JP2013532929A - マシン型通信用に強化されたランダムアクセスチャネルの設計 - Google Patents

マシン型通信用に強化されたランダムアクセスチャネルの設計 Download PDF

Info

Publication number
JP2013532929A
JP2013532929A JP2013522094A JP2013522094A JP2013532929A JP 2013532929 A JP2013532929 A JP 2013532929A JP 2013522094 A JP2013522094 A JP 2013522094A JP 2013522094 A JP2013522094 A JP 2013522094A JP 2013532929 A JP2013532929 A JP 2013532929A
Authority
JP
Japan
Prior art keywords
rach
mtc
access
machine
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013522094A
Other languages
English (en)
Inventor
グァンユー リン,
ウェイ,ホンユー
イーシェン チェン,
シュ,ジャ−ジュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MediaTek Inc
Original Assignee
MediaTek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MediaTek Inc filed Critical MediaTek Inc
Publication of JP2013532929A publication Critical patent/JP2013532929A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • H04W74/0841Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
    • H04W74/085Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/06Access restriction performed under specific conditions based on traffic conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks

Abstract

【課題】マシン型通信用に強化されたランダムアクセスチャネル(RACH)の設計を提供する。
【解決手段】 無線通信ネットワークのマシーンツーマシン(M2M)によって無線アクセスネットワーク(RAN)レベルのアクセス排除を行い、前記M2Mデバイスが前記M2Mデバイスのアクセスクラス(AC)に基づいて異なる排除パラメータを用いることでアクセス確率を適応して調整するステップ、およびアクセスを取得後、基地局とのランダムアクセスチャネル(RACH)手順を行うステップを含む方法。
【選択図】図5

Description

本出願は、35 U.S.C. §119の下、2010年8月4日に出願された米国特許仮出願番号第61/370,555号「Protocol Design to Reduce RACH Collision in Machine-Type Communications,」からの優先権を主張するものであり、これらの全ては引用によって本願に援用される。
本発明は、マシン型通信に関し、特に、マシン型通信用に強化されたランダムアクセスチャネル(RACH)の設計に関するものである。
マシン型通信は、必ずしもヒューマンインタラクションを要しない1つ以上の要素(entity)を含むデータ通信の一種である。 マシン型通信用に最適化されたサービスは、人間同士(H2H)の通信用に最適化されたサービスと異なる。一般的に、マシン型通信サービスは、異なる市場シナリオ、純粋なデータ通信、低コストと製造努力、および端末ごとに低トラフィックを有する潜在的に非常に大量の通信端末を含むため、現存の移動通信ネットワークと異なる。
マシーンツーマシン(M2M)およびマシン型通信(MTC)は、使用ケースを説明し、マシン型通信サービスのさまざまな特徴を説明するのに用いられる。M2MおよびMTCデバイスは、 “モノのインターネット(internet of things)”を有効にする、次世代の無線ネットワークの一部となる。潜在的なM2MおよびMTCアプリケーションは、セキュリティ、追跡(tracking and tracing)、支払い、健康、遠隔保守/制御、計量、および消費者向けデバイスを含む。マシン型通信サービスの主な特徴は、低移動性、時間制御性、遅延許容性、パケット交換オンリー、少量のデータ伝送、モバイル発信オンリー、低頻度モバイル終了(infrequent mobile terminated)、MTCモニタリング、プライオリティアラーム、安全接続、位置特定トリガ(location specific trigger)、アップリンクデータのためのネットワーク提供の目的地(network provided destination for uplink data、)低頻度の伝送、およびグループベースのMTCなどの特徴を含む。
MTCデバイスまたはMTCサーバー間、または2つのMTCデバイス間のエンドツーエンドアプリケーションが、3GPPシステムで提供される。3GPPシステムは、MTC用に最適化されたトランスポートおよび通信サービスを提供する。しかしながら、MTCトラフィックは、ネットワーク/コアネットワークによって制御されない可能性がある。例えば、MTCアプリケーションは、多くのMTCデバイスに同時に“何か”をするように要求する可能性があり、その結果、非常に短い時間内に大量のM2Mデバイスが無線サービスにアクセスしようとすることになる。よって、多くのMTCデバイスは、大量のランダムアクセスチャネル(RACH)のプリアンブルを送信するため、高いRACHの衝突確率を招く。また、コアネットワークエンティティがダウンした時、連続的なアクセスの試行からMTCデバイスを延期する機構がない。よって、MTCデバイス自身のサービングネットワークが失敗(fail)した時、多くのMTCデバイスは、ローミング状態にあり、全てローカル競合ネットワークに移動する可能性があり、(まだ)失敗していないネットワークで潜在的に過負荷を発生させる可能性がある。
図1(従来技術)は、3GPPネットワーク100の無線ネットワークの混雑のユースケース(use case)を表している。3GPPネットワーク100は、MTCサーバー110、パケットデータネットワークゲートウェイ(PDN GW)120、サービングGW130、2つの基地局eNB141およびeNB142、および複数のM2Mデバイスを含む。図1に表されるように、無線ネットワークの混雑は、大量の同時データの伝送がいくつかのMTCアプリケーションで行われた時に発生する。典型的なアプリケーションの一つは、大量のセンサを有するブリッジモニタリングである。列車が橋を通過した時、全てのMTCセンサは、ほぼ同時にモニタリングデータを伝送する。同様の事が大雨の時にハイドロロジーモニタリング、および侵入者が侵入した時にビルディングモニタリングで生じる。よって、ネットワークが最適化されて、特定領域の大量のMTCデバイスがデータをほぼ同時に伝送できるようにすることが望ましい。
図2(従来技術)は、3GPPネットワーク200のコアネットワークの混雑のユースケースを表している。3GPPネットワーク200は、MTCサーバー210、パケットデータネットワークゲートウェイ(PDN GW)220、サービングGW230、2つの基地局eNB241およびeNB242、および複数のM2Mデバイスを含む。多くのMTCアプリケーションでは、大量のMTCデバイスは、単一のMTCユーザー(例えば、MTCユーザー250)に属されている。これらのMTCデバイスは共同にMTCグループの一部である(例えば、MTCグループ260)。例えば、MTCユーザー250は、MTCグループ260と関連しており、MTCユーザー250は、MTCサーバー210を所有する。MTCグループ260のMTCデバイスは、MTCサーバー210と通信する。一般的に、
任意の特定のセルでMTCデバイスにより同時に送信されるデータが制限することで、無線ネットワークへの過剰な負荷を防ぐ方法によって、同じMTCグループのMTCデバイスは、ネットワーク上に散乱している。しかしながら、図2に示されるように、大量のMTCデバイスが同時にデータを送信/受信した時、データの混雑が、モバイルコアネットワーク、またはモバイルコアネットワークとMTCグループに関連するデータトラフィックが集合されるMTCサーバーとの間のリンクで生じる可能性がある。よって、ネットワークオペレータとMTCユーザーは、同じMTCグループで送信/受信されたデータ用に最大レートを実行する手段を有することが望ましい。
3GPPシステムの現在のRACH手順に基づいて、最大のRACH容量は、一秒当たり64,000のランダムアクセスアテンプトである(例えば、1サブフレーム当たり1PRACHおよび64のRA用のプリアンブル)。よって、1%のRACHの衝突確率の要求に適用するためには、最大のRACHアクセスは、約一秒当たり643となる。このような最大RACHアクセス速度は、高速と見なされ、いくつかのMTCアプリケーションにおいて大量の同時データ伝送をサポートするのに十分でない可能性がある。また、余分なRACHリソースの割り当ては、無線リソースの非効率的利用を招く可能性がある。強化されたRACHの解決法は、最適化されたMTCサービスに求められる。
マシン型通信用に強化されたランダムアクセスチャネル(RACH)の設計を提供する。
適応RACHの操作が3GPP無線通信のマシン型通信(MTC)に提供される。適応RACHの操作は、コンテキスト情報に基づいてRACH衝突確率を減少し、ネットワークの過負荷を制御し、システムパフォーマンスを向上させる。コンテキスト情報は、デバイス関連の情報およびネットワーク関連の情報を含む。デバイス関連の情報は、デバイスタイプおよびサービスまたはアプリケーションタイプを含む。ネットワーク関連の情報は、ネットワーク負荷情報および歴史的統計情報を含む。コンテキスト情報に基づき、MTCデバイスは、異なるレベルで適応RACHの操作を用いることによって、さまざまなネットワークアクセスおよびRACHパラメータを調整する。例えば、アプリケーションレベルおよびネットワークレベルでは、MTCデバイスは、RACHアクセス用にそのアクセス確率および/またはRACHのバックオフ時間を調整する。無線アクセスネットワーク(RAN)レベルでは、MTCデバイスは、そのアクセス確率および/またはRACHのバックオフ時間を調整するか、または調整されたRACH無線リソースおよびプリアンブルを用いてRACHのプリアンブルを送信する。
第1の実施形態では、MTCデバイスは、APP、NAS、および/またはRANレベルを含む異なるレベルでRACHの操作前のアクセス確率を調整する。H2Hアクセスクラス(AC)に比べ、M2Mアクセスクラス(AC)は、異なるアクセス確率、排除パラメータ、および再試行タイマーパラメータを用いることができる。アプリケーションレベルのアクセス分散では、排除は、サービスタイプに基づいてアクセスを優先することで行われる(異なるアプリケーションのQoS要求および/または遅延許容レベルに基づく)。NASレベルのアクセス分散では、排除は、アクセス制限によって行われる(例えばサービスタイプ、MTCサーバー、およびデバイスIDに基づいてアクセスを優先する)。RANレベルのアクセス分散では、排除は、異なるACクラス用に異なる排除要因を用いることで行われる。
第2の実施形態では、MTCデバイスは、APP、NAS、および/またはRANレベルを含む異なるレベルでRACHの操作中にそのバックオフ時間を調整する。RACHバックオフ遅延は、第1のRACHプリアンブルの送信前でもRACHプリアンブル衝突の後でも用いられることができる。第1のRACHの前の初期のRACHアクセス分散は、高いレベルのRACHコンテンションを防ぎ、よって、アプリケーションまたはネットワークレベルで適用される。一旦、RACH衝突が認められると、特定のバックオフタイマーがRACH手順中、各MTCデバイスに用いられることができる。異なるバックオフ時間は、異なる遅延許容性M2Mシナリオに用いられることができる。
第3の実施形態では、MTCデバイスは、RANレベルで調整されたRACHリソースを有するRACHプリアンブルを送信する。ネットワークは、M2M−onlyデバイス、H2H−onlyデバイス、およびM2MとH2Hデバイスの両方によって用いられるリソース用にRACHリソースの割り当てを適応して調整する。アプリケーション要求および優先アクセスクラスに基づいてデバイスは、専用のRACHリソースまたはシェアのRACHリソースのいずれかの使用を選択する。また、RACHリソースの割り当ては、負荷情報(例えば、M2Mトラフィック負荷および/またはH2Hトラフィック負荷)、RACH衝突確率、および他のコンテキスト情報に基づいて更に調整される。
第4の実施形態では、RACHを用いない解決が用いられ、低移動性または移動性のないMTCデバイス用にMTCデータを送信する。MTCの要求が経時的に、かつ異なるMTCデバイス全体で通常、固定されるため、再構成されたULリソースが用いられて、MTCデータを送信する。MTCデータは、RRCの確立なしに、ULリソースに伝送され、RRCシグナリングオーバーヘッドを減少する。1つの実施形態では、eNBは、ブロードキャスティングまたは専用の伝送を通して、MTCデバイスにMTC構成を伝送し、次いで1つまたは複数のMTCグラントを伝送する。MTCデバイスは、グラントされたリソースを用いてMTCデータを送信する。RACHを用いない解決は、どのコンテンションベースのアクセス機構も必要とせず、多くのMTCサービス/アプリケーションに適合する。
他の実施形態及びそれらの利点が以下に詳細に説明される。この概要は、説明を限定するものではない。
図1は、3GPPネットワーク100の無線ネットワークの混雑のユースケースを表している。 図2は、3GPPネットワーク200のコアネットワークの混雑のユースケースを表している。 本実施態様に基づくマシン型通信(MTC)をサポートする3GPPネットワークを表している。 本実施態様に基づく適応ランダムアクセスチャネル(RACH)の操作を表している。 アクセス確率を調整することで適応RACHの操作の第1の選択を表している。 RACHのバックオフ時間を調整することで適応RACHの操作の第2の選択を表している。 RACHリソースの割り当てを調整することで適応RACHの操作の第3の選択を表している。 マシン型通信を最適化するRACH(RACH−less)を用いない解決方法を表している。 本実施態様に基づく最適化されたマシン型通信(MTC)用の適応RACHの操作の方法のフローチャートである。
発明の実施の形態を説明する。その例が添付の図面に示されている。
図3は、本発明の実施形態に基づくマシン型通信(MTC)をサポートする3GPPネットワーク300を表している。3GPPネットワーク300は、複数のMTCデバイス(例えば、図3に示されたMTCデバイス314)と通信することで各種のMTCサービスをMTCユーザー312に提供するMTCサーバー311を含む。図3の例では、MTCサーバー311、MTCユーザー312、およびパケットデータネットワークゲートウェイ(PDN GW)313は、コアネットワーク310の一部に属する。MTCデバイス314およびそのサービング基地局(eNB)315は、無線アクセスネットワーク(RAN)320の一部に属する。MTCサーバー311は、PDN GW313、サービングGW316、およびeNB315によってMTCデバイス314と通信する。また、移動管理ノード(MME)317は、eNB315、サービングGW316、およびPDN GW313と通信し、3GPPネットワーク300の無線アクセスデバイスの移動管理をする。注意するのは、タームMTCは、人間同士(H2H)の通信と比べて、機械間(M2M)の通信とも呼ばれ、MTCデバイスは、H2Hと比べてM2Mデバイスとも呼ばれている。
図3の例では、MTCサーバー311は、確立されたアプリケーションプログラミングインタフェース(API)340によってアプリケーション(APP)プロトコル層で各種のMTCサービス/アプリケーションをMTCユーザー312に提供する。典型的なMTCアプリケーションは、セキュリティ(例えば、監視システム)、追跡(例えば、走行距離連動型料金収受)、支払い(例えば、自動販売機およびゲーム機)、健康(例えば、健康推進システム)、遠隔保守/制御、計量(例えば、スマートグリッド)、および消費者向けデバイス(例えば、電子書籍)を含む。エンドツーエンドのMTCサービスの提供のために、MTCサーバー311は、3GPPネットワークの複数のMTCデバイスと通信する。各MTCデバイス(例えば、MTCデバイス314)は、各種のプロトコル層モジュールを含んで、エンドツーエンドのMTCアプリケーションおよびデータ接続をサポートする。アプリケーションレベルでは、APPモジュール331は、APPプロトコル層(例えば、点線341によって表されている)でMTCサーバー311と通信し、エンドツーエンドの制御/データを提供する。ネットワークレベルでは、NASモジュール332は、非アクセス層(non−access stratum; NAS)プロトコル層(例えば、点線342によって表されている)でMME317と通信し、移動管理および他の発信(signaling)機能をサポートする。無線アクセスネットワーク(RAN)レベルでは、RRCモジュール333は、システム情報のブロードキャスト、RRC接続制御、ページング、無線構成制御、QoS制御などを管理する無線リソース制御(RRC)プロトコル層でeNB315と通信する(例えば、点線343によって表されている)。
3GPPシステムでは、ランダムアクセスチャネル(RACH)が携帯電話または他の無線アクセス端末、例えばコンテンションベースのアップリンク伝送のMTCまたはM2Mデバイスに用いられる。RACHは、無線アクセス端末で用いられる共有アップリンクチャンネルであり、アクセスをリクエストして、アップリンクチャネルの所有権(ownership)を取得し、RACH手順によってそれらのサービング基地局との伝送を初期化する。MTCサーバーがネットワークオペレータドメイン内に必ずしもあるわけではなく、且つエンドツーエンドのMTCサービスがMTCサーバーと関連するわけではないため、MTCトラフィックは、ネットワーク/コアネットワークによって制御されない可能性がある。よって、非常に短い時間内に大量のM2Mデバイス(例えば、セルのUE、またはeNB、またはMMEの数において設計寸法よりかなり大きい)が無線サービスにアクセスしたい場合、MTCデバイスからそれらのサービング基地局に伝送された大量のRACHのプリアンブルは、高いRACHの衝突確率を招く可能性がある。また、コアネットワークがダウンした時、MTCデバイス自身のサービングネットワークが失敗した時、多くのMTCデバイスは、ローミング状態にあり、全てローカル競合ネットワークに移動し、(まだ)失敗していないネットワークで潜在的に過負荷を発生させる可能性がある。
1つの実施態様として、従来のRACH手順は、コンテキスト情報に基づいて用いられ、RACHの衝突確率を減少し、ネットワークの過負荷を制御し、システムパフォーマンスを向上させる。コンテキスト情報は、デバイス関連の情報およびネットワーク関連の情報を含む。デバイス関連の情報は、デバイスタイプ(例えばM2MデバイスまたはH2Hデバイス)およびサービスまたはアプリケーションタイプ(例えば、セキュリティ、追跡、支払い、健康、遠隔保守/制御、計量、および消費者向けデバイス)を含む。ネットワーク関連の情報は、負荷情報および歴史的統計情報を含む。得られたコンテキスト情報(例えば、太い点線350で表されたMTCサーバー311からMTCサーバー314、または細い点線351で表されたMMEデバイス317からMTCデバイス314に転送されたコンテキスト情報)に基づき、MTCデバイス314は、異なる層で適応RACHの操作を用いることによって、さまざまなネットワークアクセスおよびRACHパラメータを調整することができる。例えば、APP層およびNAS層では、MTCデバイス314は、適応RACHの操作用にそのアクセス確率またはRACHのバックオフ時間を調整する。一方、RRC層では、MTCデバイス314は、そのアクセス確率またはRACHのバックオフ時間を調整するか、または適応RACHの操作用に調整されたRACHリソースを用いたRACHのプリアンブルを送信する。過負荷表示などのコンテキスト情報(混雑したネットワークエンティティ、例えばAPN、またはMTCサーバーなど)は、MME317からeNB315に伝送されることができる。情報に基づいて、eNB315は、MTCデバイス314からの特定の接続リクエストに応じるかどうかを決める。
図4は、1つの新しい実施態様に基づく適応ランダムアクセスチャネル(RACH)の操作を表している。図4の例では、MTCデバイス410は、eNB420によってMTCサーバー430と通信する。RACHを開始する前に、MTCデバイス410は、まず適応RACHの操作用にコンテキスト情報を得る。コンテキスト情報は、MTCデバイス自体によって得られるか、またはネットワークを介してMTCサーバーから転送されることができる。デバイス関連のコンテキスト情報では、MTCデバイスは、通常それ自体のデバイス情報から得る。ネットワーク関連のコンテキスト情報では、MTCデバイスにそれらの情報を得るいくつかのいくつかの方式(scheme)がある。第1の方式では、MTCデバイスは、収集または推定によってネットワーク関連の情報の一部を得ることができる。例えば、MTCデバイス410は、RACHの衝突確率およびアプリケーションのトラフィック特性などの以前の統計に基づいて歴史的統計を収集し、ネットワーク負荷情報を推定する。第2の方式では、ネットワークまたはアプリケーションは、NAS、Sl−AP、またはAPPレベルの信号(signaling)によってコンテキスト情報を転送する。例えば、ネットワークは、システム情報ブロック(SIB)によってコンテキスト情報を通知する(例えば、ステップ441によって表されたように、コンテキスト情報は、eNB420からMTCデバイス410に転送される)。第3の方式では、コンテキスト情報は、ページングチャネル(PCH)上のページングメッセージ(例えば、ステップ442によって表されたように、MTCサーバー430からMTCデバイス410へのページングメッセージ)によって転送される。例えばページングメッセージは、状態パラメータを含み(または特定のタイプのページングコードまたはページングIDを用いる)、現在の負荷状態(例えば高/中/低の負荷レベル)を示す。ページングチャネルは、ページングされたIDまたはページングされたノードのグループも通知し、RACHを伝送するための規則を明確にすることができる(例えば、ページングメッセージへの付加排除確率(append barring probability)、遅延時間値、または他の関連のパラメータ)。デバイス始動のRACH伝送(例えばプッシュ方法)では、MTCデバイス410は、RACHを開始する前に、PCHをチェックし、コンテキスト情報を得る。ネットワーク始動のRACH伝送(例えばプル方法)では、MTCデバイス410は、PCHを受けて、ページングID、RACHアクセスポリシー、またはコンテキスト情報を識別するページングメッセージを得る。
コンテキスト情報を得た後、MTCデバイス410は、適応RACHの操作を用いてネットワークへのアクセスを取得し、MTCサーバー430と通信する。3つの選択が可能である。第1の選択では、MTCデバイス410は、APP、NAS、および/またはRANレベルを含む異なるレベルでRACHの操作の前にそのアクセスの確率を調整する(ステップ450)。第2の選択では、MTCデバイス410は、APP、NAS、および/またはRANレベルを含む異なるレベルでRACHの操作中にそのバックオフ時間を調整する(ステップ460)。第3の選択では、MTCデバイス410は、RANレベルで調整されたRACHリソースを有するRACHプリアンブルを送信する(ステップ470)。これらの選択では、RACHの操作は、デバイスタイプ、サービス/アプリケーションタイプ、負荷のレベル、および/または歴史的統計を含むコンテキスト情報に基づいて適応される。3つの適応RACHの選択のそれぞれが付加の詳細とともに以下に述べられる。
図5は、無線ネットワーク500のアクセス確率を調整する、適応RACHの操作の第1の選択を表している。無線ネットワーク500は、MTCデバイス510およびeNB520を含む。MTCデバイス510がそのサービングeNB520とRACH手順を開始した後、MTCデバイス510は、アクセス排除を行うことでそのアクセス確率を調整する。H2Hアクセスクラス(AC)に比べ、M2Mアクセスクラス(AC)は、異なるアクセス確率、排除パラメータ、および再試行タイマーパラメータを用いることができる。これらの手順は、アプリケーションレベル、NASレベル、またはRANレベル(例えば、RACHアクセスレベル)のアクセス分散で実施されることができる。アプリケーションレベルのアクセス分散では、排除は、サービスタイプに基づいてアクセスを優先することで行われる。例えば、異なるアクセス確率は、異なるアプリケーションのQoS要求および/または遅延許容レベルに基づく。NASレベルのアクセス分散では、排除は、アクセス制限、例えばサービスタイプ、MTCサーバー、およびデバイスID(例えば、新しいMTC ID、国際移動体装置識別番号(IMEI)、国際移動体加入者識別番号(IMSI)など)に基づいてアクセスを優先することで行われる。RANレベルのアクセス分散では、排除は、アクセスクラス排除機構の異なるac−BarringFactorを用いることで行われる。例えば、異なる排除要因および再試行タイマーがMTCデバイスに用いられる。また、新しいACクラスがM2Mに定義されることができ、M2M ACクラス排除は、RACHレベル、コアネットワーク/アプリケーションレベル、または両方で実施されることができる。
ステップ531のアクセス排除の完了後、次いでMTCデバイス510がeNB520とRACH手順を開始する。ステップ541では、MTCデバイス510は、RAプリアンブルをeNB520に伝送する。ステップ542では、eNBは、RA応答(RAR)をMTCデバイス510に送信し返す。RAプリアンブルがうまくデコードされた時、RARは、MTCデバイス510に用いる後続のアップリンク伝送のアップリンクグラントを含む。ステップ543では、MTCデバイス510は、承認された(granted)アップリンクリソースによって、RRC接続リクエスト(例えばMSG3)をeNB520に伝送する。最後に、ステップ544では、eNB520は、RRCRACHコンテンション解決(例えばMSG4)をMTCデバイス510に送信し返し、MTCデバイス510とRRC接続を確立し、RACH手順を完了する。異なるプロトコル層で実施される各種のアクセス分散技術を用いてアクセス確率を調整することで、大量のMTCデバイスのアクセス確率は、好ましく優先されて分散され、RACHの衝突確率を減少する。
図6は、無線ネットワーク600のバックオフ時間を調整する、適応RACHの操作の第2の選択を表している。無線ネットワークは、MTCデバイス610およびeNB620を含む。適応RACHの操作の第2の選択では、RACHのバックオフ時間は、コンテキスト情報に基づいて適応して調整される。RACHバックオフ遅延は、アプリケーションレベル、コアネットワークレベル(例えばNAS層)、またはRANレベル(例えばRACHアクセスレベル)に実施されることができる。また、RACHバックオフ遅延は、第1のRACHプリアンブルの送信前でもRACHプリアンブル衝突の後でも用いられることができる。第1のRACHの前の初期のRACHアクセス分散は、高いレベルのRACHコンテンションを防ぐことができるので、アプリケーションまたはネットワークレベルに適している。一旦、RACH衝突が認められると、特定のバックオフタイマーがRACH手順中、各MTCデバイスに用いられることができる。
図6に示されるように、MTCデバイス610は、第1のRACHプリアンブルの送信前にステップ631の初期のアクセス分散を実行する。更に具体的に言えば、MTCデバイス610は、RACHプリアンブルをeNB620に送信する前に、第1のバックオフ時間#1を用いる。第1のバックオフ時間は、各種の方式によって決められることができる。1つの実施形態では、MTCデバイス610は、第1のバックオフ時間の値用に内部(built−in)分散を有する。例えば、各MTCデバイスは、所定の範囲からバックオフ時間#1用の値をランダムに選択する。第2の実施形態では、第1のバックオフ時間は、デバイス関連のコンテキスト情報に基づいてアプリケーションレベルまたはネットワークレベルで割り当てられる。例えば、より短いバックオフ時間は、比較的緊急の高いアプリケーション、またはより低い遅延許容性を有するアプリケーションに割り当てられる。一方、より長いバックオフ時間は、より長い遅延許容性を有するアプリケーションに割り当てられる。異なるバックオフ時間は、サービス/アプリケーションタイプ、MTCサーバー、MTCデバイスのデバイスIDに基づいて割り当てられることもできる。第3の実施形態では、MTCデバイス610は、第1のRACHが新しい手順を用いる前にバックオフを行い、eNBは、異なるランダムアクセス無線ネットワーク一時識別子(RA−RNTI)を通じたブロードキャスト、リザーブビット、またはRRCメッセージによって、第1のバックオフ時間を示す。
バックオフ時間#1が過ぎた後、ステップ632では、MTC610は、RACHプリアンブルをeNB620に送信する。多くのMTCデバイスが同じRACHリソース(例えば、RACHリソースブロックおよびRACHプリアンブル)をシェアするため、eNB620は、RACH衝突により、RACHプリアンブルをデコードすることができない可能性がある。RACH衝突が発生した時、第2のバックオフ時間は、RACHプリアンブルを再送する前、MTC610によって用いられる。第1のバックオフ時間と同様に、第2のバックオフ時間は、コンテキスト情報に基づいてアプリケーションレベル、ネットワークレベル、またはRANレベルで割り当てられる。
図6の例では、eNB620は、RACH衝突を検出した後、ステップ633で第2のバックオフ時間を決める。しかしながら、eNB620では、MTCデバイス610のコンテキスト情報を知らない可能性がある。1つの例では、MTCデバイス610は、MTCデバイスタイプ専用であるRACHプリアンブルを用いる。もう1つの例では、MTCデバイス610は、MTCデバイスタイプ専用であるRACHリソース(例えば、プリアンブル、リソースブロック、およびサブフレーム)を用いる。専用のRACHプリアンブルまたはRACHリソースに基づいて、eNB620は、MTCデバイス610のデバイスタイプを識別することができる。一旦、eNB620が異なるデバイスタイプを判別すると、eNB620は、異なるRA−RNTIのRARによって異なるバックオフ時間を割り当てる。1つの実施形態では、図6のブロック651に表されるように、第2のバックオフ時間#2は、E/T/R/R/BIメディアアクセス制御(MAC)サブヘッダの第1のオクテットに含まれるバックオフインジケータ(BI)を用いて割り当てられる。
ステップ633では、第2のバックオフ時間を決めた後、eNB620は、ステップ634で、バックオフインジケータを有するRARをMTCデバイス610に伝送する。MTCデバイスは、ステップ641でRAプリアンブルを再送する前に第2のバックオフ時間を用いる。RAプリアンブルをうまくデコーディングした後、eNB620は、ステップ642でアップリンクグラントを有するRARをMTCデバイス610に送信し返す。ステップ643では、MTCデバイス610は、承認されたアップリンクリソースによって、RRC接続リクエスト(例えばMSG3)をeNB620に伝送する。最後に、ステップ644では、eNB620は、RRC接続リクエスト(例えばMSG4)をMTCデバイス610に送信し返し、RRC接続を確立し、RACH手順を完了する。
異なるバックオフ時間は、異なる遅延許容性M2Mシナリオに用いられることができる。例えば、アプリケーションが高い遅延許容性を有する場合、デバイスは、RACHアクセスのために次の不連続受信(DRX)のアクティブ期間まで延期することができる。一方、アプリケーションがKタイムスロットのスケールで遅延を許容できる場合、デバイスは、次のKタイムスロットにRACHアクセスを延期する可能性がある。また、異なるバックオフ時間が、ネットワーク関連のコンテキスト情報およびアクセスクラスのタイプに基づいて用いられてもよい。例えば、負荷が高い時、クラス1のデバイス(例えば、高い優先度)は、[5、10]サブフレーム内にRACHアクセスを延期し、クラス2のデバイス(例えば、低い優先度)は、[20、30]サブフレーム内にRACHアクセスを延期する。一方、負荷が低い時、クラス1のデバイスは、そのRACHアクセスを延期せず、クラス2のデバイスは、[0、10]サブフレーム内にRACHアクセスを延期する。
図7は、無線ネットワーク700のRACHリソースの割り当てを調整する、適応RACHの操作の第3の選択を表している。無線ネットワーク700は、H2Hデバイス710、M2Mデバイス720、およびH2Hデバイス710とM2Mデバイス720の両方をサービングするeNB730を含む。ステップ731では、eNB730は、H2Hデバイス710およびM2Mデバイス720にRACHリソースの割り当てをブロードキャストする。RACHリソースの用語は、RACH無線リソースおよびRACHプリアンブルの両方を指している。第1の実施形態では、専用のRACH無線リソース(例えば無線リソースブロックおよびサブフレーム)は、MTC−onlyデバイスに割り当てられる。例えば、新しいMTC−RACHパラメータは、SIB2に定義される。もう1つの実施形態では、後方交換性をサポートするために、新しいMTC−RACHパラメータは、新しいSIB(例えばSIB X)に定義されることができる。第2の実施形態では、専用のRACHプリアンブルは、MTC−onlyデバイスに割り当てられる。
ネットワークは、M2M−onlyデバイス、H2H−onlyデバイス、およびM2MとH2Hデバイスの両方によって用いられるリソース用にRACHリソースの割り当てを適応して調整する。図7のブロック750によって示されるように、例えば、全てのRACHリソースは、3つの部分に分けられる。具体的には、RACH伝送のタイムスロット、周波数トーン(frequency tone)、およびプリアンブルは、3つの部分に分けられる。第1のRACHリソース部分#1は、M2M−only RACHアクセス用に割り当てられ、第2のRACHリソース部分#2は、H2H−only RACHアクセス用に割り当てられ、第3のRACHリソース部分#3は、M2MとH2H RACHアクセスによってシェアされる。アプリケーション要求および優先アクセスクラスに基づいてデバイスは、専用のRACHリソースまたはシェアのRACHリソースのいずれかの使用を選択する。また、RACHリソースの割り当ては、負荷情報、衝突確率、および他のコンテキスト情報に基づいて更に調整される。例えば、ネットワークは、H2Hアクセス用に、全てのRACH伝送の機会を割り当て、M2M−onlyアクセス用に、全てのRACH伝送の機会のサブセットを割り当てることができる。割り当ては、M2Mトラフィック負荷および/またはH2Hトラフィック負荷に基づいて適応して構成されることができる。割り当ては、衝突および伝送係数に基づいて適応して構成されることもできる。
適応リソース割り当ての1つの実施形態では、eNBは、第1の期間にM2MおよびH2HでシェアされたRACHリソースを割り当てる。デバイスの数が小さいほど、深刻な衝突が観測されず、更なる最適化を必要としなくなる。しかしながら、第2の期間では、eNBは、高いRACH衝突頻度を観測する。よって、eNBは、正常な着信コール(phone call)のユーザエクスペリエンスを補償するために、H2Hトラフィック専用のRACHリソースの一部を割り当てる。ほとんどのM2Mトラフィックが、通常、より遅延許容性をもっているため、eNBは、RACHリソースの残りをM2Mトラフィックに割り当てる。M2Mデバイスの数が割り当てられたRACHリソースのサポート可能な数より高い場合、RAN/NASレベルトラフィック分散などによって、M2Mトラフィックを分散させる一層の改善が必要となる。eNBは、RACHリソースを動的に調整することができる。例えば、着信コールがより少ない時、eNBは、より多くのRACHリソースをM2Mトラフィックに割り当てることができる。
図8は、無線ネットワーク800のマシン型通信を最適化するRACH(RACH−less)を用いない解決方法を表している。無線通信800は、MTCデバイス810およびeNB820を含む。タイミングアドバンス(TA)および第1のULグラントを得るためにRACHがコンテンションベースのアップリンク伝送に正常に用いられる時、eNB用のRACHアクセスのコストが高くなる。これは、特に、M2Mデバイスの数が非常に大きい時に該当し、多くのMTCアプリケーションの典型的な特徴である。しかしながら、低移動性または移動性のないMTCデバイスでは、MTCデバイスが同じセルに依頼してMTCデータを送信することができるため、TAは、常に固定される。よって、MTCの要求が経時的に、かつ異なるMTCデバイス全体で通常、固定されるため、これらのMTCデバイスが再構成されたULリソースを用いてデータを送信することは可能である。ULリソースは、シェアまたは専用とすることができる。RRCシグナリングオーバーヘッドを減少するために、RRCの確立なしに、MTCデータをULリソースに伝送することが可能である。セル内のMTCデバイスが共通の無線ベアラ設定(configuration)をシェアすることも可能である。RACHが6つのRBを有する時、小さいMTCデータ伝送は1つまたは2つのRBのみ必要である。図8の例では、ステップ830にて、eNB820は、ブロードキャスティングまたは専用の伝送を通して、MTC構成をMTCデバイス810に伝送する。ステップ840およびステップ850では、eNB820は、1つまたは複数のMTCグラントを伝送する。最後に、ステップ860では、MTCデバイス810は、グラントされたリソースを用いてMTCデータを送信する。このようなRACHを用いない解決は、どのコンテンションベースのアクセス機構も必要とせず、多くのMTCサービス/アプリケーションに適合する。
図9は、1つの新しい態様に基づく最適化されたマシン型通信(MTC)用の適応RACHの操作の方法のフローチャートである。ステップ901では、MTCデバイスは、MTCサーバーからコンテキスト情報を受信する。コンテキスト情報は、デバイス関連の情報およびネットワーク関連の情報を含む。デバイス関連の情報は、デバイスタイプおよびサービスまたはアプリケーションタイプを含む。ネットワーク関連の情報は、ネットワーク負荷情報および歴史的統計情報を含む。コンテキスト情報に基づき、MTCデバイスは、適応RACHの操作を用いることによって、さまざまなネットワークアクセスおよびRACHパラメータを調整する。第1の適応RACHの操作では、MTCデバイスは、APP、NAS、および/またはRANレベルを含む異なるレベルのRACHの前のアクセス確率を調整する(ステップ902)。第2の適応RACHの操作では、MTCデバイスは、APP、NAS、および/またはRANレベルを含む異なるレベルのRACHの操作中のRACHバックオフ時間を調整する(ステップ903)。第3の適応RACHの操作では、MTCデバイスは、RANレベルで調整されたRACHリソースを用いたRAプリアンブルを伝送する(ステップ904)。3つの選択は、3つの選択は共存して組み合わさって用いられることができる(ステップ905)。最後に、ステップ906では、RACHを用いない解決は、最適化されたマシン型通信に用いられる。
本発明は、説明のためにある特定の実施の形態に関連して述べられているが本発明はこれを制限するものではない。よって、種々の変更、改変、及び上述の実施の形態の種々の特徴の組み合わせがこの請求項に記載したような本発明の範囲内で、行い得る。
100、200、300…3GPPネットワーク
110、210、311、430…MTCサーバー
120、220、313…PDN GW
130、230、316…S−GW
141、142、241、242、315…eNB
420、520、620、730、820…eNB
250、312…MTCユーザー
260…MTCグループ
310…コアネットワーク
314、410、510、610、810…MTCデバイス
317…移動管理ノード(MME)
320…RAN
331…APPモジュール
332…NASモジュール
333…RRCモジュール
340…API
341、342、343…点線
350、351…細い点線
500、600、700、800…無線ネットワーク
651、750…ブロック
710…H2Hデバイス
720…M2Mデバイス

Claims (24)

  1. 無線通信ネットワークのマシーンツーマシン(以下、M2Mと称す)によって無線アクセスネットワーク(RAN)レベルのアクセス排除を行い、前記M2Mデバイスが前記M2Mデバイスのアクセスクラス(AC)に基づいて異なる排除パラメータを用いることでアクセス確率を適応して調整するステップ、および
    アクセスを取得後、基地局とのランダムアクセスチャネル(RACH)手順を行うステップを含む方法。
  2. ネットワークの他のマシン型通信(以下、MTCと称す)デバイスの間で、サービスタイプ、MTCサーバー、および前記M2MデバイスのデバイスIDに基づく非アクセス層(NAS)レベルのアクセス分散を行うステップを更に含む請求項1に記載の方法。
  3. マシン型通信(以下、MTCと称す)デバイス上で動作するMTCアプリケーションの優先に基づいて、前記MTCアプリケーションレベルのアクセス分散を行うステップを更に含む請求項1に記載の方法。
  4. 第1のアクセス排除要因は、前記M2Mデバイスに用いられ、
    第2のアクセス排除要因は、人間同士(H2H)の通信に用いられる請求項1に記載の方法。
  5. 第1の再試行タイマーは、M2Mデバイスに用いられ、
    第2の再試行タイマーは、人間同士(H2H)の通信に用いられる請求項1に記載の方法。
  6. 無線通信ネットワークのマシーンツーマシン(以下、M2Mと称す)によって第1のバックオフ時間を用いるステップ、
    前記第1のバックオフ時間を用いた後、ランダムアクセスチャネル(以下、RACHと称す)プリアンブルを基地局に伝送するステップ、
    コンテキスト情報に基づいて前記第1のRACHプリアンブル検出が失敗した時、第2のバックオフ時間を用いるステップ、および
    前記第2のバックオフ時間を用いた後、前記RACHプリアンブルを前記基地局に再送するステップを含む方法。
  7. 前記M2Mデバイスは、前記第1のバックオフ時間用に内部分散を有する請求項6に記載の方法。
  8. 前記第1のバックオフ時間は、マシン型通信(MTC)のアプリケーションレベルまたはコアネットワークレベルで割り当てられる請求項6に記載の方法。
  9. 前記第1のバックオフ時間は、RACHアクセスレベルで割り当てられ、前記第1のバックオフ時間は、異なる無線ネットワーク一時識別子(RNTI)によってブロードキャストすることによって、または保留ビットまたは無線リソース制御(RRC)メッセージのいずれかによって示される請求項6に記載の方法。
  10. 前記RACHプリアンブルは、マシン型通信専用である請求項6に記載の方法。
  11. 前記RACHプリアンブルは、マシン型通信専用のサブフレーム及びリソースブロックに伝送される請求項6に記載の方法。
  12. 前記第2のバックオフ時間は、ランダムアクセス応答(RAR)メッセージによって前記基地局から伝送されるバックオフインジケータに含まれる請求項6に記載の方法。
  13. 前記第2のバックオフ時間は、デバイスタイプおよびアプリケーション/サービスタイプを含むデバイス関連のコンテキスト情報の少なくとも一部に基づいた前記基地局によって決められる請求項12に記載の方法。
  14. 前記第2のバックオフ時間は、負荷情報および歴史的統計情報を含むネットワーク関連のコンテキスト情報に基づいたM2Mによって競合される請求項6に記載の方法。
  15. 前記M2Mデバイスは、前記RACHプリアンブルを再送する前に1つ以上のサブフレームを待つ請求項6に記載の方法。
  16. 前記M2Mデバイスは、前記RACHプリアンブルを再送する前に、節電モードに戻り、前記次の不連続受信(DRX)サイクルまで待機する請求項6に記載の方法。
  17. 無線通信ネットワークの複数のマシン型通信(MTC)デバイスによって用いられる基地局により第1のランダムアクセスチャネル(以下、RACHと称す)リソースを分割するステップ、
    複数の人間同士(以下、H2Hと称す)デバイスによって用いられる第2のRACHリソースを分割するステップ、および
    複数のマシーンツーマシン(以下、M2Mと称す)デバイスおよび複数のH2Hデバイスによってシェアされる第3のRACHリソースを分割するステップを含む方法。
  18. 前記第1、前記第2、および前記第3のRACHリソースは、互いに共有しない請求項17に記載の方法。
  19. 前記第1のRACHリソースは、前記第2のRACHリソースのサブセットである請求項17に記載の方法。
  20. RACHリソースは、RACH伝送時間、RACH伝送周波数、およびRACHプリアンブルを含む請求項17に記載の方法。
  21. 前記第1、前記第2、および前記第3のRACHリソースは、負荷情報に基づいて適応して割り当てられる請求項17に記載の方法。
  22. 前記第1、前記第2、および前記第3のRACHリソースは、衝突確率または伝送係数に基づいて適応して割り当てられる請求項17に記載の方法。
  23. 無線通信システムのマシン型通信(MTC)デバイスによって基地局から伝送されたマシン型通信(以下、MTCと称す)形態の信号を受信するステップ、
    前記基地局から伝送されたMTCアップリンクグラントを受信するステップ、および
    無線ソース制御(RRC)接続の確立なしに、前記MTCアップリンクグラントソース領域でMTCデータを送信するステップを含む方法。
  24. セル内の複数のMTCデバイスは共通の無線ベアラ設定をシェアする請求項23に記載の方法。
JP2013522094A 2010-08-04 2011-08-04 マシン型通信用に強化されたランダムアクセスチャネルの設計 Pending JP2013532929A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US37055510P 2010-08-04 2010-08-04
US61/370,555 2010-08-04
US13/136,558 2011-08-03
US13/136,558 US20120033613A1 (en) 2010-08-04 2011-08-03 Enhanced rach design for machine-type communications
PCT/CN2011/078021 WO2012016538A1 (en) 2010-08-04 2011-08-04 Enhanced rach design for machine-type communications

Publications (1)

Publication Number Publication Date
JP2013532929A true JP2013532929A (ja) 2013-08-19

Family

ID=45556121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013522094A Pending JP2013532929A (ja) 2010-08-04 2011-08-04 マシン型通信用に強化されたランダムアクセスチャネルの設計

Country Status (6)

Country Link
US (2) US20120033613A1 (ja)
EP (1) EP2601799A4 (ja)
JP (1) JP2013532929A (ja)
CN (2) CN102484765A (ja)
TW (1) TWI446815B (ja)
WO (1) WO2012016538A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018526925A (ja) * 2015-09-03 2018-09-13 アルカテル−ルーセント ユーザ機器を動作させる方法及びベースバンドユニットを動作させる方法
JP2019524031A (ja) * 2016-06-15 2019-08-29 コンヴィーダ ワイヤレス, エルエルシー 次世代ネットワークにおけるランダムアクセスプロシージャ

Families Citing this family (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2564650B1 (en) 2010-04-30 2014-12-17 Telefonaktiebolaget LM Ericsson (publ) A device for low priority traffic scheduling
CN102378302B (zh) * 2010-08-12 2014-12-17 华为技术有限公司 一种接入网络的方法和系统
EP2609695B1 (en) * 2010-08-27 2019-10-02 LG Electronics Inc. Mac pdu signaling and operating methods for access class barring and back-off control for large-scale radio access network
KR101498089B1 (ko) * 2010-09-28 2015-03-03 엘지전자 주식회사 대규모 셀룰러 네트워크에서 랜덤 액세스 제어를 위한 프리앰블 집합 분리
JP2012085011A (ja) * 2010-10-07 2012-04-26 Sony Corp 基地局、無線通信方法、および無線通信システム
US10284319B2 (en) * 2010-10-13 2019-05-07 Samsung Electronics Co., Ltd. Method and apparatus for multiplexing machine type communication data of multiple MTC devices in a wireless network environment
WO2012052071A1 (en) * 2010-10-18 2012-04-26 Telefonaktiebolaget L M Ericsson (Publ) Communication scheduling based on priority and resource utilization
CN102548019B (zh) * 2010-12-15 2016-07-27 华为技术有限公司 公共路径的建立和使用方法、m2m的通信方法及系统
US9071925B2 (en) * 2011-01-05 2015-06-30 Alcatel Lucent System and method for communicating data between an application server and an M2M device
KR101522131B1 (ko) * 2011-03-11 2015-05-20 인터디지탈 패튼 홀딩스, 인크 M2m 네트워크에서 버스티 네트워크 진입 및 재진입을 핸들링하는 방법 및 장치
EP2695469B1 (en) * 2011-04-02 2017-07-05 Alcatel Lucent Slotted access for wireless communication devices and control thereof
US9025455B2 (en) * 2011-04-26 2015-05-05 Industrial Technology Research Institute Prioritized random access method, resource allocation method and collision resolution method
KR101961734B1 (ko) * 2011-05-06 2019-03-25 삼성전자 주식회사 단말 및 그 단말에서 백오프 시간 관리 방법
WO2012153969A2 (en) * 2011-05-10 2012-11-15 Lg Electronics Inc. Method and apparatus for processing data between different layers of mobile station in a wireless communication system
US8718667B2 (en) * 2011-08-05 2014-05-06 Apple, Inc. Adaptive random access channel retransmission
US8738075B2 (en) * 2011-08-10 2014-05-27 Nokia Siemens Networks Oy Methods and apparatus for radio resource control
EP2745604B1 (en) * 2011-08-19 2022-04-27 SCA IPLA Holdings Inc. Mobile communications system, infrastructure equipment, mobile communications terminal and method to communicate user data within an uplink random access channel
CN102958003B (zh) * 2011-08-30 2016-03-30 华为技术有限公司 组呼的方法及设备
US9736045B2 (en) 2011-09-16 2017-08-15 Qualcomm Incorporated Systems and methods for network quality estimation, connectivity detection, and load management
US9078257B2 (en) * 2011-11-11 2015-07-07 Intel Coproration Random backoff for extended access barring
WO2013073809A1 (en) * 2011-11-14 2013-05-23 Lg Electronics Inc. Method and apparatus for controlling network access in a wireless communication system
ES2670587T3 (es) * 2011-11-21 2018-05-31 Telefonaktiebolaget Lm Ericsson (Publ) Nodo de red radio, equipo de usuario y métodos para permitir el acceso a una red de radio
US8873387B2 (en) * 2011-12-13 2014-10-28 Verizon Patent And Licensing Inc. Network congestion control for machine-type communications
TWI501603B (zh) * 2011-12-19 2015-09-21 Ind Tech Res Inst 在機器類型通信網路中對機器類型通信裝置分組之方法以及通信方法
US8989719B2 (en) * 2011-12-20 2015-03-24 Verizon Patent And Licensing Inc. Non-access stratum (NAS) transparent messaging
EP2624598A1 (en) * 2012-02-03 2013-08-07 Cinterion Wireless Modules GmbH Distributed initialization of m2m access to radio access network
US9603048B2 (en) * 2012-03-16 2017-03-21 Interdigital Patent Holdings, Inc. Random access procedures in wireless systems
US20130265937A1 (en) * 2012-04-09 2013-10-10 Puneet Jain Machine type communication (mtc) via non-access stratum layer
WO2013165139A1 (en) * 2012-04-30 2013-11-07 Lg Electronics Inc. Method and apparatus for controlling network access in a wireless communication system
TWI640211B (zh) * 2012-05-11 2018-11-01 英特爾股份有限公司 建立與專利網路節點通信的技術
US8874103B2 (en) 2012-05-11 2014-10-28 Intel Corporation Determining proximity of user equipment for device-to-device communication
GB2502274B (en) 2012-05-21 2017-04-19 Sony Corp Telecommunications systems and methods
GB2502275B (en) * 2012-05-21 2017-04-19 Sony Corp Telecommunications systems and methods
US8638724B1 (en) * 2012-06-01 2014-01-28 Sprint Communications Company L.P. Machine-to-machine traffic indicator
US8565689B1 (en) 2012-06-13 2013-10-22 All Purpose Networks LLC Optimized broadband wireless network performance through base station application server
US9084143B2 (en) 2012-06-13 2015-07-14 All Purpose Networks LLC Network migration queuing service in a wireless network
US9503927B2 (en) 2012-06-13 2016-11-22 All Purpose Networks LLC Multiple-use wireless network
US9219541B2 (en) 2012-06-13 2015-12-22 All Purpose Networks LLC Baseband data transmission and reception in an LTE wireless base station employing periodically scanning RF beam forming techniques
US9882950B2 (en) 2012-06-13 2018-01-30 All Purpose Networks LLC Methods and systems of an all purpose broadband network
EP2862374B1 (en) * 2012-06-14 2019-11-06 Sierra Wireless, Inc. Method and system for wireless communication with machine-to-machine devices
WO2013185858A1 (en) * 2012-06-15 2013-12-19 Telefonaktiebolaget L M Ericsson (Publ) Random access in a communications network
US10075979B2 (en) 2012-06-27 2018-09-11 Lg Electronics Inc. Method and apparatus for performing random access procedure in wireless communication system
US20140010078A1 (en) * 2012-07-09 2014-01-09 Motorola Mobility Llc Method and system and reducing congestion on a communication network
US9282572B1 (en) * 2012-08-08 2016-03-08 Sprint Communications Company L.P. Enhanced access class barring mechanism in LTE
WO2014037055A1 (en) * 2012-09-10 2014-03-13 Telefonaktiebolaget L M Ericsson (Publ) Method and system for communication between machine to machine m2m service provider networks
US9060281B2 (en) * 2012-09-18 2015-06-16 Trueposition, Inc. Overlay network-based location of E-UTRAN devices
CN103716752B (zh) * 2012-09-29 2017-06-27 上海贝尔股份有限公司 一种分发机器类通信的组消息的方法
EP3809759A3 (en) 2012-10-05 2021-05-12 Interdigital Patent Holdings, Inc. Method and apparatuses for transmitting feedback
JP6074053B2 (ja) 2012-10-23 2017-02-01 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるバックオフを実行する方法及び装置
US9474087B2 (en) * 2012-10-23 2016-10-18 Lg Electronics Inc. Method and apparatus for performing backoff for scheduling request in wireless communication system
US9338070B2 (en) 2012-11-02 2016-05-10 Industrial Technology Research Institute System and method for operating M2M devices
EP2918101A4 (en) * 2012-11-09 2016-07-27 Nokia Technologies Oy METHOD, APPARATUS AND COMPUTER PROGRAM PRODUCT FOR PATH SWITCHING IN DEVICE DEVICE COMMUNICATIONS
CN103841603B (zh) * 2012-11-20 2019-05-31 北京三星通信技术研究有限公司 上行分组调度的方法及设备
GB2509071B (en) * 2012-12-19 2018-07-11 Sony Corp Telecommunications apparatus and methods
WO2014112905A1 (en) * 2013-01-17 2014-07-24 Telefonaktiebolaget L M Ericsson (Publ) Dynamic random access resource size configuration and selection
US9485604B2 (en) * 2013-01-27 2016-11-01 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods for determining a configuration for a wireless device
WO2014116081A1 (ko) * 2013-01-28 2014-07-31 엘지전자 주식회사 기기간 통신을 지원하는 무선 접속 시스템에서 기기간 동기 획득 방법 및 이를 지원하는 장치
JP6436076B2 (ja) * 2013-02-15 2018-12-12 日本電気株式会社 通信システム、通信装置、ネットワークパラメータ制御方法及びプログラム
KR102093485B1 (ko) 2013-02-19 2020-03-25 삼성전자주식회사 패킷 데이터 통신 시스템에서 서비스 억세스 제어를 위한 장치 및 방법
FR3004306B1 (fr) * 2013-04-05 2015-03-27 Thales Sa Procede de controle de congestion pour reseau d'acces a contention
GB2513312B (en) * 2013-04-22 2020-01-29 Sony Corp Communications system for transmitting and receiving data
CN104125244B (zh) * 2013-04-23 2019-05-07 中兴通讯股份有限公司 一种分布式网络中转发信息的方法及系统
TWI488513B (zh) * 2013-05-03 2015-06-11 Univ Nat Taiwan Science Tech 動態資源分配方法
EP3008968B1 (en) * 2013-06-13 2019-04-24 Sony Corporation Telecommunications apparatus and method
EP3008967B1 (en) * 2013-06-13 2019-04-24 Sony Corporation Telecommunications apparatus and method
US20150038140A1 (en) * 2013-07-31 2015-02-05 Qualcomm Incorporated Predictive mobility in cellular networks
KR20190047143A (ko) * 2013-07-31 2019-05-07 닛본 덴끼 가부시끼가이샤 Mtc 그룹 키 관리를 위한 디바이스들 및 방법
GB2531221B (en) * 2013-08-01 2020-04-15 Toshiba Res Europe Limited RAN overload control for M2M communications in LTE networks
CN105393470B (zh) 2013-08-08 2018-11-02 英特尔Ip公司 用于多输入多输出系统中的电子下倾角调节的方法、装置和系统
US9326122B2 (en) 2013-08-08 2016-04-26 Intel IP Corporation User equipment and method for packet based device-to-device (D2D) discovery in an LTE network
EP3031150B1 (en) * 2013-08-08 2019-12-18 Intel IP Corporation Coverage extension level for coverage limited device
US9350550B2 (en) * 2013-09-10 2016-05-24 M2M And Iot Technologies, Llc Power management and security for wireless modules in “machine-to-machine” communications
US9100175B2 (en) 2013-11-19 2015-08-04 M2M And Iot Technologies, Llc Embedded universal integrated circuit card supporting two-factor authentication
JP2015065603A (ja) * 2013-09-26 2015-04-09 株式会社Nttドコモ 無線通信端末、無線基地局および無線通信方法
US10498530B2 (en) 2013-09-27 2019-12-03 Network-1 Technologies, Inc. Secure PKI communications for “machine-to-machine” modules, including key derivation by modules and authenticating public keys
WO2015065271A1 (en) * 2013-10-31 2015-05-07 Telefonaktiebolaget L M Ericsson (Publ) Providing access control parameters to a user equipment
CN104640152B (zh) * 2013-11-12 2019-05-14 中兴通讯股份有限公司 一种m2m与h2h业务共存的方法及装置
US10700856B2 (en) 2013-11-19 2020-06-30 Network-1 Technologies, Inc. Key derivation for a module using an embedded universal integrated circuit card
JP2017504236A (ja) * 2013-11-29 2017-02-02 日本電気株式会社 Mtcのための装置、システム、及び方法
US10045380B2 (en) * 2013-12-19 2018-08-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for providing random access information when paging a wireless device
CN104780617B (zh) 2014-01-09 2019-09-17 中兴通讯股份有限公司 一种非竞争随机接入方法、节点设备及系统
US10476834B2 (en) * 2014-03-11 2019-11-12 Huawei Technologies Canada Co., Ltd. System and method for random access
US9426828B1 (en) * 2014-06-12 2016-08-23 Sprint Spectrum L.P. Variation of RACH preamble grouping
US20170196028A1 (en) * 2014-07-14 2017-07-06 Nec Corporation Method and apparatus for connection management
KR102209752B1 (ko) 2014-07-16 2021-01-29 삼성전자주식회사 사물 통신 시스템의 스케줄링 장치 및 방법
US9591686B2 (en) * 2014-08-11 2017-03-07 Qualcomm Incorporated Access class barring for device-to-device proximity service communications
US9788318B2 (en) * 2014-08-18 2017-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Channel capacity on collision based channels
EP4236387A3 (en) * 2014-11-25 2023-09-20 Huawei Technologies Co., Ltd. Method, apparatus, system and non-transitory computer readable storage medium for downlink machine-to-machine communications
CN105764152B (zh) * 2014-12-19 2020-10-27 联想(北京)有限公司 信息处理方法及基站
US9853977B1 (en) 2015-01-26 2017-12-26 Winklevoss Ip, Llc System, method, and program product for processing secure transactions within a cloud computing system
US9565647B2 (en) * 2015-02-02 2017-02-07 Nokia Technologies Oy Method and apparatus for implementing a time-alignment guard timer
WO2016129970A1 (ko) * 2015-02-15 2016-08-18 엘지전자 주식회사 무선 통신 시스템에서 다중 경로 채널에 의한 rach 프리앰블의 충돌을 검출하는 방법 및 장치
US9843923B2 (en) 2015-07-08 2017-12-12 At&T Intellectual Property I, L.P. Adaptive group paging for a communication network
TWI580289B (zh) * 2015-07-24 2017-04-21 Chunghwa Telecom Co Ltd Soft network congestion control method for mobile network
WO2017021057A1 (en) * 2015-08-05 2017-02-09 Nokia Solutions And Networks Oy Virtual international mobile subscriber identity based insight delivery to mobile devices
EP3737193B1 (en) * 2015-08-19 2024-03-27 Huawei Technologies Co., Ltd. Data transmission method, device, and system
US9750047B1 (en) 2015-09-02 2017-08-29 Sprint Spectrum L.P. Control of initial uplink grant based on random access request indicating planned initiation of packet-based real-time media session
CN106550426A (zh) * 2015-09-18 2017-03-29 中兴通讯股份有限公司 接入控制方法及通信节点
US10009942B2 (en) * 2015-09-30 2018-06-26 Apple Inc. RRC state transition techniques with reduced signaling overhead
KR101707163B1 (ko) * 2015-10-02 2017-02-15 성균관대학교산학협력단 무선 통신 시스템에서의 적응적 랜덤 액세스 제어 및 자원 할당 방법과 장치
WO2017082798A1 (en) 2015-11-09 2017-05-18 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for managing a retransmission by a device on a random access channel in a wireless communication network
WO2017166324A1 (zh) * 2016-04-01 2017-10-05 华为技术有限公司 一种发送通信消息的方法和装置
DE112016006899T5 (de) * 2016-05-24 2019-02-14 Intel Corporation Last-bewusste dynamische Direktzugriffskanal- (RACH) Gestaltung
US10779283B2 (en) * 2016-05-31 2020-09-15 Nokia Technologies Oy Physical resource sharing on wireless interface
KR102346610B1 (ko) * 2017-01-04 2022-01-05 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 무선 통신 시스템의 네트워크 슬라이스에 대한 액세스 제어
MX2019008091A (es) * 2017-01-05 2019-09-04 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo y dispositivo para acceso aleatorio.
US20180279384A1 (en) * 2017-03-24 2018-09-27 Mediatek Inc. Two-Phase Backoff for Access Procedure in Wireless Communication Systems
IT201700035262A1 (it) * 2017-03-30 2018-09-30 Telecom Italia Spa Rete di dispositivi senza fili configurabile
CN109392186B (zh) 2017-08-10 2021-01-08 维沃移动通信有限公司 随机接入方法、终端、网络设备及计算机可读存储介质
EP3666024A1 (en) * 2017-08-11 2020-06-17 Telefonaktiebolaget LM Ericsson (publ) Methods and apparatus relating to random access in a wireless communications network
WO2019061357A1 (zh) * 2017-09-29 2019-04-04 北京小米移动软件有限公司 随机接入配置方法及装置
EP3701763B1 (en) * 2017-10-24 2022-08-10 Telefonaktiebolaget LM Ericsson (publ) Technique for listening after talk
WO2019092196A1 (en) * 2017-11-13 2019-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Implicit temporal network access load distribution
US10827019B2 (en) 2018-01-08 2020-11-03 All Purpose Networks, Inc. Publish-subscribe broker network overlay system
WO2019135830A1 (en) 2018-01-08 2019-07-11 All Purpose Networks, Inc. Internet of things system with efficient and secure communications network
EP3791650B1 (en) * 2018-05-08 2023-03-08 Telefonaktiebolaget LM Ericsson (publ) Enabling management of random access attempts in a wireless communication system
DE112019004008T5 (de) * 2018-08-09 2021-05-20 Lg Electronics Inc. Verfahren zum senden von uplink-daten unter verwendung einer vorkonfigurierten uplink-ressource in einem drahtlosen kommunikationssystem, das ein schmalband-internet-der-dinge-system unterstützt, und vorrichtung dafür
CN112567847B (zh) * 2018-08-09 2024-01-16 Lg 电子株式会社 在无线通信系统中通过使用pur发送和接收上行链路数据的方法及其装置
CN113302981A (zh) * 2018-09-27 2021-08-24 瑞典爱立信有限公司 对预配置ul资源中的传输的支持
CN111385816B (zh) * 2018-12-27 2022-07-15 展讯通信(上海)有限公司 随机接入统计信息的上报方法及装置
CA3126402A1 (en) * 2019-01-11 2020-02-20 Zte Corporation Preconfiguring dedicated resource information in idle mode
US20220150925A1 (en) * 2019-02-22 2022-05-12 Nokia Technologies Oy Resource Configuration for NB-IOT
WO2020191773A1 (en) * 2019-03-28 2020-10-01 Nokia Shanghai Bell Co., Ltd. Mechanism for first random access mode falling back to second random access mode
TWI701956B (zh) * 2019-11-22 2020-08-11 明泰科技股份有限公司 第五代無線通信的通道負載預調整系統
WO2023121682A1 (en) * 2021-12-21 2023-06-29 Nokia Technologies Oy Random access procedure optimization for energy harvesting sdt devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004629A1 (fr) * 2006-07-06 2008-01-10 Sharp Kabushiki Kaisha Système de communication sans fil, dispositif de station mobile et procédé d'accès aléatoire
WO2011100596A2 (en) * 2010-02-12 2011-08-18 Interdigital Patent Holdings, Inc. Methods and apparatus for optimizing uplink random access channel transmission

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277413B2 (en) * 2001-07-05 2007-10-02 At & T Corp. Hybrid coordination function (HCF) access through tiered contention and overlapped wireless cell mitigation
KR20040064867A (ko) * 2003-01-10 2004-07-21 삼성전자주식회사 이동통신 시스템에서 역방향 메시지의 전송 구간을제공하는 방법
CN1323526C (zh) * 2003-10-29 2007-06-27 华为技术有限公司 无线局域网中业务连接建立的方法
US7724656B2 (en) * 2005-01-14 2010-05-25 Telefonaktiebolaget Lm Ericsson (Publ) Uplink congestion detection and control between nodes in a radio access network
US8027356B2 (en) * 2008-01-31 2011-09-27 Lg Electronics Inc. Method for signaling back-off information in random access
KR101594359B1 (ko) * 2008-01-31 2016-02-16 엘지전자 주식회사 랜덤 접속에서 백오프 정보를 시그널링하는 방법
DE102008000646A1 (de) * 2008-03-13 2009-09-17 Zf Friedrichshafen Ag Anordnung zum Schalten von zumindest zwei Losrädern
CN101572921B (zh) * 2008-04-29 2013-07-31 株式会社Ntt都科摩 移动通信系统中的小区重选方法及装置
EP2136599B1 (en) * 2008-06-18 2017-02-22 LG Electronics Inc. Detection of failures of random access procedures
ES2355668B1 (es) * 2008-12-12 2012-02-02 Vodafone España, S.A.U. Bloqueo de celdas en una red de comunicación celular.
WO2011100540A1 (en) * 2010-02-12 2011-08-18 Interdigital Patent Holdings, Inc. Access control and congestion control in machine-to-machine communication
BR112012020397A2 (pt) * 2010-02-15 2016-05-10 Ericsson Telefon Ab L M controle de acesso para dispositivos m2m
US8462722B2 (en) * 2010-03-26 2013-06-11 Telefonaktiebolaget L M Ericsson (Publ) Access control for machine-type communication devices
US8582631B2 (en) * 2010-04-26 2013-11-12 Sierra Wireless, Inc. Managing communication operations of wireless devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004629A1 (fr) * 2006-07-06 2008-01-10 Sharp Kabushiki Kaisha Système de communication sans fil, dispositif de station mobile et procédé d'accès aléatoire
WO2011100596A2 (en) * 2010-02-12 2011-08-18 Interdigital Patent Holdings, Inc. Methods and apparatus for optimizing uplink random access channel transmission

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN5013004904; KPN: 'CLARIFICATION OF TIME CONTROLLED' 3GPP TSG-SA1 #49 S-100109 , 20100210, MOBILE COMPETENCE CENTRE *
JPN6013052401; Ericsson: 'Contention bansed uplink transmissions' 3GPP TSG-RAN WG2 #66bis R2-093812 , 20090703, 3GPP *
JPN6013052402; CATT: 'Access control of MTC devices' 3GPP TSG RAN WG2 Meeting #68bis R2-100182 , 20101202, 3GPP *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018526925A (ja) * 2015-09-03 2018-09-13 アルカテル−ルーセント ユーザ機器を動作させる方法及びベースバンドユニットを動作させる方法
JP2019524031A (ja) * 2016-06-15 2019-08-29 コンヴィーダ ワイヤレス, エルエルシー 次世代ネットワークにおけるランダムアクセスプロシージャ
US10849166B2 (en) 2016-06-15 2020-11-24 Convida Wireless, Llc Random access procedures in Next Gen networks
JP2021158670A (ja) * 2016-06-15 2021-10-07 コンヴィーダ ワイヤレス, エルエルシー 次世代ネットワークにおけるランダムアクセスプロシージャ
JP7182056B2 (ja) 2016-06-15 2022-12-02 インターデイジタル パテント ホールディングス インコーポレイテッド 次世代ネットワークにおけるランダムアクセスプロシージャ

Also Published As

Publication number Publication date
CN103957603A (zh) 2014-07-30
TW201212693A (en) 2012-03-16
EP2601799A4 (en) 2016-04-06
TWI446815B (zh) 2014-07-21
EP2601799A1 (en) 2013-06-12
US20160143063A1 (en) 2016-05-19
CN102484765A (zh) 2012-05-30
CN103957603B (zh) 2018-04-24
WO2012016538A1 (en) 2012-02-09
US20120033613A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
US20160143063A1 (en) Enhanced RACH Design for Machine-Type Communications
USRE49136E1 (en) System and method for applying extended accessing barring in wireless communication system
US10492228B2 (en) Mobile communications system, infrastructure equipment, mobile communications terminal and method to communicate user data within an uplink random access channel
JP5746436B2 (ja) Lteアドバンストシステムにおける強化型アクセス制御方法
US8885458B2 (en) Simplified signaling for small data transmissions
US20110235558A1 (en) Access control for machine-type communication devices
WO2014088486A1 (en) Overload control in a communication network
TW201306530A (zh) 加強型傳呼的方法及其機器類型通訊裝置
WO2012024996A1 (zh) 一种随机接入方法及实现随机接入的系统
KR20090031265A (ko) 이동통신시스템에서의 효과적으로 무선자원할당요청을 보내는 방법
GB2493920A (en) Transmitting machine type communication (MTC) data on a random access channel (RACH)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141118