WO2008004629A1 - Système de communication sans fil, dispositif de station mobile et procédé d'accès aléatoire - Google Patents

Système de communication sans fil, dispositif de station mobile et procédé d'accès aléatoire Download PDF

Info

Publication number
WO2008004629A1
WO2008004629A1 PCT/JP2007/063485 JP2007063485W WO2008004629A1 WO 2008004629 A1 WO2008004629 A1 WO 2008004629A1 JP 2007063485 W JP2007063485 W JP 2007063485W WO 2008004629 A1 WO2008004629 A1 WO 2008004629A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
random access
channel
station device
station apparatus
Prior art date
Application number
PCT/JP2007/063485
Other languages
English (en)
French (fr)
Other versions
WO2008004629B1 (fr
Inventor
Daiichirou Nakashima
Shohei Yamada
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to AU2007270362A priority Critical patent/AU2007270362B2/en
Priority to JP2008523732A priority patent/JP4743910B2/ja
Priority to US12/307,219 priority patent/US20090257421A1/en
Priority to EP07768234A priority patent/EP2040480A1/en
Publication of WO2008004629A1 publication Critical patent/WO2008004629A1/ja
Publication of WO2008004629B1 publication Critical patent/WO2008004629B1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0866Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

明 細 書
無線通信システム、移動局装置およびランダムアクセス方法
技術分野
[0001] 本発明は、無線通信システム、移動局装置およびランダムアクセス方法、特に、異 なる通信帯域幅を備える移動局装置が混在し、これらの移動局装置がランダムァク セスする無線通信システム、移動局装置およびランダムアクセス方法に関する。
本願は、 2006年 7月 6曰に、 日本に出願された特願 2006— 186802号に基づき 優先権を主張し、その内容をここに援用する。
背景技術
[0002] 3GPP (3rd Generation Partnership Project)では、 W— CDMA (Wideban d— Code Division Multiplexing Access)方式が第 3世代セルラー移動通信 方式として標準化され、順次サービスが開始されている。また、通信速度を更に上げ た HSDPA(High Speed Downlink Packet Access)も標準化され、サービスが 開始されようとしている。
[0003] 一方、 3GPPでは、第 3世代無線アクセス技術の進化(Evolved Universal Terr estrial Radio Access,以下、 EUTRAと称する)が検討されている。 EUTRAの 下りリンクの通信方式として、 OFDMA (Orthogonal Frequency Division Mul tiplexing Access)方式が提案されている。 EUTRA技術として、 OFDMA方式に チャネル符号ィ匕等の適応無線リンク制御(リンクァダプテーシヨン、 Link Adaptatio n)に基づく適応変復調'誤り訂正方式 (AMCS : Adaptive Modulation and Co ding Scheme,以下、 AMCS方式と称する)といった技術が適用されている。 AM CS方式とは、高速パケットデータ伝送を効率的に行うために、各移動局装置の伝播 路状況に応じて、誤り訂正方式、誤り訂正の符号化率、データ変調多値数、時間-周 波数軸の符号拡散率(SF: Spreading Factor)、マルチコード多重数などの無線 伝送パラメーター(以下、 AMCモードと称する)を切り替える方式である。例えば、デ ータ変調については、伝播路状況が良好になるに従って、 QPSK (Quadrature P hase Shift Keying)変調から、 8PSK変調、 16QAM (Quadrature Amplitud e Modulation)変調など、より高い変調効率の多値変調方式に切り替えることで、 移動通信システムの最大スループットを増大させることができる。
[0004] また、 EUTRAの上りリンクとして、マルチキャリア通信方式やシングルキャリア通信 方式など様々な提案がされており、 OFDM方式等のマルチキヤリァ通信方式より P A PR (Peak to Average Power Ratio:ピーク電力対平均電力の比)の特性に優 れた VSCRF (Variable Spreading and Chip Repetition Factors)— CDM A方式や IFDMA (Interleaved Frequency Division Multiple Access)方式 , DFT (Discrete Fourier Transform) - Spread OFDM方式のシングルキヤリ ァ通信方式が上りリンクに有効な無線通信方式として提案されている。また、下りリン ク、及び上りリン外こおいて時間領域'周波数領域の伝播路状況に応じて移動局装 置に通信チャネルを割り当てる時間 '周波数スケジューリングの適用が提案されてい る。
[0005] EUTRAについて、 3GPPでの提案をベースとする上り'下りリンクのチャネル構成 を図 18に示す。
EUTRAの下りリンクは、下りリンクパイロットチャネル DPICH (Downlink Pilot Channel)、下りリンク同期チャネル DSCH (Downlink Synchronization Chan nel)、下りリンク共通制御チャネル DCCCH (Downlink Common Control Cha nnel)、下りリンク共用制御シグナリングチャネル DSCSCH (Downlink Shared C ontrol Signaling Channel)、下りリンク共用データチャネル DSDCH (Downlin k Shared Data Channel)により構成されている(非特許文献 1)。
[0006] EUTRAの上りリンクは、上りリンクパイロットチャネル UPICH (Uplink Pilot Ch annel)、上りリンタコンテンションベースチャネル CBCH (Contention— based Ch annel)、上りリンクスケジューリングチャネル USCH (Uplink Scheduling Chann el)により構成されている (非特許文献 2)。
[0007] EUTRAの下りリンクにおいて、下りリンクパイロットチャネル DPICHは、下りリンク 共通パイロットチャネル DCPICH (Downlink Common Pilot Channel)と下りリ ンク個別パイロットチャネル DDPICH (Downlink Dedicated Pilot Channel)力、 ら構成されている。下りリンク共通パイロットチャネル DCPICHは、 W—CDMA方式 のパイロットチャネル CPICH (Common Pilot Channel)に相当し、下りリンクのデ ータチャネルの復調用、下りリンクの AMCS方式及び時間'周波数スケジューリング を行うための下りリンクの無線伝播路特性の推定、及びセルサーチ、上り送信電力制 御の伝播路ロス測定、ハンドオーバのための他セルの受信品質測定に使用される。 下りリンク個別パイロットチャネル DDPICHはァダプティブアレーアンテナなどセル共 用アンテナと異なる無線伝播路特性を有するアンテナから、個別移動局装置に送信 される力 \または、必要に応じて受信品質の低い移動局装置に対して下りリンク共通 パイロットチャネル DCPICHの補強の目的で使用する。
[0008] 下りリンク同期チャネル DSCHは、 W_ CDMA方式の同期チャネル SCH (Synch ronization Channel)に相当し、移動局装置のセルサーチ、 OFDM信号のキヤリ ァ周波数オフセット、フレーム、タイムスロット TTI (Transmission Time Interval) 、 OFDMシンボルタイミング同期に使用される。また、下りリンク同期チャネル DSCH は、 P— SCH (Primary— SCH)、 S— SCH (Secondary— SCH)の 2種類の同期 チャネルから構成される場合もある。
[0009] 下りリンク共通制御チャネル DCCCHは、 W— CDMA方式の第一共通制御物理 チヤネノレ P— CCPCH (Primary- Common Control Physical Channel)、第二 共通制御物理チャネル S— CCPCH (Secondary- Common Control Physical Channel)、及びページングインディケ一ターチャネル PICH (Paging Indicator Channel)に相当する報知情報、ページングインディケ一ター PI (Paging Indicat or)情報、ページング情報、下りアクセス情報などの共通制御情報を含んでいる。
[0010] 下りリンク共用制御シグナリングチャネル DSCSCHは、 HSDPA方式の高速物理 下り共用チャネル HS-PDSCH (High Speed-Physical Downlink Shared C ha皿 el)の制御情報チャネルに相当し、複数の移動局装置が共用し、各移動局装 置に高速下り共用チャネル HS-DSCH (High Speed- Downlink Shared Cha 皿 el)の復調に必要な情報 (変調方式、拡散符号など)、誤り訂正復号処理や HAR Q (Hybrid Automatic Repeat reQuest)処理に必要な情報、及び無線リソー ス (周波数、時間)のスケジューリング情報(ユーザ ID、無線リソース配置)などの送信 に使用する。 下りリンク共用データチャネル DSDCHは、 HSDPA方式の高速物理下り共用チヤ ネノレ HS— PDSCHのパケットデータチャネルに相当し、上位レイヤから移動局装置 宛てのパケットデータの送信に使用する。
[0011] 上りリンクにおいて、上りリンタコンテンションベースチャネル CBCHは、ランダムァク セスチャネル RACH (Random Access Channel)、ファーストアクセスチャネル F ACH (Fast Access Channel)、上りリンク要求チャネル RCH (Uplink Request
Channel)、及び上りリンク同期チャネル(Uplink Synchronization Channel) など力、ら構成される。 W_ CDMA方式のランダムアクセスチャネル RACH (Random
Access Channel)に相当する。ここで、 EUTRA及び W-CDMAの両方にぉレヽ て同一の名称、ランダムアクセスチャネル RACHが用いられている力 EUTRAのラ ンダムアクセスチャネル RACHは主に、移動局装置の初期無線接続,または通信中 の再無線接続処理などに使われるチャネルを指す(以降、ランダムアクセスチャネル RACHは EUTRAのランダムアクセスチャネルのことを指す)。なお、本明細書では 上りリンタコンテンションベースチャネル CBCHにおける各チャネルの送信のことを総 称して、ランダムアクセスと呼ぶ。
[0012] 上りリンクスケジューリングチャネル USCHは、上りリンク共用制御チャネル USCC H (Uplink Shared Control Channel)と上りリンク共用データチャネル USDC H (Uplink Shared Data Channel)力ら構成され、 W— CDMA方式の上り個別 データチャネル DPDCH (Dedicated Physical Data Channel)と HSDPA方式 の HS- DSCH関連上り個別物理制御チャネル HS- DPCCH (Dedicated Physic al Control Channel for HS- DSCH)に相当し、各移動局装置が共用で、移 動局装置のパケットデータ送信、下りチャネル伝播路品質情報 CQI (Channel Qua lity Indicator) , HARQ (Hybrid Automatioc Repeat reQuest)などのフィ ードバック情報、上りリンクチャネル制御情報などの伝送に使用する。
[0013] 上りリンクパイロットチャネル UPICHは、上りリンクのデータチャネルの復調用、上り リンクの AMCS方式及び時間'周波数スケジューリングを行うための上りリンクの無線 伝播路特性の推定に使用する。
[0014] EUTRAについて、 3GPPの提案をベースとする下りリンクフレームの構成例を図 1 9に示す。
下りリンクフレームは、周波数軸の複数サブキャリアのかたまりであるチャンク(チヤ ンク Chunk— 1〜チャンク Chunk— m)と時間軸のタイムスロット TTI (タイムスロット Τ ΤΙ_1〜タイムスロット ΤΤΙ_η)による 2次元で構成される。チャンクは複数サブキヤリ ァのかたまりにより構成され、例えば、周波数軸では、基地局装置が管理する下りリン クの全体のシステム帯域の周波数帯域幅(システム帯域幅) BWを 20ΜΗζ、チャンク の周波数帯域幅(チャンク帯域幅) Bchを 1. 25MHz,サブキャリアの周波数帯域幅 (サブキャリア帯域幅) Bscを 12. 5kHzとする場合、下りリンクでは、 16個のチャンク より構成され、 1つのチャンクに 100本サブキャリア、全体で 1600本のサブキャリアが 含まれる。また、時間軸では、 1つのフレームを 10ms、タイムスロット TTIを 0. 5msと する場合、 20個のタイムスロット TTIが含まれる。つまり、 1つのフレームに 16個のチ ヤンク、 20個のタイムスロット TTI、 1つのタイムスロット TTIに複数の OFDMシンボル が含まれている。 OFDMシンボル長 Tsが 0. 05msの場合、 1TTIに 10個の OFDM シンボルが含まれる。従って、この例では、移動局装置が使用可能の最小の無線リソ ース単位としては、 1つのチャンク(100本サブキャリア)と 1つのタイムスロット TTI (0. 5ms)により構成される。また、 1つのチャンクの無線リソースをさらに細かく分割し、分 割した周波数帯域幅(リソース帯域幅)を AMCS方式、周波数スケジューリングの単 位とすることができる。なお、この単位により構成されるリソースをリソースブロックと呼 ぶ。
[0015] 図 19に示したように、下りリンク共通パイロットチャネル DCPICHは、各タイムスロッ ト TTIの先頭にマッピングする。下りリンク個別パイロットチャネル DDPICHは、基地 局装置のアンテナ使用状況、または移動局装置の伝播路状況に応じて、必要な場 合に 1つのタイムスロット TTIの適当な位置にマッピングする(例えば、タイムスロット T TIの中心部にマッピングする)。
[0016] 下りリンク共通制御チャネル DCCCHと下りリンク同期チャネル DSCHは、フレーム の先頭のタイムスロット TTIにマッピングする(例えば、下りリンク共通制御チャネル D CCCHは下りリンク共通パイロットチャネル DCPICHの後にマッピングし、下りリンク 同期チャネル DSCHはタイムスロット TTIの最後尾にマッピングする)。フレーム先頭 のタイムスロット TTIにマッピングすることにより、移動局装置は Idleモードの場合、フ レーム先頭タイムスロット TTIだけ、またはフレーム先頭タイムスロット TTI内の数 OF DMシンボルを受信すれば、セルサーチ、タイミング同期、報知情報及びページング 情報など共通制御情報を受信することが可能である。移動局装置は Idleモードの場 合、間欠受信 IR (Intermittent Reception)で動作することができる。
[0017] 下りリンク共用制御シグナリングチャネル DSCSCHは、下りリンク共通パイロットチヤ ネル DCPICHと同様に各タイムスロット TTIの前方部分にマッピングする(例えば、フ レームの先頭タイムスロット TTIでは下りリンク共用制御シグナリングチャネル DSCS CHは下りリンク共通パイロットチャネル DCPICHに続く下りリンク共通制御チャネル DCCCHの後にマッピングし、その他のタイムスロット TTIでは下りリンク共用制御シ グナリングチャネル DSCSCHは下りリンク共通パイロットチャネル DCPICHの後にマ ッビングする)。移動局装置がパケット通信中でも各タイムスロット TTIに自装置宛て のパケットデータがない場合、下りリンク共用制御シグナリングチャネル DSCSCHだ けを受信する間欠受信が可能である。
[0018] 下りリンク共用データチャネル DSDCHは、チャンク単位で分割し、各移動局装置 の伝播路状況に基づいてチャネルを割り当て、各移動局装置宛てのパケットデータ を送信する。一例として、図 19に示したようにタイムスロット TTI—1では、移動局装置 MS 1に対してチャンク Chunk— 1にチャネルを割り当て、移動局装置 MS 2に対して チャンク Chunk— 2にチャネルを割り当て、移動局装置 MS 3に対してチャンク Chun k— 3にチャネルを割り当てる。
[0019] 図 19に示したように、タイムスロット TTI—1、タイムスロット TTI— 2のタイムスロット で、 1つのチャンク単位で、 1つの移動局装置にチャネルを割り当て、伝播路の特性 の良い移動局装置に対しては複数のチャンクに対してチャネルを割り当て、マルチ ユーザダイバーシチ効果を利用してシステム全体のスループットを向上する周波数ス ケジユーリング方法、また、タイムスロットで、複数のチャンク単位と sub—タイムスロッ ト TTI単位に対して移動局装置にチャネルを割り当て、セル境界や高速移動等で無 線伝播路の特性の悪い移動局装置には、複数のチャンクに渡って広い周波数帯域 幅を持たせることにより、周波数ダイバーシチ効果を利用して受信特性を改善する周 波数スケジューリング方法が提案されてレ、る。
[0020] EUTRAについて、 3GPPの提案をベースとする上りリンクフレームの構成例を図 2 0に示す。
上りリンクフレームは、周波数軸の複数サブキャリアのかたまりであるチャンク(チヤ ンク Chunk_l〜チャンク Chunk_m)と時間軸のタイムスロット TTI (タイムスロット T TI_1〜タイムスロット TTI_n)による 2次元で構成される。例えば、周波数軸では、 基地局装置が管理する上りリンクの全体のシステム帯域の周波数帯域幅 (システム帯 域幅) BWを 20ΜΗζ、各チャンクの周波数帯域幅(チャンク帯域幅) Bchを 1. 25M Hzとする場合、上りリンクの周波数軸は、 16個のチャンクより構成される。また、時間 軸では、 1つのフレームを 10ms、タイムスロット TTIを 0. 5msとする場合、 20個のタイ ムスロット TTIが含まれる。つまり、 1つのフレームに 16個のチャンク、 20個のタイムス ロット TTI、 1つのタイムスロット TTIに複数のシンボルが含まれる。従って、この例で は、移動局装置が使用可能の最小の無線リソース単位としては、 1つのチャンク(1. 25MHz)と 1つのタイムスロット ΤΤΙ (0· 5ms)により構成されている。また、 1つのチヤ ンクの無線リソースをさらに細力べ分割し、分割した周波数帯域幅(リソース帯域幅)を AMCS方式、周波数スケジューリングの単位とすることができる。なお、この単位によ り構成されるリソースをリソースブロックと呼ぶ。
[0021] 図 20に示したように、上りリンクパイロットチャネル UPICHは、上りリンクスケジユーリ ングチャネル USCHの各タイムスロット TTIの先頭と末尾にマッピングする。なお、こ こでは上りリンクパイロットチャネル UPICHの配置について一例として示しているだ けであって、その他の配置にマッピングされる構成であってもよレ、。基地局装置は、 各移動局装置からの上りリンクパイロットチャネル UPICHから無線伝播路の推定や 移動局装置と基地局装置間の受信タイミングずれの検出を行う。各移動局装置は、 Distributed FDMA (くしの歯状スペクトル)や Localized FDMA (局所化スぺク トル)、または CDMAを利用して、同時に上りリンクパイロットチャネル UPICHを送信 できる。
[0022] 上りリンタコンテンションベースチャネル CBCHと上りリンクスケジューリングチャネル USCHは、図 21A、図 21Bの様に TDM (時分割多重にて配置:図 21B)や、 TDM FDMのハイブリッド方法(時分割多重と周波数分割多重を併用して配置:図 21A )等で多重して、マッピングする。
[0023] 上りリンクスケジューリングチャネル USCHは、チャンク単位で分割し、各移動局装 置の伝播路状況に基づいて基地局装置がチャネルを割り当て、チャネルを割り当て られた各移動局装置が、基地局装置にパケットデータを送信する。一例として、図 20 に示したように、タイムスロット TTI_1では、移動局装置 MS 1に対してチャンク Chun k_lにチャネルを割り当て、移動局装置 MS 3に対してチャンク Chunk_2にチヤネ ルを割り当て、移動局装置 MS4に対してチャンク Chunk_3にチャネルを割り当て、 移動局装置 MS2に対してチャンク Chunk_mにチャネルを割り当てる。
[0024] 上りリンクスケジューリングチャネル USCHに対して行われる、各移動局装置の無 線伝播路状況に応じて移動局装置にチャンクに対してチャネルを割り当てるスケジュ 一リング方法としては、周波数領域のチャンク帯域を事前に決定して、時間領域のみ に対して各移動局装置の無線伝播路状況に応じてスケジューリングする方法 (Time domain channel— dependent scheduling using pre— assigned freque ncy bandwidth)と、周波数領域と時間領域の両方に対して各移動局装置の無線 伝播路状況に応じてスケジューリングする方法(Frequency and time domain channel -dependent scheduling) ,または上記 2つの方法のハイブリッド方法が 提案されてレ、る (非特許文献 3)。
[0025] また、図 22のように、上りリンタコンテンションベースチャネル CBCHの多重方法と は別に、基地局装置が報知情報として上りリンタコンテンションベースチャネル CBC Hの帯域を管理下の移動局装置に対して指定し、移動局装置が指定された上りリン タコンテンションベースチャネル CBCHの帯域内の一部のチャンクを用いてランダム アクセスを行うことが提案されている(非特許文献 4)。図 22の場合、基地局装置は移 動局装置 A、 B、 C、 D、 E、 Fに対して、上りリンタコンテンションベースチャネル CBC Hとして上りリンタコンテンションベースチャネル CBCH用周波数帯域 Aを用いるよう に指定し、移動局装置はこの上りリンタコンテンションベースチャネル CBCH用周波 数帯域 A内でランダムアクセスを行うチャンクをランダムに選択する。ここでは、一つ の移動局装置がランダムアクセスに用いる周波数帯域幅が 1. 25MHzの場合を示し ている。また、移動局装置は周波数帯域幅をランダムに選択するため、同じチャンク を選択する移動局装置が複数存在する場合がある。図 22では、 CBCH用周波数帯 域 Aを基準にして、移動局装置 Aが左端のチャンクを選択し、移動局装置 Bが右端か ら 2番目のチャンクを選択し、移動局装置 Cが左端から 3番目のチャンクを選択し、移 動局装置 Eが右端のチャンクを選択しており、移動局装置 D、 Fが右端力 4番目の 同じチャンクを選択してレ、る場合を示してレ、る。
[0026] 上りリンタコンテンションベースチャネル CBCHは、チャンク単位で分割され、基地 局装置からスケジューリングされていないユーザデータまたは制御データがある場合 、各移動局装置は、 Distributed FDMAや Localized FDMAまたは CDMAを 利用して、上りリンタコンテンションベースチャネル CBCHを用いてデータを送信する
[0027] 次に、本発明が主に対象とするランダムアクセスチャネル RACHについて説明する 初期無線接続確立、または通信中の再無線接続処理などに使われるランダムァク セスチャネル RACHは、基地局装置アンテナ端において,各移動局装置との間の受 信タイミングを合わせることを主要な目的の一つとし、各移動局装置について基地局 装置と移動局装置間の受信タイミングずれを計測するためのプリアンブル部のみを 送信する方法、各移動局装置について基地局装置と移動局装置との間の受信タイミ ングずれを計測するためのプリアンブル部と無線接続制御に必要な情報を含むペイ ロード部を送信する方法などが提案されている (非特許文献 4、非特許文献 5)。なお 、いずれの方法においても移動局装置を識別するための情報もランダムアクセスチヤ ネル RACHに含まれる。
[0028] 初期無線接続確立のために、移動局装置は、ランダムアクセスチャネル RACHの ランダムアクセスを試みる際に、どのチャンクが最も移動局装置が空いている、または 受ける移動局装置間のユーザ間干渉が小さいかがわからないため、統計的なランダ ムアルゴリズムを用いて移動局装置がランダムアクセスチャネル RACHのランダムァ クセスを試みるチャンクを選択したとしても、ランダムアクセスが集中して移動局装置 間の衝突が発生し、ランダムアクセスチャネル RACHのランダムアクセスが成功する まで時間を要する場合がある。ここで、ランダムアクセスチャネル RACHのランダムァ クセスが成功するということは、基地局装置において移動局装置のランダムアクセス チャネル RACHが正しく検出されるということを指す。通常、ランダムアクセスチヤネ ノレ RACHのランダムアクセスにおいて衝突が起きると、ある程度時間間隔を空けて再 ランダムアクセスを行うまでに時間を空けることをランダムバックオフと呼び、その際の 時間間隔をランダムバックオフ時間と呼ぶ。上限を設定して、その範囲内でランダム に送信を停止する時間、または再開する時間を設定する。これは、衝突を起こした複 数の移動局装置が絶えずランダムアクセスチャネル RACHを再送すると、絶えず衝 突を起こし続ける問題を回避するためのものである。
また、 EUTRAの技術要求条件 (非特許文献 6)が提案され、既存の 2G、 3Gサー ビスとの融合、共存のため、スペクトル柔軟性(Spectrum Flexibility)が要求され 、異なるサイズのスペクトル(例えば、 1. 25MHz、 2. 5MHz、 5MHz、 10MHz、 20 MHz)に対する酉 d分のサポート (Support for spectrum allocations of diffe rent size)が要求されており、異なる周波数帯域幅(例えば、 1. 25MHz、 2. 5MH z、 5MHz、 10MHz、 20MHz)の送受信能力を持つ移動局クラスの移動局装置の サポートが必要とされている。
非特許文献 1 : R1— 050707 "Physical Channel and Multiplexing in Ev olved UTRA Downlink" , 3GPP TSG RAN WG1 Meeting # 42 Londo n, UK, August 29— September 2, 2005
非特許文献 2 : R1— 050850 "Physical Channel and Multiplexing in Ev olved UTRA Uplink", 3GPP TSG RAN WG1 Meeting # 42 London, UK, August 29 - September 2, 2005
非特許文献 3 : R1— 050701 "Channel- Dependent Scheduling Method f or Single— Carrier FDMA Radio Access in Evolved UTRA Uplink , 3GPP TSG RAN WG1 Meeting # 42 London, UK, August 29 - Sep tember 2, 2005
非特許文献 4 : Rl— 051391 "Random Access Transmission for Scalabe Multiple Bandwidth in Evolved UTRA Uplink", 3GPP TSG RAN WG1 Meeting # 43 Seoul, Korea, November 7— 11 , 2005
非特許文献 5 : R1— 051445 "E— UTRA Random Access" , 3GPP TSG R AN WG1 Meeting # 43 Seoul, Korea, November 7— 11 , 2005
非特許文献 6 : 3GPP TR (Technical Report) 25.913、 V7.2.0 (2005— 12)、 R equirements for Evolved UTRA (E- UTRA) and Evolved UTRAN (E -UTRAN)
発明の開示
発明が解決しょうとする課題
[0030] 解決しょうとする問題点は、 EUTRAの提案をベースとするシステムにあっては、比 較的早急な無線接続確立が求められる移動局装置のランダムアクセスが、その他の 移動局装置からのランダムアクセスと衝突してしまレ、、再送を繰り返すことで、最初の ランダムアクセスを行って力、らランダムアクセスに成功するまでのレスポンスタイムが 劣化してしまうことがあるという点である。
課題を解決するための手段
[0031] 本発明の無線通信システムは、基地局装置と、前記基地局装置へのランダムァク セスを行う移動局装置とからなる無線通信システムにおいて、前記移動局装置は、ラ ンダムアクセスを行ってから該ランダムアクセスに成功しなかったときに再びランダム アクセスを行うまでのランダムバックオフ時間について、当該移動局装置と前記基地 局装置との状態に応じて決まる上限値を設定することを特徴とする。
[0032] これにより、本発明の無線通信システムは、自装置の状態が、早急に無線接続確 立が求められる状態の移動局装置については上述の上限値を短くすることで、ラン ダムバックオフ時間が短くなり、早急に無線接続確立が求められる移動局装置にお いて優れたレスポンスタイムのランダムアクセスを行うことができる。
[0033] また、本発明の無線通信システムは、基地局装置と、前記基地局装置へのランダム アクセスを行う移動局装置とからなる無線通信システムにおいて、前記移動局装置は 、ランダムアクセスを行ってから該ランダムアクセスに成功しな力、つたときにランダムァ クセスを再び行うまでのランダムバックオフ時間を、当該移動局装置と前記基地局装 置との状態に応じて決まる上限値と下限値との間の値とし、前記再び行うランダムァ クセスの際に用いる周波数帯域を、 自装置と前記基地局装置との状態に応じて決ま る選択候補周波数帯域の中から選択することを特徴とする。
[0034] これにより、本発明の無線通信システムは、自装置の状態が、早急に無線接続確 立が求められる状態の移動局装置については上述の上限値を短くし、かつ、上述の 上限値と下限値との差が小さいときは再び行うランダムアクセスの際に用いる周波数 帯域を広くすることで、ランダムバックオフ時間が短くなり、かつ、再送時の衝突確率 が平均化され、早急に無線接続確立が求められる移動局装置において優れたレス
[0035] また、本発明の無線通信システムは、上述の無線通信システムであって、前記選択 候補周波数帯域の合計の帯域幅に応じて、前記上限値と前記下限値との差を決定 することを特徴とする。
[0036] これにより、本発明の無線通信システムは、移動局装置の選択候補周波数帯域の 合計の帯域幅が狭いときは上限値と下限値との差を大きくし、選択候補周波数帯域 の合計の帯域幅が広いときは上限値と下限値との差を小さくすることで、ランダムバッ クオフ時間をなるベく短くし、かつ、再送時の衝突確率を平均化することができ、早急 に無線接続確立が求められる移動局装置において優れたレスポンスタイムのランダ ムアクセスを行うことができる。
[0037] また、本発明の無線通信システムは、上述のいずれかの無線通信システムであつ て、前記状態は、前記移動局装置と前記基地局装置との通信接続状態であることを 特徴とする。
[0038] これにより、本発明の無線通信システムは、早急に無線接続確立が求められる通信 接続状態の移動局装置において優れたレスポンスタイムのランダムアクセスを行うこ とができる。
[0039] また、本発明の無線通信システムは、上述の無線通信システムであって、前記通信 接続状態は、少なくとも、物理層および論理層が接続されていない第 1の通信状態と 、論理層のみが接続されている第 2の通信状態とであることを特徴とする。
[0040] また、本発明の無線通信システムは、上述の無線通信システムであって、前記第 1 の通信状態のときょり、前記第 2の通信状態のときの方が短いことを特徴とする。
[0041] これにより、本発明の無線通信システムは、早急に無線接続確立が求められる第 2 の通信状態の移動局装置において優れたレスポンスタイムのランダムアクセスを行う こと力 Sできる。
[0042] また、本発明の無線通信システムは、上述のいずれかの無線通信システムであつ て、前記状態は、前記移動局装置と前記基地局装置間との間で通信する通信サー ビス種別であることを特徴とする。
[0043] これにより、本発明の無線通信システムは、早急に無線接続確立が求められる通信 サービス種別を基地局装置との間で通信する移動局装置において優れたレスポンス
[0044] また、本発明の無線通信システムは、上述の無線通信システムであって、前記上限 値は、前記通信サービス種別の要求サービス品質により決まることを特徴とする。
[0045] また、本発明の無線通信システムは、上述の無線通信システムであって、前記上限 値は、前記通信サービス種別の要求サービス品質が低いときより、前記要求サービス 品質が高いときの方が短レ、ことを特徴とする。
[0046] これにより、本発明の無線通信システムは、早急に無線接続確立が求められる要求 サービス品質が高い通信サービス種別を基地局装置との間で通信する移動局装置 において優れたレスポンスタイムのランダムアクセスを行うことができる。
[0047] また、本発明の移動局装置は、基地局装置へのランダムアクセスを行う移動局装置 において、ランダムアクセスを行ってから該ランダムアクセスに成功しなかったときに 再びランダムアクセスを行うまでのランダムバックオフ時間について、当該移動局装 置と前記基地局装置との状態に応じて決まる上限値を設定することを特徴とする。
[0048] また、本発明のランダムアクセス方法は、基地局装置と、前記基地局装置へのラン ダムアクセスを行う移動局装置とからなる無線通信システムにおけるランダムアクセス 方法において、前記移動局装置が、ランダムアクセスに成功しなかったときに、ランダ ムバックオフ時間として、当該移動局装置と前記基地局装置との状態に応じて決まる 値より短い時間を選択する第 1の過程と、前記移動局装置が、前記ランダムアクセス を行ってから、前記第 1の過程にて選択したランダムバックオフ時間が経過したときに 、再びランダムアクセスを行う第 2の過程とを備えることを特徴とする。
発明の効果
[0049] 本発明の無線通信システムは、 自装置の状態が、早急に無線接続確立が求められ る状態の移動局装置についてはランダムバックオフ時間の上限値を短くすることで、 ランダムバックオフ時間が短くなり、早急に無線接続確立が求められる移動局装置に おいて優れたレスポンスタイムのランダムアクセスを行うことができるという利点がある 図面の簡単な説明
[0050] [図 1]第 1から第 4の実施形態に共通のマルチバンド無線通信システムの構成を示す 概略ブロック図である。
[図 2]第 1から第 4の実施形態に共通の上りリンクのフレームの構成例を示す図である
[図 3A]第 1から第 4の実施形態に共通の上りリンクのフレームへの上りリンクスケジュ 一リングチャネル USCHおよび上りリンタコンテンションベースチャネル CBCHの配 置例を示す図である。
[図 3B]第 1から第 4の実施形態に共通の上りリンクのフレームへの上りリンクスケジュ 一リングチャネル USCHおよび上りリンタコンテンションベースチャネル CBCHの配 置例を示す図である。
[図 4]第 1から第 4の実施形態に共通の移動局装置 MS1〜MS4の構成を示す概略 ブロック図である。
[図 5]第 1から第 4の実施形態に共通の変調部 103の構成を示す概略ブロック図であ る。
[図 6A]第 1から第 3の実施形態において、チャンク Chunk Jにて送信するときの変 調部 103の動作例を説明する概略ブロック図である。
[図 6B]第 1から第 3の実施形態において、チャンク Chunk Jにて送信するときの IFF T部 320の出力を説明するスペクトル図である。
[図 7A]第 1から第 3の実施形態において、チャンク Chunk— kにて送信するときの変 調部 103の動作例を説明する概略ブロック図である。 園 7B]第 1から第 3の実施形態において、チャンク Chunk— kにて送信するときの IF FT部 320の出力を説明するスペクトル図である。
園 8A]第 1から第 3の実施形態において、チャンク Chunk J〜kにて送信するときの 変調部 103の動作例を説明する概略ブロック図である。
園 8B]第 1から第 3の実施形態において、チャンク Chunk J〜kにて送信するときの IFFT部 320の出力を説明するスぺクトノレ図である。
園 9]第 1から第 4の実施形態に共通の基地局装置 BSの構成を示す概略ブロック図 である。
[図 10]第 1から第 4の実施形態に共通のランダムアクセスチャネル RACHのランダム アクセスにおけるチャンクの選択例を示す図である。
[図 11]第 1の実施形態における Idleモードと Dormantモードのランダムアクセスチヤ ネル RACHの再送に関する最大ランダムバックオフ時間を示す図である。
[図 12A]同実施形態における Idleモード、及び Dormantモードにおけるランダムァク セスチャネル RACHの再送タイミングの例を示す図である。
[図 12B]同実施形態における Idleモード、及び Dormantモードにおけるランダムァク セスチャネル RACHの再送タイミングの例を示す図である。
[図 12C]同実施形態における Idleモード、及び Dormantモードにおけるランダムァク セスチャネル RACHの再送タイミングの例を示す図である。
[図 13]第 2の実施形態における Idleモードと Dormantモードとにおけるランダムァク セスチャネル RACHの再送に関する最大ランダムバックオフ時間を例示する図であ る。
[図 14A]同実施形態における Idleモードにおけるランダムアクセスチャネル RACHの 再送に用いるチャンクを例示する図である。
[図 14B]同実施形態における Dormantモードにおけるランダムアクセスチャネル RA CHの再送に用いるチャンクを例示する図である。
[図 15]第 3の実施形態におけるチャンクの帯域幅が 1. 25MHzのときの 1. 25MHz 、 2. 5MHz, 5MHz, 10MHzの移動局クラスの移動局装置 MS1〜MS4力 Idle モードおよび Dormantモードにあるときにランダムアクセスの再送の配置候補となる チャンクおよびタイムスロットを例示する図である。
[図 16]第 1から第 3の実施形態における移動局装置 MS1〜MS4と基地局装置 BSと 力 Sランダムアクセスチャネル RACHのランダムアクセスする際の動作を説明するフロ 一チャートである。
[図 17]第 4の実施形態における移動局装置 MS:!〜 MS4と基地局装置 BSとがファー ストアクセスチャネル FACHのランダムアクセスする際の動作を説明するフローチヤ ートである。
[図 18BUTRAについて、 3GPPでの提案をベースとする上り'下りリンクのチャネル 構成例を示す図である。
[図 19BUTRAについて、 3GPPの提案をベースとする下りリンクフレームの構成例 を示す図である。
[図 20BUTRAについて、 3GPPの提案をベースとする上りリンクフレームの構成例 を示す図である。
[図 21A]EUTRAについて、 3GPPの提案をベースとする上りリンクフレームへの上り リンタコンテンションベースチャネル CBCHと上りリンクスケジューリングチャネル USC Hのマッピング例を示す図である。
[図 21B]EUTRAにつレ、て、 3GPPの提案をベースとする上りリンクフレームへの上り リンタコンテンションベースチャネル CBCHと上りリンクスケジューリングチャネル USC Hのマッピング例を示す図である。
[図 22]移動局装置 A、 B、 C、 D、 E、 Fがランダムアクセスを行うチャンクの選択例を示 す図である。
符号の説明
BS…基地局装置
MS 1、 MS2、 MS3、 MS4…移動局装置
100…送信部
101…チャネル符号化部
102…データ制御部
103…変調部 104·• -USCHスケジューリング部
105· •'CBCHスケジューリング部
106· ··スケジューリング部
107- ·-送信タイミング制御部
110- --受信部
111- ·- OFDM復調部
112- --チャネル推定部
113- ··制御データ抽出部
114- ·■チャネル復号化部
120- ··無線制御部
130- ··無線部
200- ··送信部
201" '·チャネル符号化部
202·· '·データ制御部
203·· ••OFDM変調部
204·· '·スケジューリング部
205·· •DLスケジューリング部
206·· •ULスケジューリング部
210··受信部
211·- -復調部
212·· •チャネル推定部
213-· -制御データ抽出部
214·· -チャネル複号化部
215-· -受信タイミングずれ検出部
220-· -無線部
300-· -AMC変調部
301-· ■1.25MHz用 FFT部
302-· ■2.5MHz用 FFT部 304· · · 10ΜΗζ用 FFT部
310…サブキャリアマッピング部
320- - -IFFT部
発明を実施するための最良の形態
[0052] 以下、図面を参照して、本発明の第 1から第 3の実施形態について説明する。まず 、これらの実施形態に共通する内容について説明する。図 1は、各実施形態に共通 の無線通信システムの構成を示す概略ブロック図である。 BSは、基地局装置である 。 MS1〜MS4は、それぞれの通信能力の通信帯域幅が異なる移動局装置である。 各実施形態における下りリンクは、 3GPPで検討されている EUTRAと同様に、下りリ ンクパイロットチャネル DPICH、下りリンク同期チャネル DSCH、下りリンク共通制御 チャネル DCCCH、下りリンク共用制御シグナリングチャネル DSCSCH、下りリンク 共用データチャネル DSDCHからなる。各実施形態における上りリンクは、 3GPPで 検討されている EUTRAと同様に、上りリンタコンテンションベースチャネル CBCH、 上りリンクスケジューリングチャネル USCH、上りリンクパイロットチャネル UPICHから なる。
[0053] 図 2、 3は、各実施形態における上りリンクのフレームの構成例であり、 3GPPで検 討されている EUTRAと同様に、上りリンタコンテンションベースチャネル CBCHと上 りリンクスケジューリングチャネル USCHが周波数'時間分割多重されている。
上りリンクフレームは、図 2の構成例に示すように、周波数軸の複数サブキャリアの かたまりであるチャンク(チャンク Chunk_l〜チャンク Chunk_m)と時間軸のタイム スロット TTI (タイムスロット TTI_1〜タイムスロット TTI_n)による 2次元で構成される 。また、 1つのチャンクの無線リソースをさらに細力べ分割し、分割した周波数帯域幅( リソース帯域幅)を AMCS方式、周波数スケジューリングの単位とすることができる。 なお、この単位により構成されるリソースをリソースブロックと呼ぶ。
[0054] 図 2に示したように、上りリンクパイロットチャネル UPICHは、上りリンクスケジユーリ ングチャネル USCHの各タイムスロット TTIの先頭と末尾にマッピングする。
なお、ここでは上りリンクパイロットチャネル UPICHの配置について例として示して いるだけであって、その他の配置にマッピングされる構成であってもよレ、。基地局装 置 BSは、各移動局装置 MS1〜MS4からの上りリンクパイロットチャネル UPICHから 無線伝播路の推定や移動局装置 MS 1〜MS4と基地局装置 BS間の受信タイミング ずれの検出を行う。各移動局装置 MS1〜MS4は、 Distributed FDMA (くしの歯 状スペクトル)や Localized FDMA (局所化スペクトル)、または CDMAを利用して 、同時に上りリンクパイロットチャネル UPICHを送信できる。
[0055] 上りリンタコンテンションベースチャネル CBCHと上りリンクスケジューリングチャネル USCHは、図 3A、図 3Bの様に TDM (時分割多重で配置:図 3B)や、 TDM— FD Mのハイブリッド方法(時分割多重と周波数分割多重を併用して配置:図 3A)等で周 波数 '時間分割多重して、配置される。
[0056] 図 4は、移動局装置 MS 1〜MS4の構成を示す概略ブロック図である。
移動局装置 MS:!〜 MS4は、送信部 100、受信部 110、無線制御部 120、無線部 130から構成される。送信部 100は、チャネル符号ィ匕部 101と、データ制御部 102と 、変調部 103と、 USCHスケジューリング部 104および CBCHスケジューリング部 10 5を備えるスケジューリング部 106と、送信タイミング制御部 107とからなる。受信部 11 0は、 OFDM復調部 111と、チャネル推定部 112と、制御データ抽出部 113と、チヤ ネル復号化部 114とからなる。なお、無線制御部 120、無線部 130は、送信'受信に 共用である。
[0057] 先ず、送信に関わる構成の説明を行う。
チャネル符号化部 101は、入力された送信データを、スケジューリング部 106から 入力された AMC情報の符号化率を用いて符号化する。
[0058] データ制御部 102は、下りリンクの CQI情報、入力された制御データとチャネル符 号化部 101にて符号化された送信データを、スケジューリング部 106からの指示に基 づき上りリンクスケジューリングチャネル USCH、上りリンタコンテンションベースチヤ ネル CBCHで送信するように送信フレームにチャネルを配置する。また、データ制御 部 102は上りリンクパイロットチャネル UPICHも合わせて配置する。
[0059] 変調部 103は、スケジューリング部 106から入力された AMC情報の変調方式を用 レ、てデータを変調して変調データを生成する。また、変調部 103は、変調データに対 して FFT (高速フーリエ変換: Fast Fourier Transform)を行レ、、スケジューリング 部 106からのマッピング情報に基づいてサブキャリアに FFTされた変調データとヌル データをマッピングして、 IFFT (逆高速フーリエ変換: Inverse Fast Fourier Tra nsform)を行レ、、シングルキャリア変調データを生成する。なお、説明の便宜上、ここ では上りリンクの通信方式として DFT_Spread OFDMを用いた場合について説 明している力 VSCRF— CDMAのようなその他のシングルキャリア方式、 OFDMの ようなマルチキャリア方式でもよレ、。
[0060] スケジューリング部 106は、制御データ抽出部 113から通知された AMC情報に基 づき変調方式を決め、さらにスケジュール情報で指定されたチャネル種別と先に決め た変調方式に基づき、各データをフレーム上のどのチャネルに配置するかを決める。 なお、フレーム上のチャネルの配置は、スケジュール情報として制御データ抽出部 1 13から取得する。また、スケジューリング部 106は、 USCHスケジューリング部 104と CBCHスケジューリング部 105とを備える。上りリンクスケジューリングチャネル USC Hで送信する送信データ、制御データ、 CQI情報については、 USCHスケジユーリン グ部 104にて決定し、上りリンタコンテンションベースチャネル CBCHで送信する送 信データ、制御データについては、 CBCHスケジューリング部 105にて決定する。
[0061] また、 CBCHスケジューリング部 105は、上りリンタコンテンションベースチャネル C BCHで送信したデータに対する応答が該データを送信して力 一定時間経過しても 制御データ抽出部 113から得られないときは、ランダムバックオフ時間を決定し、該 データを該ランダムバックオフ時間経過後のどのチャンクに配置するかを決める。こ のときのランダムバックオフ時間および配置するチャンクの決定方法の詳細について は、各実施形態の説明にて述べる。
[0062] 送信タイミング制御部 107は、制御データ抽出部 113から入力された送信タイミン グ情報に基づいてシングルキャリア変調データを無線部 130に出力する。
[0063] 無線部 130は、無線制御部 120から入力された無線周波数情報に基づいて無線 部 130内の局部発振器の発振周波数を設定しており、入力されたシングノレキャリア 変調データを局部発振器が生成した発振信号を用いて無線周波数信号にアップコ ンバートし、図示しないアンテナから基地局装置 BSに送信する。
[0064] 次に、受信に関わる構成の説明を行う。 無線部 130は、基地局装置 BSからの下りリンクのデータを、図示しないアンテナを 介して受信し、ベースバンド信号にダウンコンバートして、 OFDM復調部 111および チヤネノレ推定部 112に出力する。
[0065] チャネル推定部 112は、下りリンクパイロットチャネル DPICHに相当する受信デー タカ 伝播路特性を推定し、伝播路特性推定値を OFDM復調部 111に出力する。 また、基地局装置 BSに受信状況を通知するために、伝播路特性推定値を基に CQI 情報を生成し、データ制御部 102、およびスケジューリング部 106に CQI情報を出力 する。
[0066] OFDM復調部 111は、チャネル推定部 112より入力された伝播路特性推定値を基 に受信データの伝播路変動の補償を行い、制御データ抽出部 113より入力された A MC情報を基に受信データの復調を行う。
[0067] 制御データ抽出部 113は、受信データを情報データと制御データ(下りリンク共通 制御チャネル DCCCH、下りリンク共用制御シグナリングチャネル DSCSCH)に分離 する。制御データ抽出部 113は、制御データの中で下りリンクの情報データに対する AMC情報については、 OFDM復調部 111、チャネル復号化部 114に出力し、上り リンクの AMC情報とスケジューリング情報(フレーム上のチャンネル配置)について はスケジューリング部 106に出力する。また、制御データの中で上りリンクの送信タイ ミング情報については送信タイミング制御部 107に出力する。
[0068] チャネル復号化部 114は、制御データ抽出部 113より入力された情報データの A MC情報から復調データの復号を行い、復号データを受信データとして上位レイヤ に出力する。なお、制御データは予め所定の AMCが設定されていることを想定して おり、 OFDM復調部 111は制御データに対しては予め設定された所定の変調方式 で復調を行い、チャネル複号化部 114は制御データに対しては予め設定された所定 の符号化率で復号化を行う。なお、図 4では、制御データのチャネル符号ィ匕部、およ びチャネル復号ィ匕部の図示は省略する。
無線制御部 120は、上りリンク、下りリンクの使用周波数帯域の中心周波数を選択 し、無線周波数情報を無線部 130に出力する。
[0069] 次に、変調部 103の詳細について説明する。これにより、無線部 130内の局部発振 器の発振周波数を変更せずに送信周波数帯域 (チャンク)を変更する処理にっレ、て 説明する。本実施形態においては、変調部 103は、 DFT- Spread OFDMにおけ る変調処理を行う。図 5は、変調部 103の DFT- Spread OFDM変調信号を生成す る処理部の構成を示した概略ブロック図である。変調部 103は、 AMC変調部 300、 使用周波数帯域毎の FFT部である 1. 25MHz用 FFT部 301、 2. 5MHz用 FFT部 302、•••ΙΟΜΗζ用 FFT部 304、サブキャリアマッピング部 310、 IFFT部 320を具 備する。
[0070] AMC変調部 300は、スケジューリング部 106から入力された AMC情報の変調方 式を用いて、データ制御部 102から入力されたデータを変調して変調データを生成 する。
1. 25MHz用 FFT部 301、 2. 5MHz用 FFT部 302、… 10MHz用 FFT部 304 は、データ送信に用いる使用周波数帯域に応じて選択され、 AMC変調部 300が生 成した変調データを高速フーリエ変換して、サブキャリアにフーリエ変換された変調 データ (すなわち、変換結果として得られた各周波数の係数)をサブキャリアマツピン グ部 310に出力する。例えば、データ送信に用いる使用周波数帯域力 チャンクの 1 . 25MHzのときは、 1. 25MHz用 FFT部 301が選択されて、該 1 · 25MHz用 FFT 部 301が変調データを高速フーリエ変換 (FFT)する。同様に、データ送信に用いる 使用周波数帯域が 2チャンクの 2. 5MHzのときは、 2. 5MHz用 FFT部 302が選択 され、データ送信に用いる使用周波数帯域が 8チャンクの 10MHzのときは、 10MH z用 FFT部 304が選択される。
[0071] サブキャリアマッピング部 310は、スケジューリング部 106力 入力されたマッピング 情報に基づいてサブキャリアに FFTされた変調データとヌルデータをサブキャリアに マッピングして、 IFFT部 320に出力する。 IFFT部 320の周波数帯域幅より使用周 波数帯域幅 (FFT部の周波数帯域幅)が小さいときは、この段階で、送信に用いる周 波数帯域 (チャンク)に変調データをマッピングする。
[0072] IFFT部 320は、サブキャリアマッピング部 310により各サブキャリアにマッピングさ れて入力された変調データとヌルデータに対して逆高速フーリエ変換 (IFFT)を行う 。ここで、 IFFT部 320への入力がマッピングされ得るサブキャリアの数は、移動局クラ スに応じて変わる。例えば移動局クラスが 10MHzの場合は、 IFFT320への入力は 、 10MHzの周波数帯域幅に属するサブキャリアにマッピングされるのに対し、移動 局クラスが 5MHzの場合は、 5MHzの周波数帯域幅に属するサブキャリアにマツピン グされるため、マッピングの対象となるサブキャリアの数は 10MHzの場合の半分とな る。
[0073] ランダムアクセスのように、 1つのチャンクを用いて送信するときの変調部 103にお ける送信に用いるチャンク選択の動作について、説明する。図 6Aに、送信に用いる チャンクとして、無線部 130内の局部発振器の発振周波数をある値に設定した状態 で、 IFFT部 320が扱える周波数帯域の中で、最も周波数が小さいチャンク Chunk Jをスケジューリング部 106が指定したときのマッピング例を示す。送信に用いるチ ヤンクの数は、 1つなので、 1. 25MHz用 FFT部 301が選択され、 1. 25MHz用 FF T部 301は、 AMC変調部 300が生成した変調データを FFTする。
[0074] サブキャリアマッピング部 310は、スケジューリング部 106からマッピング先としてチ ヤンク ChunkJの指定を受けると、 1. 25MHz用 FFT部 301が FFTした変調デー タを、チャンク Chunk Jに所属するサブキャリアに等間隔にマッピングし、 IFFT部 3 20に出力する。すなわち、サブキャリアマッピング部 310は、 IFFT部 320への入力 の中で最も周波数の小さいチャンクに所属するサブキャリアにマッピングして入力す る。さらに、サブキャリアマッピング部 310は、 FFTした変調データをマッピングしてい ないサブキャリアについては、ヌルデータをマッピングして、 IFFT部 320に出力する 。 IFFT部 320は、サブキャリアマッピング部 310からの入力を IFFTする。
[0075] これにより、 IFFT部 320の出力は、図 6Bに示すように、 10MHz周波数帯域中の 最も小さな周波数の 1. 25MHz周波数帯域(チャンク Chunks)において等間隔の 飛び飛びのスペクトルとなる。
[0076] 次に、チャンク Chunk Jを用いて送信した後に、送信に用いるチャンクとして、チ ヤンク Chunk_jの最小周波数から最大周波数が 1 OMHz離れたチャンク Chunk_ kをスケジューリング部 106が指定したときのマッピング例を図 7Aに示す。送信に用 レ、るチャンクの数は、 1つなので、チャンク Chunk_jのときと同様に、 1. 25MHz用 F FT部 301が選択され、 1. 25MHz用 FFT部 301は、 AMC変調部 300が生成した 変調データを FFTする。
[0077] サブキャリアマッピング部 310は、スケジューリング部 106からマッピング先としてチ ヤンク Chunk— kの指定を受けると、 1. 25MHz用 FFT部 301が FFTした変調デー タを、チャンク Chunk_kに所属するサブキャリアに等間隔にマッピングし、 IFFT部 3 20に出力する。すなわち、サブキャリアマッピング部 310は、 IFFT部 320への入力 の中で最も周波数の大きいチャンクに所属するサブキャリアにマッピングして入力す る。さらに、サブキャリアマッピング部 310は、 FFTした変調データをマッピングしてい ないサブキャリアについては、ヌルデータをマッピングして、 IFFT部 320に出力する 。 IFFT部 320は、サブキャリアマッピング部 310からの入力を IFFTする。
[0078] これにより、 IFFT部 320の出力は、図 7Bに示すように、 10MHz周波数帯域中の 最も大きな周波数の 1. 25MHz周波数帯域(チャンクChunk_k)において等間隔 の飛び飛びのスペクトルとなる。
図 7Aに示すように、サブキャリアマッピング部 310において図 6Aとは異なるポイン ト群に対して変調データをマッピングすることにより、図 7Bに示すように、 10MHz周 波数帯域中の図 6Bとは異なる周波数位置の 1. 25MHz周波数帯域にぉレ、て等間 隔の飛び飛びのスペクトルとなる。
[0079] このように IFFT部 320の入力がマッピングされ得るサブキャリアの周波数帯域内で あれば、サブキャリアマッピング部 310によるマッピング内容の切り替えのみで、異な るチャンクに変更して送信することができるので、局部発振器の発振周波数を変更す るときのような遅延は発生しない。
[0080] 次に、複数チャンクを用いて送信するときの変調部 103の動作について説明する。
例として、移動局クラスが 10MHzの移動局装置において、使用周波数帯域が 10 MHzの場合について示す。図 8Aに、使用周波数帯域が 10MHzのときのサブキヤリ ァマッピング部 310によるマッピングの例を示す。 FFT部は、 10MHz用 FFT部 304 が選択され、 10MHz用 FFT部 304は、変調データを FFTして出力する。サブキヤリ ァマッピング部 310は、 10MHz用 FFT部 304の出力を、 IFFT部 320の IFFTポイン トに対して均等にマッピングし、さらに、その間にはヌルデータをマッピングする。図 8 Bに、使用周波数帯域が 10MHzの場合のスペクトル例を示す。図 8Bに示すように、 10MHz周波数帯域において等間隔の飛び飛びのスペクトルとなる。
[0081] 図 9は、基地局装置 BSの構成を示す概略ブロック図である。
基地局装置 BSは、送信部 200、受信部 210、無線部 220から構成される。送信部 200は、チャネル符号化部 201と、データ制御部 202と、 OFDM変調部 203と、 DL スケジューリング部 205および ULスケジューリング部 206を備えるスケジューリング部 204と力 なる。受信部 210は、復調部 211と、チャネル推定部 212と、制御データ 抽出部 213と、チャネル複号化部 214と、受信タイミングずれ検出部 215とからなる。 なお、無線部 220は送信 '受信に共用である。
[0082] 先ず、送信に関わる構成の説明を行う。
チャネル符号化部 201は、入力された送信データを、スケジューリング部 204から 入力された AMC情報の符号ィ匕率を用レ、て符号化する。
[0083] データ制御部 202は、スケジューリング部 204からの指示に基づき制御データを下 りリンク共通制御チャネル DCCCH、下りリンク同期チャネル DSCH、下りリンクパイ口 ットチャネル DPICH、下りリンク共用制御シグナリングチャネル DSCSCHにマツピン グし、各移動局装置 MS1〜MS4に対する情報データを下りリンク共用データチヤネ ル DSDCHにマッピングする。
[0084] OFDM変調部 203は、データ変調、入力信号の直並列変換、拡散符号およびスク ランプリングコードを乗算し、 IFFT、 GI (Gurad Interval)付力 Q、フィルタリングなど の OFDM信号処理を行い、 OFDM信号を生成する。なお、スケジューリング部 204 から入力された各移動局装置 MS 1〜MS4の情報データの AMC情報の変調方式 で各サブキャリアの情報データの変調を行う。
[0085] 無線部 220は、 OFDM変調部 203により OFDM変調されたデータを無線周波数 にアップコンバートして、移動局装置 MS:!〜 MS4にデータを送信する。
[0086] 次に、受信に関わる構成の説明を行う。
無線部 220は、移動局装置 MS1〜MS4からの上りリンクのデータをベースバンド 信号にダウンコンバートして、受信データを復調部 211、チャネル推定部 212、受信 タイミングずれ検出部 215に出力する。
[0087] チャネル推定部 212は、上りリンクパイロットチャネル UPICHから伝播路特性を推 定し、復調部 211に伝播路特性推定値を出力する。また、上りリンクのスケジユーリン グ、情報データの AMCの算出を行う為に伝播路特性の推定結果をスケジューリング 部 204に出力する。
[0088] 受信タイミングずれ検出部 215は、上りリンクパイロットチャネル UPICH、またはラン ダムアクセスチャネル RACHのプリアンブルから移動局装置 MS 1〜MS4のデータ の受信タイミングのずれを検出し、受信タイミングのずれに関する情報を復調部 211 、データ制御部 202に出力する。
[0089] 復調部 211は、受信タイミングずれ検出部 215より入力された受信タイミングのずれ に関する情報、チャネル推定部 212より入力された伝播路特性推定値、制御データ 抽出部 213より入力された上りリンクの AMC情報から各移動局装置 MS:!〜 MS4よ り送信された受信信号の復調を行う。ここで、復調部 211は、受信信号に対して FFT を行なレ、、スケジューリング部 204からのマッピング情報に基づいて移動局装置毎に 割り当てたサブキャリアを分離して、周波数等化を行なった後、 IFFTを行なレ、、シン グノレキャリア復調データを検出する。なお、説明の便宜上、ここでは上りリンクの通信 方式として DFT— Spread OFDMを用いた場合について説明している力 VSCR F— CDMAのようなその他のシングルキャリア方式、 OFDMのようなマルチキャリア 方式でもよい。
[0090] 制御データ抽出部 213は、復調部 211にて検出した復調データのうち上りリンクス ケジユーリングチャネル USCH区間に相当するデータを受信データ(USDCH)と制 御データ(USCCH)に分離する。制御データ抽出部 213は、制御データの中で上り リンクの情報データの AMC情報は復調部 211、チャネル復号ィ匕部 214に出力し、下 りリンクの CQI情報はスケジューリング部 204に出力する。
[0091] なお、上りリンクの受信データの AMCは基本的に基地局装置 BSが移動局装置 M S1〜MS4の上りリンクパイロットチャネル UPICHより推定した伝播路状況より判断し て設定して、移動局装置 MS:!〜 MS4に通知して、移動局装置 MS:!〜 MS4がその 通知された AMCを用いてチャネル符号化、変調を行うので、基地局装置 BSは移動 局装置 MS:!〜 MS4に通知した AMCを記憶保持しておき、上りリンクの制御データ に AMC情報を構成せずに、復調、チャネル複号化を行う構成とすることもできる。 [0092] チャネル復号化部 214は、制御データ抽出部 213からの AMC情報に基づいて復 調データのチャネル復号ィヒを行なレ、、情報データを上位レイヤに出力する。
[0093] スケジューリング部 204は、下りリンクのスケジューリングを行なう DLスケジユーリン グ部 205と上りリンクのスケジューリングを行なう ULスケジューリング部 206力、ら構成 される。
[0094] DLスケジューリング部 205は、移動局装置 MS1〜MS4から通知される CQI情報 や上位レイヤから通知される各移動局装置 MS:!〜 MS4への送信データに基づき、 下りリンクの各チャンク、タイムスロット TTIに対して移動局装置 MS1〜MS4のチヤネ ルを割り当て、情報データをマッピングするためのスケジューリングや、各チャネルの データを符号化、変調するための AMCを算出する。
[0095] ULスケジューリング部 206は、チャネル推定部 212からの上りリンクの各移動局装 置 MS:!〜 MS4の伝播路特性の推定結果と移動局装置 MS:!〜 MS4からのリソース 割り当て要求から上りリンクの各チャンク、タイムスロット TTIに対して移動局装置 MS :!〜 MS4のチャネルを割り当て、情報データをマッピングするためのスケジューリング や、各チャネルのデータを符号化、変調するための AMCを算出する。
[0096] なお、制御データは予め所定の AMCが設定されており、復調部 211は制御データ に対しては予め設定された所定の変調方式で復調を行い、チャネル復号化部 214 は制御データに対しては予め設定された所定の符号化率で復号化を行う。図 9では 、制御データのチャネル符号ィ匕部、およびチャネル復号ィ匕部の図示は省略する。
[0097] 上りリンクの初期無線接続確立時に、移動局装置 MS 1〜MS4はランダムアクセス チャネル RACHのランダムアクセスを行う。本実施形態は、初期無線接続確立のた めに必要なデータは最小送信周波数帯域のランダムアクセスチャネル RACHで基 本的に構成されることを前提としている。例えば、 1. 25MHz移動局クラスの移動局 装置 MS 1の場合、基本的に初期無線接続確立時のランダムアクセスチャネル RAC Hは 1. 25MHzで構成される。 5MHz移動局クラスの移動局装置 MS3は、初期無 線接続確立のためのデータを複製して、複数の最小送信周波数帯域のランダムァク セスチャネル RACHを用いてランダムアクセスを行うことにより、接続成功確率を上げ ることもできる。例えば、 5MHz移動局クラスの移動局装置 MS3は、 4つの最小送信 ができる。
[0098] ここで、移動局装置の通信能力の周波数帯域幅とは、自装置の状態を変更しない まま通信可能な周波数帯域の帯域幅、つまり、送受信するチャンクとして選択可能な 全てのチャンクを合計した帯域幅である。 自装置の状態としては、 自装置への設定、 つまり、移動局装置の無線部 130内の局部発振器の発振周波数などの自装置に対 する設定が挙げられる。例えば、通信能力の周波数帯域幅が 5MHzである 5MHz 移動局クラスの移動局装置は、 5MHzより狭帯域のチャンクを送信する際に、自装置 の状態を変更することなしに、サブキャリアマッピング部 310によるマッピング内容を 変更することにより、 5MHzの帯域幅を持つ所定の周波数帯域の中から、任意のチ ヤンクを選択して送信することができる。
[0099] 図 10に、ランダムアクセスチャネル RACHのランダムアクセスにおけるチャンク選択 例を示す。ここでは、図 10の(1)前提システム P1に示すように、システム帯域幅が 20 MHz、上りリンタコンテンションベースチャネル CBCH用の周波数帯域幅が 5MHz のシステムを前提に説明を行うが、本発明はこのようなシステムに限定されるものでは なレ、。なお、ここでは、上りリンクがシングルキャリアとマルチキャリアの両方の場合の 説明を行うために、周波数スペクトルを図示するのではなぐその周波数帯域を用い るチャンクを概念的に図示した。なお、一つのチャンク帯域幅は 1. 25MHzの場合を 示している。
[0100] 図 10に、 (2) 1. 25MHz移動局クラスの移動局装置 MS1の選択例 P2を示す。こ の例では、 1. 25MHz移動局クラスの移動局装置 MS 1は、上りリンタコンテンション ベースチャネル CBCH用の 5MHzの周波数帯域の中から、任意に 1つのチャンク(こ を行う。 選択の方法は、任意の方法を用いることができる。
[0101] また、図 10に、 (3) 2. 5MHz移動局クラスの移動局装置 MS2の選択例 1P3を示 す。この例では、 2. 5MHz移動局クラスの移動局装置 MS2は、(2) 1. 25MHz移動 局クラスの移動局装置 MSIの選択例 P2と同様に、任意に 1つのチャンク(ここでは、
[0102] また、図 10に、 (4) 2. 5MHz移動局クラスの移動局装置 MS2の選択例 2P4を示 す。この例では、 2. 5MHz移動局クラスの移動局装置 MS2は、上りリンクコンテンシ ヨンベースチャネル CBCH用の 5MHzの周波数帯域の中から、任意に 2つのチャン ク(ここでは、チャンク C9、 C10)を選択してランダムアクセスチャネル RACHのランダ ムアクセスを行なう。なお、(4) 2. 5MHz移動局クラスの移動局装置 MS2の選択例 2 P4では、 P 接するチャンクを選択した場合について示しているが、そのような場合に 限定されるものではない。
[0103] また、図 10に、 (5) 5, 10MHz移動局クラスの移動局装置 MS3、 MS4の選択例 1 P5を示す。この例では、(2) 1. 25MHz移動局クラスの移動局装置 MS1の選択例 P 2、 (3) 2. 5MHz移動局クラスの移動局装置 MS2の選択例 1P3と同様に、任意に 1 つのチャンク(ここでは、チャンク C7)を選択してランダムアクセスチャネル RACHの ランダムアクセスを行う。
[0104] また、図 10に、(6) 5, 10MHz移動局クラスの移動局装置 MS3、 MS4の選択例 2 P6を示す。この例では、(4) 2. 5MHz移動局クラスの移動局装置 MS2の選択例 2P 4と同様に、任意に 2つのチャンク(ここでは、チャンク C7、 C8)を選択してランダムァ クセスチャネル RACHのランダムアクセスを行う。
[0105] また、図 10に、 (7) 5, 10MHz移動局クラスの移動局装置 MS3、 MS4の選択例 3 P7を示す。この例では、上りリンタコンテンションベースチャネル CBCH用の 5MHz の周波数帯域の中から、任意に 3つのチャンク(ここでは、チャンク C7、 C8、 C9)を選
[0106] また、図 10に、 (8) 5, ΙΟΜΗζ移動局クラスの移動局装置 MS3、 MS4の選択例 4 P8を示す。この例では、上りリンタコンテンションベースチャネル CBCH用の 5MHz の周波数帯域の全ての、 4つのチャンク(チャンク C7〜C10)を選択してランダムァク セスチャネル RACHのランダムアクセスを行う。
[0107] なお、図 10の(5) 5, 10MHz移動局クラスの移動局装置 MS3、 MS4の選択例 IP 5〜(8) 5, 10MHz移動局クラスの移動局装置 MS3、 MS4の選択例 4P8について は、 5MHzか 5MHzを超える移動局クラスであればよぐ例えば、 15MHzや 20MH zの移動局クラスであってもよレ、。
[0108] ここで、複数のチャンクを用いてランダムアクセスチャネル RACHのランダムァクセ スを行う場合に、一つのランダムアクセスチャネル RACH用の信号を複数コピーして 各チャンクでそれぞれ同様のランダムアクセスチャネル RACH用の信号を送信する 方法と、広帯域用のランダムアクセスチャネル RACH用の信号を複数のチャンクを用 レ、て送信する方法があるが、以下では主として前者の方法について説明する。
[0109] なお、前者は基地局装置 BSにおいて一つのチャンクのランダムアクセスチャネル R ACHを検出することで移動局装置 MS 1〜MS4を検出することができる力 後者は 特定の移動局装置より送信された全てのチャンクのランダムアクセスチャネル RACH を検出する必要がある。また、広帯域の移動局クラスの移動局装置、例えば 5MHz 移動局クラスの移動局装置 MS3は複数のチャンクを用いてランダムアクセスチヤネ ル RACHのランダムアクセスを行なうことにより接続成功確率を上げることができるが 、狭帯域の移動局クラスの移動局装置、例えば 1. 25MHz移動局クラスの移動局装 置 MS1にとつては衝突確率が上がってしまう。
[0110] そのため、 QoS (Quality of Service :サービス品質)、セル内の接続移動局装 置数などに応じて予め基地局装置 BSが、移動局装置 MS1〜MS4のランダムァクセ スチャネル RACHのランダムアクセスに選択可能なチャンク数を決めて、その情報を 下りリンクにおいてセル内の移動局装置 MS1〜MS4に報知する形態が望ましい。 移動局装置 MS1〜MS4は報知された基準情報を基に、チャンク数を選択してラン
Figure imgf000032_0001
例えば、セル内に 1. 25MHz移動局クラスの移動局装置 MS 1が多く存在するとき 、 5MHz移動局クラスの移動局装置 MS3は QoSが余り高くなければ、できる限り 1つ のチャンクを用
Figure imgf000032_0002
なお、ここでは初期無線接続確立時のランダムアクセスチャネル RACHの最小周 波数帯域幅を 1. 25MHzとして説明している力、システムの構成によっては 2. 5MH z、 5MHz、 10MHzなどにしてもよレ、。例えば、 1. 25MHz移動局クラスの移動局装 置 MS1のサポートを行なわず、通信可能な最小移動局クラスを 2. 5MHz移動局クラ スの移動局装置 MS2にしているシステムでは、ランダムアクセスチャネル RACHの 最小周波数帯域幅を 2. 5MHzにしてもよい。
[0112] しかしながら、各移動局装置 MS1〜MS4はランダムアクセスチャネル RACHのラ ンダムアクセスに用いるチャンクをランダムに選択する力 統計的にランダムになるよ うな方法を用いていても、瞬時的にあるチャンクに複数の移動局装置のランダムァク セスが集中し、移動局装置間の信号が衝突する場合がある。初期無線接続確立時 のランダムアクセスチャネル RACHのランダムアクセスは、移動局装置側からの送信 開始となり、基地局装置 BSと移動局装置とで通信してチャンクの位置の指定を行うこ とはできないので、統計的にランダムになるような方法しか用いることができない。
[0113] 通常、ランダムアクセスチャネル RACHのランダムアクセスにおいて衝突が起きると 、ある程度時間間隔を空けて再度ランダムアクセスチャネル RACHのランダムァクセ スが行われる。このように、再度ランダムアクセスを行うまでに時間を空けることをラン ダムバックオフと呼び、その際の時間間隔をランダムバックオフ時間と呼ぶ。このラン ダムバックオフ時間の上限を設定して、その範囲内でランダムに送信を停止する時 間、または再開する時間を設定する。これは、衝突を起こした複数の移動局装置が 絶えずランダムアクセスチャネル RACHを再送すると、絶えず衝突を起こし続ける問 題を回避するためのものである。
[0114] し力 ながら、長いランダムバックオフ時間が設定されると、直ぐにランダムアクセス チャネル RACHの再送を行うことができなレ、。そこで、第 1から第 4の実施形態では、 早急なランダムアクセスの再送が求められる移動局装置に対して衝突確率を増加さ せることなぐランダムアクセスの再送を直ぐに行えるようにする。
、基地局装置 BSと移動局装置 MS:!〜 MS4間の無線リンクを接続するための手順で ある。言い換えれば、基地局装置 BSと移動局装置 MS:!〜 MS4間通信の物理層を 接続するための手順である。その一方、現在提案されているシステムの MAC層(物 理層の上位にある論理層)においては物理層の接続がされていない場合のモードが 複数種類ある。その 1つは、 Idleモード(第 1の通信状態)と呼ばれ、基地局装置 BSと 移動局装置 MS1〜MS4間の MAC層の接続がされていない状態である。他に、 Do rmantモード(第 2の通信状態)と呼ばれるモードがあり、基地局装置 BSと移動局装 置 MS1〜MS4間の MAC層の接続がされている状態である。両モードの違いは、デ ータの送受信を開始する時の速さであり、 Dormantモードは MAC層の接続が維持 されている状態なので MAC層の接続手順を踏む必要がなく、 Idleモードと比較して 直ぐにデータの送受信を開始することができる。これは、ウェブブラウジングのような サービスを利用してレ、るユーザの移動局装置 MS 1〜MS4に適した MACモードで ある。
[0116] 例えば、ユーザは基地局装置 BSから画像データをダウンロードし、移動局装置 M S1〜MS4の表示画面に映し出された画像を見て、見終わった後に次の画像データ をダウンロードする。ユーザが画像を見ている間はデータをダウンロードしないので、 無線リンクを確保し続けるのはリソースの無駄を生ずる。し力 ながら、このようなサー ビスはある程度時間間隔が開いた後、再度データをダウンロードするという処理が繰 り返されるので、データをダウンロードするたびに MAC層の接続処理を行っていて は、長い接続時間がかかり、ユーザに満足なサービスを提供することができない。そ こで、そのような状態の移動局装置は Dormantモードに入り、データのダウンロード カ い場合は無線リンクのみを切断した状態で待機する。
[0117] これは、システム側においても有効であり、 MAC層の接続処理のためのメッセージ をやり取りするための無線リソースをその都度割り当てる必要がなくなり、システム全 体の限られた無線リソースを有効に使用することができる。なお、システムが MAC層 の接続を維持できる移動局装置 MS1〜MS4にも限りがあるため、上記のようなサー ビスを提供中でない移動局装置 MS1〜MS4は Idleモードの状態で待機する。また 、 Dormantモードを要約すると、 MAC層において動作状態であるアクティブモード 中に DRX (Discontinuous Reception:非連続受信) /ΌΤΧ (Discontinuous Transmission :非連続送信)区間により構成されている状態を指す。
[0118] [第 1の実施形態]
本実施形態においては、 Dormantモードの移動局装置 MS 1〜MS4は、ランダム バックオフの上限を Idleモードのときの設定値よりも短い値に設定し、その時間間隔 の範囲内でランダムバックオフ時間が設定されるようにする。このようにすることにより 、 Dormantモードの移動局装置 MS1〜MS4は再送を行う時間を短縮でき、つまり、 無線接続確立に要する時間を Idleモードの移動局装置と比較して短縮でき、本来の Dormantモードの効果を向上させることができ、好適なサービスを提供することがで きる。
[0119] Dormantモードの移動局装置 MS1〜MS4と Idleモードの移動局装置 MS1〜M S4のランダムアクセスチャネル RACHの再送方法を、図面を用いて説明する。
図 11に、 Idleモードと Dormantモードのランダムアクセスチャネル RACHの再送 に関する最大ランダムバックオフ時間を示す。 Idleモードの移動局装置 MS:!〜 MS4 では、 CBCHスケジューリング部 105は、スケジュール情報として自装置が Idleモー ドにあることを取得している。 CBCHスケジューリング部 105は、ランダムアクセスを行 つてから一定時間経過しても、基地局装置 BSからの応答を制御データ抽出部 113よ り得られないときは、最大ランダムバックオフ時間を TImaxとして、この時間間隔内で ランダムアルゴリズムによりランダムバックオフ時間を設定して、ランダムアクセスを再 度行うタイムスロット TTIを選択する。
[0120] Dormantモードの移動局装置 MS1〜MS4では、上述と同様にして、 CBCHスケ ジユーリング部 105は、スケジュール情報として自装置が Dormantモードにあること を取得している。 CBCHスケジューリング部 105は、ランダムアクセスを行ってから一 定時間経過しても、基地局装置 BSからの応答を制御データ抽出部 113より得られな レ、ときは、最大ランダムバックオフ時間を TDmaxとして、この時間間隔内でランダム アルゴリズムによりランダムバックオフ時間を設定して、ランダムアクセスを再度行うタ ィムスロット TTIを選択する。
ここで、各モードにおける最大ランダムバックオフ時間は、 TImax >TDmaxという 関係となるように予め設定しておくことで、平均的には Dormantモードにある移動局 装置 MS:!〜 MS4が Idleモードにある移動局装置 MS:!〜 MS4より早く再送を行う。
[0121] 図 12A〜図 12Cに、本実施形態による Idleモード、及び Dormantモードにおける ランダムアクセスチャネル RACHの再送タイミングの例を示す。なお、ここでは例とし て、図 12Aに示すように、 1フレームが 1つの連続する上りリンタコンテンションベース チャネル CBCH区間と 1つの連続する上りリンクスケジューリングチャネル USCH区 間から構成される場合にっレ、て示す。
[0122] 図 12Bと図 12Cは、 Idleモードの最大ランダムバックオフ時間 T 力 ¾フレーム分
Imax
の長さで、 Dormantモードの最大ランダムバックオフ時間 T 力 2フレーム分の長さ
Dmax
のときの、 Idleモードの移動局装置と Dormantモードの移動局装置 MS1〜MS4と のランダムアクセスが CBCH区間 C1にて衝突したときのランダムアクセスの再送タイ ミングの例を示した図である。
[0123] 図 12Bに例示した Idleモードの移動局装置 MS1〜MS4は、上りリンクコンテンショ ンベースチャネル CBCH区間 C1にてランダムアクセスチャネル RACHのランダムァ クセスに失敗すると、最大ランダムバックオフ時間 T より短い時間である 3フレーム
Imax
分の時間をランダムバックオフ時間 T1として設定され、 3フレーム後の上りリンタコン テンションベースチャネル CBCH区間 C4でランダムアクセスチャネル RACHの再送 を行う。
[0124] 一方、図 12Cに例示した Dormantモードの移動局装置 MS1〜MS4は、上りリンク コンテンションベースチャネル CBCH区間 C1にてランダムアクセスチャネル RACH のランダムアクセスに失敗すると、最大ランダムバックオフ時間 T より短い時間で
umax
ある 1フレーム分の時間をランダムバックオフ時間 T1として設定され、 1フレーム後の 上りリンタコンテンションベースチャネル CBCH区間 C2でランダムアクセスチャネル R ACHの再送を行う。
[0125] これにより、 Dormantモードにある移動局装置 MS1〜MS4が Idleモードにある移 動局装置 MS1〜MS4よりも短いランダムバックオフ時間を設定し、早急にランダムァ クセスチャネル RACHの再送を適切に行うことで、ランダムアクセスチャネル RACH のレスポンスタイムを抑えて無線接続確立までの時間を抑えることができる。
[0126] なお、本実施形態では、ランダムバックオフ時間の上限値のみを MACモードに応 じて変更したが、下限値も変更してもよい。これにより、 Idleモードにおける最小ランダ ムバックオフ時間を、 Dormantモードにおける最大ランダムバックオフ時間以上の値 にしておくことで、常に Dormantモードにある移動局装置 MS1〜MS4が Idleモード にある移動局装置 MS:!〜 MS4よりも短いランダムバックオフ時間を設定して、ランダ ムアクセスチャネル RACHの再送を行うことで Dormantモードにある移動局装置 M S 1〜MS4のランダムアクセスチャネル RACHのレスポンスタイムを抑えて無線接続 確立までの時間を抑えることができる。
[0127] また、本実施形態では基地局装置 BSと移動局装置 MS 1〜MS4との状態の一例 として通信接続状態である MACモードに応じてランダムバックオフ時間を制御してラ ンダムアクセスチャネル RACHを再送する場合について説明した力 基地局装置 B Sと移動局装置 MS 1〜MS4との状態として通信する通信サービス種別に応じて制 御することもできる。通信する通信サービス種別がテレビ電話などの要求 QoSの高い 通信サービス種別である移動局装置は、最大ランダムバックオフ時間を短くなるよう にし、パケット通信などの要求 QoSの低い通信サービス種別である移動局装置よりも 接続確立までの時間が早くなるようにして、的確に要求 QoSに応じたサービスを提供 できる好適なシステムを実現することができる。
[0128] [第 2の実施形態]
第 2の実施形態において、 Dormantモードにある移動局装置 MS2〜MS4はラン ダムバックオフ時間が Idleモードにある移動局装置 MS2〜MS4と比較して平均的に 短くなるようにし、 Dormantモードにある移動局装置 MS2〜MS4はランダムァクセ スチャネル RACHの再送を行うチャンクの選択肢を Idleモードにある移動局装置 MS 2〜MS4と比較して広くとれるようにして分散させる。このようにすることにより、 Dorm antモードにある移動局装置 MS2〜MS4間のランダムアクセスの衝突確率を低減し 、 Dormantモードにある移動局装置 MS2〜MS4は再送を行う時間を短縮できる。 つまり、 Dormantモードにある移動局装置 MS2〜MS4は、無線接続確立に要する 時間を短縮でき、本来の Dormantモードの効果を向上させることができ、好適なサ 一ビスを提供することができる。
[0129] 本実施形態における Dormantモードにある移動局装置 MS2〜MS4と Idleモード にある移動局装置 MS2〜MS4のランダムアクセスチャネル RACHの再送方法を、 図面を用いて説明する。図 13に、 Idleモードと Dormantモードとにおけるランダムァ クセスチャネル RACHの再送に関する最大ランダムバックオフ時間を例示し、図 14 A、図 14Bに Idleモードと Dormantモードとにおけるランダムアクセスチャネル RAC Hの再送に用いるチャンクを例示する。 [0130] 図 13に示すように、本実施形態では、 Idleモードにある移動局装置 MS2〜MS4 は最大ランダムバックオフ時間を Tlmaxとして、この時間間隔内でランダムァルゴリズ ムによりランダムバックオフ時間を設定する。 Dormantモードにある移動局装置 MS 2〜MS4は最大ランダムバックオフ時間を TDmaxとして、この時間間隔内でランダ ムアルゴリズムによりランダムバックオフ時間を設定する。ここで、 TImax>TDmaxと なるように設定し、 Dormantモードにある移動局装置 MS2〜MS4が Idleモードにあ る移動局装置 MS2〜MS4より早く再送を行う確率を上げる。
[0131] このままでは、最大ランダムバックオフ時間 TDmaxが短いため、 Dormantモード にある移動局装置 MS2〜MS4同士でランダムアクセスが衝突し、これらの移動局装 置 MS2〜MS4が再送するランダムアクセスの衝突確率が高くなる。これを避けて再 送時の衝突確率を下げるために、ランダムアクセスチャネル RACHの再送時のチヤ ンクの選択肢を増やす。
[0132] 図 14Aに例示するように、 Idleモードにある移動局装置 MS2〜MS4が、周波数 fl のチャンクにてランダムアクセスチャネル RACHを送信し、一定時間経過しても基地 局装置 BSからの応答を得られなかったとき、該移動局装置 MS2〜MS4の CBCHス ケジユーリング部 105は、上記最大ランダムバックオフ時間 T 以下となるランダムバ
Imax
ックオフ時間を選択する。次に、 CBCHスケジューリング部 105は、応答が得られな 力つたランダムアクセスチャネル RACHを、初期の送信と同じ周波数 flのチャンクで あり、該ランダムバックオフ時間経過後の上りリンタコンテンションベースチャネル CB CH区間に配置する。
[0133] 一方、図 14Bに例示するように、 Dormantモードにある移動局装置 MS2〜MS4 が、周波数 flのチャンクにてランダムアクセスチャネル RACHを送信し、一定時間経 過しても基地局装置 BSからの応答を得られなかったとき、該移動局装置 MS2〜MS 4の CBCHスケジューリング部 105は、上記最大ランダムバックオフ時間 T 以下と
Dmax なるランダムバックオフ時間を選択する。次に、 CBCHスケジューリング部 105は、所 定の選択候補のチャンク(ここでは、周波数 fOと flのチャンク)の中から、例えば周波 数 fOのチャンクを選択し、応答が得られなかったランダムアクセスチャネル RACHを 、該チャンクであり、該ランダムバックオフ時間経過後の上りリンタコンテンションベー スチャネル CBCH区間に配置する。
[0134] 例えば、 Dormantモードの最大ランダムバックオフ時間 TDmaxを Idleモードの最 大ランダムバックオフ時間 TImaxの半分にすると、 Dormantモードにある移動局装 置 MS2〜MS4同士の衝突確率は Idleモード同士の 2倍になる力 Dormantモード のランダムアクセスチャネル RACHの再送時のチャンクの選択肢を Idleモードの 2倍 にすると衝突確率が半分になり、全体として Dormantモードにある移動局装置 MS2 〜MS4間の衝突確率を Idleモードにある移動局装置 MS2〜MS4の時と同じにする こと力 Sできる。
[0135] これにより、 Dormantモードにある移動局装置 MS2〜MS4が Idleモードにある移 動局装置 MS2〜MS4よりも短いランダムバックオフ時間を設定し、かつ、選択候補 のチャンク数を増やすことで再送時の衝突確率を下げてレ、るので、早急にランダムァ クセスチャネル RACHの再送を適切に行うことができ、かつ、再送時に衝突を繰り返 すことを防ぐことができ、ランダムアクセスチャネル RACHのレスポンスタイムを抑えて 無線接続確立までの時間を抑えることができる。
[0136] なお、本実施形態においても、 Idleモード、及び Dormantモードにおけるランダム アクセスチャネル RACHの再送タイミングは、図 13に示した第 1の実施形態と同様で ある。つまり、 MACモードにより、最大ランダムバックオフ時間を変更してもよいし、最 大ランダムバックオフ時間と最小ランダムバックオフ時間を変更してもよい。このとき、 衝突確率は、最大ランダムバックオフ時間と最小ランダムバックオフ時間との差、およ び、選択候補となるチャンク数に反比例する。
[0137] 例えば、 Idleモードにおける最大ランダムバックオフ時間を 4T、最小ランダムバック オフ時間を Τ、つまり、最大ランダムバックオフ時間と最小ランダムバックオフ時間との 差を 4Τ_Τ= 3Τとする。さらに、 Dormantモードにおける最大ランダムバックオフ時 間を T、最小ランダムバックオフ時間を 0、つまり、最大ランダムバックオフ時間と最小 ランダムバックオフ時間との差を T_0=Tとし、選択候補となるチャンク数を 3とする。 このようにすると、 Dormantモードのランダムバックオフ時間を Idleモードより短くし、 全体として Dormantモードにある移動局装置 MS2〜MS4間の衝突確率を、 Idleモ ードにある移動局装置 MS2〜MS4間と同じにすることで、 Dormantモードにおいて 、ランダムアクセスを開始してから成功するまでの時間を抑えることができる。
[0138] また、上記説明では、 Dormantモードにある移動局装置 MS2〜MS4のみにラン ダムアクセスチャネル RACHの再送を行うチャンクの選択候補を複数持たせている が、 Idleモードにある移動局装置 MS2〜MS4にも同様にランダムアクセスチャネル RACHの再送を行うチャンクの選択候補を複数持たせ、 Dormantモードにある移動 局装置 MS2〜MS4は、 Idleモードにある移動局装置 MS2〜MS4よりもランダムァ クセスチャネル RACHの再送を行うチャンクの選択候補を多く持たせるような形態と することちでさる。
[0139] また、本実施形態では基地局装置 BSと移動局装置 MS2〜MS4との状態の一例 として通信接続状態である MACモードに応じてランダムバックオフ時間および再送 を行うチャンクの選択候補の数を制御してランダムアクセスチャネル RACHを再送す る場合について説明した力 基地局装置 BSと移動局装置 MS2〜MS4との状態とし て通信する通信サービス種別に応じて制御することもできる。通信する通信サービス 種別がテレビ電話などの要求 QoSの高い通信サービス種別である移動局装置 MS2 〜MS4は、最大ランダムバックオフ時間を短くかつ選択候補となるチャンクの数が多 くなるようにし、パケット通信などの要求 QoSの低い通信サービス種別である移動局 装置 MS2〜MS4よりも接続確立までの時間が早くなるようにして、的確に要求 QoS に応じたサービスを提供できる好適なシステムを実現することができる。
[0140] [第 3の実施形態]
第 3の実施形態では、移動局装置 MS1〜MS4がランダムアクセスチャネル RAC Hの再送時に選択可能なチャンク数に応じて Dormantモードの最大ランダムバック オフ時間 T の制御を行う。
Dmax
[0141] ランダムアクセスチャネル RACHの再送時に選択可能なチャンク数、周波数範囲 は、移動局装置 MS:!〜 MS4の移動局クラス、または動作モードにより異なる。
移動局クラスは、移動局装置 MS:!〜 MS4の無線部 130において一度に送受信可 能な周波数帯域幅を示す。移動局装置 MS:!〜 MS4はその周波数帯域内であれば チャンクを変調部 103または OFDM復調部 111のベースバンド処理により選択する こができるが、その周波数帯域外のチャンクを選択するためには無線部 130が備える 局部発振器の発振周波数を変更しなければならない。この変更のために、デジタル 部からアナログ部に対して変更を設定するための制御遅延、発振周波数のぶれが安 定するまでの遅延が生じる。そのため、この周波数帯域外にて送信する場合は、送 信を再開するまでに時間を要してしまレ、、直ぐにランダムアクセスチャネル RACHの ランダムアクセスを再度試みることができない。本実施形態では、これを避けるため、 Dormantモードのときの移動局装置 MS1〜MS4がランダムアクセスの再送に用レヽ る可能性のある選択候補のチャンクを、移動局クラスに応じた周波数帯域内のチャン クに制限する。
[0142] また、移動局クラスとは異なり、動作モードとして複数の周波数帯域幅の送受信を 制御する場合がある。つまり、無線部 130の能力としては広帯域な送受信が可能な 移動局装置に対して、能力より小さい周波数帯域幅で動作させる場合である。例え ば、全ての移動局装置が 10MHz移動局クラスの移動通信システムにおいて、動作 モードとして 1 · 25MHz, 2. 5MHz、 5MHz、 10MHzで送信、または受信するよう に設定し、移動局装置は設定された動作モードより広帯域な送信、または受信を行 わないようにする。これは、移動通信システムの都合上、サービス体系の違いにより 周波数帯域を限定する場合に行われることが想定される。このとき、 Dormantモード のときの移動局装置がランダムアクセスの再送に用いる可能性のある選択候補のチ ヤンクは、動作モードに応じた周波数帯域内のチャンクに制限する。
[0143] なお、本実施形態においては、動作モードが 1. 25MHzの移動局装置についても 移動局クラスが 1. 25MHzの移動局装置と区別せずに移動局装置 MS 1と表記し、 同様にして、動作モードが 2. 5MHzの移動局装置を移動局装置 MS2、動作モード 力 MHzの移動局装置を移動局装置 MS3、動作モードが 10MHzの移動局装置を 移動局装置 MS4と表記する。
[0144] 本実施形態においては、上述のように、移動局装置 MS:!〜 MS4がランダムァクセ スチャネル RACHの再送時に選択可能なチャンク数は、移動局クラス、または動作 モードにより異なる。選択可能なチャンク数が異なるということは、周波数領域でのラ ンダム性という観点から衝突確率が異なると言え、選択可能なチャンク数が多い時の 衝突確率は選択可能なチャンク数が少ない時の衝突確率より小さくなる。よって、ラ ンダムアクセスチャネル RACHの再送時に選択可能なチャンク数に応じて Dormant モードの最大ランダムバックオフ時間の制御を行うことにより、適切に Dormantモー ドにある移動局装置 MS1〜MS4間の衝突確率を制御することができる。
[0145] より詳細には、 Dormantモードにある移動局装置 MS1〜MS4間のランダムァクセ スチャネル RACHの衝突確率をある程度均等に保ち、できる限り Dormantモードに ある移動局装置 MS 1〜MS4がランダムアクセスチャネル RACHの再送を早く行え るようにするために、移動局クラスが高レ、、もしくは、動作モードが大きい移動局装置 の最大ランダムバックオフ時間は短くし、移動局クラスが低レ、、もしくは、動作モードが 小さくなるにつれてその移動局装置に対してはより長い最大ランダムバックオフ時間 を設定するようにする。また、 Idleモードのときの移動局装置 MS1〜MS4を基準とし て、 Dormantモードのときの移動局装置 MS1〜MS4は選択可能なチャンク数に比 例して最大ランダムバックオフ時間短くするようにして、 Dormantモードにある移動 局装置 MS1〜MS4間のランダムアクセスチャネル RACHの衝突確率をより均等に 保つことができる。
[0146] 図 15は、チャンクの帯域幅が 1 · 25MHzのときの 1 · 25MHz、 2. 5MHz、 5MHz 、 10MHzの移動局クラスの移動局装置 MS1〜MS4が、 Idleモードおよび Dorman tモードにあるときにランダムアクセスの再送の配置候補となるチャンクおよびタイムス ロットの例を示した図である。
[0147] 図 15では、全ての移動局クラスの移動局装置 MS1〜MS4は、 Idleモードにあると き、初期のランダムアクセスを配置したチャンクと同一で、最大ランダムバックオフ時 間 T までのチャンク、タイムスロットである領域 A1を、ランダムアクセスの再送の配
Imax
置候補とする。すなわち、 Idleモードにあるときは、 CBCHスケジューリング部 105は 、この領域 A1内にランダムアクセスの再送を配置する。
[0148] 1. 25MHzの移動局クラスの移動局装置 MS1は、 Dormantモードにあるとき、初 期のランダムアクセスを配置したときの局部発振器の発振周波数を変更せずに送受 信できるチャンク (周波数帯域幅は 1. 25MHz)で、最大ランダムバックオフ時間 T
Dm
1までのチャンク、タイムスロットである領域 A2を、ランダムアクセスの再送の配置候 ax
補とする。すなわち、 Dormantモードにあるときは、 1. 25MHzの移動局クラスの移 動局装置 MSIの CBCHスケジューリング部 105は、この領域 A2内にランダムァクセ スの再送を配置する。
[0149] 2. 5MHzの移動局クラスの移動局装置 MS2は、 Dormantモードにあるとき、初期 のランダムアクセスを配置したときの局部発振器の発振周波数を変更せずに送受信 できる 2チャンク(周波数帯域幅は 2. 5MHz)で、最大ランダムバックオフ時間 T 2
umax までのチャンク、タイムスロットである領域 A3を、ランダムアクセスの再送の配置候補 とする。すなわち、 Dormantモードにあるときは、 2. 5MHzの移動局クラスの移動局 装置 MS2の CBCHスケジューリング部 105は、この領域 A3内にランダムアクセスの 再送を配置する。
[0150] 5MHzの移動局クラスの移動局装置 MS3は、 Dormantモードにあるとき、初期の ランダムアクセスを配置したときの局部発振器の発振周波数を変更せずに送受信で きる 4チャンク (周波数帯域幅は 5MHz)で、最大ランダムバックオフ時間 T 3まで max のチャンク、タイムスロットである領域 A4を、ランダムアクセスの再送の配置候補とす る。すなわち、 Dormantモードにあるときは、 5MHzの移動局クラスの移動局装置 M S3の CBCHスケジューリング部 105は、この領域 A4内にランダムアクセスの再送を 配置する。
[0151] 10MHzの移動局クラスの移動局装置 MS4は、 Dormantモードにあるとき、初期 のランダムアクセスを配置したときの局部発振器の発振周波数を変更せずに送受信 できる 8チャンク(周波数帯域幅は 10MHz)で、最大ランダムバックオフ時間 T 4
Dmax までのチャンク、タイムスロットである領域 A5を、ランダムアクセスの再送の配置候補 とする。すなわち、 Dormantモードにあるときは、 10MHzの移動局クラスの移動局 装置 MS4の CBCHスケジューリング部 105は、この領域 A5内にランダムアクセスの 再送を配置する。
[0152] これにより、 Dormantモードにある移動局装置 MS 1〜MS4は、選択候補のチャン ク数に応じてランダムバックオフ時間の上限値を設定してレ、るので、衝突確率を平均 化しつつ、ランダムバックオフ時間をできるだけ短い時間とすることができる。このため 、早急にランダムアクセスチャネル RACHの再送を適切に行レ、、かつ、再送時に衝 突を繰り返すことを防ぐので、ランダムアクセスチャネル RACHのレスポンスタイムを 抑えて無線接続確立までの時間を抑えることができる。
[0153] また、第 3の実施形態は第 1、第 2の実施形態と同様に、基地局装置 BSと移動局装 置 MS1〜MS4との状態の一例として通信接続状態である MACモードに応じて再 送を行うチャンクの選択候補の数およびランダムバックオフ時間を制御してランダム アクセスチャネル RACHを再送する場合について説明した力 基地局装置 BSと移 動局装置 MS:!〜 MS4との状態として通信する通信サービス種別に応じて制御する こともできる。通信する通信サービス種別がテレビ電話などの要求 QoSの高い通信 サービス種別である移動局装置 MS:!〜 MS4は、再送を行うチャンクの選択候補の 数を多ぐ最大ランダムバックオフ時間を短くし、パケット通信などの要求 QoSの低い 通信サービス種別である移動局装置 MS2〜MS4よりも接続確立までの時間が早く なるようにして、的確に要求 QoSに応じたサービスを提供できる好適なシステムを実 現すること力 Sできる。
[0154] 次に、第 1から第 3の実施形態におけるランダムアクセスチャネル RACHのランダム アクセスを行う際の移動局装置 MS1〜MS4と基地局装置 BS間のシーケンスについ て説明する。
移動局装置 MS1〜MS4は、電源投入後、 PLMN (Public Land Mobile Net work)選択、セルサーチを行う。基地局装置 BSは、下りリンク共通パイロットチャネル DCPICH、下りリンク同期チャネル DSCH、下りリンク共通制御チャネル DCCCHを 定期的に送信されている。移動局装置 MS1〜MS4は、下りリンク共通パイロットチヤ ネノレ DCPICH、下りリンク同期チャネル DSCHから接続を試みるセルの選択を行な レ、、報知情報として下りリンク共通制御チャネル DCCCH力 システム帯域幅、 CBC H用周波数帯域幅、周波数位置等の基地局装置情報を取得する。基地局装置情報 を取得後、移動局装置 MS:!〜 MS4は、位置登録を経て、 Idleモードに入る。
[0155] 移動局装置 MS:!〜 MS4は、再位置登録、パケット発着信のための初期接続、また はバケツト通信中の再接続などのときに、上りリンクコンテンションベースチャネル CB CHを用いて基地局装置 BSヘランダムアクセスチャネル RACHのランダムアクセスを 行う。図 16に、移動局装置 MS 1〜MS4と基地局装置 BS間のランダムアクセスチヤ ネル RACHのランダムアクセス処理のフローチャートを示す。 [0156] まず、移動局装置 MS1〜MS4は、任意の統計的にランダムな選択アルゴリズムに より、初期接続確立、または再接続のためのランダムアクセスチャネル RACHのラン ダムアクセスを試みるチャンクを CBCH用周波数帯域の中から選択し (Sal)、該ラン ダムアクセスチャネル RACHを送信する(Sa2)。ここで、初期接続確立のためのラン ダムアクセスチャネル RACHのランダムアクセスで移動局装置 MS 1〜MS4が基地 局装置 BSに送信するデータは、 W_ CDMAでシグネチヤと呼ばれる各移動局装置 を識別するための情報 (シグネチヤと称する)、基地局装置 BSと移動局装置 MS1〜 MS4間の同期を合わせるための情報(プリアンブルと称する)を含む。また、各移動 局装置個別の情報、無線接続関連情報も併せて含まれる構成をとつても、後の処理 の中で基地局装置 BSに送信される構成でもよい。ここでは、説明を簡易にするため アンブルのみを送信する場合について説明する。
[0157] 基地局装置 BSは、上りリンタコンテンションベースチャネル CBCHを受信し(Sa3) 、該上りリンタコンテンションベースチャネル CBCHに移動局装置 MSI〜MS4が送 信したランダムアクセスチャネル RACHを検出すると(Sa4)、上りリンクスケジユーリン グチャネル USCHにおいて移動局装置 MS1〜MS4にデータを送信するためのチ ャネルを割り当てるスケジューリングを行なレ、、プリアンブルから基地局装置 BSと移 動局装置 MS1〜MS4間の受信タイミングのずれを検出し、下りリンク共用制御シグ ナリングチャネル DSCSCHを用いて移動局装置 MS1〜MS4から送信されたシグネ チヤ、同期情報、及びスケジューリング情報を下りリンクで移動局装置 MS1〜MS4 に送信する(Sa5)。または、以降のフレームの先頭の下りリンク共通制御チャネル D CCCHで前記の情報を送信する。基地局装置 BSは、上りリンタコンテンションベース チャネル CBCHを受信しても移動局装置 MS1〜MS4からのランダムアクセスチヤネ ル RACHを検出しなかった場合は(Sa4)、上記ランダムアクセスチャネル RACHに 関する処理を行なわない。
[0158] 移動局装置 MS1〜MS4は、下りリンク共通制御チャネル DCCCH、または予め周 波数帯域の決められた下りリンク共用制御シグナリングチャネル DSCSCHを受信し て自装置が送信したシグネチヤが含まれてレ、るかを監視し、一定期間以内に自装置 宛のデータがない場合 (Sa6)、第 1または第 3の実施形態にて説明したように、ラン ダムアクセスチャネル RACHを再送するチャンク、ランダムバックオフ時間を選択する (Sa9)。
[0159] すなわち、第 1の実施形態においては、 Dormantモードのときの移動局装置 MS 1 〜MS4はランダムバックオフ時間の生成アルゴリズムの上限値である最大ランダムバ ックオフ時間を Idleモードのときと比較して短い値に設定する。第 2の実施形態にお いては、 Dormantモードのときの移動局装置 MS2〜MS4はランダムバックオフ時 間の生成アルゴリズムの上限値である最大ランダムバックオフ時間を Idleモードのと きと比較して短い値に設定し、ランダムアクセスチャネル RACHの再送に用いるチヤ ンクを選択候補の中から選択する。第 3の実施形態においては、 Dormantモードの ときの移動局装置 MS:!〜 MS4はランダムバックオフ時間の生成アルゴリズムの上限 値である最大ランダムバックオフ時間を Idleモードのときと比較して短い値に設定し、 ランダムアクセスチャネル RACHの再送に用いるチャンクを複数の候補チャンクの中 から選択するが、その際、選択候補のチャンク数と最大ランダムバックオフ時間との関 係が一定に保たれるように設定する。
[0160] 各移動局装置 MS1〜MS4は、ステップ Sa9にて選択したチャンク、ランダムバック を再試行する(Sa2)。
[0161] そして、移動局装置 MS1〜MS4は下りリンク共用制御シグナリングチャネル DSC SCHにおいて自装置が送信したシグネチヤがあった場合(Sa6)、下りリンク共用制 御シグナリングチャネル DSCSCHを復調し、同期情報、スケジューリング情報を抽出 する。次に、移動局装置 MS:!〜 MS4は、移動局クラス等の自装置情報と QoSゃデ ータ量等のスケジューリングに必要な情報を送信する。基地局装置 BSは、移動局装 置 MS:!〜 MS4から送信された移動局クラス等の自装置情報と QoSやデータ量等の スケジューリングに必要な情報を基にスケジューリングを行なレ、、スケジューリング情 報を移動局装置 MS:!〜 MS4に送信する。移動局装置 MS:!〜 MS4への上りリンク のスケジューリングが行なわれると、移動局装置 MS1〜MS4は上位レイヤとの位置 登録作業を開始し、位置登録を行う。位置登録では、一時的な加入者識別情報 (IM SI : International Mobile Subscriber Identity^ IMEI: International Mobi le Equipment Identity)、列えば TMSI (Temporary Mobile Subscriber I dentity)、 TMEI (Temporary Mobile Equipment Identity)や一時的な IPァ ドレスなど、を位置登録の承認とともに移動局装置 MS:!〜 MS4に送信する。また、 同時に鍵交換プロトコルや認証処理が実行される。これらにより、無線接続処理が完 了する(Sa7、 Sa8)。
[0162] [第 4の実施形態]
また、本発明は、ランダムアクセスチャネル RACH以外の通常時の上りリンクコンテ ンシヨンベースチャネル CBCHのランダムアクセスの再試行にも適用することができる 本実施形態においては、移動局装置 MS:!〜 MS4は、送信データがあり、上りリン クスケジューリングチャネル USCHが割り当てられなかった場合、または非常に少量 のデータを基地局装置 BSに送信する場合、上りリンタコンテンションベースチャネル CBCHのランダムアクセスを試みる。ここでは、上りリンタコンテンションベースチヤネ ル CBCHの中で、上りリンクスケジューリングチャネル USCHにおいてチャネル割り 当てを要求するための上りリンク要求チャネル URCH (Uplink Request Channel )を送信するために、または少量のデータからなるファーストアクセスチャネル FACH (Fast Access Channel)を送信するために行なう。
[0163] 上りリンク要求チャネル URCHを送信する場合、すなわち、チャネル割り当てを要 求する場合、初期無線接続確立のためのランダムアクセスチャネル RACHのランダ ムアクセスと同様、移動局装置 MS1〜MS4の CBCHスケジューリング部 105が上り リンク要求チャネル URCHのランダムアクセスに用いるチャンクを選択し、基地局装 置 BSよりスケジューリング情報を受信して上りリンクスケジューリングチャネル USCH を用いたデータ送信を行なうまでの手順を移動局装置 MS:!〜 MS4と基地局装置 B Sで行う。
[0164] ファーストアクセスチャネル FACHを送信する場合について、図 17に、通常時の少 量のデータ送信用のチャネル FACHのランダムアクセスのシーケンスを示す。この場 同様、移動局装置 MS 1〜MS4の CBCHスケジューリング部 105はファーストアクセ スチャネル FACHのランダムアクセスに用いるチャンクを選択し(Sbl)、ファーストア チャネル FACHにて送信するデータはシグネチヤ、プリアンブルと共に送信データを 含む。基地局装置 BSは、移動局装置 MS:!〜 MS4がランダムアクセスした送信デー タを伴うファーストアクセスチャネル FACHを検出すると(Sb3)、データの復調などの データ処理を行ない、下りリンク共用制御シグナリングチャネル DSCSCHを用いてフ アーストアクセスチャネル FACH中の送信データに対する ACKZNACKなどの応 答情報を下りリンクで移動局装置 MS:!〜 MS4に送信する(Sb4)。または、以降のフ レームの先頭の下りリンク共通制御チャネル DCCCHで前記の情報を送信する。移 動局装置 MS1〜MS4からのファーストアクセスチャネル FACHを検出しなかった場 合は(Sb3)、データ処理を行わずに、スケジューリングチャネル区間の処理に移行 する。
[0165] 移動局装置 MS1〜MS4は、下りリンク共通制御チャネル DCCCH、または予め周 波数帯域の決められた下りリンク共用制御シグナリングチャネル DSCSCHを受信し て応答情報が含まれてレ、るかを監視し、一定期間以内に自装置宛のデータがなレ、 場合(Sb5)、第 1から第 3の実施形態にてランダムアクセスチャネル RACHについて 説明したのと同様に、ファーストアクセスチャネル FACHを再送するランダムバックォ フ時間の制御、チャンクの切り替え選択を行う。 (Sb6)。
[0166] 第 1の実施形態においては、 Dormantモードのときの移動局装置 MS1〜MS4は ランダムバックオフ時間の生成アルゴリズムの時間間隔の上限値を Idleモードのとき の移動局装置 MS:!〜 MS4と比較して短い値に設定する。第 2の実施形態において は、 Dormantモードのときの移動局装置 MS2〜MS4はランダムバックオフ時間の 生成アルゴリズムの時間間隔の上限値を Idleモードのときの移動局装置 MS2〜MS 4と比較して短い値に設定し、ランダムアクセスチャネル RACHの再送に用いるチヤ ンクを複数の候補チャンクの中から選択する。第 3の実施形態においては、 Dorman tモードのときの移動局装置 MS1〜MS4はランダムバックオフ時間の生成アルゴリズ ムの時間間隔の上限値を Idleモードのときの移動局装置 MS1〜MS4と比較して短 い値に設定し、ランダムアクセスチャネル RACHの再送に用いるチャンクを複数の候 補チャンクの中から選択し、その際、候補チャンク数とランダムバックオフ時間の上限 値との関係を一定に保ちつつ設定、選択する。
[0167] そして、移動局装置 MS:!〜 MS4は下りリンク共用制御シグナリングチャネル DSC SCHにおレ、て自装置宛の応答情報があった場合(Sb5)、ファーストアクセスチヤネ ル FACHのランダムアクセスの処理を終了する。また、応答情報が NACKであった 場合、ファーストアクセスチャネル FACHのランダムアクセスを再試行するようにして あよい。
[0168] これにより、ランダムアクセスチャネル RACHのみでなぐファーストアクセスチヤネ ル FACHや上りリンク要求チャネル URCHなどの通常の上りリンクコンテンションべ ースチャネル CBCHのランダムアクセスにおいても、第 1から第 3の実施形態と同様 の効果を得ることができる。
[0169] なお、第 1から第 4の実施形態において、図 4の送信部 100、受信部 110、無線制 御部 120、および、図 9の送信部 200、受信部 210は専用のハードウェアにより実現 されるものであってもよく、また、各部はメモリおよび CPU (中央演算装置)により構成 され、各部の機能を実現するためのプログラムをメモリにロードして実行することにより その機能を実現させるものであってもよレ、。
[0170] 以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの 実施形態に限られるものではなぐこの発明の要旨を逸脱しない範囲の設計変更等 も含まれる。
産業上の利用可能性
[0171] 通信規格が異なるなどのために、異なる通信帯域幅を備える携帯電話機が混在し 、これらの携帯電話機が基地局にランダムアクセスするマルチバンド無線通信システ ムに用いて好適である力 これに限定されない。

Claims

請求の範囲
[1] 基地局装置と、前記基地局装置へのランダムアクセスを行う移動局装置とからなる 無線通信システムにおレ、て、
前記移動局装置は、ランダムアクセスを行ってから該ランダムアクセスに成功しなか つたときに再びランダムアクセスを行うまでのランダムバックオフ時間について、自装 置と前記基地局装置との状態に応じて決まる上限値を設定すること
を特徴とする無線通信システム。
[2] 基地局装置と、前記基地局装置へのランダムアクセスを行う移動局装置とからなる 無線通信システムにおレ、て、
前記移動局装置は、ランダムアクセスを行ってから該ランダムアクセスに成功しなか つたときにランダムアクセスを再び行うまでのランダムバックオフ時間を、当該移動局 装置と前記基地局装置との状態に応じて決まる上限値と下限値との間の値とし、前 記再び行うランダムアクセスの際に用いる周波数帯域を、自装置と前記基地局装置 との状態に応じて決まる選択候補周波数帯域の中から選択すること
を特徴とする無線通信システム。
[3] 前記選択候補周波数帯域の合計の帯域幅に応じて、前記上限値と前記下限値と の差を決定すること
を特徴とする請求項 2に記載の無線通信システム。
[4] 前記状態は、前記移動局装置と前記基地局装置との通信接続状態であることを特 徴とする請求項 1から請求項 3のいずれかの項に記載の無線通信システム。
[5] 前記通信接続状態は、少なくとも、物理層および論理層が接続されていない第 1の 通信状態と、論理層のみが接続されている第 2の通信状態とであることを特徴とする 請求項 4に記載の無線通信システム。
[6] 前記上限値は、前記第 1の通信状態のときょり、前記第 2の通信状態のときの方が 短いこと
を特徴とする請求項 5に記載の無線通信システム。
[7] 前記状態は、前記移動局装置と前記基地局装置間との間で通信する通信サービ ス種別であることを特徴とする請求項 1から請求項 3のいずれかの項に記載の無線通 信システム。
[8] 前記上限値は、前記通信サービス種別の要求サービス品質により決まることを特徴 とする請求項 7に記載の無線通信システム。
[9] 前記上限値は、前記通信サービス種別の要求サービス品質が低いときより、前記 要求サービス品質が高いときの方が短いこと
を特徴とする請求項 8に記載の無線通信システム。
[10] 基地局装置へのランダムアクセスを行う移動局装置において、
ランダムアクセスを行ってから該ランダムアクセスに成功しな力、つたときに再びランダ ムアクセスを行うまでのランダムバックオフ時間について、当該移動局装置と前記基 地局装置との状態に応じて決まる上限値を設定すること
を特徴とする移動局装置。
[11] 基地局装置と、前記基地局装置へのランダムアクセスを行う移動局装置とからなる 無線通信システムにおけるランダムアクセス方法において、
前記移動局装置が、ランダムアクセスに成功しなかったときに、ランダムバックオフ 時間として、当該移動局装置と前記基地局装置との状態に応じて決まる値より短い 時間を選択する第 1の過程と、
前記移動局装置が、前記ランダムアクセスを行ってから、前記第 1の過程にて選択 したランダムバックオフ時間が経過したときに、再びランダムアクセスを行う第 2の過程 と
を備えることを特徴とするランダムアクセス方法。
PCT/JP2007/063485 2006-07-06 2007-07-05 Système de communication sans fil, dispositif de station mobile et procédé d'accès aléatoire WO2008004629A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2007270362A AU2007270362B2 (en) 2006-07-06 2007-07-05 Wireless communication system, mobile station device, and random access method
JP2008523732A JP4743910B2 (ja) 2006-07-06 2007-07-05 無線通信システム、移動局装置およびランダムアクセス方法
US12/307,219 US20090257421A1 (en) 2006-07-06 2007-07-05 Wireless communication system, mobile station device, and random access method
EP07768234A EP2040480A1 (en) 2006-07-06 2007-07-05 Wireless communication system, mobile station apparatus and random access method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-186802 2006-07-06
JP2006186802 2006-07-06

Publications (2)

Publication Number Publication Date
WO2008004629A1 true WO2008004629A1 (fr) 2008-01-10
WO2008004629B1 WO2008004629B1 (fr) 2008-03-27

Family

ID=38894596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063485 WO2008004629A1 (fr) 2006-07-06 2007-07-05 Système de communication sans fil, dispositif de station mobile et procédé d'accès aléatoire

Country Status (6)

Country Link
US (1) US20090257421A1 (ja)
EP (1) EP2040480A1 (ja)
JP (1) JP4743910B2 (ja)
CN (1) CN101513113A (ja)
AU (1) AU2007270362B2 (ja)
WO (1) WO2008004629A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504028A (ja) * 2008-03-20 2011-01-27 ゼットティーイー コーポレーション エクステンド・サイクリックプレフィックス・フレーム構造のダウンリンク個別パイロットと物理リソースブロックとのマッピング方法
JP2013532929A (ja) * 2010-08-04 2013-08-19 聯發科技股▲ふん▼有限公司 マシン型通信用に強化されたランダムアクセスチャネルの設計
KR101510741B1 (ko) 2009-03-06 2015-04-10 삼성전자주식회사 무선 방송 통신 시스템의 방송 신호 송수신 방법 및 이를 위한 장치
US9345051B2 (en) 2012-09-11 2016-05-17 Fujitsu Limited Terminal, communication circuit and communication method

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7200405B2 (en) * 2003-11-18 2007-04-03 Interdigital Technology Corporation Method and system for providing channel assignment information used to support uplink and downlink channels
RU2389158C2 (ru) 2004-03-09 2010-05-10 Панасоник Корпорэйшн Способ произвольного доступа и терминальное устройство радиосвязи
US8175050B2 (en) * 2008-02-13 2012-05-08 Qualcomm Incorporated Resource release and discontinuous reception mode notification
US20100216478A1 (en) * 2009-02-20 2010-08-26 Milind M Buddhikot Method and apparatus for operating a communications arrangement comprising femto cells
US8509210B2 (en) * 2009-09-07 2013-08-13 TTSL IITB Center for Excellence in Telecom (TICET) Differentiating wireless uplink bandwidth request by connection priority
EP4358461A2 (en) * 2009-12-14 2024-04-24 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement for reconfiguring mapping of carrier indicator field to component carrier
JP5094896B2 (ja) * 2010-02-26 2012-12-12 シャープ株式会社 移動局装置、基地局装置、通信制御方法及び集積回路
EP2628349B1 (en) * 2010-10-11 2018-08-08 Telefonaktiebolaget LM Ericsson (publ) Improved common control channel access
US8830908B2 (en) * 2011-02-18 2014-09-09 Qualcomm Incorporated Apparatus and method for facilitating fallback access schemes
WO2013024327A1 (en) * 2011-08-17 2013-02-21 Renesas Mobile Corporation Mechanism for improving terminal operation during random access procedure applying discontinuous reception
US9232540B2 (en) 2011-09-30 2016-01-05 Qualcomm Incorporated Random access channel design for narrow bandwidth operation in a wide bandwidth system
RU2012102842A (ru) 2012-01-27 2013-08-10 ЭлЭсАй Корпорейшн Инкрементное обнаружение преамбулы
US9078257B2 (en) * 2011-11-11 2015-07-07 Intel Coproration Random backoff for extended access barring
GB2501080A (en) * 2012-04-11 2013-10-16 Sca Ipla Holdings Inc Telecommunication apparatus and methods
RU2012116579A (ru) 2012-04-24 2013-10-27 ЭлЭсАй Корпорейшн Детектирование преамбулы с двойной выдержкой на основе фрагментов
US8885590B2 (en) * 2012-05-18 2014-11-11 Futurewei Technologies, Inc. Systems and methods for scheduling multiple-input and multiple-output (MIMO) high-speed downlink packet access (HSDPA) pilot channels
RU2012137095A (ru) 2012-08-30 2014-03-10 ЭлЭсАй Корпорейшн Обнаружение преамбулы с использованием векторных процессоров
US9537649B2 (en) * 2012-11-05 2017-01-03 Lg Electronics Inc. Method and device for generating synchronization signal in wireless access system supporting ultrahigh frequency band
US10305626B2 (en) * 2013-04-05 2019-05-28 Qualcomm Incorporated Enhanced transmission time interval bundling design for machine type communications
US9813223B2 (en) 2013-04-17 2017-11-07 Intel Corporation Non-linear modeling of a physical system using direct optimization of look-up table values
US9923595B2 (en) 2013-04-17 2018-03-20 Intel Corporation Digital predistortion for dual-band power amplifiers
CN105323862B (zh) * 2014-07-21 2020-02-07 深圳市中兴微电子技术有限公司 一种提高高速下行分组接入网络性能的方法及用户设备
US20180014331A1 (en) * 2014-12-09 2018-01-11 Telefonaktiebolaget Lm Ericsson (Publ) Access Management of a Communication Device in a Cellular Network
US10601620B2 (en) * 2015-09-04 2020-03-24 National Taiwan University Device of handling block transmission in multicarrier system
US10757739B2 (en) * 2016-03-10 2020-08-25 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system and apparatus for supporting same
JP6761874B2 (ja) * 2016-06-24 2020-09-30 テレフオンアクチーボラゲット エルエム エリクソン(パブル) マッシブmimoのための送信器アーキテクチャ
US10484151B2 (en) 2017-03-02 2019-11-19 Qualcomm Incorporated Controlling random-access channel (RACH) retransmissions for wireless communication
US11259329B2 (en) * 2017-08-21 2022-02-22 Qualcomm Incorporated Prioritized random access procedure
JP7064566B2 (ja) * 2017-09-14 2022-05-10 オッポ広東移動通信有限公司 時間領域リソース確定方法、装置、記憶媒体及びシステム
US11678368B2 (en) * 2017-10-24 2023-06-13 Telefonaktiebolaget Lm Ericsson (Publ) Technique for listening after talk
KR20220102496A (ko) * 2021-01-13 2022-07-20 한국전자통신연구원 통신 시스템에서 랜덤 액세스 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308148A (ja) * 1999-03-10 2000-11-02 Sony Internatl Europ Gmbh 送受信装置及び送受信方法
JP2003348636A (ja) * 2002-05-27 2003-12-05 Clarion Co Ltd ランダムアクセス通信方式、無線通信機器及び無線通信システム
JP2006054860A (ja) * 2004-07-14 2006-02-23 Matsushita Electric Ind Co Ltd 通信端末装置及び無線通信方法
JP2006515737A (ja) * 2003-01-10 2006-06-01 サムスン エレクトロニクス カンパニー リミテッド 移動通信システムにおける上り方向メッセージ間の衝突を防止するためのランダムアクセスを制御する方法
JP2006186802A (ja) 2004-12-28 2006-07-13 Matsushita Electric Ind Co Ltd ダウンサンプリングfirフィルタ装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6977893B1 (en) * 1999-05-17 2005-12-20 Intel Corporation Method for establishing communication on an integrated services digital network
US6721281B1 (en) * 1999-06-18 2004-04-13 Interdigital Technology Corporation Random access channel access and backoff mechanism
EP1170919A1 (en) * 2000-07-04 2002-01-09 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Method and device for improving the transmission efficiency in a communication system with a layered protocol stack
US7733896B2 (en) * 2002-08-19 2010-06-08 Alcatel-Lucent Usa Inc. Dynamic access priority scheme
JP4053541B2 (ja) * 2002-11-04 2008-02-27 リサーチ イン モーション リミテッド 無線データ接続を維持するための方法およびシステム
EP2755345B1 (en) * 2003-03-31 2020-04-29 Apple Inc. A radio telecommunications system and method of operating the same with polling
US7742497B2 (en) * 2004-06-04 2010-06-22 Alcatel Lucent Access systems and methods for a shared communication medium
GB0506279D0 (en) * 2005-03-29 2005-05-04 Koninkl Philips Electronics Nv Radio communication
US8284793B2 (en) * 2006-02-27 2012-10-09 Qualcomm Incorporated Backoff control for access probe transmission in communication systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308148A (ja) * 1999-03-10 2000-11-02 Sony Internatl Europ Gmbh 送受信装置及び送受信方法
JP2003348636A (ja) * 2002-05-27 2003-12-05 Clarion Co Ltd ランダムアクセス通信方式、無線通信機器及び無線通信システム
JP2006515737A (ja) * 2003-01-10 2006-06-01 サムスン エレクトロニクス カンパニー リミテッド 移動通信システムにおける上り方向メッセージ間の衝突を防止するためのランダムアクセスを制御する方法
JP2006054860A (ja) * 2004-07-14 2006-02-23 Matsushita Electric Ind Co Ltd 通信端末装置及び無線通信方法
JP2006186802A (ja) 2004-12-28 2006-07-13 Matsushita Electric Ind Co Ltd ダウンサンプリングfirフィルタ装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Channel-Dependent Scheduling Method for Single-Carrier FDMA Radio Access in Evolved UTRA Uplink", RL-050701, 29 August 2005 (2005-08-29)
"E-UTRA Random Access", RL-051445, 7 November 2005 (2005-11-07)
"Physical Channel and Multiplexing in Evolved UTRA Uplink", RL-050850, 29 August 2005 (2005-08-29)
"Physical Channel and Multiplexing in Evolved UTRADownlink", RL-050707, 29 August 2005 (2005-08-29)
"Random Access Transmission for Scalable Multiple Bandwidth in Evolved UTRA Uplink", RL-051391, 7 November 2005 (2005-11-07)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504028A (ja) * 2008-03-20 2011-01-27 ゼットティーイー コーポレーション エクステンド・サイクリックプレフィックス・フレーム構造のダウンリンク個別パイロットと物理リソースブロックとのマッピング方法
US8391233B2 (en) 2008-03-20 2013-03-05 Zte Corporation Method for mapping downlink dedicated pilots to resource elements in extended cyclic prefix frame structure
KR101510741B1 (ko) 2009-03-06 2015-04-10 삼성전자주식회사 무선 방송 통신 시스템의 방송 신호 송수신 방법 및 이를 위한 장치
US9629177B2 (en) 2009-03-06 2017-04-18 Samsung Electronics Co., Ltd Method and apparatus for two-way broadcasting
JP2013532929A (ja) * 2010-08-04 2013-08-19 聯發科技股▲ふん▼有限公司 マシン型通信用に強化されたランダムアクセスチャネルの設計
US9345051B2 (en) 2012-09-11 2016-05-17 Fujitsu Limited Terminal, communication circuit and communication method

Also Published As

Publication number Publication date
JPWO2008004629A1 (ja) 2009-12-03
CN101513113A (zh) 2009-08-19
EP2040480A1 (en) 2009-03-25
JP4743910B2 (ja) 2011-08-10
WO2008004629B1 (fr) 2008-03-27
US20090257421A1 (en) 2009-10-15
AU2007270362B2 (en) 2010-06-03
AU2007270362A1 (en) 2008-01-10

Similar Documents

Publication Publication Date Title
WO2008004629A1 (fr) Système de communication sans fil, dispositif de station mobile et procédé d'accès aléatoire
CN108496387B (zh) 基站装置、终端装置以及通信方法
KR101550650B1 (ko) 기지국, 통신단말, 송신방법 및 수신방법
US8902876B2 (en) Method of transmitting sounding reference signal
CN106572539B (zh) 用于上行链路信令的系统和方法
JP5242025B2 (ja) 基地局および送信方法
KR101215346B1 (ko) 이동국, 기지국 및 방법
JP5038060B2 (ja) 移動通信システム、基地局装置、ユーザ装置及び方法
CN108496388B (zh) 基站装置、终端装置以及通信方法
KR101027572B1 (ko) 제어 채널 전송 방법, 기지국 및 단말기
CN111630914A (zh) 新无线电非授权中的物理上行控制信道的先听后说及信道接入优先级类别
WO2010084866A1 (ja) 無線通信制御方法、無線基地局装置及びユーザ装置
CN108605322B (zh) 用户设备、基站装置以及通信方法
JP2008017195A (ja) マルチバンド無線通信システム、移動局装置およびランダムアクセス方法
JP2011061841A (ja) 移動体通信システム、移動体通信方法、基地局装置および移動局装置
WO2008133461A1 (en) Method of transmitting broadcast information in wireless communication system
US20110136528A1 (en) Communication terminal apparatus, communication control apparatus, wireless communication system, and resource allocation request method
JP2008011157A (ja) 移動局装置および基地局装置
JP2007227996A (ja) 移動局装置、基地局装置、移動局装置のランダムアクセス方法、使用周波数帯域のマッピング方法、スケジューリング方法、プログラム及び記録媒体
JP5242522B2 (ja) 通信端末、受信方法および通信システム
JP4477312B2 (ja) 通信装置、基地局、移動端末及びデータ伝送システム
JP5033474B2 (ja) 通信方法およびそれを利用した基地局装置
JP5230577B2 (ja) 制御チャネル伝送方法、基地局、端末及び無線通信システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780032603.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07768234

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008523732

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007768234

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12307219

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007270362

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007270362

Country of ref document: AU

Date of ref document: 20070705

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: RU