WO2007145310A1 - 石灰焼成装置のコーチング防止剤及びコーチング防止方法 - Google Patents

石灰焼成装置のコーチング防止剤及びコーチング防止方法 Download PDF

Info

Publication number
WO2007145310A1
WO2007145310A1 PCT/JP2007/062092 JP2007062092W WO2007145310A1 WO 2007145310 A1 WO2007145310 A1 WO 2007145310A1 JP 2007062092 W JP2007062092 W JP 2007062092W WO 2007145310 A1 WO2007145310 A1 WO 2007145310A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
lime
magnesium
baking apparatus
magnesium compound
Prior art date
Application number
PCT/JP2007/062092
Other languages
English (en)
French (fr)
Inventor
Katsunari Gogami
Tatsuya Nakajima
Original Assignee
Taihokohzai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taihokohzai Co., Ltd. filed Critical Taihokohzai Co., Ltd.
Priority to JP2008521265A priority Critical patent/JPWO2007145310A1/ja
Publication of WO2007145310A1 publication Critical patent/WO2007145310A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/02Lime
    • C04B2/04Slaking
    • C04B2/06Slaking with addition of substances, e.g. hydrophobic agents ; Slaking in the presence of other compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/10Preheating, burning calcining or cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/40Production or processing of lime, e.g. limestone regeneration of lime in pulp and sugar mills

Definitions

  • the present invention relates to an agent for preventing coating that occurs in a lime calciner. More specifically, the present invention relates to sodium (Na), potassium (K), and phosphorus ( P), sulfur (S), and lime coating due to low melting point ash in heavy oil, which is a fuel for heating, high temperature coating due to contact with heavy oil flame, and moreover, calcined calcium oxide ( CaO) is converted to calcium carbonate again in an excess carbon dioxide (CO) atmosphere.
  • Na sodium
  • K potassium
  • P phosphorus
  • S sulfur
  • CaO calcined calcium oxide
  • Anti-coaching agent that suppresses the overall coating, such as coaching, and has the ability to prevent chemical spalling of the refractory bricks placed on the inner wall of the lime baking equipment, and the prevention of coaching in the lime baking equipment using the same Regarding the method.
  • Kiln-type lime calcining equipment has been known for some time, and in particular, raw materials (dehydrated lime mud and dry lime fine powder) are charged from the top, and the inside of the kiln with a heavy oil burner from the bottom up to 1200-1450 °
  • An inclined rotary kiln that discharges the product (baked lime) from below while being heated at high temperature with C and dried to fired (granulated) is widely used in kraft pulp manufacturing plants and the like.
  • the kraft pulp manufacturing process consists of the recovery and circulation of all chemical products, and if there is a defect in part of the process and the operation stops, the entire manufacturing process Has a great impact on
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-255072
  • the method of reducing the water content of the supplied lime mud is improved by adopting a continuous precoat as a dehydrator and adding a dehydrating aid.
  • the dehydration performance has almost reached its limit, and reducing the residual alkali amount has a limit because it causes an increase in the amount of wastewater besides increasing the number of washings.
  • use of green liquor or acid / green liquor sodium carbonate / sodium sulfate mixed solution
  • the peeling work by the mechanical removal method is effective for shortening the time, but it causes damage to the brick surface of the lime baking apparatus, and therefore promotes subsequent coaching.
  • the target calcined lime (acid calcium) cannot be produced, and the cost of spraying chemicals becomes excessive. As a result, it was not effective for industry and operation.
  • the applicant of the present invention is concerned with the calcination of stone ash by using a spherical silica compound and an anti-coating agent in which a predetermined amount of Na or K is stably dispersed in water for the above-mentioned blocking of the coating.
  • a method for preventing the coaching of the apparatus has been proposed in Japanese Patent Application Laid-Open No. 2003-261363, but a powerful method is effective for a fluidized bed type lime calciner, but it is widely used in a tilted rotary lime calciner. Proved not necessarily effective.
  • the present invention has been made in view of the above-described problems of the prior art, and the object of the present invention is to provide a lime baking apparatus that can prevent coaching simply, efficiently, and at low cost.
  • An object of the present invention is to provide a coating preventing agent and a coating preventing method for a lime baking apparatus using the same.
  • the anti-coating agent for the lime baking apparatus of the present invention is characterized by containing a magnesium compound having a particle size of 0.1 to 30 ⁇ m.
  • the magnesium compound is at least one compound selected from the group consisting of magnesium hydroxide, magnesium carbonate and magnesium oxide power. It is characterized by being. Another preferred embodiment is characterized by further containing water and Z or oil, wherein the magnesium compound is contained in the form of an aqueous composition, oZw type emulsion, wZo type emulsion or oily composition.
  • Still another preferred embodiment of the anti-coating agent of the lime baking apparatus of the present invention is characterized in that the magnesium compound is contained in a proportion of 20 to 60% in terms of MgO.
  • the method for preventing coating of a lime baking apparatus of the present invention is characterized in that the operation of the lime baking apparatus is performed while intermittently charging the coating inhibitor as described above into a baking furnace.
  • a preferred embodiment of the method for preventing coating of a lime baking apparatus according to the present invention is that the lime raw material for baking is subjected to an absolutely dry processing amount of 0.1 to MgO in terms of the amount of MgO per It: It is characterized in that it is charged uniformly into the baking furnace within the range of minutes Z days.
  • FIG. 1 is a conceptual diagram showing a concept of adhesion of a calcium carbonate coating by re-carbonization.
  • FIG. 2 An arrangement view showing an arrangement position of the kiln type lime baking apparatus in the kraft pulp manufacturing process.
  • FIG. 3 is an explanatory diagram showing the coaching phenomenon (occurrence location), problems and related matters.
  • FIG. 4 is a schematic view of a test apparatus used for a strength reduction test of a coating.
  • FIG. 5 is a schematic view of a test apparatus used in the coaching growth suppression test.
  • FIG. 6 is an explanatory view showing a method for injecting a coating inhibitor.
  • % for the filling amount, the blending amount, the concentration, etc. represents a mass percentage unless otherwise specified.
  • the kiln type firing device which is a typical example of the lime firing device, is applied to both dehydrated lime mud and dried lime fine powder.
  • CaCO calcium carbonate
  • the thermal decomposition (calcination) temperature of pure CaCO is 898 ° C (dissociation pressure is 0. IMPa).
  • lime mud containing CaC 2 O contains various impurities, so it decomposes at a slightly lower temperature.
  • the actual decomposition temperature of lime mud containing CaC 2 O is around 820 ° C.
  • the fuel used to heat a powerful firing device is generally heavy oil, and the temperature near the flame reaches 1200 to 1450 ° C.
  • the melting point of CaO which is a calcined product, is extremely high at 2570 ° C, and it does not stick to (viscosify) itself due to the melting point to produce a cured product, ie, a coated product.
  • the cause of coaching occurs at temperatures below 800 ° C under curing with low melting point components such as Na, K and P contained in lime mud and sulfur components, and excessive CO (carbon dioxide) gas atmosphere
  • Fig. 1 shows the concept of calcium carbonate coating by recarbonation.
  • lime mud contains Mg and forms a complex salt during the firing process, so it does not exhibit the function of preventing the re-carbonization phenomenon of CaO.
  • Fig. 2 shows the location of the actual kiln-type lime calciner in the kraft pulp production line, along with related equipment.
  • the acid supplied during the production of chip cooking chemicals (a mixture of sodium hydroxide and sodium sulfate, which is customarily called white liquor) is generally used in caustic equipment. Calcium is precipitated and separated as calcium carbonate, and after washing and dewatering, it is used as a wet cake (CaCO) for calcination.
  • CaCO wet cake
  • This wet cake is the viscosity of the wet cake (lime mud) during firing in the rotary kiln 6. It is mixed with dry lime 1 used for the purpose of adjusting the properties while being added by the paddle mixer 12, and semi-dried by the flash dryer 2 with the flue gas (about 50-300 ° C) generated from the rotary kiln 6 and fed. Sent to bin 13.
  • the dust scattered in this process is collected by the cyclone dust collector 3 and returned to the paddle mixer 12.
  • the semi-dried lime mud adjusted in the feed bin 13 is transported by the screw feeder 14 and supplied to the rotary kiln 6.
  • the gas temperature in the vicinity of the heating burner 7 installed on the outlet side of the rotary kiln 6 is maintained at 1200 to 1450 ° C, and the supplied semi-dried lime mud is baked while being granulated into a spherical shape.
  • the rotary kiln 6 is inclined several degrees with the heating burner 7 side at a low position, and the fired product falls by its own weight from the outlet of the rotary kiln 6 (heating burner 7 side) and is cooled by the lime cooler 8 to produce a product ( Lime pellets) and stored in lime bottle 9.
  • the lime powder that has been collected by the lime bottle 9 and collected is collected by the bag filter 10.
  • the final combustion exhaust gas is treated with a scrubber 4 or the like, cooled with an exhaust gas cooling device 5 and released into the atmosphere.
  • Figure 3 shows (location), problems and related matters.
  • the actual location of coaching is indicated by reference numeral 11 (in the rotary kiln 6) shown in FIG.
  • the present invention has been made to prevent the above-described coaching, particularly in the kiln-type calcination apparatus, and by using the magnesium compound having a predetermined particle size as described above, the lime mud is used.
  • the main point is to make the calcium compound, which has adhesiveness due to the trace amount of alkali metal and carbon dioxide, exist as non-adhesive acid calcium.
  • a typical magnesium compound ie, magnesium hydroxide
  • lime mud mud
  • calcined lime acid calcium
  • the present inventor has found that the calcium carbonate layer temporarily added to lime mud or high-temperature gas is converted into a calcium carbonate layer formed by re-carbonization from the decomposition temperature of calcium carbonate itself. Because it was found that it decomposes in the low temperature range (700-780 ° C) to calcium oxide, and the surface of this calcium oxide is coated with high-melting acid magnesium oxide to prevent re-carbonization. is there.
  • the anti-coating agent of the present invention as described above contains a magnesium compound with a particle size of 0.1 to 30 m. This particle size means the primary particle size in the field of electron microscope.
  • forces such as magnesium hydroxide, magnesium carbonate, magnesium oxide or any mixture thereof, particularly magnesium hydroxide.
  • the particle size of the powerful magnesium compound is 0.1 to 30 ⁇ m, preferably 0.5 to 10 ⁇ m.
  • the anti-coating agent of the present invention only needs to contain the above-described magnesium compound, and only the magnesium compound can be combined, but it can be combined with other materials, Specifically, by adding about 3 to 12% of a surfactant, a coating inhibitor composition dispersed, suspended or dissolved in at least one of water and oil can be obtained.
  • the above magnesium compound is dispersed or dissolved in water, an aqueous composition, an oily composition dispersed or dissolved in oil, or dispersed or suspended in water and oil.
  • Oil-in-water type (OZW type) emulsion compositions and water-in-oil type (WZO type) emulsion compositions are examples of Oil-in-water type (OZW type) emulsion compositions and water-in-oil type (WZO type) emulsion compositions.
  • the concentration of the magnesium compound in the anti-coating agent of the present invention can be appropriately changed depending on the use situation, but the target equipment is intended for drying and firing, and the additive equipment for use is used. It is desirable to contain 20 to 60% in terms of MgO, which is desirable to have a high concentration.
  • MgO'xH 2 O particles which are active ingredients, come into contact with each other and agglomerate
  • enlarged particles may be formed, and the coating prevention efficiency may be reduced.
  • the concentration is less than 20%, the amount of water and oil brought in may increase, or the active ingredient may become too small to obtain the desired effect.
  • the primary particle size of the magnesium compound is 0.1-30 / ⁇ ⁇ , so that it can be easily added in a large amount to the kiln in a short time.
  • a magnesium oxide coating layer it is possible to prevent the calcium carbonate granulated product from adhering to the inner wall of the kiln as a fired product.
  • the present invention effectively prevents the coating of lime by the single effect or the combined effect of these actions.
  • the primary particle diameter of the magnesium compound particles is 0.1 to 30 / ⁇ ⁇ as described above, and if the particle diameter is larger than the upper limit, a sufficient anticoating effect cannot be obtained.
  • the described force Magnesium compounds with a large particle size, for example several hundred meters, are too large for the particle size of the calcined acid-calcium granulate to be almost impossible to coat the surface, It becomes impossible to change the re-carbonated calcium to acid calcium or prevent re-carbonation.
  • the particle size is less than 0.1 ⁇ m, it is difficult to produce and store as a high concentration anti-coating agent with extremely high particle cohesiveness, which is industrially and costly. Absent.
  • the method for preventing coating according to the present invention operates the lime baking apparatus while intermittently charging the coating inhibitor according to the present invention into a kiln.
  • the charging method is not particularly limited, but the coating inhibitor is directly mixed with the lime mud in the lime baking furnace directly.
  • a method of spraying in hot gas in a lime kiln while diluting with water or oil is recommended.
  • the coating inhibitor may be sprayed in advance on the lime mud before being charged into the firing furnace. Furthermore, before the coating is generated in the firing furnace, it is possible to introduce a coating inhibitor into the firing furnace, thereby suppressing the generation of the coating.
  • the dry processing amount of the lime raw material for firing 0.1 to MgO equivalent amount per It: LOkg of the above coating inhibitor is applied to the firing furnace in a short period of 10 minutes to 60 minutes per day.
  • This addition method which is preferable to add a large amount uniformly and intermittently, can dramatically improve the effect of preventing coating.
  • the input amount in terms of MgO is less than 0.1 kg, it may not be possible to secure an amount that adheres to the lime surface and avoids re-carbonization. If it exceeds 10 kg, it does not substantially contribute to prevention of coating. An excessive magnesium compound may be added, which is not preferable in terms of cost. If the charging time is less than 10 minutes, excessive magnesium compounds that do not substantially contribute to the prevention of coaching may be charged.
  • the lime concentration in the fired product may be reduced.
  • it exceeds 60 minutes it may not be possible to secure an amount that adheres to the lime surface and avoids re-carbonation.
  • a protective layer can be formed on the surface of the refractory brick constituting the inner wall of the firing furnace to prevent chemical spalling due to alkali or the like. is there.
  • Examples 1 to 9, Comparative Examples 1 to 3 The formulation shown in Table 1 below was adopted to prepare the anti-coating agent for each example. That is, for an aqueous composition-based anti-coating agent, a predetermined amount of water and a surfactant are weighed in a container, and a predetermined amount of magnesium hydroxide is stirred while stirring with a homomixer. A slurry was obtained. Next, the polyphosphate generally used as a thinning agent is added to this slurry and mixed with stirring, and the coating inhibitors of Examples 1-3 and Comparative Examples 1-3, which are uniform slurries, are mixed. Obtained.
  • the OZW type emulsion-based anti-coating agent As for the OZW type emulsion-based anti-coating agent, a predetermined amount of water and a surfactant are weighed, and a predetermined amount of magnesium hydroxide is added while stirring with a homomixer. It was. Next, oil was added to this slurry and mixed with stirring to obtain a coating inhibitor for Examples 4 and 5 which was a uniform oil-in-water emulsion.
  • the anti-coating agent of the oil-based composition system a predetermined amount of oil and a surfactant are weighed, and a predetermined amount of magnesium hydroxide is added while stirring with a homomixer to obtain an almost uniform slurry. As a result, the anticoating agents of Examples 8 and 9 were obtained.
  • the obtained anticoating agent of each example was used for the following performance evaluation test.
  • Table 1 shows the average values of six tests.
  • the anticoating agent containing magnesium particles in the range of ⁇ 0.1 to 30 ⁇ m in Examples 1 to 9 showed a sufficient reduction effect of crushing strength, particularly ⁇ ⁇ . 1 to 10 / It has been found that the anti-coating agents of Examples 1, 3, 4, 6 and 8 using magnesium particles in the zm range show even better effects.
  • the coating inhibitor formed in the comparative example 1 containing magnesium particles with a diameter of less than ⁇ ⁇ . 1 ⁇ m could not form a coating on the brick, and conversely the ⁇ in the comparative examples 2 and 3.
  • the anti-coaching agent containing magnesium particles of 50 m or more was unable to exert the desired effect due to the formation of sand and fluid scattering.
  • the coating inhibitor was added and added by the high concentration Z short time injection method shown in FIG.
  • FIG. 6 a chemical container with a capacity of It is used as the anti-coating agent storage tank 21, and this storage tank 21 is equipped with an air vent pipe 22, a stop valve 23, and a liquid level gauge 24.
  • the anti-coating agent is a dispersion of magnesium hydroxide and magnesium
  • a strainer 25 with a nominal diameter of 25AX 40 mesh is installed in consideration of the inclusion of dust and the like, and a predetermined amount is added by a metering pump 26.
  • the injection time was managed by starting and stopping the metering pump motor 27 with a timer incorporated in the control panel 28.
  • Reference numeral 29 is a pressure indicator
  • 30 is a paddle mixer (existing). In paddle mixer 30, lime cake, dry coal mud, anti-coating agent, water in Example 3 and oil in Example 6 are mixed uniformly and sent to screw feeder 14 as required. Table 2 shows the results obtained.
  • the present invention has been described in detail with some examples, the present invention is not limited to these examples, and various modifications are possible within the scope of the gist of the present invention.
  • the method for preparing the coating inhibitor such as Example 1 is not limited to the above preparation procedure.
  • a coating preventing agent for a lime baking apparatus that can prevent coating easily, efficiently, and at low cost, and a lime baking apparatus using the same.
  • a method for preventing coaching can be provided.
  • the generation of strong and huge coatings is prevented, and the blockage caused by falling coatings is also improved, so energy saving, environmental measures, and safe operation are included. Long-term stable operation can be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

 コーチング防止剤は、粒径0.1~30μmのマグネシウム化合物を含有する。マグネシウム化合物は、水酸化マグネシウム、炭酸マグネシウム及び酸化マグネシウム等である。マグネシウム化合物が水や油に分散、懸濁又は溶解している。  石灰焼成装置のコーチング防止方法は、このようなコーチング防止剤を焼成炉に間欠投入しながら、石灰焼成装置の運転を行う。焼成用石灰原料の絶乾処理量1t当たりMgO換算量で0.1~10kgの上記コーチング防止剤を、10分~60分/日の範囲で均一に投入する。

Description

石灰焼成装置のコーチング防止剤及びコーチング防止方法 技術分野
[0001] 本発明は、石灰焼成装置に生ずるコーチングを防止する薬剤に係り、更に詳細に は、石灰焼成装置の運転に際し、石灰泥に含まれるナトリウム (Na)、カリウム (K)、リ ン (P)及び硫黄 (S)や加熱用燃料である重油中の低融点灰分に起因する石灰のコ 一チングゃ、重油火炎の接触による高温でのコーチング、更にはー且焼成された酸 化カルシウム(CaO)が過剰の炭酸ガス (CO )雰囲気中で再び炭酸カルシウムに変
2
化する際のコーチングなどのコーチング全般を抑制し、石灰焼成装置内壁に配され る耐火煉瓦の化学的スポーリングの防止性能をも併有するコーチング防止剤、及び これを用いた石灰焼成装置のコーチング防止方法に関する。
背景技術
[0002] 従前より、キルン方式の石灰焼成装置が知られており、特に、原料 (脱水石灰泥や 乾燥石灰微粉)を上方から装入し、下方から重油バーナーでキルン内を最高 1200 〜1450°Cで高温加熱し、乾燥〜焼成 (造粒)させながら製品(焼成石灰)を下方から 排出する傾斜型回転式キルンが、クラフトパルプ製造工場などで汎用されている。
[0003] 通常、クラフトパルプ製造工場にぉ 、ては、木材及びこれを破砕したチップをアル カリ薬品(白液)と蒸気で蒸解し濾過してパルプと蒸解廃液に分離するが、この蒸解 廃液をエバポレーターで約 70%固形分まで濃縮し、アルカリ回収ボイラと称される燃 焼炉(回収ボイラ)で還元燃焼して、溶融アルカリ(炭酸ナトリウムと硫ィ匕ナトリウムの混 合塩)物 (スメルト)を溶解 (緑液)した後に苛性ィ匕装置に送り、生石灰を添加して苛性 ソーダと硫ィ匕ナトリウムのアルカリ薬品(白液)として循環している。
また、苛性ィ匕装置での反応の結果、炭酸カルシウムが沈殿物 (石灰泥)として分離 される力 これを水洗して可能な範囲でアルカリを低減させてから、上述のような石灰 焼成装置にて酸化カルシウム (生石灰)にして再び苛性ィ匕装置に供している。
[0004] このように、クラフトパルプの製造工程は、全ての化学品の回収と循環により成り立 つており、その工程の一部にでも不具合があって運転が休止すると、製造工程全体 に多大な影響を与える。
特に、粉体を高温で焼成する工程でコーチングゃ閉塞を生ずると、上述のパルプ 製造工程等の循環型製造プロセスでは、プロセス全体に多大な影響を受けるため、 従来からその安定な運転を目的として種々の改善が試みられて 、る。
[0005] 具体的には、供給石灰泥の水分量や残留アルカリ量の低減や、オーバーヒートを 回避すベぐ傾斜型回転式キルンでは、火炎の長さを定期的に変更したり、キルン内 の温度を変えたりして局部過熱を防止する方法が採られている(例えば、特許文献 1 参照)。
また、強固で巨大なコーチング物や閉塞物等については、削岩機等を用いた機械 的除去により、できる限り短時間で除去することも行われており、現状では複数の石 灰焼成装置を交互に運用することで対応して 、る。
特許文献 1:特開 2001— 255072号公報
[0006] 更に、酸ィ匕マグネシウム粉体のような高融点で比較的結晶化し難 、成分を石炭灰 に混合し、高温ガス中に散布する方法も試みられて!/、る。
[0007] し力しながら、かかる従来のコーチング防止法のうち、供給石灰泥の水分量を低減 する手法にあっては、脱水機としての連続プレコートの採用及び脱水助剤の添加等 の改善により脱水性能がほぼ限界に達しており、残留アルカリ量を低減するには水 洗回数を増加する以外になぐ廃水量の増加を招くためにこれも限界がある。また、 クラフトパルプ製造工程の回収ボイラから排出されるスメルトの溶解液である緑液又 は酸ィ匕緑液 (炭酸ナトリウム、硫ィ匕ナトリウム混合液)を使用するため、アルカリを添カロ することとなり、コーチング抑制の観点からは逆の運用となってしまう。
[0008] 一方、機械的除去方法による剥離作業は時間の短縮には有効であるが、石灰焼成 装置の煉瓦面の損傷を招くため、その後のコーチングを促進させることとなっていた 更に、酸ィ匕マグネシウム粉体等を石炭灰に混合し、高温ガス中に散布する方法に ついては、目的とする焼成石灰物 (酸ィ匕カルシウム)が生成できな力つたり、散布する 薬品費用が過大になったりして産業、操業上有効ではな力つた。
[0009] このように、コーチングゃ閉塞を基本的に防止できる方法が実質的に提案されてい ないため、力かるコーチングゃ閉塞は、依然として連続運転及び循環型製造プロセ ス全体に多大な悪影響を与えるものであった。例えば、コーチングゃ閉塞が生ずると 、製造能力の低下及び重油原単位の上昇を招く。
[0010] また、上述のように交互に運用するための複数の石灰焼成装置を必要とし、コーチ ング物や閉塞物の除去作業をも必要とするので、費用及び手間がかかり、しかもコー チング物ゃ閉塞物の除去作業は危険を伴う。
更に、焼成装置内に多量に残存するコーチングゃ閉塞物は酸ィ匕カルシウム製造歩 留りを低下させることから、石灰泥の過剰供給を招き、石灰泥の熱分解反応式からも 容易に推察できるように、地球温暖化ガスのひとつでもある二酸ィヒ炭素の排出量を 必要以上に増加させることにもなつていた。
[0011] なお、本出願人は、上述のようなコーチングゃ閉塞に対し、球状シリカ化合物と Na や Kの所定量を水に安定分散させたコーチング防止剤を用いることを骨子とする石 灰焼成装置のコーチング防止運転方法を特開 2003— 261363号公報にて提案し ているが、力かる方法は流動層型石灰焼成装置には有効なものの、汎用されている 傾斜型回転式石灰焼成キルンには必ずしも有効ではないことが判明した。
発明の開示
[0012] 本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目 的とするところは、コーチングを簡易、効率的且つ低コストで防止し得る石灰焼成装 置のコーチング防止剤、及びこれを用いた石灰焼成装置のコーチング防止方法を提 供することにある。
[0013] 本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、所定粒径のマグネ シゥム化合物を用いることなどにより、上記目的が達成できることを見出し、本発明を 完成するに至った。
[0014] 即ち、本発明の石灰焼成装置のコーチング防止剤は、粒径 0. 1〜30 μ mのマグ ネシゥム化合物を含有することを特徴とする。
[0015] また、本発明の石灰焼成装置のコーチング防止剤の好適形態は、上記マグネシゥ ム化合物が、水酸化マグネシウム、炭酸マグネシウム及び酸ィ匕マグネシウム力 成る 群より選ばれた少なくとも 1種の化合物であることを特徴とする。 他の好適形態は、更に水及び Z又は油を含有し、上記マグネシウム化合物が水性 組成物、 oZw型エマルシヨン、 wZo型エマルシヨン又は油性組成物の形式で含 まれて 、ることを特徴とする。
[0016] 更に、本発明の石灰焼成装置のコーチング防止剤の更に他の好適形態は、上記 マグネシウム化合物を MgO換算量で 20〜60%の割合で含有することを特徴とする
[0017] 一方、本発明の石灰焼成装置のコーチング防止方法は、上述の如きコーチング防 止剤を焼成炉に間欠投入しながら、石灰焼成装置の運転を行うことを特徴とする。
[0018] 本発明の石灰焼成装置のコーチング防止方法の好適形態は、焼成用石灰原料の 絶乾処理量 It当たり MgO換算量で 0. 1〜: LOkgの上記コーチング防止剤を、 10分 〜60分 Z日の範囲で、上記焼成炉に対して均一に投入することを特徴とする。 図面の簡単な説明
[0019] [図 1]再炭酸ィ匕による炭酸カルシウム被膜の付着概念を示す概念図である。
[図 2]クラフト法パルプ製造工程におけるキルン型石灰焼成装置の配設位置を示す 配置図である。
[図 3]コーチング現象 (発生場所)と問題点及び関連事項を示す説明図である。
[図 4]コーチング物の強度低下試験に用いた試験装置の概略図である。
[図 5]コーチング成長抑制試験に用いた試験装置の概略図である。
[図 6]コーチング防止剤の注入方法を示す説明図である。
発明を実施するための最良の形態
[0020] 以下、本発明のコーチング防止剤及びコーチング防止方法につき詳細に説明する
。なお、本明細書において、充填量、配合量及び濃度などについての「%」は特記し な ヽ限り質量百分率を表すものとする。
[0021] まず、本発明の前提として、石灰焼成装置における石灰の焼成やコーチングの発 生につき説明する。
上述のように、石灰焼成装置の代表例であるキルン方式の焼成装置は、脱水石灰 泥、乾燥石灰微粉いずれにも適用される。基本的には、炭酸カルシウム (CaCO )を
3 効率よく熱分解させ、ペレット状(l〜10mm)から塊状(10〜100mm)の酸化カルシ ゥム(CaO)を製造する装置であり、この際の焼成反応は次式(1)で表される。
CaCO (固体)→CaO (固体) + CO (気体)…(1)
3 2
[0022] ここで、純粋な CaCOの熱分解(焼成)温度は、 898°C (解離圧は 0. IMPa)であ
3
る力 実際には種々の不純物を含むためこれより若干低い温度で熱分解する。 CaC Oを含む実際の石灰泥の分解温度は 820°C付近である。
3
力かる焼成装置の加熱に用いられる燃料は一般に重油であり、火炎近辺の温度は 1200〜1450°Cに達する。焼成物である CaOの溶融点は 2570°Cと極めて高ぐこ れ自体が溶融点の関係で粘着 (粘性化)して、硬化物、即ちコーチング物を生成する ことはない。
[0023] しかし、焼成炉に相当するキルンの長さは最大で 100mを超えるものもあり、火炎か ら一番遠いキルン入口での温度は、この場合、室温程度である。
コーチングの原因は、石灰泥に微量含まれる Na、 K及び P等の低融点成分や硫黄 成分による硬化と、過剰の CO (二酸化炭素)ガス雰囲気の下、 800°C以下で起こる
2
CaOの再炭酸ィ匕現象による硬化であることが知られており、コーチングは次の(2)式 で表される反応に起因して発現する。
CaO (固体) + CO (気体)→CaCO (固体)…(2)
2 3
[0024] 通常、かかるコーチング物は、キルンの中央部力 火炎手前迄の間の領域におい て、再炭酸化による付着温度域で生成する。図 1に、再炭酸化による炭酸カルシウム 被膜の付着概念を示す。
なお、石灰泥には Mgが含まれている力 焼成過程で複合塩の形になってしまうた め CaOの再炭酸ィ匕現象を防止する機能を発現することはない。
[0025] 次に、実際に操業されているキルン型石灰焼成装置が、クラフト法パルプの製造ラ インのどのような位置に配設されているかを、関連設備とともに図 2に示す。
同図の関連設備において、一般に苛性ィ匕装置でチップ蒸解薬品 (水酸化ナトリウム と硫ィ匕ナトリウムの混合液であり慣習的に白液と称される)の製造に際し、供給された 酸ィ匕カルシウムは炭酸カルシウムとなって沈降分離され、洗浄脱水後にウエットケー キ(CaCO )として石灰焼成装置に供される。
3
[0026] このウエットケーキは、ロータリキルン 6での焼成時のウエットケーキ(石灰泥)の粘 性を調整する目的で使用される乾燥石灰 1に、パドルミキサー 12で添加されながら 混合され、ロータリキルン 6から発生した燃焼排ガス (約 50〜300°C)によりフラッシュ ドライヤ 2で半乾燥され、フィードビン 13に送られる。
なお、この際に発生する微粉飛散した粉塵はサイクロン集塵器 3で捕集され、パド ルミキサー 12に戻される。
[0027] フィードビン 13で調整された半乾燥石灰泥は、スクリューフィーダ一 14で輸送され ロータリキルン 6に供給される。
ロータリキルン 6の出口側に設置してある加熱バーナー 7付近のガス温度は、 1200 〜1450°Cに保持されており、供給された半乾燥石灰泥を球形に造粒しながら焼成 する。
ロータリキルン 6は加熱バーナー 7側を低位置として数度傾斜しており、焼成物は、 ロータリキルン 6の出口(加熱バーナー 7側)から自重で落下し、石灰クーラー 8で冷 却され、製品 (石灰ペレット)となって石灰ビン 9に貯蔵される。石灰ビン 9で捕集し切 れなカゝつた石灰粉はバグフィルター 10で捕集される。最終燃焼排ガスは、スクラバー 4等で処理され排ガス冷却装置 5で冷却されて力 大気放出される。
[0028] このようなキルン型石灰焼成装置における問題点を明確にすべぐコーチング現象
(発生場所)と問題点及び関連事項を図 3に示す。なお、コーチングの実際の発生場 所は、図 2に示す符号 11 (ロータリキルン 6内)である。
[0029] 本発明は、以上に説明したようなコーチング、特にキルン型石灰焼成装置における コーチングを防止するためなされたものであり、上述の如ぐ所定粒径のマグネシウム 化合物を用いることにより、石灰泥中の微量アルカリ金属と炭酸ガスにより粘着性を 持ったカルシウム化合物を粘着性を持たない酸ィ匕カルシウムとして存在させることを 骨子とするものである。
[0030] 代表的なマグネシウム化合物である水酸ィ匕マグネシウムを例にして詳細に説明す ると、キルンでは石灰泥 (マッド)を焼成して焼成石灰 (酸ィ匕カルシウム)造粒物にする 力 加熱バーナーの不安定な燃焼が起きると、焼成帯の温度が石灰の焼成温度より 低くなり燃焼ガスや石灰泥 (マッド)力 発生する炭酸ガスにより、焼成によって生成し た酸ィ匕カルシウム造粒物の表面では再炭酸ィ匕が起き炭酸カルシウムを生成する(図 1参照)。
[0031] またこの際、加熱用バーナーの燃料に硫黄分を多く含む C重油等を使用すると、燃 焼により発生する硫黄酸ィ匕物によって焼成物の硫酸ィ匕が起き、酸ィ匕カルシウム造粒 物の表面では、硫酸カルシウムが生成したり、上記硫黄酸化物が石灰泥中に含まれ ているアルカリ成分 (Na、 K)と結合して低融点の硫酸ナトリウム等が生成したりする。 そして、バーナーの不安定な燃焼により、焼成石灰が部分的に過剰加熱されて酸 化カルシウムの焼結が起きたりする。
[0032] これらの現象において、石灰泥中のアルカリ成分、特にナトリウムの炭酸化物、硫酸 化物により焼成物の融点が低下 (820°C付近)すると、表面が再炭酸化した焼成石灰 造粒物が高度の粘着性を有する炭酸カルシウムを形成し、生成物はキルン煉瓦壁に 付着し、ダムリングと呼ばれる付着帯をキルン内温度が約 800°C付近で形成して、キ ルンの閉塞を引き起こす。また、付着物の偏析によりキルンの偏重を起こしたり、キル ン内壁のシェルを破損したりしてキルンの回転を不安定にし、連続操業を困難なもの とする。
[0033] これに対し、本発明者は、石灰泥や高温ガス中に一時的に添加した水酸ィ匕マグネ シゥムが、再炭酸ィ匕で生成した炭酸カルシウム層を炭酸カルシウム自体の分解温度 より低 、温度域(700〜780°C)で分解して酸化カルシウムとし、この酸化カルシウム の表面を高融点の酸ィ匕マグネシウムで表面コートして再炭酸ィ匕を防止することを見 出したのである。
このように、酸ィ匕カルシウム造粒物の表面を高融点物である酸ィ匕マグネシウムで表 面コートすることにより、極めて良好なコーチング防止が実現される。
[0034] なお、後述するが、本発明のコーチング防止剤を所定時間に集中的に所定量間欠 添加すれば、マグネシウム化合物の添加総量を低くすることが可能であるため、製造 すべき酸ィ匕カルシウムの割合を低下させな 、と 、う利点もある。
[0035] ところで、コーチングは、セメントキルンでも起こることが知られている。しかしながら 、セメントキルンのコーチングと石灰キルンのコーチングとは、技術的に関連するもの ではないことは当業者の常識である。このことは、これら両キルンが化学的にも温度 的にも著しく異なって 、ることに起因して 、る。 [0036] 次に、本発明のコーチング防止剤について詳細に説明する。
上述の如ぐ本発明のコーチング防止剤は、粒径 0. 1〜30 mのマグネシウムィ匕 合物を含有するものである。なお、この粒径は電子顕微鏡視野での一次粒子径を意 味するものとする。
[0037] ここで、マグネシウム化合物としては、有効成分である MgO'xH Oを発現できる限
2
り特に限定されるものではなぐ水酸化マグネシウム、炭酸マグネシウム、酸化マグネ シゥム又はこれらの任意の混合物を挙げることができる力 特に水酸ィ匕マグネシウム が望ましい。
[0038] また、力かるマグネシウム化合物の粒径は 0. 1〜30 μ mであり、好ましくは 0. 5〜1 0 μ mである。
粒径 (一次粒子径)が 30 μ mを超えると、充分なコーチング防止効果が得られな!/ヽ
[0039] 本発明のコーチング防止剤は、上記のマグネシウム化合物を含有していればよぐ 当該マグネシウム化合物のみ力 構成されて 、てもよ 、が、他の材料と組み合わせる ことが可能であり、典型的には、界面活性剤を 3〜12%程度添加することにより、水 及び油の少なくとも一方に分散、懸濁又は溶解させたコーチング防止剤組成物とす ることがでさる。
力かるコーチング防止剤組成物としては、具体的には、上記マグネシウム化合物を 、水に分散又は溶解させた水性組成物、油に分散又は溶解させた油性組成物、水と 油に分散又は懸濁させた水中油滴型 (OZW型)エマルシヨン組成物及び油中水滴 型 (WZO型)エマルシヨン組成物がある。
本発明では、いずれの組成物形式を採用しても、分散安定性や濡れ性などの性能 を向上させることができ、更には、粉体形状の場合に注意すべき粉塵対策が不要と なる。
[0040] 上記のコーチング防止剤組成物に用いることができる界面活性剤としては、具体的 には、アルキルァリルスルホン酸塩、アルキル硫酸エステル塩、ポリオキシエチレンァ ルキルエーテル酢酸塩、ジアルキルスルフォコハク酸塩、ポリオキシエチレンアルキ ル硫酸エステル塩、ポリオキシエチレンアルキルリン酸エステル塩及びポリカルボン 酸塩などのァ-オン界面活性剤や、ポリオキシエチレンアルキルフエノールエーテル 、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルコールエーテル、ポリ ォキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸ェ ステル、高級脂肪酸グリセリンエステル、ポリオキシエチレンアルキルアミン及びアル キロールアミド等の非イオン界面活性剤を挙げることができる。
[0041] また、本発明のコーチング防止剤における上記マグネシウム化合物の濃度は、使 用状況に応じて適宜変更することができるが、対象設備が乾燥及び焼成を目的にし ており、使用上の添加設備の容量力 高濃度であることが望ましぐ MgO換算量で 2 0〜60%含有されることが好まし 、。
濃度が 60%を超えると、有効成分である MgO'xH Oの粒子同士が接触して凝集
2
し、肥大粒子を形成してしまい、コーチング防止効率が低下することがある。一方、濃 度が 20%未満では、持込水分や油分が多くなつたり、有効成分が少なくなりすぎて 所期の効果が得られな 、ことがある。
[0042] 次に、本発明のコーチング防止剤の作用を、水酸ィ匕マグネシウムを水又は油に安 定分散させた組成物を例に採って説明する。
水酸ィ匕マグネシウムを水又は油に安定分散させることにより、コーチング防止機能 を効率良く発現する一次粒子径 0. 1〜30 /ζ πιを確保し易くなる。このような一次粒子 径 0. 1〜30 mの水酸ィ匕マグネシウムを水又は油に安定分散させた組成物をキル ン内に集中的に添加すると、水分の蒸発又は油分の燃焼に伴って、これらの一部が キルンの炉壁に付着して高融点の滑り性のあるしかも離型性を有するコーチング防 止効率の良い薄い被膜を形成する。これとともに、他の一部は石灰の表面に付着す る力 一次粒子径が 0. 1〜30 mであるため、再炭酸化した石灰表面を再び石灰 に戻してそのまま表面に付着することができ、再度の再炭酸ィ匕を防止して固結性を 低下させることが可能になる。
[0043] また、かかるコーチング防止剤組成物では、マグネシウム化合物の一次粒子径が 0 . 1〜30 /ζ πιであるため、キルン内に対して短時間で多量に添加'投入し易ぐ容易 に酸ィ匕マグネシウム被膜層を形成し、酸ィ匕カルシウム造粒物がキルン内壁へ焼成物 として付着するのを抑制することができる。 本発明は、上記これらの作用の単独乃至複合された効果により石灰のコーチング を有効に防止するのである。
[0044] なお、上記マグネシウム化合物粒子の一次粒子径は上述のように 0. 1〜30 /ζ πιで あり、その上限よりも粒径が大きいものでは充分なコーチング防止効果が得られない ことを説明した力 粒径の大きな、例えば数百 mのマグネシウム化合物では、焼成 した酸ィ匕カルシウム造粒物の粒径に対して大きすぎるためにその表面をコートするこ とが殆ど不可能であり、再炭酸ィ匕したカルシウムを酸ィ匕カルシウムにしたり、再炭酸化 を防止したりすることが不可能になってしまう。また、粒径が 0. 1 μ m未満の場合は、 粒子の凝集性が極めて高ぐ高濃度のコーチング防止剤として製造や保存すること が困難であり、産業的にも費用的にも見合わない。
[0045] 次に、本発明のコーチング防止方法について説明する。
上述のごとぐ本発明のコーチング防止方法は、上記本発明のコーチング防止剤を 焼成炉 (キルン)に間欠投入しながら、石灰焼成装置の運転を行う。
ここで、投入の方法については、特に限定されるものではないが、このコーチング防 止剤を石灰焼成炉内の石灰泥に直接均一に混合するカゝ、より均一に混合したい場 合は適宜に水や油等で希釈しながら石灰焼成炉内の高温ガス中に噴霧する方法が 推奨される。
なお、本発明では、上述のコーチング防止剤を石灰泥に接触させればコーチング の生成を防止できるので、例えば、焼成炉に投入前の石灰泥に上記コーチング防止 剤を予め散布してもよいし、更には、焼成炉内にコーチングが生成する前に、コーチ ング防止剤を焼成炉内に投入し、これによりコーチングの生成を抑制することも可能 である。
[0046] また、本発明においては、上記コーチング防止剤の添加'投入方法を工夫すること により、より少ない使用量でより大きな効果を発揮させることができる。
具体的には、焼成用石灰原料の絶乾処理量 It当たり MgO換算量で 0. 1〜: LOkg の上記コーチング防止剤を、 1日に 10分〜 60分の短時間に焼成炉に対して均一に 間欠多量添加することが好ましぐこの添加方法により、コーチングの防止効果を飛 躍的に向上させることができるのである。 [0047] MgO換算の投入量が 0. 1kg未満では、石灰表面に付着して再炭酸化を回避する 量を確保できないことがあり、 10kgを超えると、コーチング防止に実質的に寄与しな い余剰のマグネシウム化合物を投入してしまうことがあり、コスト的に好ましくない。 また、投入時間が 10分未満では、コーチング防止に実質的に寄与しない余剰のマ グネシゥム化合物を投入してしまうことがある。また、短時間で多量のコーチング防止 剤を添加することになるため、焼成物中の石灰濃度を低下させてしまうことがある。一 方、 60分を超えると、石灰表面に付着して再炭酸化を回避する量を確保できないこ とがある。
[0048] 本発明のコーチング防止剤を連続的に添加しても、上述の作用により、焼成石灰を 多孔質ィ匕して (溶融させない)その強度を低下させることができるが、その場合、多量 のコーチング防止剤を添加しなければコーチングを防止できるほどの強度低下を見 込めず、その使用量が多くなつてしまう。
これに対し、上述のように間欠多量添加すると、上記コーチング防止剤を添加して いる間は強度の充分に低い焼成石灰が層状に付着し、コーチング防止剤を添加して いない間には強度の高い焼成石灰がその上に付着する。よって、仮にある程度厚い 焼成石灰が形成されたとしても、焼成石灰自体の自重や衝撃等によって強度の低 ヽ 層部分から剥離させて、これと同時に、その上の強度の高い層部分と共に脱落させ ることがでさる。
この投入方法では、短時間に集中的に多量のコーチング防止剤を添加するので、 合計使用量は連続的に添加した場合よりも少なくなる。従って、この投入方法によれ ば、より少ない使用量でより大きな効果を発揮させることができる。
[0049] 更に、上述の投入方法を 5〜10日間実行すれば、焼成炉の内壁を構成する耐火 煉瓦表面に保護層を形成して、アルカリ等による化学的スポーリングを防止すること も可能である。
実施例
[0050] 以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら 実施例に限定されるものではな 、。
[0051] (実施例 1〜9,比較例 1〜3) 下記の表 1に示す配合処方を採用して各例のコーチング防止剤を作成した。即ち、 水性組成物系のコーチング防止剤については、容器に所定量の水と界面活性剤を 秤取し、ホモミキサーで攪拌しながら所定量の水酸ィ匕マグネシウムをカ卩え、ほぼ均一 なスラリーとした。次いで、このスラリーに、減粘剤として一般的に使用されているポリ 燐酸塩をカ卩えて攪拌混合し、均一なスラリーである実施例 1〜3と比較例 1〜3のコー チング防止剤を得た。
[0052] また、 OZW型エマルシヨン系のコーチング防止剤については、所定量の水と界面 活性剤を秤取し、ホモミキサーで攪拌しながら所定量の水酸ィ匕マグネシウムを加え、 ほぼ均一なスラリーとした。次いで、このスラリーに油をカ卩えて攪拌混合し、均一な水 中油滴型のエマルシヨンである実施例 4及び 5のコーチング防止剤を得た。
一方、 WZO型エマルシヨン系のコーチング防止剤については、所定量の油と界面 活性剤を秤取し、ホモミキサーで攪拌しながら所定量の水酸ィ匕マグネシウムを加え、 ほぼ均一なスラリーとした。次いで、このスラリーに水をカ卩えて攪拌混合し、均一な油 中水滴型のエマルシヨンである実施例 6及び 7のコーチング防止剤を得た。
更に、油性組成物系のコーチング防止剤については、所定量の油と界面活性剤を 秤取し、ホモミキサーで攪拌しながら所定量の水酸ィ匕マグネシウムをカ卩え、ほぼ均一 なスラリーとすることにより、実施例 8及び 9のコーチング防止剤を得た。
[0053] 『モデル試験』
得られた各例のコーチング防止剤を下記の性能評価試験に供した。
[0054] [コーチング物の強度低下試験 (圧潰強度の測定) ]
ァ)キルンに発生したコーチング物を採取し、 100 X 50 X 50mmに切断して試験片 とした。
ィ)各例のコーチング防止剤を、所定温度の電気炉中で Nガスを噴射剤として噴霧
2
した。
ゥ)コーチング防止剤の噴霧は MgO換算 1. 5gを 30分 /1日 1回噴霧とした。
ェ)試験時間は 10日間とした。
ォ)試験装置の概要を図 4に示した。
力)試験結果は各 6回の試験の平均値を表 1に示した。
Figure imgf000015_0001
Figure imgf000015_0002
[0056] 表 1より明らかなように、比較例 1の φ θ. 1 μ m未満のマグネシウム粒子を配合した コーチング防止剤では、試験後の圧潰強度は比較例 4 (無添加)のそれとの差が小さ ぐコーチング物断面を分析したところ、マグネシウム粒子による保護コートの膜厚が 薄過ぎるため再炭酸ィ匕を防止できて!/、な!、ことが判った。
同様に、比較例 2及び 3の φ 50 m以上のマグネシウム粒子を配合したコーチング 防止剤でも粒径が大き過ぎて膜が形成されて ヽな ヽ部分が存在し、再炭酸化物を抑 制できていな力つた。
[0057] 以上の結果から、マグネシウム粒子が大き過ぎるためにコーチング物外表面への 付着力が弱ぐガス流速の大きい実炉では、到底、被膜形成及び被膜維持を有効に 実現できな!/、ことが推察される。
これに対し、実施例 1〜9の φ 0. 1〜30 μ mの範囲のマグネシウム粒子を配合した コーチング防止剤では、充分な圧潰強度の低下効果が認められ、特に φ θ. 1〜10 /z mの範囲のマグネシウム粒子を用いた実施例 1、 3、 4、 6及び 8のコーチング防止 剤がより一層の優れた効果を示すことが判った。
[0058] [コーチング成長抑制試験 (剥離強度の測定) ]
ァ) 900°Cの電気炉中でシャモット煉瓦表面に実施例 1〜9、比較例 1〜3のコーチン グ防止剤を、 MgO換算 0. 5kgZm2の噴霧量で 30分間噴霧した。 1時間維持後に 、溶融点 965°Cのコーチング物を 50kg/cm2の荷重をかけて、 10時間 900°Cで圧 着させた。
ィ)冷却後、煉瓦とコーチング物の剥離強度を求めた。
ゥ)試験装置概要;図 5に示した。
ェ)試験結果は各 5回の試験の平均値を表 1に示した。
[0059] 表 1より明らかなように、比較例 1の φ θ. 1 μ m未満のマグネシウム粒子を配合した コーチング防止剤では、煉瓦へ被膜が形成できず、逆に比較例 2及び 3の φ 50 m 以上のマグネシウム粒子を配合したコーチング防止剤では、砂状となり流動飛散する ことに起因して所望の効果を発揮できな力つた。
これに対し、実施例 1〜9の φ 0. 1〜30 μ mの範囲のマグネシウム粒子を配合した コーチング防止剤では顕著な剥離強度低下効果が認められた。 [0060] 『実機試験』
表 1に示す実施例 3及び 6と比較例 2のコーチング防止剤を用い、実機としての 2系 列あるキルンの通常の 2ヶ月運転に供した。
[0061] コーチング防止剤は、図 6に示す高濃度 Z短時間注入方法により投入'添加した。
図 6において、コーチング防止剤貯槽 21としては容量 Itのケミカルコンテナーを用 いたが、この貯槽 21は、空気抜き管 22、ストップバルブ 23、液面計 24を具備してい る。
コーチング防止剤は水酸ィ匕マグネシウムの分散液ではあるが、粉塵等の混入を考 慮し、呼び径 25AX 40メッシュのストレーナ一 25を設置し、定量ポンプ 26にて所定 量添加した。注入時間の管理は、制御盤 28に組み込まれたタイマーにて定量ポンプ モーター 27を起動及び停止させることより行った。なお、符号 29は圧力指示計、 30 はパドルミキサー (既設)である。パドルミキサー 30で石灰ケーキ、乾燥石炭泥、コー チング防止剤、必要に応じて、実施例 3では水、実施例 6では油を均一に混合してス クリューフィーダ一 14に送る。得られた結果を表 2に示す。
[0062] [表 2]
Figure imgf000018_0001
注 1 実炉運転時間は 60曰で行った
注 2 石灰泥量は 8.0±0.4tの範囲である
注 3 1 /100、 60分間添加は乾燥石灰泥 1t当たり、 MgO純分で 4kg/時間に相当する
1/100、 30分間添加は同様に 2kg/時間に相当する 注 4 粒度特性で Γ不均一」とは二山の分布のことを言う
[0063] 表 2より明らかなように、実施例 3及び 6のコーチング防止剤を 1Z100の添加比率 で 30分間及び 60分間( 、ずれも 1回 Z日の添加頻度)添加した結果、画期的な改善 効果が得られた。なお、この添加量は、乾燥石灰泥 It当たり、 MgO純分で 2kgZ30 分間及び 4kgZ60分間に相当する。また、この 4kgZ60分間量は 1Z2400の添カロ 比率で連続添加した場合と 1日の合計添加量が同量であり、このように短時間に集 中的に多量の間欠添加を行うことがコーチング防止剤の配合成分と同様に重要であ る。
[0064] また、比較例 2では、実施例 3及び 6と同様の条件(1Z100、 60分間)にて添加を 試みたが、未使用時と殆ど変化がなぐマグネシウム化合物が高温で酸ィ匕マグネシゥ ムになった時点の MgOの粒径が極めて重要な要因であることが明白となった。 即ち、石灰泥のような元来高融点の成分を焼成する設備におけるコーチング防止 においては、粒径 0. 1〜30 m、望ましくは 1〜 10 mの MgOと、高温にて MgO 自体を均一に展着させるベぐマグネシウム化合物を水又は油に安定分散させた組 成物が有効であることが分力つた。
[0065] また、この実機試験は、実施例 3及び 6のコーチング防止剤を添加比率 1Z100で 30分及び 60分間添カ卩の 2水準で行った力 この結果より、添加比率及び添加時間 の増減がコーチング防止効果に影響を与えることが推察される。
そして、この実施例 3及び 6では添加比率 1Z100で 60分間添カ卩の方が好ましい結 果が得られたが、焼成装置の使用条件、特に装置に供給される石灰泥中の不純物 濃度、焼成炉の燃焼温度などは各装置により異なるため、各装置におけるコーチン グに関連する事項を把握した上で、適宜に添加量と添カ卩時間を決定すればょ 、と思 われる。
[0066] また、表 2より明らかなように、試験期間の最初の 7日間に絶乾処理量 It当たり実施 例 3のコーチング防止剤を MgO換算量で 12. Okgを 60分 Z1日の範囲で添カ卩したも のについては、煉瓦表面に保護層が形成されたことが容易に推察される結果が得ら れた。
[0067] 以上、本発明を若干の実施例により詳細に説明したが、本発明はこれら実施例に 限定されるものではなぐ本発明の要旨の範囲内において種々の変形が可能である 例えば、実施例 1などのコーチング防止剤の調製方法は、上記の調製手順に限定 されるものではない。
産業上の利用可能性
本発明によれば、所定粒径のマグネシウム化合物を用いることなどとしたため、コー チングを簡易、効率的且つ低コストで防止し得る石灰焼成装置のコーチング防止剤 、及びこれを用いた石灰焼成装置のコーチング防止方法を提供することができる。 即ち、本発明の石灰焼成装置のコーチング防止方法によれば、強固で巨大なコー チング物の発生を防止し、脱落コーチング物による閉塞も改善されることから、省エネ 、環境対策、安全操業を含めた長期安定運用を達成することができる。

Claims

請求の範囲
[1] 粒径 0. 1〜30 mのマグネシウム化合物を含有することを特徴とする石灰焼成装 置のコーチング防止剤。
[2] 上記マグネシウム化合物力 水酸化マグネシウム、炭酸マグネシウム及び酸化マグ ネシゥム力 成る群より選ばれた少なくとも 1種の化合物であることを特徴とする請求 項 1に記載の石灰焼成装置のコーチング防止剤。
[3] 更に水及び Z又は油を含有し、上記マグネシウム化合物が水性組成物、 OZW型 エマルシヨン、 W/O型エマルシヨン又は油性組成物の形式で含まれて!/、ることを特 徴とする請求項 1又は 2に記載の石灰焼成装置のコーチング防止剤。
[4] 上記マグネシウム化合物を MgO換算量で 20〜60%の割合で含有することを特徴 とする請求項 1〜3のいずれ力 1つの項に記載の石灰焼成装置のコーチング防止剤
[5] 請求項 1〜4のいずれか 1つの項に記載のコーチング防止剤を焼成炉に間欠投入 しながら、石灰焼成装置の運転を行うことを特徴とする石灰焼成装置のコーチング防 止方法。
[6] 焼成用石灰原料の絶乾処理量 It当たり MgO換算量で 0. 1〜: LOkgの上記コーチ ング防止剤を、 10分〜 60分 Z日の範囲で、上記焼成炉に対して均一に投入するこ とを特徴とする請求項 5に記載の石灰焼成装置のコーチング防止方法。
PCT/JP2007/062092 2006-06-16 2007-06-15 石灰焼成装置のコーチング防止剤及びコーチング防止方法 WO2007145310A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008521265A JPWO2007145310A1 (ja) 2006-06-16 2007-06-15 石灰焼成装置のコーチング防止剤及びコーチング防止方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006167856 2006-06-16
JP2006-167856 2006-06-16

Publications (1)

Publication Number Publication Date
WO2007145310A1 true WO2007145310A1 (ja) 2007-12-21

Family

ID=38831823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062092 WO2007145310A1 (ja) 2006-06-16 2007-06-15 石灰焼成装置のコーチング防止剤及びコーチング防止方法

Country Status (3)

Country Link
JP (1) JPWO2007145310A1 (ja)
TW (1) TW200808676A (ja)
WO (1) WO2007145310A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090020A (ja) * 2008-10-10 2010-04-22 Daio Paper Corp 焼成石灰の製造方法
CN111792855A (zh) * 2020-08-20 2020-10-20 辽宁博仕科技股份有限公司 一种直筒型轻烧氧化镁悬浮焙烧装置
US10822442B2 (en) 2017-07-17 2020-11-03 Ecolab Usa Inc. Rheology-modifying agents for slurries

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003261363A (ja) * 2002-03-08 2003-09-16 Oji Paper Co Ltd 石灰焼成装置のコーチング防止運転方法及びコーチング防止剤

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158144A (ja) * 1985-12-27 1987-07-14 三菱製紙株式会社 ライムキルンにおける生石灰の回収方法および装置
JP3746010B2 (ja) * 2002-03-12 2006-02-15 タイホー工業株式会社 スラッギング防止用燃料添加剤及び燃料の燃焼方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003261363A (ja) * 2002-03-08 2003-09-16 Oji Paper Co Ltd 石灰焼成装置のコーチング防止運転方法及びコーチング防止剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NIWANO K.: "Saishin Funtai Bussei Zusetsu (3rd edition)", YUGEN KAISHA NGT, 30 June 2004 (2004-06-30), pages 267, XP003020828 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090020A (ja) * 2008-10-10 2010-04-22 Daio Paper Corp 焼成石灰の製造方法
US10822442B2 (en) 2017-07-17 2020-11-03 Ecolab Usa Inc. Rheology-modifying agents for slurries
CN111792855A (zh) * 2020-08-20 2020-10-20 辽宁博仕科技股份有限公司 一种直筒型轻烧氧化镁悬浮焙烧装置
CN111792855B (zh) * 2020-08-20 2024-01-30 辽宁博仕科技股份有限公司 一种直筒型轻烧氧化镁悬浮焙烧装置

Also Published As

Publication number Publication date
TW200808676A (en) 2008-02-16
JPWO2007145310A1 (ja) 2009-11-12

Similar Documents

Publication Publication Date Title
JP4777058B2 (ja) 無水石膏の製造方法及び無水石膏焼成システム
JP4825994B2 (ja) 粉体状炭酸カルシウムの焼成方法
CA2478062C (en) Device for drying and/or calcining gypsum
WO2002077132A1 (fr) Additif anti-scorification pour combustible, et procédé de combustion de combustible
CN105658580A (zh) 氢氧化物浆液的制备方法和装置
CN109127650A (zh) 一种利用水泥窑中间产物无害化处理电解锰渣的方法
JP5865200B2 (ja) 粉体急結剤及び不定形耐火物の吹き付け施工方法
RU2515786C1 (ru) Способ переработки золошлаковых отходов тепловых электростанций для производства строительных изделий
JP5219256B2 (ja) 粒状添加剤及びその製造方法
CN212108419U (zh) 一种用于焙烧工业废杂盐的焙烧设备
CN101921072B (zh) 一种除去煅烧活性石灰回转窑结圈的方法
BRPI1010034A2 (pt) método para produzir um aglomerado de material fino contendo oxido metálico para uso como material de alimentação para alto forno
JP4474533B2 (ja) 粉体状炭酸カルシウムの焼成方法
WO2007145310A1 (ja) 石灰焼成装置のコーチング防止剤及びコーチング防止方法
JP2010235822A (ja) 石炭用スラッギング防止剤及び石炭の燃焼方法
JPS59223259A (ja) 水硬性セメントの製造方法及び装置
RU2608248C2 (ru) Способ смешивания и натрирующего обжига ванадийсодержащего материала
JP2002285251A (ja) 焼結鉱の製造方法
JP2003261363A (ja) 石灰焼成装置のコーチング防止運転方法及びコーチング防止剤
JP2005307117A (ja) スラッギング防止用燃料添加剤及び燃料の燃焼方法
JP4985277B2 (ja) セメント製造工程を用いたアスベスト含有物の処理方法およびセメントの製造方法
JP5637634B2 (ja) 急結剤及び湿式吹き付け施工方法
CN107754588A (zh) 脱除烟气中的二氧化硫的组合物及其应用
JP2008174403A (ja) 水和反応熱を利用した反応遅延性生石灰の製造方法
PL88893B1 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745347

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008521265

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745347

Country of ref document: EP

Kind code of ref document: A1