WO2008004426A1 - Light emitting diode drive circuit - Google Patents

Light emitting diode drive circuit Download PDF

Info

Publication number
WO2008004426A1
WO2008004426A1 PCT/JP2007/062137 JP2007062137W WO2008004426A1 WO 2008004426 A1 WO2008004426 A1 WO 2008004426A1 JP 2007062137 W JP2007062137 W JP 2007062137W WO 2008004426 A1 WO2008004426 A1 WO 2008004426A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
emitting diode
power supply
mos transistors
light
Prior art date
Application number
PCT/JP2007/062137
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Yamaguchi
Daisuke Suzuki
Original Assignee
Mitsumi Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co., Ltd. filed Critical Mitsumi Electric Co., Ltd.
Priority to CN2007800255352A priority Critical patent/CN101485003B/en
Publication of WO2008004426A1 publication Critical patent/WO2008004426A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines

Definitions

  • the present invention relates to a light emitting diode driving circuit, and more particularly to a light emitting diode driving circuit that drives each of a plurality of arranged light emitting diodes.
  • LEDs light emitting diodes
  • FIG. 1 shows a circuit configuration diagram of an example of a conventional light emitting diode driving circuit.
  • This drive circuit is a semiconductor integrated circuit.
  • the reference voltage Vref is applied from the reference voltage source 11 to the inverting input terminal of the operational amplifier 10.
  • the output terminal of the operational amplifier 10 is connected to the gate of a p-channel MOS field effect transistor (hereinafter simply referred to as “MOS transistor”) Ml and to the gate of a p-channel MOS transistor M2.
  • MOS transistors Ml and M2 are connected to the power supply Vddl.
  • MOS transistors Ml and M2 constitute a current mirror circuit.
  • the drain of the MOS transistor Ml is connected to the non-inverting input terminal of the operational amplifier 10 and is grounded via the resistor R1.
  • the drain of the MOS transistor M2 is commonly connected to the drain of the n-channel MOS transistor M4. Commonly connected, the sources of the MOS transistors M4 and M5 are grounded, and the MOS transistors M4 and M5 constitute a current mirror circuit. Connected to the network.
  • the gate of MOS transistor M6 is connected to the gates of p-channel MOS transistors M7 and M8 via switches 15 and 16 such as analog switches, respectively. Yes.
  • the sources of the MOS transistors M6, M7, M8 are connected to the power supply Vdd2, the drains of the MOS transistors M7, M8 are connected to the anode of the LED (light emitting diode) 18, and the power sword of the LED1 8 is grounded!
  • Switches 15 and 16 are switched on and off in accordance with a gradation control switch control signal supplied from terminals 17a and 17b, respectively.
  • MOS transistors M7 and M8 form a current mirror circuit with MOS transistor M6 when switches 15 and 16 are on. Switch 15 is turned on when the LED 18 emits light, and switch 16 is turned on when gradation expression is performed by increasing the light emission luminance of the LED 18.
  • Patent Document 1 Japanese Patent No. 3296882
  • Patent Document 2 Japanese Patent No. 2516236
  • the potential at the point A which is the drain of the MOS transistor Ml constituting the current mirror circuit, and the potential at the point B, the drain of the MOS transistor M2, are not the same potential.
  • the drain-to-source voltages of both transistors are different, and the variation of the conduction voltage Vt of both transistors is about 10%.
  • the drain current of the MOS transistor Ml and the drain current of the MOS transistor M2 do not become the ratio of the gate areas of the two transistors, and there is a problem that the accuracy of the current mirror is poor.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a light emitting diode drive circuit that can suppress fluctuations in light emission luminance of the light emitting diode.
  • a light emitting diode driving circuit of the present invention generates a reference current unit that generates a reference current and a plurality of systems of on / off control to generate a plurality of systems of drive current proportional to the reference current, thereby generating the light emitting diode.
  • the reference current unit includes an operational amplifier that controls the reference current so that a voltage generated when the reference current flows through a resistor is the same as a constant reference voltage, and the reference current
  • a first current mirror circuit that generates a first current based on the first current mirror circuit, wherein the current output unit of each channel is configured together with a part of the reference current unit, and a second current based on the first current
  • a second current mirror circuit for generating a current, and a current proportional to the second current corresponding to a switch that is turned on among the switches of the plurality of systems, and is supplied with the second current
  • a third current mirror circuit is provided, and each of the first, second, and third current mirror circuits is a cascaded two-stage current mirror circuit, thereby suppressing variations in light emission luminance of the light emitting diode.
  • a resistor may be provided between each of the transistors constituting the first and third current mirror circuits connected to the high voltage power source and the high voltage power source. it can.
  • a resistor can be provided between each of the transistors constituting the second current mirror circuit connected to the low voltage side power supply and the low voltage side power supply.
  • the current output portions for the plurality of channels are arranged side by side in one direction, and a power supply wiring is disposed on the current output portion for the plurality of channels in one direction.
  • a slit is formed in each channel so as to open and surround a part of the contact region of each channel connecting the power supply wiring and the current output portion of each channel. Can do.
  • FIG. 1 is a circuit configuration diagram of an example of a conventional light emitting diode driving circuit.
  • FIG. 2 is a block configuration diagram of an embodiment of an LED array device using the light emitting diode driving circuit of the present invention.
  • FIG. 3 is a circuit configuration diagram of an embodiment of a light-emitting diode driving circuit according to the present invention.
  • FIG. 4 is a circuit configuration diagram of a modification of the embodiment of the light-emitting diode driving circuit according to the present invention.
  • FIG. 5 is a plan view of an example of a semiconductor integrated circuit.
  • FIG. 6 is an equivalent circuit diagram of an example of a semiconductor integrated circuit.
  • FIG. 7 is an equivalent circuit diagram of another example of the semiconductor integrated circuit.
  • FIG. 8 is a plan view of an embodiment of a semiconductor integrated circuit in the light emitting diode driving circuit of the present invention.
  • FIG. 9 is an equivalent circuit diagram of one embodiment of a semiconductor integrated circuit.
  • FIG. 2 shows a block diagram of an embodiment of an LED array device using the light emitting diode driving circuit of the present invention.
  • This LED array device has, for example, a 48-channel configuration.
  • shift register 20 is supplied with, for example, 6-bit light emission time data for 8 channels in time series for 1 channel, and is sequentially shifted and latched by shift register 20. After that, it is supplied to the pulse width modulation circuit 22.
  • the pulse width modulation circuit 22 generates a light emission pulse having a pulse width indicated by the light emission time data for each channel, and supplies the light emission pulses for 48 channels to the LED array drive circuit 26.
  • One channel is supplied to the shift register 24 in a time series of, for example, 6-bit light emission luminance data power of 8 channels, sequentially shifted and latched by the shift register 24, and then supplied to the LED array drive circuit 26 Is done.
  • the LED array drive circuit 26 decodes the light emission luminance data for each channel to generate n system switch control signals, and determines the MOS transistor to be turned on by the light emission pulse for each channel based on the n system switch control signals. .
  • the LED array drive circuit 26 drives the 48-channel LEDs constituting the LED array 28 in units of channels.
  • FIG. 3 is a circuit configuration diagram of an embodiment of a light-emitting diode driving circuit according to the present invention.
  • This drive circuit is a semiconductor integrated circuit.
  • the reference voltage Vref is applied from the reference voltage source circuit 31 to the inverting input terminal of the operational amplifier 30.
  • the output terminal of the operational amplifier 30 is connected to the gates of the p-channel MOS transistors Mil and M12.
  • the sources of the MOS transistors Mil and M12 are connected to the power supply Vddl via the resistors Rl l and R12, respectively, to form a current mirror circuit.
  • the drains of the MOS transistors Mil and Ml2 are connected to the sources of the p-channel MOS transistors M13 and M14, respectively.
  • the gates of the MOS transistors M13 and M14 are commonly connected to the drain of the MOS transistor M13 to form a current mirror circuit, and the drain of the MOS transistor M13 is connected to the non-inverting input terminal of the operational amplifier 30. Is connected to one end of a resistor R13. The other end of the resistor R13 is grounded.
  • the MOS transistors Ml 3 and M14 cascade-connected to the MOS transistors Mil and M12 operate in the active region, and the gate-source voltage Vgs becomes substantially the same. Therefore, the potential at the point A that is the drain of the MOS transistor M1 constituting the current mirror circuit and the potential at the point B that is the drain of the MOS transistor M12 are substantially the same potential. For this reason, the drain-source voltage Vds of the MOS transistors Mil, M12 is substantially the same.
  • the resistance values of the resistors Rl l and R12 connected to the sources of the MOS transistors Mi l and Ml 2 are selected to be, for example, about 100 times the conduction resistance of the MOS transistors Mi l and M12. . For this reason, the variation in the conduction voltage Vt of the MOS transistors Mil and M12 is compressed to less than 1% of the case where the resistances Rl l and R12 are not present, and the variation in the conduction voltage Vt can be ignored.
  • drain current Id of the MOS transistors Mil and M12 is expressed by the equation (1).
  • ⁇ and ⁇ are proportional constants, W is the gate width, and L is the gate length.
  • Id (l + ⁇ -Vds) X (1/2) X, u X (W / L) X (Vgs-Vt) 2 "-(1)
  • Vds of MOS transistors Mil and M12 are substantially the same, and variations in Vt can be ignored. For this reason, the drain currents of the MOS transistors Mil and M12 become the ratio of the gate areas of both transistors, and the accuracy of the current mirror is improved. It is connected.
  • the gate of the MOS transistor M15 is connected to the gate of the n-channel MOS transistor M16 to form a current mirror circuit.
  • the sources of the MOS transistors M15 and M16 are connected to the drains of the n-channel MOS transistors Ml7 and M18, respectively.
  • the gates of the MOS transistors M17 and M18 are commonly connected to the drain of the MOS transistor M15 to form a current mirror circuit, and the sources of the MOS transistors M17 and M18 are grounded.
  • the source potentials of the MOS transistors M15 and M16 are substantially the same and the gate area is the same as the MOS transistors Ml1 to M14.
  • the drain currents of the MOS transistors Ml 5 and M 16 are substantially the same.
  • the constant voltage Va is applied from the voltage source 33 to the gates of the MOS transistors M15 and M16, so that the drain potential of the MOS transistors M17 and M18 is Va-Vgsl (Vgsl is between the gate and drain of the n-channel MOS transistor). Voltage).
  • the operational amplifier 30, the reference voltage source circuit 31, the MOS transistors Ml 1 to M15 and M17 constitute a reference current unit 32, and a reference current Iref flows through the drain of the MOS transistor M13. In addition, it is connected to the drain of MOS transistor M16 by a current mirror circuit. A current proportional to the quasi-current Iref flows. Connected.
  • the source of the MOS transistor M22 is connected to the drain of the p-channel MOS transistor M21.
  • the source of the MOS transistor M21 is connected to the power source Vdd2 through the resistor R15.
  • the gate of the MOS transistor M21 is connected to the drain of the MOS transistor M22, and is connected to the gates of the p-channel MOS transistors M23, M25, and M27 via the switches 36, 38, and 40 such as analog switches, respectively. /! Then, the MOS transistors M23, M25, and M27 are turned on with the gate potentials of the MOS transistors M23, M25, and M27 set to be the same as the gate voltage of the MOS transistor M21. When the switches 36, 38, and 40 are turned off, the MOS transistors M23, M25, and M27 are turned off by setting the gate potential of the MOS transistors M23, M25, and M27 to the power supply voltage Vdd2.
  • MOS transistors M23, M25, and M27 are connected to the power supply Vdd2 via resistors R16, R17, and R18, respectively.
  • MOS transistors M23, M25, and M27 form a current mirror circuit with MOS transistor M21 when switches 36, 38, and 40 are on.
  • the gate of the MOS transistor M22 is connected to the gates of the p-channel MOS transistors M24, M26, M28.
  • the drains of the MOS transistors M23, M25, M27 are connected to the sources of the MOS transistors M24, M26, M28, and the MOS transistors M22, M24, M26, M28 constitute a current mirror circuit.
  • MOS transistors M21 to M28 have a configuration in which current mirror circuits are cascaded, so that the drain potentials of MOS transistors M21, M23, M25, and M27 are substantially the same as MOS transistors Ml1 to M14.
  • the gate areas are the same, the drain currents of the MOS transistors M22, M24, M26, and M28 are substantially the same.
  • the gate area of MOS transistors M23 and M24 is 6 times that of MOS transistors M21 and M22, and the gate area of MOS transistors M25 and M26 is 3 times.
  • the gate areas of the MOS transistors M27 and M28 are doubled, such as double.
  • Vb a constant voltage applied from the voltage source 35 to the gates of the MOS transistors M22, M24, M26, and M28, and the source potential of the MOS transistors M22, M24, M26, and M28 is Vb + Vgs2 (Vgs2 is p-channel MOS transistor gate-drain voltage)
  • n 3 switch control signals supplied from the terminals 37, 39, and 41, respectively.
  • n is not limited to 3.
  • the drains of MOS transistors M24, M26, and M28 are connected to the anode of LED45-1, and the power sword of LED45-1 is grounded.
  • the switches 36, 38, 40 and the MOS transistors M16, M18 to M28 constitute the current output unit 44-1.
  • LED45-1 is part of LED array 28.
  • FIG. 4 shows a circuit configuration diagram of a modification of the embodiment of the light-emitting diode driving circuit according to the present invention.
  • MOS transistor M17 MOS transistor M17
  • the source of M18 is grounded through resistors Ra and Rb. If the power supplies Vddl and Vdd2 are high-voltage power supplies, grounding can be said to be a low-voltage power supply.
  • the MOS transistor M15 and M16 operate in the active region, and the gate-source voltage Vgs is substantially the same. But Therefore, the potential at the point C which is the drain of the MOS transistor M17 constituting the current mirror circuit is substantially the same as the potential at the point D which is the drain of the MOS transistor M18. For this reason, the drain-source voltage Vds of the MOS transistors Mil and M12 is substantially the same.
  • the resistance values of the resistors Ra and Rb connected to the sources of the MOS transistors M17 and Ml8 are selected to be, for example, about 100 times the conduction resistance of the MOS transistors M17 and M18. Therefore, the variation in the conduction voltage Vt of the MOS transistors M17 and M18 is compressed to less than 1% with respect to the absence of the resistors Ra and Rb, and the variation in the conduction voltage Vt can be ignored. As a result, the drain currents of the MOS transistors M17 and M18 become the ratio of the gate areas of both transistors, and the accuracy of the current mirror is improved.
  • the resistance value of several ohms is generated by the aluminum-umum wiring of the ground line.
  • the source of the MOS transistor M18 of the current output unit 44-m is directly grounded, whereas the source of the MOS transistor M17 of the reference current unit 32 is grounded through a resistance value of several ⁇ . Therefore, even if the gate areas of the MOS transistors M17 and M18 are the same, the drain current of the MOS transistor M18 in the current output section 44-m is different from the drain current of the MOS transistor M17 in the reference current section 32.
  • FIG. 5 shows a plan view of an example of a semiconductor integrated circuit for the current output portions 441 to 44 m in the light emitting diode driving circuit of the present invention.
  • the current output units 44-1 to 44-m are arranged in a line in the X direction.
  • the power supply wiring 50 shown in the satin region extends in the X direction above the current output portions 44 l to 44-m, and supplies the power supply Vdd2 to the current output portions 44-1 to 44 m.
  • Each of current output portions 44 1 to 44 111 is provided with contact regions 51-1 to 51-m indicated by hatching! Contacts for connecting the resistors R15 to R18 of the current output units 44-1 to 44-m to the power supply Vdd2 are provided in the contact regions 51-1 to 51-m.
  • the equivalent circuit of Fig. 5 is as shown in Fig. 6.
  • Rx is the wiring resistance of the power supply wiring 50.
  • FIG. 8 is a plan view of an embodiment of a semiconductor integrated circuit corresponding to current output portions 44 1 to 44 m in the light emitting diode driving circuit of the present invention.
  • the current output units 44 1 to 44 -m are arranged in a line in the X direction.
  • the power supply wiring 50 shown in the satin region is arranged extending in the X direction on the current output portion 44 1 to 44 m, and supplies the power supply Vdd2 to the current output portion 44 1 to 44 m.
  • Each of the current output portions 44 1 to 44 111 is provided with contact regions 51-1 to 51-m indicated by hatching! In the contact area 51— 1 to 51—m, the current output section 44— Contacts are provided to connect each resistor R15 to R18 to the power supply Vdd2.
  • a power supply wiring 50 is provided above the contact regions 51-l to 51-m.
  • slit portions 55-1 to 55-m in which the power supply wiring 50 is notched are provided, and the contact regions 51-1 to 51-m are A part (current inflow part) is opened and surrounded by the slit part 55-1 to 55- m.
  • the slits 55 — 1 to 55-m are provided to limit the current flowing into the contact regions 51-1 to 51-m.
  • the equivalent circuit of Fig. 8 is as shown in Fig. 9.
  • Ry is the wiring resistance of the power supply wiring 50
  • Rs is the equivalent limiting resistance due to the slit portions 55-1 to 55-m.
  • the slits 55-1 to 55-m are the force that opens and surrounds the left side of the contact areas 51-1 to 51-m.
  • the current output portions 44-l to 44-m can be turned on even if the switches 36, 38, 40 are turned on differently. 44 Current flowing into 1 to 44 m is limited to a certain amount or less. For this reason, the voltage drop which generate
  • the power supply voltage ⁇ (1 (12 can be stabilized in each of the current output portions 44 1 to 44 111.
  • the current output portions 44 1 to 44 with respect to the power supply voltage Vddl of the reference current portion 32 can be stabilized.
  • the current output section 44 1 to 44 m each drive LED45— 1 to 45 — m
  • Each drive current is stable, and the LED45—1 to 45—m emission brightness is stable. Stabilize.
  • the slit portions 55-1 to 55-m open and surround a part (current inflow portion) of the contact region 51-1 to 51-m, but any portion can be freely selected. .
  • the MOS transistors Ml 1 to M14 correspond to the first current mirror circuit described in the claims, the drain current of the MOS transistor M14 corresponds to the first current, and the MOS transistors M15 to M18 are the first current mirror circuit. 2 corresponds to the current mirror circuit, the drain current of the MOS transistor M16 corresponds to the second current, and the MOS transistors M21 to M28 correspond to the third current mirror circuit. [0062]
  • the present invention is not limited to the specifically disclosed embodiments described above, and various modifications and improvements may be made without departing from the scope of the present invention.
  • the present invention is applicable to a light emitting diode driving circuit that drives each of a plurality of arranged light emitting diodes.

Landscapes

  • Led Devices (AREA)

Abstract

A reference current unit (33) includes: a calculation amplifier (30) which controls a reference current so that a voltage generated by the reference current flowing in a resistor is identical to a constant reference voltage; and a first current mirror circuit which generates a first current based on the reference current. A current output unit of each channel includes: a second current mirror circuit which is configured together with a part of the reference current unit and generates a second current based on the first current; and a third current mirror circuit to which the second current is supplied and which generates a current proportional to the second current in response to one of the system switches which has turned ON. Each of the first, the second, and the third current mirror circuit is a 2-stage current mirror circuit formed by cascade connection.

Description

明 細 書  Specification
発光ダイオード駆動回路  Light emitting diode drive circuit
技術分野  Technical field
[0001] 本発明は発光ダイオード駆動回路に関し、配列された複数の発光ダイオードそれ ぞれを駆動する発光ダイオード駆動回路に関する。  TECHNICAL FIELD [0001] The present invention relates to a light emitting diode driving circuit, and more particularly to a light emitting diode driving circuit that drives each of a plurality of arranged light emitting diodes.
背景技術  Background art
[0002] プリンタ等において感光体を感光させる手段として、発光ダイオード (以下、「LED」 という)をリニアに配列した LEDアレイを用いたものがある。このような LEDアレイの各 LEDを駆動する駆動回路としては、例えば特許文献 1, 2等に記載されているものが ある。  As a means for exposing a photosensitive member in a printer or the like, there is one using an LED array in which light emitting diodes (hereinafter referred to as “LEDs”) are linearly arranged. As a drive circuit for driving each LED of such an LED array, there are those described in Patent Documents 1 and 2, for example.
[0003] 図 1は、従来の発光ダイオード駆動回路の一例の回路構成図を示す。この駆動回 路は半導体集積回路化されて 、る。  FIG. 1 shows a circuit configuration diagram of an example of a conventional light emitting diode driving circuit. This drive circuit is a semiconductor integrated circuit.
[0004] 図 1中、演算増幅器 10の反転入力端子には基準電圧源 11より基準電圧 Vrefが印 加されて!、る。演算増幅器 10の出力端子は pチャネル MOS電界効果トランジスタ( 以下、単に「MOSトランジスタ」という) Mlのゲートに接続されると共に、 pチャネル M OSトランジスタ M2のゲートに接続されている。 MOSトランジスタ Ml, M2のソース は電源 Vddlに接続されている。 MOSトランジスタ Ml, M2はカレントミラー回路を 構成している。  In FIG. 1, the reference voltage Vref is applied from the reference voltage source 11 to the inverting input terminal of the operational amplifier 10. The output terminal of the operational amplifier 10 is connected to the gate of a p-channel MOS field effect transistor (hereinafter simply referred to as “MOS transistor”) Ml and to the gate of a p-channel MOS transistor M2. The sources of MOS transistors Ml and M2 are connected to the power supply Vddl. MOS transistors Ml and M2 constitute a current mirror circuit.
[0005] MOSトランジスタ Mlのドレインは演算増幅器 10の非反転入力端子に接続される と共に、抵抗 R1を介して接地されている。 MOSトランジスタ M2のドレインは nチヤネ ル MOSトランジスタ M4のドレインに共通接続されている。 共通接続され、 MOSトランジスタ M4, M5のソースは接地されており、 MOSトランジ スタ M4, M5はカレントミラー回路を構成している。 ンに接続されて 、る。 MOSトランジスタ M6のゲートはアナログスィッチ等のスィッチ 1 5, 16それぞれを介して pチャネル MOSトランジスタ M7, M8のゲートに接続されて いる。 MOSトランジスタ M6, M7, M8のソースは電源 Vdd2に接続され、 MOSトラン ジスタ M7, M8のドレインは LED (発光ダイオード) 18のアノードに接続され、 LED1 8の力ソードは接地されて!、る。 [0005] The drain of the MOS transistor Ml is connected to the non-inverting input terminal of the operational amplifier 10 and is grounded via the resistor R1. The drain of the MOS transistor M2 is commonly connected to the drain of the n-channel MOS transistor M4. Commonly connected, the sources of the MOS transistors M4 and M5 are grounded, and the MOS transistors M4 and M5 constitute a current mirror circuit. Connected to the network. The gate of MOS transistor M6 is connected to the gates of p-channel MOS transistors M7 and M8 via switches 15 and 16 such as analog switches, respectively. Yes. The sources of the MOS transistors M6, M7, M8 are connected to the power supply Vdd2, the drains of the MOS transistors M7, M8 are connected to the anode of the LED (light emitting diode) 18, and the power sword of the LED1 8 is grounded!
[0008] スィッチ 15, 16は、端子 17a, 17bそれぞれから供給される階調制御用のスィッチ 制御信号に応じてオン Zオフを切り換える。 MOSトランジスタ M7, M8はスィッチ 15 , 16がオンのときに MOSトランジスタ M6とカレントミラー回路を構成する。スィッチ 1 5は LED 18を発光させるタイミングでオンとなり、スィッチ 16は LED 18の発光輝度を 増大させて階調表現を行う場合にオンとなる。 Switches 15 and 16 are switched on and off in accordance with a gradation control switch control signal supplied from terminals 17a and 17b, respectively. MOS transistors M7 and M8 form a current mirror circuit with MOS transistor M6 when switches 15 and 16 are on. Switch 15 is turned on when the LED 18 emits light, and switch 16 is turned on when gradation expression is performed by increasing the light emission luminance of the LED 18.
特許文献 1:特許第 3296882号公報  Patent Document 1: Japanese Patent No. 3296882
特許文献 2:特許第 2516236号公報  Patent Document 2: Japanese Patent No. 2516236
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 従来の発光ダイオード駆動回路では、カレントミラー回路を構成している MOSトラ ンジスタ Mlのドレインである A点の電位と、 MOSトランジスタ M2のドレインである B 点の電位が同電位ではないために両トランジスタのドレイン 'ソース間電圧が異なり、 また、両トランジスタの導通電圧 Vtのばらつきは 10%程度となる。このため、 MOSト ランジスタ Mlのドレイン電流と MOSトランジスタ M2のドレイン電流が両トランジスタ のゲート面積の比にならず、カレントミラーの精度が悪いという問題があった。  In the conventional LED driving circuit, the potential at the point A, which is the drain of the MOS transistor Ml constituting the current mirror circuit, and the potential at the point B, the drain of the MOS transistor M2, are not the same potential. In addition, the drain-to-source voltages of both transistors are different, and the variation of the conduction voltage Vt of both transistors is about 10%. For this reason, the drain current of the MOS transistor Ml and the drain current of the MOS transistor M2 do not become the ratio of the gate areas of the two transistors, and there is a problem that the accuracy of the current mirror is poor.
[0010] また、 MOSトランジスタ M4と M5や MOSトランジスタ M6と M7, M8が構成する他 のカレントミラー回路にっ ヽても同様にカレントミラーの精度が悪 、と 、う問題があつ た。このため、基準電流 Irefが一定であっても LED18に流れる電流が変動し、 LED 18の発光輝度が変動するという問題があった。  [0010] In addition, there is a problem that the accuracy of the current mirror is similarly poor even when other current mirror circuits constituted by the MOS transistors M4 and M5 and the MOS transistors M6, M7 and M8 are used. For this reason, even if the reference current Iref is constant, there is a problem that the current flowing through the LED 18 varies and the light emission luminance of the LED 18 varies.
[0011] 本発明は、上記の点に鑑みなされたものであり、発光ダイオードの発光輝度の変動 を抑えることができる発光ダイオード駆動回路を提供することを目的とする。  The present invention has been made in view of the above points, and an object of the present invention is to provide a light emitting diode drive circuit that can suppress fluctuations in light emission luminance of the light emitting diode.
課題を解決するための手段  Means for solving the problem
[0012] 本発明の発光ダイオード駆動回路は、基準電流を生成する基準電流部と、複数系 統のスィッチをオン Zオフ制御して前記基準電流に比例した複数系統の駆動電流を 生成し発光ダイオードに供給する複数チャネル分の電流出力部からなる発光ダイォ ード駆動回路であって、前記基準電流部は、前記基準電流が抵抗を流れることで発 生する電圧が一定の基準電圧と同一となるよう前記基準電流を制御する演算増幅器 と、前記基準電流に基づく第 1の電流を生成する第 1のカレントミラー回路を有し、各 チャネルの前記電流出力部は、前記基準電流部の一部と共に構成され、前記第 1の 電流に基づく第 2の電流を生成する第 2のカレントミラー回路と、前記第 2の電流を供 給され、前記複数系統のスィッチのうちオンとなったスィッチに対応して前記第 2の電 流に比例する電流を生成する第 3のカレントミラー回路を有し、前記第 1、第 2、第 3の カレントミラー回路それぞれは、カスケード接続された 2段のカレントミラー回路である ことにより、発光ダイオードの発光輝度の変動を抑えることができる。 [0012] A light emitting diode driving circuit of the present invention generates a reference current unit that generates a reference current and a plurality of systems of on / off control to generate a plurality of systems of drive current proportional to the reference current, thereby generating the light emitting diode. A light emitting diode consisting of multiple channels of current output The reference current unit includes an operational amplifier that controls the reference current so that a voltage generated when the reference current flows through a resistor is the same as a constant reference voltage, and the reference current A first current mirror circuit that generates a first current based on the first current mirror circuit, wherein the current output unit of each channel is configured together with a part of the reference current unit, and a second current based on the first current A second current mirror circuit for generating a current, and a current proportional to the second current corresponding to a switch that is turned on among the switches of the plurality of systems, and is supplied with the second current A third current mirror circuit is provided, and each of the first, second, and third current mirror circuits is a cascaded two-stage current mirror circuit, thereby suppressing variations in light emission luminance of the light emitting diode. This Can.
[0013] 前記発光ダイオード駆動回路において、前記第 1及び第 3のカレントミラー回路を 構成し高電圧側の電源に接続される各トランジスタと前記高電圧側の電源との間に 抵抗を設けることができる。  [0013] In the light emitting diode drive circuit, a resistor may be provided between each of the transistors constituting the first and third current mirror circuits connected to the high voltage power source and the high voltage power source. it can.
[0014] 前記発光ダイオード駆動回路において、前記第 2のカレントミラー回路を構成し低 電圧側の電源に接続される各トランジスタと前記低電圧側の電源との間に抵抗を設 けることができる。  [0014] In the light emitting diode drive circuit, a resistor can be provided between each of the transistors constituting the second current mirror circuit connected to the low voltage side power supply and the low voltage side power supply.
[0015] また、前記発光ダイオード駆動回路にお!、て、前記複数チャネル分の電流出力部 を一方向に並べて配置し、前記複数チャネル分の電流出力部の上に電源配線を前 記一方向に延在させて配置し、前記電源配線と各チャネルの前記電流出力部を接 続する各チャネルのコンタクト領域の一部を開けて囲むよう前記電源配線を切り欠い たスリットを各チャネルに設けることができる。  [0015] In the light emitting diode drive circuit, the current output portions for the plurality of channels are arranged side by side in one direction, and a power supply wiring is disposed on the current output portion for the plurality of channels in one direction. A slit is formed in each channel so as to open and surround a part of the contact region of each channel connecting the power supply wiring and the current output portion of each channel. Can do.
発明の効果  The invention's effect
[0016] 本発明によれば、発光ダイオードの発光輝度の変動を抑えることができる。  [0016] According to the present invention, it is possible to suppress fluctuations in the light emission luminance of the light emitting diode.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]従来の発光ダイオード駆動回路の一例の回路構成図である。 FIG. 1 is a circuit configuration diagram of an example of a conventional light emitting diode driving circuit.
[図 2]本発明の発光ダイオード駆動回路を用いた LEDアレイ装置の一実施形態のブ ロック構成図である。  FIG. 2 is a block configuration diagram of an embodiment of an LED array device using the light emitting diode driving circuit of the present invention.
[図 3]本発明の発光ダイオード駆動回路の一実施形態の回路構成図である。  FIG. 3 is a circuit configuration diagram of an embodiment of a light-emitting diode driving circuit according to the present invention.
[図 4]本発明の発光ダイオード駆動回路の一実施形態の変形例の回路構成図である [図 5]半導体集積回路の一例の平面図である。 FIG. 4 is a circuit configuration diagram of a modification of the embodiment of the light-emitting diode driving circuit according to the present invention. FIG. 5 is a plan view of an example of a semiconductor integrated circuit.
[図 6]半導体集積回路の一例の等価回路図である。  FIG. 6 is an equivalent circuit diagram of an example of a semiconductor integrated circuit.
[図 7]半導体集積回路の他の一例の等価回路図である。  FIG. 7 is an equivalent circuit diagram of another example of the semiconductor integrated circuit.
[図 8]本発明の発光ダイオード駆動回路における半導体集積回路の一実施形態の 平面図である。  FIG. 8 is a plan view of an embodiment of a semiconductor integrated circuit in the light emitting diode driving circuit of the present invention.
[図 9]半導体集積回路の一実施形態の等価回路図である。  FIG. 9 is an equivalent circuit diagram of one embodiment of a semiconductor integrated circuit.
符号の説明  Explanation of symbols
[0018] 30 演算増幅器 [0018] 30 operational amplifier
31 基準電圧源回路  31 Reference voltage source circuit
32 基準電流部  32 Reference current section
33, 35 電圧源  33, 35 Voltage source
36, 38, 40 スィッチ  36, 38, 40 switches
44 1〜44 m 電流出力部  44 1 to 44 m Current output section
45— 1〜45— m LED  45— 1 to 45— m LED
50 電源配線  50 Power supply wiring
51— 1〜51— m コンタクト領域  51— 1 to 51— m Contact area
55— 1〜55— m スリット部  55— 1 to 55— m Slit
M11〜M28 MOSトランジスタ  M11 to M28 MOS transistors
R11〜R18, Ra, Rb 抵抗  R11 ~ R18, Ra, Rb resistance
Vddl, Vdd2 電源  Vddl, Vdd2 power supply
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、図面に基づいて本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0020] く LEDアレイ駆動回路の構成〉 [0020] <Configuration of LED array drive circuit>
図 2は、本発明の発光ダイオード駆動回路を用いた LEDアレイ装置の一実施形態 のブロック構成図を示す。この LEDアレイ装置は例えば 48チャネル構成である。  FIG. 2 shows a block diagram of an embodiment of an LED array device using the light emitting diode driving circuit of the present invention. This LED array device has, for example, a 48-channel configuration.
[0021] 図 2中、シフトレジスタ 20には 1チャネルについて例えば 6ビットの発光時間データ 力 8チャネル分時系列で供給され、シフトレジスタ 20で順次シフトされてラッチされ たのち、パルス幅変調回路 22に供給される。パルス幅変調回路 22は、チャネル毎に 発光時間データで指示されるパルス幅の発光パルスを生成し、 48チャネル分の発光 パルスを LEDアレイ駆動回路 26に供給する。 In FIG. 2, shift register 20 is supplied with, for example, 6-bit light emission time data for 8 channels in time series for 1 channel, and is sequentially shifted and latched by shift register 20. After that, it is supplied to the pulse width modulation circuit 22. The pulse width modulation circuit 22 generates a light emission pulse having a pulse width indicated by the light emission time data for each channel, and supplies the light emission pulses for 48 channels to the LED array drive circuit 26.
[0022] シフトレジスタ 24には 1チャネルについて例えば 6ビットの発光輝度データ力 8チヤ ネル分時系列で供給され、シフトレジスタ 24で順次シフトされてラッチされたのち、 L EDアレイ駆動回路 26に供給される。 LEDアレイ駆動回路 26は、チャネル毎に発光 輝度データをデコードして n系統のスィッチ制御信号を生成し、チャネル毎に発光パ ルスでオンさせる MOSトランジスタを上記 n系統のスィッチ制御信号によって決定す る。 LEDアレイ駆動回路 26は LEDアレイ 28を構成する 48チャネルの LEDをチヤネ ル単位に駆動する。  [0022] One channel is supplied to the shift register 24 in a time series of, for example, 6-bit light emission luminance data power of 8 channels, sequentially shifted and latched by the shift register 24, and then supplied to the LED array drive circuit 26 Is done. The LED array drive circuit 26 decodes the light emission luminance data for each channel to generate n system switch control signals, and determines the MOS transistor to be turned on by the light emission pulse for each channel based on the n system switch control signals. . The LED array drive circuit 26 drives the 48-channel LEDs constituting the LED array 28 in units of channels.
[0023] く発光ダイオード駆動回路の構成〉  [0023] <Configuration of LED driving circuit>
図 3は、本発明の発光ダイオード駆動回路の一実施形態の回路構成図を示す。こ の駆動回路は半導体集積回路化されている。  FIG. 3 is a circuit configuration diagram of an embodiment of a light-emitting diode driving circuit according to the present invention. This drive circuit is a semiconductor integrated circuit.
[0024] 図 3中、演算増幅器 30の反転入力端子には基準電圧源回路 31より基準電圧 Vref が印加されている。演算増幅器 30の出力端子は pチャネル MOSトランジスタ Mi l, M12それぞれのゲートに接続されている。 MOSトランジスタ Mi l, M12それぞれの ソースは抵抗 Rl l, R12それぞれを介して電源 Vddlに接続されてカレントミラー回 路を構成している。 MOSトランジスタ Mi l, Ml 2それぞれのドレインは pチャネル M OSトランジスタ M13, M 14それぞれのソースに接続されている。  In FIG. 3, the reference voltage Vref is applied from the reference voltage source circuit 31 to the inverting input terminal of the operational amplifier 30. The output terminal of the operational amplifier 30 is connected to the gates of the p-channel MOS transistors Mil and M12. The sources of the MOS transistors Mil and M12 are connected to the power supply Vddl via the resistors Rl l and R12, respectively, to form a current mirror circuit. The drains of the MOS transistors Mil and Ml2 are connected to the sources of the p-channel MOS transistors M13 and M14, respectively.
[0025] MOSトランジスタ M13, M14のゲートは MOSトランジスタ M13のドレインに共通 接続されてカレントミラー回路を構成しており、 MOSトランジスタ M13のドレインは演 算増幅器 30の非反転入力端子に接続されると共に、抵抗 R13の一端に接続されて いる。抵抗 R13の他端は接地されている。  [0025] The gates of the MOS transistors M13 and M14 are commonly connected to the drain of the MOS transistor M13 to form a current mirror circuit, and the drain of the MOS transistor M13 is connected to the non-inverting input terminal of the operational amplifier 30. Is connected to one end of a resistor R13. The other end of the resistor R13 is grounded.
[0026] ここで、 MOSトランジスタ Mi l, M12にカスケード接続された MOSトランジスタ Ml 3, M14は能動領域で動作してゲート'ソース間電圧 Vgsは略同一となる。したがって 、カレントミラー回路を構成している MOSトランジスタ Mi lのドレインである A点の電 位と、 MOSトランジスタ M12のドレインである B点の電位は略同電位となる。このため に、 MOSトランジスタ Mi l, M12のドレイン 'ソース間電圧 Vdsは略同一となる。 [0027] また、 MOSトランジスタ Mi l, Ml 2のソースに接続された抵抗 Rl l, R12の抵抗 値は、 MOSトランジスタ Mi l, M12の導通抵抗に比して例えば 100倍程度に選定 されている。このため、 MOSトランジスタ Mi l, M12の導通電圧 Vtのばらつきは、抵 抗 Rl l, R12がないときに対して 1%未満に圧縮され、導通電圧 Vtのばらつきは無 視できる。 Here, the MOS transistors Ml 3 and M14 cascade-connected to the MOS transistors Mil and M12 operate in the active region, and the gate-source voltage Vgs becomes substantially the same. Therefore, the potential at the point A that is the drain of the MOS transistor M1 constituting the current mirror circuit and the potential at the point B that is the drain of the MOS transistor M12 are substantially the same potential. For this reason, the drain-source voltage Vds of the MOS transistors Mil, M12 is substantially the same. In addition, the resistance values of the resistors Rl l and R12 connected to the sources of the MOS transistors Mi l and Ml 2 are selected to be, for example, about 100 times the conduction resistance of the MOS transistors Mi l and M12. . For this reason, the variation in the conduction voltage Vt of the MOS transistors Mil and M12 is compressed to less than 1% of the case where the resistances Rl l and R12 are not present, and the variation in the conduction voltage Vt can be ignored.
[0028] ここで、 MOSトランジスタ Mi l, M12のドレイン電流 Idは(1)式で表される。なお、  Here, the drain current Id of the MOS transistors Mil and M12 is expressed by the equation (1). In addition,
λ , ιχは比例定数、 Wはゲート幅、 Lはゲート長である。  λ and ιχ are proportional constants, W is the gate width, and L is the gate length.
[0029] Id= (l + λ -Vds) X (1/2) X ,u X (W/L) X (Vgs-Vt) 2 "- (1) [0029] Id = (l + λ -Vds) X (1/2) X, u X (W / L) X (Vgs-Vt) 2 "-(1)
(1)式において、 MOSトランジスタ Mi l, M12の Vdsは略同一であり、 Vtのばらつ きは無視できる。このため、 MOSトランジスタ Mi l, M12のドレイン電流は両トランジ スタのゲート面積の比となり、カレントミラーの精度が向上する。 接続されている。 MOSトランジスタ M15のゲートは nチャネル MOSトランジスタ M16 のゲートと接続されてカレントミラー回路を構成している。  In equation (1), Vds of MOS transistors Mil and M12 are substantially the same, and variations in Vt can be ignored. For this reason, the drain currents of the MOS transistors Mil and M12 become the ratio of the gate areas of both transistors, and the accuracy of the current mirror is improved. It is connected. The gate of the MOS transistor M15 is connected to the gate of the n-channel MOS transistor M16 to form a current mirror circuit.
[0031] MOSトランジスタ M15, M16それぞれのソースは nチャネル MOSトランジスタ Ml 7, M18それぞれのドレインに接続されている。 MOSトランジスタ M17, M18のゲー トは MOSトランジスタ M15のドレインに共通接続されてカレントミラー回路を構成し、 MOSトランジスタ M17, M18のソースは接地されている。  [0031] The sources of the MOS transistors M15 and M16 are connected to the drains of the n-channel MOS transistors Ml7 and M18, respectively. The gates of the MOS transistors M17 and M18 are commonly connected to the drain of the MOS transistor M15 to form a current mirror circuit, and the sources of the MOS transistors M17 and M18 are grounded.
[0032] MOSトランジスタ M15〜M18はカレントミラー回路がカスケード接続された構成と なることにより、 MOSトランジスタ Ml 1〜M14と同様にして、 MOSトランジスタ M15 , M16のソース電位が略同一となり、ゲート面積が同一の場合 MOSトランジスタ Ml 5, M16のドレイン電流は略同一となる。なお、 MOSトランジスタ M15, M16のゲー トには電圧源 33より定電圧 Vaが印加されることで MOSトランジスタ M17, M18のド レイン電位は Va— Vgsl (Vgslは nチャネル MOSトランジスタのゲート'ドレイン間電 圧)となる。  Since the MOS transistors M15 to M18 are configured by cascading current mirror circuits, the source potentials of the MOS transistors M15 and M16 are substantially the same and the gate area is the same as the MOS transistors Ml1 to M14. In the same case, the drain currents of the MOS transistors Ml 5 and M 16 are substantially the same. The constant voltage Va is applied from the voltage source 33 to the gates of the MOS transistors M15 and M16, so that the drain potential of the MOS transistors M17 and M18 is Va-Vgsl (Vgsl is between the gate and drain of the n-channel MOS transistor). Voltage).
[0033] 上記の演算増幅器 30,基準電圧源回路 31, MOSトランジスタ Ml 1〜M15及び M17は基準電流部 32を構成しており、 MOSトランジスタ M13のドレインに基準電流 Irefを流す。また、カレントミラー回路によって MOSトランジスタ M16のドレインに基 準電流 Irefに比例した電流が流れる。 接続されて 、る。 MOSトランジスタ M22のソースは pチャネル MOSトランジスタ M21 のドレインに接続されている。 MOSトランジスタ M21のソースは抵抗 R15を介して電 源 Vdd2に接続されている。 The operational amplifier 30, the reference voltage source circuit 31, the MOS transistors Ml 1 to M15 and M17 constitute a reference current unit 32, and a reference current Iref flows through the drain of the MOS transistor M13. In addition, it is connected to the drain of MOS transistor M16 by a current mirror circuit. A current proportional to the quasi-current Iref flows. Connected. The source of the MOS transistor M22 is connected to the drain of the p-channel MOS transistor M21. The source of the MOS transistor M21 is connected to the power source Vdd2 through the resistor R15.
[0035] MOSトランジスタ M21のゲートは MOSトランジスタ M22のドレインに接続されると 共に、アナログスィッチ等のスィッチ 36, 38, 40それぞれを介して pチャネル MOSト ランジスタ M23, M25, M27のゲートに接続されて!/、る。スィッチ 36, 38, 40力 ^才ン すると MOSトランジスタ M23, M25, M27のゲート電位を MOSトランジスタ M21の ゲート電圧と同一にして MOSトランジスタ M23, M25, M27がオンする。また、スィ ツチ 36, 38, 40がオフすると MOSトランジスタ M23, M25, M27のゲート電位を電 源電圧 Vdd2として MOSトランジスタ M23, M25, M27がオフする。  [0035] The gate of the MOS transistor M21 is connected to the drain of the MOS transistor M22, and is connected to the gates of the p-channel MOS transistors M23, M25, and M27 via the switches 36, 38, and 40 such as analog switches, respectively. /! Then, the MOS transistors M23, M25, and M27 are turned on with the gate potentials of the MOS transistors M23, M25, and M27 set to be the same as the gate voltage of the MOS transistor M21. When the switches 36, 38, and 40 are turned off, the MOS transistors M23, M25, and M27 are turned off by setting the gate potential of the MOS transistors M23, M25, and M27 to the power supply voltage Vdd2.
[0036] MOSトランジスタ M23, M25, M27それぞれのソースは抵抗 R16, R17, R18そ れぞれを介して電源 Vdd2に接続されている。 MOSトランジスタ M23, M25, M27 はスィッチ 36, 38, 40がオンのときに MOSトランジスタ M21とカレントミラー回路を 構成する。  [0036] The sources of the MOS transistors M23, M25, and M27 are connected to the power supply Vdd2 via resistors R16, R17, and R18, respectively. MOS transistors M23, M25, and M27 form a current mirror circuit with MOS transistor M21 when switches 36, 38, and 40 are on.
[0037] MOSトランジスタ M22のゲートは pチャネル MOSトランジスタ M24, M26, M28 のゲートに接続されている。 MOSトランジスタ M23, M25, M27それぞれのドレイン は MOSトランジスタ M24, M26, M28のソースに接続されており、 MOSトランジスタ M22, M24, M26, M28はカレントミラー回路を構成している。  The gate of the MOS transistor M22 is connected to the gates of the p-channel MOS transistors M24, M26, M28. The drains of the MOS transistors M23, M25, M27 are connected to the sources of the MOS transistors M24, M26, M28, and the MOS transistors M22, M24, M26, M28 constitute a current mirror circuit.
[0038] MOSトランジスタ M21〜M28はカレントミラー回路がカスケード接続された構成と なることにより、 MOSトランジスタ Ml 1〜M14と同様にして、 MOSトランジスタ M21 , M23, M25, M27のドレイン電位が略同一となり、ゲート面積が同一の場合 MOS トランジスタ M22, M24, M26, M28のドレイン電流は略同一となる。ここでは、階調 表現を行うために、例えば MOSトランジスタ M21, M22のゲート面積に対して、 MO Sトランジスタ M23, M24のゲート面積は 6倍、 MOSトランジスタ M25, M26のゲー ト面積は 3倍、 MOSトランジスタ M27, M28のゲート面積は 2倍というように、ゲート 面積をそれぞれ異ならせて 、る。 [0039] なお、 MOSトランジスタ M22, M24, M26, M28のゲートには電圧源 35より定電 圧 Vbが印加されて、 MOSトランジスタ M22, M24, M26, M28のソース電位は Vb +Vgs2 (Vgs2は pチャネル MOSトランジスタのゲート'ドレイン間電圧)とされている [0038] MOS transistors M21 to M28 have a configuration in which current mirror circuits are cascaded, so that the drain potentials of MOS transistors M21, M23, M25, and M27 are substantially the same as MOS transistors Ml1 to M14. When the gate areas are the same, the drain currents of the MOS transistors M22, M24, M26, and M28 are substantially the same. Here, in order to perform gradation expression, for example, the gate area of MOS transistors M23 and M24 is 6 times that of MOS transistors M21 and M22, and the gate area of MOS transistors M25 and M26 is 3 times. The gate areas of the MOS transistors M27 and M28 are doubled, such as double. Note that a constant voltage Vb is applied from the voltage source 35 to the gates of the MOS transistors M22, M24, M26, and M28, and the source potential of the MOS transistors M22, M24, M26, and M28 is Vb + Vgs2 (Vgs2 is p-channel MOS transistor gate-drain voltage)
[0040] スィッチ 36, 38, 40それぞれは端子 37, 39, 41それぞれから供給される n (ここで は n= 3)系統のスィッチ制御信号に応じてオン Zオフを切り換える。なお、 nは 3に限 らない。 MOSトランジスタ M24, M26, M28のドレインは LED45— 1のアノードに接 続され、 LED45— 1の力ソードは接地されている。 [0040] The switches 36, 38, and 40 are switched on and off in accordance with n (here, n = 3) switch control signals supplied from the terminals 37, 39, and 41, respectively. Note that n is not limited to 3. The drains of MOS transistors M24, M26, and M28 are connected to the anode of LED45-1, and the power sword of LED45-1 is grounded.
[0041] ここで、スィッチ 36, 38, 40がオフのとき MOSトランジスタ M23, M25, M27はォ フし LED45— 1に電流は流れない。スィッチ 36がオンすると MOSトランジスタ M23 のドレイン電流力 SLED45— 1に流れる。また、スィッチ 36, 38がオンすると MOSトラ ンジスタ M23, M25のドレイン電流の和が LED45— 1に流れる。また、スィッチ 36, 38, 40がオンすると MOSトランジスタ M23, M25, M27のドレイン電流の和が LED 45— 1〖こ流れる。したがって、 LED45— 1は流れる電流が大きくなるほど発光輝度が 大となる。  [0041] Here, when the switches 36, 38, 40 are off, the MOS transistors M23, M25, M27 are turned off and no current flows through the LED 45-1. When switch 36 is turned on, the drain current force SLED45-1 of MOS transistor M23 flows. When switches 36 and 38 are turned on, the sum of the drain currents of MOS transistors M23 and M25 flows to LED45-1. When switches 36, 38, and 40 are turned on, the sum of the drain currents of MOS transistors M23, M25, and M27 flows through LED 45-1. Therefore, the luminance of LED45-1 increases as the flowing current increases.
[0042] 上記のスィッチ 36, 38, 40, MOSトランジスタ M16, M18〜M28が 1チャネル分 の電流出力部 44— 1を構成している。 LED45— 1は LEDアレイ 28の一部である。  [0042] The switches 36, 38, 40 and the MOS transistors M16, M18 to M28 constitute the current output unit 44-1. LED45-1 is part of LED array 28.
[0043] m ( = 48)チャネル分の電流出力部 44 1〜44 mそれぞれは同一構成であり、 mチャネル分の LED45— 1〜45— mそれぞれを駆動する。 [0043] The current output units 44 1 to 44 m for m (= 48) channels have the same configuration, and drive the LEDs 45-1 to 45-m for m channels.
[0044] このように、各カレントミラー回路のカレントミラーの精度を向上できるため、各チヤネ ルの1^:045— 1〜45—111の発光輝度の変動を抑ぇることができる。 [0044] As described above, since the accuracy of the current mirror of each current mirror circuit can be improved, it is possible to suppress fluctuations in the emission luminance of 1 ^: 045-1 to 45-111 of each channel.
[0045] く発光ダイオード駆動回路の変形例〉 [0045] <Modification of LED driving circuit>
図 4は、本発明の発光ダイオード駆動回路の一実施形態の変形例の回路構成図を 示す。図 4中、図 3と異なる部分について説明する。図 4では、 MOSトランジスタ M17 FIG. 4 shows a circuit configuration diagram of a modification of the embodiment of the light-emitting diode driving circuit according to the present invention. In FIG. 4, the differences from FIG. 3 will be described. In Figure 4, MOS transistor M17
, M18のソースは抵抗 Ra, Rbを介して接地されている。なお、電源 Vddl, Vdd2を 高電圧側の電源とすれば、接地は低電圧側の電源と言える。 The source of M18 is grounded through resistors Ra and Rb. If the power supplies Vddl and Vdd2 are high-voltage power supplies, grounding can be said to be a low-voltage power supply.
[0046] この場合、 MOSトランジスタ M17, M18にカスケード接続された MOSトランジスタ[0046] In this case, the MOS transistors cascade-connected to the MOS transistors M17 and M18
M15, M16は能動領域で動作してゲート'ソース間電圧 Vgsは略同一となる。したが つて、カレントミラー回路を構成している MOSトランジスタ M17のドレインである C点 の電位と、 MOSトランジスタ M18のドレインである D点の電位は略同電位となる。こ のために、 MOSトランジスタ Mi l, M12のドレイン 'ソース間電圧 Vdsは略同一とな る。 M15 and M16 operate in the active region, and the gate-source voltage Vgs is substantially the same. But Therefore, the potential at the point C which is the drain of the MOS transistor M17 constituting the current mirror circuit is substantially the same as the potential at the point D which is the drain of the MOS transistor M18. For this reason, the drain-source voltage Vds of the MOS transistors Mil and M12 is substantially the same.
[0047] また、 MOSトランジスタ M17, Ml 8のソースに接続された抵抗 Ra, Rbの抵抗値は 、 MOSトランジスタ M17, M18の導通抵抗に比して例えば 100倍程度に選定され ている。このため、 MOSトランジスタ M17, M18の導通電圧 Vtのばらつきは、抵抗 R a, Rbがないときに対して 1%未満に圧縮され、導通電圧 Vtのばらつきは無視できる 。これによつて、 MOSトランジスタ M17, M18のドレイン電流は両トランジスタのゲー ト面積の比となり、カレントミラーの精度が向上する。  In addition, the resistance values of the resistors Ra and Rb connected to the sources of the MOS transistors M17 and Ml8 are selected to be, for example, about 100 times the conduction resistance of the MOS transistors M17 and M18. Therefore, the variation in the conduction voltage Vt of the MOS transistors M17 and M18 is compressed to less than 1% with respect to the absence of the resistors Ra and Rb, and the variation in the conduction voltage Vt can be ignored. As a result, the drain currents of the MOS transistors M17 and M18 become the ratio of the gate areas of both transistors, and the accuracy of the current mirror is improved.
[0048] 更に、この変形例では、半導体集積回路の接地ラインを構成するアルミ-ユーム配 線の影響を抑えることができる。  Furthermore, in this modification, it is possible to suppress the influence of the aluminum-um wiring that constitutes the ground line of the semiconductor integrated circuit.
[0049] 図 3の構成において、電流出力部 44— mが基準電流部 32から最も離れて配置さ れ、電流出力部 44— mの近傍に半導体集積回路の接地端子が設けられている場合 を考える。この場合、接地ラインのアルミ-ユーム配線によって数 Ωの抵抗値が生じる 。このため、電流出力部 44— mの MOSトランジスタ M18のソースが直接接地される のに対し、基準電流部 32の MOSトランジスタ M17のソースは数 Ωの抵抗値を介し て接地された状態となる。したがって、 MOSトランジスタ M17, M18のゲート面積が 同一であったとしても、電流出力部 44— mの MOSトランジスタ M18のドレイン電流 は基準電流部 32の MOSトランジスタ M17のドレイン電流と異なったものとなる。  In the configuration of FIG. 3, the case where the current output unit 44-m is arranged farthest from the reference current unit 32 and the ground terminal of the semiconductor integrated circuit is provided in the vicinity of the current output unit 44-m. Think. In this case, the resistance value of several ohms is generated by the aluminum-umum wiring of the ground line. For this reason, the source of the MOS transistor M18 of the current output unit 44-m is directly grounded, whereas the source of the MOS transistor M17 of the reference current unit 32 is grounded through a resistance value of several Ω. Therefore, even if the gate areas of the MOS transistors M17 and M18 are the same, the drain current of the MOS transistor M18 in the current output section 44-m is different from the drain current of the MOS transistor M17 in the reference current section 32.
[0050] これに対し、図 4の構成にお!、て、抵抗 Ra, Rbの抵抗値が共に数 100 Ωである場 合を考える。この場合、電流出力部 44— mと基準電流部 32の間の接地ラインのアル ミニユーム配線によって数 Ωの抵抗値が生じたとしても、数 100 Ωの抵抗 Raが数 Ω 増加しただけであり、この程度の抵抗値の変化は無視することができる。また、電流 出力部 44 mの MOSトランジスタ M18のドレイン電流は基準電流部 32の MOSトラ ンジスタ M17のドレイン電流と同一とみなすことができる。すなわち、上記接地ライン のアルミ-ユーム配線の影響を十分に抑えることができる。  [0050] On the other hand, let us consider the case where the resistance values of the resistors Ra and Rb are several hundred Ω in the configuration of FIG. In this case, even if a resistance value of several Ω is generated by the aluminum wiring of the ground line between the current output section 44—m and the reference current section 32, the resistance Ra of several hundred Ω only increases by several Ω, Such a change in resistance value can be ignored. Further, the drain current of the MOS transistor M18 in the current output section 44 m can be regarded as the same as the drain current of the MOS transistor M17 in the reference current section 32. That is, the influence of the aluminum-um wiring of the ground line can be sufficiently suppressed.
[0051] く電源配線〉 図 5は、本発明の発光ダイオード駆動回路における電流出力部 44 1〜44 m部 分の半導体集積回路の一例の平面図を示す。図 5中、電流出力部 44— 1〜44— m は X方向に一列に並べて配置されている。梨地で示す電源配線 50は電流出力部 44 l〜44—mの上を X方向に延在しており、電源 Vdd2を電流出力部 44— 1〜44 mに供給する。 [0051] Ku power supply wiring> FIG. 5 shows a plan view of an example of a semiconductor integrated circuit for the current output portions 441 to 44 m in the light emitting diode driving circuit of the present invention. In FIG. 5, the current output units 44-1 to 44-m are arranged in a line in the X direction. The power supply wiring 50 shown in the satin region extends in the X direction above the current output portions 44 l to 44-m, and supplies the power supply Vdd2 to the current output portions 44-1 to 44 m.
[0052] 電流出カ部44 1〜44 111それぞれには、ハッチングで示すコンタクト領域 51— 1〜51— mが設けられて!/、る。コンタクト領域 51— 1〜51— mには電流出力部 44— 1〜44— mそれぞれの抵抗 R15〜R18を電源 Vdd2に接続するためのコンタクトが 設けられる。図 5の等価回路は図 6に示すようになる。図 6において、 Rxは電源配線 5 0の配線抵抗である。  [0052] Each of current output portions 44 1 to 44 111 is provided with contact regions 51-1 to 51-m indicated by hatching! Contacts for connecting the resistors R15 to R18 of the current output units 44-1 to 44-m to the power supply Vdd2 are provided in the contact regions 51-1 to 51-m. The equivalent circuit of Fig. 5 is as shown in Fig. 6. In FIG. 6, Rx is the wiring resistance of the power supply wiring 50.
[0053] この場合、電流出力部 44 1〜44 mのうちある電流出力部ではスィッチ 36, 38 , 40の全てがオンとなり、また、他の電流出力部ではスィッチ 36, 38, 40のいずれか がオンとなる。すなわち、各電流出カ部44 1〜44 111でスィッチ36, 38, 40のォ ンとなるパターンがそれぞれ異なる。このため、電流出力部 44—1〜44 mそれぞ れで発生する電圧降下が異なり、電流出力部 44— l〜44—mそれぞれが駆動する LED45— l〜45—mの駆動電流が安定しない、つまり、 LED45— l〜45—mの発 光輝度が安定しない。  [0053] In this case, all of the switches 36, 38, and 40 are turned on in one current output unit among the current output units 44 1 to 44 m, and any one of the switches 36, 38, and 40 is turned on in the other current output units. Is turned on. That is, the patterns that turn on the switches 36, 38, and 40 are different in each of the current output portions 441 to 44111. For this reason, the voltage drop generated in each of the current output units 44-1 to 44-m is different, and the drive current of the LED45-l to 45-m driven by each of the current output units 44-l to 44-m is not stable. In other words, the emission brightness of LEDs 45-l to 45-m is not stable.
[0054] なお、図 7に示すように、電流出力部 44 1〜44 mそれぞれに個別の電源配線 52〜52m力も電源 Vdd2を供給することも考えられる。しかしながら、個別の電源配 線 52〜52mを設ける領域が大幅に増加するため、実現性は極めて低い。図 7にお いて、 Rx〜Rxmは電源配線 50の配線抵抗である。  [0054] As shown in FIG. 7, it is also conceivable to supply the power supply Vdd2 to each of the current output units 44 1 to 44 m with individual power wirings 52 to 52 m. However, the feasibility is extremely low because the area where individual power supply lines 52 to 52m are provided is greatly increased. In FIG. 7, Rx to Rxm are wiring resistances of the power supply wiring 50.
[0055] 図 8は、本発明の発光ダイオード駆動回路における電流出力部 44 1〜44 m部 分の半導体集積回路の一実施形態の平面図を示す。図 8中、電流出力部 44 1〜 44 - mは X方向に一列に並べて配置されて 、る。梨地で示す電源配線 50は電流出 力部 44 1〜44 mの上に X方向に延在して配置されており、電源 Vdd2を電流出 力部 44 1〜44 mに供給する。  FIG. 8 is a plan view of an embodiment of a semiconductor integrated circuit corresponding to current output portions 44 1 to 44 m in the light emitting diode driving circuit of the present invention. In FIG. 8, the current output units 44 1 to 44 -m are arranged in a line in the X direction. The power supply wiring 50 shown in the satin region is arranged extending in the X direction on the current output portion 44 1 to 44 m, and supplies the power supply Vdd2 to the current output portion 44 1 to 44 m.
[0056] 電流出カ部44 1〜44 111それぞれには、ハッチングで示すコンタクト領域 51— 1〜51— mが設けられて!/、る。コンタクト領域 51— 1〜51— mには電流出力部 44— 1〜44— mそれぞれの抵抗 R15〜R18を電源 Vdd2に接続するためのコンタクトが 設けられる。なお、コンタクト領域 51— l〜51—mの上部は電源配線 50が設けられ ている。 [0056] Each of the current output portions 44 1 to 44 111 is provided with contact regions 51-1 to 51-m indicated by hatching! In the contact area 51— 1 to 51—m, the current output section 44— Contacts are provided to connect each resistor R15 to R18 to the power supply Vdd2. A power supply wiring 50 is provided above the contact regions 51-l to 51-m.
[0057] 更に、コンタクト領域 51— l〜51—mそれぞれの周囲には、電源配線 50を切り欠 いたスリット部 55— 1〜55— mが設けられ、コンタクト領域 51— 1〜51— mはスリット 部 55 - 1〜55— mによって一部(電流流入部)を開けて囲まれて!/、る。スリット部 55 — 1〜55— mはコンタクト領域 51— 1〜51— mに流れ込む電流を制限するために設 けられている。図 8の等価回路は図 9に示すようになる。図 9において、 Ryは電源配 線 50の配線抵抗、 Rsはスリット部 55— 1〜55— mによる等価的な制限抵抗である。 なお、図 8でスリット部 55— 1〜55— mはコンタクト領域 51— 1〜51— mの左側を開 けて囲んでいる力 コンタクト領域 51— l〜51—mの右側または上側または下側を 開けて囲む形状であっても良い。  [0057] Further, around each of the contact regions 51-l to 51-m, slit portions 55-1 to 55-m in which the power supply wiring 50 is notched are provided, and the contact regions 51-1 to 51-m are A part (current inflow part) is opened and surrounded by the slit part 55-1 to 55- m. The slits 55 — 1 to 55-m are provided to limit the current flowing into the contact regions 51-1 to 51-m. The equivalent circuit of Fig. 8 is as shown in Fig. 9. In FIG. 9, Ry is the wiring resistance of the power supply wiring 50, and Rs is the equivalent limiting resistance due to the slit portions 55-1 to 55-m. In FIG. 8, the slits 55-1 to 55-m are the force that opens and surrounds the left side of the contact areas 51-1 to 51-m. The right side, the upper side, or the lower side of the contact area 51-l to 51-m. It may be a shape that opens and surrounds.
[0058] このスリット部 55— l〜55—mを設けることにより、各電流出力部 44— l〜44—m でスィッチ 36, 38, 40のオンとなるパターンがそれぞれ異なっても、電流出力部 44 1〜44 mに流れ込む電流が一定量以下に制限される。このため、電流出力部 4 4— l〜44—mそれぞれで発生する電圧降下が制限される。  [0058] By providing the slit portions 55-l to 55-m, the current output portions 44-l to 44-m can be turned on even if the switches 36, 38, 40 are turned on differently. 44 Current flowing into 1 to 44 m is limited to a certain amount or less. For this reason, the voltage drop which generate | occur | produces in each of the current output part 44-1-l-44-m is restrict | limited.
[0059] これにより、電流出カ部44 1〜44 111それぞれにぉける電源電圧¥(1(12を安定 化することができる。基準電流部 32の電源電圧 Vddlに対する電流出力部 44 1〜 44 mそれぞれの電源電圧 Vdd2が安定すると、電流出力部 44 1〜44 mそれ ぞれが駆動する LED45— 1〜45— mそれぞれの駆動電流が安定し、 LED45— 1 〜45— mの発光輝度が安定する。  [0059] As a result, the power supply voltage ¥ (1 (12 can be stabilized in each of the current output portions 44 1 to 44 111. The current output portions 44 1 to 44 with respect to the power supply voltage Vddl of the reference current portion 32 can be stabilized. m When each power supply voltage Vdd2 is stable, the current output section 44 1 to 44 m each drive LED45— 1 to 45 — m Each drive current is stable, and the LED45—1 to 45—m emission brightness is stable. Stabilize.
[0060] なお、スリット部 55— 1〜55— mは、コンタクト領域 51— 1〜51— mの一部(電流流 入部)を開けて囲むものであるが、どの部分を開けるかは自由に選定できる。  [0060] The slit portions 55-1 to 55-m open and surround a part (current inflow portion) of the contact region 51-1 to 51-m, but any portion can be freely selected. .
[0061] なお、 MOSトランジスタ Ml 1〜M14が請求項記載の第 1のカレントミラー回路に相 当し、 MOSトランジスタ M14のドレイン電流が第 1の電流に相当し、 MOSトランジス タ M15〜M18が第 2のカレントミラー回路に相当し、 MOSトランジスタ M16のドレイ ン電流が第 2の電流に相当し、 MOSトランジスタ M21〜M28が第 3のカレントミラー 回路に相当する。 [0062] 本発明は上述の具体的に開示された実施例に限られず、本発明の範囲から逸脱 することなく様々な変形例、改良例がなされるであろう。 The MOS transistors Ml 1 to M14 correspond to the first current mirror circuit described in the claims, the drain current of the MOS transistor M14 corresponds to the first current, and the MOS transistors M15 to M18 are the first current mirror circuit. 2 corresponds to the current mirror circuit, the drain current of the MOS transistor M16 corresponds to the second current, and the MOS transistors M21 to M28 correspond to the third current mirror circuit. [0062] The present invention is not limited to the specifically disclosed embodiments described above, and various modifications and improvements may be made without departing from the scope of the present invention.
[0063] 本出願は 2006年 7月 7日出願の優先権主張日本特許出願第 2006— 188443号 に基づいており、その全内容はここに援用される。 [0063] This application is based on priority application Japanese Patent Application No. 2006-188443 filed on Jul. 7, 2006, the entire contents of which are incorporated herein by reference.
産業上の利用可能性  Industrial applicability
[0064] 本発明は、配列された複数の発光ダイオードそれぞれを駆動する発光ダイオード 駆動回路に適用可能である。 The present invention is applicable to a light emitting diode driving circuit that drives each of a plurality of arranged light emitting diodes.

Claims

請求の範囲 The scope of the claims
[1] 基準電流を生成する基準電流部と、複数系統のスィッチをオン Zオフ制御して前 記基準電流に比例した複数系統の駆動電流を生成し発光ダイオードに供給する複 数チャネル分の電流出力部力 なる発光ダイオード駆動回路であって、  [1] A reference current section for generating a reference current and on / off control of multiple systems of switches to generate multiple channels of drive current proportional to the reference current and supply them to multiple LEDs A light-emitting diode driving circuit that has an output power,
前記基準電流部は、前記基準電流が抵抗を流れることで発生する電圧が一定の 基準電圧と同一となるよう前記基準電流を制御する演算増幅器と、  The reference current unit includes an operational amplifier that controls the reference current so that a voltage generated when the reference current flows through a resistor is the same as a constant reference voltage;
前記基準電流に基づく第 1の電流を生成する第 1のカレントミラー回路を有し、 各チャネルの前記電流出力部は、前記基準電流部の一部と共に構成され、前記第 A first current mirror circuit that generates a first current based on the reference current, wherein the current output unit of each channel is configured together with a part of the reference current unit,
1の電流に基づく第 2の電流を生成する第 2のカレントミラー回路と、 A second current mirror circuit for generating a second current based on the current of 1,
前記第 2の電流を供給され、前記複数系統のスィッチのうちオンとなったスィッチに 対応して前記第 2の電流に比例する電流を生成する第 3のカレントミラー回路を有し 前記第 1、第 2、第 3のカレントミラー回路それぞれは、カスケード接続された 2段の カレントミラー回路であることを特徴とする発光ダイオード駆動回路。  A third current mirror circuit that is supplied with the second current and generates a current proportional to the second current corresponding to a switch that is turned on among the plurality of switches; Each of the second and third current mirror circuits is a cascaded two-stage current mirror circuit.
[2] 請求項 1記載の発光ダイオード駆動回路において、 [2] The light-emitting diode driving circuit according to claim 1,
前記第 1及び第 3のカレントミラー回路を構成し高電圧側の電源に接続される各トラ ンジスタと前記高電圧側の電源との間に抵抗を設けたことを特徴とする発光ダイォー ド駆動回路。  A light-emitting diode drive circuit comprising a resistor between each of the transistors constituting the first and third current mirror circuits connected to a high-voltage power supply and the high-voltage power supply .
[3] 請求項 1または 2記載の発光ダイオード駆動回路において、  [3] The light-emitting diode drive circuit according to claim 1 or 2,
前記第 2のカレントミラー回路を構成し低電圧側の電源に接続される各トランジスタ と前記低電圧側の電源との間に抵抗を設けたことを特徴とする発光ダイオード駆動 回路。  A light-emitting diode driving circuit comprising: a resistor provided between each of the transistors constituting the second current mirror circuit and connected to a low-voltage power supply; and the low-voltage power supply.
[4] 請求項 1または 2記載の発光ダイオード駆動回路において、  [4] The light-emitting diode driving circuit according to claim 1 or 2,
前記複数チャネル分の電流出力部を一方向に並べて配置し、前記複数チャネル 分の電流出力部の上に電源配線を前記一方向に延在させて配置し、  The current output portions for the plurality of channels are arranged side by side in one direction, and the power supply wiring is arranged to extend in the one direction on the current output portions for the plurality of channels,
前記電源配線と各チャネルの前記電流出力部を接続する各チャネルのコンタクト 領域の一部を開けて囲むよう前記電源配線を切り欠いたスリットを各チャネルに設け たことを特徴とする発光ダイオード駆動回路。 請求項 3記載の発光ダイオード駆動回路において、 A light emitting diode driving circuit comprising: a slit formed by notching the power supply wiring so as to surround and open a part of a contact region of each channel connecting the power supply wiring and the current output portion of each channel. . In the light emitting diode drive circuit according to claim 3,
前記複数チャネル分の電流出力部を一方向に並べて配置し、前記複数チャネル 分の電流出力部の上に電源配線を前記一方向に延在させて配置し、  The current output portions for the plurality of channels are arranged side by side in one direction, and the power supply wiring is arranged to extend in the one direction on the current output portions for the plurality of channels,
前記電源配線と各チャネルの前記電流出力部を接続する各チャネルのコンタクト 領域の一部を開けて囲むよう前記電源配線を切り欠いたスリットを各チャネルに設け たことを特徴とする発光ダイオード駆動回路。  A light emitting diode driving circuit comprising: a slit formed by notching the power supply wiring so as to surround and open a part of a contact region of each channel connecting the power supply wiring and the current output portion of each channel. .
PCT/JP2007/062137 2006-07-07 2007-06-15 Light emitting diode drive circuit WO2008004426A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007800255352A CN101485003B (en) 2006-07-07 2007-06-15 Light emitting diode drive circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006188443A JP2008016732A (en) 2006-07-07 2006-07-07 Light-emitting diode driving circuit
JP2006-188443 2006-07-07

Publications (1)

Publication Number Publication Date
WO2008004426A1 true WO2008004426A1 (en) 2008-01-10

Family

ID=38894397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062137 WO2008004426A1 (en) 2006-07-07 2007-06-15 Light emitting diode drive circuit

Country Status (3)

Country Link
JP (1) JP2008016732A (en)
CN (1) CN101485003B (en)
WO (1) WO2008004426A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986098B1 (en) 2008-04-18 2010-10-07 창원대학교 산학협력단 Parallel backlight LED driver
CN101694963B (en) * 2009-09-22 2013-09-18 美芯晟科技(北京)有限公司 High-precision low-voltage voltage/current switching circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328782A (en) * 1993-05-26 1994-11-29 Ricoh Co Ltd Brightness controlling circuit device
JPH11251668A (en) * 1998-02-27 1999-09-17 Sony Corp Circuit for driving light emitting element
JP2001308272A (en) * 2000-04-19 2001-11-02 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device
JP2005183657A (en) * 2003-12-19 2005-07-07 Canon Inc Light source driving circuit
JP2006054362A (en) * 2004-08-13 2006-02-23 Sanyo Electric Co Ltd Led control circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328782A (en) * 1993-05-26 1994-11-29 Ricoh Co Ltd Brightness controlling circuit device
JPH11251668A (en) * 1998-02-27 1999-09-17 Sony Corp Circuit for driving light emitting element
JP2001308272A (en) * 2000-04-19 2001-11-02 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device
JP2005183657A (en) * 2003-12-19 2005-07-07 Canon Inc Light source driving circuit
JP2006054362A (en) * 2004-08-13 2006-02-23 Sanyo Electric Co Ltd Led control circuit

Also Published As

Publication number Publication date
CN101485003A (en) 2009-07-15
JP2008016732A (en) 2008-01-24
CN101485003B (en) 2011-07-20

Similar Documents

Publication Publication Date Title
US7839097B2 (en) System and method for wide-range high-accuracy-low-dropout current regulation
US6952083B2 (en) Drive circuit for driving a current-driven display unit
US7514968B1 (en) H-tree driver circuitry
JPH0577208B2 (en)
JP2000081920A (en) Current output circuit
JP2003202830A (en) Driving circuit
JP4477381B2 (en) Laser diode drive circuit
WO2007148581A1 (en) Light emitting diode driving circuit
JP2007317933A (en) Light-emitting diode drive circuit
WO2008004426A1 (en) Light emitting diode drive circuit
JP4792933B2 (en) Current control circuit and LED driving semiconductor integrated circuit
EP0953891A1 (en) Current mirrors
US20130093339A1 (en) Driving circuits for light emitting elements
WO2007148626A1 (en) Light emitting diode driving circuit
JP2006329655A (en) Current detecting circuit and constant voltage supply circuit
US7253678B2 (en) Accurate cascode bias networks
US8065535B2 (en) Semiconductor integrated circuit for minimizing a deviation of an internal power supply from a desired value
JP2008218910A (en) Light-emitting diode drive circuit
JP2010074379A (en) Driver circuit, and electronic circuit device
US7852062B2 (en) Reference current generating apparatus
US6825710B2 (en) Current mirror for an integrated circuit
JP5040185B2 (en) Light emitting diode drive circuit
JP2008218911A (en) Light-emitting diode drive circuit
CN115148162B (en) Drive circuit, backlight circuit and display panel
JP4983319B2 (en) Light emitting diode drive circuit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780025535.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07745392

Country of ref document: EP

Kind code of ref document: A1