KR100785175B1 - Flood control system - Google Patents

Flood control system Download PDF

Info

Publication number
KR100785175B1
KR100785175B1 KR1020060113923A KR20060113923A KR100785175B1 KR 100785175 B1 KR100785175 B1 KR 100785175B1 KR 1020060113923 A KR1020060113923 A KR 1020060113923A KR 20060113923 A KR20060113923 A KR 20060113923A KR 100785175 B1 KR100785175 B1 KR 100785175B1
Authority
KR
South Korea
Prior art keywords
power generation
reservoir
water
discharge
intake
Prior art date
Application number
KR1020060113923A
Other languages
Korean (ko)
Inventor
조극래
Original Assignee
조극래
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조극래 filed Critical 조극래
Priority to KR1020060113923A priority Critical patent/KR100785175B1/en
Priority to CN2007800427236A priority patent/CN101535629B/en
Priority to PCT/KR2007/005769 priority patent/WO2008060116A1/en
Application granted granted Critical
Publication of KR100785175B1 publication Critical patent/KR100785175B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/04Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator for diminishing cavitation or vibration, e.g. balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/02Water-ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/08Machine or engine aggregates in dams or the like; Conduits therefor, e.g. diffusors
    • F03B13/086Plants characterised by the use of siphons; their regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/30Application in turbines
    • F05B2220/32Application in turbines in water turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Abstract

A water management system is provided to transport rain in upstream of a river to the downstream of the river at a higher rate and to obtain electricity through the system which utilizes recycling of water resources. A water management system has a plurality of power generation facilities and a plurality of holes for preventing cavitation on a reverse siphon water channel to manage water resources from upstream to downstream including all branches. A power generation facility has a first hole(31) for preventing cavitation at the space filled with air in the upper portion of a water reservoir(10), a turbine(41) at the lower part of a reservoir connected to the first hole, and a second hole(33) for preventing cavitation installed in a reservoir(50) close to the turbine for discharging water.

Description

치수 시스템 {Flood control system}Flood control system

도 1은 본 발명에 따른 발전설비의 바람직한 실시예를 도시한 단면도이다.1 is a cross-sectional view showing a preferred embodiment of the power generation equipment according to the present invention.

도 2는 본 발명에 따른 발전 설비를 이용하여 구성된 치수 시스템을 개략적으로 도시한 도면이다.2 is a schematic illustration of a dimensional system constructed using a power generation facility according to the invention.

본 발명은 집중호우로 폭증하는 하천의 강수량을 기존의 유속보다 빠르게 하류로 이송시키는 치수 시스템과 이 치수 시스템에 사용되어 전력 생산을 할 수 있는 수차형 발전설비에 관한 것이다. The present invention relates to a dimensional system that transfers the rainfall of a river that is exploding due to the heavy rain to the downstream faster than the existing flow rate, and a water wheel-type power generation equipment that can be used to produce power.

국내의 전체 치수(治水)구조물은 그 설계의 기초정보가 지난 50 ~ 100년간의 강수량을 근거로 하고 있어서, 돌발적인 집중호우와 같은 자연재해를 감당하지 못한 채 홍수조절의 기능은 약화되고 점차 무방비화 되어 홍수피해에 거의 노출되어 있으며 자연치수구조인 하천이나 강도 홍수피해에 노출되어 있는 실정이다. The overall size of the country's floodwater structures is based on the rainfall of the last 50 to 100 years, and the function of flood control is weakened and gradually defenseless without natural disasters such as sudden heavy rainfall. They are exposed to flood damage and are exposed to natural dimension rivers and river floods.

또한, 최근에는 화석연료의 사용으로 인한 이산화탄소의 증가로 온난화가 심 화되면서 이상기후가 발생되어 전 세계적으로 국지적인 집중호우나 장기적인 가뭄 또는 태풍이 과거에 비하여 기하급수적으로 증가하고 있으며, 향후에는 이러한 자연재해가 더욱 빈번하게 발생될 것으로 예측되고 있다. 국내에서도 이러한 이상기후의 변화에 적합하도록 치수시스템이 변경되어야 하지만, 그 구조의 변경에는 과다한 비용 및 오랜 기간이 소요되는 까닭에 옛날 그대로의 구조를 유지하고 있는 상황으로, 집중호우시에는 저수지 또는 둑의 붕괴나 하류쪽 홍수 및 범람이 반복적으로 발생되고 있다. In addition, in recent years, due to the increase in carbon dioxide due to the use of fossil fuels, warming has been intensified, causing localized heavy rains, long-term droughts, and typhoons to increase exponentially in the world. Natural disasters are expected to occur more frequently. In Korea, the dimensional system should be changed to meet such abnormal climate change, but the structure is changed to maintain its original structure due to excessive cost and long period of time. Collapse and downstream flooding and flooding have occurred repeatedly.

따라서, 홍수와 집중호우시에는 방류능력이 증대되어야 하나 이러한 기능을 하는 구조물이 거의 없으므로, 반드시 모든 치수구조물을 보강해야 할 필요성이 있게 되었다. Therefore, during flooding and heavy rain, the discharge capacity should be increased, but there are few structures that function. Therefore, it is necessary to reinforce all the dimension structures.

한편, 주지된 바와 같이, 지구의 석유 매장량이 심각하게 감소하면서 고유가 행진이 지속되고 있으며, 최근에는 각종 대체에너지가 이용되면서 그 효율을 증진시킬 수 있는 기술 개발에 박차를 가하고 있으나, 국내에서는 여러 대체에너지의 효용성과 범용성 등을 고려하여 볼 때, 아직은 한정된 조건에서만 작동이 가능하기 때문에 이들 대체에너지가 수력 및 화력발전을 실질적으로 대체할 수 있는 가능성이 매우 낮다는 문제점이 있다. 또, 기존의 수력발전에서는 취수댐으로부터의 유효낙차를 단 한차례만 이용하여 발전하고 있어서, 물의 이용효율이 저조하다고 하는 문제점이 있다. On the other hand, as is well known, the oil reserves of the earth have been seriously reduced, and the high oil price march continues, and in recent years, various alternative energy is being used to accelerate the development of technologies that can improve the efficiency. In view of its utility and versatility, it is still possible to operate only in limited conditions, so there is a very low possibility that these alternative energy can substantially replace hydroelectric and thermal power generation. In addition, the existing hydroelectric power generation using only one effective drop from the water intake dam, there is a problem that the use efficiency of water is low.

따라서, 상기와 같은 저조한 물의 이용효율을 끌어올릴 수 있을 뿐만 아니라 사장된 수자원을 다시 활용할 수 있는 설비가 필요하게 되었다. Therefore, there is a need for a facility that can not only raise the efficiency of use of low water as described above, but also utilize the dead water resources again.

이에 본 발명은 상기와 같은 문제점을 해결하고자 안출된 것으로, 매년 소요될 수해복구비를 절감함과 더불어 수자원을 재활용하여 생기는 발전량에 대한 수익에서 설비투자비를 감(減)하고도 천문학적 이득이 발생할 수 있는 새로운 치수 시스템을 제공하는 데에 그 목적이 있다. Therefore, the present invention has been made to solve the above problems, a new cost that can reduce the cost of disaster recovery every year, as well as reduce the capital investment cost from the revenue generated by recycling water resources, the astronomical benefits can occur. The purpose is to provide a dimensional system.

특히, 본 발명의 다른 목적은, 긴 거리에 형성되는 낙차를 한 곳에 집중할 수 있고 물속의 공기를 제거하여 캐비테이션 현상을 제거할 수 있도록 된 캐비테이션방지홀을 설치하여서, 물의 유속을 빠르게 함으로써 물을 여러 번 이용하여 많은 발전량을 얻을 수 있게 된 치수 시스템을 제공하는 것이다. In particular, another object of the present invention is to install a cavitation prevention hole that can concentrate the drop formed in a long distance in one place and to remove the cavitation phenomenon by removing the air in the water, to speed up the water flow rate of water It is to provide a dimensional system that can be used to obtain a large amount of power generation.

상기와 같은 목적을 성취하기 위하여, 본 발명은 취수저수조의 상부 공기층 상에 설치한 제1캐비테이션방지홀과, 이 캐비테이션방지홀과 연결되는 수압관 하류에 설치한 발전용 수차 및, 이 발전용 수차에 근접하여 설치되는 방류저수조 상에 설치한 제2캐비테이션방지홀을 구비하여서 된 발전설비를 구비한다.In order to achieve the above object, the present invention is the first cavitation prevention hole provided on the upper air layer of the water intake reservoir, the power generation aberration installed in the hydraulic pipe downstream of the hydraulic pipe connected to the cavitation prevention hole, and this power generation aberration It is provided with the power generation equipment provided with the 2nd cavitation prevention hole provided in the discharge reservoir installed near.

또한, 본 발명은 다수의 상기 발전설비와 다수의 캐비테이션방지홀을 별도의 인공구조물인 역사이펀수로에 연결하여 하천의 시작지점에서부터 바다에 이르기까지 하천을 관리할 수 있는 시스템을 구성하게 된다. In addition, the present invention connects a plurality of the power generation facilities and a plurality of cavitation prevention holes to a history artificial funnel, which is a separate artificial structure to configure a system that can manage the river from the start point of the river to the sea.

도 1은 본 발명에 따른 발전설비의 한 실시예를 도시한 단면도로서, 본 발명 에 따른 발전설비(1)의 본체는 철 또는 플라스틱으로 만들어지나, 이에 한정되지 않고 필요에 따라 콘크리트가 부가될 수도 있다. 1 is a cross-sectional view showing an embodiment of the power generation equipment according to the present invention, the main body of the power generation equipment 1 according to the present invention is made of iron or plastic, but not limited to this, concrete may be added as needed. have.

도 1에 도시된 바와 같이, 상기 발전설비(1)는 취수구(11)를 구비하되, 취수구(11)의 높이는 하단의 밸브(14)로 개폐할 수 있게 설치된 청소구(13)보다 높게 위치되어, 들어오는 물속에 포함된 무거운 불순물이 가라앉아 청소구(13) 앞에 축적되게 하고, 차후에 주기적으로 청소구(13)를 청소할 수 있게 되어 있다. 때때로, 이 청소구(13)는 방류구로 사용할 수 있으며, 그 물은 농수로로 방류하여 농업용수 등으로 사용될 수 있다. 취수구(11)의 입구에는 이 취수구(11)를 개폐하는 밸브(12)가 설치될 수 있다. As shown in FIG. 1, the power generation facility 1 includes a water intake port 11, and the height of the water intake port 11 is positioned higher than that of the cleaning hole 13 installed to be opened and closed by a valve 14 at a lower end thereof. The heavy impurities contained in the incoming water sink and accumulate in front of the cleaning tool 13, and the cleaning tool 13 can be cleaned periodically later. Occasionally, the cleaning tool 13 can be used as a discharge port, and the water can be discharged to a farm channel and used as agricultural water. At the inlet of the intake port 11, a valve 12 for opening and closing the intake port 11 may be installed.

취수구(11)의 후단에는 취수저수조(10)를 연결하여 설치하고, 이 취수저수조(10)의 상단에는 물넘이(15)가 형성되어 소정 높이만큼 물이 차오르면 저수조(20)로 물을 보내도록 되어 있다. 물넘이(15) 상부 일측에는 예컨대 루츠 블로어(Roots Blower)와 같은 진공펌프(30)의 한쪽에 연결파이프(32)로 연통되어 있는 제1캐비테이션방지홀(31)이 형성되게 된다. 따라서, 취수구(11)는 제1캐비테이션방지홀(31)에서 가장 가까운 지류 쪽으로 설치된 관수로, 즉 지류의 역사이펀수로를 통하여 지류의 강수량을 흡입하여 지류의 상류 또는 홍수범람 침수지역에 설치되는 구조를 갖추는 것이 바람직하다. A rear end of the intake port 11 is installed by connecting the intake reservoir 10, and the top of the intake reservoir 10 is formed with a water overflow 15 so that the water is filled by a predetermined height to send water to the reservoir 20 It is. A first cavitation prevention hole 31 is formed at one side of the top of the water fall 15, for example, connected to the connection pipe 32 by one side of the vacuum pump 30, such as a Roots Blower. Therefore, the intake port 11 is a structure that is installed in the upstream or flooding flooding area upstream of the tributary by sucking the precipitation of the tributary through the irrigation channel installed toward the tributary closest to the first cavitation prevention hole 31, that is, the historically-funded channel of the tributary. It is desirable to have a.

진공펌프(30)는, 각 수면의 상층부에서 캐비테이션이 일어날 것으로 예상되는 공기층에다 진공을 걸어주어 캐비테이션을 없애기 위해 구비된 것으로, 이 진공펌프(30)에 연결된 연결파이프의 입구 근처를 본 명세서에서는 "캐비테이션방지홀" 이라 칭하기로 한다. 진공펌프는 진공의 정도에 따라 자동적으로 제어되는 유형의 것이 바람직하다. The vacuum pump 30 is provided to remove the cavitation by applying a vacuum to the air layer in which the cavitation is expected to occur in the upper layer of each water surface, and the vicinity of the inlet of the connection pipe connected to the vacuum pump 30 is described herein. Cavitation prevention hole ". The vacuum pump is preferably of a type that is automatically controlled according to the degree of vacuum.

저수조(20)의 하류에는 발전수로(40)를 매개로 하여 방류저수조(50)가 연결되어 설치되는바, 발전수로(40)에는 발전용 수차(41)가 설치되는 한편, 이 방류저수조(50)의 상부 일측에는 상기 진공펌프(30)의 다른 쪽에 연결파이프(34)로 연통되어 있는 제2캐비테이션방지홀(33)이 형성되게 된다. 방류저수조(50)의 하단에는 방류구(51)가 위치하고, 이 방류구(51)에는 방류구(51)를 개폐하는 밸브(52)가 설치될 수 있으며, 방류구(51)의 일측을 상기 진공펌프(30)에 연통시킬 수도 있다. 이와 같이 발전용 수차(41) 이하의 하류에도 진공을 걸어주는 이유는, 수로의 경로에 설치된 발전용 수차(41)는 물의 유속을 그대로 이용할 수 있는 상태이나, 이 발전용 수차(41) 자체가 회전시 물의 유속을 방해함과 동시에 캐비테이션 현상을 일으키게 되어 수차를 통과한 유속은 취수 당시의 유속보다 현격하게 감소된 유속을 나타내고, 발전수로(40) 내부에는 물의 압력의 상승현상이 발생하게 되어 결국 물의 유속은 거의 정체상태로 흐르게 되면서 원하는 에너지를 얻을 수 없게 되기 때문에 이를 방지하기 위해서이다. Downstream of the reservoir 20, the discharge reservoir 50 is connected to the installation through the power generation channel 40, the power generation channel 40 is provided with a power generation aberration 41, while the discharge reservoir The second cavitation prevention hole 33 which is in communication with the connection pipe 34 on the other side of the vacuum pump 30 is formed at one upper side of the 50. The discharge port 51 is located at the lower end of the discharge reservoir 50, and the discharge port 51 may be provided with a valve 52 for opening and closing the discharge port 51, one side of the discharge port 51 to the vacuum pump 30 You can also communicate with). The reason why the vacuum is applied to the downstream of the power generation aberration 41 in this way is that the power generation aberration 41 installed in the path of the water channel can use the water flow rate as it is, but the power generation aberration 41 itself is At the time of rotation, the flow rate of water and the cavitation phenomenon occur at the same time, the flow rate passing through the aberration shows a significantly reduced flow rate than the flow rate at the time of intake, and the rise of water pressure occurs in the power generation channel 40. After all, the flow rate of the water is almost stagnant to prevent the desired energy because it can not be obtained.

상기 발전용 수차(41)에는 발전기(42)와 함께 변압기(43)가 연결되어 있으며, 이 발전기(42)와 변압기(43)를 둘러싸는 공간(47)에는 제어장치(44)와, 제습장치(45), 작업자가 출입할 수 있는 입구(46) 등이 설치될 수 있다. The power generation aberration 41 is connected to a transformer 43 together with a generator 42, and a control device 44 and a dehumidifier in the space 47 surrounding the generator 42 and the transformer 43. 45, an entrance 46 through which an operator can enter and exit may be installed.

이상과 같이 구성된 본 발명에 따른 발전 설비의 운전 방법에 대해 설명하면 다음과 같다.Referring to the operation method of the power plant according to the present invention configured as described above are as follows.

먼저, 취수구(11)의 밸브(12)를 열어, 물이 취수저수조(10)를 통해 저수조(20)로 흐르게 한다. 이때, 진공펌프(30)의 한쪽에 연결파이프(32)로 연통되어 있는 제1캐비테이션방지홀(31)에 진공이 걸리면, 고속으로 물을 빨아들여 저수조(20)로 물을 계속 보내게 된다. First, the valve 12 of the intake port 11 is opened to allow water to flow through the intake reservoir 10 to the reservoir 20. At this time, if a vacuum is applied to the first cavitation prevention hole 31 communicated with the connection pipe 32 to one side of the vacuum pump 30, the water is sucked at a high speed to continue to send water to the reservoir 20.

또한, 저수조(20)로 들어온 물은, 진공펌프(30)의 다른 쪽에 연결파이프(34)로 연통되어 있는 제2캐비테이션방지홀(33)에 형성된 진공에 의해, 발전수로(40)를 거쳐 방류저수조(50)로 역시 고속으로 흡입되어 흐르게 되고, 도중에 발전용 수차(41)를 고속으로 회전시켜 발전기(42)로부터 전력을 얻게 된다. In addition, the water entering the reservoir 20 is passed through the power generation channel 40 by a vacuum formed in the second cavitation prevention hole 33 which is connected to the other side of the vacuum pump 30 by the connecting pipe 34. It is also sucked into the discharge reservoir 50 at high speed and flows, and the electric power aberration 41 is rotated at high speed to obtain electric power from the generator 42.

한편, 도 2는 도 1에 도시되고 전술된 본 발명에 따른 발전 설비를 이용하여 구성된 치수 시스템을 개략적으로 도시한 도면으로서, 이 도면에 도시된 바와 같이 본 발명에 따른 치수시스템은 1개 하천(R)의 상류에서부터 바다(S)에 이르는 하류까지 하천(R)을 따라 별도의 인공구조물인 역사이펀수로(T)를 형성하고서, 이 역사이펀수로(T)에 적어도 하나의 발전 설비(1)와, 이 발전 설비(1)의 상류 및 하류에 별도의 진공펌프를 구비한 캐비테이션방지홀(2)을 설치한다. 특히, 하천(R)의 지류들이 모이거나 수량이 증대되는 곳에서는 취수입구(3)가 추가로 설치되어 가장 가까운 캐비테이션방지홀까지 관수로로 연결되어 본류의 역사이펀수로로 연결되는 구성으로 될 수 있다. 상기 역사이펀수로(T)는 지형 및 주변 여건에 따라 하천(R) 바닥 밑에 형성될 수도 있다. On the other hand, Figure 2 is a schematic view showing a dimensional system configured using the power generation facility according to the invention shown in FIG. 1 and described above, as shown in this figure the dimension system according to the present invention is one stream ( From the upstream of R) down to the sea (S), a separate artificial structure, the historic Efun channel (T), is formed along the stream (R), and at least one power generation facility ( 1) and the cavitation prevention hole 2 provided with the separate vacuum pump upstream and downstream of this power plant 1 are provided. Particularly, where the tributaries of the river R are gathered or the quantity is increased, an intake inlet 3 may be additionally installed to connect the waterway to the nearest cavitation prevention hole so that the history of the main stream is connected to the funnel. have. The historic Efun channel (T) may be formed under the bottom of the river (R) depending on the terrain and surrounding conditions.

여기서, 상기 발전 설비(1)들은, 보다 상류에 있는 발전 설비(1)의 방류저수조(50)의 수두와 이에 대해 하류에 있는 발전 설비(1)의 취수저수조(10)의 수두 간 의 차이가 약 10.13m 이상(대기압 이상의 압력차가 생기도록)이 되도록 설치되어야 한다. 다만, 바다에 인접하여 역사이펀수로(T)의 맨 하류에 설치된 최종방류구 근처에 설치되는 발전 설비(1)는, 최종방류구로부터 이 발전 설비(1)의 방류저수조(50)의 수두 차이가 10.13m 이상이 되는 상류쪽 지점에 설치되면 된다. 또한, 만일 하천(R)의 중간에 또는 그 지류에 역사이펀수로(T)의 최종방류구가 설치되는 경우에도, 이 최종방류구 근처에 설치되는 발전 설비(1)는 그 내부의 방류저수조(50)와 최종방류구의 수두 차이가 10.13m 이상이 되는 상류쪽 지점에 설치되면 된다.Here, the power generation facilities (1), the difference between the head of the discharge reservoir 50 of the upstream power plant 1 and the head of the intake reservoir (10) of the power generation facility (1) downstream of this It should be installed so that it is about 10.13m or more (to cause a pressure difference above atmospheric pressure). However, in the power generation equipment 1 installed near the final discharge port installed downstream of the historic Eifing channel T near the sea, the head difference between the discharge reservoir 50 of the power generation facility 1 is different from the final discharge port. This can be installed upstream of 10.13m. In addition, even if the final outlet of the historically-funded waterway T is provided in the middle of the stream R or the tributary thereof, the power generation facility 1 installed near the final outlet has a discharge reservoir 50 therein. ) And the final discharge port may be installed at an upstream point of 10.13m or more.

이와 같이, 수두 차이가 10.13m 이상이 되게 발전 설비가 설치됨으로써, 낙차를 한 곳에 집중할 수 있어 발전 효율을 향상시킴과 더불어, 급속히 물을 바다(S) 쪽으로 방류할 수 있게 된다. In this way, the power generation facility is installed so that the head difference is more than 10.13m, it is possible to concentrate the drop in one place to improve the power generation efficiency, and to quickly discharge the water toward the sea (S).

궁극적으로, 상기 역사이펀수로(T)를 따라 설치된 다수의 캐비테이션방지홀(2) 및 발전 설비(1)에 의해 물의 유속을 빠르게 함으로써, 물을 여러 번 이용하여 많은 발전량을 얻을 수 있게 됨과 더불어, 집중호우시에는 신속히 방류능력을 증대시킬 수 있게 되는 장점이 있게 되는 것이다.Ultimately, by accelerating the flow rate of water by the plurality of cavitation prevention holes (2) and the power generation facility (1) installed along the inverted water channel (T), it is possible to obtain a large amount of power generation by using water several times. In case of heavy rain, there is an advantage that it is possible to quickly increase the discharge capacity.

이상과 같이 본 발명에 의하면, 취수된 물을 진공으로 하여 별도의 경로로 흘려보내고 여기에서 다수의 발전 설비로 발전함으로써, 고속의 물을 여러 번 이용해 많은 발전량을 얻을 수 있게 됨과 더불어 집중호우시에는 신속히 방류하여서 범람에 의한 침수피해를 방지하여 경제적인 이득을 얻을 수 있는 효과가 있게 된다. As described above, according to the present invention, by taking the water taken as a vacuum and flowing it in a separate path and generating power in a plurality of power generation facilities, it is possible to obtain a large amount of power generation by using high-speed water several times, By discharging quickly, it is possible to prevent the flooding caused by flooding and to obtain economic benefits.

Claims (6)

하천(R)을 따라 별도의 역사이펀수로(T)를 형성하고서, 이 역사이펀수로(T)에는 진공펌프에 연결된 하나 이상의 캐비테이션방지홀(2)을 설치한 치수 시스템. A dimensional system in which a separate inverted water channel (T) is formed along the stream (R), and the inverted water channel (T) is provided with at least one cavitation prevention hole (2) connected to a vacuum pump. 제1항에 있어서, 상기 역사이펀수로(T)에 발전 설비(1)가 추가로 설치되는 치수 시스템.The dimensional system according to claim 1, wherein a power generation facility (1) is additionally installed in said reversed funnel (T). 제1항 또는 제2항에 있어서, 상기 역사이펀수로(T)에 연통되는 취수입구(3)가 추가로 설치되되, 이 취수입구(3)는 하천(R)의 지류에도 설치될 수 있는 치수 시스템.The water inlet (3) of claim 1 or 2, wherein the inlet is communicated with the funnel (T), and the inlet (3) may be installed in the tributary of the river (R). Dimensional system. 제2항에 있어서, 상기 발전 설비(1)는, The power plant (1) according to claim 2, 취수구(11)를 갖춘 취수저수조(10)와,A water intake reservoir 10 having an intake port 11, 이 취수저수조(10)에 연결된 저수조(20),Reservoir 20 connected to the intake reservoir 10, 이 저수조(20)의 하류에서 발전수로(40)를 매개로 하여 연결되고서 방류구(51)를 갖춘 방류저수조(50),The discharge reservoir 50 is connected to the power generation channel 40 in the downstream of the reservoir 20 and has a discharge port 51. 상기 발전수로(40) 중간에 설치된 발전용 수차(41) 및,Power generation aberration 41 installed in the middle of the power generation channel 40, 상기 취수저수조(10)와 방류저수조(50) 각각의 상부 일측에서 진공펌프(30)에 각각 연통되어 형성되는 제1캐비테이션방지홀(31)과 제2캐비테이션방지홀(33)로 이루어진 치수 시스템.A dimension system consisting of a first cavitation prevention hole (31) and a second cavitation prevention hole (33) formed in communication with the vacuum pump (30) at each of the upper sides of the intake reservoir (10) and the discharge reservoir (50). 제4항에 있어서, 상기 취수구(11)보다 낮은 위치에 청소구(13)를 추가로 구비하는 치수 시스템.5. Dimensioning system according to claim 4, further comprising a cleaning opening (13) at a position lower than the intake opening (11). 제2항 또는 제4항에 있어서, 상기 발전 설비(1)는, 상류에 있는 발전 설비(1)의 방류저수조(50)의 수두와 이에 대해 하류에 있는 발전 설비(1)의 취수저수조(10)의 수두 간의 차이, 또는 역사이펀수로(T)의 최종방류구의 수두와 이 최종방류구에 대해 상류에 있는 발전 설비(1)의 방류저수조(50)의 수두 간의 차이가 10.13m 이상이 되게 설치되는 치수 시스템. 5. The power generation facility (1) according to claim 2 or 4, wherein the power generation facility (1) includes the head of the discharge reservoir (50) of the power generation facility (1) upstream and the water intake storage tank (10) of the power generation facility (1) downstream thereof. ), Or the difference between the head of the final discharge port of the historic discharge channel (T) and the head of the discharge reservoir 50 of the discharge facility (1) upstream to the final discharge port (10.13 m) or more. Dimensioning system.
KR1020060113923A 2006-11-17 2006-11-17 Flood control system KR100785175B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020060113923A KR100785175B1 (en) 2006-11-17 2006-11-17 Flood control system
CN2007800427236A CN101535629B (en) 2006-11-17 2007-11-16 Flood control system
PCT/KR2007/005769 WO2008060116A1 (en) 2006-11-17 2007-11-16 Flood control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060113923A KR100785175B1 (en) 2006-11-17 2006-11-17 Flood control system

Publications (1)

Publication Number Publication Date
KR100785175B1 true KR100785175B1 (en) 2007-12-11

Family

ID=39140885

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060113923A KR100785175B1 (en) 2006-11-17 2006-11-17 Flood control system

Country Status (3)

Country Link
KR (1) KR100785175B1 (en)
CN (1) CN101535629B (en)
WO (1) WO2008060116A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106869093A (en) * 2017-03-28 2017-06-20 兰州理工大学 Mechanical lever-type pressure power-generating system on overfall dam

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2334965B1 (en) * 2008-09-16 2012-01-25 Domingo González Martín Operating process of a vacuum pumping station.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157038A (en) * 1991-12-05 1993-06-22 Meidensha Corp Siphon water turbine
KR950011842A (en) * 1994-06-14 1995-05-16 전상원 Hydraulic generator using atmospheric pressure and vacuum
KR20040002373A (en) * 2002-12-20 2004-01-07 박광식 Hydraulic power generating system with vacuum condition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182123A (en) * 1978-01-18 1980-01-08 Fuji Electric Co., Ltd. Hydraulic power plant
US4364228A (en) * 1980-07-25 1982-12-21 Eller J David Hydraulic turbine system with siphon action
US4654190A (en) * 1984-04-05 1987-03-31 Westinghouse Electric Corp. Emergency feedwater system for steam generators of a nuclear power plant
AU653002B2 (en) * 1991-02-14 1994-09-15 Inax Corporation Inverted siphon of vacuum type sewerage
KR20020068001A (en) * 2002-07-08 2002-08-24 박종률 Heat recovery method of additional drain water of feed water heater discharged to condenser in power plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157038A (en) * 1991-12-05 1993-06-22 Meidensha Corp Siphon water turbine
KR950011842A (en) * 1994-06-14 1995-05-16 전상원 Hydraulic generator using atmospheric pressure and vacuum
KR20040002373A (en) * 2002-12-20 2004-01-07 박광식 Hydraulic power generating system with vacuum condition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106869093A (en) * 2017-03-28 2017-06-20 兰州理工大学 Mechanical lever-type pressure power-generating system on overfall dam
CN106869093B (en) * 2017-03-28 2020-07-03 兰州理工大学 Mechanical lever type pressure power generation system on overflow dam

Also Published As

Publication number Publication date
CN101535629A (en) 2009-09-16
CN101535629B (en) 2011-11-16
WO2008060116A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
US8231327B2 (en) River high pressure energy conversion machine
CN211285506U (en) Environmental protection irrigation canals and ditches debris retention device
KR100780743B1 (en) Siphon spillways
CA2458286C (en) A system for generating power
KR100785175B1 (en) Flood control system
GB2475606A (en) Waterfall hydro-electric power
CN211172272U (en) System for flushing and shunting municipal sewage pipe
KR100735638B1 (en) Drainage using vacuum
Luis et al. Hydropower reservoir for flood control: a case study on Ringlet Reservoir, Cameron Highlands, Malaysia
JP2008144361A (en) Water management device of dam
CN110029721A (en) A kind of combine with the pipe culvert of blowdown and first rain Regulation Function cuts dirty structure
KR20120040316A (en) Siphon spillway having function of precipite elemination make use of vortex producer
KR20110108568A (en) Siphon spillway capable water level control
KR20150090794A (en) Non dam hydroelectric power
RU105314U1 (en) CLOSED TUBULAR ENERGY DISCHARGE ON DAMS OF HYDRO POWER PLANTS
CN104878823A (en) Combined pipeline initial rainwater interception, storage and drainage system and storage and drainage method
CN110055925B (en) Water storage and sand discharge separation system for large and medium reservoir in flood season of sandy river
CN203769036U (en) Initial rainwater cutoff, storage and drainage system of confluence pipeline
RU2562205C2 (en) Method of creation of adjustable free flowing water flow and device for its implementation
KR20230033276A (en) hydroelectric power generation without dam
CN203769039U (en) Rainwater storage and drainage system for urban road
KR100313036B1 (en) Aaaaa
CN109989382B (en) Separated scheduling method for water storage and sand discharge of large and medium-sized reservoirs in sandy rivers in flood season
CN109281295A (en) Power station
CN211285477U (en) Ecological slope wall of hydraulic engineering

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121204

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131205

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141205

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151207

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161205

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee