WO2008000851A1 - Método y dispositivo de proyección térmica - Google Patents

Método y dispositivo de proyección térmica Download PDF

Info

Publication number
WO2008000851A1
WO2008000851A1 PCT/ES2006/000377 ES2006000377W WO2008000851A1 WO 2008000851 A1 WO2008000851 A1 WO 2008000851A1 ES 2006000377 W ES2006000377 W ES 2006000377W WO 2008000851 A1 WO2008000851 A1 WO 2008000851A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
combustion chamber
combustion
partially ionized
electric arc
Prior art date
Application number
PCT/ES2006/000377
Other languages
English (en)
French (fr)
Inventor
Georgy Barykin
Original Assignee
Fundacion Inasmet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/305,504 priority Critical patent/US20100034979A1/en
Application filed by Fundacion Inasmet filed Critical Fundacion Inasmet
Priority to JP2009517296A priority patent/JP2009541597A/ja
Priority to PCT/ES2006/000377 priority patent/WO2008000851A1/es
Priority to CN200680055119.2A priority patent/CN101473057B/zh
Priority to EP06794052A priority patent/EP2034037A1/en
Publication of WO2008000851A1 publication Critical patent/WO2008000851A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
    • B05B7/201Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
    • B05B7/205Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle the material to be sprayed being originally a particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
    • B05B7/226Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material being originally a particulate material

Definitions

  • the invention is included in the field of thermal spray coating systems.
  • the thermal projection procedures involve the generation of a gaseous flow that is used to accelerate particles of the coating material to be deposited and direct them towards the surface or substrate that is intended to be coated, where they impact and on which they are adhered.
  • the interaction of the gas flow with the particles to be deposited defines the characteristics of the process and, ultimately, the nature and quality of the coatings generated.
  • a traditional classification according to the technique used to generate said gas flow, could be the following:
  • Plasma procedures are based on the use of two electrodes, among which an electric current that generates an arc is established, through which a gas that is ionized is passed by the electric arc, resulting in a plasma jet that has a very high temperature (typically greater than 10,000 0 C), its expansion through an outlet nozzle being used for thermal projection.
  • a very high temperature typically greater than 10,000 0 C
  • Plasma procedures due to their high temperature, allow the application of coatings with all types of material since they are capable of melting any type of powder or particle, both metallic and ceramic.
  • these procedures have the disadvantage that the exit velocity of the particles carried by the plasma jet is not very high (usually 100 to 200 meters per second), so that coatings with limited limits can be achieved. density, compactness or adhesion.
  • the temperature achieved is excessive and the particles of the coating material undergo undesired degradation processes, so it may be necessary to incorporate devices that reduce the temperature of the plasma jet.
  • Combustion procedures are based on the combustion of gases inside a projection gun, so that the combustion gases exit through the gun barrel at high speeds.
  • the coating material is introduced into the gun, from so that when they come into contact with the gases at high temperature, they melt and exit through the barrel of the gun at high speed, adhering on the piece to be coated.
  • pulsed combustion procedures also known as detonation procedures.
  • the high-speed continuous combustion procedures are based on the injection into the combustion chamber of a fuel and a oxidizer that, by ignition, produce a combustion reaction whose products leave through a hole in the combustion chamber, in the form of hot gas flow that drags the coating particles.
  • the first generation devices generate a reduced pressure (3 to 5 bar) in the combustion chamber, so that the output velocity of the coating particles is not very high, which limits the characteristics of the coating obtained.
  • Second generation devices are based on the generation of high pressure (from 5 to 10 bars) in the combustion chamber, in order to achieve a higher output speed (400 to 700 meters per second) of the coating particles and, therefore, a higher density in the coatings obtained. This is achieved by injecting a large volume of gases into the combustion chamber (4- combustion fuel) that logically generates a higher pressure in the chamber. Sometimes, additional air inputs are also used to increase the volume. Such procedures are described in US patents US-A-5,372,857, US-A-5,019,686, US-A-5,135,166, ÜS-A-5,330,798 and US-A- ⁇ .003,788.
  • temperatures around 2100 degrees can be reached.
  • US-A-5,932,293 describes how in the combustion chamber a burner is arranged which is a kind of disk that reaches high temperatures and helps maintain the temperature and favors the ignition of the combustion mixture.
  • Figure 6 of US-A-5,932,293 shows a variant in which a plasma torch is used in combination with the burner, in order to extend the length of the flame generated by the plasma. This device is in fact a plasma torch
  • thermal projection procedures are those based on the expansion of gases at high pressures, also called cold spraying, which consist of the use of a gas under pressure, without combustion, to drag the coating powders.
  • US Pat. No. 5,302,414 can be cited.
  • the projection of particles by essentially using kinetic energy, practically eliminates the undesirable effects of the thermal interaction of the materials to be projected with the gaseous medium.
  • the coatings thus obtained have excellent characteristics of density, compactness, adhesion and absence of oxidation or degradation due to environmental reactivity.
  • the use of these procedures is limited to few materials (mainly, low melting metals and high plasticity) and the costs, for the volume of gases necessary for the formation of the gas flow, are prohibitive for many of the applications Industrial
  • This type of procedure also requires a heating system (resistors, coils) for the pressurized gas, to improve the characteristics of the process, so in practice, in addition to the purely kinetic component of energy, there is always a thermal component in the energy contribution experienced by the projected particles.
  • a heating system resistor, coils
  • US-A- ⁇ .986.471 describes an improvement in the processes of ⁇ cold spraying, "by means of the use of a plasma torch that provides an additional energy contribution to a high velocity gas flow.
  • a plasma projection device equipped with an acceleration nozzle, in which high pressure gases are introduced which allow to increase the speed of the projection jet.
  • this device produces the mixing of high temperature plasma gases with gases cold at high pressure, thus allowing to combine the advantages of both projection procedures, increasing the range and quality of the coatings obtained.
  • a high velocity of the gas flow is synonymous with particles with high kinetic energy that develop, after impact, coatings of high density and adhesion, preferred in a large number of applications.
  • the system object of this invention overcomes the limitations of the equipment described above, being defined by a high-speed continuous combustion process, in which a partially ionized gas flow generated by a gas is incorporated into said combustion Low power thermal plasma that acts as the initiator of the combustion process, while increasing the stability of said process. This also allows the generation of stable combustion processes for composition ranges (fuel percentage + oxidizing percentage) wider than those used in traditional continuous combustion processes (HVOF).
  • a first aspect of the invention relates to a method of thermal projection for the realization of coatings of parts and / or substrates, comprising the steps of: introducing at least one fuel and at least one oxidizer in a combustion chamber with at least an exit; generate a combustion of a mixture of said fuel and oxidizer to produce combustion gases in the combustion chamber, so that the combustion gases exit through said at least one outlet, in the form of a flow of hot gas (ie , a hot gas flow comprising combustion products); adding, to said flow of hot gas and downstream with respect to the combustion chamber, a coating material (for example, in powder form), such that said coating material is mixed with the flow of hot gas; and projecting the coating material, mixed with the flow of hot gas, onto at least one piece and / or substrate to be coated with the coating material.
  • a coating material for example, in powder form
  • the method further comprises the additional steps of generating a partially ionized gas; and introducing said partially ionized gas into the combustion chamber, so as to cause the combustion of said fuel and oxidizer.
  • the partially ionized gas is capable of maintaining the combustion process for composition ranges (fuel percentage + oxidizing percentage) wider than those used in combustion processes Traditional continuous (HVOF).
  • the partially ionized gas not only acts initially to cause combustion, but the introduction of the partially ionized gas into the combustion chamber is maintained throughout the thermal projection process (that is, during the combustion of said fuel and oxidizer in the combustion chamber).
  • a partially ionized gas is understood to be that which, after being subjected to an electric shock, maintains a concentration of neutral particles higher than that of charged particles (ions and electrons) generated by an electric shock.
  • the process of the invention can be a second generation HVOF combustion process, that is, with high pressures in the combustion chamber, but which incorporates, for combustion activation, a plasma or gas partially ionized at high temperature (for example, electrically generated) -.
  • This activation can occur continuously, that is, it can be maintained for as long as the projection on the substrate lasts.
  • the partially ionized gas acts as a catalyst or combustion promoter, modifying the reaction mechanisms of the gases used in the combustion process. Therefore, the partially ionized gas is not the direct treatment (heating) source of the coating material, but it provides an energy that activates and stabilizes the combustion of the fuel and oxidizer mixture.
  • the process allows all types of coating powders to be used, from those with a high melting point (ceramic powders) to low melting materials, such as metals that are currently deposited using cold spraying devices, that is, .
  • the invention provides a continuous combustion process that extends its field of use apart from the "cold spraying" process field
  • the higher temperature obtainable in combustion allows to use mixtures of less energetic gases than those currently used in the processes of continuous combustion for a given coating material. This allows less complex gases to be used for handling and operation. For example, it is possible to use methane for many applications that usually require for example propylene.
  • a higher melting temperature of the coating powders can be obtained, which makes it possible to use
  • the invention also allows working at low temperatures, for example, for coating materials.
  • the electric generator used to produce the partially ionized gas can be of different powers according to the needs.
  • a low power generator can be used (for example less than 10 kW )
  • the process of the invention may comprise the step of injecting an additive gas into the combustion chamber (for example, compressed air) between the partially ionized gas generation zone and the combustion gas injection zone;
  • This additive gas is mixed with the partially ionized gas before entering the combustion chamber (in this phase, the additive gas can be partially ionized by the partially ionized gas).
  • This additive gas represents a volume of hot gas that is supplied to the combustion chamber.
  • the contribution to the combustion chamber of the additive gas allows to reduce the volumes of combustion gases (fuel and oxygen, for example) necessary, thus maintaining the pressure in the chamber and therefore, a high projection speed but reducing the energy power of combustion and, consequently, the usual overheating problems in second generation HVOF procedures.
  • the flow rate of the additive gas can be large compared to the flow rate of partially ionized gas. It may be preferable that the flow rate of the additive gas is at least twice the flow rate of partially ionized gas (considering the flow rates equivalent to atmospheric pressure). For example, in a typical case, an additive gas with a flow rate of the order of 100 liters (or "standard liters") per minute, can be provided to a partially ionized gas with a flow rate of the order of 20 liters (or "Standard liters ”) per minute.
  • the partially ionized gas is. It can be generated by the step of generating at least one electric arc and conducting a plasma gas through said at least one electric arc to obtain said partially ionized gas.
  • the partially ionized gas being generated electrically, allows adjustment or regulation of the power applied to the procedure very simply: simply adjust the intensity and voltage of the partially ionized gas generator to obtain different powers.
  • a system is available in which its temperature can be increased, gradually and at will, simply acting on a kind of "potentiometer". That is, the at least one electric arc can be regulated to adjust the energy input (temperature and / or chemical activity) to the fuel mixture in the combustion chamber.
  • the fuel can be, for example, a combustible hydrocarbon, such as methane, propane, propylene, butane or mixtures thereof.
  • the oxidizer may be, for example, oxygen or air.
  • the partially ionized gas (or the plasma gas from which the partially ionized gas is produced) can be, for example, argon, helium, neon, hydrogen, or a mixture thereof.
  • That arc can be generated with a power lower than, for example, 10 kW.
  • a thermal projection device for the realization of coatings of parts and / or substrates, comprising: at least one combustion chamber, provided with at least one fuel inlet, at least one combustion inlet and at least one outlet for the combustion gas outlet, in the form of a hot gas flow, from said chamber of combustion towards a piece and / or substrate; and at least one inlet for the injection of a coating material, so that said coating material is mixed with the flow of hot gas, downstream with respect to the combustion chamber.
  • the device further comprises: a partially ionized gas generating part comprising an electric arc generator and a plasmid gas conduction system from a plasmid gas inlet to a partially ionized gas outlet through the electric arc generator, said electric arc generator being configured to generate an electric discharge in the plasma gas by at least one electric arc, so that the partially ionized gas is obtained, said partially ionized gas outlet being in communication with the chamber of combustion for the injection of partially ionized gas into said combustion chamber.
  • a partially ionized gas generating part comprising an electric arc generator and a plasmid gas conduction system from a plasmid gas inlet to a partially ionized gas outlet through the electric arc generator, said electric arc generator being configured to generate an electric discharge in the plasma gas by at least one electric arc, so that the partially ionized gas is obtained, said partially ionized gas outlet being in communication with the chamber of combustion for the injection of partially ionized gas into said combustion chamber.
  • the device may comprise an additive gas inlet, for injection an additive gas (for example, air) in the combustion chamber.
  • Said additive gas inlet may communicate with said partially ionized gas outlet, so that the additive gas injected by said additive gas inlet is mixed with the partially ionized gas before reaching the combustion chamber, where it mixes with the combustion gases.
  • the device may comprise at least one regulating element (for example, of the potentiometer type) functionally associated with the electric arc generator, to allow the regulation of the at least one electric arc, to adjust the energy input to the fuel mixture in the chamber of combustion
  • the outlet for the flue gas outlet can communicate with a conduit for the flow of hot gas.
  • Said conduit for the flow of hot gas may be formed by a conduit in a barrel of a projection gun.
  • the inlet for the injection of a powder coating material can communicate with said conduit for the flow of hot gas.
  • the electric arc generator may be configured to generate said at least one electric arc with a power of less than 10 kW.
  • the device may be configured to maintain an introduction of partially ionized gas into the combustion chamber for substantially the entire duration of a combustion in the combustion chamber.
  • Figure 1 shows a schematic view of a process according to a preferred embodiment of the invention.
  • Figure 2. Shows a conceptual schematic view in longitudinal section of a device according to a preferred embodiment of the invention.
  • Figure 3. Shows a photograph of a microstructure of a tungsten carbide coating obtained with the process of the invention.
  • FIG. 1 illustrates, schematically, a process according to a preferred embodiment of the invention, in which a partially ionized gas A is generated, to which an additive gas B (for example, air) is added, which is mixed with the partially ionized gas.
  • This mixture is introduced into a combustion chamber 1, in which fuel C and oxidizer D are also added.
  • the combustion that occurs in the combustion chamber 1 generates a flow of hot gas E.
  • a material is introduced coating F to said jet or flow E, so that it is mixed with the jet, which is directed to the surface or substrate G that is desired to be coated, in a conventional manner.
  • FIG. 2 schematically illustrates a device according to a preferred embodiment of the invention.
  • the device comprises a combustion chamber 1, provided with a fuel inlet 2, a combustion inlet 3 and an outlet 4 for the flue gas outlet, in the form of a hot gas flow E, from said combustion chamber towards a piece and / or substrate G, on which the coating H. will be deposited.
  • the device comprises an input
  • the device further comprises a partially ionized gas generating part 100 comprising a plasma gas conduction system 8 from a plasma gas inlet 81 to a partially ionized gas outlet 82, through an electric arc generator configured to generate a discharge in the form of an electric arc in the plasma gas, in order to generate the partially ionized gas from said plasma gas.
  • the outlet 82 of partially ionized gas is in communication with the combustion chamber 1 for the injection of partially ionized gas into said combustion chamber 1.
  • an inlet 9 of additive gas for example, air
  • This additive gas inlet 9 communicates with the outlet 82 of partially ionized gas, so that an additive gas introduced by said gas inlet additive 9 is mixed with partially ionized gas, before reaching combustion chamber 1 to mix with combustion gases.
  • the electric arc generator comprises an anode 7 and a cathode 6 connected to the corresponding electric power source, and is configured to generate partially ionized gas with at least one electric arc.
  • the electric arc generator is functionally associated with a regular element (potentiometer type), to allow the regulation of the at least one electric arc, to adjust the energy contribution to the combustion process in the combustion chamber (1).
  • the outlet 4 for the flue gas outlet communicates with a conduit 41 for the flow of hot gas, formed by a conduit in a barrel 42 of a projection gun.
  • the inlet 5 for the injection of a powder coating material communicates with the conduit 41 for the flow of hot gas, whose expansion through an outlet orifice 43 of the conduit 41, causes the acceleration of hot gas to supersonic speeds .
  • Figure 3 is a photograph of the microstructure of a tungsten carbide coating obtained with the process of the invention. In the photograph, a series of points have been marked indicating the hardness obtained in each of them in HVO units, 3. The hardnesses obtained in the different points (1311, 1119, 1192, 1250, 1324, 1052, 1139, 1298, 1433, 1343) are the usual ones for a tungsten layer, but it is a coating obtained with a much lower consumption of gases.
  • the parameters of the process with which the coating was obtained are the following:
  • Electrodes that formed an arc of 400 Amps at 25 Volts were used, among which they injected 25 sl / min of Argon ("if" represents "Standard liters", that is, the volume under established pressure and temperature conditions that are considered standard -
  • the partially ionized gas was mixed with 100 sl / min of air.
  • a gun with a length of 100 mm and a diameter of 8 mm was used at the combustion chamber outlet.
  • the thermal projection was carried out on a substrate material composed of steel.
  • the invention is not limited to the specific embodiments that have been described but also covers, for example, the variants that can be made by the average person skilled in the art (for example, in terms of the choice of materials, dimensions , components, configuration, etc.), within what follows from the claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nozzles (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

El método de proyección térmica comprende los pasos de: introducir al menos un combustible (C) y al menos un comburente (D) en una cámara de combustión (1), generar una combustión y añadir, al flujo de gas caliente (E), un material de recubrimiento (F). Además, se genera un gas parcialmente ionizado y se introduce dicho gas parcialmente ionizado en la cámara de combustión (1), para provocar la combustión del combustible y comburente. La invención también se refiere a un dispositivo de proyección térmica.

Description

MÉTODO Y DISPOSITIVO DE PROYECCIÓN TÉRMICA
CAMPO TÉCNICO DE LA INVENCIÓN
La invención se engloba en el campo de los sistemas de recubrimiento por proyección térmica.
ANTECEDENTES DE LA INVENCIÓN
Los procedimientos de proyección térmica suponen la generación de un flujo gaseoso que es utilizado para acelerar partículas del material de revestimiento a depositar y dirigirlas hacia la superficie o substrato que se pretende recubrir, donde impactan y sobre la cual quedan adheridas. La interacción del flujo gaseoso con las partículas a depositar (intercambio térmico, reacciones químicas y transferencia de momento mecánico) , define las características del proceso y, en última instancia, la naturaleza y calidad de los recubrimientos generados .
Una clasificación tradicional, según la técnica empleada para generar dicho flujo gaseoso, podría ser la siguiente:
Procesos que hacen uso de plasmas térmicos, también conocidos como procedimientos de plasma. - Procesos de combustión.
Procesos que emplean la expansión de gases a elevadas presiones.
Los procedimientos de plasma se basan en la utilización de dos electrodos, entre los cuales se establece una corriente eléctrica que genera un arco, a través del cual se hace pasar un gas que resulta ionizado por el arco eléctrico, dando como resultado un chorro de plasma que tiene una muy alta temperatura (típicamente superior a 10.000 0C), siendo su expansión a través de una boquilla de salida la que se emplea para la proyección térmica.
Los procedimientos de plasma, por su alta temperatura, permiten la aplicación de revestimientos con todo tipo de material ya que son capaces de fundir cualquier tipo de polvo o partícula, tanto metálica como cerámica. No obstante, estos procedimientos presentan el inconveniente de que la velocidad de salida de las partículas arrastradas por el chorro de plasma no es muy elevada (suele ser del orden de 100 a 200 metros por segundo) , por lo que se pueden conseguir revestimientos con limitada densidad, compacidad o adherencia. Además, en ocasiones, la temperatura conseguida resulta excesiva y las partículas del material de revestimiento sufren procesos de degradación no deseados, por lo que puede ser necesario incorporar dispositivos que reducen la temperatura del chorro de plasma. Como- ejemplos de este tipo de tecnología, se pueden citar las patentes estadounidenses US-A-5.372.857, US-A-5.019.686, US-A- 5.135.166, US-A-5.330.798 y ÜS-A-6.003.788.
Esto hace que los procedimientos de plasma se utilicen principalmente para la proyección de partículas o polvos que necesitan muy alta temperatura para su fusión, como es el caso de materiales cerámicos.
Los procedimientos de combustión se basan en la combustión de gases en el interior de una pistola de proyección, de manera que los gases de combustión salen a través del cañón de la pistola a altas velocidades. El material de revestimiento se introduce en la pistola, de manera que al entrar en contacto con los gases a alta temperatura, se funden y salen por el cañón de la pistola a alta velocidad, adhiriéndose sobre la pieza a recubrir.
Estos procedimientos se basan en la creación de un ambiente de alta temperatura (capaz de fundir los polvos de revestimiento) y de alta presión (para generar una velocidad de salida del chorro de gases que consiga la adherencia de los polvos fundidos sobre la pieza o substrato) . Los procedimientos de combustión se dividen fundamentalmente en dos grandes familias, a saber, los procedimientos de combustión continua de alta velocidad
(HVOF=high velocity oxygen fuel y HVAF= high velocity air fuel, según utilicen oxigeno o aire, respectivamente) , y los procedimientos de combustión pulsada, también conocidos como procedimientos de detonación.
En cuanto a los procedimientos de combustión continua de alta velocidad, -se basan en la inyección en la cámara de combustión de un combustible y un comburente que, mediante su encendido, producen una reacción de combustión cuyos productos salen a través de un orificio de la cámara de combustión, en forma de flujo de gas caliente que arrastra las partículas de revestimiento.
Entre los dispositivos HVOF utilizados habitualmente, se puede distinguir entre los de primera generación y los de segunda generación. Los dispositivos de primera generación generan en la cámara de combustión una presión reducida (de 3 a 5 bares) , por lo que la velocidad de salida de las partículas de revestimiento no es muy elevada, lo que limita las características del recubrimiento obtenido. Los dispositivos de segunda generación se basan en la generación de una alta presión (de 5 a 10 bares) en la cámara de combustión, con el fin de conseguir una mayor velocidad de salida (400 a 700 metros por segundo) de las partículas de revestimiento y, por tanto, una mayor densidad en los recubrimientos obtenidos. Esto se consigue inyectando a la cámara de combustión un gran volumen de gases (combustible 4- comburente) que lógicamente genera una mayor presión en la cámara. En ocasiones, también se utilizan aportaciones adicionales de aire para aumentar el volumen. Procedimientos de este tipo se describen en las patentes estadounidenses US-A-5.372.857, US-A-5.019.686, US-A- 5.135.166, ÜS-A-5.330.798 y US-A-β .003.788.
Una de las limitaciones de los procedimientos HVOF es que las temperaturas que pueden alcanzarse dependen del tipo de combustible utilizado, de forma que dependiendo del material que se necesita utilizar para el revestimiento, se debe utilizar también el combustible que permita alcanzar la temperatura de combustión necesaria para --la fusión de las partículas de revestimiento.
Asi por ejemplo, en una atmósfera de O2:
Utilizando hidrógeno se pueden alcanzar temperaturas aproximadas a los 2100 grados.
Utilizando metano, 2200 grados. - Utilizando queroseno, 2700 grados.
Utilizando propileno, 2800 grados. Utilizando acetileno, 3200 grados.
Obviamente, cuando se desean realizar revestimientos con metales con bajo punto de fusión, como, por ejemplo, aluminio o cobre, se puede utilizar por ejemplo metano que resulta fácil de utilizar y, además, cuenta con una red de distribución amplia. Por el contrario, cuando se desea realizar revestimientos con materiales cerámicos, se necesitan altas temperaturas que solo aportan el propileno o acetileno. Estos son gases que requieren instalaciones especiales y dificultan la utilización de los procedimientos .
Además, en los dispositivos HVOF de segunda generación, como se ha dicho anteriormente, para conseguir una alta velocidad de proyección que redunde en una mayor calidad de los recubrimientos, se requiere una alta presión de gases en la cámara de combustión (5 a 10 bares) que se consigue inyectando un volumen elevado de gase's' en la cámara de combustión. Esto implica dos inconvenientes: en primer lugar, el elevado consumo de gases" y, por otro lado, esta alta presión se traduce en una elevada potencia que provoca un chorro de gases de mucho caudal y longitud que puede provocar un sobrecalentamiento del substrato a recubrir, pudiendo incluso- llegar a dañarlo. Por ello, en ocasiones, se incorporan sistemas de enfriamiento del sustrato que aumentan la complejidad de la instalación asi como su coste .
Los procedimientos HVOF tampoco son los más adecuados para materiales con bajo punto de fusión porque los procesos de combustión de baja temperatura que se requieren son muy poco estables y tienden a interrumpirse durante el proceso de recubrimiento. Para este tipo de materiales se utilizan técnicas de expansión de gases a elevadas presiones que se describen mas adelante. También se han intentado realizar mejoras en los procedimientos de HVOF, fundamentalmente destinadas a mejorar la estabilidad, la eficiencia y el rango de mezclas combustibles útiles del proceso de combustión. US-A-5.932.293 describe cómo en la cámara de combustión se dispone un quemador que es una especie de disco que alcanza temperaturas elevadas y ayuda a mantener la temperatura y favorece la ignición de la mezcla de combustión. En la figura 6 de US-A-5.932.293 se muestra una variante en la cual se utiliza una antorcha de plasma en combinación con el quemador, con el objeto de alargar la longitud de la llama generada por el plasma. Este dispositivo constituye de hecho una antorcha de plasma
(los materiales de revestimiento son fundidos por el propio plasma) con un gas envolvente, por lo que el proceso que se implementa ya no es un proceso de HVOF sino un proceso de plasma, con las limitaciones que ello ' implica en cuanto a, por ejemplo, temperaturas excesivamente altas.
En los procedimientos de combustión pulsada o procesos de detonación, se producen, de forma ciclica, detonaciones que provocan un chorro de gases a alta . temperatura, que sale por el cañón a muy alta velocidad
(flujo) para producir la proyección térmica. Como ejemplo de este tipo de procesos, se pueden . citar las Patentes estadounidenses US-A-2.714.563 y US-A-β.517.010. Estos procesos de detonación son mucho más eficaces que los procesos de combustión continua de alta velocidad ya que permiten reducir los consumos de gases, costes y sobrecalentamientos mencionados anteriormente.
Otros procedimientos de proyección térmica son los basados en la expansión de gases a elevadas presiones, también denominados de proyección fria o "cold spraying", que consisten en la utilización de un gas a presión, sin combustión, para arrastrar los polvos de revestimiento. Como ejemplo de este tipo de procedimientos se puede citar la Patente estadounidense US-A-5.302.414. En este caso, la proyección de partículas, al emplear esencialmente energía cinética, prácticamente elimina los efectos indeseados de la interacción térmica de los materiales a proyectar con el medio gaseoso. Los recubrimientos asi obtenidos presentan excelentes características de densidad, compacidad, adherencia y ausencia de oxidación o degradación por reactividad ambiental. Sin embargo, el uso de estos procedimientos está limitado a pocos materiales (principalmente, metales de bajo punto de fusión y elevada plasticidad) y los costes, para el volumen de gases necesarios para la formación del flujo gaseoso, resultan prohibitivos para muchas de las aplicaciones industriales.
Este tipo de procedimientos requieren también un sistema de calentamiento (resistencias, serpentines) para el gas a presión, para mejorar las características del proceso, por lo que en la práctica, además del componente puramente cinético de la energía, siempre existe un componente térmico en el aporte energético experimentado por las partículas proyectadas.
En la Patente estadounidense US-A-β .986.471 se describe una mejora en los procesos de λλcold spraying", mediante al empleo de una antorcha de plasma que proporciona un aporte energético adicional a un flujo gaseoso de alta velocidad. En realidad, es un dispositivo de proyección por plasma dotado de una boquilla de aceleración, en la cual se introducen gases a elevada presión que permiten aumentar la velocidad del chorro de proyección. Por tanto, en este dispositivo se produce la mezcla de gases plasmágenos a alta temperatura con gases fríos a alta presión, permitiendo así combinar las ventajas de ambos procedimientos de proyección, aumentando el rango y calidad de los recubrimientos obtenidos .
DESCRIPCIÓN DE LA INVENCIÓN
Se ha considerado que podría ser conveniente desarrollar procesos capaces de producir flujos gaseosos de alta velocidad (supersónicos) con temperaturas moderadas, de forma que la interacción térmica entre los materiales a depositar y el flujo gaseoso sea reducida y, como consecuencia, las reacciones químicas indeseadas
(típicamente de oxidación o descomposición) también se vean reducidas. Por otra parte, una elevada velocidad del flujo gaseoso es sinónimo de partículas con elevada energía cinética que desarrollan, tras el impacto, unos recubrimientos de elevada densidad y adherencia, preferidos en un gran número de aplicaciones.
El sistema objeto de esta invención supera las limitaciones de los equipos antes .descritos, al venir definido por un proceso de combustión continua de alta velocidad, en el que a los gases involucrados en dicha combustión se incorpora un flujo de gas parcialmente ionizado generado por un plasma térmico de baja potencia que actúa como iniciador del proceso de combustión, a la vez que incrementa la estabilidad de dicho proceso. Esto además permite la generación de procesos de combustión estables para rangos de composición (porcentaje combustible + porcentaje comburente) mas amplios que los utilizados en los procesos de combustión continua tradicionales (HVOF) . Un primer aspecto de la invención se refiere a un método de proyección térmica para la realización de recubrimientos de piezas y/o substratos, que comprende los pasos de: introducir al menos un combustible y al menos un comburente en una cámara de combustión con al menos una salida; generar una combustión de una mezcla de dicho combustible y comburente para producir gases de combustión en la cámara de combustión, de manera que los gases de combustión salgan por dicha, al menos una, salida, en forma de un flujo de gas caliente (es decir, un flujo de gas caliente que comprende productos de combustión) ; añadir, a dicho flujo de gas caliente y aguas abajo con respecto a la cámara de combustión, un material de recubrimiento (por ejemplo, en forma de polvo) , de manera que dicho material de recubrimiento se mezcle con el flujo de gas caliente; y proyectar el material de recubrimiento, mezclado con el flujo de gas caliente, sobre al menos una pieza y/o substrato a recubrir con el material de recubrimiento.
De acuerdo con la invención, el método comprende además los pasos adicionales de generar un gas parcialmente ionizado; y introducir dicho gas parcialmente ionizado en la cámara de combustión, de manera que provoque la combustión de dicho combustible y comburente.
El gas parcialmente ionizado es capaz de mantener el proceso de combustión para rangos de composición (porcentaje combustible + porcentaje comburente) mas amplios que los utilizados en los procesos de combustión continua tradicionales (HVOF) . Además, el gas parcialmente ionizado no sólo actúa inicialmente para provocar la combustión, sino que se mantiene la introducción del gas parcialmente ionizado en la cámara de combustión durante toda el proceso de proyección térmica (es decir, durante la combustión de dicho combustible y comburente en la cámara de combustión) .
A efectos de esta invención, se entiende por un gas parcialmente ionizado aquel que, tras haber sido sometido a una descarga eléctrica, mantiene una concentración de partículas neutras superior a la de partículas cargadas (iones y electrones) generadas por una descarga eléctrica.
Tal y como se desprende, el procedimiento de la invención puede ser un procedimiento de combustión HVOF, de segunda generación, es decir, con altas presiones en la cámara de combustión, pero que incorpora, para la activación de la combustión, un plasma o gas parcialmente ionizado a alta temperatura (por ejemplo, generado eléctricamente)-. Esta activación se puede producir de forma continua, es decir, se puede mantener durante todo el tiempo que dura la proyección sobre el substrato. El gas parcialmente ionizado actúa como catalizador o promotor de la combustión, modificando los mecanismos de reacción de los gases empleados en el proceso de combustión. Por tanto, el gas parcialmente ionizado no es la fuente de tratamiento (calentamiento) directo del material de revestimiento, sino que aporta una energía que activa y estabiliza la combustión de la mezcla de combustible y comburente.
Además, se produce un aporte energético adicional a la combustión, aporte energético que se traduce en un aumento de la temperatura que se puede obtener en la cámara de combustión para una determinada mezcla combustible. Este incremento de la temperatura puede llegar a ser del orden de los 500 °C, sobre la temperatura generada a partir del propio proceso de combustión de la mezcla combustible+comburente.
Con este procedimiento, se puede generar flujos que aseguran una excelente calidad de los recubrimientos producidos, pero empleando para ello potencias más reducidas, de forma que el consumo de gases es menor; se evitan además los problemas de sobrecalentamiento derivados de utilizar potencias elevadas.
Además, el procedimiento permite utilizar todo tipo de polvos de revestimiento, desde aquellos con alto punto de fusión (polvos cerámicos) a materiales de bajo punto de fusión, como por ejemplo metales que actualmente se depositan utilizando dispositivos de "cold spraying", es decir., la invención proporciona un procedimiento de combustión continua que extiende su campo de utilización a parte del campo de los procedimientos "cold spraying"
(que operan con baja temperatura y mucha velocidad) y por otro lado, al campo de los procedimientos que utilizan plasma (mucha temperatura y baja velocidad) , pero reduciendo las limitaciones y problemas comunes a los procedimientos HVOF.
Es decir, la mayor temperatura obtenible en la combustión permite utilizar mezclas de gases menos energéticas que las utilizadas actualmente en los procesos de combustión continua para un determinado material de revestimiento. Esto permite utilizar gases menos complejos en su manipulación y funcionamiento. Por ejemplo, es posible utilizar metano para muchas aplicaciones que habitualmente requieren por ejemplo propileno.
Se puede obtener una mayor temperatura de fusión de los polvos de revestimiento, lo que permite utilizar
5 polvos de revestimiento de alto punto de fusión (por ejemplo, polvos cerámicos) que los procedimientos HVOF actuales tienen dificultad en fundir.
La invención permite también trabajar a temperaturas bajas, por ejemplo, para el revestimiento de materiales
10 con bajo punto de fusión, ya que la presencia del gas parcialmente ionizado permite mantener la combustión, evitando que se apague, para mezclas de combustible y comburente que no proporcionan procesos de combustión estables en los sistemas HVOF convencionales.
15'' Otra ventaja del procedimiento de la invención "es que el generador eléctrico empleado para producir el gas parcialmente ionizado puede ser de distintas potencias según las necesidades. Por ejemplo, se puede utilizar un generador de baja potencia (por ejemplo inferior a 10 kW)
20.. que además de un coste reducido no requiere equipos grandes en cuanto a sus dimensiones, frente a los equipos de plasma (de alta potencia mayor que 100 kW) utilizados habitualmente para la proyección térmica. Por supuesto, puede utilizarse un equipo de plasma de alta potencia si
25 las condiciones lo requieren o bien porque se cuenta con este equipo.
De esta forma, el mismo dispositivo es fácilmente configurable para realizar tanto revestimientos con materiales de bajo punto de fusión
30 como revestimientos con materiales con un alto punto de fusión, asi como con todos los materiales con un punto de fusión "medio" (básicamente, los que se suelen utilizar en los procesos HVOF tradicionales) .
Adicionalmente, el procedimiento de la invención puede comprender el paso de inyectar un gas aditivo en la cámara de combustión (por ejemplo, aire comprimido) entre la zona de generación del gas parcialmente ionizado y la zona de inyección de los gases de combustión; este gas aditivo se mezcla con el gas parcialmente ionizado antes de entrar a la cámara de combustión (en esta fase, el gas aditivo puede ser parcialmente ionizado por el gas parcialmente ionizado) . Este gas aditivo representa un volumen de gas caliente que se aporta a la cámara de combustión. La aportación a la cámara de combustión del gas aditivo permite reducir los volúmenes de gases de combustión (combustible y oxigeno, por ejemplo) necesarios, manteniendo asi la presión en la cámara y por tanto, una alta velocidad de proyección pero reduciendo la potencia energética de la combustión y, en consecuencia, los problemas de sobrecalentamiento habituales en los procedimientos HVOF , de segunda generación.
El caudal del gas aditivo puede ser grande en comparación con el caudal de gas parcialmente ionizado. Puede ser preferible que el caudal del gas aditivo sea al menos dos veces el caudal de gas parcialmente ionizado (considerando los caudales equivalentes a presión atmosférica) . Por ejemplo, en un caso típico, se puede aportar un gas aditivo con un caudal del orden de 100 litros (o "litros standard") por minuto, a un gas parcialmente ionizado con un caudal del orden de 20 litros (o "litros Standard") por minuto. El gas parcialmente ionizado se. puede generar mediante el paso de generar al menos un arco eléctrico y conducir un gas plasmágeno a través de dicho, al menos un, arco eléctrico, para obtener dicho gas parcialmente ionizado. El gas parcialmente ionizado, al estar generado de forma eléctrica, permite un ajuste o regulación de la potencia aplicada al procedimiento de forma muy sencilla: basta con ajustar la intensidad y tensión del generador de gas parcialmente ionizado para obtener potencias distintas. De esta forma, cuando se introduce en la cámara de combustión, se dispone de un sistema en el cual se puede aumentar su temperatura, de forma gradual y a voluntad, actuando simplemente sobre una especie de "potenciómetro". Es decir, se puede regular el, al menos un, arco eléctrico, para ajustar el aporte energético (temperatura y/o actividad química) a la mezcla combustible en la cámara de combustión.
El combustible puede ser, por ejemplo, un hidrocarburo combustible, como por ejemplo metano, propano, propileno, butano o mezclas de éstos.
El comburente puede ser, por ejemplo, oxígeno o aire.
El gas parcialmente ionizado (o el gas plasmágeno a partir del cual se produce el gas parcialmente ionizado) puede ser, por ejemplo, argón, helio, neón, hidrógeno, o una mezcla de ellos.
Cuando se usa un arco eléctrico, ese arco se puede generar con una potencia inferior a, por ejemplo, 10 kW.
Otro aspecto de la invención se refiere a un dispositivo de proyección térmica para la realización de recubrimientos de piezas y/o substratos, que comprende: al menos una cámara de combustión, dotada de al menos una entrada de combustible, de al menos una entrada de comburente y de al menos una salida para la salida de gases de combustión, en forma de un flujo de gas caliente, desde dicha cámara de combustión hacia una pieza y/o substrato; y al menos una entrada para la inyección de un material de recubrimiento, de manera que dicho material de recubrimiento se mezcle con el flujo de gas caliente, aguas abajo con respecto a la cámara de combustión.
De acuerdo con la invención, el dispositivo comprende además : una parte de generación de gas parcialmente ionizado que comprende un generador de arco eléctrico y un sistema de conducción de gas plasmágeno desde una entrada de gas plasmágeno hasta una salida de gas parcialmente ionizado a través del generador de arco eléctrico, estando dicho generador de arco eléctrico configurado para generar una descarga eléctrica en el gas plasmágeno mediante al menos un arco eléctrico, de manera que se obtenga el gas parcialmente ionizado, estando dicha salida de gas parcialmente ionizado en comunicación con la cámara de combustión para la inyección del gas parcialmente ionizado en dicha cámara de combustión. Lo que se ha dicho más arriba con respecto al método también es aplicable al dispositivo, mutatis mutandis .
El dispositivo puede comprender una entrada de gas aditivo, para la de inyección un gas aditivo (por ejemplo, aire) en la cámara de combustión. Dicha entrada de gas aditivo puede comunicar con dicha salida de gas parcialmente ionizado, de manera que el gas aditivo inyectado por dicha entrada de gas aditivo se mezcle con el gas parcialmente ionizado antes de llegar a la cámara de combustión, donde se mezcla con los gases de combustión.
El dispositivo puede comprender al menos un elemento regulador (por ejemplo, de tipo potenciómetro) funcionalmente asociado al generador de arco eléctrico, para permitir la regulación del, al menos un, arco eléctrico, para ajustar el aporte energético a la mezcla combustible en la cámara de combustión. La salida para la salida de gases de combustión puede comunicar con un conducto para el flujo de gas caliente. Dicho conducto para el flujo de gas caliente puede estar formado por un conducto en un cañón de una pistola de proyección. La entrada para la inyección de un material de recubrimiento en forma de polvo puede comunicar con dicho conducto para el flujo de gas caliente.
El generador de arco eléctrico puede estar configurado para generar dicho, al menos un, arco eléctrico con una potencia inferior a 10 kW.
El dispositivo puede estar configurado para mantener una introducción del gas parcialmente ionizado en la cámara de combustión durante sustancialmente toda la duración de una combustión en la cámara de combustión.
DESCRIPCIÓN DE LAS FIGURAS
Para complementar la descripción y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de figuras en el que con carácter ilustrativo y no- limitativo, se ha representado lo siguiente:
La figura 1.- Muestra una vista esquemática de un procedimiento según una realización preferida de la invención.
La figura 2.- Muestra una vista esquemática conceptual en sección longitudinal de un dispositivo según una realización preferida de la invención.
La figura 3.- Muestra una fotografía de una microestructura de un recubrimiento de carburo de tungsteno obtenido con el procedimiento de la invención.
RESALÍZACIÓN PREFERENTE DE LA INVENCIÓN
La figura 1 ilustra, de forma esquemática, un proceso según una realización preferida de la invención, en el que se genera un gas parcialmente ionizado A, al que se añade un gas aditivo B (por ejemplo, aire), que se mezcla con el gas parcialmente ionizado. Esta mezcla se introduce en una cámara de combustión 1, en la cual también se añade combustible C y comburente D. La combustión que se produce en la cámara de combustión 1 genera un flujo de gas caliente E. Por otra parte, se introduce un material de recubrimiento F a dicho chorro o flujo E, de manera que se mezcle con el chorro, el cual se dirige a la superficie o sustrato G que se desea recubrir, de forma convencional.
La figura 2 ilustra esquemáticamente un dispositivo según una realización preferida de la invención. El dispositivo comprende una cámara de combustión 1, dotada de una entrada 2 de combustible, de una entrada 3 de comburente y de una salida 4 para la salida de gases de combustión, en forma de un flujo de gas caliente E, desde dicha cámara de combustión hacia una pieza y/o substrato G, sobre la que se depositará el recubrimiento H.
Por otra parte, el dispositivo comprende una entrada
5 para la inyección de un material de recubrimiento, de manera que el material de recubrimiento se mezcle con el flujo de gas caliente, aguas abajo con respecto a la cámara de combustión 1.
El dispositivo comprende además una parte 100 de generación de gas parcialmente ionizado que comprende un sistema de conducción 8 de gas plasmágeno desde una entrada 81 de gas plasmágeno hasta una salida 82 de gas parcialmente ionizado, a través de un generador de arco eléctrico configurado para generar una descarga en forma de arco eléctrico en el gas plasmágeno, para así generar el gas parcialmente ionizado a partir de dicho gas plasmágeno. La salida 82 de gas parcialmente ionizado está en comunicación con la cámara de combustión 1 para la inyección del gas parcialmente ionizado en dicha cámara de combustión 1. Además hay una entrada 9 de gas aditivo . (por ejemplo, aire), para la de inyección de un gas aditivo en la cámara de combustión 1. Esta entrada 9 de gas aditivo comunica con la salida 82 de gas parcialmente ionizado, de manera que un gas aditivo introducido por dicha entrada de gas aditivo 9 se mezcle con el gas parcialmente ionizado, antes de llegar a la cámara de combustión 1 para mezclarse con los gases de combustión.
El generador de arco eléctrico comprende un ánodo 7 y un cátodo 6 unidos a la fuente de energía eléctrica correspondiente, y está configurado para generar el gas parcialmente ionizado con al menos un arco eléctrico. Además, el generador de arco eléctrico está funcionalmente asociado a un elemento regular (tipo potenciómetro) , para permitir la regulación del, al menos un, arco eléctrico, para ajustar el aporte energético al proceso de combustión en la cámara de combustión (1) . La salida 4 para la salida de gases de combustión comunica con un conducto 41 para el flujo de gas caliente, formado por un conducto en un cañón 42 de una pistola de proyección. La entrada 5 para la inyección de un material de recubrimiento en forma de polvo comunica con el conducto 41 para el flujo de gas caliente, cuya expansión a través de un orificio de salida 43 del conducto 41, provoca la aceleración de gas caliente hasta velocidades supersónicas.
El experto medio en la materia podrá fácilmente adaptar esta configuración a las ' caracteristicas concretas de cada caso (de acuerdo con las caracteristicas del proceso, por ejemplo, el tipo de recubrimiento a realizar, los materiales.;-y gases que se utilizan, etc.). La figura 3 es una fotografía de Ia- microestructura de un recubrimiento de carburo de tungsteno obtenida con el procedimiento de la invención. En la fotografía se han marcado una serie de puntos indicándose la dureza obtenida en cada uno de ellos en unidades de HVO, 3. Las durezas obtenidas en los diferentes puntos (1311, 1119, 1192, 1250, 1324, 1052, 1139, 1298, 1433, 1343) son las habituales para una capa de tungsteno, pero se trata de un recubrimiento obtenido con un consumo muy inferior de gases. Los parámetros del proceso con el que se ha obtenido el recubrimiento son los siguientes:
Se utilizaron unos electrodos que formaron un arco de 400 Amperios a 25 Voltios, entre los cuales se inyectaron 25 sl/min de Argón ("si" representa "litros Standard", es decir, el volumen en unas condiciones de presión y temperatura establecidas que se consideran standard - El gas parcialmente ionizado se mezcló con 100 sl/min de aire.
En la cámara de combustión se inyectaron 200 sl/min de metano y 300 sl/min de oxigeno.
En la salida de la cámara de combustión se utilizó un cañón con una longitud de 100 mm y con un diámetro de 8 mm.
En el cañón se inyectaron 50 gr/min de polvo de recubrimiento (WC-17Co) .
- La proyección térmica se realizó sobre un material de substrato compuesto por acero.
En este texto, la palabra "comprende" y sus variantes (como "comprendiendo", etc.) no deben interpretarse de forma excluyeate, es decir, no excluyen la posibilidad de que lo descrito incluya otros elementos, pasos etc.
Por otra parte, la invención no está limitada a las realizaciones concretas que se han descrito sino abarca también, por ejemplo, las variantes que pueden ser realizadas por el experto medio en la materia (por ejemplo, en cuanto a la elección de materiales, dimensiones, componentes, configuración, etc.), dentro de lo que se desprende de las reivindicaciones.

Claims

REIVINDICACIONES
1.- Método de proyección térmica para la realización de recubrimientos de piezas y/o substratos, que comprende: introducir al menos un combustible (C) y al menos un comburente (D) en una cámara de combustión (1) con al menos una salida (4); generar una combustión de una mezcla de dicho combustible y comburente para producir gases de combustión en la cámara de combustión (1) , de manera que los gases de combustión salgan por dicha, al menos una, salida (4), en forma de un flujo de gas caliente (E); añadir, a dicho flujo de gas caliente (E) y aguas abajo con respecto a la cámara de combustión (1) , un material de recubrimiento (F) , de manera que dicho material de recubrimiento se mezcle con el flujo de gas caliente; y proyectar el material de recubrimiento (F) , mezclado con el flujo de gas -caliente sobre al menos una pieza y/o substrato (G) a. recubrir con el material de recubrimiento; caracterizado porque además comprende los pasos de generar un gas parcialmente ionizado (A) ; introducir dicho gas parcialmente ionizado en la cámara de combustión (1) , de manera que provoque la combustión de dicho combustible y comburente.
2.- Método según la reivindicación 1, caracterizado porque además comprende el paso de inyectar un gas aditivo (B) en la cámara de combustión (1) .
3.- Método según la reivindicación 2, caracterizado porque se inyecta dicho gas aditivo (B) de manera que el gas aditivo se mezcla primero con el gas parcialmente ionizado (A) , y luego es inyectado en la cámara de combustión (1) , para mezclarse con los gases de combustión.
4.- Método según cualquiera de las reivindicaciones 1-3, caracterizado porque el gas parcialmente ionizado se genera mediante el paso de generar al menos un arco eléctrico y conducir un gas plasmágeno a través de dicho, al menos un, arco eléctrico, para obtener dicho gas parcialmente ionizado.
5.- Método según la reivindicación 4, caracterizado porque comprende el paso de regular el, al menos un, arco eléctrico, para ajustar el aporte energético al proceso de combustión en la cámara de combustión (1) .
6.- Método según cualquiera de las reivindicaciones 4 y 5, caracterizado porque dicha, al menos un, arco eléctrico se genera con una potencia inferior a 10 KW.
7.- Método según cualquiera de las reivindicaciones anteriores, caracterizado porque el gas parcialmente ionizado se introduce en la cámara de combustión durante sustancialmente toda la duración de la combustión de la mezcla de combustible y comburente.
8.- Dispositivo de proyección térmica para la realización de recubrimientos de piezas y/o substratos, que comprende: al menos una cámara de combustión (1), dotada de al menos una entrada (2) de combustible, de al menos una entrada (3) de comburente y de al menos una salida (4) para la salida de gases de combustión, en forma de un flujo de gas caliente, desde dicha cámara de combustión hacia una pieza y/o substrato; al menos una entrada (5) para la inyección de un material de recubrimiento, de manera que dicho material de recubrimiento se mezcle con el flujo de gas caliente, aguas abajo con respecto a la cámara de combustión; caracterizado porque además comprende una parte (100) de generación de gas parcialmente ionizado que comprende un generador (β, 7) de arco eléctrico y un sistema de conducción de gas plasmágeno "" (8) desde una entrada (81) de gas plasmágeno hasta una salida (82) de gas parcialmente ionizado a través del generador de arco eléctrico (6, 7), estando el generador
- de arco eléctrico configurado para generar una descarga eléctrica en el gas plasmágeno mediante al menos un arco .- eléctrico, de manera que se obtenga el gas parcialmente ionizado, estando dicha salida (82) de gas parcialmente ionizado en comunicación con la cámara de combustión (1) para la inyección del gas parcialmente ionizado en dicha cámara de combustión (1) .
9.- Dispositivo según la reivindicación 8, caracterizado porque además comprende una entrada (9) de gas aditivo, para la de inyección de un gas aditivo en la cámara de combustión (1) .
10.- Dispositivo según la reivindicación 9, caracterizado porque dicha entrada (9) de gas aditivo comunica con dicha salida (82) de gas parcialmente ionizado, de manera que un gas aditivo introducido por dicha entrada de gas aditivo (9) se mezcle con el gas parcialmente ionizado, antes de llegar a la cámara de combustión para mezclarse con los gases de combustión.
11.- Dispositivo según cualquiera de las reivindicaciones 8-10, caracterizado porque comprende al menos un elemento regulador funcionalmente asociado al generador (6, 7) de arco eléctrico, para permitir la regulación del el, al menos un, arco eléctrico, para ajustar el aporte energético al proceso de combustión en la cámara de combustión.
12.- Dispositivo según cualquiera de las reivindicaciones 8-11, caracterizado porque la salida (4) para la salida de gases de combustión comunica con un conducto (41) para el flujo de gas caliente.
13.- Dispositivo según la reivindicación 12, caracterizado porque dicho conducto (41) para el flujo de gas caliente está formado por un conducto en un cañón (42) de una pistola de proyección.
14.- Dispositivo según cualquiera de las reivindicaciones 12 Y 13, caracterizado porque la entrada (5) para la inyección de un material de recubrimiento en forma de polvo comunica con dicho conducto (41) para el flujo de gas caliente.
15.- Dispositivo según cualquiera de las reivindicaciones 8-14, caracterizado porque dicho generador de arco eléctrico está configurado para generar dicho, al menos un, arco eléctrico con una potencia inferior a 10 KW.
16.- Dispositivo según cualquiera de las reivindicaciones 8-15, caracterizado porque está configurado para mantener una introducción del gas parcialmente ionizado en la cámara de combustión durante sustancialmente toda la duración de una combustión en la cámara de combustión.
PCT/ES2006/000377 2006-06-28 2006-06-28 Método y dispositivo de proyección térmica WO2008000851A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/305,504 US20100034979A1 (en) 2006-06-28 2005-06-28 Thermal spraying method and device
JP2009517296A JP2009541597A (ja) 2006-06-28 2006-06-28 溶射方法および溶射装置
PCT/ES2006/000377 WO2008000851A1 (es) 2006-06-28 2006-06-28 Método y dispositivo de proyección térmica
CN200680055119.2A CN101473057B (zh) 2006-06-28 2006-06-28 热喷涂方法和装置
EP06794052A EP2034037A1 (en) 2006-06-28 2006-06-28 Thermal spraying method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2006/000377 WO2008000851A1 (es) 2006-06-28 2006-06-28 Método y dispositivo de proyección térmica

Publications (1)

Publication Number Publication Date
WO2008000851A1 true WO2008000851A1 (es) 2008-01-03

Family

ID=37698095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000377 WO2008000851A1 (es) 2006-06-28 2006-06-28 Método y dispositivo de proyección térmica

Country Status (5)

Country Link
US (1) US20100034979A1 (es)
EP (1) EP2034037A1 (es)
JP (1) JP2009541597A (es)
CN (1) CN101473057B (es)
WO (1) WO2008000851A1 (es)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009010497A1 (de) * 2008-12-19 2010-08-05 J-Fiber Gmbh Mehrdüsiger rohrförmiger Plasma-Abscheidebrenner zur Herstellung von Vorformen als Halbzeuge für optische Fasern
RU2536818C2 (ru) * 2009-02-05 2014-12-27 Зульцер Метко Аг Установка плазменного нанесения покрытий и способ покрытия или обработки поверхности подложки
KR20120036817A (ko) * 2009-05-01 2012-04-18 더 리젠츠 오브 더 유니버시티 오브 미시건 인-시투 플라즈마/레이저 하이브리드 장치 및 방법
JP2012193431A (ja) * 2011-03-17 2012-10-11 Hiroyuki Shimada プラズマ溶射装置
EP2757174A1 (de) * 2013-01-22 2014-07-23 Siemens Aktiengesellschaft Geregelte thermische Beschichtung
EP2757173A1 (de) * 2013-01-22 2014-07-23 Siemens Aktiengesellschaft Geregelte thermische Beschichtung
JP2017008394A (ja) * 2015-06-24 2017-01-12 有限会社エスエスシー 低温溶射用hvaf溶射装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2714563A (en) 1952-03-07 1955-08-02 Union Carbide & Carbon Corp Method and apparatus utilizing detonation waves for spraying and other purposes
EP0361710A1 (en) * 1988-09-20 1990-04-04 Plasma Technik Ag High-velocity flame spray apparatus
US5135166A (en) 1991-05-08 1992-08-04 Plasma-Technik Ag High-velocity thermal spray apparatus
US5302414A (en) 1990-05-19 1994-04-12 Anatoly Nikiforovich Papyrin Gas-dynamic spraying method for applying a coating
US5330798A (en) 1992-12-09 1994-07-19 Browning Thermal Systems, Inc. Thermal spray method and apparatus for optimizing flame jet temperature
US5372857A (en) 1992-12-17 1994-12-13 Browning; James A. Method of high intensity steam cooling of air-cooled flame spray apparatus
WO1997036692A1 (en) * 1996-03-29 1997-10-09 Metalspray, U.S.A., Inc. Thermal spray systems
WO1998034440A1 (en) * 1997-02-04 1998-08-06 State Of Israel Atomic Energy Commission, Soreq Nuclear Research Center Thermal spray coating applicator element and apparatus for using same
US6003788A (en) 1998-05-14 1999-12-21 Tafa Incorporated Thermal spray gun with improved thermal efficiency and nozzle/barrel wear resistance
US6517010B1 (en) 1997-09-11 2003-02-11 Aerostar Coating, S.L. System for injecting gas into a detonation projection gun
US6986471B1 (en) 2002-01-08 2006-01-17 Flame Spray Industries, Inc. Rotary plasma spray method and apparatus for applying a coating utilizing particle kinetics

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416421A (en) * 1980-10-09 1983-11-22 Browning Engineering Corporation Highly concentrated supersonic liquified material flame spray method and apparatus
JP2929133B2 (ja) * 1990-08-24 1999-08-03 島津工業有限会社 プラズマ炎噴霧方法及び装置
US5120582A (en) * 1991-01-16 1992-06-09 Browning James A Maximum combustion energy conversion air fuel internal burner
US5233153A (en) * 1992-01-10 1993-08-03 Edo Corporation Method of plasma spraying of polymer compositions onto a target surface
US5408066A (en) * 1993-10-13 1995-04-18 Trapani; Richard D. Powder injection apparatus for a plasma spray gun
DE19726764A1 (de) * 1997-06-24 1999-01-07 Dietmar Dr Ing Wuensche Verfahren und Anlage zum thermischen Spritzen
JP3918379B2 (ja) * 1999-10-20 2007-05-23 トヨタ自動車株式会社 溶射方法、溶射装置及び粉末通路装置
JP3612568B2 (ja) * 2001-10-09 2005-01-19 独立行政法人物質・材料研究機構 Hvof溶射ガンによる金属皮膜形成方法と溶射装置
CN1496763A (zh) * 2002-10-11 2004-05-19 不二见株式会社 高速火焰喷涂枪和使用该喷涂枪的喷涂方法
JP4626945B2 (ja) * 2004-07-06 2011-02-09 第一高周波工業株式会社 サーメット溶射皮膜形成部材およびその製造方法
JP2006131999A (ja) * 2004-10-29 2006-05-25 United Technol Corp <Utc> マイクロプラズマ溶射を用いたワークピースを修復する方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2714563A (en) 1952-03-07 1955-08-02 Union Carbide & Carbon Corp Method and apparatus utilizing detonation waves for spraying and other purposes
EP0361710A1 (en) * 1988-09-20 1990-04-04 Plasma Technik Ag High-velocity flame spray apparatus
US5019686A (en) 1988-09-20 1991-05-28 Alloy Metals, Inc. High-velocity flame spray apparatus and method of forming materials
US5302414B1 (en) 1990-05-19 1997-02-25 Anatoly N Papyrin Gas-dynamic spraying method for applying a coating
US5302414A (en) 1990-05-19 1994-04-12 Anatoly Nikiforovich Papyrin Gas-dynamic spraying method for applying a coating
US5135166A (en) 1991-05-08 1992-08-04 Plasma-Technik Ag High-velocity thermal spray apparatus
US5330798A (en) 1992-12-09 1994-07-19 Browning Thermal Systems, Inc. Thermal spray method and apparatus for optimizing flame jet temperature
US5372857A (en) 1992-12-17 1994-12-13 Browning; James A. Method of high intensity steam cooling of air-cooled flame spray apparatus
WO1997036692A1 (en) * 1996-03-29 1997-10-09 Metalspray, U.S.A., Inc. Thermal spray systems
US5932293A (en) 1996-03-29 1999-08-03 Metalspray U.S.A., Inc. Thermal spray systems
WO1998034440A1 (en) * 1997-02-04 1998-08-06 State Of Israel Atomic Energy Commission, Soreq Nuclear Research Center Thermal spray coating applicator element and apparatus for using same
US6517010B1 (en) 1997-09-11 2003-02-11 Aerostar Coating, S.L. System for injecting gas into a detonation projection gun
US6003788A (en) 1998-05-14 1999-12-21 Tafa Incorporated Thermal spray gun with improved thermal efficiency and nozzle/barrel wear resistance
US6986471B1 (en) 2002-01-08 2006-01-17 Flame Spray Industries, Inc. Rotary plasma spray method and apparatus for applying a coating utilizing particle kinetics

Also Published As

Publication number Publication date
JP2009541597A (ja) 2009-11-26
CN101473057A (zh) 2009-07-01
CN101473057B (zh) 2012-01-11
EP2034037A1 (en) 2009-03-11
US20100034979A1 (en) 2010-02-11

Similar Documents

Publication Publication Date Title
WO2008000851A1 (es) Método y dispositivo de proyección térmica
US7608797B2 (en) High velocity thermal spray apparatus
ES2327955T3 (es) Procedimiento hibrido de recubrimiento por plasma y pulverizacion en frio y aparato.
JP5161241B2 (ja) プラズマスプレー装置および方法
KR950014072B1 (ko) 재료형성을 위한 열 분사재의 고속 용사장치
RU2670600C1 (ru) Зажигание пламени электроположительного металла путем перевода активного газа в состояние плазмы
KR20060113707A (ko) 용사 코팅 장치
US20070187372A1 (en) High enthalpy low power plasma reformer
WO2005114055A2 (en) Combustion apparatus for high velocity thermal spraying
EP2791381B1 (en) Reactive gas shroud or flame sheath for suspension plasma spray processes
JPH10505706A (ja) 高速、高圧プラズマ銃
CS210354B1 (en) Method of precessing the materials in the plasma environment
CA2624466A1 (en) Flame spraying process and apparatus
JPS60189199A (ja) 電弧式のプラズマトーチ
ES2452548T3 (es) Tobera para una pistola pulverizadora térmica y método de pulverización térmica
KR100908436B1 (ko) 브라운 가스를 이용한 용사 장치 및 방법, 그리고 이를이용한 콘크리트 표면의 용사코팅 방법
JP5659343B2 (ja) パルスデトネーション溶射装置及び溶射方法
US20100215864A1 (en) Method of high intensity cooling of permeable burner block of a flame spray apparatus
ES2939690T3 (es) Dispositivo inyector y procedimiento para insuflar materiales sólidos en una unidad metalúrgica
ES2372877T3 (es) Antorcha para pulverización térmica de recubrimientos superficiales, y recubrimientos así obtenidos.
JP3524871B2 (ja) 物質を形成する高速熱スプレー装置及びこのスプレー装置によりコーティングまたは塊状物質を形成する方法
JPH0670407B2 (ja) プラズマジェット生成法とプラズマ発生器
JP2929133B2 (ja) プラズマ炎噴霧方法及び装置
JP2002336744A (ja) 物質を形成する高速熱スプレー装置及びこのスプレー装置によりコーティングまたは塊状物質を形成する方法
JP2005146390A (ja) 水酸素ガス溶射装置、及びその溶射方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680055119.2

Country of ref document: CN

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06794052

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009517296

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006794052

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12305504

Country of ref document: US