WO2008001807A1 - Metal wire rod plating insoluble anode and production method of wire rod - Google Patents

Metal wire rod plating insoluble anode and production method of wire rod Download PDF

Info

Publication number
WO2008001807A1
WO2008001807A1 PCT/JP2007/062894 JP2007062894W WO2008001807A1 WO 2008001807 A1 WO2008001807 A1 WO 2008001807A1 JP 2007062894 W JP2007062894 W JP 2007062894W WO 2008001807 A1 WO2008001807 A1 WO 2008001807A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
wire
insoluble
electrode plates
metal wire
Prior art date
Application number
PCT/JP2007/062894
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Murakami
Yukihiro Umezaki
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Publication of WO2008001807A1 publication Critical patent/WO2008001807A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form

Definitions

  • the present invention relates to an insoluble anode for metal wire plating and a method for manufacturing the wire (hereinafter also simply referred to as “insoluble anode” and “manufacturing method”, respectively). Specifically, the present invention travels in parallel in the plating solution.
  • the present invention relates to an insoluble anode used in a plating apparatus that simultaneously applies electrical plating to a plurality of metal wires, and a method of manufacturing a wire using the same.
  • a metal plate or the like made of the same material as the metallic metal is used as a soluble anode, and the metallic electrode is dissolved in the plating solution by the anodic dissolution by energization to supply metallic metal ions.
  • the electrode plate is melted, the distance from the metal wire serving as the cathode changes, and the thickness of the plating changes with time, which makes it difficult to obtain a stable quality product. is there.
  • Fig. 4 shows the schematic structure of a measuring device that is generally used in the electroplating method using an insoluble anode.
  • an insoluble electrode plate 3 is horizontally disposed at the bottom of the measuring tank 2 that stores the measuring liquid 1. Overflow of the measuring liquid 1 from the measuring tank 2, and the guide roller 4 arranged before and after the measuring tank 2, the metal wire 5 is moved below the level of the measuring liquid 1. Pass through the tank 2 while supporting. At this time, a voltage is applied between the metal wire 5 and the electrode plate 3 using the power feeding means 6. The measurement liquid 1 overflowing from the measurement tank 2 is collected in the auxiliary tank 7 and returned to the measurement tank 2 by a pump. The plating metal in the plating solution consumed as the plating operation proceeds is appropriately replenished by a supply means (not shown).
  • the electrode plate is opposed only from the lower side to the metal wire passing through the plating liquid. Since the upper side of the wire is open, the facilities are simple and the electrode plate has the advantage that it does not block the wiring work.In addition, the release of gas generated by the plating reaction in the plating tank Is also good. However, there is a problem in the plating quality that the amount of adhesion of the upper surface is smaller than that of the lower surface facing the electrode plate, and the distribution of the amount of adhesion of the plating tends to be uneven in the circumferential direction of the wire.
  • Patent Document 1 describes an electric plating method for passing a metal wire! Speak. According to this method, the uniformity of the adhesion amount distribution in the circumferential direction of the wire is improved and the upper side of the wire path line is opened, so that the above-described advantages are inherited as they are.
  • the same document describes a form in which a metal wire is passed between each of a plurality of electrode plates arranged at a predetermined interval.
  • Patent Document 1 JP 2000-192291 A
  • an object of the present invention is to provide an insoluble anode for metal wire plating that can stably and uniformly uniform the amount of plating on each metal wire for a long period of time when applying electrical plating to a plurality of metal wires simultaneously.
  • the electrode plate has the advantage of not interrupting the wire connection, and in addition to the metal reaction in the plating tank.
  • An object of the present invention is to provide an insoluble anode for metal wire plating that is excellent in the release of generated gas and a method for producing a wire using the same.
  • the present inventors have made a plurality of metal wire rods by using a multiple wire simultaneous method in which a metal wire material is passed between gaps of a plurality of vertically arranged electrode plates.
  • the cause of the variation in the adhesion amount between the plurality of metal wires traveling in parallel is the unevenness of the plating current in the gaps of the plurality of electrode plates. In addition to dimensional variations, this is due to variations in power supply to each electrode plate.
  • a plurality of electrode plates are fixed by tightening in the plate thickness direction with a through bolt with a conductive contact between each gap. Is effective. In other words, if a plurality of electrode plates are fixed by sandwiching conductive contacts in each gap and tightening them in the plate thickness direction with through bolts, the dimensional variation of the gaps and the power supply to the electrode plates will be reduced. Both variations are effectively suppressed.
  • the insoluble anode for metal wire plating according to the present invention is an insoluble anode for an electrical plating apparatus that simultaneously applies electrical plating to a plurality of metal wires running in parallel in a plating solution.
  • the plurality of conductive contacts are arranged at a plurality of locations in the wire pass line direction with a space therebetween, and the wire pass line between each of the plurality of insoluble electrode plates is preferable. It is also preferable to arrange it below the wire rod pass line so as not to interfere with the wire. Further, it is preferable to form a bolt hole through which the through bolt penetrates into at least one of the plurality of insoluble electrode plates or the plurality of conductive contacts so as to reach the end face of the member.
  • the method for manufacturing a wire according to the present invention is more than the method for manufacturing a wire including a plating process in which an electric plating is applied to the wire by running in a plating solution. Electrical plating is performed using an insoluble anode for use.
  • the insoluble anode of the present invention a plurality of insoluble electrode plates and a plurality of conductive contacts forming gaps at equal intervals therebetween are fastened and fixed by a plurality of through bolts.
  • the amount of adhesion of the plating can be made uniform among the metal wires and stable over a long period of time.
  • the wire rod can be treated. Therefore, according to the manufacturing method of the present invention using a powerful insoluble anode, it is possible to stably obtain a high quality finished wire material over a long period of time.
  • the bolt hole that penetrates the through bolt is formed in a cut shape that reaches the end surface of the member, the tightening is loosened without removing the through bolt. Only these members can be attached and detached, and the replacement work is simplified.
  • FIG. 1 is a front view showing an insoluble anode for metal wire plating according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing an insoluble anode for metal wire plating.
  • FIG. 3 is a side view showing an insoluble electrode plate used for the insoluble anode for metal wire plating.
  • FIG. 4 is a schematic side view showing a conventional insoluble anode for metal wire plating.
  • FIG. 1 is a front view of an insoluble anode for metal wire plating showing an embodiment of the present invention
  • FIG. 2 is a plan view of the insoluble anode for metal wire plating
  • FIG. 3 is an insoluble used for the insoluble anode for metal wire plating. It is a side view of an electrode plate.
  • the insoluble anode of the present embodiment is used in an electric plating apparatus for simultaneously electroplating a plurality of metal wires that run horizontally in a plating solution in a plating tank.
  • the insoluble anode includes a plurality of insoluble electrode plates 20 and a plurality of insoluble electrode plates 20 arranged in parallel at predetermined intervals between outer frames 10 and 10 on both sides.
  • a plurality of conductive contacts 30 inserted between each of the gaps that form an equidistant gap between each other, and a plurality of through bolts 40 that fasten and fix these in the thickness direction.
  • the plurality of insoluble electrode plates 20 are conductive thin plates that are long and rectangular in the running direction of the metal wire 60 to be plated, and are made of metal titanium, titanium tantalum, which is not eroded by the plating solution, Titanium-based alloys such as titanium tantalum niobium and titanium palladium are suitable. For example, a titanium plate having a thickness of about 1 mm can be used.
  • a bolt hole 22 through which a tightening through bolt 40 passes is formed in the lower part of the insoluble electrode plate 20.
  • the bolt holes 22 are provided at intervals in the longitudinal direction of the electrode plate 20.
  • each bolt hole 22 is opened at both ends in the longitudinal direction of the electrode plate 20, which are fastening portions by the through bolts 40.
  • Each bolt hole 22 is a long hole extending downward, and has an inverted U-shaped cut shape reaching the lower end surface of the electrode plate 20.
  • the outer frames 10 and 10 on both sides sandwiching the plurality of insoluble electrode plates 20 have the same length as the insoluble electrode plates 20.
  • Each outer frame 10 is made of a titanium material that is not eroded by the plating solution like the insoluble electrode plate 20, has a thickness that can secure sufficient mechanical strength, and corresponds to the bolt hole 22 of the insoluble electrode plate 20. It has a bolt hole provided. Terminals 11 are attached to both ends of each outer frame 10 in the longitudinal direction for supplying power to a plurality of insoluble electrode plates 20 arranged between the outer frames 10 and 10 on both sides.
  • the plurality of conductive contacts 30 are made of a conductive thick plate that is lower than the insoluble electrode plate 20 and sufficiently short, and are disposed between the lower portions of the plurality of insoluble electrode plates 20, so A space for a pass line for allowing the metal wire 60 to pass between the electrolytic surfaces facing each other is formed. As a result, the upper side of the wire path line is opened over the entire length of the line, the structure of the apparatus is simplified, and a better gas releasing property is ensured without the conductive contact obstructing the wire connection work.
  • These conductive contacts 30 are preferably arranged at a plurality of locations in the pass line direction at intervals.
  • the conductive contacts 30 are arranged at both ends in the pass line direction, which are tightened portions by the through bolts 40.
  • the conductive contact 30 is also arranged not only between each of the plurality of insoluble electrode plates 20 but also between the insoluble anode plates 20 at both ends and the outer frame 10 on the outside thereof.
  • Each conductive contact 30 is not eroded by the plating solution in the same manner as the insoluble electrode plate 20, but is made of a material such as platinum, titanium, tantalum, niobium, zirconium, or an alloy mainly composed of any of these. Etc., and has two bolt holes through which the through bolt 40 passes.
  • the through bolts 40 are disposed at both ends in the pass line direction, which are tightening portions, and are disposed between the outer frames 10 and 10 on both sides in each tightening portion.
  • the plurality of electrode plates 20 and the conductive contacts 30 are penetrated in the parallel direction.
  • the nuts 41 and 41 are screwed into both end portions projecting outside the outer frames 10 and 10, so that these members are firmly tightened and fixed in the parallel direction.
  • the through bolt 40 and the nuts 41 and 41 are also made of a titanium material that is not eroded by the plating liquid, as with the other members.
  • the insoluble anode is placed in a plating tank and immersed in the plating solution in the tank.
  • the metal wire 60 to be measured is passed through a horizontal pass line formed between each of the plurality of insoluble electrode plates 20, more specifically between the opposing electrode surfaces 21 and 21. As a result, a plurality of metal wires 60 travel in parallel in the plating solution with the electrode plates 20 and 20 sandwiched from both sides.
  • the plurality of metal wires 60 traveling in parallel in the plating solution are simultaneously electrically meshed. If there are 20 electrode plates 20, 19 metal wires 60 can be simultaneously measured. In actual operation, dozens of metal wires 60 can be run in parallel and measured simultaneously.
  • the insoluble electrode plates 20 are arranged on both sides of each metal wire 60 so as to face each other, so that an electric measurement with an equal thickness is performed around the metal wire 60. be able to. Since the electrode plate is insoluble, there is no consumption due to the progress of the metal operation, and there is no change in the distance between the electrodes. Due to the structure in which multiple insoluble electrode plates 20 are clamped in the thickness direction by through bolts 40 with conductive contacts 30 in each gap, all the insoluble electrode plates 20 are fixed in parallel and between the upper electrodes. The lateral width (distance between the electrodes) of the pass line space formed in is fixed uniformly in each gap. For this reason, the adhesion amount of the metal on the plurality of metal wires 60 can be made uniform.
  • the amount of plating adhesion on the plurality of metal wires 60 can be made uniform from the viewpoint of reducing the contact resistance, and the uniformity can be maintained for a long period of time. It goes without saying that the electrode active material coated on the contact surface contributes to this homogenization.
  • conductive contacts 30 are arranged at intervals in a plurality of locations in the pass line direction, and in the illustrated example, they are arranged at both ends in the pass line direction. . For this reason, a large gap is formed between the conductive contacts adjacent in the nosline direction, and the lower part between the electrodes is substantially open like the upper part. For this reason, good fluidity of the plating solution is secured, which also contributes to uniform plating.
  • the electrode plate 20 has a reverse U-shaped cut shape in which the bolt hole 22 in the electrode plate 20 reaches the lower surface. Therefore, if the through bolt 40 is loosened, the electrode plate 20 can be pulled upward without disassembling the electrode plate 20 and the conductive contact 30 by pulling out the through bolt 40. It becomes easy. Not only the electrode plate 20 but also the conductive contact 30 can be formed into an inverted U-shaped notch that reaches the bottom surface of the bolt hole.
  • the tightening portions (conductive contactor placement portions) with through bolts are set at both ends in the longitudinal direction of the electrode plate. However, it may be at three or more locations at both ends and the center. It can be suitably selected according to the length of the electrode plate.
  • the insoluble anode of the present invention can be suitably used for electrical plating of copper, zinc and the like, and is useful, for example, in the production of tire steel cords.
  • the insoluble anode according to the present invention is used in a plating process in which the wire is electroplated by running in a plating solution.
  • specific measuring conditions and other manufacturing processes other than It can be determined and implemented as appropriate, and is not particularly limited.
  • the insoluble anodes shown in FIGS. 1 to 3 were actually produced and subjected to a plating test.
  • the number of insoluble electrode plates was 51 in order to simultaneously measure 50 metal wires.
  • Each insoluble electrode plate was a titanium thin plate having a length of 400 mm, a height of 90 mm, and a thickness of 1 mm.
  • the conductive contact was a titanium thick plate having a length of 80 mm, a height of 40 mm, and a thickness of 10 mm, and was disposed at both ends in the longitudinal direction between the electrode plates.
  • the through bolt was a titanium bolt, and was used for the conductive contact placement part (clamping part) at both ends in the longitudinal direction.
  • the outer frame and terminal were also made of titanium.
  • the manufactured insoluble anode is placed in a separately prepared plating tank, and 50 steel wires (diameter: 1.5 mm, length: 200 mm) as cathodes are placed in the pass line between the electrode plates to make a plating test.
  • 50 steel wires (diameter: 1.5 mm, length: 200 mm) as cathodes are placed in the pass line between the electrode plates to make a plating test.
  • zinc sulfate: 300 gZL and sulfuric acid: 50 gZL were prepared as the plating solution (electrolytic bath), and the plating conditions were set at a temperature of 50 ° C, a cathode current density of 20AZdm 2 , and an energization time of 10 seconds.
  • the zinc-coated steel wire after plating was immersed in a stripping solution to dissolve zinc, and the solution was analyzed with a fluorescent X-ray analyzer to investigate the amount of coating on each steel wire.
  • the survey results are shown

Abstract

A metal wire rod plating insoluble anode which can make uniform a plating deposition amounts in a plurality of metal wire rods constantly and for an extended period, can contribute to simplifying a plating facility and to facilitating a wire leading job, and provides an excellent feature in releasing gas produced due to plating reaction; and a production method of a wire rod using this. An insoluble anode for an electroplating device for concurrently electroplating a plurality of metal wire rods (60) traveling in parallel through plating solution. The electroplating device comprises a plurality of insoluble electrode plates (20) arranged in parallel and oppositely so as to hold the wire pass line of each metal wire rod (60) from the opposite sides, a plurality of conductive contacts (30) sandwiched between the electrode plates to form an equidistant gap between them, and a plurality of through bolts (40) for fastening and fixing the plurality of insoluble electrode plates (20) and conductive contacts (30) in a parallel direction at a plurality of locations in a wire rod pass line direction.

Description

明 細 書  Specification
金属線材メツキ用不溶性陽極および線材の製造方法  Insoluble anode for metal wire plating and method for producing wire
技術分野  Technical field
[0001] 本発明は、金属線材メツキ用不溶性陽極および線材の製造方法 (以下、それぞれ 単に「不溶性陽極」および「製造方法」とも称する)に関し、詳しくは、メツキ液中を並 列して走行する複数本の金属線材に同時に電気メツキを施すメツキ装置に使用され る不溶性陽極、および、これを用いた線材の製造方法に関する。  The present invention relates to an insoluble anode for metal wire plating and a method for manufacturing the wire (hereinafter also simply referred to as “insoluble anode” and “manufacturing method”, respectively). Specifically, the present invention travels in parallel in the plating solution. The present invention relates to an insoluble anode used in a plating apparatus that simultaneously applies electrical plating to a plurality of metal wires, and a method of manufacturing a wire using the same.
背景技術  Background art
[0002] 金属線材に電気メツキを施した製品の一つとしてタイヤ用スチールコードがある。こ のスチールコードの製造では、一般に鋼線に銅メツキと亜鉛メツキとが施される。これ らの電気メツキ工程では、メツキ槽内に配設された電極板に沿って複数本の金属線 材を走行させ、槽内のメツキ液中に通ずることにより、各金属線材の表面に電気メツキ を行う。このような線材メツキで従来カゝら使用されて ヽる電極板は可溶性陽極である。  [0002] There is a steel cord for tires as one of products obtained by applying electrical plating to a metal wire. In the production of this steel cord, copper and zinc plating are generally applied to the steel wire. In these electroplating processes, a plurality of metal wires are run along the electrode plates arranged in the plating tank, and are passed through the plating solution in the tank, so that the surface of each metal wire is electroplated. I do. An electrode plate that has been conventionally used for such wire rods is a soluble anode.
[0003] 可溶性電極を使用する電気メツキでは、可溶性陽極としてメツキ金属と同材質の金 属板等が使用され、通電によるアノード溶解により電極板自身がメツキ液中に溶解し てメツキ金属イオンを供給する。この方法では、電極板が溶解するために、陰極であ る金属線材との距離が変化し、メツキ厚が経時的に変化して安定した品質のものが 得られにくいという品質管理上の問題がある。また、電極板の交換を頻繁に行わなけ ればならないという作業効率上の問題がある。このような事情から、最近は可溶性陽 極に代わって不溶性陽極を使用するところが増加してきている。  [0003] In an electric plating using a soluble electrode, a metal plate or the like made of the same material as the metallic metal is used as a soluble anode, and the metallic electrode is dissolved in the plating solution by the anodic dissolution by energization to supply metallic metal ions. To do. In this method, since the electrode plate is melted, the distance from the metal wire serving as the cathode changes, and the thickness of the plating changes with time, which makes it difficult to obtain a stable quality product. is there. In addition, there is a problem in work efficiency that the electrode plates must be replaced frequently. Under these circumstances, the use of insoluble anodes in place of soluble anodes has been increasing recently.
[0004] 不溶性陽極を使用する金属線材の電気メツキ方法では、電極板からのメツキ金属ィ オンの供給を期待できな 、ため、メツキ金属イオンの供給手段を別途設ける必要があ る。不溶性陽極を使用した電気メツキ方法で一般に用いられるメツキ装置の概略構造 を図 4に示す。  [0004] In the metal plating method using a metal wire using an insoluble anode, the supply of metal metal ions from the electrode plate cannot be expected. Therefore, it is necessary to separately provide a metal metal ion supply means. Fig. 4 shows the schematic structure of a measuring device that is generally used in the electroplating method using an insoluble anode.
[0005] 図 4に示したメツキ装置では、メツキ液 1を収容するメツキ槽 2の槽底部に不溶性の 電極板 3が水平に配置されている。メツキ槽 2からメツキ液 1をオーバーフローさせ、メ ツキ槽 2の前後に配置されたガイドローラー 4で金属線材 5をメツキ液 1の液面より下 に支持しながらメツキ槽 2に通す。このとき給電手段 6を用いて金属線材 5と電極板 3 との間に電圧を印加する。メツキ槽 2からオーバーフローしたメツキ液 1は補助槽 7に 回収され、ポンプでメツキ槽 2に戻される。メツキ操業の進行に伴って消費されるメツキ 液中のメツキ金属は、図示されない供給手段により適宜補充される。 In the measuring apparatus shown in FIG. 4, an insoluble electrode plate 3 is horizontally disposed at the bottom of the measuring tank 2 that stores the measuring liquid 1. Overflow of the measuring liquid 1 from the measuring tank 2, and the guide roller 4 arranged before and after the measuring tank 2, the metal wire 5 is moved below the level of the measuring liquid 1. Pass through the tank 2 while supporting. At this time, a voltage is applied between the metal wire 5 and the electrode plate 3 using the power feeding means 6. The measurement liquid 1 overflowing from the measurement tank 2 is collected in the auxiliary tank 7 and returned to the measurement tank 2 by a pump. The plating metal in the plating solution consumed as the plating operation proceeds is appropriately replenished by a supply means (not shown).
[0006] このような電気メツキ装置では、メツキ液中を通過する金属線材に対して下側からの み電極板が対向する。線材の上側が開放されているので、設備が簡単である上、電 極板が通線作業を遮らない利点があり、更にはメツキ槽内でのメツキ反応に伴って発 生するガスの放出性も良好である。しかし、電極板が対向する下面に比べて上面のメ ツキ付着量が少なくなり、線材の周方向でメツキ付着量分布が不均一になりやすいと いうメツキ品質上の問題がある。  In such an electric plating apparatus, the electrode plate is opposed only from the lower side to the metal wire passing through the plating liquid. Since the upper side of the wire is open, the facilities are simple and the electrode plate has the advantage that it does not block the wiring work.In addition, the release of gas generated by the plating reaction in the plating tank Is also good. However, there is a problem in the plating quality that the amount of adhesion of the upper surface is smaller than that of the lower surface facing the electrode plate, and the distribution of the amount of adhesion of the plating tends to be uneven in the circumferential direction of the wire.
[0007] 前記電気メツキ装置の利点を残しつつその問題点を解決するものとして、メツキ槽 内の線材パスラインを両側から挟むように 2枚の電極板を対向設置し、両側の電極板 間に金属線材を通過させる電気メツキ方法が特許文献 1に記載されて!ヽる。この方法 によると、線材周方向でのメツキ付着量分布の均一性が向上する上に、線材パスライ ンの上側が開放されるので前述の利点がそのまま引き継がれる。複数本の金属線材 を同時に電気メツキする場合は、所定間隔で並べた複数枚の電極板の各間に金属 線材を通過させる形態が、同文献に記載されている。  [0007] In order to solve the problem while leaving the advantages of the electric plating apparatus, two electrode plates are installed facing each other so that the wire pass line in the plating tank is sandwiched from both sides, and between the electrode plates on both sides. Patent Document 1 describes an electric plating method for passing a metal wire! Speak. According to this method, the uniformity of the adhesion amount distribution in the circumferential direction of the wire is improved and the upper side of the wire path line is opened, so that the above-described advantages are inherited as they are. In the case of simultaneously electroplating a plurality of metal wires, the same document describes a form in which a metal wire is passed between each of a plurality of electrode plates arranged at a predetermined interval.
特許文献 1 :特開 2000— 192291号公報  Patent Document 1: JP 2000-192291 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] メツキ線材の生産性を高めるために、メツキ液中に複数本の金属線材を並列にして 通過させ、これらに同時に電気メツキを施す技術は不可欠である。また、この同時メッ キのために、垂直に立てた複数枚の電極板をメツキ槽内で板厚方向に並べ、それら の電極板の各間に金属線材を通過させる方法は、考え方としては非常に合理的であ る。しカゝしながら、これを実際に行おうとすると、複数本の金属線材の間でメツキ付着 量にばらつきが生じ、これを均一に揃えることが非常に困難である。この傾向は一度 にメツキする金属線材の本数が増加するほど顕著になり、このことがメツキ線材の生 産性を阻害する結果になって 、た。 [0009] そこで本発明の目的は、複数本の金属線材に同時に電気メツキを施すに際し、各 金属線材におけるメツキ付着量を、長期間安定して均一化できる金属線材メツキ用 不溶性陽極およびこれを用いた線材の製造方法を提供することにあり、また、メツキ 設備を簡略ィ匕できる上に、電極板が通線作業を遮らない利点を有し、更にはメツキ槽 内でのメツキ反応に伴って発生するガスの放出性にも優れた金属線材メツキ用不溶 性陽極およびこれを用いた線材の製造方法を提供することにある。 [0008] In order to increase the productivity of the plating wire, it is indispensable to have a technique of passing a plurality of metal wires in parallel in the plating solution and simultaneously applying electric plating to them. In addition, for this simultaneous marking, the method of arranging a plurality of vertically arranged electrode plates in the thickness direction in the measuring tank and passing the metal wire between each of the electrode plates is very conceptual. Is reasonable. However, if this is actually attempted, the amount of adhesion of the metal will vary among a plurality of metal wires, making it very difficult to evenly align them. This tendency became more prominent as the number of metal wires that flickered at a time increased, and this resulted in hindering the productivity of the flake wires. [0009] Accordingly, an object of the present invention is to provide an insoluble anode for metal wire plating that can stably and uniformly uniform the amount of plating on each metal wire for a long period of time when applying electrical plating to a plurality of metal wires simultaneously. In addition to being able to simplify the equipment, the electrode plate has the advantage of not interrupting the wire connection, and in addition to the metal reaction in the plating tank. An object of the present invention is to provide an insoluble anode for metal wire plating that is excellent in the release of generated gas and a method for producing a wire using the same.
課題を解決するための手段  Means for solving the problem
[0010] 上記目的を達成するために、本発明者らは垂直に立てた複数枚の電極板の各隙 間に金属線材を通過させる複数本同時メツキ法にぉ ヽて、複数本の金属線材のメッ キ付着量がばらつく原因及びその対策について鋭意検討した。その結果、以下の事 実が判明した。 [0010] In order to achieve the above object, the present inventors have made a plurality of metal wire rods by using a multiple wire simultaneous method in which a metal wire material is passed between gaps of a plurality of vertically arranged electrode plates. We studied diligently about the causes and countermeasures for the variation in the amount of adhesion. As a result, the following facts were found.
[0011] 並列して走行する複数本の金属線材間でメツキ付着量がばらつく原因は、複数枚 の電極板の各隙間におけるメツキ電流の不均一であり、その不均一は各隙間の物理 的な寸法のばらつきの他、各電極板への給電のばらつきに起因する。隙間の寸法的 なばらつき及び電極板への給電のばらつきを抑制するためには、複数枚の電極板を 、各隙間に導電性接触子を挟んで貫通ボルトにより板厚方向に締め付けて固定する のが有効である。換言すれば、複数枚の電極板を、各隙間に導電性接触子を挟ん で貫通ボルトにより板厚方向に締め付けて固定するならば、隙間の寸法的なばらつ き及び電極板への給電のばらつきの両方が共に効果的に抑制されるのである。  [0011] The cause of the variation in the adhesion amount between the plurality of metal wires traveling in parallel is the unevenness of the plating current in the gaps of the plurality of electrode plates. In addition to dimensional variations, this is due to variations in power supply to each electrode plate. In order to suppress the dimensional variation of the gap and the variation in power supply to the electrode plate, a plurality of electrode plates are fixed by tightening in the plate thickness direction with a through bolt with a conductive contact between each gap. Is effective. In other words, if a plurality of electrode plates are fixed by sandwiching conductive contacts in each gap and tightening them in the plate thickness direction with through bolts, the dimensional variation of the gaps and the power supply to the electrode plates will be reduced. Both variations are effectively suppressed.
[0012] すなわち、本発明の金属線材メツキ用不溶性陽極は、メツキ液中を並列して走行す る複数本の金属線材に同時に電気メツキを施す電気メツキ装置用の不溶性陽極に おいて、各金属線材の線材パスラインを両側から挟んで対向するように並列配置さ れた複数枚の不溶性電極板と、複数枚の不溶性電極板の各間に介在して各間に等 間隔の隙間を形成する複数枚の導電性接触子と、複数枚の不溶性電極板と導電性 接触子とを線材パスライン方向の複数箇所で並列方向に締め付けて固定する複数 本の貫通ボルトとを具備することを特徴とするものである。  [0012] That is, the insoluble anode for metal wire plating according to the present invention is an insoluble anode for an electrical plating apparatus that simultaneously applies electrical plating to a plurality of metal wires running in parallel in a plating solution. A plurality of insoluble electrode plates arranged in parallel so as to face each other with a wire rod pass line sandwiched from both sides, and a plurality of insoluble electrode plates are interposed between each other to form equally spaced gaps therebetween. It comprises a plurality of conductive contacts, a plurality of insoluble electrode plates, and a plurality of through bolts that fasten and fix the conductive contacts in a parallel direction at a plurality of locations in the wire pass line direction. To do.
[0013] 本発明において、複数枚の導電性接触子は、線材パスライン方向の複数箇所に間 隔をあけて配置することが好ましぐ複数枚の不溶性電極板の各間の線材パスライン と干渉しないように線材パスラインの下側に配置することも好ましい。また、複数枚の 不溶性電極板又は複数枚の導電性接触子の少なくとも一方にぉ 、て、貫通ボルトの 貫通するボルト孔を、部材端面に達する切り込み状に形成することが好ましい。 [0013] In the present invention, it is preferable that the plurality of conductive contacts are arranged at a plurality of locations in the wire pass line direction with a space therebetween, and the wire pass line between each of the plurality of insoluble electrode plates is preferable. It is also preferable to arrange it below the wire rod pass line so as not to interfere with the wire. Further, it is preferable to form a bolt hole through which the through bolt penetrates into at least one of the plurality of insoluble electrode plates or the plurality of conductive contacts so as to reach the end face of the member.
[0014] また、本発明の線材の製造方法は、メツキ液中を走行させることにより線材に電気メ ツキを施すメツキ工程を含む線材の製造方法にぉ ヽて、上記本発明の金属線材メッ キ用不溶性陽極を用いて電気メツキを行うことを特徴とするものである。  [0014] In addition, the method for manufacturing a wire according to the present invention is more than the method for manufacturing a wire including a plating process in which an electric plating is applied to the wire by running in a plating solution. Electrical plating is performed using an insoluble anode for use.
発明の効果  The invention's effect
[0015] 本発明の不溶性陽極によれば、複数枚の不溶性電極板と、その各間に等間隔の 隙間を形成する複数枚の導電性接触子とを、複数本の貫通ボルトにより締め付けて 固定する構成としたことにより、これら不溶性電極板間を通過させて複数本の金属線 材に対し同時に電気メツキを施すに際し、メツキ付着量を各金属線材間で均一化す ることができ、長期にわたり安定して線材のメツキ処理を行うことができる。したがって 、力かる不溶性陽極を用いた本発明の製造方法によれば、高品質のメツキ済み線材 を、長期にわたり安定して得ることが可能である。  [0015] According to the insoluble anode of the present invention, a plurality of insoluble electrode plates and a plurality of conductive contacts forming gaps at equal intervals therebetween are fastened and fixed by a plurality of through bolts. With this configuration, when applying electrical plating to a plurality of metal wires at the same time by passing between these insoluble electrode plates, the amount of adhesion of the plating can be made uniform among the metal wires and stable over a long period of time. Thus, the wire rod can be treated. Therefore, according to the manufacturing method of the present invention using a powerful insoluble anode, it is possible to stably obtain a high quality finished wire material over a long period of time.
[0016] また、本発明の不溶性陽極にぉ 、て、複数枚の導電性接触子を、線材パスライン 方向の複数箇所に間隔をあけて配置すれば、隣接する導電性接触子の間に空間が 確保され、この部分で電極間の隙間が垂直方向に連通するため、メツキ液の撹拌流 動が阻害されない。さらに、複数の導電性接触子を線材パスラインの下側に配置す れば、線材パスラインの上方カゝら障害物が完全排除され、メツキ設備を簡略ィ匕できる とともに、通線作業を遮らない設計が可能であり、メツキ槽内でのメツキ反応に伴って 発生するガスの放出性も改善できる。さらにまた、複数枚の不溶性電極板又は複数 枚の導電性接触子の少なくとも一方において、貫通ボルトの貫通するボルト孔を部材 端面に達する切り込み状に形成すれば、貫通ボルトを抜かずに締め付けを緩めるだ けでこれら部材の脱着が可能になり、交換作業等が簡単になる。  [0016] In addition, if a plurality of conductive contacts are disposed at a plurality of positions in the wire material pass line direction at intervals in the insoluble anode of the present invention, a space is formed between adjacent conductive contacts. Since the gap between the electrodes communicates in the vertical direction at this part, the stirring flow of the plating solution is not hindered. Furthermore, if a plurality of conductive contacts are arranged below the wire path line, obstacles from the upper side of the wire path line are completely eliminated, and the equipment can be simplified, and the wiring work is interrupted. It is possible to improve the release of gas generated by the plating reaction in the plating tank. Furthermore, in at least one of the plurality of insoluble electrode plates or the plurality of conductive contacts, if the bolt hole that penetrates the through bolt is formed in a cut shape that reaches the end surface of the member, the tightening is loosened without removing the through bolt. Only these members can be attached and detached, and the replacement work is simplified.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本発明の一実施形態に係る金属線材メツキ用不溶性陽極を示す正面図である [図 2]同金属線材メツキ用不溶性陽極を示す平面図である。 [図 3]同金属線材メツキ用不溶性陽極に使用される不溶性電極板を示す側面図であ る。 FIG. 1 is a front view showing an insoluble anode for metal wire plating according to an embodiment of the present invention. FIG. 2 is a plan view showing an insoluble anode for metal wire plating. FIG. 3 is a side view showing an insoluble electrode plate used for the insoluble anode for metal wire plating.
[図 4]従来の金属線材メツキ用不溶性陽極を示す概略側面図である。  FIG. 4 is a schematic side view showing a conventional insoluble anode for metal wire plating.
符号の説明  Explanation of symbols
[0018] 10 外枠 [0018] 10 outer frame
11 ターミナル  11 Terminal
20 不溶性電極板  20 Insoluble electrode plate
21 電極面  21 Electrode surface
22 ボルト孔  22 Bolt hole
30 導電性接触子  30 Conductive contact
40 貫通ボルト  40 Through bolt
41 ナツ卜  41 Natsu
60 金属線材  60 metal wire
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、本発明の好適実施形態について、図面を参照しつつ詳細に説明する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
図 1は本発明の一実施形態を示す金属線材メツキ用不溶性陽極の正面図、図 2は 同金属線材メツキ用不溶性陽極の平面図、図 3は同金属線材メツキ用不溶性陽極に 使用される不溶性電極板の側面図である。  FIG. 1 is a front view of an insoluble anode for metal wire plating showing an embodiment of the present invention, FIG. 2 is a plan view of the insoluble anode for metal wire plating, and FIG. 3 is an insoluble used for the insoluble anode for metal wire plating. It is a side view of an electrode plate.
[0020] 本実施形態の不溶性陽極は、メツキ槽内のメツキ液中を横に並んで水平方向に走 行する複数本の金属線材を同時に電気メツキする電気メツキ装置に使用される。この 不溶性陽極は、図 1及び図 2に示すように、両側の外枠 10, 10の間に所定間隔で並 列配置された複数枚の不溶性電極板 20と、複数枚の不溶性電極板 20の各間に等 間隔の隙間を形成する前記各間に挿入された複数枚の導電性接触子 30と、これら を板厚方向に締め付けて固定する複数本の貫通ボルト 40とを備えて 、る。  [0020] The insoluble anode of the present embodiment is used in an electric plating apparatus for simultaneously electroplating a plurality of metal wires that run horizontally in a plating solution in a plating tank. As shown in FIGS. 1 and 2, the insoluble anode includes a plurality of insoluble electrode plates 20 and a plurality of insoluble electrode plates 20 arranged in parallel at predetermined intervals between outer frames 10 and 10 on both sides. A plurality of conductive contacts 30 inserted between each of the gaps that form an equidistant gap between each other, and a plurality of through bolts 40 that fasten and fix these in the thickness direction.
[0021] 複数枚の不溶性電極板 20は、メツキすべき金属線材 60の走行方向に長 、長方形 で垂直な導電性薄板であり、材質としては、メツキ液に浸食されない金属チタンゃチ タン タンタル、チタン タンタル ニオブ、チタン パラジウムなどのチタン基合金 が好適である。例えば、板厚が lmm程度のチタン板を用いることができる。 [0022] 不溶性電極板 20の下部には、図 3に示すように、締め付け用の貫通ボルト 40が貫 通するボルト孔 22が開設されている。ボルト孔 22は、電極板 20の長手方向に間隔を あけて設けられており、ここでは、貫通ボルト 40による締め付け部である電極板 20の 長手方向両端部に開設されている。各ボルト孔 22は下方に延びる長孔であり、電極 板 20の下端面に達する逆 U字状の切り込み状になっている。 [0021] The plurality of insoluble electrode plates 20 are conductive thin plates that are long and rectangular in the running direction of the metal wire 60 to be plated, and are made of metal titanium, titanium tantalum, which is not eroded by the plating solution, Titanium-based alloys such as titanium tantalum niobium and titanium palladium are suitable. For example, a titanium plate having a thickness of about 1 mm can be used. [0022] As shown in FIG. 3, a bolt hole 22 through which a tightening through bolt 40 passes is formed in the lower part of the insoluble electrode plate 20. The bolt holes 22 are provided at intervals in the longitudinal direction of the electrode plate 20. Here, the bolt holes 22 are opened at both ends in the longitudinal direction of the electrode plate 20, which are fastening portions by the through bolts 40. Each bolt hole 22 is a long hole extending downward, and has an inverted U-shaped cut shape reaching the lower end surface of the electrode plate 20.
[0023] 複数枚の不溶性電極板 20を挟む両側の外枠 10, 10は、不溶性電極板 20と同じ 長さである。各外枠 10は、不溶性電極板 20と同様にメツキ液に浸食されないチタン 材などからなり、十分な機械的強度を確保できる厚みを有すると共に、不溶性電極板 20のボルト孔 22に対応するように設けられたボルト孔を有している。また、両側の外 枠 10, 10間に配置された複数枚の不溶性電極板 20への給電のために、各外枠 10 の長手方向両端部にターミナル 11が取り付けられて 、る。  The outer frames 10 and 10 on both sides sandwiching the plurality of insoluble electrode plates 20 have the same length as the insoluble electrode plates 20. Each outer frame 10 is made of a titanium material that is not eroded by the plating solution like the insoluble electrode plate 20, has a thickness that can secure sufficient mechanical strength, and corresponds to the bolt hole 22 of the insoluble electrode plate 20. It has a bolt hole provided. Terminals 11 are attached to both ends of each outer frame 10 in the longitudinal direction for supplying power to a plurality of insoluble electrode plates 20 arranged between the outer frames 10 and 10 on both sides.
[0024] 複数枚の導電性接触子 30は、不溶性電極板 20より低くかつ十分に短い導電性の 厚板からなり、複数枚の不溶性電極板 20の下部間に配置されることにより、その上部 の、対向する電解面の間に金属線材 60を通過させるためのパスライン用空間を形成 する。これにより、線材パスラインの上側がライン全長で開放され、装置構造が簡単 になると共に、導電性接触子が通線作業を遮ることがなぐ更には良好なガス放出性 が確保される。これらの導電性接触子 30は、パスライン方向の複数箇所に間隔をあ けて配置することが好ましぐここでは貫通ボルト 40による締め付け部であるパスライ ン方向の両端部に配置されている。導電性接触子 30はまた、複数枚の不溶性電極 板 20の各間だけでなく、両端の不溶性陽極板 20とその外側の外枠 10との間にも同 じょうに配置されている。  [0024] The plurality of conductive contacts 30 are made of a conductive thick plate that is lower than the insoluble electrode plate 20 and sufficiently short, and are disposed between the lower portions of the plurality of insoluble electrode plates 20, so A space for a pass line for allowing the metal wire 60 to pass between the electrolytic surfaces facing each other is formed. As a result, the upper side of the wire path line is opened over the entire length of the line, the structure of the apparatus is simplified, and a better gas releasing property is ensured without the conductive contact obstructing the wire connection work. These conductive contacts 30 are preferably arranged at a plurality of locations in the pass line direction at intervals. Here, the conductive contacts 30 are arranged at both ends in the pass line direction, which are tightened portions by the through bolts 40. The conductive contact 30 is also arranged not only between each of the plurality of insoluble electrode plates 20 but also between the insoluble anode plates 20 at both ends and the outer frame 10 on the outside thereof.
[0025] 各導電性接触子 30は、不溶性電極板 20と同様にメツキ液に侵食されな 、材質、例 えば、白金、チタン、タンタル、ニオブ、ジルコニウム又はこれらの何れかを主体とす る合金などからなり、貫通ボルト 40が貫通する 2つのボルト孔を有している。  [0025] Each conductive contact 30 is not eroded by the plating solution in the same manner as the insoluble electrode plate 20, but is made of a material such as platinum, titanium, tantalum, niobium, zirconium, or an alloy mainly composed of any of these. Etc., and has two bolt holes through which the through bolt 40 passes.
[0026] そして、全ての不溶性電極板 20及び全ての導電性接触子 30の各下面は、同一平 面上に位置して、水平な平坦面を形成している。  [0026] The lower surfaces of all insoluble electrode plates 20 and all conductive contacts 30 are located on the same plane to form a horizontal flat surface.
[0027] 貫通ボルト 40は、前述したように、締め付け部であるパスライン方向の両端部に配 置されており、各締め付け部において両側の外枠 10, 10、これらの間に配設された 複数枚の電極板 20及び導電性接触子 30を並列方向に貫通する。そして、外枠 10, 10の外側に突出する両端部にナット 41, 41をねじ込むことにより、これらの部材を並 列方向に強固に締め付けて固定する。貫通ボルト 40及びナット 41, 41も、他の部材 と同様にメツキ液に侵食されないチタン材などカゝらなる。 [0027] As described above, the through bolts 40 are disposed at both ends in the pass line direction, which are tightening portions, and are disposed between the outer frames 10 and 10 on both sides in each tightening portion. The plurality of electrode plates 20 and the conductive contacts 30 are penetrated in the parallel direction. Then, the nuts 41 and 41 are screwed into both end portions projecting outside the outer frames 10 and 10, so that these members are firmly tightened and fixed in the parallel direction. The through bolt 40 and the nuts 41 and 41 are also made of a titanium material that is not eroded by the plating liquid, as with the other members.
[0028] 次に、本実施形態の不溶性陽極の使用方法及び機能について説明する。 Next, the usage method and function of the insoluble anode of this embodiment will be described.
[0029] 組立を終えた不溶性陽極をメツキ槽内に設置して槽内のメツキ液中に浸漬する。複 数枚の不溶性電極板 20の各間、より詳しくは対向する電極面 21, 21間に形成され た水平方向のパスラインに、メツキすべき金属線材 60を通過させる。これにより、複数 本の金属線材 60が両側から電極板 20, 20に挟まれた状態でメツキ液中を並列して 走行する。 [0029] After the assembly, the insoluble anode is placed in a plating tank and immersed in the plating solution in the tank. The metal wire 60 to be measured is passed through a horizontal pass line formed between each of the plurality of insoluble electrode plates 20, more specifically between the opposing electrode surfaces 21 and 21. As a result, a plurality of metal wires 60 travel in parallel in the plating solution with the electrode plates 20 and 20 sandwiched from both sides.
[0030] このとき、メツキ液の外に露出するターミナル 11から複数枚の不溶性電極板 20に給 電を行う。陰極である金属線材 60を接地すること、メツキ槽内のメツキ液を循環させる こと、メツキ液中にメツキ金属イオンを供給することなどは従来と同様である。  At this time, power is supplied to the plurality of insoluble electrode plates 20 from the terminal 11 exposed outside the plating solution. The grounding of the metal wire 60 that is the cathode, the circulation of the plating solution in the plating tank, the supply of plating metal ions into the plating solution, etc. are the same as in the past.
[0031] これにより、メツキ液中を並列して走行する複数本の金属線材 60が同時に電気メッ キされる。電極板 20が 20枚であれば 19本の金属線材 60を同時にメツキすることが できる。実際の操業では、数十本の金属線材 60を並列走行させて同時メツキすること もめる。  [0031] Thereby, the plurality of metal wires 60 traveling in parallel in the plating solution are simultaneously electrically meshed. If there are 20 electrode plates 20, 19 metal wires 60 can be simultaneously measured. In actual operation, dozens of metal wires 60 can be run in parallel and measured simultaneously.
[0032] このような複数本同時メツキにおいては、各金属線材 60の両側に、不溶性電極板 2 0が対向して配置されているため、金属線材 60の周囲に均等な厚みの電気メツキを 行うことができる。電極板が不溶性であるため、メツキ操業の進行に伴う消耗が生じず 、これに伴う電極間距離の変化もない。複数枚の不溶性電極板 20が、各隙間に導電 性接触子 30を挟んで貫通ボルト 40により板厚方向に締め付けられた構造のため、 全ての不溶性電極板 20が平行に固定され、電極上部間に形成されるパスライン用 空間の横幅 (電極間距離)が各隙間で均一に固定される。これらのために、複数本の 金属線材 60におけるメツキ付着量を均一化できる。  [0032] In such a multiple-line simultaneous plating, the insoluble electrode plates 20 are arranged on both sides of each metal wire 60 so as to face each other, so that an electric measurement with an equal thickness is performed around the metal wire 60. be able to. Since the electrode plate is insoluble, there is no consumption due to the progress of the metal operation, and there is no change in the distance between the electrodes. Due to the structure in which multiple insoluble electrode plates 20 are clamped in the thickness direction by through bolts 40 with conductive contacts 30 in each gap, all the insoluble electrode plates 20 are fixed in parallel and between the upper electrodes. The lateral width (distance between the electrodes) of the pass line space formed in is fixed uniformly in each gap. For this reason, the adhesion amount of the metal on the plurality of metal wires 60 can be made uniform.
[0033] これに加え、貫通ボルト 40による板厚方向の締め付けにより、複数枚の電極板 20 が導電性接触子 30を介して強固に面接触し、両者の接触面における電気的抵抗が 減少するので、部材並列方向の端部、すなわち両側の外枠 10, 10に取り付けたタ 一ミナル 11から給電を行う場合にも、各電極板 20への均一な給電が可能である。 In addition to this, by tightening the through bolts 40 in the plate thickness direction, the plurality of electrode plates 20 are brought into strong surface contact via the conductive contacts 30 and the electrical resistance at the contact surfaces of both is reduced. Therefore, the screws attached to the ends in the member parallel direction, that is, the outer frames 10 and 10 on both sides Even when power is supplied from one terminal 11, uniform power supply to each electrode plate 20 is possible.
[0034] このように、本実施形態の不溶性陽極では、接触抵抗低減の点からも複数本の金 属線材 60におけるメツキ付着量を均一化でき、かつその均一化を長期間にわたって 維持できる。また、この均一化に、接触面に被覆された電極活性物質が貢献している ことは言うまでもない。 Thus, in the insoluble anode of the present embodiment, the amount of plating adhesion on the plurality of metal wires 60 can be made uniform from the viewpoint of reducing the contact resistance, and the uniformity can be maintained for a long period of time. It goes without saying that the electrode active material coated on the contact surface contributes to this homogenization.
[0035] 複数枚の電極板 20の各間においては、導電性接触子 30がパスライン方向の複数 箇所に間隔をあけて配置され、図示例ではパスライン方向の両端部に配置されて 、 る。このため、ノ スライン方向において隣接する導電性接触子間に大きな隙間が形 成され、電極間の下部も上部と同様に実質的に開放されている。このため、メツキ液 の良好な流動性が確保され、これも均一メツキに寄与する。  [0035] Between each of the plurality of electrode plates 20, conductive contacts 30 are arranged at intervals in a plurality of locations in the pass line direction, and in the illustrated example, they are arranged at both ends in the pass line direction. . For this reason, a large gap is formed between the conductive contacts adjacent in the nosline direction, and the lower part between the electrodes is substantially open like the upper part. For this reason, good fluidity of the plating solution is secured, which also contributes to uniform plating.
[0036] また、複数枚の不溶性電極板 20の上部間がパスライン全長で上方に開放している ことにより、装置構造が簡単になるとともに、メツキ開始前の通線作業を遮る部材がな ぐ作業性が良好となる。更に、メツキ反応に伴って発生するガスの放出性が良好で あり、これも均一メツキ、メツキ品質の向上に寄与する。  [0036] Further, since the upper part of the plurality of insoluble electrode plates 20 is opened upward along the entire length of the pass line, the structure of the apparatus is simplified, and there is no member that interrupts the wiring work before the start of plating. Workability is improved. Furthermore, the release of the gas generated by the plating reaction is good, which also contributes to the improvement of uniform plating and plating quality.
[0037] 作業性に関しては更に、電極板 20におけるボルト孔 22が下面に達する逆 U字状 の切り込み状になっている。このため、貫通ボルト 40を緩めれば、貫通ボルト 40の引 き抜きによる電極板 20及び導電性接触子 30の分解を行わずに、電極板 20を上方 へ引き抜くことができ、その交換作業が容易となる。電極板 20だけでなく導電性接触 子 30についても、ボルト孔を下面に達する逆 U字状の切り込み状にすることができる  [0037] Regarding workability, the electrode plate 20 has a reverse U-shaped cut shape in which the bolt hole 22 in the electrode plate 20 reaches the lower surface. Therefore, if the through bolt 40 is loosened, the electrode plate 20 can be pulled upward without disassembling the electrode plate 20 and the conductive contact 30 by pulling out the through bolt 40. It becomes easy. Not only the electrode plate 20 but also the conductive contact 30 can be formed into an inverted U-shaped notch that reaches the bottom surface of the bolt hole.
[0038] 上記実施形態では、貫通ボルトによる締め付け部(導電性接触子配置部)を電極 板の長手方向両端部に設定したが、両端部及び中央部の 3ケ所、或いはそれ以上で もよぐ電極板の長さに応じて適宜選択することができる。 [0038] In the above embodiment, the tightening portions (conductive contactor placement portions) with through bolts are set at both ends in the longitudinal direction of the electrode plate. However, it may be at three or more locations at both ends and the center. It can be suitably selected according to the length of the electrode plate.
[0039] 本発明の不溶性陽極は、銅、亜鉛等の電気メツキに好適に使用することができ、例 えば、タイヤ用スチールコードの製造にぉ 、て有用である。  [0039] The insoluble anode of the present invention can be suitably used for electrical plating of copper, zinc and the like, and is useful, for example, in the production of tire steel cords.
[0040] 本発明の線材の製造方法においては、メツキ液中を走行させることにより線材に電 気メツキを施すメツキ工程にぉ 、て上記本発明の不溶性陽極を用いる点が重要であ り、それ以外の具体的なメツキ条件や他の製造工程の詳細については、常法に従い 適宜決定して実施することができ、特に制限されるものではない。 [0040] In the method for producing a wire according to the present invention, it is important that the insoluble anode according to the present invention is used in a plating process in which the wire is electroplated by running in a plating solution. For details on specific measuring conditions and other manufacturing processes other than It can be determined and implemented as appropriate, and is not particularly limited.
実施例  Example
[0041] 以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるも のではない。  [0041] Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples.
(実施例 1)  (Example 1)
図 1〜図 3に示す不溶性陽極を実際に作製して、メツキ試験に供した。不溶性電極 板は、 50本の金属線材を同時メツキするために 51枚とした。各不溶性電極板は、長 さ 400mm、高さ 90mm、厚さ lmmのチタン薄板とした。導電性接触子は長さ 80mm 、高さ 40mm、厚さ 10mmのチタン厚板とし、電極板間の長手方向両端部に配置し た。貫通ボルトはチタンボルトであり、長手方向両端部の導電性接触子配置部 (締め 付け部)に使用した。外枠及びターミナルもチタン製とした。  The insoluble anodes shown in FIGS. 1 to 3 were actually produced and subjected to a plating test. The number of insoluble electrode plates was 51 in order to simultaneously measure 50 metal wires. Each insoluble electrode plate was a titanium thin plate having a length of 400 mm, a height of 90 mm, and a thickness of 1 mm. The conductive contact was a titanium thick plate having a length of 80 mm, a height of 40 mm, and a thickness of 10 mm, and was disposed at both ends in the longitudinal direction between the electrode plates. The through bolt was a titanium bolt, and was used for the conductive contact placement part (clamping part) at both ends in the longitudinal direction. The outer frame and terminal were also made of titanium.
[0042] 作製された不溶性陽極を別途用意したメツキ槽に配置し、陰極である 50本の鋼線( 直径 1. 5mm、長さ 200mm)を電極板間のパスラインに配置して、メツキ試験を行つ た。メツキ試験では、硫酸亜鉛: 300gZL、硫酸: 50gZLを調製したものをメツキ液( 電解浴)とし、温度 50°C、陰極電流密度 20AZdm2、通電時間 10秒のメツキ条件を 採用した。メツキ後の亜鉛被覆鋼線材を剥離液に浸漬して亜鉛を溶解し、その溶解 液を蛍光 X線分析装置により分析して鋼線材 1本あたりのメツキ付着量を調査した。 調査結果を表 1に示す。 [0042] The manufactured insoluble anode is placed in a separately prepared plating tank, and 50 steel wires (diameter: 1.5 mm, length: 200 mm) as cathodes are placed in the pass line between the electrode plates to make a plating test. I went. In the plating test, zinc sulfate: 300 gZL and sulfuric acid: 50 gZL were prepared as the plating solution (electrolytic bath), and the plating conditions were set at a temperature of 50 ° C, a cathode current density of 20AZdm 2 , and an energization time of 10 seconds. The zinc-coated steel wire after plating was immersed in a stripping solution to dissolve zinc, and the solution was analyzed with a fluorescent X-ray analyzer to investigate the amount of coating on each steel wire. The survey results are shown in Table 1.
[0043] [表 1]
Figure imgf000011_0001
[0043] [Table 1]
Figure imgf000011_0001
[0044] 表 1においては、 50本の鋼線材を一度にメツキし、付着量のばらつきが 7%以内の 場合を「良」、 7%を超え 15%以内の場合を「可」とし、 15%を超える場合を「不可」と した。この結果より、不溶性電極板の間に導電性接触子を介在させて電極間距離を 等間隔にするとともに、両者を面接触させて接触面積を十分に確保したことにより、 複数の金属線材間において、めっき付着量を高いレベルで均一化できることが確認 された。  [0044] In Table 1, 50 steel wires are measured at a time, and when the dispersion in the amount of adhesion is within 7%, “good”, and when over 7% and within 15%, “good”. 15 When the value exceeds%, it was determined as “impossible”. From this result, conductive contacts were interposed between the insoluble electrode plates so that the distance between the electrodes was equal, and both were in surface contact to ensure a sufficient contact area. It was confirmed that the amount of adhesion could be made uniform at a high level.

Claims

請求の範囲 The scope of the claims
[1] メツキ液中を並列して走行する複数本の金属線材に同時に電気メツキを施す電気メ ツキ装置用の不溶性陽極において、  [1] In an insoluble anode for an electric plating apparatus that simultaneously applies electric plating to a plurality of metal wires that run in parallel in the plating liquid.
各金属線材の線材パスラインを両側カゝら挟んで対向するように並列配置された複 数枚の不溶性電極板と、  A plurality of insoluble electrode plates arranged in parallel so as to face each other with the wire pass line of each metal wire sandwiched between both sides;
複数枚の不溶性電極板の各間に介在して各間に等間隔の隙間を形成する複数枚 の導電性接触子と、  A plurality of conductive contacts interposed between each of a plurality of insoluble electrode plates to form an equidistant gap between each;
複数枚の不溶性電極板と導電性接触子とを線材パスライン方向の複数箇所で並 列方向に締め付けて固定する複数本の貫通ボルトとを具備することを特徴とする金 属線材メツキ用不溶性陽極。  An insoluble anode for metal wire plating, comprising: a plurality of through-bolts that fasten and fix a plurality of insoluble electrode plates and conductive contacts in a parallel direction at a plurality of locations in the wire pass line direction. .
[2] 複数枚の導電性接触子は、線材パスライン方向の複数箇所に間隔をあけて配置さ れて ヽる請求項 1記載の金属線材メツキ用不溶性陽極。  [2] The insoluble anode for metal wire plating according to [1], wherein the plurality of conductive contacts are arranged at intervals in a plurality of locations in the wire pass line direction.
[3] 複数枚の導電性接触子は、複数枚の不溶性電極板の各間の線材パスラインと干 渉しな 、ように線材パスラインの下側に配置されて 、る請求項 1記載の金属線材メッ キ用不溶性陽極。 [3] The plurality of conductive contacts are arranged below the wire path line so as not to interfere with the wire path line between each of the plurality of insoluble electrode plates. Insoluble anode for metal wire mesh.
[4] 複数枚の不溶性電極板又は複数枚の導電性接触子の少なくとも一方において、貫 通ボルトの貫通するボルト孔が、部材端面に達する切り込み状に形成されている請 求項 1記載の金属線材メツキ用不溶性陽極。  [4] The metal according to claim 1, wherein in at least one of the plurality of insoluble electrode plates or the plurality of conductive contacts, the bolt hole through which the through bolt penetrates is formed in a cut shape reaching the end surface of the member. Insoluble anode for wire rod plating.
[5] メツキ液中を走行させることにより線材に電気メツキを施すメツキ工程を含む線材の 製造方法において、請求項 1〜4のうちいずれか一項記載の金属線材メツキ用不溶 性陽極を用いて電気メツキを行うことを特徴とする線材の製造方法。 [5] In a method of manufacturing a wire including a plating process in which electric wire is electroplated by running in a plating solution, the insoluble anode for metal wire plating according to any one of claims 1 to 4 is used. A method of manufacturing a wire, characterized by performing electrical plating.
PCT/JP2007/062894 2006-06-30 2007-06-27 Metal wire rod plating insoluble anode and production method of wire rod WO2008001807A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006181196A JP2008007832A (en) 2006-06-30 2006-06-30 Insoluble anode for plating metal wire material, and manufacturing method of wire material
JP2006-181196 2006-06-30

Publications (1)

Publication Number Publication Date
WO2008001807A1 true WO2008001807A1 (en) 2008-01-03

Family

ID=38845572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062894 WO2008001807A1 (en) 2006-06-30 2007-06-27 Metal wire rod plating insoluble anode and production method of wire rod

Country Status (2)

Country Link
JP (1) JP2008007832A (en)
WO (1) WO2008001807A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102268717A (en) * 2011-07-22 2011-12-07 南京三超金刚石工具有限公司 Sand feeding method for diamond wire saw

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150820U (en) * 1984-09-07 1986-04-05
JP2000192292A (en) * 1998-12-28 2000-07-11 Bridgestone Corp Anode device for electroplating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150820U (en) * 1984-09-07 1986-04-05
JP2000192292A (en) * 1998-12-28 2000-07-11 Bridgestone Corp Anode device for electroplating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102268717A (en) * 2011-07-22 2011-12-07 南京三超金刚石工具有限公司 Sand feeding method for diamond wire saw

Also Published As

Publication number Publication date
JP2008007832A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP4904097B2 (en) Insoluble anode for metal wire plating and metal wire plating method using the same
JP4642120B2 (en) Electrolytic metal foil manufacturing apparatus, method for manufacturing thin plate insoluble metal electrode used in electrolytic metal foil manufacturing apparatus, and electrolytic metal foil obtained using the electrolytic metal foil manufacturing apparatus
TW490510B (en) Method and apparatus for producing electrolytic copper foil
CN113913903B (en) Electroplating device and electroplating method
KR19980033150A (en) Method and apparatus for electrolytic acid washing of metal strip
KR20160043209A (en) Electric plating apparatus with horizontal cell
WO2015008564A1 (en) Continuous manufacturing method for electrolytic metal foil and continuous manufacturing device for electrolytic metal foil
WO2008001807A1 (en) Metal wire rod plating insoluble anode and production method of wire rod
KR101819219B1 (en) Anode structure for electrolytic refining, manufacturing method and Electrowinning Equipment using the same
JPH06346270A (en) Electroplating method and split insoluble electrode for electroplating
CN108796591B (en) Electrode structure
JP5898346B2 (en) Operation method of anode and electrolytic cell
JP4020519B2 (en) Method and apparatus for electroplating metal wire
CN211689284U (en) Double-layer titanium mesh anode for horizontal electroplating of PCB
JP4204125B2 (en) Anode device for electroplating
JP2009256772A (en) Electrode base body in electrolytic metal foil production apparatus
JP2022536258A (en) Electrode assembly for electrochemical processes
CN111058080A (en) Double-layer titanium mesh anode for horizontal electroplating of PCB
KR102519062B1 (en) Assembly structure of an anode electrode for manufacture of electrolytic copper foil
KR102519078B1 (en) Method for coating
KR20100131279A (en) Plating rack for uniform thickness plating of l0w amperage part
KR20070095856A (en) Electroplating plating-form fixation electric current dispersion method
JP3514238B2 (en) Electroplating anode support
JPH07150385A (en) Method for measuring liquidity fluctuation of copper electrolyte and device therefor
JP5900213B2 (en) Electroplated steel plate manufacturing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767696

Country of ref document: EP

Kind code of ref document: A1