WO2007145307A1 - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device Download PDF

Info

Publication number
WO2007145307A1
WO2007145307A1 PCT/JP2007/062079 JP2007062079W WO2007145307A1 WO 2007145307 A1 WO2007145307 A1 WO 2007145307A1 JP 2007062079 W JP2007062079 W JP 2007062079W WO 2007145307 A1 WO2007145307 A1 WO 2007145307A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
semiconductor integrated
integrated circuit
power
cell
Prior art date
Application number
PCT/JP2007/062079
Other languages
French (fr)
Japanese (ja)
Inventor
Shunsuke Toyoshima
Hiroyasu Ishizuka
Kazuo Tanaka
Original Assignee
Renesas Technology Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp. filed Critical Renesas Technology Corp.
Priority to JP2008521263A priority Critical patent/JP4873504B2/en
Publication of WO2007145307A1 publication Critical patent/WO2007145307A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • H01L27/0285Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements bias arrangements for gate electrode of field effect transistors, e.g. RC networks, voltage partitioning circuits

Definitions

  • the present invention relates to a semiconductor integrated circuit device, and relates to a technology that is effective when applied to an ESD (Electro-Static Discharge) protection circuit.
  • ESD Electro-Static Discharge
  • WO2004Z015776 discloses a device in which a shunt device is provided in an input / output cell and is controlled by a trigger circuit provided in one or a plurality of power supply cells.
  • a shunt device is also provided in the power cell, a boost bus is connected to the trigger circuit, and the trigger circuit drives the control electrode of the shunt device to a large voltage level during an ESD event. This is intended to reduce the on-resistance.
  • the number of external terminals is increased to several hundreds due to the high functionality of semiconductor integrated circuit devices having a microcomputer function.
  • Power supply terminals must be supplied with the same power supply voltage through multiple power supply terminals in order to reduce power supply impedance.
  • the power supply terminal occupies about 10% of the total number of terminals.
  • the size of the input / output cell for signal processing is larger than that of the input / output cell because the ESD protection element for escaping ESD surge is arranged in the power cell, compared to the recent trend toward downsizing of the signal input / output cell. Become.
  • FIG. 9 shows a schematic layout diagram of a semiconductor integrated circuit device studied by the inventors of the present application prior to the present invention.
  • the power cell GCNMOS has a time constant circuit CR that detects the surge voltage and a large size to discharge the powerful surge voltage at high speed. This is a larger size than the input / output cell IO. Since the power supply impedance needs to be evenly reduced, the power supply cell GCNMOS needs to be distributed and arranged for each of the plurality of input / output cells IO. Therefore, the input / output cell IO and the power cell GCNMOS of different sizes are mixedly arranged as shown in FIG.
  • the pitch of the pad (PAD) on both sides of the power cell GCNMOS is set to the size of the power cell GCNMOS.
  • the present inventor if the input / output cell IO and the power supply cell GCNMOS are made different sizes as described above, a large space dl is generated on both sides of the power supply cell GCNMOS which is enlarged when viewed from the PAD side.
  • the number of PADs that can be placed is limited. In other words, the present inventor has realized that if cells of almost the same size are used, the interval between the PADs becomes smaller as the interval d2 between the input / output cells IO, and the number of PADs can be increased accordingly.
  • An object of the present invention is to provide a semiconductor integrated circuit device that can efficiently arrange the number of external terminals while providing an ESD protection circuit.
  • First and second power supply cells and input / output cells are provided corresponding to the first and second power supply pads and signal pads for supplying the first and second power supply voltages, respectively.
  • the first power supply voltage supplied from the first power supply pad is supplied to the first power supply line
  • the second power supply voltage supplied from the second power supply pad is supplied to the second power supply line.
  • a first MOSFET is provided in the input / output cell to allow surge current flow between the first and second power lines.
  • the first and second power cells include a time constant circuit that temporarily turns on the first MOSFET provided in the input / output cell in response to positive static electricity at the first power pad, and the first and second power cells. Consists of unidirectional elements that allow current to flow to the power pads.
  • FIG. 1 shows a circuit diagram of an input / output circuit portion of an embodiment of a semiconductor integrated circuit device according to the present invention.
  • FIG. 1 exemplarily shows two input / output cells (IO cells) and one power cell.
  • Each I / O cell has a P-channel output MOSFET Q1 and an N-channel output MOSFET Q2 that transmit output signals to the input / output terminal DQO, an input circuit IB that receives the input signal input from the input / output terminal DQO, and an ESD protection circuit. It includes diodes Dl and D2 and resistors Rl and R2.
  • Diode D1 causes a direct surge current to flow from input / output terminal DQO to power supply line VCCQ, and diode D2 causes the circuit's ground potential line VSSQ force to also flow a direct surge current to external terminal DQO.
  • Resistors R1 and R2 serve as protection elements for the MOSFETs that make up MOSFETs Ql and Q2 and input circuit IB.
  • the IO cell is provided with a MOSFET Q3 for discharging a surge voltage due to the power supply terminal VCCQ or the like.
  • This MOSFET Q3 is formed with a small size. As a result, the occupied area of the IO cell is not substantially increased.
  • the other IO cells including the IO cells corresponding to the input / output terminal DQn have the same configuration as described above.
  • the diodes Dl, D2 and the like that discharge the surge voltage at the corresponding input / output terminals DQO to DQn (n is a positive integer) are connected.
  • MOSFET power that discharges surge voltage due to power supply terminals VCCQ, etc. is divided like MOSFETQ3 and distributed to each IO cell.
  • the power cell corresponding to the power supply terminal VCCQ is provided with a time constant circuit GC for detecting a positive surge voltage of the power supply terminal VCCQ.
  • a diode D3 is provided to discharge negative surge voltage at the power supply terminal VCCQ. This diode D3 carries a surge current so that the ground line VS SQ force is also directed to the power supply terminal VCCQ.
  • the power supply cell corresponding to the circuit ground terminal VSSQ has the same configuration.
  • the time constant circuit GC output lines GTDV and WLD V corresponding to the power supply terminal VCCQ and the ground terminal VSSQ and the time constant circuit GC output lines GTDV and WLDV are connected in common to the IO cell.
  • FIG. 2 shows a circuit diagram of an embodiment of the power cell.
  • the time constant circuit GC is also composed of an integration circuit force consisting of a resistor R3 and a capacitor C1.
  • the charge voltage of the capacitor C1 is supplied to the input terminals of the inverter circuits INV1 and INV2.
  • the output terminals of these inverter circuits INV1 and INV2 are connected to output lines GTDV and WLDV.
  • These inverter circuits INV1 and INV2 operate by receiving operating voltage from VCCQ.
  • FIG. 3 shows a specific circuit diagram of an embodiment of the power cell.
  • a P-channel MOSFET Q10 formed in series is provided as the resistor R3 in FIG. 2 between the power supply terminal VCCQ and the ground terminal VSSQ.
  • Capacitor C1 in FIG. 2 is configured by the gate capacitance of MOSFET Q11. That is, the source, drain, and tool of the MOS FET Q11 are connected to the circuit ground terminal VSSQ, and the gate is connected to the drain of the MOSFET Q10 corresponding to one end of the resistor element R3.
  • the inverter circuit INV1 in FIG. 2 includes a P-channel MOSFET Q12 and an N-channel MOSFET Q13.
  • the inverter circuit INV2 in FIG. 2 is composed of a P-channel MOSFETQ 14 and an N-channel MOSFETQ15.
  • the gates of the MOSFETs Q12 to Q15 are connected in common and connected to the gate of the MOSFET Q11 as the capacitor C1.
  • the output terminal of the CMOS inverter circuit composed of MOSFETs Q12 and Q13 is connected to the output line GT DV.
  • the output terminal of the CMOS inverter circuit consisting of MOSFETs Q14 and Q15 is connected to the output line WLDV.
  • pull-down resistors RIO, R11 are provided between the output terminals of the two inverter circuits and the ground terminal VSSQ.
  • MOSFETs Q10 to Q15 have a high withstand voltage structure because the gate insulating film is formed thick.
  • MOSFETQ3, etc., whose gate is connected to the output line GTDV, has the same high voltage structure.
  • FIGS. 4B are explanatory diagrams of the operation of the MOSFET provided in the IO cell.
  • Figure 4A shows the circuit symbol for the MOSFET
  • Figure 4B shows the MOSFET element structure and parasitic elements.
  • the output lines GTDV and WLDV are connected to the gate G and the well WELL, and both are made high by the surge voltage. Therefore, in addition to flowing current as a MOSFET, a parasitic transistor is constructed with n + type drain D as collector C, p type well as base B, and n + type source S as emitter E. Current is allowed to flow.
  • the parasitic transistor can be operated by controlling the well potential WELL, so that a larger current can flow than when the surge current is flowed only as a MOSFET with the well potential equal to the source.
  • FIG. 5 shows a circuit diagram of another embodiment of the power cell.
  • This embodiment is directed to a power supply cell that supplies a low voltage VDD for an internal circuit of a semiconductor integrated circuit device.
  • This power cell has a MOSFET Q4 of the same size as the MOSFET Q3 provided in the IO cell, for example, within a range that does not become larger than the size of the 0 cell. Thereby, it is possible to cause a surge current to flow even in the power cell itself.
  • This configuration can be similarly applied to the power cell of the power supply terminal VCCQ for the input / output circuit as in the embodiment of FIG.
  • FIG. 6 shows a layout diagram of an embodiment of a semiconductor integrated circuit device according to the present invention.
  • input / output circuits are arranged around the chip, and an internal circuit is provided in the center of the chip.
  • the internal circuit is divided into two circuits such as internal circuit 1 and internal circuit 2.
  • a plurality of input / output circuit cells corresponding to a plurality of external terminals are arranged in the periphery of the chip.
  • a plurality of power supply cells are arranged for a plurality of input / output circuit cells in order to reduce the power supply impedance and stabilize the power supply impedance.
  • the power cells are shown with diagonal lines to distinguish them from the input / output circuits. This power cell has operating voltages VCCQ and VSSQ for input / output circuits and operating voltages VDD and VSS for internal circuits.
  • the input / output circuit cell in FIG. 6 is provided with an input / output circuit IO and an N-channel MOSFET as shown in FIG. Therefore, the input / output circuit cell is represented as IO + NMOS.
  • the power cell is composed of a time constant circuit GC.
  • power cell and input / output circuit cell support
  • the pitch between the input / output terminal DQ and the power supply terminals VCCQ and VSSQ and the power supply terminals VDD and VSS for the internal circuits can be made to be a substantially constant narrow pitch d2, as shown in FIG. Since the useless space as in the above configuration does not occur, the chip size of the semiconductor integrated circuit device ((LSI chip) circuit) can be reduced. On the other hand, if it is! /, The number of external terminals can be increased.
  • drive signals (GTDV, WLDV) output from time constant circuit GC to power supply lines VDD and VSS arranged so as to surround internal circuits 1 and 2 ) Is provided.
  • this MOSFET is shown in black, like NMOS.
  • an inverter circuit as a buffer amplifier BA is provided corresponding to the NMOS. This buffer amplifier amplifies the drive signals from the output lines GTDV and WLDV to speed up the switching operation of the MNOS.
  • the NMOS corresponding to the internal circuit uses a MOSFET having a gate breakdown voltage equivalent to that of the MOSFET constituting the internal circuit, unlike the NMOS provided in the IO cell.
  • FIG. 7 shows a layout diagram of another embodiment of the semiconductor integrated circuit device according to the present invention.
  • an N-channel MOSFET for discharging a surge voltage is provided there.
  • an M NOS cell as shown by the dotted line in FIG. 7 and place the MNOS cell appropriately in the part where the spacing between the bonding pads PAD at the corners of the chip becomes rough, such as d3. That's it. Roughening the pitch of the bonding pad PAD is also the force required to maintain the spacing between adjacent wires arranged diagonally at the chip corner.
  • an NMOS cell is prepared as described above, it can be used to reduce the size of the N-channel MOSFET provided in the IO cell.
  • FIG. 8 shows a layout diagram of another embodiment of the semiconductor integrated circuit device according to the present invention.
  • the semiconductor integrated circuit device (LSI chip) of this embodiment pays attention to the fact that the corner around the chip is a dead space where no IO cell or power cell is provided, and an N-channel MOSFET that discharges a surge voltage there.
  • the dotted line in Figure 8 An NMOS cell as shown in Fig. 2 is prepared, and the NMOS cell is arranged at the corner of the chip.
  • an NMOS cell is prepared as described above, it can be used to reduce the size of the N-channel MOSFET provided in the IO cell. Further, the NMOS cell of FIG. 7 may be combined.
  • the MOSFET Q3 well may be connected to the source and the inverter circuit INV2 of the time constant circuit GC may be omitted. If there are two types of circuit ground potential pins, VS SQ and VSS, a surge protection circuit is provided with a diode that sends a surge current to VSS, and a diode that sends a surge current to VSS vs VSSQ. It is done. These diodes may be appropriately provided on the semiconductor chip.
  • a buffer amplifier that amplifies a drive signal such as MOS FET Q3 may be provided in a portion where the pad pitch is wide as indicated by d3 in FIG.
  • the present invention can be similarly applied to a power supply that supplies an external terminal power of 3 or more.
  • the present invention can be widely used as an ESD protection circuit for semiconductor integrated circuit devices.
  • FIG. 1 is a circuit diagram of an input / output circuit portion showing an embodiment of a semiconductor integrated circuit device according to the present invention.
  • FIG. 2 is a circuit diagram showing an embodiment of the power cell of FIG.
  • FIG. 3 is a specific circuit diagram showing an embodiment of the power cell of FIG. 1.
  • FIG. 4A is an operation explanatory diagram of a MOSFET provided in the IO cell of FIG. 1.
  • FIG. 4B is an operation explanatory diagram of the MOSFET provided in the IO cell of FIG. 1.
  • FIG. 5 is a circuit diagram showing another embodiment of the power cell used in the present invention.
  • FIG. 6 is a layout diagram showing one embodiment of a semiconductor integrated circuit device according to the present invention.
  • FIG. 7 is a layout diagram showing another embodiment of the semiconductor integrated circuit device according to the present invention.
  • FIG. 8 is a layout diagram showing another embodiment of the semiconductor integrated circuit device according to the present invention.
  • FIG. 9 is a schematic outside layer view of a semiconductor integrated circuit device studied prior to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

A semiconductor integrated circuit device wherein an ESD protection circuit is arranged and the number of external terminals is efficiently arranged. First and second power supply cells and an input/output cell are arranged, corresponding to first and second power supply pads for supplying first and second power supply voltages and a signal pad. A first power supply line is supplied with the first power supply voltage supplied from the first power supply pad, and a second power supply line is supplied with the second power supply voltage supplied from the second power supply pad. A first MOSFET is provided for permitting a surge current of the first power supply line and the second power supply line to flow to the input/output cell. The first and the second power supply cells are composed of a time constant circuit for having the first MOSFET arranged on the input/output cell temporarily in an on status, corresponding to positive static electricity at the first power supply pad; and a unidirectional element for permitting currents to flow to the first and the second power supply pads, respectively.

Description

明 細 書  Specification
半導体集積回路装置  Semiconductor integrated circuit device
参照による取り込み  Import by reference
[0001] 本出願は、 2006年 6月 15日に出願された日本特許出願第 2006— 165473号、 の優先権を主張し、その内容を参照することにより本出願に取り込む。」  [0001] This application claims the priority of Japanese Patent Application No. 2006-165473, filed on June 15, 2006, and is incorporated herein by reference. "
技術分野  Technical field
[0002] 本発明は、半導体集積回路装置に関し、 ESD(Electro- Static- Discharge)保護回 路に適用して有効な技術に関するものである。  The present invention relates to a semiconductor integrated circuit device, and relates to a technology that is effective when applied to an ESD (Electro-Static Discharge) protection circuit.
背景技術  Background art
[0003] 分散型 ESD回路の例として、入出力セルに分流デバイスを設け、 1つ又は複数の 電源セルに設けられたトリガ回路で制御するものが WO2004Z015776号公報にお いて開示されている。この分散型 ESD回路では、電源セルにも分流デバイスが設け られ、トリガ回路にブーストバスを接続し、 ESD現象時にトリガ回路は大きい電圧レべ ルに分流デバイスの制御電極を駆動することによって分流デバイスのオン抵抗を低 減させるようにするものである。  As an example of a distributed ESD circuit, WO2004Z015776 discloses a device in which a shunt device is provided in an input / output cell and is controlled by a trigger circuit provided in one or a plurality of power supply cells. In this distributed ESD circuit, a shunt device is also provided in the power cell, a boost bus is connected to the trigger circuit, and the trigger circuit drives the control electrode of the shunt device to a large voltage level during an ESD event. This is intended to reduce the on-resistance.
[0004] マイクロコンピュータ機能を持つ半導体集積回路装置の高機能化等により外部端 子数は数百個のように多くされる。電源端子は、電源インピーダンスを小さくするため に同じ電源電圧を複数の電源端子を通して供給させる必要がある。例えば、前記の ような半導体集積回路装置では、全端子数のほぼ 10%程度を電源端子が占めるこ とになる。近年、先端プロセスにおいては信号の入出力セルの縮小化が進んでいる のに比較して、電源セルには ESDサージを逃がすための ESD保護素子が配置され ているため入出力セルよりも大きなサイズになってしまう。  [0004] The number of external terminals is increased to several hundreds due to the high functionality of semiconductor integrated circuit devices having a microcomputer function. Power supply terminals must be supplied with the same power supply voltage through multiple power supply terminals in order to reduce power supply impedance. For example, in the semiconductor integrated circuit device as described above, the power supply terminal occupies about 10% of the total number of terminals. In recent years, the size of the input / output cell for signal processing is larger than that of the input / output cell because the ESD protection element for escaping ESD surge is arranged in the power cell, compared to the recent trend toward downsizing of the signal input / output cell. Become.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 図 9には、本願発明に先立って本願発明者によって検討された半導体集積回路装 置の概略レイアウト図が示されている。電源セル GCNMOSは、サージ電圧を検出 する時定数回路 CRと、力かるサージ電圧を高速に放電させるために大きなサイズに された NMOS (Nチャネル MOSFET)とで構成され、入出力セル IOよりも大きなサイ ズになってしまう。そして、電源インピーダンスを均等に小さくする必要から、電源セ ル GCNMOSは、複数の入出力セル IO毎に分散して配置させることが必要である。 このため、サイズの異なる入出力セル IOと電源セル GCNMOSが図 9に示すように 混在して配置されることとなり、電源セル GCNMOSの両側でパッド(PAD)のピッチ 前記電源セル GCNMOSの大きさに対応して広くなる。本願発明者においては、前 述のように入出力セル IOと電源セル GCNMOSとを異なるサイズにしたなら、 PAD 側からみたときに大きなサイズにされる電源セル GCNMOSの両側で大きなスペース dlが生じて配置可能な PAD数が制限されてしまうという問題の生じることを見出した 。つまり、本願発明者においては、ほぼ同じサイズのセルとしたなら、入出力セル IO 間の間隔 d2のように PAD間が小さくなり、その分 PAD数を多くできることに気が付い たのである。 FIG. 9 shows a schematic layout diagram of a semiconductor integrated circuit device studied by the inventors of the present application prior to the present invention. The power cell GCNMOS has a time constant circuit CR that detects the surge voltage and a large size to discharge the powerful surge voltage at high speed. This is a larger size than the input / output cell IO. Since the power supply impedance needs to be evenly reduced, the power supply cell GCNMOS needs to be distributed and arranged for each of the plurality of input / output cells IO. Therefore, the input / output cell IO and the power cell GCNMOS of different sizes are mixedly arranged as shown in FIG. 9, and the pitch of the pad (PAD) on both sides of the power cell GCNMOS is set to the size of the power cell GCNMOS. Correspondingly widen. In the present inventor, if the input / output cell IO and the power supply cell GCNMOS are made different sizes as described above, a large space dl is generated on both sides of the power supply cell GCNMOS which is enlarged when viewed from the PAD side. We found that the number of PADs that can be placed is limited. In other words, the present inventor has realized that if cells of almost the same size are used, the interval between the PADs becomes smaller as the interval d2 between the input / output cells IO, and the number of PADs can be increased accordingly.
[0006] この発明の目的は、 ESD保護回路を設けつつ、外部端子数を効率よく配置できる 半導体集積回路装置を提供することにある。この発明の前記ならびにそのほかの目 的と新規な特徴は、本明細書の記述および添付図面力 明らかになるであろう。 課題を解決するための手段  An object of the present invention is to provide a semiconductor integrated circuit device that can efficiently arrange the number of external terminals while providing an ESD protection circuit. The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings. Means for solving the problem
[0007] 本願において開示される発明のうち代表的なものの概要を簡単に説明すれば、下 記の通りである。第 1、第 2電源電圧をそれぞれ供給する第 1、第 2電源パッド及び信 号パッドに対応して第 1、第 2電源セル及び入出力セルを設ける。第 1電源パッドから 供給された第 1電源電圧を第 1電源線に供給し、第 2電源パッドから供給された第 2 電源電圧を第 2電源線に供給する。入出力セルに第 1電源線と第 2電源線とのサー ジ電流を流す第 1MOSFETを設ける。第 1および第 2電源セルは、第 1電源パッドで の正の静電気に応答して入出力セルに設けられた第 1MOSFETを一時的にオン状 態にさせる時定数回路と、第 1、第 2電源パッドにそれぞれ向かう電流を流す一方向 性素子で構成する。 [0007] The following is a brief description of an outline of typical inventions among inventions disclosed in the present application. First and second power supply cells and input / output cells are provided corresponding to the first and second power supply pads and signal pads for supplying the first and second power supply voltages, respectively. The first power supply voltage supplied from the first power supply pad is supplied to the first power supply line, and the second power supply voltage supplied from the second power supply pad is supplied to the second power supply line. A first MOSFET is provided in the input / output cell to allow surge current flow between the first and second power lines. The first and second power cells include a time constant circuit that temporarily turns on the first MOSFET provided in the input / output cell in response to positive static electricity at the first power pad, and the first and second power cells. Consists of unidirectional elements that allow current to flow to the power pads.
[0008] 入出力セルに電源パッドに発生したサージ電圧を放電させる第 1MOSFETを分散 配置して電源セルのサイズを入出力セルと同等に小さくできる力 外部端子を効率よ く配置できる。 発明を実施するための最良の形態 [0008] The ability to reduce the size of the power cell to the same size as the input / output cell by distributing and disposing the first MOSFET for discharging the surge voltage generated at the power pad in the input / output cell. BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 図 1には、この発明に係る半導体集積回路装置の一実施例の入出力回路部の回 路図が示されている。図 1には、 2つの入出力セル (IOセル)と 1つの電源セルが代表 として例示的に示されている。 1つの IOセルは、入出力端子 DQOに出力信号を伝え る Pチャネル型出力 MOSFETQ1及び Nチャネル出力 MOSFETQ2と、入出力端 子 DQOから入力された入力信号を受ける入力回路 IBと、 ESD保護回路を構成する ダイオード Dl、 D2及び抵抗 Rl, R2とを含んでいる。ダイオード D1は、入出力端子 DQOから電源線 VCCQに向力 サージ電流を流し、ダイオード D2は、回路の接地 電位線 VSSQ力も外部端子 DQOに向力 サージ電流を流すようにされる。抵抗 R1, R2は、 MOSFETQl、 Q2及び入力回路 IBを構成する MOSFETの保護素子として の役割を果たす。  FIG. 1 shows a circuit diagram of an input / output circuit portion of an embodiment of a semiconductor integrated circuit device according to the present invention. FIG. 1 exemplarily shows two input / output cells (IO cells) and one power cell. Each I / O cell has a P-channel output MOSFET Q1 and an N-channel output MOSFET Q2 that transmit output signals to the input / output terminal DQO, an input circuit IB that receives the input signal input from the input / output terminal DQO, and an ESD protection circuit. It includes diodes Dl and D2 and resistors Rl and R2. Diode D1 causes a direct surge current to flow from input / output terminal DQO to power supply line VCCQ, and diode D2 causes the circuit's ground potential line VSSQ force to also flow a direct surge current to external terminal DQO. Resistors R1 and R2 serve as protection elements for the MOSFETs that make up MOSFETs Ql and Q2 and input circuit IB.
[0010] この実施例では、 IOセルに電源端子 VCCQ等によるサージ電圧を放電させるため の MOSFETQ3が設けられる。この MOSFETQ3は、そのサイズが小さく形成され ている。これにより、 IOセルの占有面積は、実質的に大きくならないようにされている 。入出力端子 DQnに対応した IOセルを含んで他の IOセルも前記同様な構成とされ る。すなわち、本願発明に係る半導体集積回路装置に設けられる IOセルのそれぞれ においては、それぞれに対応した入出力端子 DQO〜DQn (nは正の整数)における サージ電圧を放電させるダイオード Dl, D2等にカ卩えて、電源端子 VCCQ等による サージ電圧を放電させる MOSFET力 MOSFETQ3のように分割され、かつそれ ぞれの IOセルに分散されて設けられる。  [0010] In this embodiment, the IO cell is provided with a MOSFET Q3 for discharging a surge voltage due to the power supply terminal VCCQ or the like. This MOSFET Q3 is formed with a small size. As a result, the occupied area of the IO cell is not substantially increased. The other IO cells including the IO cells corresponding to the input / output terminal DQn have the same configuration as described above. In other words, in each of the IO cells provided in the semiconductor integrated circuit device according to the present invention, the diodes Dl, D2 and the like that discharge the surge voltage at the corresponding input / output terminals DQO to DQn (n is a positive integer) are connected. In contrast, MOSFET power that discharges surge voltage due to power supply terminals VCCQ, etc. is divided like MOSFETQ3 and distributed to each IO cell.
[0011] 電源端子 VCCQに対応した電源セルは、電源端子 VCCQの正のサージ電圧を検 出するための時定数回路 GCが設けられる。また、電源端子 VCCQに負のサージ電 圧を放電させるためのダイオード D3が設けられる。このダイオード D3は、接地線 VS SQ力も電源端子 VCCQに向力 ようサージ電流を流す。図示しないけれども、回路 の接地端子 VSSQに対応した電源セルも、同様な構成にされる。そして、電源端子 VCCQ及び接地端子 VSSQに対応した時定数回路 GCの出力線 GTDV及び WLD Vと、図示しない時定数回路 GCの出力線 GTDV及び WLDVとそれぞれ共通に接 続されて、 IOセルに設けられた MOSFETQ3等のゲートとゥエルに接続される。 [0012] 図 2には、電源セルの一実施例の回路図が示されている。時定数回路 GCは、抵抗 R3とキャパシタ C1からなる積分回路力も構成される。キャパシタ C1のチャージ電圧 は、インバータ回路 INV1, INV2の入力端子に供給される。これらのインバータ回路 INV1及び INV2の出力端子は、出力線 GTDV及び WLDVに接続される。これらの インバータ回路 INV1及び INV2は、 VCCQから動作電圧を受けて動作する。 [0011] The power cell corresponding to the power supply terminal VCCQ is provided with a time constant circuit GC for detecting a positive surge voltage of the power supply terminal VCCQ. In addition, a diode D3 is provided to discharge negative surge voltage at the power supply terminal VCCQ. This diode D3 carries a surge current so that the ground line VS SQ force is also directed to the power supply terminal VCCQ. Although not shown, the power supply cell corresponding to the circuit ground terminal VSSQ has the same configuration. The time constant circuit GC output lines GTDV and WLD V corresponding to the power supply terminal VCCQ and the ground terminal VSSQ and the time constant circuit GC output lines GTDV and WLDV (not shown) are connected in common to the IO cell. Connected to the gate and well of MOSFETQ3 etc. FIG. 2 shows a circuit diagram of an embodiment of the power cell. The time constant circuit GC is also composed of an integration circuit force consisting of a resistor R3 and a capacitor C1. The charge voltage of the capacitor C1 is supplied to the input terminals of the inverter circuits INV1 and INV2. The output terminals of these inverter circuits INV1 and INV2 are connected to output lines GTDV and WLDV. These inverter circuits INV1 and INV2 operate by receiving operating voltage from VCCQ.
[0013] 例えば、電源端子 VCCQに正のサージ電圧が発生した時、インバータ回路 INV1 及び INV2には VCCQ力 動作電圧が供給され、入力端子には時定数回路により 遅れてサージ電圧に対応したハイレベルが伝えられる。したがって、インバータ回路 I NV1及び INV2は、電源端子 VCCQに正のサージ電圧が発生した時からキャパシ タ C 1のチャージ電圧力インバータ回路の論理しき 、値電圧に到達するまでの間ハイ レベルを維持し、 IOセルに分散して設けられた MOSFETQ3等をオン状態にしてサ ージ電圧を放電させる。  [0013] For example, when a positive surge voltage is generated at the power supply terminal VCCQ, VCCQ power operating voltage is supplied to the inverter circuits INV1 and INV2, and the input terminal is delayed by the time constant circuit to a high level corresponding to the surge voltage. Is reported. Therefore, the inverter circuits I NV1 and INV2 maintain a high level from when a positive surge voltage is generated at the power supply terminal VCCQ until the logic voltage of the capacitor C1 charge voltage force inverter circuit is reached. Then, turn on the MOSFETQ3, etc., distributed in the IO cells, and discharge the surge voltage.
[0014] 図 3には、電源セルの一実施例の具体的回路図が示されている。電源端子 VCCQ と接地端子 VSSQとの間には、直列形成された Pチャネル MOSFETQ10が図 2の 抵抗 R3として設けられる。  FIG. 3 shows a specific circuit diagram of an embodiment of the power cell. A P-channel MOSFET Q10 formed in series is provided as the resistor R3 in FIG. 2 between the power supply terminal VCCQ and the ground terminal VSSQ.
[0015] 図 2のキャパシタ C1は、 MOSFETQ11のゲート容量で構成される。つまり、 MOS FETQ11のソース,ドレイン及びゥヱルは、回路の接地端子 VSSQに接続され、ゲ ートが抵抗素子 R3の一端に対応した MOSFETQ10のドレインと接続される。  [0015] Capacitor C1 in FIG. 2 is configured by the gate capacitance of MOSFET Q11. That is, the source, drain, and tool of the MOS FET Q11 are connected to the circuit ground terminal VSSQ, and the gate is connected to the drain of the MOSFET Q10 corresponding to one end of the resistor element R3.
[0016] 図 2のインバータ回路 INV1は、 Pチャネル MOSFETQ 12と Nチャネル MOSFET Q13から構成される。図 2のインバータ回路 INV2は、 Pチャネル MOSFETQ 14と N チャネル MOSFETQ 15から構成される。これらの MOSFETQ 12〜Q 15のゲートは 、共通に接続されてキャパシタ C 1としての MOSFETQ 11のゲートと接続される。  The inverter circuit INV1 in FIG. 2 includes a P-channel MOSFET Q12 and an N-channel MOSFET Q13. The inverter circuit INV2 in FIG. 2 is composed of a P-channel MOSFETQ 14 and an N-channel MOSFETQ15. The gates of the MOSFETs Q12 to Q15 are connected in common and connected to the gate of the MOSFET Q11 as the capacitor C1.
[0017] MOSFETQ12と Q13からなる CMOSインバータ回路の出力端子は、出力線 GT DVに接続される。 MOSFETQ14と Q15からなる CMOSインバータ回路の出力端 子は、出力線 WLDVに接続される。そして、 2つのインバータ回路の出力端子と接地 端子 VSSQとの間には、プルダウン用の抵抗 RIO, R11が設けられる。 MOSFETQ 10〜Q15は、そのゲート絶縁膜が厚く形成される等により、高耐圧構造とされる。出 力線 GTDVにゲートが接続される MOSFETQ3等も、同様に高耐圧構造とされる。 [0018] 図 4A及び図 4Bは、 IOセルに設けられた MOSFETの動作説明図である。図 4Aは 、 MOSFETの回路記号が示され、図 4Bには MOSFETの素子構造と寄生素子とが 示されている。この MOSFETは、ゲート Gとゥエル WELLに出力線 GTDVと WLDV が接続されて、サージ電圧により共にハイレベルにされる。したがって、 MOSFETと して電流を流すことの他、 n+型のドレイン Dをコレクタ Cとし、 p型のゥエルをベース B とし、 n+型のソース Sをェミッタ Eとする寄生トランジスタが構成されて、サージ電流を 流すようにされる。これにより、ゥエル WELLをソースと同電位として MOSFETとして のみサージ電流を流すよりも、ゥエル電位 WELLの制御によって寄生トランジスタも 動作させることができ、より大きな電流を流すようにすることができる。 [0017] The output terminal of the CMOS inverter circuit composed of MOSFETs Q12 and Q13 is connected to the output line GT DV. The output terminal of the CMOS inverter circuit consisting of MOSFETs Q14 and Q15 is connected to the output line WLDV. Then, pull-down resistors RIO, R11 are provided between the output terminals of the two inverter circuits and the ground terminal VSSQ. MOSFETs Q10 to Q15 have a high withstand voltage structure because the gate insulating film is formed thick. MOSFETQ3, etc., whose gate is connected to the output line GTDV, has the same high voltage structure. FIG. 4A and FIG. 4B are explanatory diagrams of the operation of the MOSFET provided in the IO cell. Figure 4A shows the circuit symbol for the MOSFET, and Figure 4B shows the MOSFET element structure and parasitic elements. In this MOSFET, the output lines GTDV and WLDV are connected to the gate G and the well WELL, and both are made high by the surge voltage. Therefore, in addition to flowing current as a MOSFET, a parasitic transistor is constructed with n + type drain D as collector C, p type well as base B, and n + type source S as emitter E. Current is allowed to flow. As a result, the parasitic transistor can be operated by controlling the well potential WELL, so that a larger current can flow than when the surge current is flowed only as a MOSFET with the well potential equal to the source.
[0019] 図 5には、電源セルの他の一実施例の回路図が示されている。この実施例は、半導 体集積回路装置の内部回路用の低電圧 VDDを供給する電源セルに向けられてい る。この電源セルは、そのサイズ力 0セルのサイズに比べて大きくならない範囲で、 例えば IOセルに設けられる MOSFETQ3と同程度の MOSFETQ4が追加される。 これにより、電源セル自体でもサージ電流を流すようにすることができる。この構成は 、図 2の実施例のように、入出力回路用の電源端子 VCCQの電源セルにも同様に適 用することができる。  FIG. 5 shows a circuit diagram of another embodiment of the power cell. This embodiment is directed to a power supply cell that supplies a low voltage VDD for an internal circuit of a semiconductor integrated circuit device. This power cell has a MOSFET Q4 of the same size as the MOSFET Q3 provided in the IO cell, for example, within a range that does not become larger than the size of the 0 cell. Thereby, it is possible to cause a surge current to flow even in the power cell itself. This configuration can be similarly applied to the power cell of the power supply terminal VCCQ for the input / output circuit as in the embodiment of FIG.
[0020] 図 6には、この発明に係る半導体集積回路装置の一実施例のレイアウト図が示され ている。この実施例の半導体集積回路装置 (LSIチップ)は、チップ周辺に入出力回 路が配置され、チップ中央部に内部回路が設けられる。特に制限されないが、内部 回路は、内部回路 1と内部回路 2のような 2つの回路に分けられる。入出力回路は、 チップ周辺部には、複数の外部端子に対応した複数の入出力回路セルが配置され る。電源インピーダンスの低減と安定ィ匕等のために複数の入出力回路セルに対して 複数の電源セルが配置される。図 6において、電源セルは、入出力回路と区別する ために斜線を付して示している。この電源セルは、入出力回路用の動作電圧 VCCQ , VSSQと、内部回路用の動作電圧 VDD, VSSとがある。  FIG. 6 shows a layout diagram of an embodiment of a semiconductor integrated circuit device according to the present invention. In the semiconductor integrated circuit device (LSI chip) of this embodiment, input / output circuits are arranged around the chip, and an internal circuit is provided in the center of the chip. Although not particularly limited, the internal circuit is divided into two circuits such as internal circuit 1 and internal circuit 2. In the input / output circuit, a plurality of input / output circuit cells corresponding to a plurality of external terminals are arranged in the periphery of the chip. A plurality of power supply cells are arranged for a plurality of input / output circuit cells in order to reduce the power supply impedance and stabilize the power supply impedance. In FIG. 6, the power cells are shown with diagonal lines to distinguish them from the input / output circuits. This power cell has operating voltages VCCQ and VSSQ for input / output circuits and operating voltages VDD and VSS for internal circuits.
[0021] 図 6での入出力回路セルは、図 1のように入出力回路 IOと Nチャネル MOSFETが 設けられる。それ故、入出力回路セルは、 IO+NMOSのように表している。電源セ ルは、時定数回路 GCにより構成される。これにより、電源セルと入出力回路セルのサ ィズがほぼ同じとなり、それに対応して設けられる入出力端子 DQと電源端子 VCCQ , VSSQ及び内部回路用の電源端子 VDD, VSSのピッチをほぼ一定の狭いピッチ d2にすることができ、図 9の構成のような無駄な空間が生じないから半導体集積回路 装置( (LSIチップ)回路)を構成するチップサイズを小さくすることができる。逆に!/、う なら、外部端子数を増加させることができる。 The input / output circuit cell in FIG. 6 is provided with an input / output circuit IO and an N-channel MOSFET as shown in FIG. Therefore, the input / output circuit cell is represented as IO + NMOS. The power cell is composed of a time constant circuit GC. As a result, power cell and input / output circuit cell support The pitch between the input / output terminal DQ and the power supply terminals VCCQ and VSSQ and the power supply terminals VDD and VSS for the internal circuits can be made to be a substantially constant narrow pitch d2, as shown in FIG. Since the useless space as in the above configuration does not occur, the chip size of the semiconductor integrated circuit device ((LSI chip) circuit) can be reduced. On the other hand, if it is! /, The number of external terminals can be increased.
[0022] 内部回路 1と内部回路 2については、内部回路 1と 2を取り囲むように配置された電 源供給線 VDD, VSSに対して、時定数回路 GCから出力される駆動信号 (GTDV, WLDV)で動作する MOSFETが設けられる。図 6では、この MOSFETを NMOSの ように黒塗りで示している。特に制限されないが、この NMOSに対応して、バッファァ ンプ BAとしてのインバータ回路が設けられる。このバッファアンプは、出力線 GTDV , WLDVからの駆動信号を増幅して MNOSのスイッチング動作を速くするようにする 。特に制限されないが、内部回路に対応した NMOSは、 IOセルに設けられる NMO Sと異なり、内部回路を構成する MOSFETと同等のゲート耐圧を持つ MOSFETが 用いられる。 [0022] For internal circuit 1 and internal circuit 2, drive signals (GTDV, WLDV) output from time constant circuit GC to power supply lines VDD and VSS arranged so as to surround internal circuits 1 and 2 ) Is provided. In Figure 6, this MOSFET is shown in black, like NMOS. Although not particularly limited, an inverter circuit as a buffer amplifier BA is provided corresponding to the NMOS. This buffer amplifier amplifies the drive signals from the output lines GTDV and WLDV to speed up the switching operation of the MNOS. Although not particularly limited, the NMOS corresponding to the internal circuit uses a MOSFET having a gate breakdown voltage equivalent to that of the MOSFET constituting the internal circuit, unlike the NMOS provided in the IO cell.
[0023] 図 7には、この発明に係る半導体集積回路装置の他の実施例のレイアウト図が示さ れている。この実施例の半導体集積回路装置 (LSIチップ)は、チップ周辺の角部で のボンディングパッドの配列ピッチが粗くなることに着目し、そこにサージ電圧を放電 させる Nチャネル MOSFETを設けるようにする。つまり、図 7に点線で示したような M NOSセルを用意してお!、て、チップの角部でのボンディングパッド PADの間隔が d3 のように粗くなる部分に適宜に MNOSセルを配置させるというものである。ボンディン グパッド PADのピッチを粗くするのは、チップ角部において斜めに配置される隣同士 のワイヤの間隔を維持するために必要となる力もである。前述のように NMOSセルを 用意した場合には、 IOセルに設けられる Nチャネル MOSFETのサイズをその分小さ くするように利用することもできる。  FIG. 7 shows a layout diagram of another embodiment of the semiconductor integrated circuit device according to the present invention. In the semiconductor integrated circuit device (LSI chip) of this embodiment, paying attention to the fact that the bonding pitch of bonding pads at the corners around the chip becomes coarse, an N-channel MOSFET for discharging a surge voltage is provided there. In other words, prepare an M NOS cell as shown by the dotted line in FIG. 7 and place the MNOS cell appropriately in the part where the spacing between the bonding pads PAD at the corners of the chip becomes rough, such as d3. That's it. Roughening the pitch of the bonding pad PAD is also the force required to maintain the spacing between adjacent wires arranged diagonally at the chip corner. When an NMOS cell is prepared as described above, it can be used to reduce the size of the N-channel MOSFET provided in the IO cell.
[0024] 図 8には、この発明に係る半導体集積回路装置の他の一実施例のレイアウト図が 示されている。この実施例の半導体集積回路装置 (LSIチップ)は、チップ周辺の角 部が IOセルや電源セルが設けられないデッドスペースであることに着目し、そこにサ ージ電圧を放電させる Nチャネル MOSFETを設けるようにする。つまり、図 8に点線 で示したような NMOSセルを用意しておいて、チップの角部にかかる NMOSセルを 配置させるというものである。前述のように NMOSセルを用意した場合には、 IOセル に設けられる Nチャネル MOSFETのサイズをその分小さくするように利用することも できる。また、図 7の NMOSセルも組み合わせるようにしてもよい。 FIG. 8 shows a layout diagram of another embodiment of the semiconductor integrated circuit device according to the present invention. The semiconductor integrated circuit device (LSI chip) of this embodiment pays attention to the fact that the corner around the chip is a dead space where no IO cell or power cell is provided, and an N-channel MOSFET that discharges a surge voltage there. To be provided. That is, the dotted line in Figure 8 An NMOS cell as shown in Fig. 2 is prepared, and the NMOS cell is arranged at the corner of the chip. When an NMOS cell is prepared as described above, it can be used to reduce the size of the N-channel MOSFET provided in the IO cell. Further, the NMOS cell of FIG. 7 may be combined.
[0025] 以上本発明者によってなされた発明を、実施形態に基づき具体的に説明したが、 本発明は、前述した実施形態に限定されるものではなぐその要旨を逸脱しない範 囲において種々変更可能である。例えば、 MOSFETQ3のゥエルをソースと接続し、 時定数回路 GCのインバータ回路 INV2を省略してもよ ヽ。回路の接地電位端子 VS SQと VSSと 2種類がある場合、サージ保護回路として VSSQ力も VSSに向力 サー ジ電流を流すダイオード、逆に VSS力 VSSQに向力うサージ電流を流すダイォー ドが設けられる。これらのダイオードは、半導体チップ上に適宜に設けられればよい。 また、ボンディング規則によりパッドピッチが図 7の d3のように広くなる部分に、 MOS FETQ3等の駆動信号を増幅するバッファアンプを設ける構成としてもよい。さらに、 3以上の電源電圧を外部端子力 供給するものに同様に適用することができる。この 発明は、半導体集積回路装置の ESD保護回路として広く利用することができる。 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と 添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業 者に明らかである。 [0025] While the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. It is. For example, the MOSFET Q3 well may be connected to the source and the inverter circuit INV2 of the time constant circuit GC may be omitted. If there are two types of circuit ground potential pins, VS SQ and VSS, a surge protection circuit is provided with a diode that sends a surge current to VSS, and a diode that sends a surge current to VSS vs VSSQ. It is done. These diodes may be appropriately provided on the semiconductor chip. In addition, a buffer amplifier that amplifies a drive signal such as MOS FET Q3 may be provided in a portion where the pad pitch is wide as indicated by d3 in FIG. Furthermore, the present invention can be similarly applied to a power supply that supplies an external terminal power of 3 or more. The present invention can be widely used as an ESD protection circuit for semiconductor integrated circuit devices. While the above description has been made with reference to embodiments, it will be apparent to those skilled in the art that the present invention is not limited thereto and that various changes and modifications can be made within the spirit of the invention and the scope of the appended claims.
図面の簡単な説明  Brief Description of Drawings
[0026] [図 1]この発明に係る半導体集積回路装置の一実施例を示す入出力回路部の回路 図である。  FIG. 1 is a circuit diagram of an input / output circuit portion showing an embodiment of a semiconductor integrated circuit device according to the present invention.
[図 2]図 1の電源セルの一実施例を示す回路図である。  2 is a circuit diagram showing an embodiment of the power cell of FIG.
[図 3]図 1の電源セルの一実施例を示す具体的回路図である。  FIG. 3 is a specific circuit diagram showing an embodiment of the power cell of FIG. 1.
[図 4A]図 1の IOセルに設けられた MOSFETの動作説明図である。  FIG. 4A is an operation explanatory diagram of a MOSFET provided in the IO cell of FIG. 1.
[図 4B]図 1の IOセルに設けられた MOSFETの動作説明図である。  FIG. 4B is an operation explanatory diagram of the MOSFET provided in the IO cell of FIG. 1.
[図 5]この発明に用いられる電源セルの他の一実施例を示す回路図である。  FIG. 5 is a circuit diagram showing another embodiment of the power cell used in the present invention.
[図 6]この発明に係る半導体集積回路装置の一実施例を示すレイアウト図である。  FIG. 6 is a layout diagram showing one embodiment of a semiconductor integrated circuit device according to the present invention.
[図 7]この発明に係る半導体集積回路装置の他の一実施例を示すレイアウト図である [図 8]この発明に係る半導体集積回路装置の他の一実施例を示すレイアウト図である FIG. 7 is a layout diagram showing another embodiment of the semiconductor integrated circuit device according to the present invention. FIG. 8 is a layout diagram showing another embodiment of the semiconductor integrated circuit device according to the present invention.
[図 9]本願発明に先立って検討された半導体集積回路装置の概略レイァ外図であ る。 FIG. 9 is a schematic outside layer view of a semiconductor integrated circuit device studied prior to the present invention.

Claims

請求の範囲 The scope of the claims
[1] 第 1電源電圧を供給する第 1電源パッドと、  [1] a first power supply pad for supplying a first power supply voltage;
第 2電源電圧を供給する第 2電源パッドと、  A second power supply pad for supplying a second power supply voltage;
信号の入力又は出力を行う信号パッドと、  A signal pad for inputting or outputting signals;
前記第 1電源パッドに対応して設けられた第 1電源セルと、  A first power cell provided corresponding to the first power pad;
前記第 2電源パッドに対応して設けられた第 2電源セルと、  A second power cell provided corresponding to the second power pad;
前記第 1信号パッドに対応して設けられた入出力セルと、  An input / output cell provided corresponding to the first signal pad;
前記第 1電源パッドから供給された第 1電源電圧を供給する第 1電源線と、 前記第 2電源パッドから供給された第 2電源電圧を供給する第 2電源線とを有し、 前記入出力セルは、信号の入力又は出力を行う回路、静電保護回路及び前記第 1 電源線と第 2電源線との間に設けられた第 1MOSFETを有し、  A first power supply line for supplying a first power supply voltage supplied from the first power supply pad; and a second power supply line for supplying a second power supply voltage supplied from the second power supply pad; The cell includes a circuit for inputting or outputting a signal, an electrostatic protection circuit, and a first MOSFET provided between the first power supply line and the second power supply line,
前記第 1電源セルは、前記第 1電源パッドでの正の静電気に応答して前記入出力 セルに設けられた前記第 1MOSFETを一時的にオン状態にさせる時定数回路と、 前記第 1電源パッドに向かう電流を流す一方向性素子とを有し、  The first power supply cell includes a time constant circuit that temporarily turns on the first MOSFET provided in the input / output cell in response to positive static electricity at the first power supply pad; and the first power supply pad. And a unidirectional element that flows current toward
前記第 2電源セルは、前記第 2電源パッドでの正の静電気に応答して前記入出力 セルに設けられた前記第 1MOSFETを一時的にオン状態にさせる時定数回路と、 前記第 2電源パッドに向かう電流を流す一方向性素子とを有する  The second power cell includes a time constant circuit for temporarily turning on the first MOSFET provided in the input / output cell in response to positive static electricity at the second power pad, and the second power pad. And a unidirectional element for passing a current toward
半導体集積回路装置。  Semiconductor integrated circuit device.
[2] 請求項 1に記載の半導体集積回路装置はさらに、 [2] The semiconductor integrated circuit device according to claim 1,
第 3電源電圧を供給する第 3電源パッドと、  A third power supply pad for supplying a third power supply voltage;
第 4電源電圧を供給する第 4電源パッドと、  A fourth power supply pad for supplying a fourth power supply voltage;
前記第 3電源パッドに対応して設けられた第 3電源セルと、  A third power cell provided corresponding to the third power pad;
前記第 4電源パッドに対応して設けられた第 4電源セルと、  A fourth power cell provided corresponding to the fourth power pad;
前記第 3電源パッドから供給された第 3電源電圧を供給する第 3電源線と、 前記第 4電源パッドから供給された第 4電源電圧を供給する第 4電源線と、 前記第 3電源線と第 4電源線との間に設けられた複数個の第 2MOSFETと、 前記第 3電源線と第 4電源線を通して伝えられた前記第 3電源電圧と前記第 4電圧 を動作電圧とし、前記入出力セルとの間で信号の授受を行う内部回路とを有し、 前記第 3及び第 4電源セルは、前記第 1及び第 2電源セルと同じ構成とされ、前記 時定数回路により前記複数個の第 2MOSFETを制御する A third power supply line for supplying a third power supply voltage supplied from the third power supply pad; a fourth power supply line for supplying a fourth power supply voltage supplied from the fourth power supply pad; and the third power supply line. A plurality of second MOSFETs provided between a fourth power supply line, the third power supply voltage and the fourth voltage transmitted through the third power supply line and the fourth power supply line as operating voltages, and the input / output An internal circuit that transmits and receives signals to and from the cell, The third and fourth power supply cells have the same configuration as the first and second power supply cells, and control the plurality of second MOSFETs by the time constant circuit.
半導体集積回路装置。  Semiconductor integrated circuit device.
[3] 請求項 2に記載の半導体集積回路装置において、 [3] In the semiconductor integrated circuit device according to claim 2,
前記第 1乃至第 4電源セルと前記入出力セルは、複数個がワイヤボンディングに対 応した規則的なピッチで複数個が配置される半導体集積回路装置。  A semiconductor integrated circuit device in which a plurality of the first to fourth power cells and the input / output cells are arranged at a regular pitch corresponding to wire bonding.
[4] 請求項 3に記載の半導体集積回路装置において、 [4] The semiconductor integrated circuit device according to claim 3,
前記第 1電源電圧と第 2電源電圧に対応した動作電圧は、前記第 3電源電圧と第 4 電源電圧に対応した動作電圧よりも大きい半導体集積回路装置。  The semiconductor integrated circuit device, wherein an operating voltage corresponding to the first power supply voltage and the second power supply voltage is greater than an operating voltage corresponding to the third power supply voltage and the fourth power supply voltage.
[5] 請求項 4に記載の半導体集積回路装置において、 [5] In the semiconductor integrated circuit device according to claim 4,
前記第 1及び第 2電源セルは、前記第 1電源線と第 2電源線との間に前記時定数 回路に用いられる MOSFETと同等の素子サイズの第 3MOSFETを有する半導体 集積回路装置。  The semiconductor integrated circuit device, wherein the first and second power cells have a third MOSFET having an element size equivalent to a MOSFET used for the time constant circuit between the first power line and the second power line.
[6] 請求項 4に記載の半導体集積回路装置において、 [6] The semiconductor integrated circuit device according to claim 4,
前記第 3及び第 4電源セルは、前記第 3電源線と第 4電源線との間に前記時定数 回路に用いられる MOSFETと同等の素子サイズの第 4MOSFETを有する半導体 集積回路装置。  The semiconductor integrated circuit device, wherein the third and fourth power cells have a fourth MOSFET having an element size equivalent to a MOSFET used for the time constant circuit between the third power line and the fourth power line.
[7] 請求項 5に記載の半導体集積回路装置において、 [7] The semiconductor integrated circuit device according to claim 5,
前記複数の第 2MOSFETのそれぞれには、前記時定数回路力 の制御信号を増 幅するバッファ回路が設けられる半導体集積回路装置。  A semiconductor integrated circuit device, wherein each of the plurality of second MOSFETs is provided with a buffer circuit for amplifying the control signal of the time constant circuit power.
[8] 請求項 6に記載の半導体集積回路装置において、 [8] The semiconductor integrated circuit device according to claim 6,
前記複数の第 2MOSFETのそれぞれには、前記時定数回路力 の制御信号を増 幅するバッファ回路が設けられる半導体集積回路装置。  A semiconductor integrated circuit device, wherein each of the plurality of second MOSFETs is provided with a buffer circuit for amplifying the control signal of the time constant circuit power.
[9] 請求項 7に記載の半導体集積回路装置はさらに、 [9] The semiconductor integrated circuit device according to claim 7,
前記第 1電源線と第 2電源線との間に設けられ、前記時定数回路により制御される 第 5MOSFETを含む第 1保護セルを更に有し、前記ワイヤボンディングに対応した 規則的なピッチを維持しつつ、前記電源セル又は入出力セル間に前記第 1保護セ ルが配置された半導体集積回路装置。 A first protection cell including a fifth MOSFET provided between the first power supply line and the second power supply line and controlled by the time constant circuit, to maintain a regular pitch corresponding to the wire bonding; However, a semiconductor integrated circuit device in which the first protection cell is disposed between the power supply cell or the input / output cell.
[10] 請求項 8に記載の半導体集積回路装置はさらに、 [10] The semiconductor integrated circuit device according to claim 8,
前記第 1電源線と第 2電源線との間に設けられ、前記時定数回路により制御される 第 5MOSFETを含む第 1保護セルを更に有し、前記ワイヤボンディングに対応した 規則的なピッチを維持しつつ、前記電源セル又は入出力セル間に前記第 1保護セ ルが配置された半導体集積回路装置。  A first protection cell including a fifth MOSFET provided between the first power supply line and the second power supply line and controlled by the time constant circuit, to maintain a regular pitch corresponding to the wire bonding; However, a semiconductor integrated circuit device in which the first protection cell is disposed between the power supply cell or the input / output cell.
[11] 請求項 7に記載の半導体集積回路装置はさらに、 [11] The semiconductor integrated circuit device according to claim 7,
前記第 1電源線と第 2電源線との間に設けられ、前記時定数回路により制御される 第 6MOSFETを含む第 2保護セルを更に有し、前記チップ角部に前記 2保護セル が配置された半導体集積回路装置。  A second protection cell including a sixth MOSFET provided between the first power supply line and the second power supply line and controlled by the time constant circuit, wherein the second protection cell is disposed at the chip corner portion; Semiconductor integrated circuit device.
[12] 請求項 8に記載の半導体集積回路装置はさらに、 [12] The semiconductor integrated circuit device according to claim 8,
前記第 1電源線と第 2電源線との間に設けられ、前記時定数回路により制御される 第 6MOSFETを含む第 2保護セルを更に有し、前記チップ角部に前記 2保護セル が配置された半導体集積回路装置。  A second protection cell including a sixth MOSFET provided between the first power supply line and the second power supply line and controlled by the time constant circuit, wherein the second protection cell is disposed at the chip corner portion; Semiconductor integrated circuit device.
PCT/JP2007/062079 2006-06-15 2007-06-15 Semiconductor integrated circuit device WO2007145307A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008521263A JP4873504B2 (en) 2006-06-15 2007-06-15 Semiconductor integrated circuit device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-165473 2006-06-15
JP2006165473 2006-06-15

Publications (1)

Publication Number Publication Date
WO2007145307A1 true WO2007145307A1 (en) 2007-12-21

Family

ID=38831820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062079 WO2007145307A1 (en) 2006-06-15 2007-06-15 Semiconductor integrated circuit device

Country Status (2)

Country Link
JP (2) JP4873504B2 (en)
WO (1) WO2007145307A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051175A1 (en) * 2011-10-06 2013-04-11 パナソニック株式会社 Semiconductor integrated circuit device
CN104347613A (en) * 2013-08-09 2015-02-11 联华电子股份有限公司 Chip having electrostatic discharge protection function
US10256228B2 (en) 2017-01-25 2019-04-09 Renesas Electronics Corporation Semiconductor device
CN110999024A (en) * 2017-08-14 2020-04-10 三星Sdi株式会社 Battery protection circuit and battery pack including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214936A (en) * 1996-12-31 1998-08-11 Sgs Thomson Microelectron Inc Integrated circuit with improved overvoltage protection
JP2000208718A (en) * 1999-01-19 2000-07-28 Matsushita Electric Ind Co Ltd Semiconductor device
JP2005536046A (en) * 2002-08-09 2005-11-24 フリースケール セミコンダクター インコーポレイテッド Electrostatic discharge protection circuit and method of operation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3883697B2 (en) * 1998-05-15 2007-02-21 旭化成マイクロシステム株式会社 Overvoltage protection circuit
JP2004327538A (en) * 2003-04-22 2004-11-18 Kawasaki Microelectronics Kk Semiconductor chip
CN100565840C (en) * 2004-07-28 2009-12-02 松下电器产业株式会社 Semiconductor device
JP2006128422A (en) * 2004-10-29 2006-05-18 Renesas Technology Corp Semiconductor integrated circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214936A (en) * 1996-12-31 1998-08-11 Sgs Thomson Microelectron Inc Integrated circuit with improved overvoltage protection
JP2000208718A (en) * 1999-01-19 2000-07-28 Matsushita Electric Ind Co Ltd Semiconductor device
JP2005536046A (en) * 2002-08-09 2005-11-24 フリースケール セミコンダクター インコーポレイテッド Electrostatic discharge protection circuit and method of operation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KER M.-D.: "Whole-Chip ESD Protection Design with Efficient VDD-to-VSS ESD Clamp Circuits for Submicron CMOS VLSI", vol. 46, no. 1, 1999, pages 173 - 183, XP000792085 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051175A1 (en) * 2011-10-06 2013-04-11 パナソニック株式会社 Semiconductor integrated circuit device
US9401602B2 (en) 2011-10-06 2016-07-26 Socionext Inc. Semiconductor integrated circuit device
CN104347613A (en) * 2013-08-09 2015-02-11 联华电子股份有限公司 Chip having electrostatic discharge protection function
CN104347613B (en) * 2013-08-09 2017-07-14 联华电子股份有限公司 Has the chip of electrostatic discharge protection
US10256228B2 (en) 2017-01-25 2019-04-09 Renesas Electronics Corporation Semiconductor device
CN110999024A (en) * 2017-08-14 2020-04-10 三星Sdi株式会社 Battery protection circuit and battery pack including the same
CN110999024B (en) * 2017-08-14 2023-08-29 三星Sdi株式会社 Battery protection circuit and battery pack including the same
US11799303B2 (en) 2017-08-14 2023-10-24 Samsung Sdi Co., Ltd. Battery protection circuit and battery pack comprising same

Also Published As

Publication number Publication date
JP2011254100A (en) 2011-12-15
JPWO2007145307A1 (en) 2009-11-12
JP4873504B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
US7589945B2 (en) Distributed electrostatic discharge protection circuit with varying clamp size
TWI413227B (en) Electrostatic discharge protection circuit and method of operation
US7394631B2 (en) Electrostatic protection circuit
US7420789B2 (en) ESD protection system for multi-power domain circuitry
TWI286380B (en) Semiconductor integrated circuit device
US20080173899A1 (en) Semiconductor device
JP2005056892A (en) Esd protective circuit
US20180115311A1 (en) Configurable Clamp Circuit
TWI765956B (en) Semiconductor device
US5894230A (en) Modified keeper half-latch receiver circuit
TW201203509A (en) Semiconductor integrated circuit device
CN105575960B (en) Method and circuit for on-chip electrostatic discharge protection scheme
JP6251387B2 (en) Composite type semiconductor device
WO2007145307A1 (en) Semiconductor integrated circuit device
JP2589938B2 (en) ESD protection circuit for semiconductor integrated circuit device
US5705941A (en) Output driver for use in semiconductor integrated circuit
WO1999065079A1 (en) A method of programmability and an architecture for cold sparing of cmos arrays
US7564665B2 (en) Pad ESD spreading technique
US10454269B2 (en) Dynamically triggered electrostatic discharge cell
JP2007227697A (en) Semiconductor device, and semiconductor integrated device
CN107452734A (en) Semiconductor devices
JP2011119415A (en) Semiconductor integrated device
JP7347951B2 (en) surge absorption circuit
JP2008244071A (en) Semiconductor integrated circuit provided with esd protection circuit
JP6546790B2 (en) Interface circuit and method for a hearing aid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745334

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008521263

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745334

Country of ref document: EP

Kind code of ref document: A1