WO2008001798A1 - Oscillating wave detection method and device - Google Patents

Oscillating wave detection method and device Download PDF

Info

Publication number
WO2008001798A1
WO2008001798A1 PCT/JP2007/062863 JP2007062863W WO2008001798A1 WO 2008001798 A1 WO2008001798 A1 WO 2008001798A1 JP 2007062863 W JP2007062863 W JP 2007062863W WO 2008001798 A1 WO2008001798 A1 WO 2008001798A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonance
vibration wave
resonators
wave detection
beams
Prior art date
Application number
PCT/JP2007/062863
Other languages
French (fr)
Japanese (ja)
Other versions
WO2008001798B1 (en
Inventor
Shigeru Ando
Nobutaka Ono
Yuya Fujita
Naoki Ikeuchi
Original Assignee
The University Of Tokyo
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo, Tokyo Electron Limited filed Critical The University Of Tokyo
Publication of WO2008001798A1 publication Critical patent/WO2008001798A1/en
Publication of WO2008001798B1 publication Critical patent/WO2008001798B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H13/00Measuring resonant frequency

Definitions

  • the present invention relates to a vibration wave detection method and apparatus for detecting the intensity of vibration waves for each frequency band.
  • Non-Patent Document 1 and Non-Patent Document 2 disclose resonator array type vibration sensors that detect the intensity of vibration waves for each frequency band.
  • This vibration sensor includes an array of resonators having different resonance frequencies. Each resonator resonates with the frequency component of the resonance frequency of its own resonator among the frequency components of vibration waves such as sound waves. This vibration sensor converts the resonance level of each resonator into an electrical signal and outputs it.
  • a piezoresistor is formed near the support portion of the resonator, and a change in the resistance value of the piezoresistor caused by the vibration (resonance) of the resonator is detected by a Wheatstone bridge or the like. Thus, an electrical output signal is extracted from the resonator.
  • the sensor described in Non-Patent Document 2 switches the multiplexer to obtain the Wheatstone bridge output signal at each resonator.
  • Patent Document 1 and Patent Document 2 propose a method of controlling the gain of a specific frequency band with a simple circuit configuration of a resonator array type. For example, in the technique described in Patent Document 1, in a resonator array type vibration sensor, each piezoresistor provided in each resonator is connected in parallel. By changing the resistance value by changing the power voltage applied to the parallel circuit or changing the shape of the piezoresistor, the gain in a specific frequency band is controlled.
  • Patent Document 2 utilizes the fact that the magnitude of distortion varies depending on the position of the resonator. That is, the gain of a specific frequency band is controlled by adjusting the position where the piezoresistor is provided in each resonator so that the level of the output signal in each frequency band becomes a desired level.
  • Non-specific 3 pm Reference 1 W. Benecke et al., A Frequencv-eiective, Piezoresistive Silicon Vi bration Sensor, "Digest of Technical Papers of TRANSDUCERS '85, pp. 105-108 (1 985)
  • Non-Patent Document 2 E. Peeters et al., "Vibration Signature Analysis Sensors for Predictive Diagnostics," Proceedings of SPIE, 97, vol. 3224, pp. 220-230 (1997)
  • Patent Document 1 JP 2000-46639 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-46640
  • g be a Hilbert transform of f
  • f and g be a Hilbert transform pair.
  • the hinorebenore transformation is a function that connects the real and imaginary parts of the analytic function.
  • vibration phenomena are characterized by time-varying amplitude and phase.
  • Patent Document 1 a dynamically changeable frequency characteristic is realized by applying a negative voltage of a piezoresistive detector according to the resonance frequency of the resonator.
  • the load for vibration wave detection is limited to positive and negative real numbers, and the Hilbert transform versus output cannot be obtained in real time as instantaneous values.
  • the present invention has been made in view of such circumstances, and its purpose is to instantaneously
  • the object is to provide a vibration wave detection method and apparatus capable of obtaining a Hilbert transform versus output as a time value.
  • the vibration wave detection method includes:
  • the plurality of resonators are arranged so that the positions of the respective resonators are logarithmic linear proportional to the logarithm of their resonance frequencies
  • N is an integer of 2 or more, N ⁇ every other resonator is selected, and the outputs of the detectors are added to output a plurality of signals.
  • the vibration wave detection device according to the second aspect of the present invention provides:
  • a resonator array in which a plurality of resonators resonating at specific frequencies different from each other are arranged IJ so that the position of each resonator is logarithmically linear in proportion to the logarithm of the resonance frequency
  • a plurality of output synthesizers that select the plurality of resonators every N_ 1 and add the outputs of the detectors, where N is an integer greater than or equal to 2,
  • vibration wave detection method and vibration wave detection apparatus of the present invention it is possible to obtain a Hilbert transform pair output as an instantaneous value in real time (without performing an operation on data for a certain period).
  • FIG. 1 is a diagram showing an example of a sensor body in a vibration wave detection device of the present invention.
  • FIG. 2 is a circuit diagram showing an example of a vibration wave detection apparatus of the present invention.
  • FIG. 3 is a diagram schematically showing frequency characteristics of a resonant beam of the sensor body.
  • FIG.4 Shows an example of the sensor body in the case where a resonant beam is provided on both sides of the transverse beam
  • FIG. 5 is a circuit diagram showing an example of a vibration wave detection device of the present invention using the sensor body of FIG.
  • FIG. 6 is a circuit diagram showing an example of a vibration wave detection device of the present invention when the detector is a capacitor.
  • FIG. 7 is a diagram showing an example of a vibration wave detection device in which a resonance beam is provided on both sides of a transverse beam and the detector is a capacitor.
  • FIG. 8 is a circuit diagram showing an example of a piezoresistive vibration wave detector that outputs the sum of the outputs of the respective resonant beams.
  • FIG. 9 is a circuit diagram showing an example of a piezoresistive vibration wave detector using a plurality of bias voltage lines.
  • FIG. 1 is a diagram showing an example of a sensor body in the vibration wave detection device of the present invention.
  • Half The sensor body 1 formed on the conductive silicon substrate 20 includes a diaphragm 2 that receives sound waves, a transverse beam 3 that is connected to the diaphragm 2, a stop plate 4 that is connected to the tip of the transverse beam 3, and a transverse beam 3 5m (hereinafter collectively referred to as resonant beam 5), all of which are formed of semiconductor silicon. Yes.
  • the width of the transverse beam 3 is thickest at the end on the diaphragm 2 side, and then gradually narrows toward the end plate 4 side according to the direction force, and is narrowest at the end on the end plate 4 side.
  • Zn indicates the width of the transverse beam 3 at the position where the nth resonance beam 5n is supported.
  • Each resonant beam 5 is a resonator whose length is adjusted so as to resonate at a specific frequency.
  • the plurality of resonant beams 5 are selectively oscillated in response to the resonant frequency f expressed by the following equation (3).
  • the resonant frequency f can be set to a desired value.
  • Each resonant beam 5 has a unique resonant frequency.
  • the thickness a of all the resonant beams 5 is constant, and the length X of the resonant beams 5 is made to increase gradually from the right side (diaphragm 2 side) to the left side (end plate 4 side). That is, from the right side (diaphragm 2 side) to the left side (end plate 4 side)
  • the resonant frequency at which each resonant beam 5 inherently vibrates with increasing force is set from a high frequency to a low frequency.
  • each resonance beam 5 in the sensor body 1 is proportional to the logarithm of the resonance frequency of the resonance beam 5. This is called a log-linear structure.
  • the resonant beams 5 are configured to be arranged at equal intervals. That is, the ratio of the resonance frequencies of the adjacent resonance beams 5 is constant for any resonance beam 5.
  • the sensor body 1 configured in this way is called a fishbone sensor.
  • the shape from the position of the resonance beam 5 of the transverse beam 3 to the shape of the resonance beam 5 in any resonance beam 5 is the same structure (self (Similar).
  • the traveling speed of the vibration wave transmitted through the transverse beam 3 is proportional to the frequency, and the wavelength is constant regardless of the frequency.
  • the sensor main body 1 having the above-described configuration is manufactured on the semiconductor silicon substrate 20 by using a micromachine cache technique.
  • the vibration energy input from the diaphragm 2 is distributed to the respective resonant beams 5 through the transverse beams 3, absorbed by the mechanical-electric converters of the respective resonant systems, converted into signal energy, and extracted.
  • FIG. 8 is a circuit diagram showing an example of a conventional piezoresistive vibration wave detection device that outputs the sum of the outputs of the respective resonant beams 5 using the sensor body 1.
  • a positive DC bias is applied to the upper resonance beams 51a to 5ma
  • a negative DC bias is applied to the lower resonance beams 51b to 5mb
  • the current force of each resonance beam 5 is Added and output.
  • the upper and lower resonant beams 5 that make a pair vibrate in opposite phases, and the upper and lower piezoresistors 6 expand and contract in opposite phases.
  • the resistance value of the piezoresistor on the i-th upper resonant beam is R + ⁇ R (t)
  • the resistance value of the piezoresistor on the i-th lower resonant beam is R _ ⁇ R (t)
  • FIG. 9 is a circuit diagram showing an example of a conventional piezoresistive vibration wave detector using a plurality of noise voltage lines. Using the circuit in Fig. 9, dynamic gain adjustment by frequency is possible. If the bias voltage of the i-th resonant beam is soil V, the output voltage V is expressed by the following equation (6).
  • the vibration wave detection device shown in FIG. 9 has variable frequency characteristics, but the gain that can be set for each frequency is limited to a real number.
  • the gain in frequency filtering becomes real or pure imaginary only when the impulse response is symmetric or anti-symmetric. If the gain set for each frequency is limited to a real number, an arbitrary impulse response cannot be realized.
  • Fig. 8 or Fig. 9 In any of the vibration wave detectors shown in Fig. 1, the output is limited to the real part, and the output of the Hilbert transform pair cannot be obtained.
  • FIG. 2 is a circuit diagram showing an example of the vibration wave detection apparatus of the present invention using the sensor body 1.
  • Piezoresistors 61, 62, and 6m (hereinafter collectively referred to as piezoresistors 6) are formed in the distortion generating portions (crossing beam 3 side) of each resonance beam 5 of the sensor body 1.
  • the plurality of piezoresistors 6 are connected in parallel, and one end of the piezoresistor 6 is connected to a power source 7a having a bias voltage V.
  • the other end of the piezoresistor 6 is connected to the input terminal of operational amplifiers 10a, 10b, and 10c (hereinafter collectively referred to as operational amplifier 10) by a common line every other N_1, where N is a positive integer. It is connected. That is, the current outputs from the piezoresistors 6 having the same number of N remainders (modulo) are added and input to different operational amplifiers 10 respectively.
  • Such a configuration is called the N-phase addition method.
  • N is 3
  • the transfer impedance type operational amplifier 10 is a current-voltage conversion amplifier having an input impedance of 0 and an output impedance of 0.
  • the + input terminal of the operational amplifier 10 is grounded.
  • the common line connected every other N— is connected to the negative voltage—V power supply 7b through a dummy resistor Rd.
  • FIG. 3 is a diagram schematically showing the frequency characteristic Fn (Q) of the resonant beam 5 of the sensor body 1. Since the ratio of the resonant frequencies of the adjacent resonant beams 5 is constant, the frequency characteristics Fn (Q) expressed on the logarithmic frequency are almost the same shape and are arranged at equal intervals ⁇ .
  • ⁇ ⁇ () ⁇ F n + kN (Q)
  • Equation (9) is obtained.
  • Equation 10 H (c) and f (c) are Fourier transforms on the logarithmic frequency axis of ⁇ ⁇ ( ⁇ ) and F (Q), respectively, and can be expressed as equations (11) and (12), respectively. it can.
  • the sensor body 1 has a logarithmic linear structure.
  • the logarithmic frequency ⁇ is proportional to the longitudinal position of the transverse beam 3 (the interval between the resonant beams 5 is proportional to the difference of the logarithmic frequency ⁇ ).
  • H ( ⁇ ) can be regarded as a kind of wave on transverse beam 3. Therefore, h (c) corresponds to the transformation of the wave H ( ⁇ ) into the (spatial) frequency domain.
  • ⁇ ( ⁇ ) to ⁇ ( ⁇ ) is a representation of the Hilbert transform pair in terms of power.
  • the structural parameter is controlled so that the Fourier transform f (c) of the frequency characteristic on the logarithmic frequency axis becomes narrow enough to satisfy the equation (13), and the amplitude peak of f (c) for c
  • N 3 and the Hilbert transform pair output is obtained as an instantaneous value in real time in three phases every 2 ⁇ / 3. From Equations (7) to (20), if the ratio of resonant frequencies of resonant beams selected every other line ( ⁇ ⁇ ) is constant, ⁇ is not constant. I can tell you what you need to do. When ⁇ is constant, the N-phase is equidistant on the complex plane.
  • is made constant, that is, the ratio of the resonant frequencies of the adjacent resonant beams is made constant, and output is made in three phases, it is easy to handle the output as soon as the sensor body 1 creates it.
  • a component orthogonal to the first output can be obtained from the outputs of the second and third phases by appropriately adjusting the gain.
  • the declination angle differs by ⁇ ⁇ 2, so the first and third phases, and the second and fourth phases become opposite phase signals, but the real part (first and third phases) Phase) and imaginary part (2nd and 4th phase) signals
  • the vibration wave detection method of the present invention can be used in any scene where a conventional microphone or vibration sensor is used. Furthermore, it can be used in the following cases, which could not be done in the past.
  • vibration / acoustic detection with high time resolution for example, abnormal sound can be detected instantaneously in a continuously operating machine.
  • a wideband AM / FM demodulator can be realized. Then, noise detection can be performed using the redundant signal of the negative phase.
  • FIG. 4 shows an example of a vibration wave detection device in the case where the resonant beam 5 is provided on both sides of the transverse beam 3.
  • the resonant beams 5 on both sides of the transverse beam 3 have the same resonant frequency, and ⁇ sets of resonant beams 5 are formed in pairs facing each other.
  • FIG. 5 is a circuit diagram showing an example of the vibration wave detection apparatus of the present invention using the sensor body 1 of FIG.
  • Ezoresistors 61a, 61b to 6ma, 6mb (hereinafter collectively referred to as piezoresistor 6) are formed.
  • the plurality of piezoresistors 6 are connected in parallel, and one ends of the upper piezoresistors 61a to 6ma in FIG. 5 are connected to a power source 7a having a bias voltage V.
  • One ends of the resistors 61b to 6mb are connected to a power source 7b having a bias voltage—V.
  • the other end of the piezoresistor 6 is connected to the input terminal of the operational amplifier 10 by a common line every other N_1, where N is a positive integer.
  • N is 3, and the other end of the piezoresistor 6 is
  • 63a and 63b are connected to the operational amplifier 10c.
  • the + input terminal of the operational amplifier 10 is grounded. Since every other N ⁇ output line is connected to the power supply 7b via the piezoresistor 6nb of the paired resonant beam 5nb, the dummy resistor Rd is not required.
  • the resonance frequencies of the paired resonance beams 5na and 5nb are the same and are added as the same phase, so the same result as the configuration of FIG. 2 is obtained.
  • the sensitivity is doubled because the upper and lower piezoresistors 6 are differential.
  • FIG. 6 is a circuit diagram showing an example of the vibration wave detection device of the present invention when the detector is a capacitor.
  • Electrodes 91 to 9m are formed on the semiconductor silicon substrate 20 at positions facing the front end portions 81 to 8m (hereinafter collectively referred to as front end portions 8) of the respective resonant beams 5.
  • a capacitor is constituted by the tip 8 of each resonance beam 5 and each electrode 9 opposed thereto.
  • the tip 8 of the resonant beam 5 is a movable electrode that moves up and down with vibration.
  • the electrode 9 formed on the semiconductor silicon substrate 20 is a fixed electrode whose position does not move.
  • the plurality of electrodes 9 are connected in parallel and connected to a power source 7a with a bias voltage V.
  • the tip 8 of each resonant beam 5 is connected to the input terminal of the operational amplifier 10 by a common line every N_l, where N is a positive integer.
  • N is 3
  • the tips 81,... Are connected to the operational amplifier 10a
  • the tips 82 are connected to the operational amplifier 10b
  • the tips 83 are connected to the operational amplifier 10c.
  • the + input terminal of the operational amplifier 10 is grounded.
  • a common line connected every N_ l lines is connected to a negative voltage—V power supply 7b via a dummy resistor Rd.
  • the vibration wave detection device of FIG. 6 is completely different from that of the first embodiment except that the phase of the resistance to the vibration wave and the change of the capacitor are different from those of the sensor body 1 of the piezoresistor 6 of FIG. The same can be handled. Therefore, even if the detector is a capacitor, every H ⁇ 1 every other time, the Hilbert transform pair output can be obtained as an instantaneous value in real time.
  • FIG. 7 shows an example of a vibration wave detection device in which the resonance beam 5 is provided on both sides of the transverse beam 3 and the detector is a capacitor.
  • the resonance beams 5 on both sides of the transverse beam 3 have the same resonance frequency, and m pairs of resonance beams 5 are formed in pairs. ing. Electrodes 91a, 91b-9ma, and 9mb (hereinafter referred to as electrodes 9) are disposed on the semiconductor silicon substrate 20 at positions facing the distal ends 81a, 81b to 8ma, and 8mb (hereinafter collectively referred to as distal ends 8) of the resonance beams 5, respectively. And a capacitor is constituted by the tip 8 of each resonance beam 5 and each electrode 9 opposed thereto.
  • the upper electrodes 91a to 9ma in Fig. 7 are connected to a power source 7a having a bias voltage V.
  • the lower electrodes 91b to 9mb are connected to a power supply 7b having a noisy voltage ⁇ V.
  • each resonant beam 5 is connected to the input terminal of the operational amplifier 10 by a common line every other N—where N is a positive integer.
  • the tips 81a, 81b, ... are connected to the operational amplifier 10a
  • the tips 82a, 82b, ... are connected to the operational amplifier 10b
  • the tips 83a, 83b, ... are connected to the operational amplifier 10c.
  • the + input terminal of the operational amplifier 10 is grounded
  • the vibration wave detecting device of FIG. 7 is a modification of the first embodiment except that the phase of the resistance change and the change of the capacitor with respect to the vibration wave is different from that of the sensor body 1 of the piezoresistor 6 of FIG. Example Can be handled exactly the same. Therefore, even if the detector is a capacitor, the output from the Hilbert transform can be obtained by adding every N ⁇ 1. Further, compared with the configuration of the resonant beam 5 on one side in FIG.
  • the vibration wave detection apparatus of the present invention it is possible to obtain the Hilbert transform pair output as an instantaneous value in real time even when the detector is a capacitor.
  • the present invention can be used for a frequency detection device that detects the frequency of sound waves.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Provided are an oscillating wave detection method and device capable of obtaining a Hilbert transform pair output as an instantaneous value in real time. The oscillating wave detection method causes an oscillating wave to propagate to a plurality resonance beams (51 to 5m), each resonating to a particular frequency, and detects oscillation of each of the resonance beams (51 to 5m) as an electric signal by using piezoelectric resistors (61 to 6m) arranged in the resonance beams (51 to 5m). The resonance beams (51 to 5m) are arranged so that positions of the respective resonators are arranged in a logarithmic linear form proportional to a logarithm of their resonance frequencies. When N is an integer not smaller than 2, the resonance beams (51 to 5m) are selected by every other N-1 and the outputs of the piezoelectric resistors (61 to 6m) are added so as to output a plurality of signals. More preferably, the N is an integer not smaller than 3 and the resonance beams (51 to 5m) are arranged and the resonance frequencies are set so that the ratio of the resonance frequencies of the resonance beams (51 to 5m) of every other N-1 is constant.

Description

明 細 書  Specification
振動波検出方法及び装置  Vibration wave detection method and apparatus
技術分野  Technical field
[0001] 本発明は、振動波の周波数帯域ごとの強度を検出する振動波検出方法及び装置 に関する。  The present invention relates to a vibration wave detection method and apparatus for detecting the intensity of vibration waves for each frequency band.
背景技術  Background art
[0002] 振動波の周波数帯域毎の強度を検出する共振子アレイ型の振動センサが、非特 許文献 1と非特許文献 2に開示されている。この振動センサは、共振周波数が異なる 共振子の配列を備える。各共振子は、音波等の振動波の周波数成分のうち、 自己の 共振子の共振周波数の周波数成分に共振する。この振動センサは、各共振子毎の 共振レベルを電気的信号に変換して出力する。  Non-Patent Document 1 and Non-Patent Document 2 disclose resonator array type vibration sensors that detect the intensity of vibration waves for each frequency band. This vibration sensor includes an array of resonators having different resonance frequencies. Each resonator resonates with the frequency component of the resonance frequency of its own resonator among the frequency components of vibration waves such as sound waves. This vibration sensor converts the resonance level of each resonator into an electrical signal and outputs it.
[0003] 従来の振動センサでは、共振子の支持部付近にピエゾ抵抗を形成し、共振子の振 動(共振)によって起こるピエゾ抵抗の抵抗値の変化を、ホイートストンブリッジ等によ つて検出することにより、共振子から電気的な出力信号を取り出している。非特許文 献 2に記載されたセンサは、マルチプレクサを切り替えて各共振子におけるホイートス トンブリッジ出力信号を得ている。  [0003] In a conventional vibration sensor, a piezoresistor is formed near the support portion of the resonator, and a change in the resistance value of the piezoresistor caused by the vibration (resonance) of the resonator is detected by a Wheatstone bridge or the like. Thus, an electrical output signal is extracted from the resonator. The sensor described in Non-Patent Document 2 switches the multiplexer to obtain the Wheatstone bridge output signal at each resonator.
[0004] 特許文献 1と特許文献 2は、共振子アレイ型の簡易な回路構成にて、特定の周波 数帯域の利得を制御する方法を提案してレ、る。例えば特許文献 1に記載された技術 では、共振子アレイ型の振動センサにおいて、各共振子に設けられた各ピエゾ抵抗 が並列に接続されている。この並列回路に印加する電源電圧を変更する力 または 、ピエゾ抵抗の形状を変化させて抵抗値を変更することにより、特定の周波数帯域の 利得を制御する。  [0004] Patent Document 1 and Patent Document 2 propose a method of controlling the gain of a specific frequency band with a simple circuit configuration of a resonator array type. For example, in the technique described in Patent Document 1, in a resonator array type vibration sensor, each piezoresistor provided in each resonator is connected in parallel. By changing the resistance value by changing the power voltage applied to the parallel circuit or changing the shape of the piezoresistor, the gain in a specific frequency band is controlled.
[0005] また、特許文献 2に記載された技術では、歪みの大きさが共振子の位置に応じて異 なることを利用している。すなわち、各周波数帯域の出力信号のレベルが所望のレべ ノレになるように、各共振子においてピエゾ抵抗を設ける位置を調整することにより、特 定の周波数帯域の利得を制御する。  [0005] Further, the technique described in Patent Document 2 utilizes the fact that the magnitude of distortion varies depending on the position of the resonator. That is, the gain of a specific frequency band is controlled by adjusting the position where the piezoresistor is provided in each resonator so that the level of the output signal in each frequency band becomes a desired level.
非特 3午文献 1: W. Benecke et al., A Frequencv- eiective, Piezoresistive Silicon Vi bration Sensor," Digest of Technical Papers of TRANSDUCERS '85, pp. 105-108 (1 985) Non-specific 3 pm Reference 1: W. Benecke et al., A Frequencv-eiective, Piezoresistive Silicon Vi bration Sensor, "Digest of Technical Papers of TRANSDUCERS '85, pp. 105-108 (1 985)
非特許文献 2 : E. Peeters et al., "Vibration Signature Analysis Sensors for Predictive Diagnostics," Proceedings of SPIE,97, vol. 3224, pp. 220-230 (1997)  Non-Patent Document 2: E. Peeters et al., "Vibration Signature Analysis Sensors for Predictive Diagnostics," Proceedings of SPIE, 97, vol. 3224, pp. 220-230 (1997)
特許文献 1 :特開 2000— 46639号公報  Patent Document 1: JP 2000-46639 A
特許文献 2:特開 2000— 46640号公報  Patent Document 2: Japanese Patent Laid-Open No. 2000-46640
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 振動現象や音響信号を扱う上で、信号を複素数として表現することは、振幅/位相 の瞬時検出や信号の変復調等、様々な解析や変換を可能とする。マイクロフォンを はじめとする従来の音響/振動センサは、各時刻における音圧などの物理量を電気 信号に変換するデバイスであり、出力は単一の実信号である。一般に実信号を対応 する複素数信号に変換するためには、下記のヒルベルト変換と呼ばれる演算を行う 必要がある。この演算は非因果的であり、広帯域信号に対して実時間でこの演算を 行うことはできない。そのため信号の複素数表現が実際に適用できるのは通信分野 で扱われるような狭帯域の信号に限られていた。 [0006] When dealing with vibration phenomena and acoustic signals, expressing a signal as a complex number enables various analyzes and conversions such as instantaneous amplitude / phase detection and signal modulation / demodulation. Conventional acoustic / vibration sensors such as microphones are devices that convert physical quantities such as sound pressure at each time into electrical signals, and the output is a single real signal. In general, in order to convert a real signal into a corresponding complex signal, it is necessary to perform an operation called the Hilbert transform described below. This operation is non-causal and cannot be performed in real time on wideband signals. For this reason, the complex number representation of signals can only be applied to narrow-band signals that are handled in the communications field.
[0007] 解析関数の実部と虚部の間には一般に、次のヒルベルト変換の関係がある。 [0007] Generally, there is a relationship of the following Hilbert transform between the real part and the imaginary part of the analytic function.
虚数単位を jとして、複素変数 z = x+jyの上半平面 (y≥0)で正則な関数、 Φ (z) =U (x, y) +jV (x, y)  A regular function in the upper half plane (y≥0) of complex variable z = x + jy, where imaginary unit is j, Φ (z) = U (x, y) + jV (x, y)
の実軸上の境界値、  Boundary value on the real axis of
f (x) =U (x, 0) , g (x) = -V (x, 0)  f (x) = U (x, 0), g (x) = -V (x, 0)
の間には、 f、 gが実数上の積分可能な関数 (f、 g ^ Ll (一∞、∞) )のとき、式(1)に 示す関係がある。  There is a relationship shown in Eq. (1) when f and g are real integral functions (f, g ^ Ll (one ∞, ∞)).
[数 1]
Figure imgf000005_0001
ここで、 p. v は式(2)に示すように Cauchyの主値を意味する。
[Number 1]
Figure imgf000005_0001
Here, p. V means the main value of Cauchy as shown in equation (2).
Figure imgf000005_0002
Figure imgf000005_0002
[0008] gを fのヒルベルト変換(Hilbert transform)、 fと gをヒルベルト変換対とレ、う。ヒノレべノレ ト変換は解析関数の実部と虚部を結ぶ関数である。 [0008] Let g be a Hilbert transform of f, and let f and g be a Hilbert transform pair. The hinorebenore transformation is a function that connects the real and imaginary parts of the analytic function.
[0009] 物理現象、特に振動現象は複素平面上で解析するのが便利である。一般に振動 現象は、時間変化する振幅と位相により特徴付けられる。そして、各時刻における瞬 時的な振幅と位相は、オイラーの公式 =cos Θ +jsin Θ に基づき、実部と虚部 で表現された複素信号の絶対値と偏角として定義される。よって現象を瞬時値から把 握するには、実部又は虚部の一方の情報だけでは不十分であり、実部と虚部の両方 を知る必要がある。  [0009] It is convenient to analyze physical phenomena, particularly vibration phenomena, on a complex plane. In general, vibration phenomena are characterized by time-varying amplitude and phase. The instantaneous amplitude and phase at each time are defined as the absolute value and declination of the complex signal expressed in real and imaginary parts based on Euler's formula = cos Θ + jsin Θ. Therefore, in order to grasp the phenomenon from the instantaneous value, it is not sufficient to know only the real part or the imaginary part, and it is necessary to know both the real part and the imaginary part.
[0010] 実部と虚部の関係は、ヒルベルト変換対をなすので、上記の g又は fの式によって他 方を導くことができる。しかし、 gと fの式は、式(1)に示すとおり(―∞、∞)の区間の時 間積分として表されるため、ある期間 (周期関数においては少なくとも 1周期)の観測 が必要である。従来の振動波検出装置では、一方の情報しか検出することができな いため、リアルタイムに実部と虚部の両方の情報を得ることができなかった。  [0010] Since the relationship between the real part and the imaginary part forms a Hilbert transform pair, the other can be derived by the above g or f expression. However, since the equations for g and f are expressed as time integrals in the interval (-∞, ∞) as shown in Equation (1), it is necessary to observe a certain period (at least one period in the periodic function). is there. Conventional vibration wave detection devices can detect only one piece of information, and thus cannot obtain both real part and imaginary part information in real time.
[0011] 例えば、特許文献 1に示されるように、共振子の共振周波数に応じたピエゾ抵抗検 出器のノ ァス電圧付与によって、動的に変更可能な周波数特性が実現される。し かし従来の方法では、振動波検出の荷重は正負の実数に限られ、ヒルベルト変換対 出力を瞬時値としてリアルタイムに得ることができなかった。  [0011] For example, as shown in Patent Document 1, a dynamically changeable frequency characteristic is realized by applying a negative voltage of a piezoresistive detector according to the resonance frequency of the resonator. However, with the conventional method, the load for vibration wave detection is limited to positive and negative real numbers, and the Hilbert transform versus output cannot be obtained in real time as instantaneous values.
[0012] 本発明はこうした状況に鑑みてなされたものであり、その目的は、リアルタイムに瞬 時値としてヒルベルト変換対出力を得ることのできる振動波検出方法及び装置を提 供することである。 [0012] The present invention has been made in view of such circumstances, and its purpose is to instantaneously The object is to provide a vibration wave detection method and apparatus capable of obtaining a Hilbert transform versus output as a time value.
課題を解決するための手段  Means for solving the problem
[0013] 本発明の第 1の観点に係る振動波検出方法は、  [0013] The vibration wave detection method according to the first aspect of the present invention includes:
互いに異なる特定の周波数に共振する複数の共振子に振動波を伝播させ、前記 共振子それぞれの振動を検出する振動波検出方法であって、  A vibration wave detecting method for propagating vibration waves to a plurality of resonators that resonate at different specific frequencies and detecting vibrations of each of the resonators,
前記複数の共振子を、それぞれの共振子の位置がそれらの共振周波数の対数に 比例する対数線形になるように配列し、  The plurality of resonators are arranged so that the positions of the respective resonators are logarithmic linear proportional to the logarithm of their resonance frequencies,
Nを 2以上の整数として、 N— 1本おきに前記複数の共振子を選択してその検出器 の出力を加算した、複数の信号を出力することを特徴とする。  It is characterized in that N is an integer of 2 or more, N− every other resonator is selected, and the outputs of the detectors are added to output a plurality of signals.
[0014] 本発明の第 2の観点に係る振動波検出装置は、 [0014] The vibration wave detection device according to the second aspect of the present invention provides:
互いに異なる特定の周波数に共振する複数の共振子を、それぞれの共振子の位 置がそれらの共振周波数の対数に比例する対数線形になるように配歹 IJした共振子列 と、  A resonator array in which a plurality of resonators resonating at specific frequencies different from each other are arranged IJ so that the position of each resonator is logarithmically linear in proportion to the logarithm of the resonance frequency, and
前記共振子列に伝播された振動波による前記複数の共振子それぞれの振動を検 出する検出器と、  A detector for detecting the vibration of each of the plurality of resonators by the vibration wave propagated to the resonator array;
Nを 2以上の整数として、 N_ 1本おきに前記複数の共振子を選択してその検出器 の出力を加算する、複数の出力合成部と、  A plurality of output synthesizers that select the plurality of resonators every N_ 1 and add the outputs of the detectors, where N is an integer greater than or equal to 2,
を備えることを特徴とする。  It is characterized by providing.
発明の効果  The invention's effect
[0015] 本発明の振動波検出方法及び振動波検出装置によれば、リアルタイムに(ある期 間のデータについて演算を施すことなく)瞬時値としてヒルベルト変換対出力を得るこ とができる。  According to the vibration wave detection method and vibration wave detection apparatus of the present invention, it is possible to obtain a Hilbert transform pair output as an instantaneous value in real time (without performing an operation on data for a certain period).
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明の振動波検出装置におけるセンサ本体の一例を示す図である。  FIG. 1 is a diagram showing an example of a sensor body in a vibration wave detection device of the present invention.
[図 2]本発明の振動波検出装置の一例を示す回路図である。  FIG. 2 is a circuit diagram showing an example of a vibration wave detection apparatus of the present invention.
[図 3]センサ本体の共振ビームの周波数特性を模式的に表した図である。  FIG. 3 is a diagram schematically showing frequency characteristics of a resonant beam of the sensor body.
[図 4]横断ビームの両側に共振ビームを設ける構造の場合のセンサ本体の例を示す 図である。 [Fig.4] Shows an example of the sensor body in the case where a resonant beam is provided on both sides of the transverse beam FIG.
[図 5]図 4のセンサ本体を使用する本発明の振動波検出装置の一例を示す回路図で ある。  FIG. 5 is a circuit diagram showing an example of a vibration wave detection device of the present invention using the sensor body of FIG.
[図 6]検出器がキャパシタの場合の本発明の振動波検出装置の一例を示す回路図 である。  FIG. 6 is a circuit diagram showing an example of a vibration wave detection device of the present invention when the detector is a capacitor.
[図 7]横断ビームの両側に共振ビームを設ける構造で、検出器がキャパシタの場合の 振動波検出装置の例を示す図である。  FIG. 7 is a diagram showing an example of a vibration wave detection device in which a resonance beam is provided on both sides of a transverse beam and the detector is a capacitor.
[図 8]各共振ビームの出力の和を出力するピエゾ抵抗方式の振動波検出装置の一例 を示す回路図である。  FIG. 8 is a circuit diagram showing an example of a piezoresistive vibration wave detector that outputs the sum of the outputs of the respective resonant beams.
[図 9]バイアス電圧ラインを複数用いたピエゾ抵抗方式の振動波検出装置の一例を 示す回路図である。  FIG. 9 is a circuit diagram showing an example of a piezoresistive vibration wave detector using a plurality of bias voltage lines.
符号の説明  Explanation of symbols
[0017] 1 センサ本体 [0017] 1 Sensor body
2 ダイヤフラム  2 Diaphragm
3 横断ビーム  3 Cross beam
4 終止板  4 End plate
51、 52、 53、 54、 5m、 51a、 51b、 52a、 52b, 5na、 5nb 、 5ma、 5mb 共 &¾匚ーム 61、 62、 63、 64、 6m、 61a、 61b、 62a, 62b, 63a、 63b、 6ma、 6mb ピエゾ抵抗 7a、 7b 電源  51, 52, 53, 54, 5m, 51a, 51b, 52a, 52b, 5na, 5nb, 5ma, 5mb & 61, 62, 63, 64, 6m, 61a, 61b, 62a, 62b, 63a, 63b, 6ma, 6mb piezoresistors 7a, 7b power supply
81、 82、 83、 8n、 8m、 81a、 81b、 82a, 82b, 83a、 83b 、 8ma、 8mb 先端部 81, 82, 83, 8n, 8m, 81a, 81b, 82a, 82b, 83a, 83b, 8ma, 8mb
91、 92、 93、 9n、 9m、 91a, 91b、 92a, 92b, 93a、 93b、 9ma、 9mb 91, 92, 93, 9n, 9m, 91a, 91b, 92a, 92b, 93a, 93b, 9ma, 9mb
10a、 10b、 10c 演算増幅器  10a, 10b, 10c operational amplifier
20 半導体シリコン基板  20 Semiconductor silicon substrate
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。なお、 図中同一または相当部分には同一符号を付し、その説明は繰り返さない。検出対象 の振動波を音波とした音響センサを例にして以下に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated. An acoustic sensor that uses sound waves as vibration waves to be detected will be described below as an example.
[0019] 図 1は、本発明の振動波検出装置におけるセンサ本体の一例を示す図である。半 導体シリコン基板 20に形成されるセンサ本体 1は、音波を受けるダイヤフラム 2と、ダ ィャフラム 2に連なる 1本の横断ビーム 3と、横断ビーム 3の先端に連なる終止板 4と、 横断ビーム 3に片持ち支持された複数 (m本)の共振ビーム 51、 52、 . . . 5m (以下、 共振ビーム 5と総称する)とから構成されており、これらのすべての部分が半導体シリ コンで形成されている。 FIG. 1 is a diagram showing an example of a sensor body in the vibration wave detection device of the present invention. Half The sensor body 1 formed on the conductive silicon substrate 20 includes a diaphragm 2 that receives sound waves, a transverse beam 3 that is connected to the diaphragm 2, a stop plate 4 that is connected to the tip of the transverse beam 3, and a transverse beam 3 5m (hereinafter collectively referred to as resonant beam 5), all of which are formed of semiconductor silicon. Yes.
[0020] 横断ビーム 3は、その幅がダイヤフラム 2側の端部で最も太ぐそこから終止板 4側 に向力 に従って除々に細くなり、終止板 4側の端部で最も細くなつている。なお、図 1において、 Znは n番目の共振ビーム 5nが支持されている位置における横断ビーム 3の幅を示す。また、各共振ビーム 5は特定の周波数に共振するように長さが調整さ れた共振子となっている。  [0020] The width of the transverse beam 3 is thickest at the end on the diaphragm 2 side, and then gradually narrows toward the end plate 4 side according to the direction force, and is narrowest at the end on the end plate 4 side. In FIG. 1, Zn indicates the width of the transverse beam 3 at the position where the nth resonance beam 5n is supported. Each resonant beam 5 is a resonator whose length is adjusted so as to resonate at a specific frequency.
[0021] これらの複数の共振ビーム 5は、下記(3)式で表される共振周波数 fにて選択的に 応答振動するようになってレ、る。  The plurality of resonant beams 5 are selectively oscillated in response to the resonant frequency f expressed by the following equation (3).
Figure imgf000008_0001
但し、 C :実験的に決定される定数
Figure imgf000008_0001
Where C is a constant determined experimentally
a :各共振ビーム 5の厚さ  a: Thickness of each resonant beam 5
X:各共振ビーム 5の長さ  X: Length of each resonant beam 5
Y:材料物質(半導体シリコン)のヤング率  Y: Young's modulus of material (semiconductor silicon)
s :材料物質 (半導体シリコン)の密度  s: Density of material (semiconductor silicon)
上記(3)式から分かるように、共振ビーム 5の厚さ aまたは長さ Xを変えることにより、 その共振周波数 fを所望の値に設定することができる。各共振ビーム 5は固有の共振 周波数を有するようにしている。本例では、すべての共振ビーム 5の厚さ aは一定とし 、その長さ Xを右側 (ダイヤフラム 2側)から左側(終止板 4側)に向力うにつれて順次 長くなるようにしている。すなわち、右側 (ダイヤフラム 2側)から左側(終止板 4側)に 向力うにつれて各共振ビーム 5が固有に振動する共振周波数を高周波数から低周 波数になるように設定している。 As can be seen from the above equation (3), by changing the thickness a or the length X of the resonant beam 5, the resonant frequency f can be set to a desired value. Each resonant beam 5 has a unique resonant frequency. In this example, the thickness a of all the resonant beams 5 is constant, and the length X of the resonant beams 5 is made to increase gradually from the right side (diaphragm 2 side) to the left side (end plate 4 side). That is, from the right side (diaphragm 2 side) to the left side (end plate 4 side) The resonant frequency at which each resonant beam 5 inherently vibrates with increasing force is set from a high frequency to a low frequency.
[0023] センサ本体 1の各共振ビーム 5の位置は、その共振ビーム 5の共振周波数の対数に 比例している。これを対数線形構造という。また、共振ビーム 5は等間隔に配列するよ うに構成されている。すなわち、隣り合う共振ビーム 5の共振周波数の比は、どの共振 ビーム 5についても一定である。このように構成されたセンサ本体 1をフィッシュボーン センサという。 The position of each resonance beam 5 in the sensor body 1 is proportional to the logarithm of the resonance frequency of the resonance beam 5. This is called a log-linear structure. The resonant beams 5 are configured to be arranged at equal intervals. That is, the ratio of the resonance frequencies of the adjacent resonance beams 5 is constant for any resonance beam 5. The sensor body 1 configured in this way is called a fishbone sensor.
[0024] フィッシュボーンセンサは、対数線形構造をなすので、横断ビーム 3の共振ビーム 5 の位置から先の形状は、いずれの共振ビーム 5においてもその共振周波数 (波長)の スケールで同じ構造(自己相似形)をしている。また、横断ビーム 3を伝わる振動波の 進行速度は周波数に比例し、波長は周波数によらず一定であるという特徴を有する  [0024] Since the fishbone sensor has a logarithmic linear structure, the shape from the position of the resonance beam 5 of the transverse beam 3 to the shape of the resonance beam 5 in any resonance beam 5 is the same structure (self (Similar). In addition, the traveling speed of the vibration wave transmitted through the transverse beam 3 is proportional to the frequency, and the wavelength is constant regardless of the frequency.
[0025] なお、以上のような構成をなすセンサ本体 1は、マイクロマシンカ卩ェ技術を用いて半 導体シリコン基板 20上に作製される。ダイヤフラム 2から入力した振動エネルギーは 、横断ビーム 3を通じてそれぞれの共振ビーム 5に分配され、各共振系の機械ー電 気変換器で吸収されて信号エネルギーに変換されて取り出される。 Note that the sensor main body 1 having the above-described configuration is manufactured on the semiconductor silicon substrate 20 by using a micromachine cache technique. The vibration energy input from the diaphragm 2 is distributed to the respective resonant beams 5 through the transverse beams 3, absorbed by the mechanical-electric converters of the respective resonant systems, converted into signal energy, and extracted.
[0026] 図 8は、センサ本体 1を用いて、各共振ビーム 5の出力の和を出力する従来のピエ ゾ抵抗方式の振動波検出装置の一例を示す回路図である。図 8の回路では、上側 の共振ビーム 51a〜5maには正の直流バイアス、下側の共振ビーム 51b〜5mbには 負の直流バイアスを印加し、各共振ビーム 5の電流力 本の信号線で加算されて出 力される。ここでは、理解を容易にするため、対となる上下の共振ビーム 5は逆相で 振動し、上下のピエゾ抵抗 6は互いに逆相で伸縮しているとする。  FIG. 8 is a circuit diagram showing an example of a conventional piezoresistive vibration wave detection device that outputs the sum of the outputs of the respective resonant beams 5 using the sensor body 1. In the circuit of FIG. 8, a positive DC bias is applied to the upper resonance beams 51a to 5ma, a negative DC bias is applied to the lower resonance beams 51b to 5mb, and the current force of each resonance beam 5 is Added and output. Here, for ease of understanding, it is assumed that the upper and lower resonant beams 5 that make a pair vibrate in opposite phases, and the upper and lower piezoresistors 6 expand and contract in opposite phases.
[0027] 図 8において、 i番目の上側の共振ビーム上のピエゾ抵抗の抵抗値を R + δ R (t)、 i番目の下側の共振ビーム上のピエゾ抵抗の抵抗値を R _ δ R (t)、上下それぞれ  In FIG. 8, the resistance value of the piezoresistor on the i-th upper resonant beam is R + δ R (t), and the resistance value of the piezoresistor on the i-th lower resonant beam is R _ δ R (t), upper and lower each
i i  i i
の抵抗の一方の共通端子に印加する電圧を V、 -Vとおくと、他方の共通端子から  If the voltage applied to one common terminal of the resistor is V or -V, the other common terminal
0 0  0 0
演算増幅器の仮想接地点に流れ込む電流は、次の式 (4)で表される。  The current flowing into the virtual ground point of the operational amplifier is expressed by the following equation (4).
[数 4] I = [Equation 4] I =
= 1 R - 8 R{ = 1 R-8 R {
Figure imgf000010_0001
Figure imgf000010_0001
[0028] そして、帰還抵抗 Rによって、次の式(5)で表される振動電圧として取り出される。 [0028] Then, it is taken out by the feedback resistor R as an oscillating voltage represented by the following equation (5).
f  f
[数 5] ( 2RfV0 、 ( δ Ι¾ ω、 / S Ri (t)、 f λ i= i . R ノ \ Ri ノ j 1 \ R - 合成出力の荷重 Wは、抵抗 Rを調整することによって可変である。しかし、実際には [Equation 5] (2R f V 0 , (δ Ι¾ ω, / S Ri (t), f λ i = i. R no \ Ri no j 1 \ R-The combined output load W adjusts the resistance R But it is actually variable
i i  i i
チップ製造時のトリミングなどにより固定的になる。  It becomes fixed by trimming at the time of chip manufacture.
[0029] 上記の方法で出力がバイアス電圧 V 0に比例することを利用し、共振ビーム 5ごとに バイアス電圧を変えることが考えられる。図 9は、ノくィァス電圧ラインを複数用いたピ ェゾ抵抗方式の従来の振動波検出装置の一例を示す回路図である。図 9の回路を 用いて、周波数別の動的な利得調整が可能である。 i番目の共振ビームのバイアス 電圧を土 Vとすると、出力電圧 V は、次の式(6)で表される。  It is conceivable to change the bias voltage for each resonant beam 5 by utilizing the fact that the output is proportional to the bias voltage V 0 by the above method. FIG. 9 is a circuit diagram showing an example of a conventional piezoresistive vibration wave detector using a plurality of noise voltage lines. Using the circuit in Fig. 9, dynamic gain adjustment by frequency is possible. If the bias voltage of the i-th resonant beam is soil V, the output voltage V is expressed by the following equation (6).
1 out  1 out
圆 。ut , 2RfVi X ( S Ri (t)、 S Ri (t)、 r 、 v -
Figure imgf000010_0002
)(す リ ) (6)
圆. ut , 2R f V i X (S Ri (t), S Ri (t), r , v-
Figure imgf000010_0002
(6)
[0030] 但し、横断ビーム 3に通せる配線数は制限されるため、共振ビーム 5の数が多くなる と共振ビーム 5をグループ化したバイアス制御が必要になる。 However, since the number of wirings that can be passed through the transverse beam 3 is limited, when the number of the resonance beams 5 increases, bias control in which the resonance beams 5 are grouped becomes necessary.
[0031] 図 9に示す振動波検出装置は、周波数特性が可変であるが、各周波数に設定でき る利得が実数に限られる。周波数フィルタリングの際の利得が実数あるいは純虚数と なるのは、インパルス応答が対称か反対称な場合に限られる。各周波数に設定する 利得を実数に限ると、任意のインパルス応答を実現することができない。図 8又は図 9 に示すいずれの振動波検出装置においても、出力は実部に限られ、ヒルベルト変換 対の出力を得ることができない。 The vibration wave detection device shown in FIG. 9 has variable frequency characteristics, but the gain that can be set for each frequency is limited to a real number. The gain in frequency filtering becomes real or pure imaginary only when the impulse response is symmetric or anti-symmetric. If the gain set for each frequency is limited to a real number, an arbitrary impulse response cannot be realized. Fig. 8 or Fig. 9 In any of the vibration wave detectors shown in Fig. 1, the output is limited to the real part, and the output of the Hilbert transform pair cannot be obtained.
[0032] (実施の形態 1)  [Embodiment 1]
図 2は、センサ本体 1を使用する本発明の振動波検出装置の一例を示す回路図で ある。センサ本体 1の各共振ビーム 5の歪み発生部分 (横断ビーム 3側)に、ピエゾ抵 抗 61、 62 、 6m (以下、ピエゾ抵抗 6と総称する)が形成されている。これらの複 数のピエゾ抵抗 6は並列接続されており、そのピエゾ抵抗 6の一端は、バイアス電圧 Vの電源 7aに接続されている。  FIG. 2 is a circuit diagram showing an example of the vibration wave detection apparatus of the present invention using the sensor body 1. Piezoresistors 61, 62, and 6m (hereinafter collectively referred to as piezoresistors 6) are formed in the distortion generating portions (crossing beam 3 side) of each resonance beam 5 of the sensor body 1. The plurality of piezoresistors 6 are connected in parallel, and one end of the piezoresistor 6 is connected to a power source 7a having a bias voltage V.
0  0
[0033] ピエゾ抵抗 6の他端は、 Nを正の整数として、 N_ 1本おきに共通の線で演算増幅 器 10a、 10b、 10c (以下、演算増幅器 10と総称する)の—入力端子に接続されてい る。すなわち、 Nの剰余(モジュロ)が等しい番号のピエゾ抵抗 6からの電流出力を加 算して、それぞれ別の演算増幅器 10に入力する。このような構成を N相加算方式と いう。図 2では、 Nを 3として、ピエゾ抵抗 6の他端を 3— 1 = 2本おきに共通の線に接 続している。すなわち、ピエゾ抵抗 61、 64、 . . .は演算増幅器 10aに、ピエゾ抵抗 6 [0033] The other end of the piezoresistor 6 is connected to the input terminal of operational amplifiers 10a, 10b, and 10c (hereinafter collectively referred to as operational amplifier 10) by a common line every other N_1, where N is a positive integer. It is connected. That is, the current outputs from the piezoresistors 6 having the same number of N remainders (modulo) are added and input to different operational amplifiers 10 respectively. Such a configuration is called the N-phase addition method. In Fig. 2, N is 3, and the other end of the piezoresistor 6 is connected to a common line every 3 – 1 = 2. That is, the piezo resistors 61, 64,... Are connected to the operational amplifier 10a and the piezo resistors 6
2 は演算増幅器 10bに、ピエゾ抵抗 63、 . . .は演算増幅器 10cに接続してい る。 2 is connected to the operational amplifier 10b, and the piezoresistors 63,... Are connected to the operational amplifier 10c.
[0034] 伝達インピーダンス型の演算増幅器 10は、入力インピーダンスが 0、出力インピー ダンスが 0の電流 電圧変換増幅器である。演算増幅器 10の +入力端子は接地さ れている。 N—1本おきに接続される共通の線は、ダミー抵抗 Rdを介して負の電圧— Vの電源 7bに接続されている。  The transfer impedance type operational amplifier 10 is a current-voltage conversion amplifier having an input impedance of 0 and an output impedance of 0. The + input terminal of the operational amplifier 10 is grounded. The common line connected every other N—is connected to the negative voltage—V power supply 7b through a dummy resistor Rd.
0  0
[0035] 次に、図 2に示す振動波検出装置の作用について説明する。 n番目の共振ビーム の対数周波数軸上での周波数特性を F ( Ω )とする。ただし、 Q =log c は対数周波 数を表す。センサ本体 1は、対数線形構造を有するので、レ、ま全ての共振ビームの 周波数特性が、共通の特性形状 F ( Q )を用いて、式(7)のように表すことができると 仮定する。  Next, the operation of the vibration wave detection device shown in FIG. 2 will be described. Let the frequency characteristic of the nth resonant beam on the logarithmic frequency axis be F (Ω). Where Q = log c represents the logarithmic frequency. Since the sensor body 1 has a logarithmic linear structure, it is assumed that the frequency characteristics of the resonance beam and all the resonant beams can be expressed as shown in Equation (7) using a common characteristic shape F (Q). .
[数 7]  [Equation 7]
F ( Ω ) = F ( Q -n A Ω ) (7) ただし、 Δ Ωは隣接ビーム間の共振周波数比の対数を表す。 F (Ω) = F (Q -n AΩ) (7) However, ΔΩ represents the logarithm of the resonance frequency ratio between adjacent beams.
[0036] 図 3は、センサ本体 1の共振ビーム 5の周波数特性 Fn(Q)を模式的に表した図で ある。隣り合う共振ビーム 5の共振周波数の比は一定なので、対数周波数上で表され たそれぞれの周波数特性 Fn(Q)はほぼ同じ形状で、等しい間隔 Δ Ωで並ぶ。 FIG. 3 is a diagram schematically showing the frequency characteristic Fn (Q) of the resonant beam 5 of the sensor body 1. Since the ratio of the resonant frequencies of the adjacent resonant beams 5 is constant, the frequency characteristics Fn (Q) expressed on the logarithmic frequency are almost the same shape and are arranged at equal intervals ΔΩ.
[0037] この共振ビームの出力を N本毎に加算したとすると、 n=l, 2, ..., N番目の出力 の周波数特性は、式(8)のように表すことができる。 [0037] Assuming that the outputs of the resonant beams are added every N, the frequency characteristics of the nth output can be expressed as in equation (8).
[数 8]  [Equation 8]
Η η( ) = ∑ Fn+kN(Q) Η η () = ∑ F n + kN (Q)
k  k
= y F(Q-(n + kN) Δ Ω) = y F (Q- (n + kN) Δ Ω)
k  k
= F(Q-nA Ω) ^ δ (Ω-k A Ω) (8) k ただし、 *は畳み込みを表す。また、 δはディラックのデルタ関数である。実際のセン サ本体 1 (フィッシュボーンセンサ)においては共振ビーム 5の本数は有限であるが、 以下簡単のために式(8)の kに関する和は無限和(k=_∞、∞)として扱レ、、ビーム 本数が有限であることの影響については最後に考察する。 = F (Q-nA Ω) ^ δ (Ω-k A Ω) (8) k where * indicates convolution. Δ is Dirac delta function. In actual sensor body 1 (fishbone sensor), the number of resonant beams 5 is finite, but for the sake of simplicity, the sum related to k in equation (8) is treated as an infinite sum (k = _∞, ∞). Finally, the effect of the finite number of beams will be discussed.
[0038] 上記仮定の下では、周期 δ関数列のフーリエ変換が周期 δ関数列になることに注 意して、両辺をフーリエ変換すると、式(9)を得る。 [0038] Under the above assumption, note that the Fourier transform of the periodic δ function sequence becomes a periodic δ function sequence, and when both sides are Fourier transformed, Equation (9) is obtained.
[数 9] h δ (c_kAc) (9)
Figure imgf000012_0001
ただし、 Acは式(10)のように表すことができる。
[Equation 9] h δ (c_kAc) (9)
Figure imgf000012_0001
However, Ac can be expressed as in formula (10).
[数 10]
Figure imgf000013_0001
また h (c)、 f(c)はそれぞれ Ηη(Ω)、 F(Q)の対数周波数軸上でのフーリエ変換で あり、それぞれ式(11)、式(12)のように表すことができる。
[Equation 10]
Figure imgf000013_0001
H (c) and f (c) are Fourier transforms on the logarithmic frequency axis of Η η (Ω) and F (Q), respectively, and can be expressed as equations (11) and (12), respectively. it can.
[数 11]  [Equation 11]
Hn(Q)e JcQ dQ (11)Hn (Q) e J cQ dQ (11)
-OO -OO
[数 12]
Figure imgf000013_0002
[Equation 12]
Figure imgf000013_0002
[0039] センサ本体 1が対数線形構造であることに注意すると、対数周波数 Ωは横断ビーム 3の長さ方向の位置に比例する(共振ビーム 5の間隔が対数周波数 Ωの差に比例す る)ので、 H (Ω)は横断ビーム 3上の一種の波動と見なすことができる。従って、 h (c )は波動 H ( Ω )の(空間)周波数領域への変換に相当する。 [0039] Note that the sensor body 1 has a logarithmic linear structure. The logarithmic frequency Ω is proportional to the longitudinal position of the transverse beam 3 (the interval between the resonant beams 5 is proportional to the difference of the logarithmic frequency Ω). So H (Ω) can be regarded as a kind of wave on transverse beam 3. Therefore, h (c) corresponds to the transformation of the wave H (Ω) into the (spatial) frequency domain.
[0040] レ、ま f(c)が Acを中心に狭帯域で、式(13)を満たすとする。  [0040] Let f (c) be a narrow band centering on Ac and satisfy equation (13).
[数 13] f(c) = 0 (c≤0 又は c≥2Ac) (13) このとき、式(8)中の δ関数の k≠lの項は 0となるので、 k=lの項の寄与のみが残り 、式(14)を得る。  [Equation 13] f (c) = 0 (c≤0 or c≥2Ac) (13) At this time, the k ≠ l term of the δ function in Eq. (8) is 0, so the k = l term Only the contribution of remains, and Equation (14) is obtained.
[数 14] h (c) = f(c)e】nA £ c' AcS (c— Ac) [Equation 14] h (c) = f (c) e] nA £ c 'AcS (c— Ac)
Acf(Ac)e^n/N' δ (c一 Ac) (14) これは逆フ一リエ変換すると、式(15)のようになる。 Acf (Ac) e ^ n / N 'δ (c 1 Ac) (14) This is expressed by the following equation (15) when the inverse Fourier transform is performed.
Ηη(Ω) Acf (Ac)ejAcQej27rn/N (15) Η η (Ω) Acf (Ac) e jAcQ e j27rn / N (15)
[0041] Ωに依存する項は eiaeQという位相回転項であり、 nに依存する項は ej27rn/Nという位 相回転項であることに注意すると、式(15)は振幅特性は周波数によらず一定で、互 レ、に 2 π n/Nという位相シフトを有する全域通過フィルタになっていることを意味する 。Η (Ω)〜Η (Ω)は、ヒルベルト変換対を Ν相で表現したものになっていることがわ[0041] Note that the term that depends on Ω is the phase rotation term e iaeQ and the term that depends on n is the phase rotation term e j27rn / N. This means that the filter is an all-pass filter that is constant regardless of phase shift of 2πn / N. Η (Ω) to Η (Ω) is a representation of the Hilbert transform pair in terms of power.
1 Ν 1 Ν
かる。  Karu.
[0042] 上述の結果、対数周波数軸上での周波数特性のフーリエ変換 f(c)を、式(13)を 満たす程度狭帯域になるよう構造パラメータを制御し、 f (c)の振幅のピーク cに対し  [0042] As a result of the above, the structural parameter is controlled so that the Fourier transform f (c) of the frequency characteristic on the logarithmic frequency axis becomes narrow enough to satisfy the equation (13), and the amplitude peak of f (c) for c
0 て、  0
c = Δο = 2π/(ΝΔ Ω)  c = Δο = 2π / (ΝΔ Ω)
0  0
を満たすように共振周波数比の対数 Δ Ωを選択することによって、 Ν相加算方式によ るヒルベルト変換対出力を実現できることがわかる。  It can be seen that by selecting the logarithm of the resonant frequency ratio Δ Ω so as to satisfy the above, it is possible to realize the Hilbert transform pair output by the phase addition method.
[0043] 最後に共振ビームの本数が有限の場合の影響を考慮するため、式 (8)における周 期 δ関数列の kの範囲を一 Κ力 Κと仮定すると、式(16)のように表現できる。 [0043] Finally, in order to consider the effect when the number of resonant beams is finite, assuming that the range of k in the periodic δ function sequence in Eq. (8) is a first power Κ, Eq. (16) Can express.
[数 16]  [Equation 16]
Ηη(Ω) = F(Q-nA Ω) ^ ∑ δ (Ω-kNA Ω) (16) k=-K このフーリエ変換は次の式(17)となる。 Ηη (Ω) = F (Q-nA Ω) ^ ∑ δ (Ω-kNA Ω) (16) k = -K This Fourier transform is expressed by the following equation (17).
[数 17] K [Equation 17] K
h f (c) Θ^ηΔ Ωε " 》 ejkNA Qc hf (c) Θ ^ ηΔ Ωε ">> e jkNA Qc
n (c) 7 n (c) 7
k=-K  k = -K
= f(c)ejnAQc.DK(c) (17) = f ( c ) e jnAQc.D K ( c ) (17)
[0044] ただし、式(17)の D (c)は次の式(18)で表され、式(19)を満たす周期 [0044] However, D (c) in the equation (17) is expressed by the following equation (18) and satisfies the equation (19).
κ  κ
Δο = 2π/(ΝΔ Ω)  Δο = 2π / (ΝΔ Ω)
の周期関数である。  Is a periodic function of
[数 18]
Figure imgf000015_0001
[Equation 18]
Figure imgf000015_0001
[数 19] oo [Equation 19] oo
lim DK(c) = Ac >: δ (c-kAc) (19)lim D K (c) = Ac>: δ (c-kAc) (19)
Κ→ oo k=— oo Κ → oo k = — oo
[0045] Kが有限の場合 D (c)は、 c = kAc(kは整数)に高さ 2K+1のピークを有する。そ [0045] When K is finite D (c) has a peak of height 2K + 1 at c = kAc (k is an integer). So
K  K
して、ピーク周辺には片側 Ac/ (2K+1)程度の広がりを有する。すなわち、ピーク 力 第 1零点までが AcZ(2K+l)である。よって、式(13) とほぼ同様に、 式(20)が成立すれば、 f(c)を乗じることにより、 D (c)のうち c= Ac近傍のみが切り  Then, there is a spread around Ac / (2K + 1) on one side around the peak. That is, AcZ (2K + l) is the peak force up to the first zero point. Therefore, in the same way as equation (13), if equation (20) holds, multiplying f (c) will cut only c = Ac in D (c).
K  K
出されるので、近似的には前述と同様の議論が成り立つことがわかる。  Therefore, it can be understood that the same argument as above is valid.
[数 20] f(c) =。 ( ^ΤΓ 又は 2Ac_^TT) (20) [Equation 20] f (c) = . (^ ΤΓ or 2Ac _ ^ TT) (20)
[0046] 図 2の振動波検出装置の例では N = 3であり、 2 π/3ごとの 3相でリアルタイムに瞬 時値としてヒルベルト変換対出力が得られる。式(7)乃至(20)から、 Ν— 1本おきに 選択した共振ビームの共振周波数の比(ΝΔ Ω)が一定であれば、 Δ Ωは一定でな くてもよいことがわ力る。 Δ Ωが一定である場合は、 N相は複素平面上で偏角が等間 隔になる。 In the example of the vibration wave detection device of FIG. 2, N = 3, and the Hilbert transform pair output is obtained as an instantaneous value in real time in three phases every 2π / 3. From Equations (7) to (20), if the ratio of resonant frequencies of resonant beams selected every other line (本 ΔΩ) is constant, ΔΩ is not constant. I can tell you what you need to do. When ΔΩ is constant, the N-phase is equidistant on the complex plane.
[0047] また、ヒルベルト変換出力としては N相全てを出力しなくてもよい。例えば、 N = 4と して、 n= l及び 2の相の出力によって、ヒルベルト変換対を得ることができる。これを 敷衍すれば、対数線形構造で自己相似形であれば、共振ビームの共振周波数と間 隔を適当に設定して、 N = 2として、 π Ζ2の位相差を有する 2相のヒルベルト変換対 出力を得ることも可能である。  [0047] Further, it is not necessary to output all N phases as the Hilbert transform output. For example, with N = 4, a Hilbert transform pair can be obtained with n = l and 2 phase outputs. If this is applied, if the logarithmic linear structure is self-similar, the resonant frequency and interval of the resonant beam are set appropriately, N = 2, and a two-phase Hilbert transform pair with a phase difference of π Ζ2. It is also possible to obtain output.
[0048] Δ Ωを一定に、すなわち隣り合う共振ビームの共振周波数の比を一定にして、 3相 で出力する場合が、センサ本体 1が作成しやすぐ出力の取り扱いも容易である。そ の場合、ゲインを適当に調整して第 2相及び第 3相の出力から、第 目の出力に直交 する成分が得られる。また、 4相の場合は、偏角が π Ζ2ずつ異なるので、第 目と第 3相、第 2相と第 4相はそれぞれ逆位相の信号となるが、実部(第 1相、第 3相)と虚部 (第 2相、第 4相)の信号が得られる  [0048] When ΔΩ is made constant, that is, the ratio of the resonant frequencies of the adjacent resonant beams is made constant, and output is made in three phases, it is easy to handle the output as soon as the sensor body 1 creates it. In that case, a component orthogonal to the first output can be obtained from the outputs of the second and third phases by appropriately adjusting the gain. In the case of four phases, the declination angle differs by π Ζ2, so the first and third phases, and the second and fourth phases become opposite phase signals, but the real part (first and third phases) Phase) and imaginary part (2nd and 4th phase) signals
[0049] 以上説明したとおり、本発明の振動波検出装置によれば、リアルタイムに瞬時値と して Ν相で表現したヒルベルト変換対出力を得ることが可能である。  [0049] As described above, according to the vibration wave detection apparatus of the present invention, it is possible to obtain a Hilbert transform pair output expressed as a single phase as an instantaneous value in real time.
[0050] 本発明の振動波検出方法は、従来のマイクロフォンや振動センサが用いられてい るあらゆる場面において利用可能である。さらに、従来できなかった次のような場合に 利用することができる。  [0050] The vibration wave detection method of the present invention can be used in any scene where a conventional microphone or vibration sensor is used. Furthermore, it can be used in the following cases, which could not be done in the past.
[0051] ヒルベルト変換出力に基づいて、時間分解能の高い振動 ·音響検出、例えば、連 続稼働している機械において瞬時に異常音を検出することができる。また、可能性と して広帯域の AM/FM復調器が実現できる。そして、 Ν相の冗長信号を用いてノィ ズ検出などが可能である。  [0051] Based on the Hilbert transform output, vibration / acoustic detection with high time resolution, for example, abnormal sound can be detected instantaneously in a continuously operating machine. In addition, a wideband AM / FM demodulator can be realized. Then, noise detection can be performed using the redundant signal of the negative phase.
[0052] (実施の形態 1の変形例)  [0052] (Modification of Embodiment 1)
図 4は、横断ビーム 3の両側に共振ビーム 5を設ける構造の場合の振動波検出装置 の例を示す。図 4のセンサ本体 1では、横断ビーム 3の両側の共振ビーム 5は同一の 共振周波数を有し、対向する 1対ずつ η組の共振ビーム 5を形成している。  FIG. 4 shows an example of a vibration wave detection device in the case where the resonant beam 5 is provided on both sides of the transverse beam 3. In the sensor body 1 shown in FIG. 4, the resonant beams 5 on both sides of the transverse beam 3 have the same resonant frequency, and η sets of resonant beams 5 are formed in pairs facing each other.
[0053] 図 5は、図 4のセンサ本体 1を使用する本発明の振動波検出装置の一例を示す回 路図である。センサ本体 1の各共振ビーム 5の歪み発生部分 (横断ビーム 3側)に、ピ ェゾ抵抗 61a、 61b〜6ma、 6mb (以下、ピエゾ抵抗 6と総称する)が形成されている 。これらの複数のピエゾ抵抗 6は並列接続されており、図 5の上側のピエゾ抵抗 61a 〜6maの一端は、バイアス電圧 Vの電源 7aに接続されている。図 5の下側のピエゾ FIG. 5 is a circuit diagram showing an example of the vibration wave detection apparatus of the present invention using the sensor body 1 of FIG. In the distortion generating part (crossing beam 3 side) of each resonance beam 5 of the sensor body 1, Ezoresistors 61a, 61b to 6ma, 6mb (hereinafter collectively referred to as piezoresistor 6) are formed. The plurality of piezoresistors 6 are connected in parallel, and one ends of the upper piezoresistors 61a to 6ma in FIG. 5 are connected to a power source 7a having a bias voltage V. Figure 5 Lower Piezo
0  0
抵抗 61b〜6mbの一端は、バイアス電圧—Vの電源 7bに接続されている。  One ends of the resistors 61b to 6mb are connected to a power source 7b having a bias voltage—V.
0  0
[0054] ピエゾ抵抗 6の他端は、 Nを正の整数として、 N_ 1本おきに共通の線で演算増幅 器 10の—入力端子に接続されている。図 5では、 Nを 3として、ピエゾ抵抗 6の他端を [0054] The other end of the piezoresistor 6 is connected to the input terminal of the operational amplifier 10 by a common line every other N_1, where N is a positive integer. In Fig. 5, N is 3, and the other end of the piezoresistor 6 is
3—1 = 2本おきに共通の線に接続している。すなわち、ピエゾ抵抗 61a、 61b、 . . . は演算増幅器 10aに、ピエゾ抵抗 62a、 62b, . . .は演算増幅器 10bに、ピエゾ抵抗3—1 = Every two wires are connected to a common line. That is, the piezo resistors 61a, 61b,... Are connected to the operational amplifier 10a, and the piezo resistors 62a, 62b,.
63a、 63b は演算増幅器 10cに接続している。 63a and 63b are connected to the operational amplifier 10c.
[0055] 演算増幅器 10の +入力端子は接地されている。 N—1本おきに接続される出力線 は、対になる共振ビーム 5nbのピエゾ抵抗 6nbを介して、電源 7bに接続されるので、 ダミー抵抗 Rdは不要である。  [0055] The + input terminal of the operational amplifier 10 is grounded. Since every other N− output line is connected to the power supply 7b via the piezoresistor 6nb of the paired resonant beam 5nb, the dummy resistor Rd is not required.
[0056] 図 5のセンサ本体 1では、対になる共振ビーム 5naと 5nbの共振周波数は同一で、 同じ相として加算されるので、図 2の構成と同様の結果が得られる。図 5の場合は、上 下のピエゾ抵抗 6の差動になるので、感度は 2倍になる。 In the sensor body 1 of FIG. 5, the resonance frequencies of the paired resonance beams 5na and 5nb are the same and are added as the same phase, so the same result as the configuration of FIG. 2 is obtained. In the case of Fig. 5, the sensitivity is doubled because the upper and lower piezoresistors 6 are differential.
[0057] (実施の形態 2) [Embodiment 2]
図 6は、検出器がキャパシタの場合の本発明の振動波検出装置の一例を示す回路 図である。  FIG. 6 is a circuit diagram showing an example of the vibration wave detection device of the present invention when the detector is a capacitor.
[0058] 各共振ビーム 5の先端部 81〜8m (以下、先端部 8と総称する)に対向する位置の 半導体シリコン基板 20にそれぞれ電極 91〜9m (以下、電極 9と総称する)が形成さ れており、各共振ビーム 5の先端部 8とこれに対向する各電極 9とにてキャパシタが構 成されている。共振ビーム 5の先端部 8は振動に伴って位置が上下する可動電極で ある。一方、半導体シリコン基板 20に形成された電極 9はその位置が移動しない固 定電極となっている。そして、共振ビーム 5が特定の周波数にて振動すると、その対 向電極間の距離が変動するので、キャパシタの容量が変化するようになっている。  [0058] Electrodes 91 to 9m (hereinafter collectively referred to as electrodes 9) are formed on the semiconductor silicon substrate 20 at positions facing the front end portions 81 to 8m (hereinafter collectively referred to as front end portions 8) of the respective resonant beams 5. A capacitor is constituted by the tip 8 of each resonance beam 5 and each electrode 9 opposed thereto. The tip 8 of the resonant beam 5 is a movable electrode that moves up and down with vibration. On the other hand, the electrode 9 formed on the semiconductor silicon substrate 20 is a fixed electrode whose position does not move. When the resonant beam 5 vibrates at a specific frequency, the distance between the counter electrodes changes, so that the capacitance of the capacitor changes.
[0059] 複数の電極 9は並列接続されており、バイアス電圧 Vの電源 7aに接続されている。  The plurality of electrodes 9 are connected in parallel and connected to a power source 7a with a bias voltage V.
0  0
各共振ビーム 5の先端部 8は、 Nを正の整数として、 N_ l本おきに共通の線で演算 増幅器 10の—入力端子に接続されている。このような構成を N相加算方式という。図 6では、 Nを 3として、先端部 8を 3— 1 = 2本おきに共通の線に接続している。すなわ ち、先端部 81、 . . .は演算増幅器 10aに、先端部 82 は演算増幅器 10bに、 先端部 83 は演算増幅器 10cに接続している。演算増幅器 10の +入力端子は 接地されている。 N_ l本おきに接続される共通の線は、ダミー抵抗 Rdを介して負の 電圧—Vの電源 7bに接続されている。 The tip 8 of each resonant beam 5 is connected to the input terminal of the operational amplifier 10 by a common line every N_l, where N is a positive integer. Such a configuration is called an N-phase addition method. Figure In 6, N is 3, and the tip 8 is connected to a common line every 3—1 = 2. In other words, the tips 81,... Are connected to the operational amplifier 10a, the tips 82 are connected to the operational amplifier 10b, and the tips 83 are connected to the operational amplifier 10c. The + input terminal of the operational amplifier 10 is grounded. A common line connected every N_ l lines is connected to a negative voltage—V power supply 7b via a dummy resistor Rd.
0  0
[0060] 図 6の振動波検出装置は、図 2のピエゾ抵抗 6のセンサ本体 1に比べて、振動波に 対する抵抗とキャパシタの変化の位相が異なることを除けば、実施の形態 1と全く同じ に取り扱える。従って、検出器がキャパシタでも N—1本おきに加算することによって、 リアルタイムに瞬時値としてヒルベルト変換対出力を得ることができる。  [0060] The vibration wave detection device of FIG. 6 is completely different from that of the first embodiment except that the phase of the resistance to the vibration wave and the change of the capacitor are different from those of the sensor body 1 of the piezoresistor 6 of FIG. The same can be handled. Therefore, even if the detector is a capacitor, every H−1 every other time, the Hilbert transform pair output can be obtained as an instantaneous value in real time.
[0061] (実施の形態 2の変形例)  [0061] (Modification of Embodiment 2)
図 7は、横断ビーム 3の両側に共振ビーム 5を設ける構造で、検出器がキャパシタの 場合の振動波検出装置の例を示す。  FIG. 7 shows an example of a vibration wave detection device in which the resonance beam 5 is provided on both sides of the transverse beam 3 and the detector is a capacitor.
[0062] 実施の形態 1に対する変形例(図 5)と同様に、横断ビーム 3の両側の共振ビーム 5 は同一の共振周波数を有し、対向する 1対ずつ m組の共振ビーム 5を形成している。 各共振ビーム 5の先端部 81a、 81b〜8ma、 8mb (以下、先端部 8と総称する)に対 向する位置の半導体シリコン基板 20にそれぞれ電極 91 a、 91b〜9ma、 9mb (以下 、電極 9と総称する)が形成されており、各共振ビーム 5の先端部 8とこれに対向する 各電極 9とにてキャパシタが構成されている。  [0062] Similar to the modification to the first embodiment (Fig. 5), the resonance beams 5 on both sides of the transverse beam 3 have the same resonance frequency, and m pairs of resonance beams 5 are formed in pairs. ing. Electrodes 91a, 91b-9ma, and 9mb (hereinafter referred to as electrodes 9) are disposed on the semiconductor silicon substrate 20 at positions facing the distal ends 81a, 81b to 8ma, and 8mb (hereinafter collectively referred to as distal ends 8) of the resonance beams 5, respectively. And a capacitor is constituted by the tip 8 of each resonance beam 5 and each electrode 9 opposed thereto.
[0063] 図 7の上側の電極 91a〜9maは、バイアス電圧 Vの電源 7aに接続されている。図 7  [0063] The upper electrodes 91a to 9ma in Fig. 7 are connected to a power source 7a having a bias voltage V. Fig 7
0  0
の下側の電極 91b〜9mbは、ノくィァス電圧—Vの電源 7bに接続されている。  The lower electrodes 91b to 9mb are connected to a power supply 7b having a noisy voltage −V.
0  0
各共振ビーム 5の先端部 8は、 Nを正の整数として、 N— 1本おきに共通の線で演算 増幅器 10の—入力端子に接続されている。図 7では、 Nを 3として、先端部 8を 3—1 = 2本おきに共通の線に接続している。すなわち、先端部 81a、 81b、 . . .は演算増 幅器 10aに、先端部 82a、 82b, . . .は演算増幅器 10bに、先端部 83a、 83b、 . . . は演算増幅器 10cに接続している。演算増幅器 10の +入力端子は接地されている  The tip 8 of each resonant beam 5 is connected to the input terminal of the operational amplifier 10 by a common line every other N—where N is a positive integer. In Fig. 7, N is 3 and the tip 8 is connected to a common line every 3 – 1 = 2. In other words, the tips 81a, 81b, ... are connected to the operational amplifier 10a, the tips 82a, 82b, ... are connected to the operational amplifier 10b, and the tips 83a, 83b, ... are connected to the operational amplifier 10c. ing. The + input terminal of the operational amplifier 10 is grounded
[0064] 図 7の振動波検出装置は、図 5のピエゾ抵抗 6のセンサ本体 1に比べて、振動波に 対する抵抗とキャパシタの変化の位相が異なることを除けば、実施の形態 1の変形例 と全く同じに取り扱える。従って、検出器がキャパシタでも N—1本おきに加算すること によって、ヒルベルト変換対出力を得ることができる。また、図 6の片側の共振ビーム 5 の構成に比べて、キャパシタの差動出力となっている。 [0064] The vibration wave detecting device of FIG. 7 is a modification of the first embodiment except that the phase of the resistance change and the change of the capacitor with respect to the vibration wave is different from that of the sensor body 1 of the piezoresistor 6 of FIG. Example Can be handled exactly the same. Therefore, even if the detector is a capacitor, the output from the Hilbert transform can be obtained by adding every N−1. Further, compared with the configuration of the resonant beam 5 on one side in FIG.
[0065] 以上説明したとおり、本発明の振動波検出装置によれば、検出器がキャパシタの場 合にもリアルタイムに瞬時値としてヒルベルト変換対出力を得ることが可能である。  As described above, according to the vibration wave detection apparatus of the present invention, it is possible to obtain the Hilbert transform pair output as an instantaneous value in real time even when the detector is a capacitor.
[0066] なお、図 6及び図 7の振動波検出装置の例では N = 3であり、 2 π /3ごとの 3相でヒ ルベルト変換対出力が得られる。 Ν_ 1本おきに選択した共振ビームの共振周波数 の比(Ν Δ Ω )が一定であれば、 Δ Ωは一定でなくてもよレ、。 Δ Ωが一定である場合 は、 Ν相は複素平面上で偏角が等間隔になる。また、 Ν相全てを出力しなくてもょレ、 ことなどは、実施の形態 1と同様である。  [0066] Note that in the example of the vibration wave detection device of Figs. 6 and 7, N = 3, and a Hilbert transform pair output is obtained in three phases every 2π / 3. Ν_ If the resonance frequency ratio (の Δ Ω) of every other selected resonant beam is constant, Δ Ω may not be constant. When ΔΩ is constant, the phase of the phase is equidistant on the complex plane. In addition, it is the same as in the first embodiment that all the phases are not output.
[0067] その他、前記のハードウェア構成は一例であり、任意に変更及び修正が可能であ る。  [0067] The hardware configuration described above is merely an example, and can be arbitrarily changed and modified.
[0068] 本出願は、 2006年 6月 27日に出願された日本国特許出願 2006— 177199号に 基づく。本明細書中に日本国特許出願 2006— 177199号の明細書、特許請求の 範囲、図面全体を参照として取り込むものとする。  [0068] This application is based on Japanese Patent Application No. 2006-177199 filed on June 27, 2006. In this specification, the specification, claims and entire drawings of Japanese Patent Application No. 2006-177199 are incorporated by reference.
産業上の利用可能性  Industrial applicability
[0069] この発明は、音波の周波数を検出する周波数検出装置等に利用可能である。 The present invention can be used for a frequency detection device that detects the frequency of sound waves.

Claims

請求の範囲 The scope of the claims
[1] 互いに異なる特定の周波数に共振する複数の共振子(5:!〜 5m)に振動波を伝播 させ、前記共振子それぞれの振動を検出する振動波検出方法であって、  [1] A vibration wave detection method for detecting a vibration of each of the resonators by propagating a vibration wave to a plurality of resonators (5:! To 5 m) resonating at different specific frequencies,
前記複数の共振子を、それぞれの共振子の位置がそれらの共振周波数の対数に 比例する対数線形になるように配列し、  The plurality of resonators are arranged so that the positions of the respective resonators are logarithmic linear proportional to the logarithm of their resonance frequencies,
Nを 2以上の整数として、 N_ 1本おきに前記複数の共振子を選択してその検出器 の出力を加算した、複数の信号を出力することを特徴とする振動波検出方法。  A method for detecting a vibration wave, wherein N is an integer of 2 or more, and a plurality of signals are output by selecting the plurality of resonators every N_1 and adding the outputs of the detectors.
[2] 前記複数の共振子は、前記複数の共振子の前記 N— 1本おきの前記共振子の共 振周波数の比が一定になるように、前記共振子の共振周波数を設定して配列するこ とを特徴とする請求項 1に記載の振動波検出方法。 [2] The plurality of resonators are arranged by setting a resonance frequency of the resonators so that a ratio of resonance frequencies of the N-1 every other resonator of the plurality of resonators is constant. The vibration wave detection method according to claim 1, wherein:
[3] 前記 Nは 3以上の整数であることを特徴とする請求項 1に記載の振動波検出方法。 3. The vibration wave detection method according to claim 1, wherein the N is an integer of 3 or more.
[4] 互いに異なる特定の周波数に共振する複数の共振子(51〜5m)を、それぞれの共 振子の位置がそれらの共振周波数の対数に比例する対数線形になるように配列した 共振子列(51〜 5m)と、 [4] A series of resonators (51 to 5m) resonating at specific frequencies different from each other so that the position of each resonator is logarithmic linearly proportional to the logarithm of the resonance frequency ( 51-5m)
前記共振子列に伝播された振動波による前記複数の共振子それぞれの振動を検 出する検出器(61〜6m)と、  A detector (61 to 6 m) for detecting the vibration of each of the plurality of resonators by the vibration wave propagated to the resonator array;
Nを 2以上の整数として、 N_ 1本おきに前記複数の共振子を選択してその検出器 の出力を加算する、複数の出力合成部(10a〜: 10c)と、  A plurality of output synthesizers (10a to 10c) that select the plurality of resonators every N_ 1 and add the outputs of the detectors, where N is an integer greater than or equal to 2,
を備えることを特徴とする振動波検出装置。  A vibration wave detection device comprising:
[5] 前記共振子列は、前記複数の共振子の N— 1本おきの前記共振子の共振周波数 の比が一定になるように、前記共振子の共振周波数を設定して配列することを特徴と する請求項 4に記載の振動波検出装置。 [5] The resonator array may be arranged by setting a resonance frequency of the resonators so that a ratio of resonance frequencies of every other N− resonators of the plurality of resonators is constant. The vibration wave detection device according to claim 4, which is a feature.
[6] 前記 Nは 3以上の整数であることを特徴とする請求項 4に記載の振動波検出装置。 6. The vibration wave detection device according to claim 4, wherein the N is an integer of 3 or more.
[7] 前記検出器は、ピエゾ抵抗(61〜6m)であることを特徴とする請求項 4に記載の振 動波検出装置。 7. The vibration wave detecting device according to claim 4, wherein the detector is a piezoresistor (61 to 6 m).
[8] 前記検出器は、容量性の素子(81〜8m、 91〜9m)であることを特徴とする請求項 4に記載の振動波検出装置。  8. The vibration wave detecting device according to claim 4, wherein the detector is a capacitive element (81 to 8 m, 91 to 9 m).
PCT/JP2007/062863 2006-06-27 2007-06-27 Oscillating wave detection method and device WO2008001798A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-177199 2006-06-27
JP2006177199A JP2008008683A (en) 2006-06-27 2006-06-27 Oscillating wave detection method and device

Publications (2)

Publication Number Publication Date
WO2008001798A1 true WO2008001798A1 (en) 2008-01-03
WO2008001798B1 WO2008001798B1 (en) 2008-03-13

Family

ID=38845562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062863 WO2008001798A1 (en) 2006-06-27 2007-06-27 Oscillating wave detection method and device

Country Status (3)

Country Link
JP (1) JP2008008683A (en)
TW (1) TW200809169A (en)
WO (1) WO2008001798A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180015482A (en) 2016-08-03 2018-02-13 삼성전자주식회사 Audio spectrum analyzer and method of arrangement of resonators included in the audio spectrum analyzer
JP7030331B2 (en) * 2018-03-28 2022-03-07 リバーエレテック株式会社 AE sensor element and AE sensor
TWI681371B (en) * 2018-03-31 2020-01-01 鈺紳科技股份有限公司 Vibration and sound wave integrated sensing system and method
CN112595408B (en) * 2020-12-10 2021-07-23 四川度飞科技有限责任公司 Dynamic resonance sensing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265131U (en) * 1988-11-04 1990-05-16
JPH10254460A (en) * 1997-03-12 1998-09-25 Rion Co Ltd Nose producing device and reverberation time measuring device using the same
JPH10325753A (en) * 1997-05-26 1998-12-08 Sumitomo Metal Ind Ltd Acoustic sensor
JP2000046639A (en) * 1998-05-22 2000-02-18 Sumitomo Metal Ind Ltd Oscillatory wave detection method and device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265131A (en) * 1988-08-31 1990-03-05 Hitachi Ltd Plasma treatment device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265131U (en) * 1988-11-04 1990-05-16
JPH10254460A (en) * 1997-03-12 1998-09-25 Rion Co Ltd Nose producing device and reverberation time measuring device using the same
JPH10325753A (en) * 1997-05-26 1998-12-08 Sumitomo Metal Ind Ltd Acoustic sensor
JP2000046639A (en) * 1998-05-22 2000-02-18 Sumitomo Metal Ind Ltd Oscillatory wave detection method and device

Also Published As

Publication number Publication date
TW200809169A (en) 2008-02-16
JP2008008683A (en) 2008-01-17
WO2008001798B1 (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP3348686B2 (en) Vibration wave detection method and device
JP3348687B2 (en) Vibration wave detection method and device
TWI323340B (en) Vibrational wave detection method, and vibrational wave detector
Lu et al. An electronically tunable duct silencer using dielectric elastomer actuators
WO2008001798A1 (en) Oscillating wave detection method and device
WO2005033660A2 (en) Flexural plate wave sensor
Fu et al. A stable and highly sensitive strain sensor based on a surface acoustic wave oscillator
Sezen et al. Passive wireless MEMS microphones for biomedical applications
Wang et al. Standing wave performance test of IDT-SAW transducer prepared by silk-screen printing
Shi et al. The application of chaotic oscillator in detecting weak resonant signal of MEMS resonator
CN109506808A (en) A kind of SAW temperature sensor and its design method with dullness and linear output character
Lani et al. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials
US8614609B2 (en) Resonant filter based on an N/MEMS matrix
Li et al. Theoretical modeling, simulation and experimental study of hybrid piezoelectric and electromagnetic energy harvester
Mortada et al. Analysis and optimization of acoustic wave micro-resonators integrating piezoelectric zinc oxide layers
Kim et al. SAW signal conditioner-based dynamic capacitive sensor for high-speed gap measurement
Jian et al. Adaptive piezoelectric metamaterial beam: autonomous attenuation zone adjustment in complex vibration environments
Karbari et al. Modelling and optimization of PVDF based surface acoustic wave MEMS microphone
Wu et al. Wheatstone bridge piezoresistive sensing for bulk-mode micromechanical resonator
Boales et al. Measurement of nonlinear piezoelectric coefficients using a micromechanical resonator
Harada et al. Micro mechanical acoustic sensor toward artificial basilar membrane modeling
Huang Theoretical and experimental vibration analysis for a piezoceramic disk partially covered with electrodes
Faiz et al. A new adaptive resonance frequency of piezoelectric components used for vibration damping
Munirathinam et al. Multiple Moving Membrane Capacitive Micromachined Ultrasonic Transducer with Dynamic Control Provision of Effective Cavity Height
Xu et al. The effect of busbar structure on Q factor enhancement and spurious mode suppression in Lamb wave resonators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767666

Country of ref document: EP

Kind code of ref document: A1