WO2007043216A1 - Method of treating gas containing nitrogen oxide - Google Patents

Method of treating gas containing nitrogen oxide Download PDF

Info

Publication number
WO2007043216A1
WO2007043216A1 PCT/JP2006/312381 JP2006312381W WO2007043216A1 WO 2007043216 A1 WO2007043216 A1 WO 2007043216A1 JP 2006312381 W JP2006312381 W JP 2006312381W WO 2007043216 A1 WO2007043216 A1 WO 2007043216A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
carbon monoxide
gas
oxygen
catalyst
Prior art date
Application number
PCT/JP2006/312381
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Tanaka
Yukihiro Tokunaga
Yusuke Okamoto
Kenji Yasui
Original Assignee
Miura Co., Ltd.
Miura Protec., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co., Ltd., Miura Protec., Ltd. filed Critical Miura Co., Ltd.
Publication of WO2007043216A1 publication Critical patent/WO2007043216A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • B01D53/8646Simultaneous elimination of the components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/07Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases in which combustion takes place in the presence of catalytic material

Definitions

  • the present invention relates to a method for treating a gas containing nitrogen oxides applied to a water tube boiler, a regenerator of an absorption chiller, and the like.
  • the applicant reduced the NOx generation step by suppressing the combustion gas temperature so that the suppression of NOx generation has priority over the reduction of the emission CO value, and reducing the generated NOx value to a predetermined value or less.
  • a low NOx combustion method is proposed in which a CO reduction step for reducing the emission CO value from the NOx reduction step to a predetermined value or less is performed (see Patent Document 2).
  • Patent Document 2 it is difficult to realize a low NOx concentration of less than 5 ppm, which enables a low NOx amount of less than 10 ppm. This is due to the inevitable production of NOx over 5ppm due to the characteristics of combustion.
  • the low NOx technology described in Patent Document 2 belongs to a so-called high air ratio combustion region having an air ratio of 1.38 or more.
  • Nitrogen oxide emissions can be reduced to almost zero, while carbon monoxide emissions can be reduced to an acceptable range.
  • the present invention can be applied to a method for treating a gas containing carbon monoxide, nitrogen oxides and oxygen without being limited to a combustion method having a low air ratio.
  • Patent Document 1 Japanese Patent No. 3221582
  • Patent Document 2 JP-A-2004-125378
  • the problem to be solved by the present invention is that, in a gas containing carbon monoxide, nitrogen oxide and oxygen, and not containing HC, the amount of NOx emission is reduced to almost zero and the amount of CO emission It is to reduce.
  • the present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 is characterized in that a first reaction for oxidizing a mono-acid carbon and a nitrogen oxide are converted into a mono-acid.
  • a catalyst that generates a second reaction that is reduced by carbon a gas containing oxygen, nitrogen oxides, and carbon monoxide is passed through the catalyst, and oxygen is consumed by the first reaction in the catalyst.
  • a method for treating a nitrogen oxide-containing gas by reducing the concentration of nitrogen oxides and reducing the concentration of nitrogen oxides by the second reaction with carbon dioxide that cannot be consumed.
  • an adjustment step of adjusting the predetermined concentration of carbon monoxide so as to satisfy the following formula (1).
  • the invention according to claim 2 is a method for treating a gas containing carbon monoxide, nitrogen oxide, and oxygen, but not HC, wherein the carbon monoxide contained in the gas is oxidized with nitrogen.
  • the invention according to claim 3 is a method for treating a gas containing carbon monoxide, nitrogen oxide and oxygen and not HC, wherein the carbon monoxide and nitrogen oxide contained in the gas are included.
  • the main reaction is an adjustment process that adjusts the concentrations of substances and oxygen to a predetermined relationship, and a first reaction that oxidizes carbon monoxide with oxygen and a second reaction that reduces nitrogen oxides with carbon monoxide.
  • the value is approximately equal to or higher than the value obtained by adding the carbon oxide concentration and the carbon monoxide concentration reduced in the catalyst by the second reaction.
  • the invention according to claim 4 is a method for treating a gas containing carbon monoxide, nitrogen oxide and oxygen and not containing HC, the carbon monoxide contained in the gas, and nitrogen oxidation. Before the catalyst that performs the adjustment process for adjusting the concentrations of the product and oxygen to a predetermined relationship, the first reaction for oxidizing carbon monoxide with oxygen, and the second reaction for reducing nitrogen oxide with carbon monoxide. Contacting the gas with the concentration adjusted, and the adjusting step adjusts the carbon monoxide concentration, the nitrogen oxide concentration, and the oxygen concentration on the primary side of the catalyst to a predetermined relationship.
  • the nitrogen oxide concentration concentration is a gas containing carbon monoxide, nitrogen oxide and oxygen and not containing HC, the carbon monoxide contained in the gas, and nitrogen oxidation.
  • the emission amount of nitrogen oxides which are harmful substances is substantially zero, and the CO emission amount Can be reduced.
  • FIG. 1 is a schematic configuration diagram illustrating Example 1 of a combustion apparatus according to the present invention.
  • FIG. 2 is a cross-sectional explanatory view taken along line II-II in FIG.
  • FIG. 3 is a front view showing the main configuration of the catalyst of Example 2.
  • FIG. 4 is an electric circuit diagram of the main part of the second embodiment.
  • FIG. 5 is a schematic configuration diagram illustrating Example 2 of the combustion apparatus of the present invention.
  • FIG. 6 is a cross-sectional explanatory view taken along line VI-VI in FIG. 5 of Example 2.
  • FIG. 7 is a view for explaining control characteristics of the damper of the second embodiment.
  • FIG. 8 is a view for explaining output characteristics of the sensor of Example 2.
  • FIG. 9 is a view for explaining a modification of the first embodiment and the second embodiment.
  • the gas refers to a gas during a combustion reaction (combustion process) and includes a gas passing through a catalyst.
  • the exhaust gas is a gas that has completed the combustion reaction.
  • combustion equipment also referred to as thermal equipment or combustion equipment
  • a water tube boiler such as a small once-through boiler, a water heater, or a regenerator of an absorption chiller.
  • Embodiment 1 of this treatment method uses a catalyst that generates a first reaction that oxidizes monoxide and carbon and a second reaction that reduces nitrogen oxide by monoxide and carbon, and oxidizes oxygen and nitrogen. And a gas containing carbon monoxide is passed through the catalyst, and oxygen is consumed by the first reaction in the catalyst to reduce the concentration of carbon monoxide and carbon, which cannot be consumed.
  • the nitrogen oxide concentration is reduced by the second reaction, and the predetermined concentrations of oxygen, nitrogen oxide, and carbon monoxide satisfy the following formula (1): It is the processing method of the nitrogen oxide containing gas characterized by including the adjustment process adjusted so that it may satisfy
  • Embodiment 1 of this treatment method the concentration ratio of oxygen, nitrogen oxide, and carbon monoxide in the gas on the primary side of the catalyst is controlled so as to satisfy the formula (1). Thereafter, carbon monoxide is oxidized by the catalyst, and nitrogen oxides are reduced. As a result, the discharge amount of nitrogen oxides in the gas is reduced to a value close to zero of 5 ppm or less. In addition, carbon monoxide emission is reduced.
  • This reduction action is considered to be performed as follows.
  • a first reaction for oxidizing carbon monoxide and a second reaction for reducing nitrogen oxide with carbon monoxide are generated.
  • the first reaction in the presence of oxygen, the first reaction is superior to the second reaction.
  • carbon monoxide is consumed by oxygen, and after the concentration is adjusted, nitrogen oxides are reduced by the second reaction.
  • the first reaction is a competitive reaction with the second reaction, but the reaction between carbon monoxide and oxygen occurs apparently faster than the second reaction in the presence of oxygen. It is thought that carbon monoxide (first reaction) is carried out in step 1, and nitrogen oxides are reduced (second reaction) in the second stage.
  • [NOx] in the formula (1) is the total concentration of the nitric oxide concentration: [NO] and the nitrogen dioxide concentration: [N02].
  • NO is used without using NOx.
  • the composition of the generated nitrogen oxide in a high temperature field is NO as the main component, and N02 is only a few percent. This is because it can be described approximately.
  • NO 2 is thought to be reduced by CO in the same way as NO.
  • the concentration of carbon monoxide is higher than the concentration necessary for the reduction of the nitrogen oxides, so the exhaust oxygen concentration is zero and the concentration after passing through the catalyst Carbon monoxide and carbon remain in the gas. It is preferable to further provide an acid means for acidifying the residual carbon monoxide.
  • the oxidizing means can be configured to provide a catalyst separate from the catalyst and to add oxygen to acidify carbon monoxide.
  • the source can be an incinerator or jet turbine.
  • the adjustment step is preferably performed in a generation source such as a panner that generates a gas containing oxygen, nitrogen oxides, and carbon monoxide, and the concentration ratio of oxygen, nitrogen oxides, and carbon monoxide is changed to oxygen, nitrogen.
  • a generation source such as a panner that generates a gas containing oxygen, nitrogen oxides, and carbon monoxide
  • the concentration ratio can be adjusted between the generation source and the catalyst. In the former case, there is an effect that it is not necessary to provide a means for adjusting the concentration ratio separately from the generation source.
  • the catalyst is a catalyst having a function of reducing the nitrogen oxide in the gas, and has a configuration in which a catalytically active substance is applied to a base material having air permeability.
  • a metal such as stainless steel or a ceramic is used, and a surface treatment is performed so as to widen the contact area with the gas.
  • Platinum is generally used as the catalytically active material, but depending on the implementation, noble metals such as white gold (Ag, Au, Rh, Ru, Pt, Pd) or metal oxides may be used. it can.
  • Embodiment 2 is a method for treating a gas containing carbon monoxide, carbon oxide, nitrogen oxide, and oxygen but not HC, each of carbon monoxide, nitrogen oxide, and oxygen contained in the gas. Adjust the concentration to satisfy the following formula (2)
  • the value 2.0 of the concentration ratio in the formula (2) in the second embodiment is considered to be an experimentally obtained value.
  • the reaction occurring in the catalyst has not been completely elucidated, and it is considered that a side reaction has occurred in addition to the main reaction of the first reaction and the second reaction.
  • As one of the side reactions when the concentration of carbon monoxide and carbon is high, hydrogen is generated by the reaction between steam and monoxide and carbon, and this hydrogen reduces nitrogen oxide and oxygen. Can be considered.
  • Embodiment 2 "not containing HC” means that the gas from the source substantially contains HC that reduces nitrogen oxides (below the measurement limit). It means that. [0034]
  • the value of the concentration ratio may be slightly changed by reactions other than the main reaction in the catalyst. Therefore, considering the main reaction that is surely occurring, Embodiments (1) and (2) can be expressed by Embodiment 3 of the following processing method.
  • Embodiment 3 is a method for treating a gas containing carbon monoxide, nitrogen oxides and oxygen and not containing HC, wherein the carbon monoxide and nitrogen oxides contained in the gas are used. And the adjustment process for adjusting the respective concentrations of oxygen and oxygen to a predetermined relationship, and the main reaction of the first reaction for oxidizing carbon monoxide with oxygen and the second reaction for reducing nitrogen oxide with carbon monoxide. And the contacting step of contacting the gas with the adjusted concentration, wherein the adjusting step comprises reducing the carbon monoxide concentration on the primary side of the catalyst in the catalyst by the first reaction. It is characterized by being approximately equal to or higher than the value obtained by adding the carbon concentration and the carbon monoxide concentration reduced in the catalyst by the second reaction.
  • the carbon monoxide concentration on the primary side of the catalyst is reduced in the catalyst by the first reaction and It is approximately equal to or greater than the sum of the carbon monoxide concentration reduced in the catalyst by the second reaction. Therefore, an embodiment in which the concentration ratio in the equation (2) slightly fluctuates due to a side reaction and does not satisfy the equation (2) is also included in this embodiment 3.
  • the treatment method of the present invention can be applied to the following combustion method. Embodiments 1 to 4 of this combustion method will be described.
  • Embodiment 1 of the combustion method includes a step of supplying air to a fuel and combusting, and a catalyst capable of reducing nitrogen oxides in a gas not containing HC generated by the combustion with carbon monoxide.
  • the combustion method is characterized in that the air ratio in the combustion process is adjusted to a set air ratio.
  • Embodiment 3 of the combustion method includes a step of supplying air to the fuel and continuously burning it, and a catalyst capable of reducing nitrogen oxides in the gas not containing HC generated by the combustion. And the step of discharging the gas in contact with the catalyst, the carbon monoxide concentration, the nitrogen oxide concentration, and the oxygen concentration in the gas before contacting with the catalyst are represented by the following formula (2):
  • the combustion method is characterized in that the air ratio in the combustion process is adjusted to a set air ratio so as to satisfy the concentration ratio indicated by (2).
  • Embodiment 4 of the combustion method is a combustion method characterized in that, in Embodiments 1 to 3 of the combustion method, the set air ratio is set to 1.0 to 1.0005.
  • the processing method of the present invention can be applied to the following combustion apparatus. Embodiments 1 to 5 of this combustion apparatus will be described.
  • Embodiment 1 of this combustion apparatus includes a combustion section (parner) that continuously burns by supplying air to fuel, a gas discharge path for discharging gas that does not contain HC from the combustion section, and A catalyst disposed in the gas discharge path, which can contact the gas and capable of reducing nitrogen oxides by carbon monoxide, and contacts the catalyst in the gas discharge path
  • Embodiment 2 of this combustion apparatus includes a combustion section that supplies air to fuel and continuously burns, a gas discharge path for discharging gas that does not contain HC of the combustion section power, and the gas discharge
  • a catalyst disposed in a passage, which is capable of contacting the gas and that performs a first reaction for oxidizing carbon monoxide with oxygen and a second reaction for reducing nitrogen oxide with carbon monoxide; and the gas
  • the carbon monoxide concentration in the gas before contacting the catalyst is reduced in the catalyst by the first reaction and reduced in the catalyst by the second reaction.
  • Combustion apparatus comprising air ratio adjusting means for adjusting the air ratio in the combustion section to a set air ratio so as to be approximately equal to or greater than a value obtained by adding the acid and carbon concentration. It is.
  • Embodiment 3 of this combustion apparatus includes a combustion section that continuously burns by supplying air to the fuel, a gas discharge passage for discharging gas that does not contain HC of the combustion section power, and the gas discharge A catalyst disposed in the channel that is in contact with the gas and capable of reducing nitrogen oxyhydride; and the gas
  • the air in the combustion section is set so that the carbon monoxide concentration, the nitrogen oxide concentration, and the oxygen concentration in the gas before contacting with the catalyst satisfy the concentration ratio represented by the following formula (2).
  • An air ratio adjusting means for adjusting the ratio to a set air ratio.
  • a combustion apparatus is a combustion apparatus characterized in that, in the first to third embodiments of the combustion apparatus, the set air ratio is set to 1.0 to 1.0005. (Embodiment 5 of the combustion apparatus)
  • Embodiment 5 of the combustion apparatus is a combustion apparatus characterized in that in Embodiments 1 to 4 of the combustion apparatus, an endothermic body is provided between the above-mentioned partner and the catalyst.
  • Embodiment 6 of this combustion apparatus includes a combustion section that supplies air to fuel and continuously burns it to generate a gas that contains carbon monoxide, nitrogen oxides, and oxygen, but does not contain HC.
  • the concentration of nitrogen oxides, nitrogen oxides, and oxygen on the secondary side of the catalyst is substantially zero.
  • the combustion apparatus is characterized in that a concentration ratio can be obtained.
  • Embodiment 7 of this combustion apparatus is the combustion apparatus according to Embodiment 6 of the combustion apparatus, wherein the set air ratio is 1.0 to 1.0005.
  • the burner is preferably a premixing burner that premixes and burns gas fuel.
  • concentration ratios as shown in the above formulas (1) and (2) regarding oxygen, nitrogen oxide, and carbon monoxide are important. It is.
  • the concentration ratio can be obtained relatively easily with the set air ratio.
  • a non-premixed panner is used. be able to.
  • the PANA is a gas generation source that contains carbon monoxide, nitrogen oxides, and oxygen, and does not contain HC, and burns so as to have a low air ratio of 1.0 to 1.0005. It is possible to make it S. With such a low air ratio, in addition to low NOx and low CO emissions that are close to zero, energy saving is realized, and a low pollution and energy saving combustion device is provided. be able to.
  • the heat absorber is a water pipe when the combustion device is a boiler, and an absorbing liquid concentrating pipe when it is a regenerator.
  • the endothermic body also has a function of controlling the gas temperature flowing into the catalyst close to the activation temperature of the catalyst. That is, the gas temperature effectively causes the first reaction and the second reaction, suppresses deterioration of the catalyst due to temperature, and takes into consideration durability.
  • the air ratio adjusting means includes a flow rate adjusting means, a driving means for driving the flow rate adjusting means, and a control means for controlling the driving means.
  • the flow rate adjusting means is a means for adjusting the air ratio of the burner by changing the ratio of both by changing one or both of the combustion air amount and fuel amount of the burner.
  • the flow rate adjusting means changes the amount of combustion air
  • it is preferably a damper (including the meaning of a valve).
  • the structure of this damper is a rotary type that changes the opening degree of the flow path by a valve body that rotates around a rotating shaft, and a slide type that changes the opening degree of the flow path by sliding against the cross-sectional opening of the flow path. Can be.
  • the flow rate adjusting means changes the amount of combustion air
  • it is preferably provided in the air flow path between the blower and the fuel supply means, but the blower, such as the suction port of the blower, is provided. Can be provided on the inlet side.
  • the driving means is a motor capable of controlling the opening degree of the flow rate adjusting means according to the driving amount and adjusting the driving amount per unit time.
  • the amount of opening can be controlled in accordance with the amount of driving means that when the amount of driving is determined, the opening of the flow rate adjusting means can be controlled to stop at a specific position.
  • the drive amount per unit time can be adjusted means that the responsiveness of the position control can be adjusted.
  • This motor is preferably a stepping motor (which can be called a step motor), but can also be a gear motor (which can be called a geared motor) or a servo motor.
  • the stepping motor is a driving pulse to which the driving amount is applied, and the opening position of the flow rate adjusting means is opened and closed by an amount corresponding to the number of driving pulses from the reference opening position.
  • the target stop position can be controlled.
  • the gear model If the motor or servo motor is used, the drive amount is the opening / closing drive time, and the opening position of the flow rate adjusting means can be freely opened and closed by an amount corresponding to the reference opening position force opening / closing drive time.
  • the target stop position can be controlled.
  • the driving means is controlled to be the set air ratio by a sensor that detects the air ratio of the panner.
  • This sensor is preferably an oxygen concentration sensor that directly detects the air ratio of the panner.
  • This oxygen concentration sensor detects oxygen and calculates the air ratio based on the detected value.
  • the sensor may be a carbon monoxide concentration sensor that indirectly detects a different air ratio from the oxygen concentration sensor. This carbon monoxide concentration sensor detects the carbon monoxide concentration and calculates the air ratio based on the detected value.
  • the mounting position of the sensor is preferably on the secondary side of the catalyst, but may be on the downstream side when an exhaust heat recovery device is provided on the downstream side of the catalyst.
  • control means inputs the detection value of the sensor, controls the driving amount of the motor, and sets the air ratio to 1.0 to 1.0005. To control.
  • the air ratio control program preferably has a driving amount (driving unit) per unit time of the motor according to a difference between the detected air ratio (or detected oxygen concentration) and the set air ratio (set oxygen concentration).
  • Example 1 of a combustion apparatus that implements the method for treating a nitrogen oxide-containing gas according to the present invention will be described with reference to the drawings.
  • Fig. 1 is an explanatory view of the vertical cross section of the steam boiler of Example 1
  • Fig. 2 is a cross sectional view taken along the line II-II of Fig. 1
  • Fig. 3 shows the exhaust gas from the catalyst of Fig. 1.
  • FIG. 4 is a diagram showing a main part configuration viewed from the flow direction
  • FIG. 4 is a main part electric circuit diagram of the first embodiment.
  • the boiler of the first embodiment contains oxygen, nitrogen oxides, and carbon monoxide by combustion, and does not contain HC, and generates heat from the gas generated by the gas generator 3 and the gas generated by the gas generator 3.
  • As the endothermic means and the gas 2 after passing through the endothermic means each containing oxygen, nitrogen oxide and carbon monoxide at a predetermined concentration are passed to
  • the main part is a catalyst 1 that generates a first reaction to be oxidized and a second reaction to reduce the nitrogen oxides with monoxide and carbon. Then, oxygen is consumed by the first reaction in the catalyst 1 to reduce the concentration of carbon monoxide and carbon, and the concentration of nitrogen oxides is reduced by the second reaction by carbon monoxide that cannot be reduced. Is configured to do.
  • This boiler has a fully premixed (all primary air type) panner 3 having a planar combustion surface (premixed gas ejection surface) and a number of water pipes 4, 4,... For heat absorption.
  • Body 5 a blower 6 and an air supply passage 7 that send combustion air to the panner 3, a gas fuel supply pipe 8, and an exhaust gas passage for discharging exhaust gas discharged from the can body 5 (usually “chimney” or “ It is called “the flue.”)
  • a PANA having the same configuration as the one described in Patent Document 1 is used.
  • the can body 5 includes an upper header 10 and a lower header 11, and a plurality of the water tubes 4 are arranged between the headers 10 and 11.
  • a pair of water pipe walls 14, 14 configured by connecting outer water pipes 12, 12,... By connecting members 13, 13,.
  • a gas passage 15 is formed between the pipe walls 14 and 14 and the upper header 10 and the lower header 11 so that the gas from the panner 3 flows almost linearly.
  • the gas passage 15 is provided at one end with the PANA 3, and the gas outlet 16 at the other end is connected with an exhaust gas passage 9.
  • the Pana 3 is connected to the air supply passage 7, and the gas fuel supply pipe 8 is connected to the air supply passage 7 so as to inject fuel into the air supply passage 7.
  • the gas fuel supply pipe 8 is provided with a flow rate adjusting valve 17 for adjusting the fuel flow rate.
  • the catalyst 1 is disposed in the middle of the exhaust gas passage 9 and in a temperature range of about 120 ° C. to 350 ° C.
  • the catalyst 1 generates a first reaction for oxidizing carbon monoxide and a second reaction for reducing nitrogen oxide with carbon monoxide. Specifically, it has a structure as shown in FIG. 3 and is formed, for example, as follows. A large number of minute irregularities are formed on the surfaces of the stainless steel flat plate 18 and the corrugated plate 19 as the base material, and a catalytically active material (not shown) is applied to the surfaces. Next, the flat plate 18 and the corrugated plate 19 having a predetermined width are connected. After being superposed, they are wound into a spiral shape to form a roll. This roll-shaped one is surrounded and fixed by a side plate 20. Platinum is used as the catalytically active substance. In FIG. 3, only a part of the flat plate 18 and the corrugated plate 19 is shown.
  • the catalyst 1 is detachably attached to the exhaust gas passage 9 so that it can be replaced when performance deteriorates.
  • Example 1 the concentration adjustment is performed so that the concentrations of oxygen, nitrogen oxide, and carbon monoxide in the gas before flowing into the catalyst 1 satisfy the following formula (1): Means 21 are provided.
  • the concentration adjusting means 21 is designed to burn near an air ratio of 1. Adjust the concentration so that it is adjusted to almost [CO]: l lOOppm, [NOx]: lOOppm, [02]: 500ppm.
  • the concentration adjusting means 21 includes an air ratio adjusting means 22 for burning the parser 3 at a low air ratio in the vicinity of the air ratio 1 and a water pipe group including the parner 3, the water pipes 4 and the water pipes 12. And a first oxygen concentration detector 23.
  • the air ratio adjusting means 22 receives a second oxygen concentration detection 37 provided on the downstream side of the catalyst 1 and a signal from the detector 37 to input the air blower 6.
  • the motor 24 is mainly composed of a power for controlling the inverter 24 and a controller 25 for controlling the motor 24 by a damper (not shown).
  • the concentration adjusting means 21 By the concentration adjusting means 21, the oxygen, nitrogen oxide, and carbon monoxide concentrations in the gas 2 that is burned at a low air ratio in the vicinity of the air ratio 1 and flows into the catalyst 1 are [CO ]: L lOOppm, [NOx]: lOOppm, [02]: Almost controlled to 500 ppm. These concentrations have been confirmed to be realized based on data from various experiments.
  • the gas generated by this combustion is cooled by intersecting with the upstream water tube group, and is heat-exchanged with the downstream water tube group to become a gas of about 120 ° C to 350 ° C.
  • the gas 2 is treated with the catalyst 1 to reduce the nitrogen oxide concentration and the carbon monoxide concentration to substantially zero, and then is discharged from the exhaust gas passage 9 into the atmosphere.
  • the exhaust gas passage 9 is provided with a feed water preheater (not shown) for preheating the feed water to the boiler, but the catalyst 1 has a gas 2 temperature of about 120 ° C. to 350 ° C. C is provided upstream or downstream of the feed water preheater.
  • This steam is supplied from a steam take-out means (not shown) connected to the upper header 10 to a steam using facility (not shown!).
  • harmful substances such as nitrogen oxides and carbon monoxide can be made substantially zero, and combustion is performed at a low air ratio in which the air ratio is close to 1. Therefore, boiler efficiency is reduced. Is high
  • FIG. 5 is an explanatory diagram of a longitudinal section of the steam boiler of the second embodiment
  • FIG. 6 is a sectional view taken along the line VI-VI of FIG. 5
  • FIG. 7 is a control of the damper of the second embodiment.
  • FIG. 8 is a graph illustrating the output characteristics of the sensor according to the second embodiment.
  • This steam boiler includes a catalyst 1, a burner 3, a can 5, a fuel supply means 27 for supplying gas fuel to the burner 3, a combustion air to the burner 3 and a combustion air. And a combustion air supply means 28 for premixing combustion, an oxygen concentration detector 37 for detecting the oxygen concentration downstream of the catalyst 1, and a signal from the oxygen concentration detector 37 and the like to input the fuel supply means 27 and A controller 25 for controlling the combustion air supply means 28 and the like is provided as a main part.
  • the exhaust gas passage 9 includes a horizontal portion 29 and a vertical portion 30, and the catalyst 1 is attached to the horizontal portion 29.
  • a feed water preheater 31 as an exhaust heat collector is attached to the vertical portion 30 so as to be positioned downstream of the catalyst 1, and the oxygen concentration detector 37 is interposed between the catalyst 1 and the feed water preheater 31. Is arranged.
  • the fuel supply means 27 includes a gas fuel supply pipe 8 and a flow rate adjustment valve 17.
  • the flow rate adjusting valve 17 has a function of controlling the fuel supply amount to a high combustion flow rate and a low combustion flow rate.
  • the combustion air supply means 27 includes a blower 6, an air supply passage 7, and an air flow rate adjustment means 3 that adjusts the air ratio of the burner 3 by adjusting the amount of combustion air flowing through the air supply passage 7. Consists of two.
  • the air flow rate adjusting means 32 includes a damper 33 for adjusting the opening degree (flow passage sectional area) of the air supply passage 7, and a damper position adjusting device 34 for adjusting the opening position of the damper 33. It is comprised including.
  • the damper position adjusting device 34 includes a stepping motor (not shown) that drives the damper 33 and is hybridized.
  • the controller 25 uses the air ratio control program stored in advance so that the air ratio of the banner 3 becomes the set air ratio (first control condition).
  • the concentration ratio of the gas 1 on the primary side of the catalyst 1 satisfies the following formula (2) (second control condition), and is configured to control the motor!
  • Example 2 it is the first control condition that is directly controlled, and the second control condition is automatically satisfied by satisfying the first control condition. It is made.
  • the second condition is a condition for making the exhausted nitrogen oxide concentration almost zero.
  • the concentration ratio represented by the above formula (2) can be obtained from the first reaction and the second reaction! This was found through experiments and theoretical considerations.
  • the detected air ratio is calculated based on the oxygen concentration signal from the oxygen concentration detector 37, and the calculated detected air ratio and the setting are calculated.
  • a first control zone that changes the time per unit drive amount of the motor (which can be referred to as feed speed or drive speed) according to the difference from the air ratio, and a unit drive amount outside the first control zone.
  • a control procedure for controlling the driving amount of the motor is provided by providing second control zones A and B with the winning times as the first set value and the second set value, respectively.
  • an air ratio detector for example, a zircoure-type AZF sensor with a good response response of 02 resolution of 50 ppm and a response time of 2 seconds or less
  • the output characteristics of the oxygen concentration detector 37 are outputs related to the oxygen concentration when the output is positive, and outputs related to the carbon monoxide concentration on the negative side.
  • the stepping motor can reliably perform the rotational position control, and the feed speed is controlled to decrease as the detected air ratio approaches the set air ratio. As a result, overshooting, striging and nipping of the air ratio in the vicinity of the set air ratio can be suppressed.
  • the air ratio of the Parner 3 is set to a low air ratio close to 1, and the concentration ratio change width of the gas 2 on the primary side of the catalyst 1 is controlled to be small. Can be met. As a result, the nitrogen oxide concentration on the secondary side of the catalyst 1 can be made substantially zero, and the carbon monoxide concentration can be reduced to a practical range.
  • the following describes the experimental results for an evaporation rate of 800 kg per unit time and a combustion rate of 45.2 m 3 N / h.
  • the carbon monoxide concentration, nitrogen oxide concentration, and oxygen concentration on the primary side of catalyst 1 are adjusted to 2295ppm, 94ppm, and 1655ppm, respectively.
  • the concentrations on the secondary side of the catalyst 1 (after passing through the catalyst 1) were less than 13 ppm, 0.3 ppm, and lOO ppm on average for 10 minutes.
  • the oxygen concentration lOOppm of the secondary side of the catalyst 1 is the measurement limit of the oxygen concentration (measured using Ltd. HORIBA production plant made PG- 250.) 0
  • the concentration of carbon monoxide, nitrogen oxide, oxygen Table 1 shows the values at each concentration ratio.
  • the oxygen concentration after passing through the catalyst was measured using the same oxygen concentration sensor as in Experimental Example 1, even if the value was less than lOOppm, it was expressed as lOOppm.
  • Example 2 includes the following modification. That is, a controller for controlling the damper position adjusting device 34 exclusively (not shown) separately from the controller 25 for controlling the force boiler that controls the damper position adjusting device 34 by the single controller 25. It is also possible to perform the air ratio control by connecting the oxygen concentration detector 37 to this.
  • the present invention is not limited to Example 1 and Example 2.
  • the reduction device can be a modification shown in FIG.
  • the difference from Example 1 is that the predetermined concentrations of oxygen, nitrogen oxide, and carbon monoxide are configured to satisfy the relationship [CO]> [NOx] +2
  • the second catalyst 35 is configured to oxidize carbon monoxide that could not be treated with the catalyst 1.
  • oxygen input means 36 for supplying oxygen upstream of the second catalyst 35 is provided.
  • the second catalyst 35 the same catalyst as the first catalyst 1 can be used.
  • the first catalyst 1 and the second catalyst 35 may be formed integrally and continuously, and oxygen may be introduced by the oxygen input means 36 from a hole provided at a predetermined location.
  • the installation position of the catalyst 1 is not limited to the exhaust gas passage 9, but can be downstream of the water pipe 4 group in the can 5 or in the middle of the water pipe 4 group. in front When the catalyst 1 is provided in the middle of the group of water tubes 4, a catalyst material can be carried on the surface of the water tube 4 and used as the catalyst 1.

Abstract

A method of cutting down carbon monoxide and nitrogen oxides that is capable of easy realization of low NOx lowering the emitted NOx value to below 5 ppm and simultaneously realization of low CO. Further, there is provided a method of treating a gas containing nitrogen oxides that is capable of not only realizations of ultralow NOx and low CO but also realization of energy saving. There is provided a method of treating a gas containing carbon monoxide, nitrogen oxides and oxygen and not containing HC, characterized by including the steps of regulating the respective concentrations of carbon monoxide, nitrogen oxides and oxygen in the gas so that these satisfy the formula: ([NOx]+2[O2])/[CO] ≤ 2.0 (2) (in the formula (2), [CO], [NOx] and [O2] respectively represent the concentration of carbon monoxide, the concentration of nitrogen oxides and the concentration of oxygen, provided that [O2]>0); and bringing the gas having the concentration ratios regulated into contact with a catalyst capable of reducing of nitrogen oxides.

Description

明 細 書  Specification
窒素酸化物含有ガスの処理方法  Method for treating nitrogen oxide-containing gas
技術分野  Technical field
[0001] この発明は、水管ボイラ,吸収式冷凍機の再生器などに適用される窒素酸ィ匕物含 有ガスの処理方法に関する。  [0001] The present invention relates to a method for treating a gas containing nitrogen oxides applied to a water tube boiler, a regenerator of an absorption chiller, and the like.
背景技術  Background art
[0002] 一般に、 NOxの発生の抑制原理として、火炎 (燃焼ガス)温度の抑制,高温燃焼ガ スの滞留時間の短縮などが知られている。そして、これらの原理を応用した種々の低 NOxィ匕技術がある。たとえば、 2段燃焼法,濃淡燃焼法,排ガス再循環燃焼法,水添 加燃焼法,蒸気噴射燃焼法,水管群による火炎冷却燃焼法などが提案され実用化 されている。  [0002] In general, as a principle for suppressing NOx generation, suppression of flame (combustion gas) temperature, shortening of residence time of high-temperature combustion gas, and the like are known. There are various low NOx technologies that apply these principles. For example, the two-stage combustion method, the concentration combustion method, the exhaust gas recirculation combustion method, the hydrogenation combustion method, the steam injection combustion method, and the flame cooling combustion method using water tube groups have been proposed and put to practical use.
[0003] ところで、水管ボイラなどの比較的容量の小さい NOx発生源に対しても時代と共に 環境への影響が高まり、一層の低 NOxィ匕が求められるようになってきている。この低 NOxィ匕においては、 NOxの生成を低減すると COの排出量が増加するので、 NOxと COを同時に削減することが難しい。  [0003] By the way, environmental impacts of NOx generation sources with relatively small capacities, such as water tube boilers, have been increasing with the times, and even lower NOx emissions have been demanded. At this low NOx level, reducing NOx production increases CO emissions, making it difficult to reduce NOx and CO simultaneously.
[0004] その原因は、低 NOxィ匕と低 CO化とが相反する技術的課題であることにある。すな わち、低 NOxを推し進めるために燃焼ガス温度を急激に低下させ、 900°C以下の低 V、温度に抑制すると、 COが多量に発生すると共に発生した COが酸ィ匕されな 、まま 排出され、 CO排出量が増大してしまう。逆に、 COの排出量を少なくするために、燃 焼ガス温度を高めに抑制すると、 NOxの生成量の抑制が不十分となる。  [0004] The cause is that low NOx and low CO are contradictory technical issues. In other words, if the combustion gas temperature is drastically lowered to promote low NOx and suppressed to a low V and temperature of 900 ° C or less, a large amount of CO is generated and the generated CO is not oxidized. As a result, CO emissions will increase. Conversely, if the combustion gas temperature is suppressed to a high level to reduce CO emissions, the amount of NOx produced will be insufficiently suppressed.
[0005] この課題を解決するために、出願人は、低 NOxィ匕に伴い発生する CO量をできるだ け少なくするように、また発生した COが酸ィ匕するように燃焼ガス温度を抑制する低 N Oxおよび低 CO技術を提案し、製品化している(特許文献 1参照)。し力しながら、こ の特許文献 1記載の低 NOxィ匕技術は、現実には生成 NOx値が 25ppm程度にとどま つていた。  [0005] In order to solve this problem, the applicant suppresses the combustion gas temperature so that the amount of CO generated with low NOx emissions is reduced as much as possible and the generated CO is oxidized. The company proposes and commercializes low N Ox and low CO technologies (see Patent Document 1). However, the low NOx technology described in Patent Document 1 actually produced a NOx value of about 25 ppm.
[0006] この課題の解決案として、出願人は、 NOx発生の抑制を排出 CO値低減に優先す るように燃焼ガス温度を抑制し、生成 NOx値を所定値以下とする低 NOx化ステップ を行 、、その後に前記低 NOx化ステップからの排出 CO値を所定値以下とする低 C O化ステップを行う低 NOx燃焼方法を提案している(特許文献 2参照)。この特許文 献 2の技術によれば、 lOppmを下回る低 NOxィ匕が可能となる力 5ppmを下回る低 N Oxィ匕を実現することは難しい。これは、燃焼の特性により、 5ppm以上の NOxの生成 が避けられないことによる。 [0006] As a solution to this problem, the applicant reduced the NOx generation step by suppressing the combustion gas temperature so that the suppression of NOx generation has priority over the reduction of the emission CO value, and reducing the generated NOx value to a predetermined value or less. After that, a low NOx combustion method is proposed in which a CO reduction step for reducing the emission CO value from the NOx reduction step to a predetermined value or less is performed (see Patent Document 2). According to the technology of Patent Document 2, it is difficult to realize a low NOx concentration of less than 5 ppm, which enables a low NOx amount of less than 10 ppm. This is due to the inevitable production of NOx over 5ppm due to the characteristics of combustion.
[0007] そして、特許文献 2に記載の低 NOxィ匕技術は、空気比が 1. 38以上の所謂高空気 比燃焼領域に属するものである。一方、空気比 1. 1以下の予混合燃焼領域では一 酸ィ匕炭素の発生量が規制値である 300ppmを大幅に上回り、実用化が困難であるこ と,および空気比が 1以下となるとバックフアイヤーを起こすなど安定燃焼制御が困難 なためにこれまで殆ど研究開発の対象とされていなカゝつた。ここで、空気比は、排ガ ス中の酸素濃度を [02]とすると、空気比 = 2lZ (21— [02])と定義する (本出願に おいて、以下同様)。 [0007] And, the low NOx technology described in Patent Document 2 belongs to a so-called high air ratio combustion region having an air ratio of 1.38 or more. On the other hand, in the premixed combustion region with an air ratio of 1.1 or less, the amount of carbon monoxide generated significantly exceeds the regulated value of 300 ppm, making it difficult to put it into practical use, and when the air ratio is 1 or less, This has been the subject of almost no research and development until now due to the difficulty of stable combustion control, such as fire. Here, the air ratio is defined as air ratio = 2lZ (21— [02]) when the oxygen concentration in the exhaust gas is [02] (the same applies hereinafter in this application).
[0008] 一方、時代背景として、ボイラに対して一層の低 NOxィ匕が求められるとともに、省ェ ネルギ一となる低空気比運転が求められるようになつてきた。  [0008] On the other hand, as the background of the times, there has been a demand for boilers that require even lower NOx and low energy ratio operation that saves energy.
[0009] この出願の発明者らは、鋭意研究を重ねた結果、これまで殆ど研究が行われてい なかつ [0009] The inventors of this application have conducted intensive research, and as a result, almost no research has been conducted so far.
た限りなく 1に近 、低空気比の燃焼領域にお!、て、窒素酸ィ匕物の排出量を限りなく 零に近く低減でき、一酸ィ匕炭素排出量を許容範囲に低減できるとともに、低空気比 による省エネルギーを実現できる燃焼方法を追求し、その解決手段を発明するに至 つた o  Infinitely close to 1 and in the low air ratio combustion region! Nitrogen oxide emissions can be reduced to almost zero, while carbon monoxide emissions can be reduced to an acceptable range. In pursuit of a combustion method that can realize energy saving with a low air ratio, and invented a solution for it o
[0010] この発明は、低空気比の燃焼方法に限定されることなぐその原理を一酸化炭素, 窒素酸ィ匕物および酸素を含むガスの処理方法に適用することが可能である。  The present invention can be applied to a method for treating a gas containing carbon monoxide, nitrogen oxides and oxygen without being limited to a combustion method having a low air ratio.
[0011] 特許文献 1 :特許第 3221582号公報  [0011] Patent Document 1: Japanese Patent No. 3221582
特許文献 2 :特開 2004— 125378号公報  Patent Document 2: JP-A-2004-125378
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] この発明が解決しょうとする課題は、一酸化炭素,窒素酸化物および酸素を含み、 HCを含まないガスにおいて、 NOxの排出量をほぼ零にするとともに、 COの排出量 を低減することである。 [0012] The problem to be solved by the present invention is that, in a gas containing carbon monoxide, nitrogen oxide and oxygen, and not containing HC, the amount of NOx emission is reduced to almost zero and the amount of CO emission It is to reduce.
課題を解決するための手段  Means for solving the problem
[0013] この発明は、前記課題を解決するためになされたもので、請求項 1に記載の発明は 、一酸ィ匕炭素を酸化させる第一反応と窒素酸ィ匕物を一酸ィ匕炭素により還元させる第 二反応とを生じる触媒を用い、酸素,窒素酸化物および一酸化炭素を含むガスを前 記触媒へ通過させ、前記触媒内にて前記第一反応により酸素を消費して一酸化炭 素濃度を低減し、消費しきれない一酸ィ匕炭素により前記第二反応によって窒素酸ィ匕 物濃度を低減する窒素酸化物含有ガスの処理方法であって、酸素,窒素酸化物お よび一酸化炭素のそれぞれの所定濃度が下記の式(1)を満たすように調整する調整 工程を含むことを特徴として 、る。  [0013] The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 is characterized in that a first reaction for oxidizing a mono-acid carbon and a nitrogen oxide are converted into a mono-acid. Using a catalyst that generates a second reaction that is reduced by carbon, a gas containing oxygen, nitrogen oxides, and carbon monoxide is passed through the catalyst, and oxygen is consumed by the first reaction in the catalyst. A method for treating a nitrogen oxide-containing gas by reducing the concentration of nitrogen oxides and reducing the concentration of nitrogen oxides by the second reaction with carbon dioxide that cannot be consumed. And an adjustment step of adjusting the predetermined concentration of carbon monoxide so as to satisfy the following formula (1).
[NOx] + 2 [02]≤[CO]  [NOx] + 2 [02] ≤ [CO]
但し、 [CO] :—酸化炭素濃度, [NOx] :窒素酸化物濃度, [02] :酸素濃度  However, [CO]:-carbon oxide concentration, [NOx]: nitrogen oxide concentration, [02]: oxygen concentration
[0014] 請求項 2に記載の発明は、一酸化炭素,窒素酸化物および酸素を含み、 HCを含 まないガスの処理方法であって、前記ガスに含まれる一酸ィ匕炭素、窒素酸化物およ び酸素の各濃度が下記の式 (2)を満足するよう調節する工程と、窒素酸化物を還元 可能な触媒に前記濃度比が調節された前記ガスを接触させる工程とを含むことを特 徴としている。 [0014] The invention according to claim 2 is a method for treating a gas containing carbon monoxide, nitrogen oxide, and oxygen, but not HC, wherein the carbon monoxide contained in the gas is oxidized with nitrogen. A step of adjusting the concentration of the product and oxygen to satisfy the following formula (2), and a step of bringing the gas having the adjusted concentration ratio into contact with a catalyst capable of reducing nitrogen oxides. It is characterized.
( [NOx] + 2[02]) /[CO]≤2. 0 - -- (2)  ([NOx] + 2 [02]) / [CO] ≤2. 0--(2)
(式(2)において、 [CO] , [NOx]および [02]はそれぞれ一酸ィ匕炭素濃度、窒素酸 化物濃度および酸素濃度を示し、 [O2] >0の条件を満たす。 )  (In Equation (2), [CO], [NOx] and [02] indicate the concentration of carbon monoxide, nitrogen oxide and oxygen, respectively, and satisfy the condition [O2]> 0.)
[0015] 請求項 3に記載の発明は、一酸化炭素,窒素酸化物および酸素を含み、 HCを含 まないガスの処理方法であって、前記ガスに含まれる一酸ィ匕炭素,窒素酸化物およ び酸素の各濃度を所定の関係に調節する調整工程と、一酸化炭素を酸素により酸 化する第一反応と窒素酸化物を一酸化炭素により還元する第二反応とを主反応とし て行う触媒に前記濃度が調節された前記ガスを接触させる接触工程とを含み、前記 調整工程は、前記触媒の一次側の一酸化炭素濃度が前記第一反応により前記触媒 内で低減される一酸化炭素濃度と前記第二反応により前記触媒内で低減される一 酸化炭素濃度とを加えた値とほぼ等し 、か、それ以上とすることを特徴として 、る。 [0016] 請求項 4に記載の発明は、一酸化炭素,窒素酸化物および酸素を含み、 HCを含 まないガスの処理方法であって、前記ガスに含まれる一酸ィ匕炭素,窒素酸化物およ び酸素の各濃度を所定の関係に調節する調整工程と、一酸化炭素を酸素により酸 化する第一反応と窒素酸化物を一酸化炭素により還元する第二反応を行う触媒に前 記濃度が調節された前記ガスを接触させる接触工程とを含み、前記調整工程は、前 記触媒の一次側の一酸化炭素濃度,窒素酸化物および酸素の各濃度を所定の関 係に調整することにより、窒素酸化物濃度を実 [0015] The invention according to claim 3 is a method for treating a gas containing carbon monoxide, nitrogen oxide and oxygen and not HC, wherein the carbon monoxide and nitrogen oxide contained in the gas are included. The main reaction is an adjustment process that adjusts the concentrations of substances and oxygen to a predetermined relationship, and a first reaction that oxidizes carbon monoxide with oxygen and a second reaction that reduces nitrogen oxides with carbon monoxide. And the contacting step of bringing the gas having the adjusted concentration into contact with the catalyst, wherein the adjusting step includes reducing the concentration of carbon monoxide on the primary side of the catalyst in the catalyst by the first reaction. The value is approximately equal to or higher than the value obtained by adding the carbon oxide concentration and the carbon monoxide concentration reduced in the catalyst by the second reaction. [0016] The invention according to claim 4 is a method for treating a gas containing carbon monoxide, nitrogen oxide and oxygen and not containing HC, the carbon monoxide contained in the gas, and nitrogen oxidation. Before the catalyst that performs the adjustment process for adjusting the concentrations of the product and oxygen to a predetermined relationship, the first reaction for oxidizing carbon monoxide with oxygen, and the second reaction for reducing nitrogen oxide with carbon monoxide. Contacting the gas with the concentration adjusted, and the adjusting step adjusts the carbon monoxide concentration, the nitrogen oxide concentration, and the oxygen concentration on the primary side of the catalyst to a predetermined relationship. The nitrogen oxide concentration
質的に零とするとするとともに一酸化炭素濃度を低減することを特徴としている。 発明の効果  It is characterized in that it is qualitatively zero and the carbon monoxide concentration is reduced. The invention's effect
[0017] この発明によれば、一酸化炭素濃度、窒素酸化物濃度および酸素濃度を調整する ことにより、有害物質である窒素酸ィ匕物の排出量を実質的に零とし、 COの排出量を 低減することができる。  [0017] According to the present invention, by adjusting the carbon monoxide concentration, the nitrogen oxide concentration, and the oxygen concentration, the emission amount of nitrogen oxides which are harmful substances is substantially zero, and the CO emission amount Can be reduced.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]この発明の燃焼装置の実施例 1を説明する概略構成図である。  FIG. 1 is a schematic configuration diagram illustrating Example 1 of a combustion apparatus according to the present invention.
[図 2]同実施例 1の図 2の II II線に沿う断面説明図である。  2 is a cross-sectional explanatory view taken along line II-II in FIG.
[図 3]同実施例 2の触媒の要部構成を示す正面図である。  FIG. 3 is a front view showing the main configuration of the catalyst of Example 2.
[図 4]同実施例 2の要部電気回路図である。  FIG. 4 is an electric circuit diagram of the main part of the second embodiment.
[図 5]この発明の燃焼装置の実施例 2を説明する概略構成図である。  FIG. 5 is a schematic configuration diagram illustrating Example 2 of the combustion apparatus of the present invention.
[図 6]同実施例 2の図 5の VI— VI線に沿う断面説明図である。  6 is a cross-sectional explanatory view taken along line VI-VI in FIG. 5 of Example 2. FIG.
[図 7]同実施例 2のダンバの制御特性を説明する図である。  FIG. 7 is a view for explaining control characteristics of the damper of the second embodiment.
[図 8]同実施例 2のセンサの出力特性を説明する図である。  FIG. 8 is a view for explaining output characteristics of the sensor of Example 2.
[図 9]前記実施例 1および実施例 2の変形例を説明する図である。  FIG. 9 is a view for explaining a modification of the first embodiment and the second embodiment.
符号の説明  Explanation of symbols
[0019] 1 触媒 [0019] 1 catalyst
2 ガス  2 Gas
3 パーナ  3 Pana
4 水管 (吸熱手段) 発明を実施するための最良の形態 4 Water pipe (heat absorption means) BEST MODE FOR CARRYING OUT THE INVENTION
[0020] つぎに、この発明の実施の形態について説明する。この発明の実施の形態を説 明する前に、本出願において使用する用語について説明する。ガスは、燃焼反応中 (燃焼過程)のガスをいい、触媒通過中のガスを含む。排ガスは、燃焼反応が完結し たガスである。  Next, embodiments of the present invention will be described. Before describing the embodiments of the present invention, terms used in the present application will be described. The gas refers to a gas during a combustion reaction (combustion process) and includes a gas passing through a catalyst. The exhaust gas is a gas that has completed the combustion reaction.
[0021] つぎに、この発明の実施の形態について説明する。この発明は、特に、小型貫流ボ イラなどの水管ボイラ,給湯器,吸収式冷凍機の再生器などの燃焼機器 (熱機器また は燃焼装置と称しても良い。 )に好適に実施される。  Next, an embodiment of the present invention will be described. The present invention is particularly preferably applied to combustion equipment (also referred to as thermal equipment or combustion equipment) such as a water tube boiler such as a small once-through boiler, a water heater, or a regenerator of an absorption chiller.
[0022] (処理方法の実施の形態 1)  (Embodiment 1 of processing method)
この処理方法の実施の形態 1は、一酸ィ匕炭素を酸化させる第一反応と窒素酸ィ匕物 を一酸ィ匕炭素により還元させる第二反応とを生じる触媒を用い、酸素,窒素酸化物 および一酸化炭素を含むガスを前記触媒へ通過させ、前記触媒内にて前記第一反 応により酸素を消費して一酸ィ匕炭素濃度を低減し、消費しきれない一酸ィ匕炭素によ り前記第二反応によって窒素酸化物濃度を低減する窒素酸化物含有ガスの処理方 法であって、酸素,窒素酸化物および一酸化炭素のそれぞれの所定濃度が下記の 式(1)を満たすように調整する調整工程を含むことを特徴とする窒素酸化物含有ガス の処理方法である。  Embodiment 1 of this treatment method uses a catalyst that generates a first reaction that oxidizes monoxide and carbon and a second reaction that reduces nitrogen oxide by monoxide and carbon, and oxidizes oxygen and nitrogen. And a gas containing carbon monoxide is passed through the catalyst, and oxygen is consumed by the first reaction in the catalyst to reduce the concentration of carbon monoxide and carbon, which cannot be consumed. In this method, the nitrogen oxide concentration is reduced by the second reaction, and the predetermined concentrations of oxygen, nitrogen oxide, and carbon monoxide satisfy the following formula (1): It is the processing method of the nitrogen oxide containing gas characterized by including the adjustment process adjusted so that it may satisfy | fill.
[NOx] + 2 [02]≤[CO]  [NOx] + 2 [02] ≤ [CO]
但し、 [CO] :—酸化炭素濃度, [NOx] :窒素酸化物濃度, [02] :酸素濃度  However, [CO]:-carbon oxide concentration, [NOx]: nitrogen oxide concentration, [02]: oxygen concentration
[0023] この処理方法の実施の形態 1においては、前記触媒の一次側の前記ガスにおける 酸素,窒素酸化物および一酸化炭素の濃度比は、前記式(1)を満たすように制御さ れる。その後、前記触媒により一酸化炭素が酸化され、窒素酸化物が還元される。そ の結果、前記ガス中の窒素酸ィ匕物の排出量が 5ppm以下の零に近い値に低減される 。また、一酸ィ匕炭素の排出量が低減される。 In Embodiment 1 of this treatment method, the concentration ratio of oxygen, nitrogen oxide, and carbon monoxide in the gas on the primary side of the catalyst is controlled so as to satisfy the formula (1). Thereafter, carbon monoxide is oxidized by the catalyst, and nitrogen oxides are reduced. As a result, the discharge amount of nitrogen oxides in the gas is reduced to a value close to zero of 5 ppm or less. In addition, carbon monoxide emission is reduced.
[0024] この低減作用は、つぎのようにして行われると考えられる。前記触媒では、主反応と して、一酸化炭素を酸化させる第一反応と窒素酸化物を一酸化炭素により還元させ る第二反応とが生じている。そして、前記触媒における反応 (触媒反応)おいて、酸 素存在下では、前記第一反応が前記第二反応よりも優位であり、前記第一反応に基 づき一酸化炭素は、酸素により消費されて、濃度調整された後、前記第二反応により 窒素酸化物を還元する。この説明は、簡略ィ匕したものである。実際は、前記第一反応 は、前記第二反応と競合反応であるが、一酸化炭素と酸素との反応が酸素存在下に おいて前記第二反応と比較し見かけ上速く起こるため、第一段階で一酸ィヒ炭素 (第 一反応)が行われ、第二段階で窒素酸化物が還元 (第二反応)されると考えられる。 [0024] This reduction action is considered to be performed as follows. In the catalyst, as the main reaction, a first reaction for oxidizing carbon monoxide and a second reaction for reducing nitrogen oxide with carbon monoxide are generated. In the reaction in the catalyst (catalytic reaction), in the presence of oxygen, the first reaction is superior to the second reaction. Subsequently, carbon monoxide is consumed by oxygen, and after the concentration is adjusted, nitrogen oxides are reduced by the second reaction. This description is simplified. Actually, the first reaction is a competitive reaction with the second reaction, but the reaction between carbon monoxide and oxygen occurs apparently faster than the second reaction in the presence of oxygen. It is thought that carbon monoxide (first reaction) is carried out in step 1, and nitrogen oxides are reduced (second reaction) in the second stage.
[0025] 要するに、前記触媒において、酸素の存在下では、 CO+ lZ202→C02なる前 記第一反応により、酸素が消費され、残りの COを用いて、 2CO + 2NO→N2 + 2C 02なる前記第二反応により、窒素酸化物を還元して、排出窒素酸化物濃度を低減 する。  In short, in the catalyst, in the presence of oxygen, oxygen is consumed by the first reaction of CO + lZ202 → C02, and the remaining CO is used for the second reaction of 2CO + 2NO → N2 + 2C02. Nitrogen oxides are reduced by two reactions to reduce the concentration of exhausted nitrogen oxides.
[0026] ここで、前記式(1)における [NOx]は、一酸化窒素濃度: [NO]と二酸化窒素濃度 : [N02]との合計濃度である。前記の反応式の説明において、 NOxを用いることなく 、 NOを用いているのは、高温度場での生成窒素酸化物の組成は、主成分が NOで あり、 N02は、数%に過ぎないので、近似的に説明することができるからである。 NO 2は、存在しても NOと同様に COにより還元されると考えられる。  [0026] Here, [NOx] in the formula (1) is the total concentration of the nitric oxide concentration: [NO] and the nitrogen dioxide concentration: [N02]. In the description of the above reaction formula, NO is used without using NOx. The composition of the generated nitrogen oxide in a high temperature field is NO as the main component, and N02 is only a few percent. This is because it can be described approximately. NO 2 is thought to be reduced by CO in the same way as NO.
[0027] 前記([NOx] + 2 [02])Z [CO]の値 (濃度比の値) 1の場合は、理論上は、前記 触媒から排出される酸素濃度,窒素酸化物濃度および一酸化炭素濃度を零とするこ とができる。しかしながら、実験上は、僅かに一酸ィ匕炭素が排出されることが分力つて いる。そして、 [NOx] + 2[02])Z[CO] = lは、実験結果に基づき、前記第一反応 および第二反応力も理論的に導き出したものである。  [0027] The value of ([NOx] + 2 [02]) Z [CO] (concentration ratio value) In the case of 1, theoretically, the oxygen concentration, nitrogen oxide concentration and The carbon oxide concentration can be made zero. However, in the experiment, it is a component that a small amount of carbon monoxide is emitted. [NOx] +2 [02]) Z [CO] = 1 is theoretically derived from the first reaction and the second reaction force based on the experimental results.
[0028] 前記濃度比の値が 1よりも小さい場合は、一酸化炭素の濃度が前記窒素酸化物の 還元に必要な濃度以上に存在するので、排出酸素濃度が零で、前記触媒通過後の ガス中に一酸ィ匕炭素が残留する。この残留一酸ィ匕炭素を酸ィ匕する酸ィ匕手段を更に 設けることが好ましい。この酸化手段は、前記触媒と別個の触媒を設け、酸素を投入 して一酸ィ匕炭素を酸ィ匕するように構成することができる。発生源としては、焼却炉や ジェットタービンなどとすることができる。  [0028] When the value of the concentration ratio is less than 1, the concentration of carbon monoxide is higher than the concentration necessary for the reduction of the nitrogen oxides, so the exhaust oxygen concentration is zero and the concentration after passing through the catalyst Carbon monoxide and carbon remain in the gas. It is preferable to further provide an acid means for acidifying the residual carbon monoxide. The oxidizing means can be configured to provide a catalyst separate from the catalyst and to add oxygen to acidify carbon monoxide. The source can be an incinerator or jet turbine.
[0029] 前記調整工程は、好ましくは、酸素,窒素酸化物および一酸化炭素を含むガスを 生成するパーナなどの生成源において、かつ酸素,窒素酸化物および一酸化炭素 の濃度比を酸素,窒素酸ィ匕物および一酸ィ匕炭素の発生過程にぉ 、て調整するよう に構成するが、これに限定されるものではなぐ前記発生源と前記触媒との間におい て前記濃度比を調整するように構成することができる。前者の場合、前記発生源と別 に前記濃度比の調整手段を設ける必要がな 、と 、う効果を奏する。 [0029] The adjustment step is preferably performed in a generation source such as a panner that generates a gas containing oxygen, nitrogen oxides, and carbon monoxide, and the concentration ratio of oxygen, nitrogen oxides, and carbon monoxide is changed to oxygen, nitrogen. Adjust the generation process of acids and carbon monoxide However, the present invention is not limited to this, and the concentration ratio can be adjusted between the generation source and the catalyst. In the former case, there is an effect that it is not necessary to provide a means for adjusting the concentration ratio separately from the generation source.
[0030] 前記触媒は、前記ガス中の前記窒素酸化物を還元する機能を有する触媒で、通気 性を有する基材に触媒活性物質を塗布した構成とする。前記基材としては、ステンレ スなどの金属,セラミックが用いられ、ガスとの接触面積を広くするような表面処理が 施される。触媒活性物質としては、一般的に白金が用いられるが、実施に応じて、白 金に代表される貴金属 (Ag, Au, Rh, Ru, Pt, Pd)または金属酸ィ匕物を用いること ができる。  [0030] The catalyst is a catalyst having a function of reducing the nitrogen oxide in the gas, and has a configuration in which a catalytically active substance is applied to a base material having air permeability. As the substrate, a metal such as stainless steel or a ceramic is used, and a surface treatment is performed so as to widen the contact area with the gas. Platinum is generally used as the catalytically active material, but depending on the implementation, noble metals such as white gold (Ag, Au, Rh, Ru, Pt, Pd) or metal oxides may be used. it can.
[0031] (処理方法の実施の形態 2)  [0031] (Second Embodiment of Processing Method)
この発明は、つぎの処理方法の実施の形態 2を含む。この実施の形態 2は、一酸ィ匕 炭素,窒素酸化物および酸素を含み、 HCを含まないガスの処理方法であって、前 記ガスに含まれる一酸化炭素、窒素酸化物および酸素の各濃度が下記の式(2)を 満足するよう調節  The present invention includes Embodiment 2 of the following processing method. Embodiment 2 is a method for treating a gas containing carbon monoxide, carbon oxide, nitrogen oxide, and oxygen but not HC, each of carbon monoxide, nitrogen oxide, and oxygen contained in the gas. Adjust the concentration to satisfy the following formula (2)
する工程と、窒素酸化物を還元可能な触媒に前記濃度比が調節された前記ガスを 接触させる工程とを含むことを特徴としている。  And a step of bringing the gas whose concentration ratio has been adjusted into contact with a catalyst capable of reducing nitrogen oxides.
( [NOx] + 2[02]) /[CO]≤2. 0 - -- (2)  ([NOx] + 2 [02]) / [CO] ≤2. 0--(2)
(式(2)において、 [CO] , [NOx]および [02]はそれぞれ一酸ィ匕炭素濃度、窒素酸 化物濃度および酸素濃度を示し、 [O2] >0の条件を満たす。 )  (In Equation (2), [CO], [NOx] and [02] indicate the concentration of carbon monoxide, nitrogen oxide and oxygen, respectively, and satisfy the condition [O2]> 0.)
[0032] この実施の形態 2における式(2)の濃度比の値 2. 0は、実験的に得られた値である 力 つぎの理由によると考えられる。前記触媒中で生じている反応は、完全に解明さ れておらず、前記第一反応および前記第二反応の主反応以外に、副反応が生じて いることが考えられる。この副反応の一つとして、一酸ィ匕炭素濃度が高い場合に、蒸 気と一酸ィ匕炭素との反応により水素が生じ、この水素により窒素酸ィ匕物および酸素が 還元される反応が考えられる。  [0032] The value 2.0 of the concentration ratio in the formula (2) in the second embodiment is considered to be an experimentally obtained value. The reaction occurring in the catalyst has not been completely elucidated, and it is considered that a side reaction has occurred in addition to the main reaction of the first reaction and the second reaction. As one of the side reactions, when the concentration of carbon monoxide and carbon is high, hydrogen is generated by the reaction between steam and monoxide and carbon, and this hydrogen reduces nitrogen oxide and oxygen. Can be considered.
[0033] この実施の形態 2における「HCを含まない」とは、前記発生源からのガス中に窒素 酸化物を還元する HCが実質的に含まれて 、な 、 (測定限界以下である)ことを意味 している。 [0034] このように、前記濃度比の値は、前記触媒中の主反応以外の反応により、若干の変 動を生ずることが考えられる。したがって、生じていることが確実な前記主反応をべ一 スに考えると、前記実施の形態(1)および(2)は、つぎの処理方法の実施の形態 3に て表現することができる。 [0033] In this Embodiment 2, "not containing HC" means that the gas from the source substantially contains HC that reduces nitrogen oxides (below the measurement limit). It means that. [0034] Thus, the value of the concentration ratio may be slightly changed by reactions other than the main reaction in the catalyst. Therefore, considering the main reaction that is surely occurring, Embodiments (1) and (2) can be expressed by Embodiment 3 of the following processing method.
[0035] すなわち、この実施の形態 3は、一酸化炭素,窒素酸化物および酸素を含み、 HC を含まないガスの処理方法であって、前記ガスに含まれる一酸ィ匕炭素,窒素酸化物 および酸素の各濃度を所定の関係に調節する調整工程と、一酸化炭素を酸素により 酸化する第一反応と窒素酸化物を一酸化炭素により還元する第二反応とを主反応と して行う触媒に前記濃度が調節された前記ガスを接触させる接触工程とを含み、前 記調整工程は、前記触媒の一次側の一酸化炭素濃度が前記第一反応により前記触 媒内で低減される一酸化炭素濃度と前記第二反応により前記触媒内で低減される 一酸ィ匕炭素濃度とを加えた値とほぼ等し ヽか、それ以上とすることを特徴とする。  [0035] That is, Embodiment 3 is a method for treating a gas containing carbon monoxide, nitrogen oxides and oxygen and not containing HC, wherein the carbon monoxide and nitrogen oxides contained in the gas are used. And the adjustment process for adjusting the respective concentrations of oxygen and oxygen to a predetermined relationship, and the main reaction of the first reaction for oxidizing carbon monoxide with oxygen and the second reaction for reducing nitrogen oxide with carbon monoxide. And the contacting step of contacting the gas with the adjusted concentration, wherein the adjusting step comprises reducing the carbon monoxide concentration on the primary side of the catalyst in the catalyst by the first reaction. It is characterized by being approximately equal to or higher than the value obtained by adding the carbon concentration and the carbon monoxide concentration reduced in the catalyst by the second reaction.
[0036] この実施の形態 3においては、前記主反応のみに注目して、「前記触媒の一次側 の一酸化炭素濃度が前記第一反応により前記触媒内で低減される一酸化炭素濃度 と前記第二反応により前記触媒内で低減される一酸ィヒ炭素濃度とを加えた値とほぼ 等しいか、それ以上とする」と表現している。したがって、仮に前記式(2)において、 副反応により濃度比の値が若干変動して前記式 (2)を満たさない実施の形態もこの 実施の形態 3に包含されるものである。  In the third embodiment, focusing on only the main reaction, “the carbon monoxide concentration on the primary side of the catalyst is reduced in the catalyst by the first reaction and It is approximately equal to or greater than the sum of the carbon monoxide concentration reduced in the catalyst by the second reaction. Therefore, an embodiment in which the concentration ratio in the equation (2) slightly fluctuates due to a side reaction and does not satisfy the equation (2) is also included in this embodiment 3.
[0037] また、この発明の処理方法は、つぎの燃焼方法に適用することができる。この燃焼 方法の実施の形態 1〜4について説明する。  [0037] Further, the treatment method of the present invention can be applied to the following combustion method. Embodiments 1 to 4 of this combustion method will be described.
[0038] (燃焼方法の実施の形態 1)  [0038] (Embodiment 1 of combustion method)
燃焼方法の実施の形態 1は、燃料へ空気を供給して燃焼させる工程と、前記燃焼 により発生する HCを含まないガス中の窒素酸ィ匕物を一酸ィ匕炭素により還元可能な 触媒と接触させる工程と、前記触媒と接触した前記ガスを排出する工程とを含み、前 記触媒と接触する前の前記ガスにおける一酸化炭素濃度が窒素酸化物濃度とほぼ 等しいかこれよりも高くなるように前記燃焼工程における空気比を設定空気比に調節 することを特徴とする燃焼方法である。  Embodiment 1 of the combustion method includes a step of supplying air to a fuel and combusting, and a catalyst capable of reducing nitrogen oxides in a gas not containing HC generated by the combustion with carbon monoxide. A step of contacting and a step of discharging the gas in contact with the catalyst, so that the concentration of carbon monoxide in the gas before contacting with the catalyst is substantially equal to or higher than the concentration of nitrogen oxides. Further, the combustion method is characterized in that the air ratio in the combustion process is adjusted to a set air ratio.
[0039] (燃焼方法の実施の形態 2) また、燃焼方法の実施の形態 2は、燃料へ空気を供給して連続的に燃焼させるェ 程と、前記燃焼により発生する HCを含まないガス中の一酸ィ匕炭素を酸素により酸ィ匕 する第一反応と窒素酸化物を一酸化炭素により還元する第二反応とを行う触媒と接 触させる工程と、前記触媒と接触した前記ガスを排出する工程とを含み、前記触媒と 接触する前の前記ガスにおける一酸化炭素濃度が前記第一反応により前記触媒内 で低減される一酸化炭素濃度と前記第二反応により前記触媒内で低減される一酸 化炭素濃度とを加えた値とほぼ等しいか、それ以上となるように前記燃焼工程におけ る空気比を設定空気比に調節することを特徴とする燃焼方法である。 [0039] (Embodiment 2 of combustion method) In the second embodiment of the combustion method, air is supplied to the fuel and continuously burned, and the monoxide and carbon in the gas not containing HC generated by the combustion is oxidized with oxygen. A step of contacting with a catalyst for performing a first reaction to be performed and a second reaction for reducing nitrogen oxides with carbon monoxide, and a step of discharging the gas in contact with the catalyst, before contacting with the catalyst. The carbon monoxide concentration in the gas is approximately equal to a value obtained by adding the carbon monoxide concentration reduced in the catalyst by the first reaction and the carbon monoxide concentration reduced in the catalyst by the second reaction. The combustion method is characterized in that the air ratio in the combustion process is adjusted to a set air ratio so as to be equal to or greater than that.
[0040] (燃焼方法の実施の形態 3) [0040] (Third embodiment of combustion method)
また、燃焼方法の実施の形態 3は、燃料へ空気を供給して連続的に燃焼させるェ 程と、前記燃焼により発生する HCを含まないガス中の窒素酸ィ匕物を還元可能な触 媒と接触させる工程と、前記触媒と接触した前記ガスを排出する工程とを含み、前記 触媒と接触する前の前記ガスにおける一酸化炭素濃度、窒素酸化物濃度および酸 素濃度が下記の式 (2)で示される濃度比を満足するよう、前記燃焼工程における空 気比を設定空気比に調節することを特徴とする燃焼方法である。  Further, Embodiment 3 of the combustion method includes a step of supplying air to the fuel and continuously burning it, and a catalyst capable of reducing nitrogen oxides in the gas not containing HC generated by the combustion. And the step of discharging the gas in contact with the catalyst, the carbon monoxide concentration, the nitrogen oxide concentration, and the oxygen concentration in the gas before contacting with the catalyst are represented by the following formula (2): The combustion method is characterized in that the air ratio in the combustion process is adjusted to a set air ratio so as to satisfy the concentration ratio indicated by (2).
( [NOx] + 2[02]) /[CO]≤2. 0 - -- (2)  ([NOx] + 2 [02]) / [CO] ≤2. 0--(2)
(式(2)において、 [CO] , [NOx]および [02]はそれぞれ一酸ィ匕炭素濃度、窒素酸 化物濃度および酸素濃度を示し、 [O2] >0の条件を満たす。 )  (In Equation (2), [CO], [NOx] and [02] indicate the concentration of carbon monoxide, nitrogen oxide and oxygen, respectively, and satisfy the condition [O2]> 0.)
[0041] (燃焼方法の実施の形態 4)  [0041] (Embodiment 4 of combustion method)
さらに、燃焼方法の実施の形態 4は、前記燃焼方法の実施の形態 1〜3において、 前記設定空気比を 1. 0〜1. 0005としたことを特徴とする燃焼方法である。  Further, Embodiment 4 of the combustion method is a combustion method characterized in that, in Embodiments 1 to 3 of the combustion method, the set air ratio is set to 1.0 to 1.0005.
[0042] また、この発明の処理方法は、つぎの燃焼装置に適用することができる。この燃焼 装置の実施の形態 1〜5について説明する。  [0042] Further, the processing method of the present invention can be applied to the following combustion apparatus. Embodiments 1 to 5 of this combustion apparatus will be described.
[0043] (燃焼装置の実施の形態 1)  (Embodiment 1 of the combustion apparatus)
この燃焼装置の実施の形態 1は、燃料へ空気を供給して連続的に燃焼させる燃焼 部 (パーナ)と、前記燃焼部からの HCを含まないガスを排出するためのガス排出路と 、前記ガス排出路内に配置された、前記ガスが接触可能でありかつ窒素酸ィヒ物を一 酸化炭素により還元可能な触媒と、前記ガス排出路において、前記触媒と接触する 前の前記ガスにおける一酸ィ匕炭素濃度が窒素酸ィ匕物濃度とほぼ等しいかこれよりも 高くなるよう前記燃焼工程における空気比を設定空気比に調整する空気比調整手 段とを備えたことを特徴とする燃焼装置である。 Embodiment 1 of this combustion apparatus includes a combustion section (parner) that continuously burns by supplying air to fuel, a gas discharge path for discharging gas that does not contain HC from the combustion section, and A catalyst disposed in the gas discharge path, which can contact the gas and capable of reducing nitrogen oxides by carbon monoxide, and contacts the catalyst in the gas discharge path An air ratio adjusting means for adjusting the air ratio in the combustion process to a set air ratio so that the concentration of carbon monoxide in the previous gas is substantially equal to or higher than the concentration of nitrogen oxides It is a combustion apparatus characterized by this.
[0044] (燃焼装置の実施の形態 2)  (Embodiment 2 of the combustion apparatus)
この燃焼装置の実施の形態 2は、燃料へ空気を供給して連続的に燃焼させる燃焼 部と、前記燃焼部力 の HCを含まないガスを排出するためのガス排出路と、前記ガ ス排出路内に配置された、前記ガスが接触可能でありかつ一酸ィ匕炭素を酸素により 酸化する第一反応と窒素酸化物を一酸化炭素により還元する第二反応とを行う触媒 と、前記ガス排出路において、前記触媒と接触する前の前記ガスにおける一酸化炭 素濃度が前記第一反応により前記触媒内で低減される一酸化炭素濃度と前記第二 反応により前記触媒内で低減される一酸ィ匕炭素濃度とを加えた値とほぼ等しいか、 それ以上となるように前記燃焼部における空気比を設定空気比に調整する空気比調 整手段とを備えたことを特徴とする燃焼装置である。  Embodiment 2 of this combustion apparatus includes a combustion section that supplies air to fuel and continuously burns, a gas discharge path for discharging gas that does not contain HC of the combustion section power, and the gas discharge A catalyst disposed in a passage, which is capable of contacting the gas and that performs a first reaction for oxidizing carbon monoxide with oxygen and a second reaction for reducing nitrogen oxide with carbon monoxide; and the gas In the exhaust path, the carbon monoxide concentration in the gas before contacting the catalyst is reduced in the catalyst by the first reaction and reduced in the catalyst by the second reaction. Combustion apparatus comprising air ratio adjusting means for adjusting the air ratio in the combustion section to a set air ratio so as to be approximately equal to or greater than a value obtained by adding the acid and carbon concentration. It is.
[0045] (燃焼装置の実施の形態 3)  (Embodiment 3 of the combustion apparatus)
この燃焼装置の実施の形態 3は、燃料へ空気を供給して連続的に燃焼させる燃焼 部と、前記燃焼部力 の HCを含まないガスを排出するためのガス排出路と、前記ガ ス排出路内に配置された、前記ガスが接触可能でありかつ窒素酸ィヒ物を還元可能な 触媒と、前記ガス  Embodiment 3 of this combustion apparatus includes a combustion section that continuously burns by supplying air to the fuel, a gas discharge passage for discharging gas that does not contain HC of the combustion section power, and the gas discharge A catalyst disposed in the channel that is in contact with the gas and capable of reducing nitrogen oxyhydride; and the gas
排出路において、前記触媒と接触する前の前記ガスにおける一酸化炭素濃度、窒 素酸化物濃度および酸素濃度が下記の式 (2)で示される濃度比を満足するよう、前 記燃焼部における空気比を設定空気比に調整する空気比調整手段とを備えたことを 特徴とする燃焼装置である。  In the exhaust passage, the air in the combustion section is set so that the carbon monoxide concentration, the nitrogen oxide concentration, and the oxygen concentration in the gas before contacting with the catalyst satisfy the concentration ratio represented by the following formula (2). An air ratio adjusting means for adjusting the ratio to a set air ratio.
( [NOx] + 2[02]) /[CO]≤2. 0 - -- (2)  ([NOx] + 2 [02]) / [CO] ≤2. 0--(2)
(式(2)において、 [CO] , [NOx]および [02]はそれぞれ一酸ィ匕炭素濃度、窒素酸 化物濃度および酸素濃度を示し、 [O2] >0の条件を満たす。 )  (In Equation (2), [CO], [NOx] and [02] indicate the concentration of carbon monoxide, nitrogen oxide and oxygen, respectively, and satisfy the condition [O2]> 0.)
[0046] (燃焼装置の実施の形態 4) [Embodiment 4 of Combustion Apparatus]
また、燃焼装置の実施の形態 4は、前記燃焼装置の実施の形態 1〜3において、前 記設定空気比を 1. 0〜1. 0005としたことを特徴とする燃焼装置である。 [0047] (燃焼装置の実施の形態 5) A combustion apparatus according to a fourth embodiment is a combustion apparatus characterized in that, in the first to third embodiments of the combustion apparatus, the set air ratio is set to 1.0 to 1.0005. (Embodiment 5 of the combustion apparatus)
また、燃焼装置の実施の形態 5は、前記燃焼装置の実施の形態 1〜4において、前 記パーナと前記触媒との間に吸熱体を設けたことを特徴とする燃焼装置である。  Further, Embodiment 5 of the combustion apparatus is a combustion apparatus characterized in that in Embodiments 1 to 4 of the combustion apparatus, an endothermic body is provided between the above-mentioned partner and the catalyst.
[0048] (燃焼装置の実施の形態 6)  (Embodiment 6 of the combustion apparatus)
この燃焼装置の実施の形態 6は、燃料へ空気を供給して連続的に燃焼させ、一酸 化炭素,窒素酸化物および酸素を含み、 HCを含まないガスを発生する燃焼部と、前 記燃焼部からの前記ガスを排出するためのガス排出路と、前記ガス排出路内に配置 された、前記ガスが接触可能でありかつ一酸ィ匕炭素を酸素により酸ィ匕し、窒素酸ィ匕 物を一酸化炭素により還元する触媒と、前記ガス排出路において、前記燃焼部にお ける空気比を設定空気比に調整する空気比調整手段とを備え、  Embodiment 6 of this combustion apparatus includes a combustion section that supplies air to fuel and continuously burns it to generate a gas that contains carbon monoxide, nitrogen oxides, and oxygen, but does not contain HC. A gas discharge path for discharging the gas from the combustion section; and the gas disposed in the gas discharge path, which is in contact with the gas, and acid-oxidizing carbon with oxygen, A catalyst for reducing waste by carbon monoxide; and an air ratio adjusting means for adjusting an air ratio in the combustion section to a set air ratio in the gas discharge path,
前記燃焼部は、前記空気比調整手段により前記設定空気比に調整したとき、前記 触媒の二次側の窒素酸化物濃度を実質的に零とする一酸化炭素,窒素酸化物およ び酸素の濃度比を得ることができるものであることを特徴とする燃焼装置である。  When the combustion ratio is adjusted to the set air ratio by the air ratio adjusting means, the concentration of nitrogen oxides, nitrogen oxides, and oxygen on the secondary side of the catalyst is substantially zero. The combustion apparatus is characterized in that a concentration ratio can be obtained.
[0049] (燃焼装置の実施の形態 7)  [0049] (Embodiment 7 of the combustion apparatus)
この燃焼装置の実施の形態 7は、燃焼装置の実施の形態 6において、前記設定空 気比が 1. 0〜1. 0005であることを特徴とする燃焼装置である。  Embodiment 7 of this combustion apparatus is the combustion apparatus according to Embodiment 6 of the combustion apparatus, wherein the set air ratio is 1.0 to 1.0005.
[0050] 前記の燃焼装置の実施の形態 1〜7における構成要素について説明する。前記バ ーナは、好ましくは、ガス燃料を予混合燃焼させる予混合パーナとする。前記触媒に て、前記第一反応および前記第二反応を効果的に生じさせるには、酸素,窒素酸化 物および一酸化炭素に関する前記(1) , (2)式で示すような濃度比が重要である。前 記バーナを予混合パーナとすることにより、前記設定空気比で前記濃度比を比較的 容易に得ることができる。しかしながら、前記触媒一次側のガス中における酸素,窒 素酸化物および一酸化炭素が均一に混合され、それぞれの濃度を前記所定濃度と する制御が可能であれば、予混合パーナ以外のパーナとすることができる。  [0050] Components in the first to seventh embodiments of the combustion apparatus will be described. The burner is preferably a premixing burner that premixes and burns gas fuel. In order for the catalyst to effectively cause the first reaction and the second reaction, concentration ratios as shown in the above formulas (1) and (2) regarding oxygen, nitrogen oxide, and carbon monoxide are important. It is. By using the pre-mixing burner as the burner, the concentration ratio can be obtained relatively easily with the set air ratio. However, if oxygen, nitrogen oxides, and carbon monoxide in the gas on the primary side of the catalyst are uniformly mixed and the respective concentrations can be controlled to the predetermined concentration, a non-premixed panner is used. be able to.
[0051] また、前記パーナは、一酸化炭素,窒素酸化物および酸素を含み、 HCを含まない ガスの発生源であり、空気比 1. 0〜1. 0005の低空気比となるように燃焼させること 力 Sできるものとする。このような低空気比により、排出濃度が零に近い低 NOxと低 CO に加えて省エネルギーが実現され、低公害で、省エネルギーの燃焼装置を提供する ことができる。 [0051] Further, the PANA is a gas generation source that contains carbon monoxide, nitrogen oxides, and oxygen, and does not contain HC, and burns so as to have a low air ratio of 1.0 to 1.0005. It is possible to make it S. With such a low air ratio, in addition to low NOx and low CO emissions that are close to zero, energy saving is realized, and a low pollution and energy saving combustion device is provided. be able to.
[0052] また、前記吸熱体は、燃焼装置がボイラの場合は、水管とし、再生器の場合は、吸 収液濃縮管とする。そして、前記吸熱体は、前記触媒へ流入するガス温度を前記触 媒の活性化温度近くに制御する機能をも有する。すなわち、ガス温度を前記第一反 応および前記第二反応を効果的に生じさせ、かつ温度による前記触媒の劣化を抑 制し、耐久性を考慮した温  [0052] Further, the heat absorber is a water pipe when the combustion device is a boiler, and an absorbing liquid concentrating pipe when it is a regenerator. The endothermic body also has a function of controlling the gas temperature flowing into the catalyst close to the activation temperature of the catalyst. That is, the gas temperature effectively causes the first reaction and the second reaction, suppresses deterioration of the catalyst due to temperature, and takes into consideration durability.
度に制御する。  Control every degree.
[0053] 前記空気比調整手段は、流量調整手段と、これを駆動する駆動手段と、この駆動 手段を制御する制御手段とを含んで構成される。前記流量調整手段は、前記パーナ の燃焼空気量および燃料量 、ずれか一方,または両方を変えることで両者の比率を 変え、前記パーナの空気比を調整するための手段である。前記流量調整手段を燃 焼空気量を変えるものとする場合には、好ましくは、ダンバ (弁の意味を含む)とする。 このダンバの構造としては、回転軸を中心に回転する弁体により流路の開度を変える 回転タイプのもの、流路の断面開口に対してスライドすることにより流路の開度を変え るスライドタイプのものとすることができる。  [0053] The air ratio adjusting means includes a flow rate adjusting means, a driving means for driving the flow rate adjusting means, and a control means for controlling the driving means. The flow rate adjusting means is a means for adjusting the air ratio of the burner by changing the ratio of both by changing one or both of the combustion air amount and fuel amount of the burner. When the flow rate adjusting means changes the amount of combustion air, it is preferably a damper (including the meaning of a valve). The structure of this damper is a rotary type that changes the opening degree of the flow path by a valve body that rotates around a rotating shaft, and a slide type that changes the opening degree of the flow path by sliding against the cross-sectional opening of the flow path. Can be.
[0054] 前記流量調整手段を燃焼空気量を変えるものとする場合には、好ましくは、これを 送風機と燃料供給手段との間の空気流路に設けるが、前記送風機の吸い込み口な ど前記送風機の吸い込み口側に設けることができる。  [0054] When the flow rate adjusting means changes the amount of combustion air, it is preferably provided in the air flow path between the blower and the fuel supply means, but the blower, such as the suction port of the blower, is provided. Can be provided on the inlet side.
[0055] 前記駆動手段は、好ましくは、前記流量調整手段の開度量を駆動量に応じて制御 でき、かつ単位時間当たりの駆動量を調整できるモータとする。この「開度量を駆動 量に応じて制御できる」とは、駆動量が決まれば、前記流量調整手段の開度を特定 の位置に停止制御できることを意味する。また、「単位時間当たりの駆動量を調整で きる」とは、位置制御の応答性を調整できることを意味する。  [0055] Preferably, the driving means is a motor capable of controlling the opening degree of the flow rate adjusting means according to the driving amount and adjusting the driving amount per unit time. “The amount of opening can be controlled in accordance with the amount of driving” means that when the amount of driving is determined, the opening of the flow rate adjusting means can be controlled to stop at a specific position. Further, “the drive amount per unit time can be adjusted” means that the responsiveness of the position control can be adjusted.
[0056] このモータは、好ましくは、ステッピングモータ (ステップモータと称することができる) とするが、ギヤモータ(ギヤドモータと称することができる。)やサーボモータとすること ができる。前記ステッピングモータとした場合は、前記駆動量が印可される駆動パル スであり、前記流量調整手段の開度位置を基準開度位置から駆動パルスの数に応じ た量だけ開閉移動して任意の目的とする停止位置に制御できる。また、前記ギヤモ ータまたは前記サーボモータとした場合は、前記駆動量が開閉駆動時間であり、前 記流量調整手段の開度位置を基準開度位置力 開閉駆動時間に応じた量だけ開 閉移動して任意の目的とする停止位置に制御できる。 [0056] This motor is preferably a stepping motor (which can be called a step motor), but can also be a gear motor (which can be called a geared motor) or a servo motor. When the stepping motor is used, it is a driving pulse to which the driving amount is applied, and the opening position of the flow rate adjusting means is opened and closed by an amount corresponding to the number of driving pulses from the reference opening position. The target stop position can be controlled. Also, the gear model If the motor or servo motor is used, the drive amount is the opening / closing drive time, and the opening position of the flow rate adjusting means can be freely opened and closed by an amount corresponding to the reference opening position force opening / closing drive time. The target stop position can be controlled.
[0057] 前記駆動手段は、前記パーナの空気比を検出するセンサにより、前記設定空気比 となるよう制御される。このセンサは、好ましくは、前記パーナの空気比を直接的に検 出する酸素濃度センサとする。この酸素濃度センサは、酸素を検出し、この検出値に より空気比を演算して求める。前記センサとしては、前記酸素濃度センサと別の空気 比を間接的に検出する一酸ィ匕炭素濃度センサとすることができる。この一酸化炭素 濃度センサは、一酸化炭素濃度を検出し、この検出値により空気比を演算して求め る。前記センサの取付位置は、好ましくは、前記触媒の二次側とするが、前記触媒の 下流側に排熱回収器を設けた場合は、この下流側とすることができる。  [0057] The driving means is controlled to be the set air ratio by a sensor that detects the air ratio of the panner. This sensor is preferably an oxygen concentration sensor that directly detects the air ratio of the panner. This oxygen concentration sensor detects oxygen and calculates the air ratio based on the detected value. The sensor may be a carbon monoxide concentration sensor that indirectly detects a different air ratio from the oxygen concentration sensor. This carbon monoxide concentration sensor detects the carbon monoxide concentration and calculates the air ratio based on the detected value. The mounting position of the sensor is preferably on the secondary side of the catalyst, but may be on the downstream side when an exhaust heat recovery device is provided on the downstream side of the catalyst.
[0058] 前記制御手段は、予め記憶した空気比制御プログラムに基づき、前記センサの検 出値を入力して、前記モータの駆動量を制御して、前記空気比を 1. 0〜1. 0005に 制御する。  [0058] Based on an air ratio control program stored in advance, the control means inputs the detection value of the sensor, controls the driving amount of the motor, and sets the air ratio to 1.0 to 1.0005. To control.
[0059] 前記空気比制御プログラムは、好ましくは、前記検出空気比(または検出酸素濃度 )と前記設定空気比 (設定酸素濃度)との差に応じて前記モータの単位時間当たり駆 動量 (駆動単位当たりの時間で表現することもできる。)を変える第一制御帯と、この 第一制御帯の外側において単位時間当たりの前記駆動量を固定の所定値とする第 二制御帯とを設けて、前記モータの駆動量を制御するように構成する。  [0059] The air ratio control program preferably has a driving amount (driving unit) per unit time of the motor according to a difference between the detected air ratio (or detected oxygen concentration) and the set air ratio (set oxygen concentration). A first control zone for changing the output) and a second control zone for setting the driving amount per unit time to a fixed predetermined value outside the first control zone, The driving amount of the motor is configured to be controlled.
実施例 1  Example 1
[0060] っ 、で、この発明の窒素酸化物含有ガスの処理方法を実施した燃焼装置の実施 例 1を図面に従い説明する。図 1は、同実施例 1の蒸気ボイラの縦断面の説明図であ り、図 2は、図 1の Π— II線に沿う断面図であり、図 3は、図 1の触媒を排ガスの流れ方 向から見た要部構成を示す図であり、図 4は、同実施例 1の要部電気回路図である。  [0060] Thus, Example 1 of a combustion apparatus that implements the method for treating a nitrogen oxide-containing gas according to the present invention will be described with reference to the drawings. Fig. 1 is an explanatory view of the vertical cross section of the steam boiler of Example 1, Fig. 2 is a cross sectional view taken along the line II-II of Fig. 1, and Fig. 3 shows the exhaust gas from the catalyst of Fig. 1. FIG. 4 is a diagram showing a main part configuration viewed from the flow direction, and FIG. 4 is a main part electric circuit diagram of the first embodiment.
[0061] この実施例 1のボイラは、燃焼により酸素,窒素酸化物および一酸化炭素を含み、 HCを含まな 、ガスを生成するパーナ 3と、このパーナ 3にて生成されるガスから吸熱 する吸熱手段としての内側水管 4, 4,…と、酸素,窒素酸化物および一酸化炭素を それぞれ所定濃度で含む前記吸熱手段通過後のガス 2が通過され、一酸化炭素を 酸化させる第一反応と窒素酸ィ匕物を一酸ィ匕炭素により還元させる第二反応とを生じ る触媒 1とを主要部として備えている。そして、前記触媒 1内において前記第一反応 により酸素を消費して一酸ィ匕炭素濃度を低減し、低減しきれない一酸ィ匕炭素により 前記第二反応によって窒素酸ィ匕物濃度を低減するように構成されている。 [0061] The boiler of the first embodiment contains oxygen, nitrogen oxides, and carbon monoxide by combustion, and does not contain HC, and generates heat from the gas generated by the gas generator 3 and the gas generated by the gas generator 3. The inner water pipes 4, 4,... As the endothermic means and the gas 2 after passing through the endothermic means each containing oxygen, nitrogen oxide and carbon monoxide at a predetermined concentration are passed to The main part is a catalyst 1 that generates a first reaction to be oxidized and a second reaction to reduce the nitrogen oxides with monoxide and carbon. Then, oxygen is consumed by the first reaction in the catalyst 1 to reduce the concentration of carbon monoxide and carbon, and the concentration of nitrogen oxides is reduced by the second reaction by carbon monoxide that cannot be reduced. Is configured to do.
[0062] 前記ボイラの全体構成を詳細に説明する。このボイラは、平面状の燃焼面 (予混合 気の噴出面)を有する完全予混合式 (全一次空気式)の前記パーナ 3および多数の 熱吸収用の前記水管 4, 4,…を有する缶体 5と、前記パーナ 3へ燃焼用空気を送る 送風機 6および給気通路 7と、ガス燃料供給管 8と、前記缶体 5から排出される排ガス を排出する排ガス通路 (通常「煙突」または「煙道」と称される。) 9とを備えている。前 記パーナ 3は、特許文献 1に記載のパーナと同様の構成のパーナが用いられる。  [0062] The overall configuration of the boiler will be described in detail. This boiler has a fully premixed (all primary air type) panner 3 having a planar combustion surface (premixed gas ejection surface) and a number of water pipes 4, 4,... For heat absorption. Body 5, a blower 6 and an air supply passage 7 that send combustion air to the panner 3, a gas fuel supply pipe 8, and an exhaust gas passage for discharging exhaust gas discharged from the can body 5 (usually “chimney” or “ It is called “the flue.”) As the above-mentioned PANA 3, a PANA having the same configuration as the one described in Patent Document 1 is used.
[0063] 前記缶体 5は、上部管寄せ 10および下部管寄せ 11を備え、この両管寄せ 10, 11 間に複数の前記各水管 4を配置している。図 2において、前記缶体 5の長手方向の 両側部に外側水管 12, 12,…を連結部材 13, 13,…で連結して構成した一対の水 管壁 14, 14を設け、この両水管壁 14, 14と前記上部管寄せ 10および下管寄せ 11 との間に前記パーナ 3からのガスがほぼ直線的に流通するガス通路 15を形成してい る。  The can body 5 includes an upper header 10 and a lower header 11, and a plurality of the water tubes 4 are arranged between the headers 10 and 11. In FIG. 2, a pair of water pipe walls 14, 14 configured by connecting outer water pipes 12, 12,... By connecting members 13, 13,. A gas passage 15 is formed between the pipe walls 14 and 14 and the upper header 10 and the lower header 11 so that the gas from the panner 3 flows almost linearly.
[0064] つぎに、前記各要素間の接続関係を説明する。図 1に示すように、前記ガス通路 1 5の一端には前記パーナ 3が設けられ、他端のガス出口 16には排ガス通路 9が接続 されている。前記パーナ 3には前記給気通路 7が接続され、前記給気通路 7には前 記ガス燃料供給管 8が燃料を前記給気通路 7内へ噴出するように接続されて!ヽる。 前記ガス燃料供給管 8には、燃料流量を調整する流量調整弁 17を備えている。前記 触媒 1は、前記排ガス通路 9の途中であって、約 120°C〜350°C程度の温度帯の位 置に配置されている。  [0064] Next, the connection relationship between the elements will be described. As shown in FIG. 1, the gas passage 15 is provided at one end with the PANA 3, and the gas outlet 16 at the other end is connected with an exhaust gas passage 9. The Pana 3 is connected to the air supply passage 7, and the gas fuel supply pipe 8 is connected to the air supply passage 7 so as to inject fuel into the air supply passage 7. The gas fuel supply pipe 8 is provided with a flow rate adjusting valve 17 for adjusting the fuel flow rate. The catalyst 1 is disposed in the middle of the exhaust gas passage 9 and in a temperature range of about 120 ° C. to 350 ° C.
[0065] 前記触媒 1は、一酸化炭素を酸化させる第一反応と窒素酸化物を一酸化炭素によ り還元させる第二反応とを生じるものである。具体的には、図 3に示すような構造のも ので、たとえば,つぎのようにして形成される。前記基材としてのステンレス製の平板 1 8および波板 19のそれぞれの表面に多数の微小凹凸を形成し、その表面に触媒活 性物質(図示省略)を塗布する。ついで、所定幅の前記平板 18および前記波板 19を 重ね合わせたうえで、螺旋状に卷回してロール状に形成している。このロール状のも のを側板 20にて包囲し固定して形成している。前記触媒活性物質としては、白金を 用いている。なお、図 3においては、前記平板 18および前記波板 19の一部のみを示 している。 [0065] The catalyst 1 generates a first reaction for oxidizing carbon monoxide and a second reaction for reducing nitrogen oxide with carbon monoxide. Specifically, it has a structure as shown in FIG. 3 and is formed, for example, as follows. A large number of minute irregularities are formed on the surfaces of the stainless steel flat plate 18 and the corrugated plate 19 as the base material, and a catalytically active material (not shown) is applied to the surfaces. Next, the flat plate 18 and the corrugated plate 19 having a predetermined width are connected. After being superposed, they are wound into a spiral shape to form a roll. This roll-shaped one is surrounded and fixed by a side plate 20. Platinum is used as the catalytically active substance. In FIG. 3, only a part of the flat plate 18 and the corrugated plate 19 is shown.
[0066] 前記触媒 1は、性能が劣化した場合に交換可能なように、前記排ガス通路 9に着脱 自在に装着される。  [0066] The catalyst 1 is detachably attached to the exhaust gas passage 9 so that it can be replaced when performance deteriorates.
[0067] さらに、この実施例 1には、前記触媒 1に流入する前のガス中の酸素,窒素酸化物 および一酸化炭素のそれぞれ濃度が、下記式(1)を満たすように調整する濃度調整 手段 21を備えている。  [0067] Further, in Example 1, the concentration adjustment is performed so that the concentrations of oxygen, nitrogen oxide, and carbon monoxide in the gas before flowing into the catalyst 1 satisfy the following formula (1): Means 21 are provided.
( [NOx] + 2 [02] ) / [CO]≤ 1  ([NOx] + 2 [02]) / [CO] ≤ 1
但し、 [CO] :—酸化炭素濃度, [NOx] :窒素酸化物濃度, [02] :酸素濃度 [0068] この濃度調整手段 21は、具体的には、空気比 1近傍で燃焼させるように調整を行う ようにかつほぼ [CO]: l lOOppm, [NOx]: lOOppm, [02]: 500ppmとなるように濃 度調整を行う。  However, [CO]:-carbon oxide concentration, [NOx]: nitrogen oxide concentration, [02]: oxygen concentration [0068] Specifically, the concentration adjusting means 21 is designed to burn near an air ratio of 1. Adjust the concentration so that it is adjusted to almost [CO]: l lOOppm, [NOx]: lOOppm, [02]: 500ppm.
[0069] この濃度調整手段 21は、前記パーナ 3と前記各水管 4および前記各水管 12からな る水管群と、空気比 1近傍の低空気比で前記パーナ 3を燃焼させる空気比調整手段 22と、第一酸素濃度検出器 23から構成される。  [0069] The concentration adjusting means 21 includes an air ratio adjusting means 22 for burning the parser 3 at a low air ratio in the vicinity of the air ratio 1 and a water pipe group including the parner 3, the water pipes 4 and the water pipes 12. And a first oxygen concentration detector 23.
[0070] 前記空気比調整手段 22は、図 4に示すように、前記触媒 1の下流側に設けた第二 酸素濃度検出 37と、この検出器 37の信号を入力して前記前記送風機 6の電動機 24 をインバータ制御する力、ダンバ(図示省略)により制御する制御器 25とから主構成 されている。  As shown in FIG. 4, the air ratio adjusting means 22 receives a second oxygen concentration detection 37 provided on the downstream side of the catalyst 1 and a signal from the detector 37 to input the air blower 6. The motor 24 is mainly composed of a power for controlling the inverter 24 and a controller 25 for controlling the motor 24 by a damper (not shown).
[0071] こうした前記濃度調整手段 21により、空気比 1近傍の低空気比で燃焼させ、前記触 媒 1へ流入するガス 2中の酸素,窒素酸化物および一酸化炭素のそれぞれ濃度が、 [CO]: l lOOppm, [NOx]: lOOppm, [02]: 500ppmにほぼ制御される。これらの濃 度は、種々の実験によるデータに基づき、実現されることが確認されている。  [0071] By the concentration adjusting means 21, the oxygen, nitrogen oxide, and carbon monoxide concentrations in the gas 2 that is burned at a low air ratio in the vicinity of the air ratio 1 and flows into the catalyst 1 are [CO ]: L lOOppm, [NOx]: lOOppm, [02]: Almost controlled to 500 ppm. These concentrations have been confirmed to be realized based on data from various experiments.
[0072] この濃度の関係を可能とするのは、低空気比領域では、空気比変化に対する窒素 酸ィ匕物の生成量がほぼ一定 (または変化が少ない)であるのに対して、酸素濃度を 変化させると一酸ィ匕炭素濃度が適度に変化し、調整可能なことに基づく。 [0073] 以上の構成の前記蒸気ボイラの概略動作は、以下の通りである。前記送風機 6から 供給される燃焼用空気 (外気)は、前記ガス燃料供給管 8から供給される燃料ガスと 前記給気通路 7内において予混合され、この予混合気は前記パーナ 3から前記缶体 5内へ向けて噴出される。予混合気は、着火手段(図示しない)により着火され、燃焼 する。この燃焼は、前記のように低空気比にて行われる。 [0072] This concentration relationship is possible because, in the low air ratio region, the amount of nitrogen oxides generated with respect to the air ratio change is almost constant (or little change), whereas the oxygen concentration This is based on the fact that the carbon monoxide concentration changes moderately and can be adjusted. [0073] The schematic operation of the steam boiler configured as described above is as follows. Combustion air (outside air) supplied from the blower 6 is premixed with the fuel gas supplied from the gas fuel supply pipe 8 in the supply passage 7, and this premixed gas is supplied from the banner 3 to the can. It is ejected toward the body 5. The premixed gas is ignited by an ignition means (not shown) and burned. This combustion is performed at a low air ratio as described above.
[0074] この燃焼に伴い生ずるガスは、上流側の水管群と交叉して冷却され、下流側の水 管群と熱交換して吸熱されて約 120°C〜350°Cのガスとなる。このガス 2は、前記触 媒 1にて、処理され、窒素酸ィ匕物濃度および一酸ィ匕炭素濃度をほぼ零とされた後、 前記排ガス通路 9から大気中へ排出される。一般的に、前記排ガス通路 9にはボイラ への給水を予熱する給水予熱器(図示省略)が設けられるが、前記触媒 1は、その設 置位置のガス 2温度が約 120°C〜350°Cとなるように、前記給水予熱器の上流また は下流に設けられる。  [0074] The gas generated by this combustion is cooled by intersecting with the upstream water tube group, and is heat-exchanged with the downstream water tube group to become a gas of about 120 ° C to 350 ° C. The gas 2 is treated with the catalyst 1 to reduce the nitrogen oxide concentration and the carbon monoxide concentration to substantially zero, and then is discharged from the exhaust gas passage 9 into the atmosphere. Generally, the exhaust gas passage 9 is provided with a feed water preheater (not shown) for preheating the feed water to the boiler, but the catalyst 1 has a gas 2 temperature of about 120 ° C. to 350 ° C. C is provided upstream or downstream of the feed water preheater.
[0075] 前記触媒 1での窒素酸化物および一酸化炭素の低減作用にっき説明する。酸素, 窒素酸化物および一酸化炭素の各濃度が調整されたガス 2を前記触媒 1へ通過させ る。すると、まず前記第一反応により、ガス 2中の一酸ィ匕炭素は、酸素により低減され 、濃度が窒素酸ィ匕物濃度とほぼ等しくなるように lOOppmに低減される。その後、前記 第二反応により、低減された一酸ィ匕炭素により窒素酸ィ匕物を還元して、窒素酸化物 を低減する。その結果、ガス 2中の窒素酸ィ匕物濃度および一酸ィ匕炭素濃度をほぼ零 に低減することができる。  [0075] The action of reducing nitrogen oxides and carbon monoxide in the catalyst 1 will be described in detail. Gas 2 with adjusted concentrations of oxygen, nitrogen oxides and carbon monoxide is passed through catalyst 1. Then, first, by the first reaction, the carbon monoxide in the gas 2 is reduced by oxygen and reduced to lOOppm so that the concentration is substantially equal to the nitrogen oxide concentration. Thereafter, in the second reaction, the nitrogen oxide is reduced by the reduced monoxide and carbon to reduce the nitrogen oxide. As a result, the concentration of nitrogen oxides and carbon monoxide in gas 2 can be reduced to almost zero.
[0076] また、前記各水管 4, 12中の水は、ガスとの熱交換により加熱され、蒸気化される。  [0076] The water in each of the water pipes 4 and 12 is heated and vaporized by heat exchange with the gas.
この蒸気は、前記上部管寄せ 10に接続される蒸気取出手段(図示しな ヽ)から蒸気 使用設備 (図示しな!ヽ)へ供給される。  This steam is supplied from a steam take-out means (not shown) connected to the upper header 10 to a steam using facility (not shown!).
[0077] この実施例 1によれば、窒素酸化物および一酸化炭素の有害物質をほぼ零とする ことができるとともに、空気比を 1近傍とする低空気比にて燃焼させるので、ボイラ効 率が高く  [0077] According to the first embodiment, harmful substances such as nitrogen oxides and carbon monoxide can be made substantially zero, and combustion is performed at a low air ratio in which the air ratio is close to 1. Therefore, boiler efficiency is reduced. Is high
、省エネルギーのボイラを提供することができる。  Can provide an energy-saving boiler.
実施例 2  Example 2
[0078] ついで、この発明を適用した燃焼装置の他の実施例 2を図面に従い説明する。以 下の説明において、実施例 1と同一の構成要素は、同じ符号を付して説明を省略す る。図 5は、本実施例 2の蒸気ボイラの縦断面の説明図であり、図 6は、図 5の VI— VI 線に沿う断面図であり、図 7は、本実施例 2のダンバの制御特性を説明する図であり 、図 8は、本実施例 2のセンサの出力特性図である。 Next, another embodiment 2 of the combustion apparatus to which the present invention is applied will be described with reference to the drawings. Less than In the following description, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. FIG. 5 is an explanatory diagram of a longitudinal section of the steam boiler of the second embodiment, FIG. 6 is a sectional view taken along the line VI-VI of FIG. 5, and FIG. 7 is a control of the damper of the second embodiment. FIG. 8 is a graph illustrating the output characteristics of the sensor according to the second embodiment.
[0079] まず、本実施例 2の蒸気ボイラについて説明する。この蒸気ボイラは、触媒 1と、バ ーナ 3と、缶体 5と、前記パーナ 3へガス燃料を供給する燃料供給手段 27と、前記バ ーナ 3へ燃焼空気を供給するとともに燃焼用空気および燃焼を予混合する燃焼空気 供給手段 28と、前記触媒 1の下流において酸素濃度を検出する酸素濃度検出器 37 と、この酸素濃度検出器 37などの信号を入力して前記燃料供給手段 27および前記 燃焼空気供給手段 28などを制御する制御器 25とを主要部として備えている。  [0079] First, the steam boiler according to the second embodiment will be described. This steam boiler includes a catalyst 1, a burner 3, a can 5, a fuel supply means 27 for supplying gas fuel to the burner 3, a combustion air to the burner 3 and a combustion air. And a combustion air supply means 28 for premixing combustion, an oxygen concentration detector 37 for detecting the oxygen concentration downstream of the catalyst 1, and a signal from the oxygen concentration detector 37 and the like to input the fuel supply means 27 and A controller 25 for controlling the combustion air supply means 28 and the like is provided as a main part.
[0080] 排ガス通路 9は水平部 29と垂直部 30とを含み、前記水平部 29には、前記触媒 1が 装着されている。前記垂直部 30には、前記触媒 1の下流側に位置するように排熱回 収器としての給水予熱器 31装着され、前記触媒 1および前記給水予熱器 31の間に 前記酸素濃度検出器 37が配置されている。  The exhaust gas passage 9 includes a horizontal portion 29 and a vertical portion 30, and the catalyst 1 is attached to the horizontal portion 29. A feed water preheater 31 as an exhaust heat collector is attached to the vertical portion 30 so as to be positioned downstream of the catalyst 1, and the oxygen concentration detector 37 is interposed between the catalyst 1 and the feed water preheater 31. Is arranged.
[0081] 前記燃料供給手段 27は、ガス燃料供給管 8と、流量調整弁 17とを含んで構成され ている。前記流量調整弁 17は、燃料供給量を高燃焼用流量と低燃焼用流量とに制 御する機能を有する。  The fuel supply means 27 includes a gas fuel supply pipe 8 and a flow rate adjustment valve 17. The flow rate adjusting valve 17 has a function of controlling the fuel supply amount to a high combustion flow rate and a low combustion flow rate.
[0082] 前記燃焼空気供給手段 27は、送風機 6と、給気通路 7と、この給気通路 7を流れる 燃焼空気量を調整することで前記パーナ 3の空気比を調整する空気流量調整手段 3 2を含んで構成されている。  The combustion air supply means 27 includes a blower 6, an air supply passage 7, and an air flow rate adjustment means 3 that adjusts the air ratio of the burner 3 by adjusting the amount of combustion air flowing through the air supply passage 7. Consists of two.
[0083] 前記空気流量調整手段 32は、前記給気通路 7の開度 (流路断面積)を調整するダ ンパ 33と、このダンバ 33の開度位置を調整するためのダンバ位置調整装置 34とを 含んで構成されている。このダンバ位置調整装置 34は、前記ダンバ 33を駆動するス テツビングモータ(図示省略)を含んで混成されて 、る。  [0083] The air flow rate adjusting means 32 includes a damper 33 for adjusting the opening degree (flow passage sectional area) of the air supply passage 7, and a damper position adjusting device 34 for adjusting the opening position of the damper 33. It is comprised including. The damper position adjusting device 34 includes a stepping motor (not shown) that drives the damper 33 and is hybridized.
[0084] 前記制御器 25は、予め記憶した空気比制御プログラムにより、前記酸素濃度検出 器 37の検出信号に基づき、前記パーナ 3の空気比が設定空気比となるように (第一 制御条件)、かっこの設定空気比において前記触媒 1の一次側のガス 2の濃度比が 次式 (2)を満たすように (第二制御条件)、前記モータを制御するように構成されて!、 る。 [0084] Based on the detection signal from the oxygen concentration detector 37, the controller 25 uses the air ratio control program stored in advance so that the air ratio of the banner 3 becomes the set air ratio (first control condition). In the set air ratio of parentheses, the concentration ratio of the gas 1 on the primary side of the catalyst 1 satisfies the following formula (2) (second control condition), and is configured to control the motor! The
( [NOx] + 2[02]) /[CO]≤2. 0 - -- (2)  ([NOx] + 2 [02]) / [CO] ≤2. 0--(2)
(式(2)において、 [CO] , [NOx]および [02]はそれぞれ一酸ィ匕炭素濃度、窒素酸 化物濃度および酸素濃度を示し、 [O2] >0の条件を満たす。 )  (In Equation (2), [CO], [NOx] and [02] indicate the concentration of carbon monoxide, nitrogen oxide and oxygen, respectively, and satisfy the condition [O2]> 0.)
[0085] この実施例 2においては、直接制御しているのは、前記第一制御条件であり、この 第一制御条件を満たすことにより、自動的に前記第二制御条件が満たされるように構 成している。 In Example 2, it is the first control condition that is directly controlled, and the second control condition is automatically satisfied by satisfying the first control condition. It is made.
[0086] 前記第一条件は、これが満たされな 、と、 HCなどの未燃分が生成される。そうなる と、エネルギーのロスとなるとともに、前記触媒 1における NOx低減が効果的に行わ れないことになる。  [0086] When the first condition is not satisfied, an unburned component such as HC is generated. In this case, energy is lost and NOx reduction in the catalyst 1 is not effectively performed.
[0087] 前記第二条件は、排出窒素酸ィ匕物濃度をほぼ零とするための条件である。前記触 媒 1の二次側の窒素酸化物濃度,一酸化炭素濃度を零とするには、前記第一反応と 前記第二反応とから、前記式 (2)なる濃度比とすればよ!、ことを実験および理論的考 察により見出した。  [0087] The second condition is a condition for making the exhausted nitrogen oxide concentration almost zero. In order to make the nitrogen oxide concentration and carbon monoxide concentration on the secondary side of the catalyst 1 zero, the concentration ratio represented by the above formula (2) can be obtained from the first reaction and the second reaction! This was found through experiments and theoretical considerations.
[0088] そして、前記空気比制御プログラムには、図 7に示すように、前記酸素濃度検出器 3 7からの酸素濃度信号に基づき、検出空気比を算出し、算出した検出空気比と前記 設定空気比との差に応じて前記モータの単位駆動量当たりの時間(送り速度または 駆動速度と称することができる)を変える第一制御帯と、この第一制御帯の外側にお いて単位駆動量当たりの時間をそれぞれ第一設定値,第二設定値とする第二制御 帯 A, Bとを設けて、前記モータの駆動量を制御する制御手順が含まれている。  Then, in the air ratio control program, as shown in FIG. 7, the detected air ratio is calculated based on the oxygen concentration signal from the oxygen concentration detector 37, and the calculated detected air ratio and the setting are calculated. A first control zone that changes the time per unit drive amount of the motor (which can be referred to as feed speed or drive speed) according to the difference from the air ratio, and a unit drive amount outside the first control zone. A control procedure for controlling the driving amount of the motor is provided by providing second control zones A and B with the winning times as the first set value and the second set value, respectively.
[0089] 前記酸素濃度検出器 37として、空気比検出器 (たとえば、 02分解能が 50ppmで応 答時間 2sec以下の応答答性の良好なジルコユア式の AZFセンサ)を用いている。こ の酸素濃度検出器 37の出力特性は、図 8に示すように、出力が正側で酸素濃度に 関係する出力となり、負側で一酸ィ匕炭素濃度に関係する出力となる。  [0089] As the oxygen concentration detector 37, an air ratio detector (for example, a zircoure-type AZF sensor with a good response response of 02 resolution of 50 ppm and a response time of 2 seconds or less) is used. As shown in FIG. 8, the output characteristics of the oxygen concentration detector 37 are outputs related to the oxygen concentration when the output is positive, and outputs related to the carbon monoxide concentration on the negative side.
[0090] この実施例 2によれば、回転位置制御を確実に行えるステッピングモータにより行つ ていることと、前記検出空気比が設定空気比に近づくにつれて送り速度を遅くする制 御としていることとにより、前記設定空気比の近傍における空気比のオーバーシユー トおよびノ、ンチングを抑制することができる。 [0091] こうした制御により、前記パーナ 3の空気比を 1に近い低空気比とし、かつ前記触媒 1の一次側のガス 2の濃度比変化幅が少なく制御され、前記式(2)を安定的に満た すことができる。その結果、前記触媒 1の二次側の窒素酸化物濃度をほぼ零にすると ともに、一酸ィ匕炭素濃度を実用範囲の値に低減することができる。 [0090] According to the second embodiment, the stepping motor can reliably perform the rotational position control, and the feed speed is controlled to decrease as the detected air ratio approaches the set air ratio. As a result, overshooting, noching and nipping of the air ratio in the vicinity of the set air ratio can be suppressed. [0091] By such control, the air ratio of the Parner 3 is set to a low air ratio close to 1, and the concentration ratio change width of the gas 2 on the primary side of the catalyst 1 is controlled to be small. Can be met. As a result, the nitrogen oxide concentration on the secondary side of the catalyst 1 can be made substantially zero, and the carbon monoxide concentration can be reduced to a practical range.
[0092] (実験例 1)  [0092] (Experiment 1)
単位時間当たり蒸発量を 800kgで,燃焼量 45. 2m3N/h実験結果について説明す る。前記設定空気比を 1. 0005以下とした場合、前記触媒 1の一次側 (前記触媒 1通 過前)の一酸化炭素濃度,窒素酸化物濃度,酸素濃度がそれぞれ 2295ppm, 94pp m, 1655ppmに調整され、前記触媒 1の二次側(前記触媒 1通過後)のそれぞれの濃 度が 10分間の平均値で 13ppm, 0. 3ppm, lOOppm未満となった。ここで、前記触媒 1の二次側の酸素濃度 lOOppmは、酸素濃度の測定限界である (株式会社堀場製作 所製 PG— 250を用いて計測した。 )0 The following describes the experimental results for an evaporation rate of 800 kg per unit time and a combustion rate of 45.2 m 3 N / h. When the set air ratio is 1.0005 or less, the carbon monoxide concentration, nitrogen oxide concentration, and oxygen concentration on the primary side of catalyst 1 (before passing through catalyst 1) are adjusted to 2295ppm, 94ppm, and 1655ppm, respectively. As a result, the concentrations on the secondary side of the catalyst 1 (after passing through the catalyst 1) were less than 13 ppm, 0.3 ppm, and lOO ppm on average for 10 minutes. Here, the oxygen concentration lOOppm of the secondary side of the catalyst 1 is the measurement limit of the oxygen concentration (measured using Ltd. HORIBA production plant made PG- 250.) 0
[0093] (実験例 2) [0093] (Experimental example 2)
単位時間当たり蒸発量を 800kgで,燃焼量 45. 2m3N/h、触媒活性物質として内径 360mmの Pdを用いた触媒とした場合の一酸ィ匕炭素濃度,窒素酸化物濃度,酸素 濃度の各濃度比における値を表 1に示す。ここで、触媒通過後の酸素濃度を実験例 1と同様の酸素濃度センサを用いて測定したので、実際は lOOppm以下の値であつ ても lOOppmで示した。 When the amount of evaporation per unit time is 800 kg, the combustion amount is 45.2 m 3 N / h, and the catalyst is Pd with an inner diameter of 360 mm as the catalytic active substance, the concentration of carbon monoxide, nitrogen oxide, oxygen Table 1 shows the values at each concentration ratio. Here, since the oxygen concentration after passing through the catalyst was measured using the same oxygen concentration sensor as in Experimental Example 1, even if the value was less than lOOppm, it was expressed as lOOppm.
[0094] [表 1] [0094] [Table 1]
NOx濃度 CO濃度 θ2濃度 濃度比 NOx concentration CO concentration θ2 concentration Concentration ratio
(ppm) (ppm) (ppm) 通過前 88 3114 1380 (ppm) (ppm) (ppm) Before passing 88 3114 1380
0. 91 0. 91
通過後 0. 4 103. 0 100 通過前 89 2949 1450 After passing 0. 4 103. 0 100 Before passing 89 2949 1450
1. 01 1. 01
通過後 1. 0 66. 0 100 通過前 89 2461 1730 After passing 1. 0 66. 0 100 Before passing 89 2461 1730
1. 44 1. 44
通過後 0. 0 18. 0 100 通過前 89 2414 1920 After passing 0. 0 18. 0 100 Before passing 89 2414 1920
1. 63 1. 63
通過後 0. 0 9. 0 100 通過前 89 2250 2030 After passing 0. 0 9. 0 100 Before passing 89 2250 2030
1. 84 1. 84
通過後 0. 8 11. 0 100 通過前 88 2069 2210 After passing 0. 8 11. 0 100 Before passing 88 2069 2210
2. 18 2. 18
通過後 26. 1 1. 0 100 通過前 88 1922 2410  After passing 26. 1 1. 0 100 Before passing 88 1922 2410
Z . O 0  Z. O 0
通過後 57. 2 1. 1 510 通過前 87 1360 3430 After passing 57. 2 1. 1 510 Before passing 87 1360 3430
5. 11 5. 11
通過後 78. 9 0. 0 2220  After passing 78. 9 0. 0 2220
[0095] この実施例 2はつぎの変形例を含む。すなわち、前記ダンバ位置調整装置 34を単 一の前記制御器 25にて制御している力 ボイラ制御用の前記制御器 25とは別に前 記ダンバ位置調整装置 34を専用に制御する制御器(図示省略)を設け、これに前記 酸素濃度検出器 37を接続して、空気比制御を行うこともできる。 Example 2 includes the following modification. That is, a controller for controlling the damper position adjusting device 34 exclusively (not shown) separately from the controller 25 for controlling the force boiler that controls the damper position adjusting device 34 by the single controller 25. It is also possible to perform the air ratio control by connecting the oxygen concentration detector 37 to this.
[0096] この発明は、前記実施例 1および前記実施例 2に限定されるものではな 、。たとえ ば、低減装置は、図 9に示す変形例とすることができる。この変形例において、前記 実施例 1と異なるのは、酸素,窒素酸化物および一酸化炭素のそれぞれの所定濃度 を [CO] > [NOx] +2 [02]の関係を満たすように構成し、前記触媒 1にて処理しき れなかった一酸化炭素を酸化する第二の触媒 35にて処理するように構成したところ にある。この場合、前記第二触媒 35の上流に酸素を投入する酸素投入手段 36を設 ける。前記第二の触媒 35は、前記第一触媒 1と同じのものを使用することができる。 また、前記第一触媒 1と第二触媒 35とを一体的に連続して形成し、所定の箇所に設 けた穴から前記酸素投入手段 36によって酸素を導入する構成であってもよい。  [0096] The present invention is not limited to Example 1 and Example 2. For example, the reduction device can be a modification shown in FIG. In this modified example, the difference from Example 1 is that the predetermined concentrations of oxygen, nitrogen oxide, and carbon monoxide are configured to satisfy the relationship [CO]> [NOx] +2 [02] The second catalyst 35 is configured to oxidize carbon monoxide that could not be treated with the catalyst 1. In this case, oxygen input means 36 for supplying oxygen upstream of the second catalyst 35 is provided. As the second catalyst 35, the same catalyst as the first catalyst 1 can be used. Alternatively, the first catalyst 1 and the second catalyst 35 may be formed integrally and continuously, and oxygen may be introduced by the oxygen input means 36 from a hole provided at a predetermined location.
[0097] さらに、前記触媒 1の設置位置は、前記排ガス通路 9に限定されるものではなぐ前 記缶体 5内の前記水管 4群の下流または前記水管 4群の途中とすることができる。前 記触媒 1を前記水管 4群の途中に設ける場合は、前記水管 4の表面に触媒材料を担 持させ、これを前記触媒 1とすることができる。 [0097] Further, the installation position of the catalyst 1 is not limited to the exhaust gas passage 9, but can be downstream of the water pipe 4 group in the can 5 or in the middle of the water pipe 4 group. in front When the catalyst 1 is provided in the middle of the group of water tubes 4, a catalyst material can be carried on the surface of the water tube 4 and used as the catalyst 1.

Claims

請求の範囲 The scope of the claims
[1] 一酸ィ匕炭素を酸化させる第一反応と窒素酸ィ匕物を一酸ィ匕炭素により還元させる第 二反応とを生じる触媒を用い、酸素,窒素酸化物および一酸化炭素を含むガスを前 記触媒へ通過させ、前記触媒内にて前記第一反応により酸素を消費して一酸化炭 素濃度を低減し、消費しきれない一酸ィ匕炭素により前記第二反応によって窒素酸ィ匕 物濃度を低減する窒素酸化物含有ガスの処理方法であって、  [1] Using oxygen, nitrogen oxides, and carbon monoxide, using a catalyst that produces a first reaction that oxidizes carbon monoxide and a second reaction that reduces nitrogen oxides with carbon monoxide. Gas is passed through the catalyst, oxygen is consumed by the first reaction in the catalyst to reduce the carbon monoxide concentration, and nitric acid by the second reaction by carbon monoxide that cannot be consumed. A method for treating a nitrogen oxide-containing gas that reduces the concentration of a substance,
酸素,窒素酸化物および一酸化炭素のそれぞれの所定濃度が下記の式(1)を満 たすように調整する調整工程を含むことを特徴とする窒素酸化物含有ガスの処理方 法。  A method for treating a nitrogen oxide-containing gas, comprising an adjustment step of adjusting each predetermined concentration of oxygen, nitrogen oxide and carbon monoxide to satisfy the following formula (1).
[NOx] + 2 [02]≤[CO]  [NOx] + 2 [02] ≤ [CO]
但し、 [CO] :—酸化炭素濃度, [NOx] :窒素酸化物濃度, [02] :酸素濃度 [2] 一酸化炭素,窒素酸ィ匕物および酸素を含み、 HCを含まないガスの処理方法であ つて、  However, [CO]: — Carbon oxide concentration, [NOx]: Nitrogen oxide concentration, [02]: Oxygen concentration [2] Treatment of gas containing carbon monoxide, nitrogen oxides and oxygen, but not HC The method,
前記ガスに含まれる一酸化炭素、窒素酸化物および酸素の各濃度が下記の式(2) を満足するよう調節する工程と、  Adjusting each concentration of carbon monoxide, nitrogen oxide and oxygen contained in the gas to satisfy the following formula (2):
窒素酸化物を還元可能な触媒に前記濃度比が調節された前記ガスを接触させる 工程と、を含む窒素酸化物含有ガスの処理方法。  And a step of contacting the gas whose concentration ratio is adjusted with a catalyst capable of reducing nitrogen oxides.
( [NOx] + 2[02]) /[CO]≤2. 0 - -- (2)  ([NOx] + 2 [02]) / [CO] ≤2. 0--(2)
(式(2)において、 [CO] , [NOx]および [02]はそれぞれ一酸ィ匕炭素濃度、窒素酸 化物濃度および酸素濃度を示し、 [O2] >0の条件を満たす。 )  (In Equation (2), [CO], [NOx] and [02] indicate the concentration of carbon monoxide, nitrogen oxide and oxygen, respectively, and satisfy the condition [O2]> 0.)
[3] 一酸化炭素,窒素酸ィ匕物および酸素を含み、 HCを含まないガスの処理方法であ つて、 [3] A method for treating a gas containing carbon monoxide, nitrogen oxides and oxygen but not HC.
前記ガスに含まれる一酸化炭素,窒素酸化物および酸素の各濃度を所定の関係 に調節する調整工程と、  An adjustment step of adjusting the concentrations of carbon monoxide, nitrogen oxide and oxygen contained in the gas to a predetermined relationship;
一酸化炭素を酸素により酸化する第一反応と窒素酸化物を一酸化炭素により還元 する第二反応とを行う触媒に前記濃度が調節された前記ガスを接触させる接触工程 とを含み、  A contact step of contacting the gas having the adjusted concentration with a catalyst that performs a first reaction for oxidizing carbon monoxide with oxygen and a second reaction for reducing nitrogen oxide with carbon monoxide,
前記調整工程は、前記触媒の一次側の一酸化炭素濃度が前記第一反応により前 記触媒内で低減される一酸ィ匕炭素濃度と前記第二反応により前記触媒内で低減さ れるー酸ィ匕炭素濃度とを加えた値とほぼ等し ヽか、それ以上とすることを特徴とする 窒素酸化物含有ガスの処理方法。 In the adjusting step, the concentration of carbon monoxide on the primary side of the catalyst is increased by the first reaction. The concentration of monoxide and carbon reduced in the catalyst and the value of acid and carbon reduced in the catalyst by the second reaction are approximately equal to or higher than the sum. A method for treating a nitrogen oxide-containing gas.
一酸化炭素,窒素酸化物および酸素を含み、 HCを含まないガスの処理方法であ つて、  A method for treating a gas containing carbon monoxide, nitrogen oxides, and oxygen but not HC.
前記ガスに含まれる一酸化炭素,窒素酸化物および酸素の各濃度を所定の関係 に調節する調整工程と、  An adjustment step of adjusting the concentrations of carbon monoxide, nitrogen oxide and oxygen contained in the gas to a predetermined relationship;
一酸化炭素を酸素により酸化する第一反応と窒素酸化物を一酸化炭素により還元 する第二反応とを主反応として行う触媒に前記濃度が調節された前記ガスを接触さ せる接触工程とを含み、  A contact step of bringing the gas having the adjusted concentration into contact with a catalyst that performs a main reaction of a first reaction for oxidizing carbon monoxide with oxygen and a second reaction for reducing nitrogen oxide with carbon monoxide. ,
前記調整工程は、前記触媒の一次側の一酸化炭素濃度,窒素酸化物および酸素 の各濃度を所定の関係に調整することにより、窒素酸化物濃度を実質的に零とする とするとともに  In the adjusting step, the concentration of carbon monoxide on the primary side of the catalyst, the concentration of nitrogen oxides and oxygen are adjusted to a predetermined relationship so that the nitrogen oxide concentration is substantially zero.
一酸化炭素濃度を低減することを特徴とする窒素酸化物含有ガスの処理方法。 A method for treating a nitrogen oxide-containing gas, wherein the concentration of carbon monoxide is reduced.
PCT/JP2006/312381 2005-10-14 2006-06-21 Method of treating gas containing nitrogen oxide WO2007043216A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005300343 2005-10-14
JP2005-300343 2005-10-14
JPPCT/JP2006/307299 2006-03-30
JP2006307299 2006-03-30

Publications (1)

Publication Number Publication Date
WO2007043216A1 true WO2007043216A1 (en) 2007-04-19

Family

ID=37942478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312381 WO2007043216A1 (en) 2005-10-14 2006-06-21 Method of treating gas containing nitrogen oxide

Country Status (1)

Country Link
WO (1) WO2007043216A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002569A (en) * 2007-06-21 2009-01-08 Miura Co Ltd Combustion device
JP2012211764A (en) * 2012-08-08 2012-11-01 Miura Co Ltd Combustion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538421A (en) * 1991-08-07 1993-02-19 Osaka Gas Co Ltd Cleaning method for exhaust gas from gas engine
JPH06246159A (en) * 1993-02-25 1994-09-06 Osaka Gas Co Ltd Ternary catalyst for purifying gas engine exhaust gas and method for purifying the exhaust gas
JPH07313878A (en) * 1994-05-24 1995-12-05 Osaka Gas Co Ltd Ternary catalyst for purification of exhaust gas from gas engine and method for purifying exhaust gas from gas engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538421A (en) * 1991-08-07 1993-02-19 Osaka Gas Co Ltd Cleaning method for exhaust gas from gas engine
JPH06246159A (en) * 1993-02-25 1994-09-06 Osaka Gas Co Ltd Ternary catalyst for purifying gas engine exhaust gas and method for purifying the exhaust gas
JPH07313878A (en) * 1994-05-24 1995-12-05 Osaka Gas Co Ltd Ternary catalyst for purification of exhaust gas from gas engine and method for purifying exhaust gas from gas engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002569A (en) * 2007-06-21 2009-01-08 Miura Co Ltd Combustion device
JP2012211764A (en) * 2012-08-08 2012-11-01 Miura Co Ltd Combustion device

Similar Documents

Publication Publication Date Title
WO2008004370A1 (en) Method of combustion and combustion apparatus
WO2008004281A1 (en) Combustion apparatus
WO2008004371A1 (en) Boiler
JP2009031080A (en) System for reducing harmful substance and combustion device
KR101381623B1 (en) Method of combustion and combustion apparatus
JP5358895B2 (en) Combustion device
WO2008004369A1 (en) Method of treating gas containing nitrogen oxide
WO2007043216A1 (en) Method of treating gas containing nitrogen oxide
JP4123298B2 (en) Combustion method and combustion apparatus
JP5088673B2 (en) Combustion equipment
JP4123297B2 (en) Nitrogen oxide containing gas treatment method
JP4296603B2 (en) Combustion method and combustion apparatus
JP5007938B2 (en) Combustion device
JP5088674B2 (en) Combustion equipment
JP5099585B2 (en) Combustion equipment
JP4899697B2 (en) Combustion method and combustion apparatus
JP4254880B2 (en) boiler
JP2008057959A (en) Combustion device
JP5067037B2 (en) Combustion device
JP2008032366A (en) Method of combustion and combustion apparatus
JP2012211764A (en) Combustion device
JP2009030858A (en) Combustion apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP