WO2008004281A1 - Combustion apparatus - Google Patents

Combustion apparatus

Info

Publication number
WO2008004281A1
WO2008004281A1 PCT/JP2006/313329 JP2006313329W WO2008004281A1 WO 2008004281 A1 WO2008004281 A1 WO 2008004281A1 JP 2006313329 W JP2006313329 W JP 2006313329W WO 2008004281 A1 WO2008004281 A1 WO 2008004281A1
Authority
WO
WIPO (PCT)
Prior art keywords
air ratio
catalyst
carbon monoxide
panner
concentration
Prior art date
Application number
PCT/JP2006/313329
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Tanaka
Yukihiro Tokunaga
Yusuke Okamoto
Kenji Yasui
Original Assignee
Miura Co., Ltd.
Miura Protec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co., Ltd., Miura Protec Co., Ltd. filed Critical Miura Co., Ltd.
Priority to PCT/JP2006/313329 priority Critical patent/WO2008004281A1/en
Priority to EP07741580A priority patent/EP2039995A1/en
Priority to KR1020097002020A priority patent/KR101381622B1/en
Priority to CN2007800123813A priority patent/CN101415996B/en
Priority to US12/281,556 priority patent/US8113822B2/en
Priority to US12/158,166 priority patent/US7972581B1/en
Priority to KR1020097000917A priority patent/KR101373590B1/en
Priority to CN2007800327859A priority patent/CN101512224B/en
Priority to PCT/JP2007/058144 priority patent/WO2008004370A1/en
Priority to US12/282,478 priority patent/US20090025655A1/en
Priority to CN2007800121610A priority patent/CN101415994B/en
Priority to EP07741579A priority patent/EP2037169A1/en
Priority to EP07741638A priority patent/EP2037170A1/en
Priority to PCT/JP2007/058143 priority patent/WO2008004369A1/en
Priority to PCT/JP2007/058202 priority patent/WO2008004371A1/en
Priority to KR1020097000918A priority patent/KR101362829B1/en
Publication of WO2008004281A1 publication Critical patent/WO2008004281A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/10Catalytic reduction devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/10Air or combustion gas valves or dampers power assisted, e.g. using electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/04Heating water

Definitions

  • the present invention relates to a combustion apparatus applied to a water tube boiler, a regenerator of an absorption chiller, and the like.
  • the low NOx technologies described in Patent Documents 3 and 4 belong to a so-called high air ratio combustion region having an air ratio of 1.38 or more.
  • the premixed combustion region where the air ratio is 1.1 or less hereinafter referred to as “low air ratio”
  • the amount of carbon monoxide and carbon is increased, making it difficult to put it into practical use, and the air specific force ⁇
  • stable combustion control is difficult, such as causing a backfire, so the low air ratio combustion region has not been the subject of research and development until now.
  • Patent Document 1 Japanese Patent No. 3221582
  • Patent Document 2 US Patent No. 5353748
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-125378
  • Patent Document 4 U.S. Patent No. 6792895
  • the inventors of this application have reduced the amount of nitrogen oxides emissions to nearly zero in a combustion region with a low air ratio that is as close to 1 as possible with little research.
  • the problem to be solved by the present invention is, firstly, to reduce the amount of nitrogen oxides to almost zero and to reduce the amount of carbon monoxide to an allowable range. .
  • the second is to realize energy saving by combustion at a low air ratio close to 1.
  • the air ratio control is stably performed in the combustion region of the low air ratio.
  • the present invention has been made to solve the above-mentioned problems.
  • the invention according to claim 1 is directed to a burner, a heat absorption means for performing heat absorption from a gas generated by the burner, and the heat absorption hand.
  • a catalyst for oxidizing carbon monoxide contained in the gas after passing through the stage and reducing nitrogen oxide by carbon monoxide, a sensor for detecting the air ratio of the PANA, and a detection signal of the sensor An air ratio adjusting means for controlling the air ratio of the burner to a set air ratio, and when the air ratio adjusting means adjusts the air ratio to the set air ratio by the air ratio adjusting means,
  • the catalyst is characterized in that the concentration ratio of oxygen, nitrogen oxide and carbon monoxide on the primary side of the catalyst can be obtained so that the nitrogen oxide concentration on the secondary side is substantially zero.
  • the detected air ratio and the set air ratio can be replaced with a detected air-fuel ratio, a set air-fuel ratio or a detected oxygen concentration, and a set oxygen concentration, respectively.
  • the invention according to claim 2 oxidizes carbon monoxide contained in the gas after passing through the heat absorption means that absorbs heat from the gas generated by the burner, and the gas generated in the heat absorption means.
  • the air ratio is characterized by NOx ⁇ CO characteristics.
  • the invention according to claim 3 oxidizes carbon monoxide contained in the gas after passing through the endurance means, endothermic means for absorbing heat from the gas generated in the parner, and the endothermic means.
  • the carbon monoxide concentration in the gas on the primary side of the catalyst is increased by the acid ratio adjusting means.
  • the invention according to claim 4 oxidizes carbon, monoxide contained in the gas after passing through the endotherm, endothermic means that absorbs heat from the gas generated in the parner.
  • the concentration ratio of the gas before flowing into the catalyst is expressed by the following equation (1): Combustion device characterized by being configured to satisfy.
  • [CO], [NOx] and [O] are the carbon monoxide concentration and nitrogen acid, respectively.
  • the invention of claim 5 is characterized in that, in claim 1 to claim 4, the set air ratio is substantially 1.
  • the invention according to claim 6 oxidizes carbon, monoxide contained in the gas after passing through the heat absorption means that absorbs heat from the gas generated in the burner, and the heat generated by the heat absorption means.
  • the burner and the endothermic means are used to oxidize oxygen and nitrogen on the primary side of the catalyst so that the nitrogen oxide concentration and oxygen concentration on the secondary side of the catalyst become substantially zero by controlling the air ratio of the air ratio adjusting means. It is structured to be able to obtain the concentration ratio of the product and carbon monoxide.
  • the oxygen concentration is substantially zero, the force to make lOOppm or less, preferably the measurement limit value or less.
  • the amount of nitrogen oxides discharged can be reduced to nearly zero, and can be reduced to as close as 1 to realize energy saving by low air ratio combustion.
  • the invention according to claim 7 is the invention according to claim 1 to claim 6, wherein the air ratio adjusting means includes an electric control means and Z or mechanical control means for stably controlling the air ratio. It is characterized by that.
  • the air ratio can be stably controlled, and oxygen and carbon monoxide on the primary side of the catalyst.
  • the concentration ratio and nitrogen oxide concentration ratio adjustment can be realized stably.
  • the invention according to claim 8 is the invention according to claim 7, wherein the air ratio adjusting means includes a flow rate adjusting means for controlling an air ratio of the burner, a motor for controlling an opening degree of the flow rate adjusting means, And a mechanical control unit configured to control the degree of opening change of the flow rate adjusting unit in accordance with a driving amount.
  • the air ratio adjusting means includes a flow rate adjusting means for controlling an air ratio of the burner, a motor for controlling an opening degree of the flow rate adjusting means, And a mechanical control unit configured to control the degree of opening change of the flow rate adjusting unit in accordance with a driving amount.
  • the opening degree change amount of the flow rate adjusting means is controlled by a motor that controls according to the drive amount.
  • the opening degree of the flow rate adjusting means can be reliably controlled.
  • the invention according to claim 9 is characterized in that, in claim 8, the motor is a stepping motor.
  • the invention according to claim 10 is the invention according to claim 7, wherein the air ratio adjusting means includes a flow rate adjusting means for controlling an air ratio of the burner and a motor for controlling an opening degree of the flow rate adjusting means. And the electric control means for controlling the air ratio detected by the sensor to be within a set range including the set air ratio.
  • the air ratio can be converged and controlled within the set range, so that the air ratio can be controlled stably. It has the effect of being able to
  • the invention according to claim 11 is the mechanical control device according to claim 10, wherein the motor is a motor that controls an amount of change in opening of the flow rate adjusting means according to a drive amount. It is characterized by comprising steps.
  • the opening degree change amount of the flow rate adjusting means is controlled by a motor that controls according to the drive amount.
  • the opening degree of the flow rate adjusting means can be reliably controlled.
  • the invention according to claim 12 is the invention according to claim 11, wherein the electrical control means changes a drive amount per unit time of the motor in accordance with a difference between the detected air ratio and the set air ratio.
  • a first control zone and a second control zone with the drive amount set to a predetermined value outside the first control zone are provided to control the drive amount of the motor.
  • the air ratio can be set to the first control zone in terms of speed and force.
  • the invention of claim 13 is characterized in that in claim 1 to claim 11, the panner is a premixed panner.
  • FIG. 1 is an explanatory view of a longitudinal section of a steam boiler according to a first embodiment.
  • FIG. 2 is a sectional view taken along line II—II in FIG.
  • FIG. 3 is a diagram showing a main configuration of the catalyst of FIG. 2 as viewed from the flow direction of exhaust gas.
  • FIG. 4 is a diagram showing the air ratio- ⁇ ⁇ CO characteristics of Example 1.
  • FIG. 5 is an explanatory view of a partial cross section of the damper position adjusting device according to the first embodiment when used.
  • FIG. 6 is a cross-sectional explanatory view of a main part of the damper position adjusting device.
  • FIG. 7 is a diagram for explaining output characteristics of the sensor of the first embodiment.
  • FIG. 8 is a diagram for explaining motor control characteristics of the first embodiment.
  • FIG. 9 is a diagram illustrating NOx and CO reduction characteristics of Example 1.
  • FIG. 10 is an explanatory view of a longitudinal section of a steam boiler according to the second embodiment.
  • FIG. 11 is a diagram for explaining motor control characteristics of the second embodiment.
  • Gas refers to the gas from the PANA to the end of passing through the catalyst, and the gas after passing through the catalyst is referred to as “exhaust gas”. Therefore, the gas includes a gas in the combustion reaction (combustion process) and a gas in which the combustion reaction is completed, and can be referred to as a combustion gas.
  • gas refers to the gas that has passed through the final stage catalyst, and “exhaust gas” refers to the final stage catalyst. The gas after passing through.
  • the "primary side of the catalyst” is the side where the catalyst is provided with a partner! /, And unless otherwise specified, refers to the gas immediately before passing through the catalyst. “Secondary side” refers to the opposite side of the primary side of the catalyst.
  • not containing HC means that the gas substantially contains HC that reduces nitrogen oxides (below the measurement limit).
  • [O] used to calculate the air ratio is excessive in the oxygen excess region. It represents the oxygen concentration.
  • a combustion apparatus (may be referred to as a thermal apparatus or a combustion apparatus) such as a water tube boiler such as a small once-through boiler, a water heater, or a regenerator of an absorption chiller.
  • An embodiment of the present invention includes a burner, a heat absorption means that absorbs heat from the gas generated in the parser, and carbon monoxide contained in the gas that has passed through the heat absorption means to oxidize and nitrify carbon monoxide.
  • a catalyst for reducing oxygen oxide with carbon monoxide a sensor for detecting the air ratio of the panner, and an air ratio adjusting means for controlling the air ratio of the panner to a set air ratio based on the detection signal of the sensor And when the air ratio is adjusted to the set air ratio by the air ratio adjusting means, the nitrogen gas concentration on the secondary side of the catalyst is substantially zero.
  • It is a combustor characterized by being configured to obtain a concentration ratio of oxygen, nitrogen oxides, and carbon monoxide on the primary side of the catalyst.
  • the set air ratio is preferably controlled to a set air ratio of 1.
  • the oxygen concentration on the primary side of the catalyst that can satisfy the set air ratio of 1 is a predetermined concentration.
  • the air ratio can also be controlled so that Further, “when adjusting to the set air ratio by the air ratio adjusting means, the concentration of nitrogen oxides on the secondary side of the catalyst is substantially zero, and the oxygen, nitrogen oxides on the primary side of the catalyst and “The concentration ratio of carbon monoxide can be obtained” is satisfied at the set air ratio.
  • the burner burns while the air ratio is controlled to the set air ratio by the air ratio adjusting means.
  • the gas generated by combustion is subjected to an endothermic action by the endothermic body, and then the carbon monoxide is oxidized by the catalyst and the nitrogen oxide is reduced.
  • the emission of nitrogen oxides in the gas is reduced to a value close to zero of 5 ppm or less.
  • carbon monoxide emission is reduced.
  • the nitrogen oxide concentration on the secondary side of the catalyst is substantially zero, the nitrogen oxide concentration is 5 ppm, preferably 3 ppm, and more preferably Oppm.
  • the air ratio is adjusted by the air ratio adjusting means.
  • a concentration ratio of oxygen, nitrogen oxides, and carbon monoxide on the primary side of the catalyst can be obtained in which the nitrogen oxide concentration on the secondary side of the catalyst is substantially zero.
  • the air ratio adjusting means includes an electrical control means and Z or mechanical control means for stably controlling the air ratio. By doing so, stable air ratio control can be performed.
  • the concentration ratio adjustment on the primary side of the catalyst is preferably such that the concentration of carbon monoxide in the gas on the primary side of the catalyst is reduced in the catalyst by oxidation of carbon monoxide (first reaction). It is almost equal to or higher than the sum of the concentration of carbon monoxide and the concentration of carbon monoxide reduced in the catalyst by the reduction of nitrogen oxides with carbon monoxide (second reaction). Controlled.
  • This reduction action is considered to be performed as follows.
  • the catalyst In a gas that does not contain HC (hydrocarbon), the catalyst generates, as the main reaction, a first reaction that oxidizes carbon monoxide and a second reaction that reduces nitrogen oxides with carbon monoxide. ing.
  • the reaction catalytic reaction
  • the first reaction in the presence of oxygen, the first reaction is superior to the second reaction, and carbon monoxide is consumed by oxygen based on the first reaction.
  • the nitrogen oxides are reduced by the second reaction.
  • the first reaction is a competitive reaction with the second reaction, but the reaction between carbon monoxide and oxygen occurs apparently faster in the presence of oxygen than the second reaction. It is considered that the first reaction is performed in the stage and the second reaction is performed in the second stage.
  • NO is used without using NOx.
  • the composition of the generated nitrogen oxide in the high temperature field is NO as the main component, and NO is a number % Over
  • NO if present, is the same as NO It is thought that it is reduced by CO.
  • the panner and the endothermic body are configured to adjust the concentration ratio by both.
  • the panner and the endothermic body have the following air ratio NOx′CO characteristics.
  • This air ratio-one NOx'CO characteristic is obtained when the air ratio is adjusted to the set air ratio by the air ratio adjusting means so that the concentration of nitrogen oxides on the secondary side of the catalyst is substantially zero.
  • the concentration ratio of oxygen, nitrogen oxides, and carbon monoxide in the primary gas can be obtained.
  • the air ratio-one NOx'CO characteristic is preferably such that the concentration of the nitrogen oxides on the primary side of the catalyst is 300 ppm or less. By doing so, the amount of the catalyst used can be reduced.
  • the concentration ratio adjustment by the PANA and the endothermic material is performed by obtaining an air ratio-one NOx'CO characteristic based on experimental data.
  • concentration ratio By adjusting the concentration ratio, the carbon monoxide concentration in the gas on the primary side of the catalyst is reduced in the catalyst by the oxidation of carbon monoxide and the monoacid acid and nitrogen monoxide monoacids. If the concentration ratio cannot be adjusted to a value that is approximately equal to or greater than the sum of the concentration of carbon monoxide and carbon that is reduced in the catalyst by reduction with carbon, it is It can be configured to adjust by carbon injection or oxygen injection.
  • the concentration ratio adjustment is preferably performed by suppressing the nitrogen oxide amount and the carbon monoxide amount to a predetermined amount or less by adjusting the combustion temperature and reducing the carbon monoxide concentration obtained by maintaining the gas temperature. This is done by not reducing it. Carbon monoxide carbon is easily oxidized when the gas temperature is about 900 ° C. or higher. Therefore, it is preferable that the gas flow at the primary side of the catalyst is maintained at 600 ° C. or lower so that the gas temperature is maintained at 600 ° C. or lower.
  • the above-mentioned heat sink is constituted.
  • [CO], [NOx] and [O] are the carbon monoxide concentration and nitrogen acid, respectively.
  • the nitrogen oxide concentration ([NOx]) is the total concentration of the nitric oxide concentration ([NO]) and the diacid nitrogen concentration ([NO]). Further, the above formula (1) is satisfied.
  • Concentration ratio of carbon monoxide concentration, nitrogen oxide concentration, and oxygen concentration is the predetermined concentration ratio.
  • the concentration of carbon monoxide is higher than the concentration necessary for the reduction of the nitrogen oxides, so the exhaust oxygen concentration is zero, and the catalyst Carbon monoxide remains in the gas after passing. For this reason, the lower limit of the concentration ratio in the formula (1) is not provided.
  • the oxidation means can be configured to provide a catalyst separate from the catalyst and oxidize carbon monoxide by introducing oxygen upstream of the catalyst.
  • the concentration ratio value exceeding 1.0 of 2.0 is considered to be due to the following reason, which is an experimentally obtained value.
  • the reaction occurring in the catalyst has not been completely elucidated, and it is considered that a side reaction occurs in addition to the main reaction of the first reaction and the second reaction.
  • As one of the side reactions hydrogen is generated by the reaction between steam and carbon monoxide, and nitrogen oxide and oxygen are reduced by this hydrogen.
  • the panner is preferably an all-primary air premixed panner that premixes and burns gas fuel.
  • the concentration ratio as shown in the above formula (1) for oxygen, nitrogen oxides, and carbon monoxide is reduced. is important.
  • the premixing burner as the burner, the predetermined concentration ratio can be obtained relatively easily in a low air ratio region.
  • a premixing panner is used. Can be other than PANA wear.
  • the oxygen concentration O on the primary side of the catalyst is 0% under the condition of satisfying the formula (1).
  • the heat absorber is a water pipe when the combustion apparatus is a boiler, and an absorbing liquid concentrating pipe when it is a regenerator.
  • the endothermic body also has a function of controlling the gas temperature flowing into the catalyst close to the activation temperature of the catalyst. That is, the gas temperature is controlled to a temperature that effectively causes the first reaction and the second reaction, suppresses deterioration due to temperature, and considers durability.
  • the catalyst is a catalyst having a function of reducing the nitrogen oxides in a state where HC is not contained in the gas, and has a structure in which a catalytically active substance is supported on a base material having air permeability.
  • a base material metals such as stainless steel and ceramics are used, and a surface treatment is applied to widen the contact area with the exhaust gas.
  • Platinum is generally used as the catalytically active material, but depending on the implementation, noble metals represented by platinum (Ag, Au, Rh, Ru, Pt, Pd) or metal oxides should be used. Can do.
  • the air ratio adjusting means includes a flow rate adjusting means, a motor for driving the flow rate adjusting means, and a control means for controlling the motor.
  • the flow rate adjusting means is a means for adjusting the air ratio of the burner by changing one or both of the burner air amount and fuel amount of the burner to change the ratio between them.
  • a damper (including the meaning of a valve) is preferably used.
  • the structure of this damper includes a rotary type that changes the opening degree of the flow path by a valve body that rotates around a rotating shaft, and a slide type that changes the opening degree of the flow path by sliding with respect to the cross-sectional opening of the flow path. It can be done.
  • this flow rate adjusting means changes the amount of combustion air
  • it is preferably provided in the air flow path between the blower and the fuel supply means, but the suction port of the blower such as the suction port of the blower. Can be provided on the side.
  • the motor is preferably means for driving the flow rate adjusting means, and the flow rate adjusting means.
  • This motor constitutes a part of “mechanical control means” for stably controlling the air ratio of the present invention.
  • the phrase “the amount of opening can be controlled according to the amount of driving” means that the opening of the flow rate adjusting valve can be stopped at a specific position if the amount of driving is determined. Further, “the drive amount per unit time can be adjusted” means that the responsiveness of the position control can be adjusted.
  • This motor is preferably a force gear motor (which can be called a geared motor), a servo motor, or the like, which is a stepping motor (which can be called a step motor).
  • the stepping motor it is a driving pulse to which the driving amount is applied, and the opening position of the flow rate adjusting means is opened and closed by an amount corresponding to the number of reference opening position force driving pulses, and is arbitrarily set.
  • the target stop position can be controlled.
  • the driving amount is the opening / closing driving time
  • the opening position of the flow rate adjusting means is opened / closed by an amount corresponding to the reference opening position force opening / closing driving time. It can be controlled to any desired stop position.
  • An oxygen concentration meter expressed as the value of can be suitably used.
  • an air ratio can be obtained approximately by combining an oxygen concentration sensor and a carbon monoxide concentration sensor.
  • the mounting position of the sensor as described above is preferably the secondary side of the catalyst, but is not limited to this, and the exhaust heat recovery is performed on the primary side of the catalyst or on the downstream side of the catalyst. If a vessel is provided, this can be the downstream side.
  • the control means inputs the detection value of the sensor, feedback-controls the driving amount of the motor, and controls the primary gas in the primary side of the catalyst.
  • the oxycarbon concentration is approximately equal to the value obtained by adding the concentration of carbon monoxide reduced in the catalyst by the acid and the concentration of carbon monoxide reduced in the catalyst by the reduction, or
  • the air ratio is controlled to a set air ratio of 1 so as to satisfy the above or to satisfy the formula (1).
  • the air ratio control program can be expressed as a drive amount per unit time of the motor (time per drive unit) according to a difference between the detected air ratio and the set air ratio.
  • This control constitutes the electrical control means for controlling so that the detected air ratio of the present invention falls within a set range centered on the set air ratio.
  • the air ratio control program is not limited to this control method, and can be various PID controls.
  • the control amount in the first control zone can be controlled by the product of the difference between the detected air ratio and the set air ratio and the set gain. By such control, it is possible to quickly control the set air ratio and to achieve an effect of performing control with less overshoot and notching.
  • the concentration ratio adjustment by the burner and the endothermic body includes a form which is performed by an element constituting the gas passage to the burner and the catalyst other than the endothermic body and an element included in the gas passage.
  • the mechanical control means comprises a combustion air supply passage comprising a main passage and an auxiliary passage in parallel therewith, and the air flow rate is roughly adjusted by the operation of a valve body provided in the main passage.
  • the air flow rate can be finely adjusted by the operation of the valve provided in the auxiliary passage.
  • the mechanical control means comprises a fuel supply passage comprising a main passage and an auxiliary passage in parallel therewith, and the air flow rate is roughly adjusted by the operation of a valve provided in the main passage, and is provided in the auxiliary passage.
  • the air flow rate can be finely adjusted by the operation of the valve body.
  • FIG. 1 is an explanatory view of a longitudinal section of the steam boiler of the first embodiment
  • FIG. 2 is a sectional view taken along line II-II in FIG. 1
  • FIG. 3 is a flow direction of exhaust gas through the catalyst of FIG.
  • Fig. 4 is a diagram illustrating the air ratio NOx'CO characteristic of the first embodiment
  • Fig. 5 is a diagram illustrating the use of the damper position adjusting device of the first embodiment.
  • FIG. 6 is an explanatory diagram of a partial cross section of the damper position adjusting device in use
  • FIG. 7 is a diagram illustrating the output characteristics of the sensor of the first embodiment.
  • Figure 8 shows the motor control characteristics of Example 1.
  • FIG. 9 is a diagram illustrating the NOx and CO reduction characteristics of the first embodiment.
  • This steam boiler is composed of a can 3 including a heat exchanger tube (water tube) group 2 as a heat absorption means for absorbing heat generated by the gas generator 1 and the gas generated from the heat generator tube 1, and the oxygen after passing through the heat transfer tube group 2.
  • a gas containing nitrogen oxide and carbon monoxide at a predetermined concentration ratio passes through them, and the gas fuel is supplied to the catalyst 4 that oxidizes the carbon monoxide and reduces the nitrogen oxide, and to the above-mentioned Parner 1.
  • the burner 1 is a complete premix burner having a flat combustion surface (a premixed gas ejection surface).
  • This panner 1 has the same configuration as the panner described in Patent Document 1.
  • the can body 3 includes an upper header 9 and a lower header 10, and a plurality of inner water tubes 11, 11,... Constituting the water tube group 2 are arranged between the headers. Then, as shown in FIG. 2, a pair of water pipe walls 14, 14 formed by connecting outer water pipes 12, 12,... With connecting members 13, 13,. A first gas passage 15 is formed between the water pipe walls 14 and 14 and the upper header 9 and the lower header 10 so that the gas from the Parner 1 flows almost linearly. One end of the first gas passage 15 is provided with the above-described Parner 1, and a second gas passage (smoke) 17 through which exhaust gas flows is connected to the exhaust gas outlet 16 at the other end.
  • the parner 1 and the can 3 are known ones.
  • the second gas passage 17 includes a horizontal part 18 and a vertical part 19, and the catalyst 4 is attached to the horizontal part 18.
  • a feed water preheater 20 as an exhaust heat recovery device is attached to the vertical portion 19 so as to be located downstream of the catalyst 4, and the sensor 7 is disposed between the catalyst 4 and the feed water preheater 20. ing.
  • the components from the Parner 1 including the Parner 1 and the pre-water pipe group 2 to the catalyst 4 adjust the predetermined concentration ratio in the gas on the primary side of the catalyst 4. sand That is, the air ratio is adjusted to the set air ratio by an air ratio adjusting means 28, which will be described later, so that the air ratio 1 ⁇ ⁇ CO characteristic shown in FIG. 4 can be obtained.
  • This air ratio one NOx ⁇ CO characteristic is the above-mentioned in the primary side gas of the catalyst 4 in which the nitrogen oxide concentration on the secondary side of the catalyst 4 is substantially zero when adjusted to the set air ratio.
  • a predetermined concentration ratio is obtained.
  • This air ratio 1 NOx 'CO characteristic is a novel characteristic of the low air ratio region that has been studied so far.
  • the catalyst 4 oxidizes carbon monoxide and carbon contained in the gas not containing HC after passing through the water tube group 2 (first reaction) and reduces nitrogen oxides (second reaction).
  • a catalyst having a catalytically active material as platinum is used.
  • the gas and the catalyst satisfying the concentration ratio formula of the formula (1) are theoretically considered based on the experimental results. It is considered that the contact with the catalytically active substance 4 mainly causes a first reaction that oxidizes carbon monoxide and a second reaction that reduces nitrogen oxides with monoxide carbon. Whether or not the reaction proceeds in the first reaction is determined depending on the oxygen concentration. In the catalyst 4, the first reaction is considered to be superior to the second reaction.
  • the catalyst 4 will be described more specifically.
  • This catalyst has a structure as shown in FIG. 3, and is formed as follows, for example. A large number of minute irregularities are formed on the surfaces of the flat plate 21 and the corrugated plate 22 made of stainless steel as the base material, and a catalytically active material (not shown) is supported on the surfaces. Next, the flat plate 21 and the corrugated plate 22 having a predetermined width are overlapped with each other and then wound into a spiral shape to form a roll. This roll-shaped product is surrounded and fixed by the side plate 23. Platinum is used as the catalytically active material. In FIG. 3, only a part of the flat plate 21 and the corrugated plate 22 is shown.
  • the catalyst 4 has oxidation activity in a low temperature region, and is disposed in the horizontal portion 18 in the middle of the second gas passage 17, at an exhaust gas temperature of about 100 ° C to 350 ° C. Has been.
  • the catalyst 4 is detachably attached to the second gas passage 17 so that it can be replaced when the performance deteriorates! Speak.
  • the fuel supply means 5 includes a gas fuel supply pipe 24 and a fuel provided in the gas fuel supply pipe 24. It is configured to include a flow rate adjusting valve 25 for adjusting the charge flow rate.
  • the flow rate adjusting valve 25 has a function of controlling the fuel supply amount to a high combustion flow rate and a low combustion flow rate.
  • the combustion air supply means 6 adjusts the amount of combustion air that flows through the air blower 26, the air supply passage 27 that supplies the combustion air from the air blower 26 to the burner 1, and the air supply passage 27.
  • the air ratio adjusting means 28 for adjusting the air ratio of the PANA 1 is included.
  • the gas fuel supply pipe 24 is connected to the air supply passage 27 so as to eject fuel gas.
  • the air ratio adjusting means 28 is a damper 29 as a flow rate adjusting means for adjusting the opening degree (flow passage cross-sectional area) of the air supply passage 27, and the opening position of the damper 29 is adjusted.
  • the damper position adjusting device 30 and the controller 8 for controlling the operation of the damper position adjusting device 30 are configured.
  • the damper position adjusting device 30 includes a drive shaft 32 that is detachably connected to the rotary shaft 31 of the damper 29.
  • the drive shaft 32 is connected via a speed reducer 33. It can be rotated by motor 34.
  • motor 34 a motor capable of arbitrarily adjusting the rotation stop position is used. In this embodiment, a stepping motor (pulse motor) is used.
  • the drive shaft 32 is connected to the rotary shaft 31 of the damper 29 via a coupling 35 so that the drive shaft 32 can rotate integrally on substantially the same axis.
  • the coupling 35 has a stepped columnar shape, and a small diameter hole 36 and a large diameter hole 37 are formed in the central portion thereof so as to penetrate in the axial direction.
  • the drive shaft 32 is inserted into the small diameter hole 36, and the drive shaft 32 is integrated with the coupling 35 with a mounting screw 38.
  • a rotary shaft 31 of the damper 29 can be inserted into the large-diameter hole 37, and the rotary shaft 31 can rotate integrally with the coupling 35 by a key 39.
  • key grooves 40 and 41 are formed in the large-diameter hole 37 of the rotary shaft 31 and the coupling 35, respectively.
  • Such a coupling 35 is rotatably held by the outer case 43 of the damper position adjusting device 30 through the bearing 42 at the other end with the drive shaft 32 inserted at one end. It is. In the outer case 43, the speed reducer 33 and the motor 34 are held at one end, and the large diameter hole 37 with the keyway 41 of the coupling 35 is exposed at the other end. Thus, the coupling 35 and the rotation abnormality detection means 44 are sealed inside.
  • the rotation abnormality detecting means 44 includes a detected plate 45 and a detector 46.
  • the detected plate 45 is fixed to the stepped portion at the axially central portion of the coupling 35 so as to extend radially outward.
  • the detection plate 45 is provided concentrically with the coupling 35 and the drive shaft 32.
  • a slit forming region 48 in which a large number of slits 47, 47... Are formed at equal intervals in the circumferential direction is provided in a part of the outer peripheral portion of the detection plate 45.
  • the slit forming region 48 is provided for the arc of a quarter (90 degrees).
  • the slits 47 formed in the slit formation region 48 have the same shape and size. In this embodiment, elongated rectangular grooves along the radial direction of the plate 45 to be detected are punched and formed at equal intervals along the circumferential direction.
  • the detector 46 for detecting the slit 47 is fixed to the outer case 43.
  • the detector 46 is a transmissive photointerrupter, and is attached in a state where the outer peripheral portion of the detection plate 45 is interposed between the light emitting element 49 and the light receiving element 50.
  • a position corresponding to the detector 46 from the light emitting element 49 to the light receiving element 50.
  • Whether the light receiving element 50 receives light from the light emitting element 49 or not is switched depending on whether the slit 47 of the detection plate 45 is disposed at a position corresponding to the optical path). Thereby, the opening position of the damper 29 can be detected.
  • the damper position adjusting device 30 has the damper 29 in the state in which the clockwise end slit 51 of the slit forming region 48 in Fig. 6 is disposed at a position corresponding to the detector 46.
  • the air supply passage 27 is positioned so as to be fully closed, and is attached to the rotary shaft 31 of the damper 29.
  • the slit forming region 48 is formed by 90 degrees of the detection plate 45, the clockwise end slit 51 of the slit forming region 48 corresponds to the detector 46.
  • the damper 29 fully closes the air supply passage 27 as described above, while the counter slit 52 in the counterclockwise direction of the slit forming region 48 corresponds to the detector 46.
  • the damper 29 will open the air supply passage 27 fully.
  • the motor 34 and the detector 46 are connected to the controller 8, and the rotation of the motor 34 is controlled while monitoring the rotation abnormality of the damper 29. It is configured to be able to.
  • the damper position adjusting device 30 has a generation circuit of a control signal including a drive pulse to the motor 34, and the generated control signal can be output to the motor 34. It is. Thereby, the rotation angle of the motor 34 is arbitrarily controlled in accordance with the forward rotation or reverse rotation and the drive amount, that is, the number of drive pulses. In addition, the rotation speed can be controlled by changing the interval (feed speed) of the drive noise.
  • the controller 8 When actually opening and closing the damper 29, the controller 8 first performs an origin detection operation in order to set the fully closed position of the damper 29 as the origin. First, in FIG. 5, the detected plate 45 is rotated counterclockwise. Now, assuming that the detector 46 is disposed in the slit forming region 48 of the plate 45 to be detected, the detector 46 is periodically inserted into the slit 47 as the plate 45 is rotated. Therefore, the detected pulse is input to the controller 8 as a detection signal. Then, when the detection plate 45 is rotated until the detector 46 is disposed outside the slit forming region 48, no nose is detected.
  • the controller 8 recognizes that the detector 46 is outside the slit forming region 48 and switches the rotation direction to the reverse direction. That is, in the present embodiment, the detected plate 45 is rotated in the clockwise direction, and the position where the pulse (the end slit 51 in the clockwise direction) is first detected is set as the origin. The origin check by this clockwise rotation is performed at a lower speed than the counterclockwise rotation before switching the rotation direction.
  • the controller 8 Since the origin detected in this way corresponds to the fully closed position of the damper 29, the controller 8 outputs a drive signal to the motor 34 based on this state, The damper 29 can be controlled to open and close.
  • the controller 8 drives the motor 34 to open and close the damper 29, the detection signal of the slit 47 is acquired as a pulse from the detector 46 accordingly. Therefore, the controller 8 can monitor the rotation abnormality of the damper 29 by comparing the detection signal from the detector 46 with the control signal to the motor 34. Specifically, a control signal that also has a driving pulse force to the motor 34 is compared with a detection signal that also has a detection pulse force of the slit 47 by the detector 46, and Monitor for abnormal rotation.
  • the controller 8 determines that the rotation is abnormal.
  • the detection pulse from the detector 46 is usually different from the frequency of the drive pulse to the motor 34, it is controlled in consideration of this difference. For example, if no pulse of the detection signal is detected even after the time corresponding to a predetermined pulse of the drive signal has elapsed, control is performed so that a rotation abnormality is determined for the first time.
  • the controller 8 performs measures such as notifying abnormality and stopping combustion. Conversely, when a pulse is detected from the detector 46 even though no driving pulse is sent to the motor 34, a rotation abnormality can be detected.
  • the controller 8 uses a prestored air ratio control program so that the air ratio of the banner 1 becomes the set air ratio based on the detection signal of the sensor 7 (first control condition).
  • the motor 34 is controlled such that the concentration ratio of the gas on the primary side of the catalyst 4 satisfies the following formula (1) (second control condition) at the set air ratio.
  • [CO], [NOx] and [O] are the carbon monoxide concentration and nitrogen acid, respectively.
  • the first control condition is directly controlled, and the second control condition is automatically satisfied by satisfying the first control condition.
  • the second condition is a condition necessary to make the exhausted nitrogen oxide concentration substantially zero.
  • the output characteristic of the sensor 7 is an output related to the oxygen concentration on the positive side and an output related to the carbon monoxide concentration on the negative side. That is, the measured oxygen concentration (excess oxygen region), carbon monoxide concentration, etc. (fuel excess region) force air ratio m is calculated, and current or voltage output corresponding to this air ratio m is obtained.
  • the air ratio control program is a force for controlling the air ratio of the burner to be a set air ratio based on the output signal of the sensor 7.
  • the air ratio control program is as follows. It is configured. That is, as shown in FIG. 7, the first feed rate V (drive amount per unit time) of the motor 34 is changed according to the difference between the output value from the sensor 7 and the set value corresponding to the set air ratio. Control for controlling the drive amount of the motor 34 by providing a control zone and second control zones A and B having the feed rate V as the first set value and the second set value, respectively, outside the first control zone. Instructions are included.
  • the setting range of the first control zone is set with an oxygen concentration N1 (for example, lOOppm) and a carbon monoxide concentration or the like N2 (for example, 50ppm), and is controlled so that the air ratio is substantially 1. .
  • N1 oxygen concentration
  • N2 carbon monoxide concentration or the like
  • the feed speed V in the first control zone is calculated by the following equation (2).
  • the feed speed V is a driving amount per unit time.
  • the rotation angle of the motor 34 in this embodiment in one step is 0.075 degrees, which corresponds to a fluctuation of about 30 ppm when converted to O.
  • the combustion air (outside air) supplied from the blower 26 is premixed in the supply passage 27 with the fuel gas supplied from the gas fuel supply pipe 24.
  • This premixed gas is ejected from the burner 1 toward the first gas passage 15 in the can 3.
  • the premixed gas is ignited by an ignition means (not shown) and burns. This combustion takes place at a low air ratio.
  • the gas generated by this combustion is cooled by crossing with the upstream water tube group 2 and then absorbed by heat exchange with the downstream water tube group 2 to obtain a gas of about 100 ° C to 350 ° C. It becomes.
  • This gas is treated by the catalyst 4 and the nitrogen oxide concentration and the carbon monoxide concentration are made substantially zero, and then discharged from the second gas passage 17 to the atmosphere as exhaust gas.
  • the boiler of this embodiment is operated by switching between high combustion and low combustion.
  • the damper 29 is positioned by selecting either! / Or a deviation between the high combustion air volume position and the low combustion air volume position.
  • the position adjustment of the damper 29 is performed by the damper position adjusting device 30 in accordance with a command from the controller 8. That is, the controller 8 inputs a selection signal for high combustion / low combustion and an output value corresponding to the detected air ratio of the sensor 7, and outputs a drive signal for the motor 34, Adjust the opening position of damper 29.
  • the controller 8 stores the set opening position of the damper 29, which is a set value corresponding to the set air ratio at the time of high combustion and low combustion, as an initial value in terms of the number of pulses of the origin force.
  • the controller 8 controls the current opening position of the damper 29 relative to the set opening position (open side if not controlled in the closing direction) or closed side (opened direction). If not, it is determined whether the motor side is) and the number of driving noises of the motor 34 is calculated. In addition, in FIG. 8, it is determined whether the output value belongs to a deviation between the first control band and the second control band A, B.
  • the motor 34 When belonging to the second control zone A, the motor 34 is driven at the first set feed speed and the calculated drive pulse, and the damper 29 is closed at a high speed.
  • the motor 34 When belonging to the second control zone B, the motor 34 is driven at the second set feed speed and the calculated drive pulse, and the damper 29 is opened at a high speed. In this way, when the set value force corresponding to the set air ratio is relatively far away, the output value corresponding to the detected air ratio is controlled to approach the set value corresponding to the set air ratio at a high speed, so the responsiveness is good. Air ratio control can be performed.
  • the feed rate of the motor 34 is calculated based on the formula (2), and the calculated feed rate and the calculated drive are calculated.
  • the motor 34 is driven with a pulse.
  • the control in the first control zone is effective against the set air ratio. Increase the feed rate as you move away from the set value. By such control, it is possible to quickly approach the set value corresponding to the target set air ratio.
  • it is controlled by a stepping motor that can reliably control the rotational position, and the feed rate is controlled to decrease as the output value corresponding to the detected air ratio approaches the set value corresponding to the set air ratio. Thus, overshooting and notching of the air ratio in the vicinity of the set value corresponding to the air ratio can be suppressed.
  • the air ratio of the Parner 1 is controlled to be a low air ratio close to 1, and the change ratio of the concentration ratio of the gas on the primary side of the catalyst 4 is controlled to be small. It can be satisfied stably. As a result, the nitrogen oxide concentration on the secondary side of the catalyst 4 can be made substantially zero, and the carbon monoxide concentration can be reduced to a value within the practical range.
  • a can body 3 with an evaporation amount of 800 kg per unit time (applicant's manufacturing model: can body called SQ-800) was burned with a premixing burner 1 with a combustion amount of 45.2 m 3 N / h.
  • the experimental results for a catalyst with a volume of 10L and an inner diameter of 360mm that support Pt at a rate of 2. OgZL as the catalytically active substance will be explained.
  • the carbon monoxide concentration, nitrogen oxide concentration, and oxygen concentration on the primary side of catalyst 1 are 2295 ppm, 94 ppm
  • the concentration on the secondary side of the catalyst 1 (after passing through the catalyst 1) was adjusted to 1655 ppm, and the average value for 10 minutes was less than 13 ppm, 0.3 ppm, and lOOppm.
  • the oxygen concentration lOOppm on the secondary side of the catalyst 1 is an oxygen concentration measurement limit (measured using PG-250 manufactured by Horiba, Ltd.).
  • FIG. 11 shows the control characteristics of the motor 34 based on the sensor 7.
  • Example 2 the sensor 7 detects the primary side oxygen concentration of the catalyst 4 so that the set air ratio is 1 (the secondary side oxygen concentration of the catalyst 4 is zero). It indirectly controls the air ratio. Based on various experimental results, when the oxygen concentration O on the primary side of the catalyst 4 is controlled to 0% and O ⁇ 1.00%, the above equation (1) is satisfied and the catalyst 4
  • the air ratio control program of the second embodiment based on the detected value (oxygen concentration signal) from the sensor 7, the detected value and the set oxygen concentration value are A first control zone that changes the feed rate V (drive amount per unit time) of the motor 34 according to the difference, and a feed rate V outside the first control zone is set to a first set value and a second set value, respectively.
  • a control procedure for controlling the drive amount of the motor 34 by providing the second control zones A and B to be included is included.
  • the setting range of the first control zone is controlled to fall within the range set by the oxygen concentration N1 and the oxygen concentration N2.
  • the feed speed V in the first control zone is calculated by the above equation (2) as in the first embodiment.
  • the present invention is not limited to the above embodiments.
  • a force carbon monoxide concentration sensor in which the sensor 7 is an oxygen concentration sensor can be used.
  • the structure of the damper position adjusting device 30 can be variously modified.
  • the motor 34 may be a gear motor (not shown) other than the stepping motor.

Abstract

A combustion apparatus that first attains reduction of the amount of nitrogen oxide emitted to next to nil and reduction of the amount of carbon monoxide emitted to a tolerance level; secondly realizes energy saving through combustion at a low air ratio close to zero; and thirdly attains stable air ratio control within a low-air-ratio combustion region. There is provided a combustion apparatus including a burner, heat absorption means for conducting heat absorption from a gas produced by the burner, a catalyst for oxidation of carbon monoxide contained in the gas having passed through the heat absorption means and reduction of contained nitrogen oxide by carbon monoxide, a sensor for detection of the air ratio of the burner and air ratio regulation means for controlling the air ratio of the burner at a set air ratio in accordance with a detection signal from the sensor, characterized in that the burner and the heat absorption means are so constructed that when the air ratio has been regulated at the set air ratio by the air ratio regulation means, there can be obtained the oxygen, nitrogen oxide and carbon monoxide concentration proportions on the primary side of the catalyst which render the nitrogen oxide concentration on the secondary side of the catalyst substantially zero.

Description

明 細 書  Specification
燃焼装置  Combustion device
技術分野  Technical field
[0001] この発明は、水管ボイラ,吸収式冷凍機の再生器などに適用される燃焼装置に関 する。  [0001] The present invention relates to a combustion apparatus applied to a water tube boiler, a regenerator of an absorption chiller, and the like.
背景技術  Background art
[0002] 一般に、 NOxの発生の抑制原理として、火炎 (燃焼ガス)温度の抑制,高温燃焼ガ スの滞留時間の短縮などが知られている。そして、これらの原理を応用した種々の低 NOxィ匕技術がある。たとえば、 2段燃焼法,濃淡燃焼法,排ガス再循環燃焼法,水添 加燃焼法,蒸気噴射燃焼法,水管群による火炎冷却燃焼法などが提案され実用化 されている。  [0002] In general, as a principle for suppressing NOx generation, suppression of flame (combustion gas) temperature, shortening of residence time of high-temperature combustion gas, and the like are known. There are various low NOx technologies that apply these principles. For example, the two-stage combustion method, the concentration combustion method, the exhaust gas recirculation combustion method, the hydrogenation combustion method, the steam injection combustion method, and the flame cooling combustion method using water tube groups have been proposed and put to practical use.
[0003] ところで、水管ボイラなどの比較的容量の小さ!/ヽ NOx発生源にっ ヽても環境への 影響が高まり、一層の低 NOxィ匕が求められるようになってきている。この低 NOx化に おいては、 NOxの生成を低減すると COの排出量が増加するので、 NOxと COを同 時に削減することが難しい。  [0003] By the way, even with a relatively small capacity! / 水 NOx generation source such as a water tube boiler, the impact on the environment has increased, and a further low NOx emission has been demanded. In reducing NOx, reducing NOx production increases CO emissions, making it difficult to reduce NOx and CO simultaneously.
[0004] その原因は、低 NOxィ匕と低 CO化とが相反する技術的課題であることにある。すな わち、低 NOxを推し進めるために燃焼ガス温度を急激に低下させ、 900°C以下の低 V、温度に抑制すると、 COが多量に発生すると共に発生した COが酸ィ匕されな 、まま 排出され、 CO排出量が増大してしまう。逆に、 COの排出量を少なくするために、燃 焼ガス温度を高めに抑制すると、 NOxの生成量の抑制が不十分となる。  [0004] The cause is that low NOx and low CO are contradictory technical issues. In other words, if the combustion gas temperature is drastically lowered to promote low NOx and suppressed to a low V and temperature of 900 ° C or less, a large amount of CO is generated and the generated CO is not oxidized. As a result, CO emissions will increase. Conversely, if the combustion gas temperature is suppressed to a high level to reduce CO emissions, the amount of NOx produced will be insufficiently suppressed.
[0005] この課題を解決するために、出願人は、低 NOxィ匕に伴い発生する CO量をできるだ け少なくするように、また発生した COが酸ィ匕するように燃焼ガス温度を抑制する低 N Oxおよび低 CO技術を提案し、製品化している(特許文献 1, 2参照)。しかしながら、 この特許文献 1, 2記載の低 NOxィ匕技術は、現実には生成 NOx値が 25ppm程度にと どまっていた。  [0005] In order to solve this problem, the applicant suppresses the combustion gas temperature so that the amount of CO generated with low NOx emissions is reduced as much as possible and the generated CO is oxidized. Proposed low N Ox and low CO technologies and commercialized them (see Patent Documents 1 and 2). However, the low NOx technology described in Patent Documents 1 and 2 actually has a generated NOx value of only about 25 ppm.
[0006] この課題の解決案として、出願人は、 NOx発生の抑制を排出 CO値の低減に優先 するように燃焼ガス温度を抑制して生成 NOx値を所定値以下とする低 NOx化ステツ プを行い、その後に前記低 NOx化ステップからの排出 CO値を所定値以下とする低 CO化ステップを行う低 NOx燃焼方法を提案している(特許文献 3, 4参照)。この特 許文献 3, 4記載の技術によれば、 lOppmを下回る低 NOxィ匕が可能となる力 5ppm を下回る低 NOxィ匕を実現することは難しい。これは、燃焼の特性により、 5ppm以上の NOxの生成が避けられな!/、ことによる。 [0006] As a solution to this problem, the applicant reduced the NOx emission by suppressing the combustion gas temperature so that the suppression of NOx generation has priority over the reduction of the emission CO value, and the generated NOx value is less than a predetermined value. And then a low NOx combustion method is proposed in which a CO reduction step in which the emission CO value from the NOx reduction step is set to a predetermined value or less is performed (see Patent Documents 3 and 4). According to the technologies described in Patent Documents 3 and 4, it is difficult to realize a low NOx concentration of less than 5 ppm, which enables a low NOx concentration of less than 10 ppm. This is due to the inevitable generation of NOx above 5ppm due to the characteristics of combustion!
[0007] そして、特許文献 3, 4記載の低 NOxィ匕技術は、空気比が 1. 38以上の所謂高空 気比燃焼領域に属するものである。一方、空気比 1. 1以下 (以下、「低空気比」という 。)の予混合燃焼領域では一酸ィ匕炭素の発生量が増えて、実用化が困難であること ,および空気比力 ^以下となるとバックフアイヤーを起こすなど安定燃焼制御が困難 なことから、低空気比燃焼の領域は、これまで殆ど研究開発の対象とされていなかつ た。 [0007] The low NOx technologies described in Patent Documents 3 and 4 belong to a so-called high air ratio combustion region having an air ratio of 1.38 or more. On the other hand, in the premixed combustion region where the air ratio is 1.1 or less (hereinafter referred to as “low air ratio”), the amount of carbon monoxide and carbon is increased, making it difficult to put it into practical use, and the air specific force ^ In the following cases, stable combustion control is difficult, such as causing a backfire, so the low air ratio combustion region has not been the subject of research and development until now.
[0008] 一方、時代背景として、ボイラに対して一層の低 NOxィ匕が求められるとともに、省ェ ネルギ一となる低空気比運転が求められるようになってきて 、る。  [0008] On the other hand, as the background of the times, there is a demand for lower NOx emissions for boilers and a low air ratio operation that saves energy.
[0009] 特許文献 1 :特許第 3221582号公報 Patent Document 1: Japanese Patent No. 3221582
特許文献 2 :米国特許第 5353748号明細書  Patent Document 2: US Patent No. 5353748
特許文献 3 :特開 2004— 125378号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2004-125378
特許文献 4:米国特許第 6792895号明細書  Patent Document 4: U.S. Patent No. 6792895
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] この出願の発明者らは、これまで殆ど研究が行われていな力つた限りなく 1に近い 低空気比の燃焼領域において、窒素酸ィ匕物の排出量を限りなく零に近く低減でき、 一酸ィ匕炭素排出量を許容範囲に低減できるとともに、低空気比による省エネルギー を実現できる燃焼装置を求めて研究してきた。 [0010] The inventors of this application have reduced the amount of nitrogen oxides emissions to nearly zero in a combustion region with a low air ratio that is as close to 1 as possible with little research. We have been researching a combustion device that can reduce carbon monoxide emissions to an acceptable level and achieve energy savings with a low air ratio.
[0011] この発明が解決しょうとする課題は、第一に、窒素酸ィ匕物の排出量を限りなく零に 近く低減でき、一酸ィ匕炭素排出量を許容範囲に低減することである。第二に、 1に近 い低空気比の燃焼による省エネルギーを実現することである。第三に、低空気比の 燃焼領域にぉ 、て、空気比制御を安定的に行うことである。 [0011] The problem to be solved by the present invention is, firstly, to reduce the amount of nitrogen oxides to almost zero and to reduce the amount of carbon monoxide to an allowable range. . The second is to realize energy saving by combustion at a low air ratio close to 1. Thirdly, the air ratio control is stably performed in the combustion region of the low air ratio.
課題を解決するための手段 [0012] この発明は、前記課題を解決するためになされたもので、請求項 1に記載の発明は 、パーナと、このパーナにて生成されるガスから吸熱を行う吸熱手段と、この吸熱手 段を通過後の前記ガスに含まれる一酸化炭素を酸化し窒素酸化物を一酸化炭素に より還元する触媒と、前記パーナの空気比を検出するためのセンサと、このセンサの 検出信号に基づき前記パーナの空気比を設定空気比に制御する空気比調整手段と を備え、前記パーナおよび前記吸熱手段は、前記空気比調整手段により前記空気 比を前記設定空気比に調整したとき、前記触媒の二次側の窒素酸化物濃度を実質 的に零とする前記触媒の一次側における酸素,窒素酸化物および一酸化炭素の濃 度比を得ることができるように構成されることを特徴としている。ここにおいて、本請求 項および以下の請求項において、前記検出空気比および前記設定空気比は、それ ぞれ検出空燃比,設定空燃比または検出酸素濃度,設定酸素濃度に置き換えること ができる。 Means for solving the problem [0012] The present invention has been made to solve the above-mentioned problems. The invention according to claim 1 is directed to a burner, a heat absorption means for performing heat absorption from a gas generated by the burner, and the heat absorption hand. A catalyst for oxidizing carbon monoxide contained in the gas after passing through the stage and reducing nitrogen oxide by carbon monoxide, a sensor for detecting the air ratio of the PANA, and a detection signal of the sensor An air ratio adjusting means for controlling the air ratio of the burner to a set air ratio, and when the air ratio adjusting means adjusts the air ratio to the set air ratio by the air ratio adjusting means, The catalyst is characterized in that the concentration ratio of oxygen, nitrogen oxide and carbon monoxide on the primary side of the catalyst can be obtained so that the nitrogen oxide concentration on the secondary side is substantially zero. In this and the following claims, the detected air ratio and the set air ratio can be replaced with a detected air-fuel ratio, a set air-fuel ratio or a detected oxygen concentration, and a set oxygen concentration, respectively.
[0013] 請求項 2に記載の発明は、パーナと、このパーナにて生成されるガスから吸熱を行 う吸熱手段と、この吸熱手段を通過後の前記ガスに含まれる一酸化炭素を酸化し窒 素酸化物を一酸化炭素により還元する触媒と、前記パーナの空気比を検出するため のセンサと、このセンサの検出信号に基づき前記パーナの空気比を設定空気比に制 御する空気比調整手段とを備え、前記パーナおよび前記吸熱手段は、前記空気比 調整手段により前記空気比を前記設定空気比に調整したとき、前記触媒の二次側の 窒素酸化物濃度を実質的に零とする空気比 NOx · CO特性を有することを特徴と している。  [0013] The invention according to claim 2 oxidizes carbon monoxide contained in the gas after passing through the heat absorption means that absorbs heat from the gas generated by the burner, and the gas generated in the heat absorption means. A catalyst for reducing nitrogen oxides with carbon monoxide, a sensor for detecting the air ratio of the panner, and an air ratio adjustment for controlling the air ratio of the panner to a set air ratio based on the detection signal of the sensor And when the air ratio is adjusted to the set air ratio by the air ratio adjusting means, the nitrogen oxide concentration on the secondary side of the catalyst is substantially zero. The air ratio is characterized by NOx · CO characteristics.
[0014] 請求項 3に記載の発明は、パーナと、このパーナにて生成されるガスから吸熱を行 う吸熱手段と、この吸熱手段を通過後の前記ガスに含まれる一酸化炭素を酸化し窒 素酸化物を一酸化炭素により還元する触媒と、前記パーナの空気比を検出するため のセンサと、このセンサの検出信号に基づき前記パーナの空気比を設定空気比に制 御する空気比調整手段とを備え、前記パーナおよび前記吸熱手段は、前記空気比 調整手段により前記空気比を前記設定空気比に調整したとき、前記触媒の一次側の 前記ガスにおける一酸ィヒ炭素濃度が前記酸ィヒにより前記触媒内で低減される一酸 化炭素濃度と前記還元により前記触媒内で低減される一酸ィ匕炭素濃度とを加えた値 とほぼ等し!/、か、それ以上となるように構成されることを特徴として 、る。 [0014] The invention according to claim 3 oxidizes carbon monoxide contained in the gas after passing through the endurance means, endothermic means for absorbing heat from the gas generated in the parner, and the endothermic means. A catalyst for reducing nitrogen oxides with carbon monoxide, a sensor for detecting the air ratio of the panner, and an air ratio adjustment for controlling the air ratio of the panner to a set air ratio based on the detection signal of the sensor And when the air ratio is adjusted to the set air ratio by the air ratio adjusting means, the carbon monoxide concentration in the gas on the primary side of the catalyst is increased by the acid ratio adjusting means. A value obtained by adding the concentration of carbon monoxide reduced in the catalyst by the gas-ion and the concentration of carbon monoxide reduced in the catalyst by the reduction. It is characterized by being configured to be almost equal! /, Or more.
[0015] 請求項 4に記載の発明は、パーナと、このパーナにて生成されるガスから吸熱を行 う吸熱手段と、この吸熱手段を通過後の前記ガスに含まれる一酸化炭素を酸化し窒 素酸化物を一酸化炭素により還元する触媒と、前記パーナの空気比を検出するため のセンサと、このセンサの検出信号に基づき前記パーナの空気比を設定空気比に制 御する空気比調整手段とを備え、前記パーナおよび前記吸熱手段は、前記空気比 調整手段により前記空気比を前記設定空気比に調整したとき、前記触媒への流入 前の前記ガスの濃度比が次式(1)を満たすように構成されることを特徴とする燃焼装 置。  [0015] The invention according to claim 4 oxidizes carbon, monoxide contained in the gas after passing through the endotherm, endothermic means that absorbs heat from the gas generated in the parner. A catalyst for reducing nitrogen oxides with carbon monoxide, a sensor for detecting the air ratio of the panner, and an air ratio adjustment for controlling the air ratio of the panner to a set air ratio based on the detection signal of the sensor And when the air ratio is adjusted to the set air ratio by the air ratio adjusting means, the concentration ratio of the gas before flowing into the catalyst is expressed by the following equation (1): Combustion device characterized by being configured to satisfy.
( [NOx] + 2[0 ]) /[CO]≤2. 0  ([NOx] + 2 [0]) /[CO]≤2.0
2  2
(式(1)において、 [CO]、 [NOx]および [O ]はそれぞれ一酸化炭素濃度、窒素酸  (In Formula (1), [CO], [NOx] and [O] are the carbon monoxide concentration and nitrogen acid, respectively.
2  2
化物濃度および酸素濃度を示し、 [o ] >0の  Indicates the concentration of oxide and oxygen, and [o]> 0
2 条件を満たす。 )  2 Satisfy the condition. )
請求項 1〜請求項 4に記載の発明によれば、窒素酸ィ匕物の排出量を限りなく零に 近く低減できる燃焼装置を提供することができる。  According to the first to fourth aspects of the invention, it is possible to provide a combustion apparatus that can reduce the amount of nitrogen oxides discharged to almost zero.
[0016] 請求項 5に記載の発明は、請求項 1〜請求項 4において、前記設定空気比を実質 的に 1とすることを特徴として 、る。 [0016] The invention of claim 5 is characterized in that, in claim 1 to claim 4, the set air ratio is substantially 1.
[0017] 請求項 5に記載の発明によれば、請求項 1〜請求項 4に記載の発明による効果に カロえて、限りなく 1に近 、低空気比燃焼による省エネルギーを実現できると 、う効果を 奏する。 [0017] According to the invention described in claim 5, the effect of the invention described in claims 1 to 4 is reduced, and as close to 1 as possible, energy saving by low air ratio combustion can be realized. Play.
[0018] 請求項 6に記載の発明は、パーナと、このパーナにて生成されるガスから吸熱を行 う吸熱手段と、この吸熱手段を通過後の前記ガスに含まれる一酸化炭素を酸化し窒 素酸化物を一酸化炭素により還元する触媒と、前記パーナの空気比を検出するため のセンサと、このセンサの検出信号に基づき前記パーナの空気比を制御する空気比 調整手段とを備え、前記パーナおよび前記吸熱手段は、前記空気比調整手段の空 気比制御により前記触媒の二次側の窒素酸化物濃度および酸素濃度を実質的に零 とする前記触媒の一次側における酸素,窒素酸化物および一酸化炭素の濃度比を 得ることができるように構成されることを特徴としている。ここで、酸素濃度が実質的に 零とは、 lOOppm以下とする力 好ましくは、計測限界値以下とする。 [0019] 請求項 6に記載の発明によれば、窒素酸ィ匕物の排出量を限りなく零に近く低減でき るとともに、限りなく 1に近 、低空気比燃焼による省エネルギーを実現できる。 [0018] The invention according to claim 6 oxidizes carbon, monoxide contained in the gas after passing through the heat absorption means that absorbs heat from the gas generated in the burner, and the heat generated by the heat absorption means. A catalyst for reducing nitrogen oxides with carbon monoxide, a sensor for detecting the air ratio of the burner, and an air ratio adjusting means for controlling the air ratio of the burner based on a detection signal of the sensor; The burner and the endothermic means are used to oxidize oxygen and nitrogen on the primary side of the catalyst so that the nitrogen oxide concentration and oxygen concentration on the secondary side of the catalyst become substantially zero by controlling the air ratio of the air ratio adjusting means. It is structured to be able to obtain the concentration ratio of the product and carbon monoxide. Here, the oxygen concentration is substantially zero, the force to make lOOppm or less, preferably the measurement limit value or less. [0019] According to the invention described in claim 6, the amount of nitrogen oxides discharged can be reduced to nearly zero, and can be reduced to as close as 1 to realize energy saving by low air ratio combustion.
[0020] 請求項 7に記載の発明は、請求項 1〜請求項 6において、前記空気比調整手段は 、前記空気比を安定的に制御する電気的制御手段および Zまたは機械的制御手段 を含むことを特徴として 、る。  [0020] The invention according to claim 7 is the invention according to claim 1 to claim 6, wherein the air ratio adjusting means includes an electric control means and Z or mechanical control means for stably controlling the air ratio. It is characterized by that.
[0021] 請求項 7に記載の発明によれば、請求項 1〜請求項 6の発明による効果に加えて、 前記空気比を安定的に制御でき、前記触媒の一次側の酸素,一酸化炭素濃度およ び窒素酸化物濃度の濃度比調整を安定的に実現できるという効果を奏する。  [0021] According to the invention of claim 7, in addition to the effects of the inventions of claims 1 to 6, the air ratio can be stably controlled, and oxygen and carbon monoxide on the primary side of the catalyst. The concentration ratio and nitrogen oxide concentration ratio adjustment can be realized stably.
[0022] 請求項 8に記載の発明は、請求項 7において、前記空気比調整手段は、前記バー ナの空気比を制御する流量調整手段と、前記流量調整手段の開度制御するモータ と、前記モータを前記流量調整手段の開度変化量を駆動量に応じて制御するモータ とすることにより構成される前記機械的制御手段とを含むことを特徴としている。  [0022] The invention according to claim 8 is the invention according to claim 7, wherein the air ratio adjusting means includes a flow rate adjusting means for controlling an air ratio of the burner, a motor for controlling an opening degree of the flow rate adjusting means, And a mechanical control unit configured to control the degree of opening change of the flow rate adjusting unit in accordance with a driving amount.
[0023] 請求項 8に記載の発明によれば、請求項 7に記載の発明による効果に加えて、前 記流量調整手段の開度変化量を駆動量に応じて制御するモータにより制御している ので、前記流量調整手段の開度を確実に制御できるという効果を奏する。  [0023] According to the invention of claim 8, in addition to the effect of the invention of claim 7, the opening degree change amount of the flow rate adjusting means is controlled by a motor that controls according to the drive amount. As a result, the opening degree of the flow rate adjusting means can be reliably controlled.
[0024] 請求項 9に記載の発明は、請求項 8において、前記モータがステッピングモータで あることを特徴としている。  [0024] The invention according to claim 9 is characterized in that, in claim 8, the motor is a stepping motor.
[0025] 請求項 9に記載の発明によれば、請求項 8に記載の発明による効果に加えて、精 度良く位置制御を行うことができるという効果を奏することができる。  [0025] According to the invention of claim 9, in addition to the effect of the invention of claim 8, it is possible to achieve an effect that position control can be performed with high accuracy.
[0026] 請求項 10に記載の発明は、請求項 7において、前記空気比調整手段は、前記バ ーナの空気比を制御する流量調整手段と、前記流量調整手段の開度制御するモー タと、前記センサによる検出空気比が前記設定空気比を含む設定範囲内に収まるよ うに制御する前記電気的制御手段とを含むことを特徴として 、る。  The invention according to claim 10 is the invention according to claim 7, wherein the air ratio adjusting means includes a flow rate adjusting means for controlling an air ratio of the burner and a motor for controlling an opening degree of the flow rate adjusting means. And the electric control means for controlling the air ratio detected by the sensor to be within a set range including the set air ratio.
[0027] 請求項 10に記載の発明によれば請求項 7に記載の発明による効果に加えて、空 気比を設定範囲内に収束して制御できるので、空気比を安定的に制御することがで きるという効果を奏する。  [0027] According to the invention of claim 10, in addition to the effect of the invention of claim 7, the air ratio can be converged and controlled within the set range, so that the air ratio can be controlled stably. It has the effect of being able to
[0028] 請求項 11に記載の発明は、請求項 10において、前記モータを前記流量調整手段 の開度変化量を駆動量に応じて制御するモータとすることにより前記機械的制御手 段を構成することを特徴として 、る。 [0028] The invention according to claim 11 is the mechanical control device according to claim 10, wherein the motor is a motor that controls an amount of change in opening of the flow rate adjusting means according to a drive amount. It is characterized by comprising steps.
[0029] 請求項 11に記載の発明によれば、請求項 10に記載の発明による効果に加えて、 前記流量調整手段の開度変化量を駆動量に応じて制御するモータにより制御してい るので、前記流量調整手段の開度を確実に制御できるという効果を奏する。  According to the invention of claim 11, in addition to the effect of the invention of claim 10, the opening degree change amount of the flow rate adjusting means is controlled by a motor that controls according to the drive amount. As a result, the opening degree of the flow rate adjusting means can be reliably controlled.
[0030] 請求項 12に記載の発明は、請求項 11において、前記電気的制御手段は、前記検 出空気比と前記設定空気比との差に応じて前記モータの単位時間当たり駆動量を 変える第一制御帯と、この第一制御帯の外側において前記駆動量を所定値とする第 二制御帯とを設けて、前記モータの駆動量を制御することを特徴として 、る。  [0030] The invention according to claim 12 is the invention according to claim 11, wherein the electrical control means changes a drive amount per unit time of the motor in accordance with a difference between the detected air ratio and the set air ratio. A first control zone and a second control zone with the drive amount set to a predetermined value outside the first control zone are provided to control the drive amount of the motor.
[0031] 請求項 12に記載の発明によれば、請求項 11に記載の発明による効果に加えて、 検出空気比が前記第一制御帯にあるときは、空気比のオーバーシュートおよびノヽン チングを防止できるとともに、前記検出空気比が前記第二制御帯にあるときは、速や 力に空気比を前記第一制御帯とすることができる効果を奏する。  [0031] According to the invention of claim 12, in addition to the effect of the invention of claim 11, when the detected air ratio is in the first control zone, overshooting and notching of the air ratio When the detected air ratio is in the second control zone, the air ratio can be set to the first control zone in terms of speed and force.
[0032] さらに、請求項 13に記載の発明は、請求項 1〜請求項 11において、前記パーナが 予混合パーナであることを特徴として ヽる。  [0032] Further, the invention of claim 13 is characterized in that in claim 1 to claim 11, the panner is a premixed panner.
[0033] 請求項 13に記載の発明によれば、請求項 1〜請求項 11に記載の発明による効果 に加えて、特に低空気比の燃焼領域にお!、て触媒の一次側のガスの濃度比の調整 を比較的容易に行うことが可能となる効果を奏する。  [0033] According to the invention of claim 13, in addition to the effects of the invention of claims 1 to 11, in particular, in the combustion region of a low air ratio! There is an effect that the concentration ratio can be adjusted relatively easily.
発明の効果  The invention's effect
[0034] この発明によれば、窒素酸ィ匕物の排出量を限りなく零に近く低減でき、一酸化炭素 排出量を低減できる燃焼装置を提供することができる。  [0034] According to the present invention, it is possible to provide a combustion apparatus that can reduce the amount of nitrogen oxides discharged to nearly zero and reduce the amount of carbon monoxide emitted.
図面の簡単な説明  Brief Description of Drawings
[0035] [図 1]本実施例 1の蒸気ボイラの縦断面の説明図である。 FIG. 1 is an explanatory view of a longitudinal section of a steam boiler according to a first embodiment.
[図 2]図 1の II— II線に沿う断面図である。  FIG. 2 is a sectional view taken along line II—II in FIG.
[図 3]図 2の触媒を排ガスの流れ方向カゝら見た要部構成を示す図である。  FIG. 3 is a diagram showing a main configuration of the catalyst of FIG. 2 as viewed from the flow direction of exhaust gas.
[図 4]本実施例 1の空気比—ΝΟχ· CO特性を示す図である。  FIG. 4 is a diagram showing the air ratio-ΝΟχ · CO characteristics of Example 1.
[図 5]本実施例 1のダンバ位置調整装置の使用状態の一部断面の説明図である。  FIG. 5 is an explanatory view of a partial cross section of the damper position adjusting device according to the first embodiment when used.
[図 6]同ダンバ位置調整装置の要部の断面説明図である。  FIG. 6 is a cross-sectional explanatory view of a main part of the damper position adjusting device.
[図 7]本実施例 1のセンサの出力特性を説明する図である。 [図 8]本実施例 1のモータ制御特性を説明する図である。 FIG. 7 is a diagram for explaining output characteristics of the sensor of the first embodiment. FIG. 8 is a diagram for explaining motor control characteristics of the first embodiment.
[図 9]本実施例 1の NOxおよび CO低減特性を説明する図である。  FIG. 9 is a diagram illustrating NOx and CO reduction characteristics of Example 1.
[図 10]本実施例 2の蒸気ボイラの縦断面の説明図である。  FIG. 10 is an explanatory view of a longitudinal section of a steam boiler according to the second embodiment.
[図 11]本実施例 2のモータ制御特性を説明する図である。  FIG. 11 is a diagram for explaining motor control characteristics of the second embodiment.
符号の説明  Explanation of symbols
[0036] 1 パーナ [0036] 1 Pana
4 触媒  4 Catalyst
7 センサ  7 Sensor
8 制御器  8 Controller
28 空気比調整手段  28 Air ratio adjustment means
29 ダンバ  29 Damba
30 ダンバ位置調整装置  30 Damper position adjustment device
34 モータ  34 Motor
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0037] つぎに、この発明の実施の形態について説明する。この発明の実施の形態を説明 する前に、この出願において使用する用語について説明する。「ガス」とは、パーナか ら触媒を通過し終わるまでのガスを 、 、、触媒を通過した後のガスを「排ガス」と 、う。 したがって、ガスは、燃焼反応中(燃焼過程)のガスと燃焼反応が完結したガスとを含 み、燃焼ガスと称することができる。ここにおいて、前記触媒がガスの流れに沿って多 段に設けられている場合、「ガス」は、最終段の触媒を通過し終わるまでのガスをいい 、「排ガス」は、最終段の触媒を通過した後のガスをいう。  Next, an embodiment of the present invention will be described. Prior to describing the embodiments of the present invention, terms used in this application will be described. “Gas” refers to the gas from the PANA to the end of passing through the catalyst, and the gas after passing through the catalyst is referred to as “exhaust gas”. Therefore, the gas includes a gas in the combustion reaction (combustion process) and a gas in which the combustion reaction is completed, and can be referred to as a combustion gas. Here, when the catalyst is provided in multiple stages along the gas flow, “gas” refers to the gas that has passed through the final stage catalyst, and “exhaust gas” refers to the final stage catalyst. The gas after passing through.
[0038] 「触媒の一次側」とは、触媒に対しパーナが設けられて!/、る側であって、特に断らな い限り、ガスがこの触媒を通過する直前をいい、「触媒の二次側」とは、触媒の一次側 の反対側をいう。  [0038] The "primary side of the catalyst" is the side where the catalyst is provided with a partner! /, And unless otherwise specified, refers to the gas immediately before passing through the catalyst. “Secondary side” refers to the opposite side of the primary side of the catalyst.
[0039] また、「HCを含まない」とは、ガス中に窒素酸ィ匕物を還元する HCが実質的に含ま れて 、な 、 (測定限界以下である)ことを意味して 、る。  [0039] Also, "not containing HC" means that the gas substantially contains HC that reduces nitrogen oxides (below the measurement limit). .
[0040] さらに、空気比 mは、 m= 2lZ (21— [O ])と定義する。ただし、 [O ]は、排ガス中 [0040] Further, the air ratio m is defined as m = 2lZ (21— [O]). However, [O] is in the exhaust gas.
2 2  twenty two
の酸素濃度を表すが、空気比を求める際に用いる [o ]は、酸素過剰領域では過剰 酸素濃度を表し、燃料過剰領域では一酸ィ匕炭素などの未燃ガスを空気比 m= 1で燃 焼させるのに必要な不足酸素濃度を負の値として表す。 [O] used to calculate the air ratio is excessive in the oxygen excess region. It represents the oxygen concentration. In the excess fuel region, the deficient oxygen concentration required for burning unburned gas such as carbon monoxide and carbon at an air ratio m = 1 is expressed as a negative value.
[0041] つぎに、この発明の実施の形態について説明する。この発明は、小型貫流ボイラな どの水管ボイラ,給湯器,吸収式冷凍機の再生器などの燃焼装置 (熱機器または燃 焼機器と称しても良い。 )に適用される。  Next, an embodiment of the present invention will be described. The present invention is applied to a combustion apparatus (may be referred to as a thermal apparatus or a combustion apparatus) such as a water tube boiler such as a small once-through boiler, a water heater, or a regenerator of an absorption chiller.
[0042] この発明の実施の形態は、パーナと、このパーナにて生成されるガスから吸熱を行 う吸熱手段と、この吸熱手段を通過後の前記ガスに含まれる一酸化炭素を酸化し窒 素酸化物を一酸化炭素により還元する触媒と、前記パーナの空気比を検出するため のセンサと、このセンサの検出信号に基づき前記パーナの空気比を設定空気比に制 御する空気比調整手段とを備え、前記パーナおよび前記吸熱手段は、前記空気比 調整手段により前記空気比を前記設定空気比に調整したとき、前記触媒の二次側の 窒素酸化物濃度を実質的に零とする前記触媒の一次側における酸素,窒素酸化物 および一酸ィ匕炭素の濃度比を得ることができるように構成されることを特徴とする燃 焼装置である。  [0042] An embodiment of the present invention includes a burner, a heat absorption means that absorbs heat from the gas generated in the parser, and carbon monoxide contained in the gas that has passed through the heat absorption means to oxidize and nitrify carbon monoxide. A catalyst for reducing oxygen oxide with carbon monoxide, a sensor for detecting the air ratio of the panner, and an air ratio adjusting means for controlling the air ratio of the panner to a set air ratio based on the detection signal of the sensor And when the air ratio is adjusted to the set air ratio by the air ratio adjusting means, the nitrogen gas concentration on the secondary side of the catalyst is substantially zero. It is a combustor characterized by being configured to obtain a concentration ratio of oxygen, nitrogen oxides, and carbon monoxide on the primary side of the catalyst.
[0043] 前記設定空気比は、好ましくは、 1の設定空気比に制御するが、前記触媒での反 応の結果、 1の設定空気比を満たし得る前記触媒の一次側の酸素濃度が所定濃度 となるように空気比を制御するように構成することもできる。また、「前記空気比調整手 段により前記設定空気比に調整したとき、前記触媒の二次側の窒素酸化物濃度を実 質的に零とする前記触媒の一次側における酸素,窒素酸化物および一酸化炭素の 濃度比を得ることができる」とは、前記設定空気比において満たされる。  [0043] The set air ratio is preferably controlled to a set air ratio of 1. As a result of the reaction at the catalyst, the oxygen concentration on the primary side of the catalyst that can satisfy the set air ratio of 1 is a predetermined concentration. The air ratio can also be controlled so that Further, “when adjusting to the set air ratio by the air ratio adjusting means, the concentration of nitrogen oxides on the secondary side of the catalyst is substantially zero, and the oxygen, nitrogen oxides on the primary side of the catalyst and “The concentration ratio of carbon monoxide can be obtained” is satisfied at the set air ratio.
[0044] この発明の実施の形態においては、前記パーナは、前記空気比調整手段により前 記空気比を前記設定空気比に制御されて燃焼する。燃焼により生成されるガスは、 前記吸熱体にて吸熱作用を受けた後、前記触媒により一酸化炭素が酸化され、窒素 酸化物が還元される。その結果、前記ガス中の窒素酸化物の排出量が 5ppm以下の 零に近い値に低減される。また、一酸ィ匕炭素の排出量が低減される。ここで、前記触 媒の二次側の窒素酸化物濃度を実質的に零とするとは、窒素酸化物濃度が 5ppmで あるが、好ましくは、 3ppmであり、さらに好ましくは、 Oppmである。  [0044] In an embodiment of the present invention, the burner burns while the air ratio is controlled to the set air ratio by the air ratio adjusting means. The gas generated by combustion is subjected to an endothermic action by the endothermic body, and then the carbon monoxide is oxidized by the catalyst and the nitrogen oxide is reduced. As a result, the emission of nitrogen oxides in the gas is reduced to a value close to zero of 5 ppm or less. In addition, carbon monoxide emission is reduced. Here, when the nitrogen oxide concentration on the secondary side of the catalyst is substantially zero, the nitrogen oxide concentration is 5 ppm, preferably 3 ppm, and more preferably Oppm.
[0045] この発明の実施の形態によれば、前記空気比調整手段により前記空気比を前記設 定空気比に制御することにより、前記触媒の二次側の窒素酸化物濃度を実質的に零 とする前記触媒の一次側における酸素,窒素酸化物および一酸化炭素の濃度比が 得られる。 [0045] According to an embodiment of the present invention, the air ratio is adjusted by the air ratio adjusting means. By controlling to a constant air ratio, a concentration ratio of oxygen, nitrogen oxides, and carbon monoxide on the primary side of the catalyst can be obtained in which the nitrogen oxide concentration on the secondary side of the catalyst is substantially zero.
[0046] 低空気比制御においては、安定的な空気比制御が難しいが、前記空気比調整手 段に、前記空気比を安定的に制御する電気的制御手段および Zまたは機械的制御 手段を含ませることにより、安定した空気比制御を行うことができる。  [0046] In low air ratio control, stable air ratio control is difficult, but the air ratio adjusting means includes an electrical control means and Z or mechanical control means for stably controlling the air ratio. By doing so, stable air ratio control can be performed.
[0047] 前記触媒の一次側の濃度比調整は、好ましくは、前記触媒の一次側の前記ガスに おける一酸化炭素濃度が一酸化炭素の酸化 (第一反応)により前記触媒内で低減さ れる一酸化炭素濃度と窒素酸化物の一酸化炭素による還元 (第二反応)により前記 触媒内で低減される一酸ィ匕炭素濃度とを加えた値とほぼ等し 、か、それ以上となるよ うに制御される。  [0047] The concentration ratio adjustment on the primary side of the catalyst is preferably such that the concentration of carbon monoxide in the gas on the primary side of the catalyst is reduced in the catalyst by oxidation of carbon monoxide (first reaction). It is almost equal to or higher than the sum of the concentration of carbon monoxide and the concentration of carbon monoxide reduced in the catalyst by the reduction of nitrogen oxides with carbon monoxide (second reaction). Controlled.
[0048] この低減作用は、つぎのようにして行われると考えられる。 HC (炭化水素)を含まな いガスにおいて、前記触媒では、主反応として、一酸化炭素を酸化させる第一反応と 窒素酸ィ匕物を一酸ィ匕炭素により還元させる第二反応とが生じている。そして、前記触 媒における反応 (触媒反応)おいて、酸素存在下では、前記第一反応が前記第二反 応よりも優位であり、前記第一反応に基づき一酸化炭素は、酸素により消費されて、 濃度調整された後、前記第二反応により窒素酸ィ匕物を還元する。この説明は、簡略 化したものである。実際は、前記第一反応は、前記第二反応と競合反応であるが、一 酸ィ匕炭素と酸素との反応が酸素存在下において前記第二反応と比較し見かけ上速 く起こるため、第一段階で前記第一反応が行われ、第二段階で前記第二反応が行 われると考えられる。  [0048] This reduction action is considered to be performed as follows. In a gas that does not contain HC (hydrocarbon), the catalyst generates, as the main reaction, a first reaction that oxidizes carbon monoxide and a second reaction that reduces nitrogen oxides with carbon monoxide. ing. In the reaction (catalytic reaction) in the catalyst, in the presence of oxygen, the first reaction is superior to the second reaction, and carbon monoxide is consumed by oxygen based on the first reaction. After the concentration is adjusted, the nitrogen oxides are reduced by the second reaction. This description is simplified. Actually, the first reaction is a competitive reaction with the second reaction, but the reaction between carbon monoxide and oxygen occurs apparently faster in the presence of oxygen than the second reaction. It is considered that the first reaction is performed in the stage and the second reaction is performed in the second stage.
[0049] 要するに、前記触媒において、酸素の存在下では、 CO+ 1/20→COなる前記  In short, in the catalyst, in the presence of oxygen, CO + 1/20 → CO
2 2 第一反応により、酸素が消費され、残りの COを用いて、 2CO + 2NO→N2 + 2CO  2 2 Oxygen is consumed by the first reaction, and using the remaining CO, 2CO + 2NO → N2 + 2CO
2 なる前記第二反応により、窒素酸化物を還元して、排出窒素酸化物濃度を低減する  2 By the second reaction, the nitrogen oxides are reduced and the concentration of exhausted nitrogen oxides is reduced.
[0050] ここで、前記の反応式の説明において、 NOxを用いることなぐ NOを用いているの は、高温場での生成窒素酸化物の組成は、主成分が NOであり、 NOは、数%に過 [0050] Here, in the description of the above reaction formula, NO is used without using NOx. The composition of the generated nitrogen oxide in the high temperature field is NO as the main component, and NO is a number % Over
2  2
ぎないので、近似的に説明することができるからである。 NOは、存在しても NOと同 様に COにより還元されると考えられる。 This is because it can be described approximately. NO, if present, is the same as NO It is thought that it is reduced by CO.
[0051] 前記パーナおよび前記吸熱体は、両者によって前記濃度比の調整を行うように構 成する。この場合、前記パーナおよび前記吸熱体は、つぎの空気比一 NOx'CO特 性を有する。この空気比一 NOx'CO特性は、前記空気比調整手段により前記空気 比を前記設定空気比に調整したとき、前記触媒の二次側の窒素酸化物濃度を実質 的に零とする前記触媒の一次側のガスにおける酸素,窒素酸化物および一酸化炭 素の濃度比が得られるものである。前記空気比一 NOx'CO特性は、好ましくは、前 記触媒一次側における前記窒素酸化物の濃度を 300ppm以下とする。こうすることに より、前記触媒の使用量を低減できる。  [0051] The panner and the endothermic body are configured to adjust the concentration ratio by both. In this case, the panner and the endothermic body have the following air ratio NOx′CO characteristics. This air ratio-one NOx'CO characteristic is obtained when the air ratio is adjusted to the set air ratio by the air ratio adjusting means so that the concentration of nitrogen oxides on the secondary side of the catalyst is substantially zero. The concentration ratio of oxygen, nitrogen oxides, and carbon monoxide in the primary gas can be obtained. The air ratio-one NOx'CO characteristic is preferably such that the concentration of the nitrogen oxides on the primary side of the catalyst is 300 ppm or less. By doing so, the amount of the catalyst used can be reduced.
[0052] 前記パーナと前記吸熱体とによる前記濃度比調整は、実験的なデータに基づいて 空気比一 NOx'CO特性を求めることにより行われる。この濃度比調整により、前記触 媒の一次側の前記ガスにおける一酸化炭素濃度が一酸化炭素の酸化により前記触 媒内で低減される一酸ィヒ炭素濃度と窒素酸ィヒ物の一酸ィヒ炭素による還元により前 記触媒内で低減される一酸ィ匕炭素濃度とを加えた値とほぼ等し 、か、それ以上とす る濃度比調整が不可能な場合には、一酸ィ匕炭素の注入や酸素の注入による調整を 行うように構成することができる。  [0052] The concentration ratio adjustment by the PANA and the endothermic material is performed by obtaining an air ratio-one NOx'CO characteristic based on experimental data. By adjusting the concentration ratio, the carbon monoxide concentration in the gas on the primary side of the catalyst is reduced in the catalyst by the oxidation of carbon monoxide and the monoacid acid and nitrogen monoxide monoacids. If the concentration ratio cannot be adjusted to a value that is approximately equal to or greater than the sum of the concentration of carbon monoxide and carbon that is reduced in the catalyst by reduction with carbon, it is It can be configured to adjust by carbon injection or oxygen injection.
[0053] この濃度比において、空気比を実質的に 1の設定空気比に制御すれば、省エネル ギーを達成するうえで好ましい。また、この濃度比調整は、好ましくは、燃焼温度の調 整により窒素酸化物量および一酸化炭素量を所定量以下に抑制するとともに、ガス 温度を保持して得られた一酸ィ匕炭素濃度を低減させないことにより行われる。一酸ィ匕 炭素は、ガス温度が約 900°C以上となると酸ィ匕されやすいので、好ましくは、前記触 媒の一次側におけるガス温度が 600°C以下に保持されるように前記パーナおよび前 記吸熱体とが構成される。  [0053] In this concentration ratio, if the air ratio is controlled to a set air ratio of substantially 1, it is preferable to achieve energy saving. In addition, the concentration ratio adjustment is preferably performed by suppressing the nitrogen oxide amount and the carbon monoxide amount to a predetermined amount or less by adjusting the combustion temperature and reducing the carbon monoxide concentration obtained by maintaining the gas temperature. This is done by not reducing it. Carbon monoxide carbon is easily oxidized when the gas temperature is about 900 ° C. or higher. Therefore, it is preferable that the gas flow at the primary side of the catalyst is maintained at 600 ° C. or lower so that the gas temperature is maintained at 600 ° C. or lower. The above-mentioned heat sink is constituted.
[0054] 前記濃度比の範囲を表す式は、つぎの式(1)にて表現することができる。  [0054] An expression representing the range of the concentration ratio can be expressed by the following expression (1).
( [NOx] + 2[0 ]) /[CO]≤2. 0  ([NOx] + 2 [0]) /[CO]≤2.0
2  2
(式(1)において、 [CO]、 [NOx]および [O ]はそれぞれ一酸化炭素濃度、窒素酸  (In Formula (1), [CO], [NOx] and [O] are the carbon monoxide concentration and nitrogen acid, respectively.
2  2
化物濃度および酸素濃度を示し、 [o ] >0の条件を満たす。 )  Indicates the concentration of oxide and oxygen, satisfying the condition [o]> 0. )
2  2
ここで、([NOx] + 2[0 ])Z[CO]の値 (濃度比の値)は、 2. 0以下とするが、好ま しくは、 1. 5以下とする。また、窒素酸ィ匕物濃度([NOx])は、一酸化窒素濃度([NO ])と二酸ィ匕窒素濃度([NO ])との合計濃度である。また、前記式 (1)を満たす Here, the value of ([NOx] + 2 [0]) Z [CO] (concentration ratio value) should be 2.0 or less, but it is preferable. Or 1.5 or less. The nitrogen oxide concentration ([NOx]) is the total concentration of the nitric oxide concentration ([NO]) and the diacid nitrogen concentration ([NO]). Further, the above formula (1) is satisfied.
2 一酸 化炭素濃度、窒素酸化物濃度および酸素濃度の濃度比を所定濃度比と 、う。  2 Concentration ratio of carbon monoxide concentration, nitrogen oxide concentration, and oxygen concentration is the predetermined concentration ratio.
[0055] 前記所定濃度比の値が 1の場合は、理論上は、前記触媒から排出される酸素濃度 ,窒素酸化物濃度および一酸化炭素濃度を零とすることができる。しカゝしながら、実 験上は、僅かに一酸ィ匕炭素が排出されることが分力 て 、る。前記式(1)における( [ NOx] + 2[0 ] = lは、実験結果に基づき、前記第一反  [0055] When the value of the predetermined concentration ratio is 1, theoretically, the oxygen concentration, nitrogen oxide concentration, and carbon monoxide concentration discharged from the catalyst can be made zero. On the other hand, in the experiment, a small amount of carbon monoxide is emitted. ([NOx] +2 [0] = l in the formula (1) is based on the experimental result,
2 ])Z[CO 応および第二反 応力 理論的に導き出したものである。  2]) Z [CO reaction and second reaction stress Theoretically derived.
[0056] 前記所定濃度比の値が 1よりも小さい場合は、一酸化炭素の濃度が前記窒素酸ィ匕 物の還元に必要な濃度以上に存在するので、排出酸素濃度が零で、前記触媒通過 後のガス中に一酸化炭素が残留する。このため前記式(1)における濃度比の下限値 を設けていない。前記触媒通過後に、一酸化炭素が含まれる場合は、この残留一酸 化炭素を酸化する酸化手段を更に設けることが好ましい。この酸化手段は、前記触 媒と別個の触媒を設け、この触媒の上流側へ酸素を投入して一酸化炭素を酸化する ように構成することができる。  [0056] When the value of the predetermined concentration ratio is smaller than 1, the concentration of carbon monoxide is higher than the concentration necessary for the reduction of the nitrogen oxides, so the exhaust oxygen concentration is zero, and the catalyst Carbon monoxide remains in the gas after passing. For this reason, the lower limit of the concentration ratio in the formula (1) is not provided. When carbon monoxide is contained after passing through the catalyst, it is preferable to further provide an oxidizing means for oxidizing the residual carbon monoxide. The oxidation means can be configured to provide a catalyst separate from the catalyst and oxidize carbon monoxide by introducing oxygen upstream of the catalyst.
[0057] また、前記濃度比の値の 1. 0を越える 2. 0は、実験的に得られた値である力 つぎ の理由によると考えられる。前記触媒中で生じている反応は、完全に解明されておら ず、前記第一反応および前記第二反応の主反応以外に、副反応が生じていることが 考えられる。この副反応の一つとして、蒸気と一酸ィ匕炭素との反応により水素が生じ、 この水素により窒素酸ィ匕物および酸素が還元される反応が考えられる。  [0057] Further, the concentration ratio value exceeding 1.0 of 2.0 is considered to be due to the following reason, which is an experimentally obtained value. The reaction occurring in the catalyst has not been completely elucidated, and it is considered that a side reaction occurs in addition to the main reaction of the first reaction and the second reaction. As one of the side reactions, hydrogen is generated by the reaction between steam and carbon monoxide, and nitrogen oxide and oxygen are reduced by this hydrogen.
[0058] つぎに、この発明の実施の形態の構成要素についてさらに説明する。前記パーナ は、好ましくは、ガス燃料を予混合燃焼させる全一次空気式の予混合パーナとする。 前記触媒にて、前記第一反応および前記第二反応を効果的に生じさせるには、酸 素,窒素酸ィ匕物および一酸ィ匕炭素に関する前記(1)式で示すような濃度比が重要で ある。前記バーナを予混合パーナとすることにより、低空気比領域で前記所定濃度 比を比較的容易に得ることができる。し力しながら、前記触媒一次側のガス中におけ る酸素,窒素酸化物および一酸化炭素が均一に混合され、それぞれの濃度を前記 所定濃度比とする制御が可能であれば、予混合パーナ以外のパーナとすることがで きる。 Next, the components of the embodiment of the present invention will be further described. The panner is preferably an all-primary air premixed panner that premixes and burns gas fuel. In order to effectively cause the first reaction and the second reaction to occur in the catalyst, the concentration ratio as shown in the above formula (1) for oxygen, nitrogen oxides, and carbon monoxide is reduced. is important. By using the premixing burner as the burner, the predetermined concentration ratio can be obtained relatively easily in a low air ratio region. However, if the oxygen, nitrogen oxides, and carbon monoxide in the gas on the primary side of the catalyst are uniformly mixed and the respective concentrations can be controlled to the predetermined concentration ratio, a premixing panner is used. Can be other than PANA wear.
[0059] また、前記式(1)を満たすという条件下で前記触媒の一次側の酸素濃度 Oを 0%  [0059] Further, the oxygen concentration O on the primary side of the catalyst is 0% under the condition of satisfying the formula (1).
2 2
< 0≤1. 00%とすると、空気比はほぼ 1となり、排出濃度が零に近い低 NOxと低 CIf <0 ≤1.00%, the air ratio is almost 1 and the exhaust concentration is close to zero, low NOx and low C
2 2
oに加えて省エネルギーが実現され、低公害で、省エネルギーの燃焼装置を提供す ることがでさる。  In addition to o, energy saving is realized, and it is possible to provide a low-pollution, energy-saving combustion device.
[0060] また、前記吸熱体は、燃焼装置がボイラの場合は、水管とし、再生器の場合は、吸 収液濃縮管とする。そして、前記吸熱体は、前記触媒へ流入するガス温度を前記触 媒の活性化温度近くに制御する機能をも有する。すなわち、ガス温度を前記第一反 応および前記第二反応を効果的に生じさせ、かつ温度による劣化を抑制し、耐久性 を考慮した温度に制御する。  [0060] Further, the heat absorber is a water pipe when the combustion apparatus is a boiler, and an absorbing liquid concentrating pipe when it is a regenerator. The endothermic body also has a function of controlling the gas temperature flowing into the catalyst close to the activation temperature of the catalyst. That is, the gas temperature is controlled to a temperature that effectively causes the first reaction and the second reaction, suppresses deterioration due to temperature, and considers durability.
[0061] 前記触媒は、前記ガス中に HCが含まれな 、状態で前記窒素酸化物を還元する機 能を有する触媒で、通気性を有する基材に触媒活性物質を担持した構成とする。前 記基材としては、ステンレスなどの金属,セラミックが用いられ、排ガスとの接触面積を 広くするような表面処理が施される。触媒活性物質としては、一般的に白金が用いら れるが、実施に応じて、白金に代表される貴金属 (Ag, Au, Rh, Ru, Pt, Pd)また は金属酸ィ匕物を用いることができる。  [0061] The catalyst is a catalyst having a function of reducing the nitrogen oxides in a state where HC is not contained in the gas, and has a structure in which a catalytically active substance is supported on a base material having air permeability. As the base material, metals such as stainless steel and ceramics are used, and a surface treatment is applied to widen the contact area with the exhaust gas. Platinum is generally used as the catalytically active material, but depending on the implementation, noble metals represented by platinum (Ag, Au, Rh, Ru, Pt, Pd) or metal oxides should be used. Can do.
[0062] 前記空気比調整手段は、流量調整手段と、この流量調整手段を駆動するモータと 、このモータを制御する制御手段とを含む。前記流量調整手段は、前記パーナの燃 焼空気量および燃料量 、ずれか一方,または両方を変えることで両者の比率を変え 、前記パーナの空気比を調整するための手段である。前記燃焼空気量を調整するも のの場合、好ましくは、ダンバ(弁の意味を含む)とする。このダンバの構造としては、 回転軸を中心に回転する弁体により流路の開度を変える回転タイプのもの、流路の 断面開口に対してスライドすることにより流路の開度を変えるスライドタイプのものとす ることがでさる。  [0062] The air ratio adjusting means includes a flow rate adjusting means, a motor for driving the flow rate adjusting means, and a control means for controlling the motor. The flow rate adjusting means is a means for adjusting the air ratio of the burner by changing one or both of the burner air amount and fuel amount of the burner to change the ratio between them. In the case of adjusting the amount of combustion air, a damper (including the meaning of a valve) is preferably used. The structure of this damper includes a rotary type that changes the opening degree of the flow path by a valve body that rotates around a rotating shaft, and a slide type that changes the opening degree of the flow path by sliding with respect to the cross-sectional opening of the flow path. It can be done.
[0063] この流量調整手段を燃焼空気量を変えるものとする場合には、好ましくは、送風機 と燃料供給手段との間の空気流路に設けるが、前記送風機の吸い込み口など前記 送風機の吸い込み口側に設けることができる。  [0063] When this flow rate adjusting means changes the amount of combustion air, it is preferably provided in the air flow path between the blower and the fuel supply means, but the suction port of the blower such as the suction port of the blower. Can be provided on the side.
[0064] 前記モータは、好ましくは、前記流量調整手段を駆動する手段であり、前記流量調 整手段の開度量を駆動量に応じて制御でき、かつ単位時間当たりの駆動量を調整 できるモータとする。このモータは、この発明の空気比を安定的に制御する「機械的 制御手段」の一部を構成する。この「開度量を駆動量に応じて制御できる。」とは、駆 動量が決まれば、前記流量調整弁の開度を特定の位置に停止制御できることを意味 する。また、「単位時間当たりの駆動量を調整できる。」とは、位置制御の応答性を調 整できることを意味する。 [0064] The motor is preferably means for driving the flow rate adjusting means, and the flow rate adjusting means. A motor that can control the amount of opening of the adjusting means according to the drive amount and that can adjust the drive amount per unit time. This motor constitutes a part of “mechanical control means” for stably controlling the air ratio of the present invention. The phrase “the amount of opening can be controlled according to the amount of driving” means that the opening of the flow rate adjusting valve can be stopped at a specific position if the amount of driving is determined. Further, “the drive amount per unit time can be adjusted” means that the responsiveness of the position control can be adjusted.
[0065] このモータは、好ましくは、ステッピングモータ (ステップモータと称することができる 。)とする力 ギヤモータ(ギヤドモータと称することができる。)やサーボモータなどと することができる。前記ステッピングモータとした場合は、前記駆動量が印可される駆 動パルスであり、前記流量調整手段の開度位置を基準開度位置力 駆動パルスの 数に応じた量だけ開閉移動して任意の目的とする停止位置に制御できる。また、前 記ギヤモータまたは前記サーボモータとした場合は、前記駆動量が開閉駆動時間で あり、前記流量調整手段の開度位置を基準開度位置力 開閉駆動時間に応じた量 だけ開閉移動して任意の目的とする停止位置に制御できる。  [0065] This motor is preferably a force gear motor (which can be called a geared motor), a servo motor, or the like, which is a stepping motor (which can be called a step motor). In the case of the stepping motor, it is a driving pulse to which the driving amount is applied, and the opening position of the flow rate adjusting means is opened and closed by an amount corresponding to the number of reference opening position force driving pulses, and is arbitrarily set. The target stop position can be controlled. In the case of the gear motor or the servo motor, the driving amount is the opening / closing driving time, and the opening position of the flow rate adjusting means is opened / closed by an amount corresponding to the reference opening position force opening / closing driving time. It can be controlled to any desired stop position.
[0066] 前記センサとしては、酸素過剰領域では過剰酸素濃度を表し、燃料過剰領域では 一酸ィヒ炭素等の未燃ガスを空気比 m= lで燃焼させるのに必要な不足酸素濃度を 負の値として表す酸素濃度計を好適に用いることができる。  [0066] The sensor represents an excess oxygen concentration in an oxygen excess region, and a negative oxygen concentration necessary for burning unburned gas such as carbon monoxide carbon at an air ratio m = l in a fuel excess region. An oxygen concentration meter expressed as the value of can be suitably used.
また、前記センサとしては、酸素濃度センサと一酸ィ匕炭素濃度センサとを組み合わせ 、近似的に空気比を求めることもできる。  In addition, as the sensor, an air ratio can be obtained approximately by combining an oxygen concentration sensor and a carbon monoxide concentration sensor.
[0067] 以上のようなセンサの取付位置は、好ましくは、前記触媒の二次側とするが、これに 限定されるものではなぐ前記触媒の一次側や、前記触媒の下流側に排熱回収器を 設けた場合は、この下流側とすることができる。  The mounting position of the sensor as described above is preferably the secondary side of the catalyst, but is not limited to this, and the exhaust heat recovery is performed on the primary side of the catalyst or on the downstream side of the catalyst. If a vessel is provided, this can be the downstream side.
[0068] 前記制御手段は、予め記憶した空気比制御プログラムに基づき、前記センサの検 出値を入力して、前記モータの駆動量をフィードバック制御して、前記触媒の一次側 の前記ガスにおける一酸ィヒ炭素濃度が前記酸ィヒにより前記触媒内で低減される一 酸ィ匕炭素濃度と前記還元により前記触媒内で低減される一酸化炭素濃度とを加えた 値とほぼ等しいか、それ以上となるように、または、前記式(1)を満たすように、前記 空気比を 1の設定空気比に制御する。 [0069] 前記空気比制御プログラムは、好ましくは、前記検出空気比と前記設定空気比との 差に応じて前記モータの単位時間当たり駆動量(1駆動単位当たりの時間で表現す ることができる。)を変える第一制御帯と、この第一制御帯の外側において単位時間 当たりの前記駆動量を固定の所定値とする第二制御帯とを設けて、前記モータの駆 動量を制御するように構成する。この制御は、この発明の検出空気比が前記設定空 気比を中心にした設定範囲内に収まるように制御する前記電気的制御手段を構成 する。なお、この空気比制御プログラムは、この制御方式に限定されるものではなぐ 種々の PID制御とすることができる。前記第一制御帯における制御量は、検出空気 比と設定空気比との差と設定ゲインとの積の式により制御することができる。こうした 制御により、設定空気比に速やかに制御できるととともに、オーバーシュートおよびノヽ ンチングの少ない制御を行うことができる効果を奏することができる。 [0068] Based on an air ratio control program stored in advance, the control means inputs the detection value of the sensor, feedback-controls the driving amount of the motor, and controls the primary gas in the primary side of the catalyst. The oxycarbon concentration is approximately equal to the value obtained by adding the concentration of carbon monoxide reduced in the catalyst by the acid and the concentration of carbon monoxide reduced in the catalyst by the reduction, or The air ratio is controlled to a set air ratio of 1 so as to satisfy the above or to satisfy the formula (1). [0069] Preferably, the air ratio control program can be expressed as a drive amount per unit time of the motor (time per drive unit) according to a difference between the detected air ratio and the set air ratio. )) And a second control zone outside the first control zone and a second control zone in which the driving amount per unit time is a fixed predetermined value so as to control the driving amount of the motor. Configure. This control constitutes the electrical control means for controlling so that the detected air ratio of the present invention falls within a set range centered on the set air ratio. Note that the air ratio control program is not limited to this control method, and can be various PID controls. The control amount in the first control zone can be controlled by the product of the difference between the detected air ratio and the set air ratio and the set gain. By such control, it is possible to quickly control the set air ratio and to achieve an effect of performing control with less overshoot and notching.
[0070] 前記パーナおよび前記吸熱体による濃度比調整は、前記吸熱体以外の前記バー ナカ 前記触媒までのガス通路を構成する要素およびこのガス通路に含まれる要素 によりおこなう形態を含むものである。  [0070] The concentration ratio adjustment by the burner and the endothermic body includes a form which is performed by an element constituting the gas passage to the burner and the catalyst other than the endothermic body and an element included in the gas passage.
[0071] また、前記機械的制御手段は、燃焼空気の給気通路を主通路とこれと並列の補助 通路とから構成し、前記主通路に設けた弁体の作動で空気流量を粗調整し、前記補 助通路に設けた弁体の作動で空気流量を微調整するように構成することができる。ま た、機械的制御手段は、燃料供給通路を主通路とこれと並列の補助通路とから構成 し、前記主通路に設けた弁体の作動で空気流量を粗調整し、前記補助通路に設け た弁体の作動で空気流量を微調整するように構成することができる。  [0071] Further, the mechanical control means comprises a combustion air supply passage comprising a main passage and an auxiliary passage in parallel therewith, and the air flow rate is roughly adjusted by the operation of a valve body provided in the main passage. The air flow rate can be finely adjusted by the operation of the valve provided in the auxiliary passage. Further, the mechanical control means comprises a fuel supply passage comprising a main passage and an auxiliary passage in parallel therewith, and the air flow rate is roughly adjusted by the operation of a valve provided in the main passage, and is provided in the auxiliary passage. The air flow rate can be finely adjusted by the operation of the valve body.
実施例 1  Example 1
[0072] ついで、この発明の燃焼装置を蒸気ボイラに適用した実施例を図面に従い説明す る。図 1は、本実施例 1の蒸気ボイラの縦断面の説明図であり、図 2は、図 1の II II線 に沿う断面図であり、図 3は、図 2の触媒を排ガスの流れ方向から見た要部構成を示 す図であり、図 4は、本実施例 1の空気比 NOx'CO特性を説明する図であり、図 5 は、同実施例 1のダンバ位置調整装置の使用状態の一部断面の説明図であり、図 6 は、ダンバ位置調整装置の使用状態の一部断面の説明図であり、図 7は、本実施例 1のセンサの出力特性を説明する図であり、図 8は、本実施例 1のモータ制御特性を 説明する図であり、図 9は、本実施例 1の NOxおよび CO低減特性を説明する図であ る。 [0072] Next, an embodiment in which the combustion apparatus of the present invention is applied to a steam boiler will be described with reference to the drawings. FIG. 1 is an explanatory view of a longitudinal section of the steam boiler of the first embodiment, FIG. 2 is a sectional view taken along line II-II in FIG. 1, and FIG. 3 is a flow direction of exhaust gas through the catalyst of FIG. Fig. 4 is a diagram illustrating the air ratio NOx'CO characteristic of the first embodiment, and Fig. 5 is a diagram illustrating the use of the damper position adjusting device of the first embodiment. FIG. 6 is an explanatory diagram of a partial cross section of the damper position adjusting device in use, and FIG. 7 is a diagram illustrating the output characteristics of the sensor of the first embodiment. Figure 8 shows the motor control characteristics of Example 1. FIG. 9 is a diagram illustrating the NOx and CO reduction characteristics of the first embodiment.
[0073] まず、本実施例の蒸気ボイラについて説明する。この蒸気ボイラは、パーナ 1と、こ のパーナ 1から生成されるガスの吸熱を行う吸熱手段としての伝熱管(水管)群 2を含 む缶体 3と、前記伝熱管群 2通過後の酸素,窒素酸化物および一酸化炭素をそれぞ れ所定濃度比で含むガスが接触して通過し、一酸化炭素を酸化させるとともに窒素 酸化物を還元させる触媒 4と、前記パーナ 1へガス燃料を供給する燃料供給手段 5と 、前記パーナ 1へ燃焼空気を供給するとともに燃焼空気および燃料を予混合する燃 焼空気供給手段 6と、前記触媒 4の下流において酸素濃度を検出するセンサ 7と、こ のセンサ 7などの信号を入力して前記燃料供給手段 5および前記燃焼空気供給手段 6などを制御するボイラ制御器としての制御器 8とを主要部として備えている。  [0073] First, the steam boiler of this example will be described. This steam boiler is composed of a can 3 including a heat exchanger tube (water tube) group 2 as a heat absorption means for absorbing heat generated by the gas generator 1 and the gas generated from the heat generator tube 1, and the oxygen after passing through the heat transfer tube group 2. , A gas containing nitrogen oxide and carbon monoxide at a predetermined concentration ratio passes through them, and the gas fuel is supplied to the catalyst 4 that oxidizes the carbon monoxide and reduces the nitrogen oxide, and to the above-mentioned Parner 1. A fuel supply means 5 for supplying the combustion air to the burner 1, and a combustion air supply means 6 for premixing the combustion air and fuel, a sensor 7 for detecting the oxygen concentration downstream of the catalyst 4, and A controller 8 as a boiler controller that inputs a signal from the sensor 7 or the like and controls the fuel supply means 5, the combustion air supply means 6 and the like is provided as a main part.
[0074] 前記パーナ 1は、平面状の燃焼面 (予混合気の噴出面)を有する完全予混合式バ ーナである。このパーナ 1は、特許文献 1に記載のパーナと同様の構成である。  [0074] The burner 1 is a complete premix burner having a flat combustion surface (a premixed gas ejection surface). This panner 1 has the same configuration as the panner described in Patent Document 1.
[0075] 前記缶体 3は、上部管寄せ 9および下部管寄せ 10を備え、この両管寄せ間に前記 水管群 2を構成する複数の内側水管 11, 11,…を配置している。そして、図 2に示す ように、前記缶体 3の長手方向の両側部に外側水管 12, 12,…を連結部材 13, 13 ,…で連結して構成した一対の水管壁 14, 14を設け、この両水管壁 14, 14と前記 上部管寄せ 9および前記下管寄せ 10との間に前記パーナ 1からのガスがほぼ直線 的に流通する第一ガス通路 15を形成している。前記第一ガス通路 15の一端には前 記パーナ 1が設けられ、他端の排ガス出口 16には排ガスが流通する第二ガス通路( 煙道) 17が接続されている。この実施例 1においては、前記パーナ 1および前記缶体 3は、公知のものを用いている。  The can body 3 includes an upper header 9 and a lower header 10, and a plurality of inner water tubes 11, 11,... Constituting the water tube group 2 are arranged between the headers. Then, as shown in FIG. 2, a pair of water pipe walls 14, 14 formed by connecting outer water pipes 12, 12,... With connecting members 13, 13,. A first gas passage 15 is formed between the water pipe walls 14 and 14 and the upper header 9 and the lower header 10 so that the gas from the Parner 1 flows almost linearly. One end of the first gas passage 15 is provided with the above-described Parner 1, and a second gas passage (smoke) 17 through which exhaust gas flows is connected to the exhaust gas outlet 16 at the other end. In the first embodiment, the parner 1 and the can 3 are known ones.
[0076] 前記第二ガス通路 17は水平部 18と垂直部 19とを含み、前記水平部 18には、前記 触媒 4が装着されている。前記垂直部 19には、前記触媒 4の下流側に位置するよう に排熱回収器としての給水予熱器 20が装着され、前記触媒 4および前記給水予熱 器 20の間に前記センサ 7が配置されている。  The second gas passage 17 includes a horizontal part 18 and a vertical part 19, and the catalyst 4 is attached to the horizontal part 18. A feed water preheater 20 as an exhaust heat recovery device is attached to the vertical portion 19 so as to be located downstream of the catalyst 4, and the sensor 7 is disposed between the catalyst 4 and the feed water preheater 20. ing.
[0077] 前記パーナ 1,前水管群 2を含む前記パーナ 1から前記触媒 4に至る構成要素は、 前記触媒 4の一次側のガスにおける前記所定濃度比の調整を行うものである。すな わち、後述する空気比調整手段 28により設定空気比に調整したとき、図 4に示す空 気比一 ΝΟχ· CO特性が得られるように構成されて 、る。この空気比一 NOx · CO特 性は、前記設定空気比に調整したとき、前記触媒 4の二次側の窒素酸化物濃度を実 質的に零とする前記触媒 4の一次側のガスにおける前記所定濃度比が得られる。こ の空気比一 NOx 'CO特性は、これまで研究されてこなカゝつた低空気比領域の新規 な特'性である。 [0077] The components from the Parner 1 including the Parner 1 and the pre-water pipe group 2 to the catalyst 4 adjust the predetermined concentration ratio in the gas on the primary side of the catalyst 4. sand That is, the air ratio is adjusted to the set air ratio by an air ratio adjusting means 28, which will be described later, so that the air ratio 1ΝΟχ · CO characteristic shown in FIG. 4 can be obtained. This air ratio one NOx · CO characteristic is the above-mentioned in the primary side gas of the catalyst 4 in which the nitrogen oxide concentration on the secondary side of the catalyst 4 is substantially zero when adjusted to the set air ratio. A predetermined concentration ratio is obtained. This air ratio 1 NOx 'CO characteristic is a novel characteristic of the low air ratio region that has been studied so far.
[0078] 前記触媒 4は、前記水管群 2を通過後の HCを含まない前記ガスに含まれる一酸ィ匕 炭素を酸化する (第一反応)とともに窒素酸化物を還元する (第二反応)機能を有し、 本実施例 1では、触媒活性物質を白金とした触媒を用いている。前記「発明を実施す るための最良の実施の形態」の欄で説明したように、実験結果に基づいて理論的に 考察すると、前記式 (1)の濃度比式を満たす前記ガスと前記触媒 4の触媒活性物質 との接触により、主に一酸ィ匕炭素を酸化させる第一反応と窒素酸ィ匕物を一酸ィ匕炭素 により還元させる第二反応とが生じると考えられる。前記第一反応は、酸素濃度により 反応が進行するか、しないかが決定され、この触媒 4においては、前記第一反応が 前記第二反応に対して優位であると考えられる。  [0078] The catalyst 4 oxidizes carbon monoxide and carbon contained in the gas not containing HC after passing through the water tube group 2 (first reaction) and reduces nitrogen oxides (second reaction). In Example 1, a catalyst having a catalytically active material as platinum is used. As described in the section of “Best Mode for Carrying Out the Invention”, the gas and the catalyst satisfying the concentration ratio formula of the formula (1) are theoretically considered based on the experimental results. It is considered that the contact with the catalytically active substance 4 mainly causes a first reaction that oxidizes carbon monoxide and a second reaction that reduces nitrogen oxides with monoxide carbon. Whether or not the reaction proceeds in the first reaction is determined depending on the oxygen concentration. In the catalyst 4, the first reaction is considered to be superior to the second reaction.
[0079] 前記触媒 4をより具体的に説明すると、この触媒は、図 3に示すような構造のもので 、たとえば,つぎのようにして形成される。前記基材としての共にステンレス製の平板 21および波板 22のそれぞれの表面に多数の微小凹凸を形成し、その表面に触媒 活性材料(図示省略)を担持する。ついで、所定幅の前記平板 21および波板 22を重 ね合わせたうえで、螺旋状に卷回してロール状に形成する。このロール状のものを側 板 23にて包囲し固定して形成している。前記触媒活性材料としては、白金を用いて いる。なお、図 3においては、前記平板 21および前記波板 22の一部のみを示してい る。  [0079] The catalyst 4 will be described more specifically. This catalyst has a structure as shown in FIG. 3, and is formed as follows, for example. A large number of minute irregularities are formed on the surfaces of the flat plate 21 and the corrugated plate 22 made of stainless steel as the base material, and a catalytically active material (not shown) is supported on the surfaces. Next, the flat plate 21 and the corrugated plate 22 having a predetermined width are overlapped with each other and then wound into a spiral shape to form a roll. This roll-shaped product is surrounded and fixed by the side plate 23. Platinum is used as the catalytically active material. In FIG. 3, only a part of the flat plate 21 and the corrugated plate 22 is shown.
[0080] この触媒 4は、低温域で酸化活性を有し、前記第二ガス通路 17の途中の前記水平 部 18であって、排ガス温度が約 100°C〜350°C程度の位置に配置されている。そし て、この触媒 4は、性能が劣化した場合に交換可能なように、前記第二ガス通路 17に 対して着脱自在に装着されて!ヽる。  [0080] The catalyst 4 has oxidation activity in a low temperature region, and is disposed in the horizontal portion 18 in the middle of the second gas passage 17, at an exhaust gas temperature of about 100 ° C to 350 ° C. Has been. The catalyst 4 is detachably attached to the second gas passage 17 so that it can be replaced when the performance deteriorates! Speak.
[0081] 前記燃料供給手段 5は、ガス燃料供給管 24と、このガス燃料供給管 24に設けた燃 料流量を調整する流量調整弁 25とを含んで構成されて 1、る。前記流量調整弁 25は 、燃料供給量を高燃焼用流量と低燃焼用流量とに制御する機能を有する。 [0081] The fuel supply means 5 includes a gas fuel supply pipe 24 and a fuel provided in the gas fuel supply pipe 24. It is configured to include a flow rate adjusting valve 25 for adjusting the charge flow rate. The flow rate adjusting valve 25 has a function of controlling the fuel supply amount to a high combustion flow rate and a low combustion flow rate.
[0082] 前記燃焼空気供給手段 6は、送風機 26と、この送風機 26から前記パーナ 1へ燃焼 空気を供給する給気通路 27と、この給気通路 27を流れる燃焼空気量を調整すること で前記パーナ 1の空気比を調整する空気比調整手段 28を含んで構成されている。 前記給気通路 27内へは、前記ガス燃料供給管 24が燃料ガスを噴出するように接続 されている。 The combustion air supply means 6 adjusts the amount of combustion air that flows through the air blower 26, the air supply passage 27 that supplies the combustion air from the air blower 26 to the burner 1, and the air supply passage 27. The air ratio adjusting means 28 for adjusting the air ratio of the PANA 1 is included. The gas fuel supply pipe 24 is connected to the air supply passage 27 so as to eject fuel gas.
[0083] 前記空気比調整手段 28は、前記給気通路 27の開度 (流路断面積)を調整する流 量調整手段としてのダンバ 29と、このダンバ 29の開度位置を調整するためのダンバ 位置調整装置 30と、このダンバ位置調整装置 30の作動を制御する前記制御器 8と を含んで構成されている。  [0083] The air ratio adjusting means 28 is a damper 29 as a flow rate adjusting means for adjusting the opening degree (flow passage cross-sectional area) of the air supply passage 27, and the opening position of the damper 29 is adjusted. The damper position adjusting device 30 and the controller 8 for controlling the operation of the damper position adjusting device 30 are configured.
[0084] 前記ダンバ位置調整装置 30は、図 5に示すように、前記ダンバ 29の回転軸 31に 着脱自在に連結される駆動軸 32を備え、この駆動軸 32は、減速機 33を介してモー タ 34にて回転可能である。このモータ 34としては、回転停止位置を任意に調整可能 なモータが使用される。本実施例ではステッピングモータ (パルスモータ)が使用され る。  As shown in FIG. 5, the damper position adjusting device 30 includes a drive shaft 32 that is detachably connected to the rotary shaft 31 of the damper 29. The drive shaft 32 is connected via a speed reducer 33. It can be rotated by motor 34. As the motor 34, a motor capable of arbitrarily adjusting the rotation stop position is used. In this embodiment, a stepping motor (pulse motor) is used.
[0085] 前記駆動軸 32は、前記ダンバ 29の回転軸 31と、カップリング 35を介して連結され ることで、略同一軸線上で一体回転可能とされる。前記カップリング 35は、段付き円 柱形状とされ、その中央部には軸方向に貫通して小径穴 36および大径穴 37が形成 されている。その小径穴 36には前記駆動軸 32が挿入され、この駆動軸 32は取付ネ ジ 38にて前記カップリング 35と一体ィ匕される。一方、前記大径穴 37には前記ダンバ 29の回転軸 31が挿入可能とされ、この回転軸 31はキー 39にて前記カップリング 35 と一体回転可能とされる。そのために、前記回転軸 31および前記カップリング 35の 前記大径穴 37には、それぞれキー溝 40, 41が形成されている。  The drive shaft 32 is connected to the rotary shaft 31 of the damper 29 via a coupling 35 so that the drive shaft 32 can rotate integrally on substantially the same axis. The coupling 35 has a stepped columnar shape, and a small diameter hole 36 and a large diameter hole 37 are formed in the central portion thereof so as to penetrate in the axial direction. The drive shaft 32 is inserted into the small diameter hole 36, and the drive shaft 32 is integrated with the coupling 35 with a mounting screw 38. On the other hand, a rotary shaft 31 of the damper 29 can be inserted into the large-diameter hole 37, and the rotary shaft 31 can rotate integrally with the coupling 35 by a key 39. For this purpose, key grooves 40 and 41 are formed in the large-diameter hole 37 of the rotary shaft 31 and the coupling 35, respectively.
[0086] このようなカップリング 35は、一端部に前記駆動軸 32が挿入された状態で、他端部 が軸受 42を介して前記ダンバ位置調整装置 30の外ケース 43に回転可能に保持さ れる。この外ケース 43には、一端部に前記減速機 33および前記モータ 34が保持さ れ、他端部に前記カップリング 35のキー溝 41付きの前記大径穴 37を露出した状態 で、前記カップリング 35や回転異常検出手段 44を内部に密閉する構造である。 Such a coupling 35 is rotatably held by the outer case 43 of the damper position adjusting device 30 through the bearing 42 at the other end with the drive shaft 32 inserted at one end. It is. In the outer case 43, the speed reducer 33 and the motor 34 are held at one end, and the large diameter hole 37 with the keyway 41 of the coupling 35 is exposed at the other end. Thus, the coupling 35 and the rotation abnormality detection means 44 are sealed inside.
[0087] 前記回転異常検出手段 44は、被検出板 45と検出器 46とを備える。前記被検出板 45は、前記カップリング 35の軸方向中央部の段付き部に、半径方向外側へ延出し て固定される。この被検出板 45は、前記カップリング 35や前記駆動軸 32と同心に設 けられる。前記被検出板 45の外周部の一部には、周方向等間隔に多数のスリット 47 , 47· ··を形成したスリット形成領域 48が設けられる。本実施例では、四分の一(90度 )の円弧分だけ、前記スリット形成領域 48が設けられる。このスリット形成領域 48に形 成される前記各スリット 47は、同一の形状および大きさである。本実施例では、前記 被検出板 45の半径方向に沿った細長い矩形状の溝が、周方向に沿って等間隔に 打ち抜き形成されている。  The rotation abnormality detecting means 44 includes a detected plate 45 and a detector 46. The detected plate 45 is fixed to the stepped portion at the axially central portion of the coupling 35 so as to extend radially outward. The detection plate 45 is provided concentrically with the coupling 35 and the drive shaft 32. A slit forming region 48 in which a large number of slits 47, 47... Are formed at equal intervals in the circumferential direction is provided in a part of the outer peripheral portion of the detection plate 45. In the present embodiment, the slit forming region 48 is provided for the arc of a quarter (90 degrees). The slits 47 formed in the slit formation region 48 have the same shape and size. In this embodiment, elongated rectangular grooves along the radial direction of the plate 45 to be detected are punched and formed at equal intervals along the circumferential direction.
[0088] 前記スリット 47を検出するための前記検出器 46は、前記外ケース 43に固定される 。この検出器 46は、透過型フォトインタラブタカ なり、発光素子 49と受光素子 50と の間に前記被検出板 45の外周部が介在された状態に取り付けられる。前記検出器 46の前記発光素子 49と前記受光素子 50との間に前記被検出板 45を介在させるこ とで、前記検出器 46と対応した位置 (前記発光素子 49から前記受光素子 50への光 路と対応した位置)に前記被検出板 45の前記スリット 47が配置されるカゝ否かにより、 前記受光素子 50における前記発光素子 49からの受光の有無が切り替えられる。こ れにより、前記ダンバ 29の開度位置の検出が可能とされる。  The detector 46 for detecting the slit 47 is fixed to the outer case 43. The detector 46 is a transmissive photointerrupter, and is attached in a state where the outer peripheral portion of the detection plate 45 is interposed between the light emitting element 49 and the light receiving element 50. By interposing the detection plate 45 between the light emitting element 49 and the light receiving element 50 of the detector 46, a position corresponding to the detector 46 (from the light emitting element 49 to the light receiving element 50). Whether the light receiving element 50 receives light from the light emitting element 49 or not is switched depending on whether the slit 47 of the detection plate 45 is disposed at a position corresponding to the optical path). Thereby, the opening position of the damper 29 can be detected.
[0089] 前記ダンバ位置調整装置 30は、図 6において前記スリット形成領域 48の時計方向 の端部スリット 51が、前記検出器 46と対応した位置に配置された状態で、前記ダン パ 29が前記給気通路路 27を全閉状態とするように位置決めされて、前記ダンバ 29 の前記回転軸 31に取り付けられる。  [0089] The damper position adjusting device 30 has the damper 29 in the state in which the clockwise end slit 51 of the slit forming region 48 in Fig. 6 is disposed at a position corresponding to the detector 46. The air supply passage 27 is positioned so as to be fully closed, and is attached to the rotary shaft 31 of the damper 29.
[0090] そして、前記スリット形成領域 48は、前記被検出板 45の 90度分だけ形成して 、る ので、このスリット形成領域 48の時計方向の端部スリット 51が、前記検出器 46と対応 した位置に配置された状態では、上述したように前記ダンバ 29が前記給気通路 27を 全閉する一方、前記スリット形成領域 48の反時計方向の端部スリット 52が、前記検出 器 46と対応した位置に配置された状態では、前記ダンバ 29が前記給気通路 27を全 開すること〖こなる。 [0091] 前記ダンバ位置調整装置 30は、前記モータ 34と前記検出器 46とが前記制御器 8 と接続され、前記ダンバ 29の回転異常を監視しつつ、前記モータ 34の回転を制御 することができるように構成されている。すなわち、前記モータ 34を制御するために、 このダンバ位置調整装置 30は、前記モータ 34への駆動パルスを含む制御信号の作 成回路を有し、その作成した制御信号を前記モータ 34へ出力可能である。これによ り、前記モータ 34は、正転または逆転と、駆動量,すなわち駆動パルスの数に対応し てその回転角が任意に制御される。また、駆動ノ ルスの間隔 (送り速度)を変えること で、回転速度を制御可能に構成されている。 [0090] Since the slit forming region 48 is formed by 90 degrees of the detection plate 45, the clockwise end slit 51 of the slit forming region 48 corresponds to the detector 46. In this state, the damper 29 fully closes the air supply passage 27 as described above, while the counter slit 52 in the counterclockwise direction of the slit forming region 48 corresponds to the detector 46. In the state of being arranged in the above position, the damper 29 will open the air supply passage 27 fully. In the damper position adjusting device 30, the motor 34 and the detector 46 are connected to the controller 8, and the rotation of the motor 34 is controlled while monitoring the rotation abnormality of the damper 29. It is configured to be able to. That is, in order to control the motor 34, the damper position adjusting device 30 has a generation circuit of a control signal including a drive pulse to the motor 34, and the generated control signal can be output to the motor 34. It is. Thereby, the rotation angle of the motor 34 is arbitrarily controlled in accordance with the forward rotation or reverse rotation and the drive amount, that is, the number of drive pulses. In addition, the rotation speed can be controlled by changing the interval (feed speed) of the drive noise.
[0092] 実際に前記ダンバ 29を開閉制御するに際し、前記制御器 8は、まず前記ダンバ 29 の全閉位置を原点とするために原点検出動作を行う。まず図 5において、反時計方 向へ前記被検出板 45を回転させる。いま、この被検出板 45の前記スリット形成領域 48内に前記検出器 46が配置されて 、るとすれば、前記被検出板 45の回転に伴 ヽ 前記検出器 46は定期的に前記スリツト 47を検出するので、その検出パルスが検出信 号として前記制御器 8へ入力される。そして、前記検出器 46が前記スリット形成領域 48外に配置されるまで前記被検出板 45が回転されると、ノ レスが検出されなくなる。 所定時間パルスが検出されないと、前記制御器 8は、前記検出器 46が前記スリット形 成領域 48外にあると認識し、回転方向を逆方向へ切り替える。すなわち、本実施例 では、前記被検出板 45を時計方向へ逆転させ、最初にパルス(時計方向の端部スリ ット 51)が検出された位置を原点とする。この時計方向への回転による原点確認は、 回転方向切替え前の反時計方向の回転よりも低速でなされる。  When actually opening and closing the damper 29, the controller 8 first performs an origin detection operation in order to set the fully closed position of the damper 29 as the origin. First, in FIG. 5, the detected plate 45 is rotated counterclockwise. Now, assuming that the detector 46 is disposed in the slit forming region 48 of the plate 45 to be detected, the detector 46 is periodically inserted into the slit 47 as the plate 45 is rotated. Therefore, the detected pulse is input to the controller 8 as a detection signal. Then, when the detection plate 45 is rotated until the detector 46 is disposed outside the slit forming region 48, no nose is detected. If the pulse is not detected for a predetermined time, the controller 8 recognizes that the detector 46 is outside the slit forming region 48 and switches the rotation direction to the reverse direction. That is, in the present embodiment, the detected plate 45 is rotated in the clockwise direction, and the position where the pulse (the end slit 51 in the clockwise direction) is first detected is set as the origin. The origin check by this clockwise rotation is performed at a lower speed than the counterclockwise rotation before switching the rotation direction.
[0093] このようにして検出された原点は、前記ダンバ 29の全閉位置と対応しているので、 この状態を基準として、前記制御器 8は、前記モータ 34へ駆動信号を出力し、前記 ダンバ 29を開閉制御することができる。前記制御器 8は、前記ダンバ 29の開閉のた めに前記モータ 34を駆動すれば、それに伴い前記検出器 46から前記スリット 47の 検出信号がパルスとして取得される。従って、前記制御器 8は、前記検出器 46からの 検出信号を前記モータ 34への制御信号と比較して、前記ダンバ 29の回転異常を監 視することができる。具体的には、前記モータ 34への駆動パルス力もなる制御信号と 、前記検出器 46による前記スリット 47の検出パルス力もなる検出信号とを比較し、回 転異常の有無を監視する。 [0093] Since the origin detected in this way corresponds to the fully closed position of the damper 29, the controller 8 outputs a drive signal to the motor 34 based on this state, The damper 29 can be controlled to open and close. When the controller 8 drives the motor 34 to open and close the damper 29, the detection signal of the slit 47 is acquired as a pulse from the detector 46 accordingly. Therefore, the controller 8 can monitor the rotation abnormality of the damper 29 by comparing the detection signal from the detector 46 with the control signal to the motor 34. Specifically, a control signal that also has a driving pulse force to the motor 34 is compared with a detection signal that also has a detection pulse force of the slit 47 by the detector 46, and Monitor for abnormal rotation.
[0094] たとえば、前記モータ 34へ駆動ノ ルスを送ったにもかかわらず、前記検出器 46か ら検出パルスが検出されない場合に、前記制御器 8は、回転異常と判定する。この際 、前記検出器 46からの検出パルスは、前記モータ 34への駆動パルスの周波数と異 なるのが通常であるから、この相違を考慮して制御する。たとえば、駆動信号の所定 パルス分の時間が経過しても、なお検出信号のパルスが一つも検出されない場合に 、はじめて回転異常と判断するよう制御する。前記制御器 8は、回転異常と判定した 場合、異常の報知や燃焼を停止させるなどの処置を行う。また逆に、前記モータ 34 へ駆動パルスを送っていないのに、前記検出器 46からパルスが検出された場合にも 、回転異常を検知することができる。  [0094] For example, when a detection pulse is not detected from the detector 46 even though a driving noise is sent to the motor 34, the controller 8 determines that the rotation is abnormal. At this time, since the detection pulse from the detector 46 is usually different from the frequency of the drive pulse to the motor 34, it is controlled in consideration of this difference. For example, if no pulse of the detection signal is detected even after the time corresponding to a predetermined pulse of the drive signal has elapsed, control is performed so that a rotation abnormality is determined for the first time. When it is determined that the rotation is abnormal, the controller 8 performs measures such as notifying abnormality and stopping combustion. Conversely, when a pulse is detected from the detector 46 even though no driving pulse is sent to the motor 34, a rotation abnormality can be detected.
[0095] 前記制御器 8は、予め記憶した空気比制御プログラムにより、前記センサ 7の検出 信号に基づき、前記パーナ 1の空気比が設定空気比となるように (第一制御条件)、 かっこの設定空気比において前記触媒 4の一次側の前記ガスの濃度比が次式(1) を満たすように (第二制御条件)、前記モータ 34を制御するように構成されて 、る。  [0095] The controller 8 uses a prestored air ratio control program so that the air ratio of the banner 1 becomes the set air ratio based on the detection signal of the sensor 7 (first control condition). The motor 34 is controlled such that the concentration ratio of the gas on the primary side of the catalyst 4 satisfies the following formula (1) (second control condition) at the set air ratio.
( [NOx] + 2[0 ]) /[CO]≤2. 0  ([NOx] + 2 [0]) /[CO]≤2.0
2  2
(式(1)において、 [CO]、 [NOx]および [O ]はそれぞれ一酸化炭素濃度、窒素酸  (In Formula (1), [CO], [NOx] and [O] are the carbon monoxide concentration and nitrogen acid, respectively.
2  2
化物濃度および酸素濃度を示し、 [o ] >0の  Indicates the concentration of oxide and oxygen, and [o]> 0
2 条件を満たす。 )  2 Satisfy the condition. )
この実施例においては、直接制御しているのは、前記第一制御条件であり、この第 一制御条件を満たすことにより、自動的に前記第二制御条件が満たされるように構成 している。  In this embodiment, the first control condition is directly controlled, and the second control condition is automatically satisfied by satisfying the first control condition.
[0096] 前記第一条件は、これが満たされな 、と、 HCなどの未燃分が生成される。そうなる と、エネルギーのロスとなるとともに、前記触媒 4における NOx低減が効果的に行わ れないことになる。  [0096] When the first condition is not satisfied, an unburned component such as HC is generated. In this case, energy is lost and NOx reduction in the catalyst 4 is not effectively performed.
[0097] 前記第二条件は、排出窒素酸ィ匕物濃度をほぼ零とするために必要な条件である。  [0097] The second condition is a condition necessary to make the exhausted nitrogen oxide concentration substantially zero.
前記触媒 4の二次側の窒素酸化物濃度,一酸化炭素濃度を零とするには、前記第 一反応と前記第二反応とから、 ( [NOx] + 2[0  In order to make the nitrogen oxide concentration and the carbon monoxide concentration on the secondary side of the catalyst 4 zero, from the first reaction and the second reaction, ([NOx] + 2 [0
2 ])Z[CO]なる濃度比をほぼ 1とす ればよいことを実験および理論的考察により見出した。しかしながら、前記濃度比が 1 以上の 1〜2. 0でも排出窒素酸ィ匕物濃度をほぼ零とすることができることが確認され ている。 2]) It was found from experiments and theoretical considerations that the concentration ratio of Z [CO] should be approximately 1. However, it has been confirmed that the concentration of discharged nitrogen oxides can be made substantially zero even if the concentration ratio is 1 to 2.0 of 1 or more. ing.
[0098] 前記センサ 7として、排出酸素濃度の分解能が 50ppmで応答時間 2sec以下の応答 答性の良好なジルコユア式空燃比センサを用いている。このセンサ 7の出力特性は、 図 7に示すように、出力が正側で酸素濃度に関係する出力となり、負側で一酸化炭 素濃度等に関係する出力となる。すなわち、測定される酸素濃度 (酸素過剰領域)お よび一酸化炭素濃度等 (燃料過剰領域)力 空気比 mを算出し、この空気比 mに対 応した電流または電圧の出力を得ている。  [0098] As the sensor 7, a zirconia air-fuel ratio sensor with a good response and a response time of 2 sec or less with a resolution of exhaust oxygen concentration of 50 ppm is used. As shown in FIG. 7, the output characteristic of the sensor 7 is an output related to the oxygen concentration on the positive side and an output related to the carbon monoxide concentration on the negative side. That is, the measured oxygen concentration (excess oxygen region), carbon monoxide concentration, etc. (fuel excess region) force air ratio m is calculated, and current or voltage output corresponding to this air ratio m is obtained.
[0099] そして、前記空気比制御プログラムは、前記センサ 7の出力信号に基づき、前記バ ーナの空気比が設定空気比になるように制御するものである力 具体的には、つぎ のように構成されている。すなわち、図 7に示すように、前記センサ 7からの出力値と 設定空気比に対応する設定値との差に応じて前記モータ 34の送り速度 V (単位時間 当たりの駆動量)を変える第一制御帯と、この第一制御帯の外側において送り速度 V をそれぞれ第一設定値,第二設定値とする第二制御帯 A, Bとを設けて、前記モータ 34の駆動量を制御する制御手順が含まれている。  [0099] The air ratio control program is a force for controlling the air ratio of the burner to be a set air ratio based on the output signal of the sensor 7. Specifically, the air ratio control program is as follows. It is configured. That is, as shown in FIG. 7, the first feed rate V (drive amount per unit time) of the motor 34 is changed according to the difference between the output value from the sensor 7 and the set value corresponding to the set air ratio. Control for controlling the drive amount of the motor 34 by providing a control zone and second control zones A and B having the feed rate V as the first set value and the second set value, respectively, outside the first control zone. Instructions are included.
[0100] 前記第一制御帯の設定範囲は、酸素濃度 N1 (たとえば lOOppm)と一酸化炭素濃 度等 N2 (たとえば 50ppm)とで設定され、空気比を実質的に 1とすべく制御される。  [0100] The setting range of the first control zone is set with an oxygen concentration N1 (for example, lOOppm) and a carbon monoxide concentration or the like N2 (for example, 50ppm), and is controlled so that the air ratio is substantially 1. .
[0101] 前記第一制御帯における送り速度 Vは、次式(2)で計算される。前記送り速度 Vは 、単位時間当たりの駆動量である。本実施例の前記モータ 34の 1ステップによる回転 角度は、 0. 075度で、 Oに換算すると約 30ppmの変動に相当する。 [0101] The feed speed V in the first control zone is calculated by the following equation (2). The feed speed V is a driving amount per unit time. The rotation angle of the motor 34 in this embodiment in one step is 0.075 degrees, which corresponds to a fluctuation of about 30 ppm when converted to O.
Figure imgf000023_0001
Figure imgf000023_0001
(但し、 Κはゲインであり、 ΔΧは、(前記センサ 7の前記出力値) (前記設定値)と の差である。 )  (Where Κ is a gain, and ΔΧ is a difference from (the output value of the sensor 7) (the set value).)
つぎに、以上の構成の前記蒸気ボイラの動作を説明する。まず、蒸気ボイラの概略 的動作について、前記送風機 26から供給される燃焼空気 (外気)は、前記ガス燃料 供給管 24から供給される燃料ガスと前記給気通路 27内において予混合される。この 予混合気は前記パーナ 1から前記缶体 3内の前記第一ガス通路 15へ向けて噴出さ れる。予混合気は、着火手段(図示しない)により着火され、燃焼する。この燃焼は、 低空気比にて行われる。 [0103] この燃焼に伴い生ずるガスは、上流側の水管群 2と交叉して冷却された後、下流側 の水管群 2と熱交換して吸熱されて約 100°C〜350°Cのガスとなる。このガスは、前 記触媒 4にて、処理され、窒素酸化物濃度および一酸化炭素濃度をほぼ零とされた 後、排ガスとして前記第二ガス通路 17から大気中へ排出される。 Next, the operation of the steam boiler having the above configuration will be described. First, regarding the schematic operation of the steam boiler, the combustion air (outside air) supplied from the blower 26 is premixed in the supply passage 27 with the fuel gas supplied from the gas fuel supply pipe 24. This premixed gas is ejected from the burner 1 toward the first gas passage 15 in the can 3. The premixed gas is ignited by an ignition means (not shown) and burns. This combustion takes place at a low air ratio. [0103] The gas generated by this combustion is cooled by crossing with the upstream water tube group 2 and then absorbed by heat exchange with the downstream water tube group 2 to obtain a gas of about 100 ° C to 350 ° C. It becomes. This gas is treated by the catalyst 4 and the nitrogen oxide concentration and the carbon monoxide concentration are made substantially zero, and then discharged from the second gas passage 17 to the atmosphere as exhaust gas.
[0104] つぎに、前記空気比調整手段 28による空気比制御について説明する。本実施例 のボイラは、高燃焼と低燃焼とを切り替えて運転する。そのために、前記ダンバ 29は 、高燃焼風量位置と低燃焼風量位置の!/、ずれかを選択して位置決めされる。  Next, the air ratio control by the air ratio adjusting means 28 will be described. The boiler of this embodiment is operated by switching between high combustion and low combustion. For this purpose, the damper 29 is positioned by selecting either! / Or a deviation between the high combustion air volume position and the low combustion air volume position.
[0105] このダンバ 29の位置調整は、前記制御器 8からの指令により前記ダンバ位置調整 装置 30により行う。すなわち、前記制御器 8は、高燃焼カゝ低燃焼かの選択信号と、前 記センサ 7の検出空気比に対応した出力値を入力して、前記モータ 34の駆動信号を 出力して、前記ダンバ 29の開度位置を調整させる。前記制御器 8は、高燃焼時と低 燃焼時の設定空気比に対応した設定値となる前記ダンバ 29の設定開度位置を原点 力 のパルス数でそれぞれ初期値として記憶している。  The position adjustment of the damper 29 is performed by the damper position adjusting device 30 in accordance with a command from the controller 8. That is, the controller 8 inputs a selection signal for high combustion / low combustion and an output value corresponding to the detected air ratio of the sensor 7, and outputs a drive signal for the motor 34, Adjust the opening position of damper 29. The controller 8 stores the set opening position of the damper 29, which is a set value corresponding to the set air ratio at the time of high combustion and low combustion, as an initial value in terms of the number of pulses of the origin force.
[0106] まず、高燃焼時の制御について説明する。前記制御器 8は、現在の前記ダンバ 29 の開度位置が前記設定開度位置に対して開放側(閉じる方向へ制御しなければ 、 けな 、側)か、閉鎖側(開く方向へ制御しなければ 、けな 、側)かを判定するとともに 、前記モータ 34の駆動ノ ルス数を演算する。併せて、前記出力値が図 8において、 前記第一制御帯および前記第二制御帯 A, Bの 、ずれに属するかを判定する。  First, control during high combustion will be described. The controller 8 controls the current opening position of the damper 29 relative to the set opening position (open side if not controlled in the closing direction) or closed side (opened direction). If not, it is determined whether the motor side is) and the number of driving noises of the motor 34 is calculated. In addition, in FIG. 8, it is determined whether the output value belongs to a deviation between the first control band and the second control band A, B.
[0107] 前記第二制御帯 Aに属する場合には、第一設定送り速度で、かつ演算された駆動 パルスで前記モータ 34を駆動し、早い速度で前記ダンバ 29を閉じる。前記第二制御 帯 Bに属する場合には、第二設定送り速度で、かつ演算された駆動パルスで前記モ ータ 34を駆動し、早い速度で前記ダンバ 29を開く。こうして、設定空気比に対応した 設定値力 比較的離れている場合は、早い速度で検出空気比に対応した出力値を 設定空気比に対応した設定値に近づける制御を行うので、応答性の良い空気比制 御を行うことができる。  When belonging to the second control zone A, the motor 34 is driven at the first set feed speed and the calculated drive pulse, and the damper 29 is closed at a high speed. When belonging to the second control zone B, the motor 34 is driven at the second set feed speed and the calculated drive pulse, and the damper 29 is opened at a high speed. In this way, when the set value force corresponding to the set air ratio is relatively far away, the output value corresponding to the detected air ratio is controlled to approach the set value corresponding to the set air ratio at a high speed, so the responsiveness is good. Air ratio control can be performed.
[0108] また、前記第一制御帯に属する場合は、回転方向を判定したうえで、前記式(2)に 基づいて、前記モータ 34の送り速度を演算し、演算した送り速度と演算した駆動パ ルスで前記モータ 34を駆動する。この第一制御帯における制御は、設定空気比に対 応した設定値から遠ざかるにつれて送り速度を早くする。こうした制御により、目標と する設定空気比に対応した設定値に速やかに近づけることができる。また、回転位 置制御を確実に行えるステッピングモータにより行っていることと、検出空気比に対応 した出力値が設定空気比に対応した設定値に近づくにつれて送り速度を遅くする制 御としていることとにより、空気比に対応した設定値の近傍における空気比のオーバ 一シュートおよびノヽンチングを抑制することができる。 [0108] Further, when belonging to the first control zone, after determining the rotation direction, the feed rate of the motor 34 is calculated based on the formula (2), and the calculated feed rate and the calculated drive are calculated. The motor 34 is driven with a pulse. The control in the first control zone is effective against the set air ratio. Increase the feed rate as you move away from the set value. By such control, it is possible to quickly approach the set value corresponding to the target set air ratio. In addition, it is controlled by a stepping motor that can reliably control the rotational position, and the feed rate is controlled to decrease as the output value corresponding to the detected air ratio approaches the set value corresponding to the set air ratio. Thus, overshooting and notching of the air ratio in the vicinity of the set value corresponding to the air ratio can be suppressed.
[0109] こうした空気比制御により、前記パーナ 1の空気比を 1に近い低空気比とし、かつ前 記触媒 4の一次側のガスの濃度比変化幅が少なく制御され、前記式(1)を安定的に 満たすことができる。その結果、前記触媒 4の二次側の窒素酸化物濃度をほぼ零に するとともに、一酸ィ匕炭素濃度を実用範囲の値に低減することができる。  [0109] By such air ratio control, the air ratio of the Parner 1 is controlled to be a low air ratio close to 1, and the change ratio of the concentration ratio of the gas on the primary side of the catalyst 4 is controlled to be small. It can be satisfied stably. As a result, the nitrogen oxide concentration on the secondary side of the catalyst 4 can be made substantially zero, and the carbon monoxide concentration can be reduced to a value within the practical range.
(実験例 1)  (Experiment 1)
[0110] 単位時間当たり蒸発量を 800kgの缶体 3 (出願人が製造の型式: SQ— 800と称さ れる缶体)で、燃焼量 45. 2m3N/hの予混合パーナ 1で燃焼させ、触媒活性物質とし て Ptを 2. OgZLの割合で担持した体積 10L、内径 360mmの触媒とした場合の実 験結果について説明する。前記設定空気比を 1とした場合、前記触媒 1の一次側 (前 記触媒 4通過前)の一酸化炭素濃度,窒素酸化物濃度,酸素濃度がそれぞれ 10分 間の平均値で 2295ppm, 94ppm, 1655ppmに調整され、前記触媒 1の二次側(前記 触媒 1通過後)のそれぞれの濃度が 10分間の平均値で 13ppm, 0. 3ppm, lOOppm 未満となった。ここで、前記触媒 1の二次側の酸素濃度 lOOppmは、酸素濃度の測定 限界である (株式会社堀場製作所製 PG— 250を用いて計測した。 )。 [0110] A can body 3 with an evaporation amount of 800 kg per unit time (applicant's manufacturing model: can body called SQ-800) was burned with a premixing burner 1 with a combustion amount of 45.2 m 3 N / h. The experimental results for a catalyst with a volume of 10L and an inner diameter of 360mm that support Pt at a rate of 2. OgZL as the catalytically active substance will be explained. When the set air ratio is 1, the carbon monoxide concentration, nitrogen oxide concentration, and oxygen concentration on the primary side of catalyst 1 (before passing through catalyst 4) are 2295 ppm, 94 ppm, The concentration on the secondary side of the catalyst 1 (after passing through the catalyst 1) was adjusted to 1655 ppm, and the average value for 10 minutes was less than 13 ppm, 0.3 ppm, and lOOppm. Here, the oxygen concentration lOOppm on the secondary side of the catalyst 1 is an oxygen concentration measurement limit (measured using PG-250 manufactured by Horiba, Ltd.).
(実験例 2)  (Experiment 2)
[0111] 実験例 1と同じパーナ 1および缶体 3を用い、燃焼量を実験例 1と同じとし、触媒活 性物質として Pdを 2. OgZLの割合で担持した体積 10L、内径 360mmの触媒とした 場合の一酸化炭素濃度,窒素酸化物濃度,酸素濃度の各濃度比における値を図 9 に示す。ここで、触媒通過後の酸素濃度を実験例 1と同様の酸素濃度センサを用い て測定したので、実際は lOOppm以下の値であっても lOOppmで示した。  [0111] The same Pana 1 and Can 3 as in Experiment 1 were used, the combustion amount was the same as in Experiment 1, and Pd was supported as a catalyst active material at a ratio of 2. OgZL. Figure 9 shows the values for the carbon monoxide concentration, nitrogen oxide concentration, and oxygen concentration ratio. Here, since the oxygen concentration after passing through the catalyst was measured using the same oxygen concentration sensor as in Experimental Example 1, even if the value was actually less than lOOppm, it was indicated in lOOppm.
実施例 2  Example 2
[0112] この発明の他の実施例 2を図 10および図 11に従い説明する。この実施例 2は、酸 素濃度を検出するセンサ 7を前記触媒 4の二次側でなぐ一次側に設けたものである 。このセンサ 7は酸素濃度のみを検出するセンサとしている。そして、このセンサ 7に 基づく前記モータ 34の制御特性を図 11に示す。以下、前記実施例 1と異なるところ のみを説明し、共通箇所は説明を省略する。 [0112] Another embodiment 2 of the present invention will be described with reference to Figs. This Example 2 is an acid A sensor 7 for detecting the element concentration is provided on the primary side connecting the secondary side of the catalyst 4. This sensor 7 is a sensor that detects only the oxygen concentration. FIG. 11 shows the control characteristics of the motor 34 based on the sensor 7. Hereinafter, only different points from the first embodiment will be described, and description of common parts will be omitted.
[0113] この実施例 2では、設定空気比を 1 (前記触媒 4の二次側の酸素濃度を零)とするよ うに、前記センサ 7により、前記触媒 4の一次側の酸素濃度を検出して間接的に空気 比を制御するものである。種々の実験結果に基づき、前記触媒 4の一次側の酸素濃 度 Oを 0%く O≤1. 00%の値に制御すると、前記式(1)を満たして、前記触媒 4の[0113] In Example 2, the sensor 7 detects the primary side oxygen concentration of the catalyst 4 so that the set air ratio is 1 (the secondary side oxygen concentration of the catalyst 4 is zero). It indirectly controls the air ratio. Based on various experimental results, when the oxygen concentration O on the primary side of the catalyst 4 is controlled to 0% and O ≦ 1.00%, the above equation (1) is satisfied and the catalyst 4
2 2 twenty two
二次側の酸素濃度をほぼ零にする,すなわち空気比をほぼ 1にすることが可能であ ることが分かっている。  It is known that the oxygen concentration on the secondary side can be made almost zero, that is, the air ratio can be made almost 1.
[0114] そこで、この実施例 2の空気比制御プログラムには、図 11に示すように、前記セン サ 7からの検出値 (酸素濃度信号)に基づき、この検出値と設定酸素濃度値との差に 応じて前記モータ 34の送り速度 V (単位時間当たりの駆動量)を変える第一制御帯と 、この第一制御帯の外側において送り速度 Vをそれぞれ第一設定値,第二設定値と する第二制御帯 A, Bとを設けて、前記モータ 34の駆動量を制御する制御手順が含 まれている。  Therefore, in the air ratio control program of the second embodiment, as shown in FIG. 11, based on the detected value (oxygen concentration signal) from the sensor 7, the detected value and the set oxygen concentration value are A first control zone that changes the feed rate V (drive amount per unit time) of the motor 34 according to the difference, and a feed rate V outside the first control zone is set to a first set value and a second set value, respectively. A control procedure for controlling the drive amount of the motor 34 by providing the second control zones A and B to be included is included.
[0115] 前記第一制御帯の設定範囲は、酸素濃度 N1と酸素濃度 N2とで設定される範囲 に収まるように制御される。前記第一制御帯における送り速度 Vは、前記実施例 1と 同様に、前記式 (2)で計算される。  [0115] The setting range of the first control zone is controlled to fall within the range set by the oxygen concentration N1 and the oxygen concentration N2. The feed speed V in the first control zone is calculated by the above equation (2) as in the first embodiment.
[0116] この発明は、前記実施例に限定されるものではない。たとえば、前記実施例 2にお いて、前記センサ 7を酸素濃度センサとしている力 一酸化炭素濃度センサとすること ができる。また、前記ダンバ位置調整装置 30の構造は、種々変形可能である。また、 前記モータ 34は、ステッピングモータ以外の、たとえばギアモータ(図示省略)とする ことができる。さらに、前記ダンバ位置調整装置 30を単一の制御器 (ボイラ制御用の 制御器) 8にて制御している力 この制御器 8と別に前記ダンバ位置調整装置 30用の 別の制御器(図示省略)を設け、この制御器と前センサ 7,前記制御器 8を接続して、 空気比制御を行うように構成することができる。  [0116] The present invention is not limited to the above embodiments. For example, in the second embodiment, a force carbon monoxide concentration sensor in which the sensor 7 is an oxygen concentration sensor can be used. The structure of the damper position adjusting device 30 can be variously modified. The motor 34 may be a gear motor (not shown) other than the stepping motor. Further, a force that controls the damper position adjusting device 30 with a single controller (a controller for boiler control) 8 Aside from this controller 8, another controller for the damper position adjusting device 30 (illustrated) (Omitted) and this controller can be connected to the front sensor 7 and the controller 8 to perform air ratio control.

Claims

請求の範囲 The scope of the claims
[1] パーナと、  [1] With Pana,
このパーナにて生成されるガスから吸熱を行う吸熱手段と、  An endothermic means for absorbing heat from the gas generated by the panner;
この吸熱手段を通過後の前記ガスに含まれる一酸化炭素を酸化し窒素酸化物を一 酸化炭素により還元する触媒と、  A catalyst that oxidizes carbon monoxide contained in the gas after passing through the endothermic means and reduces nitrogen oxides with carbon monoxide;
前記パーナの空気比を検出するためのセンサと、  A sensor for detecting the air ratio of the panner;
このセンサの検出信号に基づき前記パーナの空気比を設定空気比に制御する空 気比調整手段とを備え、  An air ratio adjusting means for controlling the air ratio of the panner to a set air ratio based on a detection signal of the sensor,
前記パーナおよび前記吸熱手段は、前記空気比調整手段により前記空気比を前 記設定空気比に調整したとき、前記触媒の二次側の窒素酸化物濃度を実質的に零 とする前記触媒の一次側における酸素,窒素酸化物および一酸化炭素の濃度比を 得ることができるように構成されることを特徴とする燃焼装置。  When the air ratio is adjusted to the preset air ratio by the air ratio adjusting means, the panner and the endothermic means have a primary nitrogen oxide concentration on the secondary side of the catalyst that is substantially zero. Combustion device configured to obtain a concentration ratio of oxygen, nitrogen oxide, and carbon monoxide on the side.
[2] パーナと、  [2] With Pana,
このパーナにて生成されるガスから吸熱を行う吸熱手段と、  An endothermic means for absorbing heat from the gas generated by the panner;
この吸熱手段を通過後の前記ガスに含まれる一酸化炭素を酸化し窒素酸化物を一 酸化炭素により還元する触媒と、  A catalyst that oxidizes carbon monoxide contained in the gas after passing through the endothermic means and reduces nitrogen oxides with carbon monoxide;
前記パーナの空気比を検出するためのセンサと、  A sensor for detecting the air ratio of the panner;
このセンサの検出信号に基づき前記パーナの空気比を設定空気比に制御する空 気比調整手段とを備え、  An air ratio adjusting means for controlling the air ratio of the panner to a set air ratio based on a detection signal of the sensor,
前記パーナおよび前記吸熱手段は、前記空気比調整手段により前記空気比を前 記設定空気比に調整したとき、前記触媒の二次側の窒素酸化物濃度を実質的に零 とする空気比 NOx'CO特性を有することを特徴とする燃焼装置。  When the air ratio is adjusted to the preset air ratio by the air ratio adjusting means, the panner and the endothermic means have an air ratio NOx ′ that makes the nitrogen oxide concentration on the secondary side of the catalyst substantially zero. Combustion device characterized by having CO characteristics.
[3] パーナと、 [3] With Pana,
このパーナにて生成されるガスから吸熱を行う吸熱手段と、  An endothermic means for absorbing heat from the gas generated by the panner;
この吸熱手段を通過後の前記ガスに含まれる一酸化炭素を酸化し窒素酸化物を一 酸化炭素により還元する触媒と、  A catalyst that oxidizes carbon monoxide contained in the gas after passing through the endothermic means and reduces nitrogen oxides with carbon monoxide;
前記パーナの空気比を検出するためのセンサと、  A sensor for detecting the air ratio of the panner;
このセンサの検出信号に基づき前記パーナの空気比を設定空気比に制御する空 気比調整手段とを備え、 Based on the detection signal of the sensor, the air ratio of the panner is controlled to the set air ratio. A ratio adjustment means,
前記パーナおよび前記吸熱手段は、前記空気比調整手段により前記空気比を前 記設定空気比に調整したとき、前記触媒の一次側の前記ガスにおける一酸化炭素 濃度が前記酸化により前記触媒内で低減される一酸化炭素濃度と前記還元により前 記触媒内で低減される一酸ィ匕炭素濃度とを加えた値とほぼ等し 、か、それ以上とな るように構成されることを特徴とする燃焼装置。  When the air ratio is adjusted to the preset air ratio by the air ratio adjustment means, the carbon monoxide concentration in the gas on the primary side of the catalyst is reduced in the catalyst by the oxidation. The carbon monoxide concentration is approximately equal to or greater than the value obtained by adding the carbon monoxide concentration reduced in the catalyst by the reduction. Combustion device.
[4] パーナと、  [4] With Pana,
このパーナにて生成されるガスから吸熱を行う吸熱手段と、  An endothermic means for absorbing heat from the gas generated by the panner;
この吸熱手段を通過後の前記ガスに含まれる一酸化炭素を酸化し窒素酸化物を一 酸化炭素により還元する触媒と、  A catalyst that oxidizes carbon monoxide contained in the gas after passing through the endothermic means and reduces nitrogen oxides with carbon monoxide;
前記パーナの空気比を検出するためのセンサと、  A sensor for detecting the air ratio of the panner;
このセンサの検出信号に基づき前記パーナの空気比を設定空気比に制御する空 気比調整手段とを備え、  An air ratio adjusting means for controlling the air ratio of the panner to a set air ratio based on a detection signal of the sensor,
前記パーナおよび前記吸熱手段は、前記空気比調整手段により前記空気比を前 記設定空気比に調整したとき、前記触媒への流入前の前記ガスの濃度比が次式(1) を満たすように構成されることを特徴とする燃焼装置。  When the air ratio is adjusted to the preset air ratio by the air ratio adjusting means, the panner and the heat absorbing means are configured so that the concentration ratio of the gas before flowing into the catalyst satisfies the following formula (1): Combustion device characterized by comprising.
( [NOx] + 2[0 ]) /[CO]≤2. 0  ([NOx] + 2 [0]) /[CO]≤2.0
2  2
(式(1)において、 [CO]、 [NOx]および [O ]はそれぞれ一酸化炭素濃度、窒素酸  (In Formula (1), [CO], [NOx] and [O] are the carbon monoxide concentration and nitrogen acid, respectively.
2  2
化物濃度および酸素濃度を示し、 [o ] >0の  Indicates the concentration of oxide and oxygen, and [o]> 0
2 条件を満たす。 )  2 Satisfy the condition. )
[5] 前記設定空気比を実質的に 1とすることを特徴とする請求項 1〜請求項 4に記載の 燃焼装置。  [5] The combustion apparatus according to any one of claims 1 to 4, wherein the set air ratio is substantially 1.
[6] パーナと、 [6] With Pana,
このパーナにて生成されるガスから吸熱を行う吸熱手段と、  An endothermic means for absorbing heat from the gas generated by the panner;
この吸熱手段を通過後の前記ガスに含まれる一酸化炭素を酸化し窒素酸化物を一 酸化炭素により還元する触媒と、  A catalyst that oxidizes carbon monoxide contained in the gas after passing through the endothermic means and reduces nitrogen oxides with carbon monoxide;
前記パーナの空気比を検出するためのセンサと、  A sensor for detecting the air ratio of the panner;
このセンサの検出信号に基づき前記パーナの空気比を制御する空気比調整手段 とを備え、 前記パーナおよび前記吸熱手段は、前記空気比調整手段の空気比制御により前 記触媒の二次側の窒素酸化物濃度および酸素濃度を実質的に零とする前記触媒の 一次側における酸素,窒素酸化物および一酸化炭素の濃度比を得ることができるよ うに構成されることを特徴とする燃焼装置。 Air ratio adjusting means for controlling the air ratio of the panner based on the detection signal of the sensor, The burner and the endothermic means are used to oxidize oxygen and nitrogen on the primary side of the catalyst so that the nitrogen oxide concentration and oxygen concentration on the secondary side of the catalyst are substantially zero by controlling the air ratio of the air ratio adjusting means. Combustion device configured to obtain a concentration ratio of a product and carbon monoxide.
[7] 前記空気比調整手段は、前記空気比を安定的に制御する電気的制御手段および Zまたは機械的制御手段を含むことを特徴とする請求項 1〜6のいずれか 1項に記 載の燃焼装置。 [7] The air ratio adjusting means includes an electric control means for stably controlling the air ratio, and Z or mechanical control means. Combustion equipment.
[8] 前記空気比調整手段は、前記パーナの空気比を制御する流量調整手段と、  [8] The air ratio adjusting means includes flow rate adjusting means for controlling the air ratio of the panner;
前記流量調整手段の開度を制御するモータと、  A motor for controlling the opening of the flow rate adjusting means;
前記モータを前記流量調整手段の開度変化量を駆動量に応じて制御するモータと することにより構成される前記機械的制御手段とを含むことを特徴とする請求項 7に 記載の燃焼装置。  The combustion apparatus according to claim 7, further comprising: the mechanical control unit configured to use the motor as a motor that controls an opening change amount of the flow rate adjusting unit according to a driving amount.
[9] 前記モータ力ステッピングモータであることを特徴とする請求項 8に記載の燃焼装 置。  9. The combustion apparatus according to claim 8, wherein the combustion apparatus is the motor force stepping motor.
[10] 前記空気比調整手段は、前記パーナの空気比を制御する流量調整手段と、  [10] The air ratio adjusting means includes flow rate adjusting means for controlling the air ratio of the panner;
前記流量調整手段の開度制御するモータと、  A motor for controlling the opening of the flow rate adjusting means;
前記センサによる検出空気比が前記設定空気比を含む設定範囲内に収まるように 制御する前記電気的制御手段とを含むことを特徴とする請求項 7に記載の燃焼装置  The combustion apparatus according to claim 7, further comprising: an electric control unit that controls the air ratio detected by the sensor to be within a set range including the set air ratio.
[11] 前記モータを前記流量調整手段の開度変化量を駆動量に応じて制御するモータと することにより前記機械的制御手段を構成することを特徴とする請求項 10に記載の 燃焼装置。 11. The combustion apparatus according to claim 10, wherein the mechanical control unit is configured by using the motor as a motor that controls an amount of change in opening of the flow rate adjusting unit according to a driving amount.
[12] 前記電気的制御手段は、前記検出空気比と前記設定空気比との差に応じて前記 モータの  [12] The electrical control means is configured to control the motor according to a difference between the detected air ratio and the set air ratio.
単位時間当たり駆動量を変える第一制御帯と、この第一制御帯の外側において前記 駆動量を所定値とする第二制御帯とを設けて、前記モータの駆動量を制御すること を特徴とする請求項 11に記載の燃焼装置。  A first control zone for changing the drive amount per unit time and a second control zone having the drive amount as a predetermined value outside the first control zone are provided to control the drive amount of the motor. The combustion apparatus according to claim 11.
[13] 前記パーナが予混合パーナであることを特徴とする請求項 1〜請求項 12のいずれ か 1項に記載の燃焼装置。 [13] Any one of claims 1 to 12, wherein the panner is a premixed panner. Or the combustion apparatus according to claim 1.
PCT/JP2006/313329 2006-07-04 2006-07-04 Combustion apparatus WO2008004281A1 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
PCT/JP2006/313329 WO2008004281A1 (en) 2006-07-04 2006-07-04 Combustion apparatus
EP07741580A EP2039995A1 (en) 2006-07-04 2007-04-13 Method of combustion and combustion apparatus
KR1020097002020A KR101381622B1 (en) 2006-07-04 2007-04-13 Combustion method and combustion apparatus
CN2007800123813A CN101415996B (en) 2006-07-04 2007-04-13 Boiler
US12/281,556 US8113822B2 (en) 2006-07-04 2007-04-13 Combustion method and combustion apparatus
US12/158,166 US7972581B1 (en) 2006-07-04 2007-04-13 Method of treating nitrogen oxide-containing gas
KR1020097000917A KR101373590B1 (en) 2006-07-04 2007-04-13 Boiler
CN2007800327859A CN101512224B (en) 2006-07-04 2007-04-13 Method of combustion and combustion apparatus
PCT/JP2007/058144 WO2008004370A1 (en) 2006-07-04 2007-04-13 Method of combustion and combustion apparatus
US12/282,478 US20090025655A1 (en) 2006-07-04 2007-04-13 Boiler
CN2007800121610A CN101415994B (en) 2006-07-04 2007-04-13 Method of treating gas containing nitrogen oxide
EP07741579A EP2037169A1 (en) 2006-07-04 2007-04-13 Method of treating gas containing nitrogen oxide
EP07741638A EP2037170A1 (en) 2006-07-04 2007-04-13 Boiler
PCT/JP2007/058143 WO2008004369A1 (en) 2006-07-04 2007-04-13 Method of treating gas containing nitrogen oxide
PCT/JP2007/058202 WO2008004371A1 (en) 2006-07-04 2007-04-13 Boiler
KR1020097000918A KR101362829B1 (en) 2006-07-04 2007-04-13 Method of treating nitrogen oxide-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/313329 WO2008004281A1 (en) 2006-07-04 2006-07-04 Combustion apparatus

Publications (1)

Publication Number Publication Date
WO2008004281A1 true WO2008004281A1 (en) 2008-01-10

Family

ID=38894261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313329 WO2008004281A1 (en) 2006-07-04 2006-07-04 Combustion apparatus

Country Status (2)

Country Link
CN (3) CN101415996B (en)
WO (1) WO2008004281A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7707213B2 (en) 2007-02-21 2010-04-27 Donald Martin Monro Hierarchical update scheme for extremum location

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232501A (en) * 2007-03-19 2008-10-02 Ngk Insulators Ltd Air-fuel ratio control system for combustion heating furnace
CN105159237B (en) * 2015-06-29 2019-07-02 中国西电电气股份有限公司 A kind of energy consumption prediction technique towards digitlization workshop numerically-controlled machine tool
CN105066169A (en) * 2015-09-14 2015-11-18 上海易尔思节能系统有限公司 Air distribution energy-saving device suitable for combustor
CN106838888B (en) * 2017-01-23 2023-10-13 北京联力源科技有限公司 Combustion system and method of operating the same
FI128631B (en) * 2018-03-09 2020-09-15 Vocci Oy Method for heat production in a power plant
US11796187B2 (en) 2018-12-10 2023-10-24 Midea Group Co., Ltd. Electronically controlled vent damper
US20220170626A1 (en) * 2019-03-15 2022-06-02 Takayuki lno Multi-tube once-through boiler
CN112747476B (en) * 2020-12-30 2022-04-08 广东万和新电气股份有限公司 Control method and control system of water heater and water heater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150728A (en) * 1981-03-13 1982-09-17 Fuji Electric Co Ltd Air fuel ratio control device in combustion furnace
JPH0538421A (en) * 1991-08-07 1993-02-19 Osaka Gas Co Ltd Cleaning method for exhaust gas from gas engine
JPH0651841A (en) * 1992-07-28 1994-02-25 Matsushita Electric Ind Co Ltd Flow controller
JPH06246159A (en) * 1993-02-25 1994-09-06 Osaka Gas Co Ltd Ternary catalyst for purifying gas engine exhaust gas and method for purifying the exhaust gas
JPH07313878A (en) * 1994-05-24 1995-12-05 Osaka Gas Co Ltd Ternary catalyst for purification of exhaust gas from gas engine and method for purifying exhaust gas from gas engine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI88199B (en) * 1988-12-15 1992-12-31 Tampella Oy Ab BRAENNFOERFARANDE FOER REDUCERING AV KVAEVEOXIDBILDNINGEN VID FOERBRAENNING SAMT APPARATUR FOER TILLAEMPNING AV FOERFARANDET
JP3221582B2 (en) * 1992-09-09 2001-10-22 株式会社三浦研究所 Low NOx and low CO combustion device
DE19929088C1 (en) * 1999-06-24 2000-08-24 Siemens Ag Fossil fuel heated steam generator e.g. for power station equipment
JP2003275543A (en) * 2002-03-22 2003-09-30 Japan Steel Works Ltd:The Method for treating exhaust gas of waste incineration furnace
JP2004125378A (en) * 2002-07-15 2004-04-22 Miura Co Ltd Method and device for low nox combustion
JP2004069139A (en) * 2002-08-05 2004-03-04 Miura Co Ltd Low nox combustion device
JP2004077085A (en) * 2002-08-22 2004-03-11 Miura Co Ltd Water tube boiler
US6979430B2 (en) * 2002-12-18 2005-12-27 Foster Wheeler Energy Corporation System and method for controlling NOx emissions from boilers combusting carbonaceous fuels without using external reagent
CN1548805A (en) * 2003-05-15 2004-11-24 株式会社庆东Boiler Air ratio control boiler
CN2710732Y (en) * 2004-03-10 2005-07-20 南京大学 Comprehensive experiment system for waste-gas purification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150728A (en) * 1981-03-13 1982-09-17 Fuji Electric Co Ltd Air fuel ratio control device in combustion furnace
JPH0538421A (en) * 1991-08-07 1993-02-19 Osaka Gas Co Ltd Cleaning method for exhaust gas from gas engine
JPH0651841A (en) * 1992-07-28 1994-02-25 Matsushita Electric Ind Co Ltd Flow controller
JPH06246159A (en) * 1993-02-25 1994-09-06 Osaka Gas Co Ltd Ternary catalyst for purifying gas engine exhaust gas and method for purifying the exhaust gas
JPH07313878A (en) * 1994-05-24 1995-12-05 Osaka Gas Co Ltd Ternary catalyst for purification of exhaust gas from gas engine and method for purifying exhaust gas from gas engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7707213B2 (en) 2007-02-21 2010-04-27 Donald Martin Monro Hierarchical update scheme for extremum location

Also Published As

Publication number Publication date
CN101415994A (en) 2009-04-22
CN101415996B (en) 2011-07-13
CN101415994B (en) 2012-02-22
CN101512224B (en) 2012-02-22
CN101415996A (en) 2009-04-22
CN101512224A (en) 2009-08-19

Similar Documents

Publication Publication Date Title
WO2008004281A1 (en) Combustion apparatus
WO2008004370A1 (en) Method of combustion and combustion apparatus
WO2008004371A1 (en) Boiler
WO2008004369A1 (en) Method of treating gas containing nitrogen oxide
JP5358895B2 (en) Combustion device
JP5088674B2 (en) Combustion equipment
US8083518B2 (en) Combustion method and combustion apparatus
JP2009031080A (en) System for reducing harmful substance and combustion device
JP5088673B2 (en) Combustion equipment
WO2007043216A1 (en) Method of treating gas containing nitrogen oxide
JP4123298B2 (en) Combustion method and combustion apparatus
JP5007938B2 (en) Combustion device
JP4123297B2 (en) Nitrogen oxide containing gas treatment method
JP4296603B2 (en) Combustion method and combustion apparatus
JP4899697B2 (en) Combustion method and combustion apparatus
JP2008057959A (en) Combustion device
JP4254880B2 (en) boiler
JP2008032366A (en) Method of combustion and combustion apparatus
JP5067037B2 (en) Combustion device
JP2012211764A (en) Combustion device
JP2009002570A (en) Combustion device
JP2009030858A (en) Combustion apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06767846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06767846

Country of ref document: EP

Kind code of ref document: A1