JPH07150385A - Method for measuring liquidity fluctuation of copper electrolyte and device therefor - Google Patents

Method for measuring liquidity fluctuation of copper electrolyte and device therefor

Info

Publication number
JPH07150385A
JPH07150385A JP5298823A JP29882393A JPH07150385A JP H07150385 A JPH07150385 A JP H07150385A JP 5298823 A JP5298823 A JP 5298823A JP 29882393 A JP29882393 A JP 29882393A JP H07150385 A JPH07150385 A JP H07150385A
Authority
JP
Japan
Prior art keywords
electrolytic
electrolytic cell
copper
liquid
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5298823A
Other languages
Japanese (ja)
Other versions
JP3191537B2 (en
Inventor
Masato Sugimoto
誠人 杉本
Koji Ando
孝治 安藤
Hiroshi Furumi
廣志 古味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP29882393A priority Critical patent/JP3191537B2/en
Publication of JPH07150385A publication Critical patent/JPH07150385A/en
Application granted granted Critical
Publication of JP3191537B2 publication Critical patent/JP3191537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To easily and labor-savingly measure the liquidity fluctuation of a copper electrolyte and to control the electrolytic refining of copper by supplying a sampled copper electrolyte to a single electrolytic cell and applying a constant current to measure the inter-electrode potential. CONSTITUTION:A copper electrolyte is supplied to >=1 electrolytic cell from its feed pipe, and a current is applied to plural anode and cathode plates which are alternately arranged. In this electrolytic reforming of copper, the electrolyte is sampled from the feed pipe through a sampling branch pipe 8 and a pump 9 and supplied to a single measuring electrolytic cell 2 arranged in a water bath 1. One insoluble anode 5 and one cathode 4 are arranged in the cell 2. A constant current is applied to the cell 2 through a rectifier 6 to measure the inter-electrode potential when the current is applied. In this case, the pump 9 and the rectifier 6 are alternately operated by a timer 7, and the supply of electrolyte to the cell and the application of the constant current are not conducted at the same time but preferably conducted alternately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は銅の電解精製の操業を管
理する為の方法および装置に関する。
FIELD OF THE INVENTION The present invention relates to a method and apparatus for controlling the electrorefining operation of copper.

【0002】[0002]

【従来の技術】銅の電解精製にあたっては、電解液の性
状、すなわち銅・硫酸濃度、添加剤添加量、温度など、
が製品電気銅に大きな影響を及ぼす。したがって、電気
銅の品質を維持するには電解液の最適な性状を安定に保
つことが重要である。電解液の性状を知る方法として、
従来は製品電気銅の外観を観察し添加剤の過不足を判定
し、一定添加する添加剤量を増減したり、電解液の銅・
硫酸濃度などを分析し一定な範囲内に収まるように補加
あるいは除去するなどの管理を行ってきた。
2. Description of the Prior Art When electrolytically refining copper, the properties of the electrolytic solution, such as copper / sulfuric acid concentration, additive amount, temperature, etc.
Has a great influence on the product copper. Therefore, in order to maintain the quality of electrolytic copper, it is important to keep the optimum properties of the electrolytic solution stable. As a method to know the properties of the electrolyte,
Conventionally, by observing the appearance of electrolytic copper products, the excess and deficiency of additives can be determined and the amount of additive added can be increased or decreased.
Sulfuric acid concentration has been analyzed, and management such as supplementation or removal has been performed so that it falls within a certain range.

【0003】しかし、これらの方法で電解液の性状を完
全に管理できるとは言い難い面がある。すなわち、電気
銅は引き揚げられるまでに通常10日前後を要し、電気
銅の外観を観察してからでは、対応が手遅れとなる場合
が多い。また、電解液の銅・硫酸・不純物濃度を常時測
定することは多大な手間と労力を要する。さらに添加剤
など分析が困難なものもある。添加剤を分析・管理する
ため電解液の分極を測定することも行われる。これらの
実施例は例えば、特開昭60−500453公報や「C
yclic Voltammetry for Mon
itoring Addition Agent Co
ncentrationsin Copper Ele
ctrorefining」(TMS 1991,P3
65−P386)等に記載されている。しかしながら、
これらに使用される装置はいずれも高価かつ大がかりで
あり、また、測定に手間がかかりすぎるが、自動化する
には装置が複雑になる。
However, it is difficult to say that the properties of the electrolytic solution can be completely controlled by these methods. That is, it usually takes about 10 days for the electrolytic copper to be pulled up, and it is often too late to respond after observing the appearance of the electrolytic copper. Further, it is very laborious and labor intensive to constantly measure the concentration of copper, sulfuric acid and impurities in the electrolytic solution. In addition, some additives are difficult to analyze. The polarization of the electrolyte is also measured to analyze and control the additive. These examples are described in, for example, JP-A-60-500453 and "C".
cyclic Voltammetry for Mon
itoring Addition Agent Co
ncentrations in Copper Ele
ctrefining "(TMS 1991, P3
65-P386) and the like. However,
All of the devices used for these are expensive and large-scale, and the measurement takes too much time, but the device becomes complicated to be automated.

【0004】電解液の組成・温度と液抵抗の間の関係に
ついては以下に示すようにいくつかの実験式が知られて
いる。電解液の組成、温度などが変化すると電解液の液
抵抗が変化する。 液抵抗 Ω・cm=1/電導度=1/{0.66+0.
006(T−55)+0.003(CH2 SO4 −18
0)−0.006(CCu−40)−0.007(CNi
10)−0.0006(CAs−3)} (CCuNiAs,H2 SO4 :電解液の銅,Ni,A
s,硫酸濃度g/l、T:液温℃) (出典:「工業電解の化学」高橋正雄、増子 昇著、p
41、アグネ刊) また、電解液組成・添加剤濃度・温度などによりアノー
ド・カソード分極が変化すればそれにより生ずる電位差
も変化する。すなわち液性の変化は電位差としてあらわ
れることになる。電解液の液抵抗や分極による電位差な
どアノード・カソード極間電位は、接点・電極間の抵抗
による電圧降下と合わせ槽電圧として測定できる。した
がって電解槽の槽電圧から接点抵抗による電圧降下を差
し引いた極間電位の部分のみを用いることで電解液の変
化を知ることができると考えられる。
Regarding the relationship between the composition / temperature of the electrolytic solution and the liquid resistance, some empirical formulas are known as shown below. When the composition, temperature, etc. of the electrolytic solution changes, the liquid resistance of the electrolytic solution changes. Liquid resistance Ω · cm = 1 / conductivity = 1 / {0.66 + 0.
006 (T-55) +0.003 ( CH 2 SO 4 -18
0) -0.006 (C Cu- 40) -0.007 (C Ni-
10) -0.0006 (C As -3)} (C Cu , Ni , As , H 2 SO 4 : electrolytic solution copper, Ni, A
s, sulfuric acid concentration g / l, T: liquid temperature ℃) (Source: "Chemistry of industrial electrolysis" Masao Takahashi, Noboru Masuko, p.
41, published by Agne) In addition, if the anode / cathode polarization changes depending on the composition of the electrolyte, the concentration of the additive, the temperature, etc., the potential difference caused thereby also changes. That is, the change in liquidity appears as a potential difference. The potential between the anode and the cathode, such as the liquid resistance of the electrolyte and the potential difference due to polarization, can be measured as the cell voltage together with the voltage drop due to the resistance between the contacts and electrodes. Therefore, it is considered that the change in the electrolytic solution can be known by using only the portion of the inter-electrode potential obtained by subtracting the voltage drop due to the contact resistance from the cell voltage of the electrolytic cell.

【0005】しかしながら実操業の電解槽の槽電圧をそ
のまま利用するには次のような問題がある。電解精製で
は、アノードが溶解しカソード上に電着するため極板間
の距離が一定でなく通電時間と共に変化する。また、電
解操業にあたっては極板の曲がりなどに起因するショー
トが発生する。ショートが発生すると電槽間の抵抗が減
少するため槽電圧は低下する。また、ショート検出や修
正のために電解槽の上に人が上がると体重により極板と
接点との抵抗が変化し槽電圧が変化してしまう。このよ
うに槽電圧には電解液以外の変化要因が多く、これらの
変化要因を除去して電解液の状態変化のみを測定しよう
とするには得られたデータの処理が複雑となる。さらに
電解槽の容量は普通4〜10m3 もあり液が入れ替わる
のに数時間以上を要する。電解液の状態変化が急激に生
じた場合、変化を検出するのが遅れる恐れがある。それ
ゆえ従来はそのまま電解液の管理として使用するのには
問題があった。
However, there are the following problems in using the cell voltage of the electrolytic cell in actual operation as it is. In electrolytic refining, the anode is melted and electrodeposited on the cathode, so the distance between the electrode plates is not constant and changes with the energization time. In addition, during the electrolytic operation, a short circuit occurs due to bending of the electrode plate. When a short circuit occurs, the resistance between the cells decreases and the cell voltage decreases. Also, when a person moves up on the electrolytic cell to detect or correct a short circuit, the resistance between the electrode plate and the contact changes depending on the weight, and the cell voltage changes. As described above, the cell voltage has many changing factors other than the electrolytic solution, and processing of the obtained data becomes complicated in order to remove these changing factors and measure only the state change of the electrolytic solution. Further, the capacity of the electrolytic cell is usually 4 to 10 m 3, and it takes several hours or more for the liquid to be replaced. When the state change of the electrolytic solution occurs abruptly, it may be delayed in detecting the change. Therefore, conventionally, there was a problem in using it as it is for the management of the electrolytic solution.

【0006】[0006]

【発明が解決しようとする課題】本発明は銅電解液の液
性を極間電位で管理する方法ならびに容易かつ省力化し
た測定装置を提案するものである。
DISCLOSURE OF THE INVENTION The present invention proposes a method for controlling the liquidity of a copper electrolyte solution at the interelectrode potential and an easy and labor-saving measuring device.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は複数枚の陽極板と陰極板とが交互に並べ
られて電気的に接続して配置されている1個以上の電解
槽への給液管より電解液を分取し、該分取した電解液を
一枚の不溶性陽極と一枚の陰極とを配置した単一の電解
槽に給液し、該単一の電解槽に定電流にて通電を行なっ
て、該定電流にて通電時の電極間電位を測定する点、
又、ここで単一の電解槽への給液と定電流にて通電とを
同時に行なわず、交互に行なう点に特徴がある。
In order to solve the above problems, the present invention provides one or more anode plates and cathode plates which are alternately arranged and electrically connected to each other. The electrolytic solution is separated from the liquid supply pipe to the electrolytic cell, and the separated electrolytic solution is supplied to a single electrolytic cell in which one insoluble anode and one cathode are arranged, Conducting electricity at a constant current in the electrolytic cell, and measuring the inter-electrode potential during conduction at the constant current,
Further, it is characterized in that the liquid supply to a single electrolytic cell and the energization at a constant current are not performed simultaneously but alternately.

【0008】又、本発明は給液管に設けた分取用枝管
と、送液ポンプと、一枚の不溶性陽極板と一枚の陰極板
とを設けた単一の電解槽と、該単一の電解槽に定電流を
通電する整流器と、該送液ポンプと該整流器とを交互に
作動させるタイマーとを備えている点、又、ここで単一
の電解槽がその内部に、相対する2つの壁に開孔部を有
し他の相対する壁の内側に極板固定具を設けた内箱を備
えた電解槽である点に特徴がある。
Further, the present invention is directed to a sorting pipe provided in a liquid supply pipe, a liquid feed pump, a single electrolytic cell provided with one insoluble anode plate and one cathode plate, It is provided with a rectifier for supplying a constant current to a single electrolytic cell, and a timer for alternately operating the liquid feed pump and the rectifier, and here, the single electrolytic cell has a relative inside thereof. It is characterized in that it is an electrolytic cell provided with an inner box having opening portions in two walls and a plate fixing tool provided inside the other opposing walls.

【0009】[0009]

【作用】図1は、本願による銅電解液の液性変動測定装
置の構成の概略を示す図である。図1において、測定用
電解槽2はその内部にアノード5およびカソード4を内
蔵する内箱3を備えた状態でウォーターバス1の内に設
置されている。液性を測定する電解液は銅の電解精製操
業中の多数の電解槽へ給液する給液管(図示せず)に接
続した分取用枝管8を通して送液ポンプ9により吸液
し、給液管10を通して測定用電解槽2に送液され、排
液管11から排出されて多数の電解槽へ給液する給液管
の中に戻される。測定用電解槽2への通電は整流器6に
より行なわれ、該整流器6の作動はタイマー7により制
御される。又、タイマー7は送液ポンプ9の作動も制御
し、送液ポンプ9を作動させている時は整流器6を作動
しない様に設定されている。
FIG. 1 is a diagram showing the outline of the configuration of the liquid property variation measuring device for a copper electrolyte according to the present invention. In FIG. 1, a measuring electrolytic cell 2 is installed inside a water bath 1 with an inner box 3 having an anode 5 and a cathode 4 built therein. The electrolyte for measuring the liquidity is absorbed by the liquid sending pump 9 through the preparative branch pipe 8 connected to the liquid supply pipe (not shown) for supplying a large number of electrolytic cells during the electrolytic refining operation of copper, The liquid is sent to the electrolytic cell for measurement 2 through the liquid supply pipe 10, is discharged from the liquid discharge pipe 11, and is returned to the liquid supply pipe for supplying liquid to a large number of electrolytic baths. Electricity is supplied to the electrolytic cell for measurement 2 by a rectifier 6, and the operation of the rectifier 6 is controlled by a timer 7. The timer 7 also controls the operation of the liquid feed pump 9 and is set so that the rectifier 6 is not operated when the liquid feed pump 9 is operating.

【0010】液性の測定を、実操業と同じ様に、給液し
ながら連続して通電しながら行なうことも考えられる
が、通電時に給液すると電極表面の反応が乱れることも
あり、又、適度な間隔を置いて定期的に測定するだけで
実操業の操業の変化を察知するのは可能であるので、調
査して決めた適度な間隔で断続的に測定した方が良い。
又、通電時間を長くし過ぎると電極の電着表面に粒が大
きく発生するなど表面状態が悪化し、電極面での反応に
影響して誤差になってしまうが、通電後30〜60秒し
ないと槽電圧が安定しないので、通電時間は60秒程度
が好ましい。
It is conceivable to measure the liquid property while continuously supplying electricity while supplying liquid, as in the actual operation. However, if supplying liquid during supplying electricity, the reaction on the electrode surface may be disturbed. Since it is possible to detect changes in the actual operation simply by making periodical measurements at appropriate intervals, it is better to make intermittent measurements at appropriate intervals determined by research.
Also, if the energization time is made too long, the surface condition will be deteriorated such that large particles will be generated on the electrodeposited surface of the electrode and the reaction on the electrode surface will be affected, resulting in an error, but not 30 to 60 seconds after energization. Therefore, the energization time is preferably about 60 seconds because the cell voltage is not stable.

【0011】刻々と変化する液性の変化を測定するため
には測定電槽を電解液の流路に近接して設置し、電解液
を頻繁に送液した方が好ましい。しかし測定槽内の液が
入れ替わる前に測定しても状態の変化ははっきりとはと
らえにくい。したがって極間電位の測定は電解液が完全
に入れ替わってから行うことが望ましく、このためにタ
イマーを用い、送液ポンプと整流器を交互に作動させる
など構造とした。
In order to measure the ever-changing change in liquidity, it is preferable to install a measuring cell in close proximity to the flow path of the electrolytic solution and to frequently feed the electrolytic solution. However, even if the measurement is performed before the liquid in the measuring tank is replaced, it is difficult to clearly recognize the change in the state. Therefore, it is desirable to measure the inter-electrode potential after the electrolyte solution has been completely replaced. For this purpose, a timer is used for this purpose, and the liquid transfer pump and the rectifier are alternately operated.

【0012】図2の(a)図は測定用電解槽2の構造を
示し、図2の(b)図は内箱3の構造を示すものであ
る。液性を測定する電解液は測定用電解槽2に送液さ
れ、開孔部12から内箱3の内部に入りアノード5およ
びカソード4に接液する。
FIG. 2 (a) shows the structure of the measuring electrolytic cell 2 and FIG. 2 (b) shows the structure of the inner box 3. As shown in FIG. The electrolytic solution whose liquidity is to be measured is sent to the measuring electrolytic cell 2, enters the inside of the inner box 3 through the opening 12, and contacts the anode 5 and the cathode 4.

【0013】図3は内箱3の内壁にカソード4を取付け
る構造の一例を示す図である。カソード4が液性の測定
時に変形してもアノードとカソードの間隔が変らないよ
うに突起部13で固定する様になっている。
FIG. 3 is a view showing an example of a structure for mounting the cathode 4 on the inner wall of the inner box 3. The cathode 4 is fixed by the protrusion 13 so that the distance between the anode and the cathode does not change even when the cathode 4 is deformed when the liquid is measured.

【0014】電解槽の極間電位で電解液性を測定しよう
とするときには液性の変化以外の要因の影響が加わらな
いような条件で極間電位を測定することが必要である。
本願では前記の如くアノードとカソードを一つの箱に固
定し、この箱を電解液の中に入れる構造とすることでア
ノードおよびカソードの垂直性を確保し、又、極板取り
付け時の誤差を最少に抑えることができる。また極板の
交換を電解液のないところで行うことができるため作業
性が向上する。
When it is attempted to measure the electrolytic solution property by the inter-electrode potential of the electrolytic cell, it is necessary to measure the inter-electrode potential under the condition that the influence of factors other than the change of the liquid property is not applied.
In the present application, the anode and the cathode are fixed in one box as described above, and the box is placed in the electrolytic solution to ensure the verticality of the anode and the cathode, and also minimize the error when mounting the electrode plate. Can be suppressed to Further, since the electrode plate can be replaced in the absence of the electrolytic solution, workability is improved.

【0015】アノードとカソードとの面間距離は原理的
にはかなり小さくても出来るが、実操業での面間距離3
3mm程度で行なった方が、測定した電圧値と実操業の
槽電圧との対比がやりやすく適している。この様に極間
距離を広めにとることで極間距離の変化による液抵抗へ
の影響を防ぐことができる。また、銅電解液にあたって
は鉛などの不溶性アノードを使用することでアノードの
溶減がなく、極間距離の変化が少なく、又、アノード交
換の手間を省略することが出来る。
In principle, the face-to-face distance between the anode and the cathode can be made quite small, but the face-to-face distance in actual operation is 3
It is suitable to perform the measurement at about 3 mm because the measured voltage value and the tank voltage in the actual operation can be easily compared. By widening the distance between the electrodes in this manner, it is possible to prevent the change in the distance between the electrodes from affecting the liquid resistance. In addition, when an insoluble anode such as lead is used for the copper electrolytic solution, the anode is not ablated, the distance between the electrodes does not change much, and the labor for replacing the anode can be omitted.

【0016】[0016]

【実施例】図2のa図に示すような横100mm、長さ
100mm、深さ100mmの内径の塩ビ製の電解槽を
用意し、そのうち0.6リットルの容量になるように給
排液口を付けた。このなかに図2のb図に示す開口部を
設けた縦70mm、横70mm、深さ100mmのアク
リル製の箱をいれた。(寸法はいずれも内径)アクリル
製の箱には鉛製アノード(縦100mm×横50mm、
厚さ5mm)、カソード(圧延銅板 縦100mm、横
65mm、厚さ0.3mm)をそれぞれ向かい合うよう
に片面を壁に密着させて装入した。カソードは表面にマ
スキングテープを巻き絶縁し、壁に密着していない方に
縦40mm、横50mmの広さの部分と上端より5mm
の部分のみテープをはがした。テープをはがした部分は
アセトンで脱脂した。アノードは表面を水で洗浄しその
まま使用した。
EXAMPLE An electrolytic cell made of PVC having an inner diameter of 100 mm in width, 100 mm in length, and 100 mm in depth as shown in FIG. Attached. An acrylic box having a length of 70 mm, a width of 70 mm, and a depth of 100 mm and having an opening shown in FIG. (All dimensions are inner diameter) Lead box anode (100mm x 50mm,
A thickness (5 mm) and a cathode (rolled copper plate 100 mm in length, 65 mm in width, 0.3 mm in thickness) were placed so as to face each other with one surface closely attached to the wall. Masking tape is wrapped around the surface of the cathode to insulate it, and the side that is not in close contact with the wall is 40 mm in length and 50 mm in width and 5 mm from the top.
The tape was peeled off only the part. The tape peeled portion was degreased with acetone. The surface of the anode was washed with water and used as it was.

【0017】図1に示すように、この電解槽をウォータ
ーバス内で60±0.5℃に保温した。電解液は電解槽
の給液管より直接定量ポンプで採取した。定量ポンプの
流量は45ml/分である。整流器は18V3Aの市販
のもの((株)ケンウッド製PR18−3型)を用い、
通電電流は1Aとした。カソード電流密度は500A/
2 となる。タイマーを用い、定量ポンプと整流器を交
互に稼働させた。タイマーにより14分間ポンプを稼働
させた後停止し、1分間通電した。その後停電し再び1
4分間ポンプを動かし液を入れ替えることを繰り返し
た。
As shown in FIG. 1, this electrolytic cell was kept at 60 ± 0.5 ° C. in a water bath. The electrolytic solution was directly collected from the liquid supply pipe of the electrolytic cell with a metering pump. The flow rate of the metering pump is 45 ml / min. As the rectifier, a commercially available rectifier of 18V3A (PR18-3 type manufactured by Kenwood Co., Ltd.) was used.
The applied current was 1A. Cathode current density is 500A /
It becomes m 2 . Using a timer, the metering pump and the rectifier were operated alternately. The pump was operated for 14 minutes by a timer, then stopped, and energized for 1 minute. After that, the power went out and 1 again
The pump was operated for 4 minutes and the solution was replaced.

【0018】電解液(初期組成はCu :45g/l、フ
リー硫酸:190g/l、にかわ:10mg/l)の変
化を再現するため、給液口から硫酸を補加した電解液を
供給した(供給後の液中フリー硫酸濃度:250g/
l)。この結果、図4に示すように電導度が増加するこ
とで極間電位は減少した。
In order to reproduce the change in the electrolytic solution (initial composition: C u : 45 g / l, free sulfuric acid: 190 g / l, glue: 10 mg / l), an electrolytic solution supplemented with sulfuric acid was supplied from the liquid supply port. (Free sulfuric acid concentration in the liquid after supply: 250 g /
l). As a result, as shown in FIG. 4, the electric potential increased and the inter-electrode potential decreased.

【0019】添加剤であるにかわを1g/lの濃度で溶
解した電解液を1リットル給液した。その結果、図4に
示した様にカソード分極が増加することで極間電位は著
しく増加した。
1 liter of an electrolytic solution in which glue as an additive was dissolved at a concentration of 1 g / l was supplied. As a result, as shown in FIG. 4, the cathodic polarization was increased and the inter-electrode potential was significantly increased.

【0020】また、水で希釈した電解液を給液してみる
と(給液後の液中銅濃度:30g/l)、図4に示した
様に極間電位は増加した。このように本発明を用いるこ
とにより電解液の性状が変化したことを極間電位の変化
としてとらえることができる。図5に本装置で測定した
実操業(アノード26枚、カソード27枚、DK250
A/m2 )の極間電位の変化を示す。
When the electrolyte diluted with water was supplied (copper concentration in the liquid after the supply: 30 g / l), the inter-electrode potential increased as shown in FIG. As described above, by using the present invention, a change in the properties of the electrolytic solution can be recognized as a change in the inter-electrode potential. Fig. 5 shows the actual operation measured with this device (26 anodes, 27 cathodes, DK250
A / m 2 ) shows the change in inter-electrode potential.

【0021】[0021]

【発明の効果】本発明により電解液の性状の変化を容易
に測定し添加剤、組成等の管理に役立てることが出来る
ようになった。
According to the present invention, it has become possible to easily measure the change in the property of the electrolytic solution and use it for the control of additives, compositions and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願による装置の構成の概略を示す図である。FIG. 1 is a diagram showing a schematic configuration of an apparatus according to the present application.

【図2】(a)図は、本願による装置において測定用電
解槽2の構造を示し、(b)図は内箱3の構造を示す。
FIG. 2 (a) shows the structure of a measuring electrolytic cell 2 in the device according to the present application, and FIG. 2 (b) shows the structure of an inner box 3.

【図3】本願による装置において内箱3の内壁にカソー
ド4を取付ける構造の一例を示す図である。
FIG. 3 is a diagram showing an example of a structure in which a cathode 4 is attached to an inner wall of an inner box 3 in the device according to the present application.

【図4】本願による装置により電解液の液性を測定した
結果を示し、特に意図的に、水で希釈したり、硫酸を加
えたり、にかわを補加した場合の槽電圧の変化を測定し
た図である。
FIG. 4 shows the results of measuring the liquidity of an electrolytic solution by the device according to the present application, and in particular, the changes in the cell voltage were measured intentionally when diluted with water, added sulfuric acid, or supplemented with glue. It is a figure.

【図5】本願による装置により実操業の極間電位の変化
を測定した結果を示す図である。
FIG. 5 is a diagram showing a result of measuring a change in inter-electrode potential in actual operation by the device according to the present application.

【符号の説明】[Explanation of symbols]

1 ウォーターバス 2 測定用電解槽 3 内箱 4 カソード 5 アノード 6 整流器 7 タイマー 8 分取用枝管 9 送液ポンプ 10 給液管 11 排液管 12 開孔部 13 突起部 1 Water bath 2 Electrolysis tank for measurement 3 Inner box 4 Cathode 5 Anode 6 Rectifier 7 Timer 8 Branch pipe for preparative 9 Liquid feed pump 10 Liquid feed pipe 11 Drain pipe 12 Opening hole 13 Projection

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数枚の陽極板と陰極板とが交互に並べ
られて電気的に接続して配置されている1個以上の電解
槽への給液管より電解液を分取し、該分取した電解液を
一枚の不溶性陽極と一枚の陰極とを配置した単一の電解
槽に給液し、該単一の電解槽に定電流にて通電を行なっ
て、該定電流にて通電時の電極間電位を測定することを
特徴とする銅電解液の液性変動測定方法。
1. An electrolytic solution is collected from a liquid supply pipe to one or more electrolytic cells in which a plurality of anode plates and cathode plates are alternately arranged and electrically connected to each other. The separated electrolytic solution is supplied to a single electrolytic cell in which one insoluble anode and one cathode are arranged, and the single electrolytic cell is energized with a constant current to obtain the constant current. A method for measuring liquidity fluctuations of a copper electrolyte, which comprises measuring an inter-electrode potential when electricity is applied.
【請求項2】 単一の電解槽への給液と定電流にて通電
とを同時に行なわず、交互に行なう請求項1記載の銅電
解液の液性変動測定方法。
2. The method for measuring the liquidity variation of a copper electrolytic solution according to claim 1, wherein the supply of liquid to a single electrolytic cell and the energization at a constant current are not performed simultaneously but alternately.
【請求項3】 給液管に設けた分取用枝管と、送液ポン
プと、一枚の不溶性陽極板と一枚の陰極板とを設けた単
一の電解槽と、該単一の電解槽に定電流を通電する整流
器と、該送液ポンプと該整流器とを交互に作動させるタ
イマーとを備えていることを特徴とする銅電解液の液性
変動測定装置。
3. A single electrolytic cell provided with a preparative branch pipe provided in a liquid supply pipe, a liquid feed pump, a single insoluble anode plate and a single cathode plate, and the single electrolytic cell. A liquid variation measuring device for a copper electrolyte, comprising: a rectifier that applies a constant current to an electrolytic cell; and a timer that alternately operates the liquid feed pump and the rectifier.
【請求項4】 単一の電解槽がその内部に、相対する2
つの壁に開孔部を有し他の相対する壁の内側に極板固定
具を設けた内箱を備えた電解槽である請求項3記載の銅
電解液の液性変動測定装置。
4. A single electrolyzer has two opposing internal electrolytic cells.
4. The liquid fluctuation measuring device for a copper electrolytic solution according to claim 3, which is an electrolytic cell having an inner box having an opening portion on one wall and an electrode plate fixture provided on the inside of the other opposing wall.
JP29882393A 1993-11-30 1993-11-30 Method and apparatus for measuring variation in liquid property of copper electrolyte Expired - Lifetime JP3191537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29882393A JP3191537B2 (en) 1993-11-30 1993-11-30 Method and apparatus for measuring variation in liquid property of copper electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29882393A JP3191537B2 (en) 1993-11-30 1993-11-30 Method and apparatus for measuring variation in liquid property of copper electrolyte

Publications (2)

Publication Number Publication Date
JPH07150385A true JPH07150385A (en) 1995-06-13
JP3191537B2 JP3191537B2 (en) 2001-07-23

Family

ID=17864683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29882393A Expired - Lifetime JP3191537B2 (en) 1993-11-30 1993-11-30 Method and apparatus for measuring variation in liquid property of copper electrolyte

Country Status (1)

Country Link
JP (1) JP3191537B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174114A (en) * 2010-02-23 2011-09-08 Pan Pacific Copper Co Ltd Electrolytic refining apparatus for copper and electrolytic refining method for copper using the same
JP2013040372A (en) * 2011-08-15 2013-02-28 Pan Pacific Copper Co Ltd Method of producing metal
JP2014159626A (en) * 2013-01-23 2014-09-04 Pan Pacific Copper Co Ltd Method for producing electrolytic copper

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174114A (en) * 2010-02-23 2011-09-08 Pan Pacific Copper Co Ltd Electrolytic refining apparatus for copper and electrolytic refining method for copper using the same
JP2013040372A (en) * 2011-08-15 2013-02-28 Pan Pacific Copper Co Ltd Method of producing metal
JP2014159626A (en) * 2013-01-23 2014-09-04 Pan Pacific Copper Co Ltd Method for producing electrolytic copper

Also Published As

Publication number Publication date
JP3191537B2 (en) 2001-07-23

Similar Documents

Publication Publication Date Title
KR100209200B1 (en) Method and apparatus for applying surface treatment to metal foil
US10047449B2 (en) Device and method for electrolytically coating an object
Scott et al. Experimental determination of the factors affecting zinc electrowinning efficiency
AU2002350349B2 (en) Method for the improvement of current efficiency in electrolysis
WO2008001892A1 (en) Metal wire rod plating insoluble anode and metal wire rod plating method using it
KR19980033150A (en) Method and apparatus for electrolytic acid washing of metal strip
JPH07150385A (en) Method for measuring liquidity fluctuation of copper electrolyte and device therefor
CA1179751A (en) Controlling metal electro-deposition using electrolyte containing, two polarizing agents
CA1126684A (en) Bipolar refining of lead
JPH057474B2 (en)
CN220767212U (en) Horizontal electroplating equipment for thin-sheet substrate
CN110923753B (en) Conductive bar base for measuring electrode current of aqueous solution electrolytic cell
Gana et al. Direct electrorefining of copper scrap using an anode-support system in a bipolar cell
JPH0625883A (en) Electrode and method for measuring uniformity ratio
Gonzalez-Dominguez A review of lead and zinc electrodeposition control by polarization techniques
JPH05195296A (en) Automatic controlling device for electrolytic solution
CA1155790A (en) Method and apparatus for controlling the electrodeposition of metals
JP3428621B2 (en) Copper electrorefining method
Engelmaier et al. Current distribution leveling resulting from auxiliary bipolar electrodes
JPH05271977A (en) Detection of short circuit
CN116163000A (en) Device and method for reversely electrolyzing copper
KR950014375A (en) Anodic Reactivity Test Apparatus and Evaluation Method in Electroplating
Vuković et al. Electrochemical Investigation of an Electrodeposited and Thermally Treated Ruthenium Electrode in Alkaline Solution
JPH04191394A (en) Production of copper coated steel wire
US20070284262A1 (en) Method of Detecting Shorts and Bad Contacts in an Electrolytic Cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080525

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 13

EXPY Cancellation because of completion of term