WO2008007568A1 - Water utilization facility utilizing step structure of existing water utilization channel - Google Patents

Water utilization facility utilizing step structure of existing water utilization channel Download PDF

Info

Publication number
WO2008007568A1
WO2008007568A1 PCT/JP2007/063128 JP2007063128W WO2008007568A1 WO 2008007568 A1 WO2008007568 A1 WO 2008007568A1 JP 2007063128 W JP2007063128 W JP 2007063128W WO 2008007568 A1 WO2008007568 A1 WO 2008007568A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
weir
existing
channel
water utilization
Prior art date
Application number
PCT/JP2007/063128
Other languages
French (fr)
Japanese (ja)
Inventor
Hajime Butsuhara
Akira Irie
Original Assignee
The Chugoku Electric Power Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Chugoku Electric Power Co., Inc. filed Critical The Chugoku Electric Power Co., Inc.
Priority to JP2008524759A priority Critical patent/JP5143001B2/en
Publication of WO2008007568A1 publication Critical patent/WO2008007568A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/16Stators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/02Fixed barrages
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/02Water-ways
    • E02B9/04Free-flow canals or flumes; Intakes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention relates to a water utilization facility that uses a step of an existing water channel that can effectively utilize unused step energy in the existing water channel.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an existing water channel that can effectively utilize unused step energy without performing extensive repair work on the existing water channel.
  • the purpose is to provide water utilization facilities using the difference in level.
  • the present invention is a water utilization facility that uses a stepped portion of an existing waterway, and is provided with a weir on the downstream side of the stepped portion constructed as a structure of the existing waterway, It comprises, and water is utilized using the water in this water tank, It is characterized by the above-mentioned.
  • the water utilization facility may be a hydroelectric power generation facility provided with an underwater generator in the water tank.
  • the step is a drop formed so as to cross the riverbed of the existing irrigation channel.
  • FIG. 1A is an explanatory diagram of a hydroelectric power generation facility according to a first embodiment of the present invention, and is a perspective view showing a situation before application of the present invention.
  • FIG. 1B is an explanatory diagram of the hydroelectric power generation facility according to the first embodiment of the present invention, and is a perspective view showing a situation after application of the present invention.
  • FIG. 2A is an explanatory diagram of a hydroelectric power generation facility according to a second embodiment of the present invention, and is a perspective view showing a situation before application of the present invention.
  • FIG. 2B is an explanatory diagram of the hydroelectric power generation facility according to the second embodiment of the present invention, and is a perspective view showing a situation after application of the present invention.
  • FIG. 3A is an explanatory diagram of a hydroelectric power generation facility according to a third embodiment of the present invention, and is a perspective view showing a situation before application of the present invention.
  • FIG. 3B is an explanatory diagram of the hydroelectric power generation facility according to the third embodiment of the present invention, and is a perspective view showing a situation after application of the present invention.
  • FIG. 1A and 1B are explanatory diagrams of the hydroelectric power generation facility according to the first embodiment of the present invention.
  • FIG. 1A shows the situation before the application of the present invention
  • FIG. 1B shows the situation after the application of the present invention.
  • FIG. 1A shows the situation before the application of the present invention
  • FIG. 1B shows the situation after the application of the present invention.
  • the hydroelectric power generation facility shown in FIG. 1B is configured by forming a water tank 100 by providing a weir 11 (11a, lib) on the downstream side of the step 1 shown in FIG. 1A.
  • the shape of the weir 11 is preferably, for example, a U-shape or U-shape in plan view.
  • the step 1 is constructed as a structure of the existing water channel 10 and constitutes a part of the existing water channel 10, and its upstream side leads to the tunnel 5. This step 1 has a steep slope.
  • the bridge 2 over the step 1 is removed, and then the weir 11 b is installed on the downstream side of the step 1.
  • a water tank 100 is constructed by combining 1 lb of weir and 1 la of weir.
  • An underwater generator 3 is provided at the bottom of the water tank 100, and the underwater generator 3 is connected to the weir 11 through the discharge path 4. 1A and 1B, the discharge channel 4 is constructed of concrete integrally with the weir 11, and the underwater generator 3 is installed at the end of the discharge channel 4 opposite to the discharge port 4a. 11.
  • the discharge path 4 and the underwater generator 3 are united together.
  • An example of the underwater generator 3 is an underwater turbine generator manufactured by Imml Industries Co., Ltd.
  • the step energy is stored in the water tank 100.
  • the underwater generator 3 uses the step energy stored in the aquarium 100 for hydroelectric power generation, so it is unused in the step 1 shown in Fig. 1A! It can be used effectively.
  • the configurations of the weir 11 and the water tank 100 are preferably designed so that the length of the side wall of the weir 11 is increased or the cross-sectional area of the water tank 100 is increased.
  • FIGS. 1A and 1B are explanatory diagrams of the hydroelectric power generation facility according to the second embodiment of the present invention
  • FIG. 2A shows the situation before the application of the present invention
  • FIG. 2B shows the situation after the application of the present invention.
  • FIG. 1A and 1B are denoted by the same reference numerals, and the explanation will focus on parts different from the first embodiment.
  • the hydroelectric power generation facility shown in FIG. 2B is configured by forming a water tank 100 by providing a weir 11 on the downstream side of the step 1 shown in FIG. 2A so as to surround the standing wall of the step 1).
  • An underwater generator 3 similar to that in FIG. 1 is provided at the bottom of the water tank 100.
  • the standing wall of the step 1 is constructed as a structure of the existing water channel 10 and has a function of storing water upstream of the existing water channel 10. From the bottom side of the step 1, water flows out.
  • a certain amount of water is secured in the aquarium 100, whereby step energy is stored in the aquarium 100.
  • the underwater generator 3 uses the step energy stored in the water tank 100 for hydroelectric power generation, so it is unused in the step 1 shown in Fig. 2A! It can be used.
  • the water tank 100 is configured by using the standing wall of the step 1, and it is not necessary to perform significant renovation work around the step 1. Therefore, even in the hydroelectric power generation facility according to the present embodiment, it is possible to effectively use unused step energy that does not require a large renovation work on the existing canal 10.
  • the configurations of the weir 11 and the water tank 100 are designed such that the length of the side wall of the weir 11 is increased, or the cross-sectional area of the water tank 100 is increased, as in the first embodiment. Things are preferred. Even in the case of the cover construction, as described above, the overflow length of the weir 11 is extended and the water depth h is reduced, so that it is possible to prevent water from overflowing from the existing water channel 10. [0023] ⁇ Third embodiment>
  • FIGS. 1A, 1B, 2A, and 2B are explanatory diagrams of the hydroelectric power generation facility according to the third embodiment of the present invention.
  • FIG. 3A shows the situation before the application of the present invention
  • FIG. 3B shows the situation after the application of the present invention.
  • FIG. 1A, 1B, 2A, and 2B are denoted by the same reference numerals, and the description is focused on portions that are different from the first and second embodiments.
  • the hydroelectric power generation facility shown in FIG. 3B is configured by forming a water tank 100 by providing a weir 11 on the downstream side of the step 1 shown in FIG. 3A so as to surround the step 1.
  • An underwater generator 3 similar to that shown in FIGS. 1A, 1B, 2A, and 2B is provided at the bottom of the water tank 100.
  • the step 1 is formed as a structure of the existing water channel 10, and more specifically, is a drop formed so as to cross the river bed of the existing water channel 10.
  • the weir 11 is a planar shape force crank type, and a water tank 100 is formed in a region surrounded by the weir 11 and the standing wall of the step 1.
  • the top end of the weir 11 is preferably set slightly lower than the height of the step 1. In this case, even if the water stored in the water tank 100 overflows from the water tank 100, the water flowing in the existing water channel 10 overflows from the weir 11, so that the side wall force of the existing water channel 10 does not easily overflow. .
  • the planar shape of the weir 11 is not limited to the shape of the present embodiment, and may be a concave shape, a convex shape, a labyrinth shape, a straight shape, or the like. More specifically, in the case of the concave type or the convex type, the weir 11 is provided so as to be convex toward the downstream side or the upstream side of the existing water channel 10, respectively, while in the case of the labyrinth type, for example, W Weirs 11 will be provided so as to have a letter shape.
  • the water tank 100 is configured by using the standing wall of the step 1, and it is not necessary to perform a major repair work around the step 1. Therefore, according to the hydroelectric power generation facility according to the present embodiment, it is possible to effectively use the unused step energy without performing a major renovation work on the existing canal 10.
  • the hydroelectric generator 3 is out of order compared to the straight shape. In an emergency, it has an excellent function of preventing water from overflowing from the existing canal.
  • the bottom of the weir 11 is provided with the discharge passage 4 communicating with the underwater generator 3 as described above, and the underwater generator 3 operates smoothly.
  • water flows out downstream of the weir 1 through the discharge channel 4.
  • the water flow is blocked by the weir 11.
  • the amount of water blocked increases, water begins to overflow the weir 11.
  • Q CBh 3/2 (C is a constant) where Q is the overflow rate of water flowing over weir 11 and B is the overflow length of weir 11 and h is the depth of water beyond weir 11.
  • the overflow rate Q is constant, if the water depth h beyond the weir 11 becomes high, the water on the side walls of the existing canal 10 will also overflow.
  • the overflow length B of the weir 11 is the shortest, and the water depth h exceeding the weir 11 becomes high, so that water tends to overflow from the existing canal 10. I'll end up.
  • the planar shape of the weir 11 is as described above (for example, the crank shape in FIG. 3B) as in this embodiment, the overflow length B of the weir 11 is extended, and as a result, the water depth h exceeding the weir 11 is As it becomes lower, it is difficult for the existing waterway 10 to overflow.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

[PROBLEMS] A water utilization facility using a step structure in a water utilization channel, in which unused potential energy is utilized without major modification of the channel. [MEANS FOR SOLVING THE PROBLEMS] The water utilization facility utilizes the step structure (1) of the existing water utilization channel (10). On the downstream side of the step structure (1) constructed as a structure of the channel (10), there is built a water tank (100) by constructing a weir (11) surrounding the step structure (1). Water in the water tank (100) is utilized for various purposes.

Description

明 細 書  Specification
既設用水路の段差ェを利用した利水設備  Water utilization facilities using steps in existing waterways
技術分野  Technical field
[0001] 本発明は、既設用水路における未利用の段差エネルギーを有効利用することが可 能な既設用水路の段差ェを利用した利水設備に関する。  TECHNICAL FIELD [0001] The present invention relates to a water utilization facility that uses a step of an existing water channel that can effectively utilize unused step energy in the existing water channel.
背景技術  Background art
[0002] 近年、既設用水路 (例えば、既設の農業用水路や灌漑用水路など)の段差ェを利 用して、取水や発電などの利水を行う技術がある。力かる技術においては、従来、段 差ェの上流側に堰を設けて水位差を確保し、この水位差によって生じた段差エネル ギーを利用して利水を行うのが通常である(例えば、特開 2003— 269315号公報, 特開 2005 - 320883号公報参照)。  [0002] In recent years, there has been a technology for utilizing water such as water intake or power generation by using a step of an existing water channel (for example, an existing agricultural water channel or an irrigation water channel). In the conventional technology, it is usual to provide a weir on the upstream side of the level difference to secure a water level difference, and to use the step energy generated by this level difference for water utilization (for example, special characteristics). (See Open 2003-269315, JP 2005-320883).
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力しながら、上記従来技術の如ぐ段差ェの上流側に堰を設けて利水する場合 には、水位差を十分に確保するために段差工周辺において大幅な改修工事を施す 必要があり、その結果、利水設備の設置費用が増大するなどの問題がある。  [0003] However, when water is provided with a weir on the upstream side of the step as in the above-described conventional technology, it is necessary to perform a major renovation work around the step work in order to ensure a sufficient water level difference. As a result, there are problems such as an increase in the cost of installing water utilization equipment.
[0004] 本発明は、上記の問題に鑑みてなされたものであり、その目的は、既設用水路に大 幅な改修工事を施すことなぐ未利用の段差エネルギーを有効利用することが可能 な既設用水路の段差ェを利用した利水設備を提供することにある。  [0004] The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an existing water channel that can effectively utilize unused step energy without performing extensive repair work on the existing water channel. The purpose is to provide water utilization facilities using the difference in level.
課題を解決するための手段  Means for solving the problem
[0005] 上記課題を解決するために、本発明は、既設用水路の段差ェを利用した利水設備 であって、既設用水路の構造物として造られた段差ェの下流側に堰を設けて水槽を 構成し、該水槽内の水を利用して利水することを特徴とする。 [0005] In order to solve the above-mentioned problems, the present invention is a water utilization facility that uses a stepped portion of an existing waterway, and is provided with a weir on the downstream side of the stepped portion constructed as a structure of the existing waterway, It comprises, and water is utilized using the water in this water tank, It is characterized by the above-mentioned.
[0006] また、本発明において、前記利水設備は、前記水槽内に水中発電機を備えた水力 発電設備であることとしてもょ ヽ。 [0006] Further, in the present invention, the water utilization facility may be a hydroelectric power generation facility provided with an underwater generator in the water tank.
[0007] また、本発明において、前記段差ェは、前記既設用水路の河床を横断するように 造られた落差ェであることとしてもょ 、。 [0008] 以上の構成によれば、段差ェの下流側に堰を設けているので、段差ェの上流側に 堰を設けて水位差を確保した従来の構成と異なり、既設用水路に大幅な改修工事を 施す必要がない。また、段差ェを囲繞するように堰を設けて水槽を構成したので、こ の水槽内に未利用の段差エネルギーが貯留されることとなり、力かる段差エネルギー を利水のために有効利用することが可能となる。 [0007] Further, in the present invention, the step is a drop formed so as to cross the riverbed of the existing irrigation channel. [0008] According to the above configuration, since the weir is provided on the downstream side of the stepped portion, unlike the conventional configuration in which the weir is provided on the upstream side of the stepped portion to ensure the water level difference, the existing waterway is significantly improved. There is no need for construction. In addition, since the aquarium was constructed with a weir so as to surround the step, unused step energy was stored in this aquarium, and the powerful step energy could be effectively used for water utilization. It becomes possible.
[0009] <関連文献とのクロスリファレンス >  [0009] <Cross-reference with related literature>
本願は、 2006年 7月 13日付けで出願した日本国特願 2006— 193057号に基づ く優先権を主張する。この文献を本明細書に援用する。  This application claims priority based on Japanese Patent Application No. 2006-193057 filed on July 13, 2006. This document is incorporated herein by reference.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1A]本発明の第 1実施形態に係る水力発電設備の説明図であり、本発明の適用 前の状況を示す斜視図である。  FIG. 1A is an explanatory diagram of a hydroelectric power generation facility according to a first embodiment of the present invention, and is a perspective view showing a situation before application of the present invention.
[図 1B]本発明の第 1実施形態に係る水力発電設備の説明図であり、本発明の適用 後の状況を示す斜視図である。  FIG. 1B is an explanatory diagram of the hydroelectric power generation facility according to the first embodiment of the present invention, and is a perspective view showing a situation after application of the present invention.
[図 2A]本発明の第 2実施形態に係る水力発電設備の説明図であり、本発明の適用 前の状況を示す斜視図である。  FIG. 2A is an explanatory diagram of a hydroelectric power generation facility according to a second embodiment of the present invention, and is a perspective view showing a situation before application of the present invention.
[図 2B]本発明の第 2実施形態に係る水力発電設備の説明図であり、本発明の適用 後の状況を示す斜視図である。  FIG. 2B is an explanatory diagram of the hydroelectric power generation facility according to the second embodiment of the present invention, and is a perspective view showing a situation after application of the present invention.
[図 3A]本発明の第 3実施形態に係る水力発電設備の説明図であり、本発明の適用 前の状況を示す斜視図である。  FIG. 3A is an explanatory diagram of a hydroelectric power generation facility according to a third embodiment of the present invention, and is a perspective view showing a situation before application of the present invention.
[図 3B]本発明の第 3実施形態に係る水力発電設備の説明図であり、本発明の適用 後の状況を示す斜視図である。  FIG. 3B is an explanatory diagram of the hydroelectric power generation facility according to the third embodiment of the present invention, and is a perspective view showing a situation after application of the present invention.
符号の説明  Explanation of symbols
[0011] 1 段差ェ [0011] 1 step
3 水中発電機  3 Underwater generator
10 既設用水路  10 Existing waterway
11 堰  11 Weir
100 水槽  100 aquarium
発明を実施するための最良の形態 [0012] 以下、図面を参照しながら、本発明の各実施形態について説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013] <第 1実施形態 > [0013] <First embodiment>
図 1A,図 1Bは本発明の第 1実施形態に係る水力発電設備の説明図であり、図 1A は本発明の適用前の状況を、図 1Bは本発明の適用後の状況を、それぞれ示す斜視 図である。  1A and 1B are explanatory diagrams of the hydroelectric power generation facility according to the first embodiment of the present invention. FIG. 1A shows the situation before the application of the present invention, and FIG. 1B shows the situation after the application of the present invention. FIG.
[0014] 図 1Bに示す水力発電設備は、図 1Aに示す段差ェ 1の下流側に堰 11 (11a, l ib )を設けて水槽 100を構成したものである。堰 11の形状は、例えば、平面視コの字型 や U字型等が好ましい。  [0014] The hydroelectric power generation facility shown in FIG. 1B is configured by forming a water tank 100 by providing a weir 11 (11a, lib) on the downstream side of the step 1 shown in FIG. 1A. The shape of the weir 11 is preferably, for example, a U-shape or U-shape in plan view.
[0015] 段差ェ 1は、既設用水路 10の構造物として造られたものであり、既設用水路 10の 一部を構成し、その上流側はトンネル 5に通じている。この段差ェ 1には、急激な勾配 が形成されている。図 1A,図 1Bにおいて、段差ェ 1の下流側に水槽 100を構成する には、段差ェ 1に架けられた橋 2を撤去しておき、その後、段差ェ 1の下流側に堰 11 bを設け、さらに堰 1 lbに堰 1 laを組み合わせて水槽 100を構成する。  The step 1 is constructed as a structure of the existing water channel 10 and constitutes a part of the existing water channel 10, and its upstream side leads to the tunnel 5. This step 1 has a steep slope. In FIGS. 1A and 1B, in order to configure the water tank 100 on the downstream side of the step 1, the bridge 2 over the step 1 is removed, and then the weir 11 b is installed on the downstream side of the step 1. In addition, a water tank 100 is constructed by combining 1 lb of weir and 1 la of weir.
[0016] 水槽 100内の底部には、水中発電機 3が設けられており、この水中発電機 3は排出 路 4を介して堰 11に連接している。なお、図 1A,図 1Bにおいては、排出路 4を堰 11 と一体にコンクリートで構築し、排出路 4の排出口 4aとは反対側の端部に水中発電機 3を設置することで、堰 11、排出路 4、及び水中発電機 3を一体にユニットィ匕している 。水中発電機 3としては、例えば、ィームル工業株式会社製の水中タービン発電機な どが挙げられる。  An underwater generator 3 is provided at the bottom of the water tank 100, and the underwater generator 3 is connected to the weir 11 through the discharge path 4. 1A and 1B, the discharge channel 4 is constructed of concrete integrally with the weir 11, and the underwater generator 3 is installed at the end of the discharge channel 4 opposite to the discharge port 4a. 11. The discharge path 4 and the underwater generator 3 are united together. An example of the underwater generator 3 is an underwater turbine generator manufactured by Imml Industries Co., Ltd.
[0017] 以上の構成によれば、水槽 100内に一定の水量が確保され、これによつて段差ェ ネルギ一が水槽 100内に貯留されることとなる。水中発電機 3は、この水槽 100内に 貯留された段差エネルギーを利用して水力発電を行うため、図 1Aに示す段差ェ 1に お!、て未利用となって!/、た段差エネルギーを有効利用することが可能となる。また、 前述したように、段差ェ 1の下流側に水槽 100を構成するには、段差ェ 1に架けられ た橋 2を撤去した後に堰 11を設ければ足りるので、段差ェ 1の周辺において大幅な 改修工事を施す必要はない。従って、本実施形態に係る水力発電設備によれば、既 設用水路 10に大幅な改修工事を施すことなく、未利用の段差エネルギーを有効利 用することが可能となる。 [0018] なお、堰 11及び水槽 100の構成は、堰 11の側壁の長さが長くなるように設計し、或 いは水槽 100の断面積が大きくなるように設計したものが好ましい。かかる構成とした 場合には、堰 11の越流長が伸長し、水中発電機 3が不調となった非常時において、 水槽 100の側壁を越えて溢れる水の水深 hが小さくなるので (詳細は後述の関係式: Q = CBh3/2を参照)、段差ェ 1の上流側の既設用水路 10から水が溢れたり、或いは トンネル 5が満水となったりするのを防止することができる。 [0017] According to the above configuration, a certain amount of water is secured in the water tank 100, whereby the step energy is stored in the water tank 100. The underwater generator 3 uses the step energy stored in the aquarium 100 for hydroelectric power generation, so it is unused in the step 1 shown in Fig. 1A! It can be used effectively. In addition, as described above, in order to configure the water tank 100 on the downstream side of the step 1, it is only necessary to provide the weir 11 after removing the bridge 2 over the step 1, and therefore, in the vicinity of the step 1. No major renovation work is required. Therefore, according to the hydroelectric power generation facility according to the present embodiment, it is possible to effectively use unused step energy without performing a major renovation work on the existing canal 10. The configurations of the weir 11 and the water tank 100 are preferably designed so that the length of the side wall of the weir 11 is increased or the cross-sectional area of the water tank 100 is increased. In such a configuration, the overflow depth h of the water overflowing the side wall of the aquarium 100 is reduced in an emergency when the overflow length of the weir 11 is extended and the submersible generator 3 is out of order. relationship will be described later: see Q = CBh 3/2), can be or overflowing water from the existing canal 10 on the upstream side of the step E 1, or a tunnel 5 is prevented from or a full water.
[0019] <第 2実施形態 >  <Second Embodiment>
図 2A、図 2Bは本発明の第 2実施形態に係る水力発電設備の説明図であり、図 2A は本発明の適用前の状況を、図 2Bは本発明の適用後の状況を、それぞれ示す斜視 図である。但し、以下の説明では、図 1A,図 1Bと同一若しくは類似の箇所には同一 の符号を付し、第 1実施形態と異なる箇所を中心に説明している。  2A and 2B are explanatory diagrams of the hydroelectric power generation facility according to the second embodiment of the present invention, FIG. 2A shows the situation before the application of the present invention, and FIG. 2B shows the situation after the application of the present invention. FIG. However, in the following description, the same or similar parts as those in FIGS. 1A and 1B are denoted by the same reference numerals, and the explanation will focus on parts different from the first embodiment.
[0020] 図 2Bに示す水力発電設備は、図 2Aに示す段差ェ 1の下流側に、当該段差ェ 1の 立壁を囲繞するように堰 11を設けて水槽 100を構成したものである。水槽 100内の 底部には、図 1と同様の水中発電機 3が設けられている。また、段差ェ 1の立壁は、 既設用水路 10の構造物として造られたものであり、既設用水路 10の上流側に水を 貯留する機能を有する。段差ェ 1の底部側からは、水が流れ出るようになつている。  [0020] The hydroelectric power generation facility shown in FIG. 2B is configured by forming a water tank 100 by providing a weir 11 on the downstream side of the step 1 shown in FIG. 2A so as to surround the standing wall of the step 1). An underwater generator 3 similar to that in FIG. 1 is provided at the bottom of the water tank 100. Further, the standing wall of the step 1 is constructed as a structure of the existing water channel 10 and has a function of storing water upstream of the existing water channel 10. From the bottom side of the step 1, water flows out.
[0021] 以上の構成によれば、第 1実施形態と同様、水槽 100内に一定の水量が確保され 、これによつて段差エネルギーが水槽 100内に貯留されることとなる。水中発電機 3 は、この水槽 100内に貯留された段差エネルギーを利用して水力発電を行うため、 図 2Aに示す段差ェ 1にお 、て未利用となって!/、た段差エネルギーを有効利用する ことが可能となる。また、本実施形態でも、段差ェ 1の立壁を利用して水槽 100を構 成しており、段差ェ 1の周辺において大幅な改修工事を施す必要はない。従って、 本実施形態に係る水力発電設備においても、既設用水路 10に大幅な改修工事を施 すことなぐ未利用の段差エネルギーを有効利用することが可能となる。  [0021] According to the above configuration, as in the first embodiment, a certain amount of water is secured in the aquarium 100, whereby step energy is stored in the aquarium 100. The underwater generator 3 uses the step energy stored in the water tank 100 for hydroelectric power generation, so it is unused in the step 1 shown in Fig. 2A! It can be used. Also in this embodiment, the water tank 100 is configured by using the standing wall of the step 1, and it is not necessary to perform significant renovation work around the step 1. Therefore, even in the hydroelectric power generation facility according to the present embodiment, it is possible to effectively use unused step energy that does not require a large renovation work on the existing canal 10.
[0022] なお、堰 11及び水槽 100の構成は、第 1実施形態と同様に、堰 11の側壁の長さが 長くなるように設計し、或いは水槽 100の断面積が大きくなるように設計したものが好 ましい。カゝかる構成とした場合にも、前述した如く堰 11の越流長が伸長して水深 hが 小さくなるので、既設用水路 10から水が溢れるのを防止することができる。 [0023] <第 3実施形態 > [0022] The configurations of the weir 11 and the water tank 100 are designed such that the length of the side wall of the weir 11 is increased, or the cross-sectional area of the water tank 100 is increased, as in the first embodiment. Things are preferred. Even in the case of the cover construction, as described above, the overflow length of the weir 11 is extended and the water depth h is reduced, so that it is possible to prevent water from overflowing from the existing water channel 10. [0023] <Third embodiment>
図 3A,図 3Bは本発明の第 3実施形態に係る水力発電設備の説明図であり、図 3A は本発明の適用前の状況を、図 3Bは本発明の適用後の状況を、それぞれ示す斜視 図である。但し、以下の説明では、図 1A,図 1B及び図 2A,図 2Bと同一の箇所には 同一の符号を付し、第 1,2実施形態と異なる箇所を中心に説明している。  3A and 3B are explanatory diagrams of the hydroelectric power generation facility according to the third embodiment of the present invention. FIG. 3A shows the situation before the application of the present invention, and FIG. 3B shows the situation after the application of the present invention. FIG. However, in the following description, the same portions as those in FIGS. 1A, 1B, 2A, and 2B are denoted by the same reference numerals, and the description is focused on portions that are different from the first and second embodiments.
[0024] 図 3Bに示す水力発電設備は、図 3Aに示す段差ェ 1の下流側に、当該段差ェ 1を 囲繞するように堰 11を設けて水槽 100を構成したものである。水槽 100内の底部に は、図 1A,図 1B及び図 2A,図 2Bと同様の水中発電機 3が設けられている。  [0024] The hydroelectric power generation facility shown in FIG. 3B is configured by forming a water tank 100 by providing a weir 11 on the downstream side of the step 1 shown in FIG. 3A so as to surround the step 1. An underwater generator 3 similar to that shown in FIGS. 1A, 1B, 2A, and 2B is provided at the bottom of the water tank 100.
[0025] 段差ェ 1は、既設用水路 10の構造物として造られたものであり、より具体的には、 既設用水路 10の河床を横断するように造られた落差ェである。  The step 1 is formed as a structure of the existing water channel 10, and more specifically, is a drop formed so as to cross the river bed of the existing water channel 10.
[0026] 堰 11は、その平面形状力クランク型であり、この堰 11及び段差ェ 1の立壁で囲まれ た領域に水槽 100が構成されている。堰 11の天端は、段差ェ 1の高さよりも若干低く 設定しておくことが好ましい。この場合には、水槽 100内に貯留した水がこの水槽 10 0から溢れ出したとしても、既設用水路 10を流れる水が堰 11から越流するので、既設 用水路 10の側壁力も水が溢れにくくなる。  The weir 11 is a planar shape force crank type, and a water tank 100 is formed in a region surrounded by the weir 11 and the standing wall of the step 1. The top end of the weir 11 is preferably set slightly lower than the height of the step 1. In this case, even if the water stored in the water tank 100 overflows from the water tank 100, the water flowing in the existing water channel 10 overflows from the weir 11, so that the side wall force of the existing water channel 10 does not easily overflow. .
[0027] ところで、堰 11の平面形状は、本実施形態の形状に限定されるものではなぐ例え ば、凹型、凸型、ラビリンス型、直線状などであってもよい。より具体的に説明すると、 凹型若しくは凸型の場合には、それぞれ既設用水路 10の下流側若しくは上流側に 向けて凸となるように堰 11を設け、他方、ラビリンス型の場合には、例えば W字状とな るように堰 11を設けることとする。  By the way, the planar shape of the weir 11 is not limited to the shape of the present embodiment, and may be a concave shape, a convex shape, a labyrinth shape, a straight shape, or the like. More specifically, in the case of the concave type or the convex type, the weir 11 is provided so as to be convex toward the downstream side or the upstream side of the existing water channel 10, respectively, while in the case of the labyrinth type, for example, W Weirs 11 will be provided so as to have a letter shape.
[0028] 以上の構成によれば、水槽 100内に一定の水量が確保され、これによつて段差ェ ネルギ一が水槽 100内に貯留されることとなる。水中発電機 3は、この水槽 100内に 貯留された段差エネルギーを利用して水力発電を行うため、図 3Aに示す段差ェ 1に お!、て未利用となって!/、た段差エネルギーを有効利用することが可能となる。また、 本実施形態においては、段差ェ 1の立壁を利用して水槽 100を構成しており、段差 ェ 1の周辺において大幅な改修工事を施す必要はない。従って、本実施形態に係る 水力発電設備によれば、既設用水路 10に大幅な改修工事を施すことなぐ未利用の 段差エネルギーを有効利用することが可能となる。 [0029] なお、堰 11の平面形状が、上記の形状のうちクランク型、凹型、凸型、ラビリンス型 などの場合には、直線状の場合と比べると、水力発電機 3が不調となった非常時に おいて、既設用水路 10から水が溢れにくくなるという優れた機能を有する。 [0028] According to the above configuration, a certain amount of water is secured in the water tank 100, whereby the step energy is stored in the water tank 100. The underwater generator 3 uses the step energy stored in the aquarium 100 for hydroelectric power generation, so the step energy 1 shown in FIG. It can be used effectively. Further, in the present embodiment, the water tank 100 is configured by using the standing wall of the step 1, and it is not necessary to perform a major repair work around the step 1. Therefore, according to the hydroelectric power generation facility according to the present embodiment, it is possible to effectively use the unused step energy without performing a major renovation work on the existing canal 10. [0029] When the planar shape of the weir 11 is the crank shape, the concave shape, the convex shape, the labyrinth type among the above shapes, the hydroelectric generator 3 is out of order compared to the straight shape. In an emergency, it has an excellent function of preventing water from overflowing from the existing canal.
[0030] すなわち、図 3Bに示す水力発電設備において、堰 11の底部には、前述したように 水中発電機 3に連通する排出路 4が設けられており、水中発電機 3が順調に作動し ている通常時には、この排出路 4を介して水が堰 1の下流側に流出するようになって いる。しかし、水中発電機 3が不調となった非常時には、排出路 4から水が流出せず 、水の流れが堰 11で堰き止められる。そして、堰き止められた水量が増大すると、水 が堰 11を越流し始める。その際、堰 11を越えて流れる水の越流量を Qとし、堰 11の 越流長を B、堰 11を越える水深を hとすると、一般的に、 Q = CBh3/2 (Cは定数;約 1. 84)の関係にある。力かる関係式において、越流量 Qが一定の場合に、堰 11を越え る水深 hが高くなつてしまうと、既設用水路 10の側壁など力も水が溢れやすくなる。特 に、堰 11の平面形状が直線状の場合には、堰 11の越流長 Bが最短となっており、堰 11を越える水深 hが高くなるので、既設用水路 10のから水が溢れやすくなつてしまう 。しかし、本実施形態の如く堰 11の平面形状が上記の場合 (例えば、図 3Bのクラン ク型)には、堰 11の越流長 Bが伸長し、その結果、堰 11を越える水深 hが低くなるの で、既設用水路 10から水が溢れにくくなる。 That is, in the hydroelectric power generation facility shown in FIG. 3B, the bottom of the weir 11 is provided with the discharge passage 4 communicating with the underwater generator 3 as described above, and the underwater generator 3 operates smoothly. During normal operation, water flows out downstream of the weir 1 through the discharge channel 4. However, in the event of an emergency when the submersible power generator 3 malfunctions, water does not flow out from the discharge channel 4, and the water flow is blocked by the weir 11. Then, when the amount of water blocked increases, water begins to overflow the weir 11. In this case, Q = CBh 3/2 (C is a constant) where Q is the overflow rate of water flowing over weir 11 and B is the overflow length of weir 11 and h is the depth of water beyond weir 11. About 1.84). In the relational expression, if the overflow rate Q is constant, if the water depth h beyond the weir 11 becomes high, the water on the side walls of the existing canal 10 will also overflow. In particular, when the planar shape of the weir 11 is a straight line, the overflow length B of the weir 11 is the shortest, and the water depth h exceeding the weir 11 becomes high, so that water tends to overflow from the existing canal 10. I'll end up. However, when the planar shape of the weir 11 is as described above (for example, the crank shape in FIG. 3B) as in this embodiment, the overflow length B of the weir 11 is extended, and as a result, the water depth h exceeding the weir 11 is As it becomes lower, it is difficult for the existing waterway 10 to overflow.
産業上の利用の可能性  Industrial applicability
[0031] 本発明によれば、既設用水路の段差ェを利用した利水設備において、既設用水 路に大幅な改修工事を施すことなぐ未利用の段差エネルギーを有効利用すること が可能となる。 [0031] According to the present invention, it is possible to effectively utilize unused step energy without drastically renovating the existing water channel in the water utilization facility using the level difference of the existing water channel.

Claims

請求の範囲 The scope of the claims
[1] 既設用水路の構造物として造られた段差ェの下流側に堰を設けて水槽を構成し、 該水槽内の水を利用して利水することを特徴とする既設用水路の段差ェを利用した 利水設備。  [1] Utilizing a step in an existing water channel characterized in that a weir is constructed downstream of a step formed as a structure of an existing water channel and a water tank is constructed and water is used using the water in the water tank. Water utilization equipment.
[2] 請求項 1において、  [2] In claim 1,
前記利水設備は、前記水槽内に水中発電機を備えた水力発電設備であることを特 徴とする既設用水路の段差ェを利用した利水設備。  The water utilization facility is a water utilization facility using a step of an existing waterway, characterized in that the water utilization facility is a hydroelectric power generation facility having an underwater power generator in the water tank.
[3] 請求項 1又は 2において、 [3] In claim 1 or 2,
前記段差ェは、前記既設用水路の河床を横断するように造られた落差ェであるこ とを特徴とする既設用水路の段差ェを利用した利水設備。  The water supply facility using the step of the existing canal is characterized in that the step is a drop formed so as to cross the riverbed of the existing canal.
PCT/JP2007/063128 2006-07-13 2007-06-29 Water utilization facility utilizing step structure of existing water utilization channel WO2008007568A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008524759A JP5143001B2 (en) 2006-07-13 2007-06-29 Water utilization facilities using steps in existing waterways

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-193057 2006-07-13
JP2006193057 2006-07-13

Publications (1)

Publication Number Publication Date
WO2008007568A1 true WO2008007568A1 (en) 2008-01-17

Family

ID=38923130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063128 WO2008007568A1 (en) 2006-07-13 2007-06-29 Water utilization facility utilizing step structure of existing water utilization channel

Country Status (3)

Country Link
JP (1) JP5143001B2 (en)
TW (1) TW200809055A (en)
WO (1) WO2008007568A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089513A (en) * 2009-10-26 2011-05-06 Osamu Nagao Natural river power generation system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200470U (en) * 1985-06-05 1986-12-15
JP2004124829A (en) * 2002-10-03 2004-04-22 Howa Mach Ltd Hydraulic power generation device for small electric power generation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59574A (en) * 1982-06-26 1984-01-05 Katsuji Togashi Water turbine apparatus
JPS60195383A (en) * 1984-03-19 1985-10-03 Koichi Totsugi Generating set utilizing fixed weir of river

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200470U (en) * 1985-06-05 1986-12-15
JP2004124829A (en) * 2002-10-03 2004-04-22 Howa Mach Ltd Hydraulic power generation device for small electric power generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089513A (en) * 2009-10-26 2011-05-06 Osamu Nagao Natural river power generation system

Also Published As

Publication number Publication date
JP5143001B2 (en) 2013-02-13
TW200809055A (en) 2008-02-16
JPWO2008007568A1 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP2010101149A (en) Bubble preventing water channel structure for water discharge passage in power station
WO2008007568A1 (en) Water utilization facility utilizing step structure of existing water utilization channel
KR101577723B1 (en) Power generating apparatus used in water passage
JP5132558B2 (en) Water utilization facilities and methods using waterways
JP3831280B2 (en) Seal pit for drainage
CN101606254B (en) Fuel cell
JP2004124829A (en) Hydraulic power generation device for small electric power generation
JP4228309B2 (en) Dam raising method
JP4863228B2 (en) Hydroelectric generator
JP2007247351A (en) Structure of sink
JP2013148065A (en) Siphon type micro hydraulic power generation facility
JP6674743B2 (en) Seal pit for drainage
WO2018155512A1 (en) Drain structure and siphon drain system
JP2004211489A (en) Inflow sediment removing method for conduit and sand removing method for water reservoir
JP4104492B2 (en) Destructor
JPH1181280A (en) Dam construction
JP2009052334A (en) Drainage pump apparatus
JP2023175196A (en) Water intake device and power generation system equipped therewith
JP2011127382A (en) Water intake unit
CN219218856U (en) Arc flip bucket
CN217537251U (en) Energy dissipation well combining bottom flow energy dissipation and trajectory energy dissipation
JP4916429B2 (en) Air mixing suppression device
JP4884310B2 (en) Sand removal gate
JP4805745B2 (en) Drifting material inflow prevention and water collecting device
JP2007277808A (en) Intake control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767914

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008524759

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12009500082

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767914

Country of ref document: EP

Kind code of ref document: A1