display Panel
JP4369103B2 (en) Photosensitive conductive paste and plasma display panel formed with electrodes using the same
JPWO2007080904A1 (en) Photosensitive composition, display member and method for producing the same
JP2009544116A (en) Photosensitive conductive paste for electrode formation and electrode
KR20090053667A (en) Composition for fabricating the electrode comprising aluminium powder controlling the particle size distribution and size and electrode made by the same
JP2006313324A (en) Photosensitive thick-film dielectric paste composition and method for making insulating layer using same
JP5877750B2 (en) Alkali-free glass filler
JP4100591B2 (en) Lead-free glass powder and plasma display panel barrier rib composition
KR100874281B1 (en) Display apparatus and dielectric manufacturing method with dielectric and dielectric
TW561136B (en) Composition containing lead-oxide free glass powder of low softening point useful for barrier rib in PDP
JP2003048750A (en) Glass composition for forming partition of plasma display panel
JP2001130926A (en) Glass composition for forming partition wall of plasma display panel
KR100772653B1 (en) Photosensitivity lead free glass composition for barrier rib of plasma display panel and plasma display panel comprising barrier rib comprising same
JP2004277212A (en) Glass composition for forming partition wall of plasma display panel
JP5129217B2 (en) Partition material, partition formed using the partition material, and PDP having the partition
JP2011225439A (en) Lead-free glass composition
KR101174888B1 (en) Material for forming barrier ribs, barrier ribs formed using the material and PDP comprising the barrier ribs
JP2011093790A (en) Lead-free glass composition
JP3959811B2 (en) Method for manufacturing substrate for plasma display panel
KR100952750B1 (en) Lead free dielectric powder composition for display device and display device comprising same
JPWO2012132651A1 (en) Paste composition and method for producing plasma display
JP2014069985A (en) Lead-free glass composition for forming partition targeting plasma display

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050630

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees