WO2008007567A1 - Irrigation facility utilizing water channel - Google Patents

Irrigation facility utilizing water channel Download PDF

Info

Publication number
WO2008007567A1
WO2008007567A1 PCT/JP2007/063127 JP2007063127W WO2008007567A1 WO 2008007567 A1 WO2008007567 A1 WO 2008007567A1 JP 2007063127 W JP2007063127 W JP 2007063127W WO 2008007567 A1 WO2008007567 A1 WO 2008007567A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
weir
water channel
channel
facility
Prior art date
Application number
PCT/JP2007/063127
Other languages
French (fr)
Japanese (ja)
Inventor
Hajime Butsuhara
Akira Irie
Original Assignee
The Chugoku Electric Power Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Chugoku Electric Power Co., Inc. filed Critical The Chugoku Electric Power Co., Inc.
Priority to JP2008524758A priority Critical patent/JP5132558B2/en
Publication of WO2008007567A1 publication Critical patent/WO2008007567A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B13/00Irrigation ditches, i.e. gravity flow, open channel water distribution systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/16Fixed weirs; Superstructures or flash-boards therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/02Water-ways
    • E02B9/04Free-flow canals or flumes; Intakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/16Stators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Definitions

  • the present invention relates to a water utilization facility that uses a waterway that has a waterway force that is unlikely to overflow.
  • the top of the weir is designed to be high in order to improve water intake efficiency or power generation efficiency. For this reason, if a malfunction occurs in the water intake or generator, the amount of water that has been blocked increases and the water overflows the weir, making it easier for the water to overflow.
  • a discharge path 4 communicating with the generator 3 is provided near the bottom of the weir 1, and the generator 3 is operating normally. Occasionally, water flows out downstream of the weir 1 through the discharge channel 4. However, in the event of an emergency when the generator 3 is malfunctioning, water does not flow out of the discharge channel 4, and the water flow is blocked by the weir 1. Then, when the amount of water blocked increases, the water begins to overflow the weir 1. At this time, if the water depth h exceeding the weir 1 becomes high, water tends to overflow from the side wall 2 of the water channel 10.
  • the conventional water channel 10 is provided with the straight weir 1 and the overflow length of the weir 1 Because B is the shortest, the water depth h exceeding the weir 1 becomes high, and water easily overflows from the side wall 2 of the water channel 10! /.
  • the present invention has been made in view of the above problems, and an object of the present invention is to prevent water from overflowing when the water utilization facility malfunctions without installing special facilities.
  • the purpose is to provide water utilization facilities using waterways.
  • the present invention provides a water utilization facility that uses a water channel for providing water by providing a weir in the water channel, and the weir is provided so as to cross the water channel while being bent. It is characterized by that.
  • the planar shape of the weir is preferably a crank type, a concave type, a convex type, or a labyrinth type.
  • a hydroelectric power generation facility may be provided as the water utilization facility.
  • the overflow length of the weir becomes longer than in the case where a straight weir is provided in the water channel as in the prior art. Therefore, when the water depth over the weir becomes low, water overflows from the waterway. Therefore, it is possible to prevent water from overflowing from the waterway when water supply facilities are not in good condition.
  • FIG. 1A is an upper plan view schematically showing a weir plane shape force S-crank type hydroelectric power generation facility using a water channel in an embodiment of the present invention.
  • FIG. 1B is an upper plan view schematically showing a hydroelectric power generation facility using a water channel in an embodiment of the present invention and having a concave weir planar shape.
  • FIG. 1C is an upper plan view showing an outline of a hydroelectric power generation facility using a water channel in an embodiment of the present invention and having a convex weir planar shape.
  • FIG. 1D is an upper plan view showing an outline of a hydroelectric power generation facility using a water channel in an embodiment of the present invention and having a labyrinth-type weir planar shape.
  • FIG. 2 is a perspective view showing details of the hydroelectric power generation facility.
  • FIG. 3A is an upper plan view for explaining a conventional hydroelectric power generation facility.
  • FIG. 3B is a view taken along line V—V in FIG. 3A.
  • FIGS. 1A to 1D and FIG. 2 taking a hydroelectric power generation facility as an example of a water utilization facility.
  • 1A to 1D are upper plan views showing an outline of the hydroelectric power generation facility in the present embodiment
  • FIG. 2 is a perspective view showing details of the hydroelectric power generation facility.
  • the same or similar parts as those in FIGS. 3A and 3B are denoted by the same reference numerals, and only different parts are denoted by new reference numerals.
  • the hydroelectric power generation facilities 100a to 100d shown in FIGS. 1A to 1D are provided with weirs 11 to 14 having different planar shapes in the existing water channel 10, respectively, and generate electric power by using the water level difference generated thereby.
  • a discharge path 4 is provided near the bottom, and a generator 3 is provided via the discharge path 4.
  • Examples of the generator 3 include an underwater turbine generator manufactured by IMEL Industrial Co., Ltd.
  • the discharge channel 4 is connected to the weir 11.
  • the weirs 11 to 14 are provided so as to cross the water channel 10 while being bent, and the planar shapes thereof are a crank type (see FIGS. 1A and 2), a concave type (see FIG. 1B), and a convex type (see FIG. 1B). It is a labyrinth type (see Fig. 1D). More specifically, in the case of the crank type shown in FIGS. 1A and 2, the weir 11 is bent in the water channel 10 twice. On the other hand, in the case of the concave type or convex type shown in FIGS. 1B and 1C, each is configured so as to be convex toward the downstream side or the upstream side of the water channel 10, both of which are located at the lowest in the water channel 10.
  • the inside of the water channel 10 is bent at least once and configured in a W shape.
  • the configuration of the weir is not limited to that shown in FIGS. 1A to 1D. In short, it is sufficient that the weir is provided so as to cross the water channel while being bent. Further, the direction of the drainage channel 4 is not limited to that shown in FIGS. 1A to 1D, and can be set as appropriate.
  • the linear weir 1 (conventional technology) is provided in the same water channel 10. Compared to the case where the weirs are provided (see Fig. 3A, Fig. 3B), the overflow length B of each weir 11-14
  • the discharge path 4 communicating with the generator 3 is provided near the bottom of the weir 1 as described above.
  • the water flows out to the downstream side of the weir 1 through the discharge channel 4.
  • the water does not flow out of the discharge channel 4, and the water flow is blocked by the weir 1.
  • the water begins to overflow the weir 1.
  • Q CBh, where Q is the overflow rate of water flowing over weirs 11-14, B is the overflow length of weirs 11-14, and h is the water depth exceeding weirs 11-14
  • Depth h decreases.
  • Water depth h force S Increase overflow length B so that it is less than this value. In case of power, even if it flows through channel 10
  • the water flowing through the water channel 10 flows downstream while being narrowed by the side wall surfaces of the bending weirs 11 to 14 (see arrows in FIGS. 1A to 1D). Therefore, compared to the case where the straight weir 1 (see Fig. 2) is provided in the same water channel 10, each of the weirs 11 to 14 has a portion where the water level difference becomes large. Therefore, it is also possible to improve the power generation efficiency by providing the generator 3 at each of the weirs 11-14.
  • the water utilization equipment of the present invention is not limited to the above-described hydroelectric power generation equipment, but of course includes water intake equipment provided with a water intake pump in place of the generator 3 and the discharge passage 4. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Hydraulic Turbines (AREA)

Abstract

[PROBLEMS] To prevent water from overflowing out of a water channel in an irrigation facility without installation of a special apparatus when the irrigation facility is disordered. [MEANS FOR SOLVING THE PROBLEMS] In hydraulic power generation apparatuses (100a to 100d) utilizing the water channel (10), weirs (11 to 14) are so provided as to extend transversely while bending in the water channel (10).

Description

明 細 書  Specification
水路を利用した利水設備  Water utilization facilities using waterways
技術分野  Technical field
[0001] 本発明は、水路力も水が溢れにくい水路を利用した利水設備に関する。  TECHNICAL FIELD [0001] The present invention relates to a water utilization facility that uses a waterway that has a waterway force that is unlikely to overflow.
背景技術  Background art
[0002] 近年、水路 (例えば、既設の農業用水路や灌漑用水路)を利用して、取水や発電な どの利水を行う利水設備があり、例えば、水路に堰を設けて水位を上昇させてから取 水を行い、或いは堰を設けて生じた水位差を利用して発電を行うものがある。かかる 利水設備にあっては、従来、図 3A,図 3Bに示す如ぐ水路 10を横断するように直線 状の堰 1を設けていた。  [0002] In recent years, there are water utilization facilities that use waterways (for example, existing agricultural waterways and irrigation waterways) to use water such as water intake and power generation. There is one that generates water by using water or using a water level difference generated by providing a weir. In such water utilization facilities, a linear weir 1 has been provided so as to cross the water channel 10 as shown in FIGS. 3A and 3B.
[0003] なお、これに関連する先行文献として、特開 2003— 269315号公報、特開 2005  [0003] As related documents related to this, JP 2003-269315 A, JP 2005
- 320883号公報など力ある。  -There is power, such as 320883 gazette.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、上記の水路を利用した利水設備では、取水効率若しくは発電効率を向上 させるために堰の天端が高く設計されている。そのため、取水機や発電機などに不 調が生じると、堰き止められた水量が増大して水が堰を越流し、水路から水が溢れや すくなる。特に、従来の利水設備の如く水路に直線状の堰を設けた場合には、堰の 越流長が短いので、堰を越える水深が高くなり(越流長 Bと水深 hとの関係は、図 3A ,図 3B及び後述の関係式: Q = CBh3/2を参照)、水路力も水が溢れやすい。 [0004] By the way, in the water utilization facility using the above-mentioned water channel, the top of the weir is designed to be high in order to improve water intake efficiency or power generation efficiency. For this reason, if a malfunction occurs in the water intake or generator, the amount of water that has been blocked increases and the water overflows the weir, making it easier for the water to overflow. In particular, when a straight weir is installed in the waterway as in the conventional water utilization equipment, the overflow length of the weir is short, so the water depth beyond the weir increases (the relationship between overflow length B and water depth h is 3A and 3B and the relational expression described later: Q = CBh 3/2 ), and the waterway force is likely to overflow.
[0005] 例えば、図 3A,図 3Bに示す利水設備において、堰 1の底部付近には、発電機 3に 連通する排出路 4が設けられており、発電機 3が順調に作動している通常時には、こ の排出路 4を介して水が堰 1の下流側に流出するようになっている。しかし、発電機 3 が不調となった非常時には、排出路 4から水が流出せず、水の流れが堰 1で堰き止 められる。そして、堰き止められた水量が増大すると、水が堰 1を越流し始める。その 際、堰 1を越える水深 hが高くなつてしまうと、水路 10の側壁 2から水が溢れやすくな る。そして、上記の通り、従来の水路 10には直線状の堰 1が設けられ、堰 1の越流長 Bが最短となっているため、堰 1を越える水深 hが高くなつて、水路 10の側壁 2などか ら水が溢れやす!/、のである。 [0005] For example, in the water utilization facilities shown in FIGS. 3A and 3B, a discharge path 4 communicating with the generator 3 is provided near the bottom of the weir 1, and the generator 3 is operating normally. Occasionally, water flows out downstream of the weir 1 through the discharge channel 4. However, in the event of an emergency when the generator 3 is malfunctioning, water does not flow out of the discharge channel 4, and the water flow is blocked by the weir 1. Then, when the amount of water blocked increases, the water begins to overflow the weir 1. At this time, if the water depth h exceeding the weir 1 becomes high, water tends to overflow from the side wall 2 of the water channel 10. As described above, the conventional water channel 10 is provided with the straight weir 1 and the overflow length of the weir 1 Because B is the shortest, the water depth h exceeding the weir 1 becomes high, and water easily overflows from the side wall 2 of the water channel 10! /.
[0006] そこで、力かる従来の利水設備においては、水路 10から水が溢れるのを防止すベ ぐ水路 10の側壁 2を嵩上げしたり、或いは堰 1にゲートを設けるなど、特別の設備を 別途設けていた。しかし、そのような設備を設けると、コスト増を招いてしまう。また、た とえゲートなどの設備を設けたとしても、設備操作の対応が遅れたり、或いは設備不 調の場合も懸念され、水路 10から水が溢れる可能性を排除できない。 [0006] Therefore, in the conventional water use facilities that are powerful, special facilities such as raising the side wall 2 of the water channel 10 to prevent the water from overflowing from the water channel 10 or providing a gate in the weir 1 are separately provided. It was provided. However, providing such equipment increases the cost. Moreover, even if facilities such as gates are provided, there is a concern that the response to facility operations may be delayed or that facilities may be malfunctioning, and the possibility of water overflowing from the channel 10 cannot be excluded.
[0007] 本発明は、上記の問題に鑑みてなされたものであり、その目的は、特別の設備を設 置することなぐ利水設備の不調時に水路力 水が溢れるのを防止することが可能な 水路を利用した利水設備を提供することにある。 [0007] The present invention has been made in view of the above problems, and an object of the present invention is to prevent water from overflowing when the water utilization facility malfunctions without installing special facilities. The purpose is to provide water utilization facilities using waterways.
課題を解決するための手段  Means for solving the problem
[0008] 上記課題を解決するために、本発明は、水路に堰を設けて利水を行う水路を利用 した利水設備であって、前記堰は、前記水路内を屈曲しながら横断するように設けら れていることを特徴とする。 [0008] In order to solve the above-described problem, the present invention provides a water utilization facility that uses a water channel for providing water by providing a weir in the water channel, and the weir is provided so as to cross the water channel while being bent. It is characterized by that.
[0009] 前記堰の平面形状は、クランク型、凹型、凸型、ラビリンス型の 、ずれかであること が好ましい。また、前記利水設備として、例えば水力発電設備を設けてもよい。 [0009] The planar shape of the weir is preferably a crank type, a concave type, a convex type, or a labyrinth type. Further, as the water utilization facility, for example, a hydroelectric power generation facility may be provided.
[0010] 以上の構成によれば、従来の如く水路に直線状の堰を設けた場合と比べると、堰 の越流長が長くなる。そのため、堰を越える水深が低くなつて、水路から水が溢れに 《なる。従って、特別の設備を設置することなぐ利水設備の不調時に水路から水が 溢れるのを防止することが可能となる。 [0010] According to the configuration described above, the overflow length of the weir becomes longer than in the case where a straight weir is provided in the water channel as in the prior art. Therefore, when the water depth over the weir becomes low, water overflows from the waterway. Therefore, it is possible to prevent water from overflowing from the waterway when water supply facilities are not in good condition.
[0011] 関連文献とのクロスリファレンス  [0011] Cross-reference with related literature
本願は、 2006年 7月 13日付けで出願した日本国特願 2006— 193056号に基づ く優先権を主張する。この文献を本明細書に援用する。  This application claims priority based on Japanese Patent Application No. 2006-193056 filed on July 13, 2006. This document is incorporated herein by reference.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1A]本発明の実施形態における水路を利用した、堰の平面形状力 Sクランク型の水 力発電設備の概略を示す上方平面図である。  FIG. 1A is an upper plan view schematically showing a weir plane shape force S-crank type hydroelectric power generation facility using a water channel in an embodiment of the present invention.
[図 1B]本発明の実施形態における水路を利用した、堰の平面形状が凹型の水力発 電設備の概略を示す上方平面図である。 [図 1C]本発明の実施形態における水路を利用した、堰の平面形状が凸型の水力発 電設備の概略を示す上方平面図である。 FIG. 1B is an upper plan view schematically showing a hydroelectric power generation facility using a water channel in an embodiment of the present invention and having a concave weir planar shape. FIG. 1C is an upper plan view showing an outline of a hydroelectric power generation facility using a water channel in an embodiment of the present invention and having a convex weir planar shape.
[図 1D]本発明の実施形態における水路を利用した、堰の平面形状がラビリンス型の 水力発電設備の概略を示す上方平面図である。  FIG. 1D is an upper plan view showing an outline of a hydroelectric power generation facility using a water channel in an embodiment of the present invention and having a labyrinth-type weir planar shape.
[図 2]水力発電設備の詳細を示す斜視図である。  FIG. 2 is a perspective view showing details of the hydroelectric power generation facility.
[図 3A]従来技術における水力発電設備を説明するための上方平面図である。  FIG. 3A is an upper plan view for explaining a conventional hydroelectric power generation facility.
[図 3B]図 3Aの V— V線矢視図である。  FIG. 3B is a view taken along line V—V in FIG. 3A.
符号の説明  Explanation of symbols
[0013] 1、 11〜14 堰 [0013] 1, 11-14 Weir
2 側壁  2 Side wall
3 発電機  3 Generator
4 排出路  4 Discharge channel
10 水路  10 waterway
100 水力発電設備  100 Hydropower generation facilities
Q 堰を越えて流れる水の越流量  Q Overflow rate of water flowing over the weir
B 堰の越流長  B Weir overflow length
h 堰を越える水深  h Water depth over the weir
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、図 1A〜図 1D及び図 2を参照しつつ、利水設備として水力発電設備を例に 挙げながら本発明の実施形態について説明する。図 1A〜図 1Dは本実施形態にお ける水力発電設備の概略を示す上方平面図、図 2は水力発電設備の詳細を示す斜 視図である。なお、図 1A〜図 1D及び図 2において、図 3A,図 3Bと同一若しくは類 似の箇所には同一の符号を付し、異なる箇所にのみ新たな符号を付している。  Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1A to 1D and FIG. 2, taking a hydroelectric power generation facility as an example of a water utilization facility. 1A to 1D are upper plan views showing an outline of the hydroelectric power generation facility in the present embodiment, and FIG. 2 is a perspective view showing details of the hydroelectric power generation facility. In FIGS. 1A to 1D and FIG. 2, the same or similar parts as those in FIGS. 3A and 3B are denoted by the same reference numerals, and only different parts are denoted by new reference numerals.
[0015] 図 1A〜図 1Dに示す水力発電設備 100a〜100dは、既設の水路 10にそれぞれ平 面形状の異なる堰 11〜14を設け、これによつて生じた水位差を利用して発電を行う 設備であり、各堰 11〜14には底部付近に排出路 4が設けられ、さらにこの排出路 4 を介して発電機 3が設けられている。発電機 3としては、例えば、ィームル工業株式会 社製の水中タービン発電機が挙げられる。なお、図 2の例では、排出路 4を堰 11と一 体にコンクリートで構築し、排出路 4の排出口 4aとは反対側の端部に発電機 3を設置 することで、堰 11、排出路 4、及び発電機 3を一体にユニット化した構成としている。 [0015] The hydroelectric power generation facilities 100a to 100d shown in FIGS. 1A to 1D are provided with weirs 11 to 14 having different planar shapes in the existing water channel 10, respectively, and generate electric power by using the water level difference generated thereby. In each of the weirs 11 to 14, a discharge path 4 is provided near the bottom, and a generator 3 is provided via the discharge path 4. Examples of the generator 3 include an underwater turbine generator manufactured by IMEL Industrial Co., Ltd. In the example of Fig. 2, the discharge channel 4 is connected to the weir 11. By constructing the body with concrete and installing the generator 3 at the end of the discharge channel 4 opposite to the discharge port 4a, the weir 11, the discharge channel 4, and the generator 3 are integrated into a unit. Yes.
[0016] 堰 11〜14は、水路 10内を屈曲しながら横断するように設けられ、その平面形状は 、それぞれクランク型(図 1A及び図 2参照)、凹型(図 1B参照)、凸型(図 1C参照)、 ラビリンス型(図 1D参照)である。より具体的には、図 1A及び図 2に示すクランク型の 場合、堰 11は水路 10内を 2回屈曲している。一方、図 1B及び図 1Cに示す凹型若し くは凸型の場合には、それぞれ水路 10の下流側若しくは上流側に向けて凸となるよ うに構成されており、いずれも水路 10内を最低 4回以上屈曲している。また、図 1Dに 示すラビリンス型の場合には、水路 10内を最低 1回以上屈曲し W字状に構成されて いる。ただし、本発明において、堰の構成は図 1A〜図 1Dに示すものに限らず、要 するに、堰が水路内を屈曲しながら横断するように設けられていればよい。また、排 水路 4の向きも図 1A〜図 1Dに示すものに限らず、適宜設定することが可能である。  [0016] The weirs 11 to 14 are provided so as to cross the water channel 10 while being bent, and the planar shapes thereof are a crank type (see FIGS. 1A and 2), a concave type (see FIG. 1B), and a convex type (see FIG. 1B). It is a labyrinth type (see Fig. 1D). More specifically, in the case of the crank type shown in FIGS. 1A and 2, the weir 11 is bent in the water channel 10 twice. On the other hand, in the case of the concave type or convex type shown in FIGS. 1B and 1C, each is configured so as to be convex toward the downstream side or the upstream side of the water channel 10, both of which are located at the lowest in the water channel 10. Bent more than 4 times. In the case of the labyrinth type shown in FIG. 1D, the inside of the water channel 10 is bent at least once and configured in a W shape. However, in the present invention, the configuration of the weir is not limited to that shown in FIGS. 1A to 1D. In short, it is sufficient that the weir is provided so as to cross the water channel while being bent. Further, the direction of the drainage channel 4 is not limited to that shown in FIGS. 1A to 1D, and can be set as appropriate.
[0017] 以上のように、堰 11〜14は、いずれの場合にも水路 10内を屈曲しながら横断する ように設けられているので、同一の水路 10に直線状の堰 1 (従来技術の図 3A,図 3B 参照)を設けた場合と比べると、各堰 11〜14の越流長 B  [0017] As described above, since the weirs 11 to 14 are provided so as to cross the water channel 10 while being bent in any case, the linear weir 1 (conventional technology) is provided in the same water channel 10. Compared to the case where the weirs are provided (see Fig. 3A, Fig. 3B), the overflow length B of each weir 11-14
a〜dが長くなる。そのため、発 電機 3が不調となった非常時においても、従来の場合と比べると、堰 11〜14を越え る水深 hが低くなり、水路 10から水が溢れにくくなる。  a to d become longer. Therefore, even in an emergency when the generator 3 is malfunctioning, the water depth h exceeding the weirs 11 to 14 is lower than in the conventional case, and water does not easily overflow from the water channel 10.
[0018] すなわち、図 1A〜図 1D及び図 2に示す水力発電設備において、堰 1の底部付近 には、前述したように発電機 3に連通する排出路 4が設けられており、発電機 3が順 調に作動している通常時には、この排出路 4を介して水が堰 1の下流側に流出するよ うになつている。しかし、発電機 3が不調となった非常時には、排出路 4から水が流出 せず、水の流れが堰 1で堰き止められる。そして、堰き止められた水量が増大すると、 水が堰 1を越流し始める。その際、堰 11〜14を越えて流れる水の越流量を Qとし、堰 11〜14の越流長を B 、堰 11〜14を越える水深を hとすると、一般的に、 Q = CBh That is, in the hydroelectric power generation facilities shown in FIGS. 1A to 1D and FIG. 2, the discharge path 4 communicating with the generator 3 is provided near the bottom of the weir 1 as described above. During normal operation, the water flows out to the downstream side of the weir 1 through the discharge channel 4. However, in the event of an emergency when the generator 3 is malfunctioning, water does not flow out of the discharge channel 4, and the water flow is blocked by the weir 1. And when the amount of water blocked is increased, the water begins to overflow the weir 1. In that case, Q = CBh, where Q is the overflow rate of water flowing over weirs 11-14, B is the overflow length of weirs 11-14, and h is the water depth exceeding weirs 11-14
a〜d  a-d
3/2 (Cは定数;約 1. 84)の関係にある(図 3B参照)。力かる関係式において、越流量 Qが一定の場合、上記のように越流長 B を長くしたときには、堰 11〜14を越える水 3/2 (C is a constant; approximately 1.84) (see Figure 3B). In the relational expression, if the overflow rate Q is constant and the overflow length B is increased as described above, the water exceeding the weirs 11-14
a〜d  a-d
深 hが低くなる。そして、水深 hが低くなると、水路 10の側壁 2など力も水が溢れに《 なる(図 3B参照)。 [0019] そこで、本実施形態では、側壁 2の高さと堰 11〜14を越える水の高さとの差(=タリ ァランス)が十分に確保されるように水深 hの最大値を設定し、次いで水深 h力 Sこの値 以下となるように越流長 B を長くしておく。力かる場合には、たとえ水路 10を流れる Depth h decreases. When the water depth h is lowered, the force such as the side wall 2 of the water channel 10 overflows (see FIG. 3B). Therefore, in the present embodiment, the maximum value of the water depth h is set so that a difference (= talarance) between the height of the side wall 2 and the height of the water exceeding the weirs 11 to 14 is sufficiently secured. Water depth h force S Increase overflow length B so that it is less than this value. In case of power, even if it flows through channel 10
a〜d  a-d
水が堰 11〜14を越流したとしても、水路 10の側壁 2を越流することはないので、水 路 10から水が溢れに《なる。そのため、図 1A〜図 1D及び図 2に示す水力発電設 備 100a〜dにおいては、水路 10の側壁 2を嵩上げしたり、或いは堰 11〜14にゲート を設けたり特別の設備を設置する必要がない。従って、以上の水力発電設備 100a 〜dによれば、特別の設備を設置することなぐ利水設備の不調時に水路力 水が溢 れるのを防止することが可能となる。  Even if the water overflows the weirs 11 to 14, it does not overflow the side wall 2 of the water channel 10, so that the water overflows from the water channel 10. For this reason, in the hydroelectric power generation facilities 100a to 100d shown in FIGS. 1A to 1D and 2, it is necessary to raise the side wall 2 of the water channel 10 or to provide a gate or a special facility on the weirs 11 to 14. Absent. Therefore, according to the hydroelectric power generation facilities 100a to 100d described above, it is possible to prevent the flood water from overflowing when the water utilization facility does not function properly without installing special facilities.
[0020] ところで、水路 10を流れる水は、屈曲する堰 11〜14の側壁面によって絞り込まれ ながら下流側に流れる(図 1A〜図 1Dの矢印参照)。そのため、同一の水路 10に直 線状の堰 1 (図 2参照)を設けた場合と比べると、各堰 11〜14にはいずれも水位差が 大きくなる箇所が生じる。従って、各堰 11〜14のうち当該箇所に発電機 3を設けてお くことにより、発電効率を向上させることも可能となる。  [0020] By the way, the water flowing through the water channel 10 flows downstream while being narrowed by the side wall surfaces of the bending weirs 11 to 14 (see arrows in FIGS. 1A to 1D). Therefore, compared to the case where the straight weir 1 (see Fig. 2) is provided in the same water channel 10, each of the weirs 11 to 14 has a portion where the water level difference becomes large. Therefore, it is also possible to improve the power generation efficiency by providing the generator 3 at each of the weirs 11-14.
[0021] なお、本発明の利水設備は、上述した水力発電設備に限定されるものではなぐ例 えば、発電機 3及び排出路 4の代わりに取水用ポンプを設けた取水設備を含むこと は勿論である。  [0021] It should be noted that the water utilization equipment of the present invention is not limited to the above-described hydroelectric power generation equipment, but of course includes water intake equipment provided with a water intake pump in place of the generator 3 and the discharge passage 4. It is.
産業上の利用の可能性  Industrial applicability
[0022] 本発明によれば、水路を利用した利水設備において、特別の設備を設置すること なぐ利水設備の不調時に水路力 水が溢れるのを防止することができる。 [0022] According to the present invention, in a water utilization facility using a water channel, it is possible to prevent water from overflowing the water channel when the water utilization facility does not have a special facility.

Claims

請求の範囲 The scope of the claims
[1] 水路に堰を設けて利水を行う水路を利用した利水設備であって、  [1] Water utilization equipment using a waterway that uses a weir with a weir in the waterway,
前記堰は、前記水路内を屈曲しながら横断するように設けられていることを特徴と する水路を利用した利水設備。  A water utilization facility using a waterway, characterized in that the weir is provided so as to cross the waterway while bending.
[2] 請求項 1に記載の水路を利用した利水設備にぉ 、て、  [2] In the water utilization facility using the waterway according to claim 1,
前記堰の平面形状は、クランク型、凹型、凸型、ラビリンス型のいずれかであること を特徴とする水路を利用した利水設備。  The water utilization facility using a water channel, wherein the planar shape of the weir is any one of a crank type, a concave type, a convex type, and a labyrinth type.
[3] 請求項 1又は 2に記載の水路を利用した利水設備において、 [3] In the water utilization facility using the waterway according to claim 1 or 2,
前記利水設備は、水力発電設備であることを特徴とする水路を利用した利水設備。  The water utilization facility is a water supply facility using a water channel, wherein the water utilization facility is a hydroelectric power generation facility.
PCT/JP2007/063127 2006-07-13 2007-06-29 Irrigation facility utilizing water channel WO2008007567A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008524758A JP5132558B2 (en) 2006-07-13 2007-06-29 Water utilization facilities and methods using waterways

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-193056 2006-07-13
JP2006193056 2006-07-13

Publications (1)

Publication Number Publication Date
WO2008007567A1 true WO2008007567A1 (en) 2008-01-17

Family

ID=38923129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063127 WO2008007567A1 (en) 2006-07-13 2007-06-29 Irrigation facility utilizing water channel

Country Status (3)

Country Link
JP (1) JP5132558B2 (en)
TW (1) TW200811337A (en)
WO (1) WO2008007567A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116771A (en) * 2008-10-14 2010-05-27 Tetsuo Shidao Hydroelectric power generation system and comprehensive hydroelectric power generation system
JP2018071136A (en) * 2016-10-27 2018-05-10 日鐵住金建材株式会社 Connecting structure of external protection material of weir, and method for constructing weir

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127857U (en) * 1981-11-11 1982-08-09
JP3075062U (en) * 2000-06-20 2001-02-09 堅春 笠原 Arched weir

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754045Y2 (en) * 1989-11-28 1995-12-13 池田物産株式会社 Seat belt storage structure
JP3425663B2 (en) * 1997-07-10 2003-07-14 義彰 林 Turbine and hydraulic power plant with weir plate
JP3454414B2 (en) * 1998-05-28 2003-10-06 独立行政法人農業工学研究所 High-density, near-rectangular labyrinth weir

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127857U (en) * 1981-11-11 1982-08-09
JP3075062U (en) * 2000-06-20 2001-02-09 堅春 笠原 Arched weir

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116771A (en) * 2008-10-14 2010-05-27 Tetsuo Shidao Hydroelectric power generation system and comprehensive hydroelectric power generation system
JP2018071136A (en) * 2016-10-27 2018-05-10 日鐵住金建材株式会社 Connecting structure of external protection material of weir, and method for constructing weir

Also Published As

Publication number Publication date
TW200811337A (en) 2008-03-01
JPWO2008007567A1 (en) 2009-12-10
JP5132558B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP4678893B1 (en) Intake mechanism of Sabo Dam
KR101666318B1 (en) Pumpgate system having small hydropower generating
FR3062406B1 (en) FLUSH EVAPORATOR DEVICE FOR DAMS AND SIMILAR WORKS HAVING AN INTEGRATED DEVICE FOR AERATION OF THE DOWNWATER.
KR20170129791A (en) Simplified hydropower
JP2007056735A (en) Water power device
JP5333872B2 (en) Water gate
KR101577723B1 (en) Power generating apparatus used in water passage
WO2008007567A1 (en) Irrigation facility utilizing water channel
CN204753696U (en) Water intaking structure for mountain channel
WO2013069610A1 (en) Water intake device
JP2008169734A (en) Water power device
JP2008169733A (en) Water power device
WO2008007568A1 (en) Water utilization facility utilizing step structure of existing water utilization channel
CN204163061U (en) Water power catch-drain energy-dissipating structure
JP2004360503A (en) Suction cover structure of horizontal pump
KR100785175B1 (en) Flood control system
JP2017036623A (en) Rice field dam system
JP4863228B2 (en) Hydroelectric generator
JP4741971B2 (en) Intake control device
KR101385565B1 (en) Method and equipment for tidal power generation with pumping function
JP2015028255A (en) Waterway structure
JP6674743B2 (en) Seal pit for drainage
JP2013029112A (en) Pump installation
CN109837872A (en) Fish pass import water charging system
JP3099227B2 (en) Water pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767913

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008524758

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12009500081

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767913

Country of ref document: EP

Kind code of ref document: A1