WO2007145106A1 - 重錘形圧力天びん自動比較校正装置 - Google Patents
重錘形圧力天びん自動比較校正装置 Download PDFInfo
- Publication number
- WO2007145106A1 WO2007145106A1 PCT/JP2007/061423 JP2007061423W WO2007145106A1 WO 2007145106 A1 WO2007145106 A1 WO 2007145106A1 JP 2007061423 W JP2007061423 W JP 2007061423W WO 2007145106 A1 WO2007145106 A1 WO 2007145106A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- calibration
- weight
- piston
- pressure balance
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L27/00—Testing or calibrating of apparatus for measuring fluid pressure
- G01L27/002—Calibrating, i.e. establishing true relation between transducer output value and value to be measured, zeroing, linearising or span error determination
- G01L27/005—Apparatus for calibrating pressure sensors
Definitions
- the present invention relates to an automatic comparison and calibration apparatus having a high-precision pressure generation function for automatically calibrating a weight-type pressure balance, which is widely used as a pressure standard.
- a weight-type pressure balance (Pressure Balance) is a device that can stably generate pressure, and is often used as a pressure standard.
- Figure 1 shows a schematic diagram of a conventional weight-type pressure balance. The important components of the weight-type pressure balance are the piston 1, the cylinder 2 and the weight 3. The cylinder is attached to the column 4.
- W is the force and A is the effective cross-sectional area determined by the piston 'cylinder.
- M is the mass of the weight including the piston mass
- pm is the density of the piston and the weight
- ⁇ is the surface tension of the pressure medium
- C is the circumferential length of the piston.
- FIG. 1 is a schematic diagram of a simple piston-cylinder that is a typical piston-cylinder structure.
- the effective area of a simple piston 'cylinder is expressed by the following equation assuming linearity with respect to pressure.
- a (P, t) A (0, tr)-(1 + ⁇ ⁇ )- ⁇ 1 + a s-(t-tr) ⁇ (3)
- the effective cross-sectional area A (0, tr) is accurately determined by comparison with a higher standard, or by a shape measurement force such as piston “cylinder diameter”, “roundness” or “cylindricity”.
- each descent speed is different from the above natural descent speeds, the generated pressure of the two pressure balances is not balanced, so a minute weight is loaded on either pressure balance and the generated pressure is adjusted. To do. The above measurement is repeated until the descending speeds coincide. When each descent rate matches each natural descent rate, an equilibrium is obtained and the pressure generated by both pressure balances can be regarded as equal.
- the piston floating position of both pressure balances is measured using the piston floating position measuring instrument 11, 21, and the piston 'cylinder temperature is measured using the piston' cylinder temperature measuring instrument 12, 22
- the atmospheric density can be measured by an environmental measuring instrument 7 that also has a thermo-hygrometer and an atmospheric pressure gauge.
- the pressure generated by the pressure balance 20 to be calibrated is calculated from the parameters (1), (2), and (3) described above based on the parameters of the known standard weight balance 10 and the parameters measured during calibration.
- the generated pressure value which is a calibration value at this pressure point, can be obtained.
- Non-Patent Document 1 JIS7610—1, -2, -3, weight-type pressure balance (2000)
- Non-Patent Document 2 Tokihiko Komine, Development of Pressure Standard and Ensuring Reliability, High Pressure Science and Technology, No.14, No.2, 2004
- Non-Patent Literature 3 T. Kooata and D. A. Olson, Accurate Determination of Equil ibrium State between Two Pressure Balances using a Pressure Transducer, "Metrologia, 42—6, S231-S234, 2005.
- the calibration operator determines whether or not the weight is added, the pressure is applied, and whether the generated pressures of the two pressure balances are equal.
- the technical skill and skill level of the calibration operator are required. But There was a case where it was not secured.
- the present invention performs weight addition, pressure application, and calibration performed by an operator. Judgment of whether pressures generated by two pressure balances are equal. It is an object of the present invention to realize a weight-type pressure balance automatic comparison and calibration device that can automatically perform the operation regardless of the skill and skill level of the operator.
- the present invention is an automatic comparison / calibration apparatus capable of automatically comparing and calibrating the pressure generated by a calibration weight-type pressure balance using a standard weight-type pressure balance.
- Pressure generator high-accuracy pressure gauge, first shut-off valve that shuts off the standard weight-type pressure balance and pressure generator, shuts off the calibrated weight-type pressure balance and pressure generator
- an automatic comparison and calibration device comprising a second shut-off valve and a measurement control unit.
- each of the first shut-off valve and the second shut-off valve is a constant displacement valve whose internal capacity does not change by opening and closing the valve.
- the pressure generator can be finely adjusted in capacity.
- the measurement control unit may include a control circuit capable of controlling the pressure generator, the first shut-off valve, and the second shut-off valve, and a measurement circuit that measures a pressure value by a high-precision pressure gauge.
- the measurement control unit has an external connection interface capable of inputting a measurement signal of an external measurement device and outputting a signal for controlling the external control device.
- the pressure generator adjusts the floating position of the piston of the standard weight-type pressure balance and the calibrated weight-type pressure balance, and the piston floating position obtained by measuring with a piston floating position measuring device. It is preferable to input a signal through the interface and adjust the floating position of the piston by feedback control based on the piston floating position signal.
- the measurement control unit may be equipped with a dedicated program capable of setting parameters necessary for calibration in advance so that the pressure generated by the weight-type pressure balance for calibration can be automatically compared and calibrated. I like it!
- a comparative calibration of a weight-type pressure balance can be realized with high accuracy within a set time regardless of the technical skill and skill level of the calibration operator.
- Technical ability of the worker ⁇ Can be implemented with an automatic comparison and calibration device, regardless of skill level.
- the two shut-off valves used in the present invention are constant displacement valves in which the internal capacity does not change by opening and closing the valve. Can be finely adjusted.
- the pressure generator can be fine tuned.
- a measurement control unit having a control circuit for controlling the pressure generator and the two shut-off valves and a measurement circuit for measuring the pressure value by the high-precision pressure gauge is provided. Since it has an external connection interface that can input constant signals and output signals to control external control devices, the measurement control unit centrally manages the measurement and control necessary for comparative calibration. it can.
- the measurement controller obtains signals such as the piston 'cylinder temperature, piston levitation position' rotation speed, etc. of the standard and calibrated double-fed pressure balances.
- the external device for exchanging the weight can be controlled, and the piston floating position is adjusted by the pressure generator, but the piston floating position signal can be obtained through the interface and the position can be adjusted by feedback control. High accuracy piston levitation The position can be controlled.
- the automatic comparison and calibration device can automatically carry out comparative calibration by using a dedicated program that can set parameters necessary for calibration in advance, and it also provides the necessary information for a series of calibration operations in advance. Since it can be determined, the calibration can be performed fully unattended and unattended.
- FIG. 1 is a schematic view of a conventional weight-type pressure balance.
- FIG. 2 is an explanatory view showing a conventional calibration method for a pressure balance.
- FIG. 3 is a diagram for explaining an embodiment of an automatic comparison and calibration apparatus according to the present invention.
- FIG. 4 is a diagram showing a result of a calibration example by an automatic comparison and calibration apparatus of an example.
- FIG. 5 is a diagram showing an example of characteristic evaluation by the automatic comparison and calibration apparatus of the example.
- FIG. 3 is a configuration diagram of one embodiment of the device of the present invention. With this configuration, it is possible to calibrate the unknown generated pressure of the calibrated weight-type pressure balance 20 using the standard weight-type pressure balance 10 whose generated pressure is known. Since the main component of the present invention is the automatic comparison / calibration configuration, the description of the electronic and mechanical systems of each of the weight-type pressure balances 10 and 20 is omitted. In addition, the rotation of the piston of each weight-type pressure balance during calibration is controlled by a motor (not shown).
- the pressure adjustment is performed using the pressure generator 30.
- the pressure generator 30 has a capacity fine-tuning function to lift the piston position of the weight type pressure balance 10, 20 to an appropriate position.
- the pressure generator 30 can be controlled from the measurement control unit 80.
- the generated pressure is measured using a high-precision pressure gauge 40.
- the measurement value of the high-precision pressure gauge 40 is sent to the measurement control unit 80.
- the piston floating positions of the standard weight-type pressure balance 10 and the calibrated weight-type pressure balance 20 are input from the piston floating position measuring devices 11, 21 to the measurement control unit 80 through the interface 70.
- the piston's cylinder temperature of the standard weight-type pressure balance 10 and the calibrated weight-type pressure balance 20 is input to the measurement control unit 80 through the interface 70 from the piston 'cylinder temperature measuring device 12, 22.
- the [0039] Weights can be added to and removed from the standard weight-type pressure balance 10 and the weight-type pressure balance 20 to be calibrated using automatic weights 3 and 23, respectively. Since the main body of the present invention is the configuration of the automatic comparison and calibration apparatus, the description of the automatic weight exchangers 13 and 23 is omitted.
- the automatic weight changers 13 and 23 of the semi-weighted pressure balance 10 and the calibrated weight-type pressure balance 20 can be controlled from the measurement control unit 80 through the interface 70.
- the determination of whether the generated pressures are equal is made by determining the shutoff valve 50 between the standard weight-type pressure balance 10 and the high-precision pressure gauge 40, and the weight-type pressure balance 20 to be calibrated and the high-precision pressure gauge. This is performed by a replacement comparison method (see Non-Patent Document 3 above) using a high-precision pressure gauge 40 as a comparator, using a shut-off valve 60 between 40.
- a replacement comparison method see Non-Patent Document 3 above
- the shut-off valves 50, 60 are constant capacity shut-off valves whose internal capacity does not change by opening / closing of the valves, and control of opening / closing is performed by sending a control signal from the measurement control unit 80 to the valve controllers 51, 61. It is possible.
- Measurement signals (environmental temperature, relative humidity, and atmospheric pressure) of the environmental state are input from the environmental measuring instrument 7 to the measurement control unit 80 through the interface 70.
- parameters necessary for calibration for example, pressure points to be calibrated and their order (test pressure value and number of divisions according to the accuracy grade of the pressure balance, The details of the pressure change method in the comparison test are described in JIS B 7610-2 double pressure type pressure balance Part 2: Test method 7.2 Test requirement b), and the number of repetitions of calibration (several As a result of performing calibration once for each pressure point, multiple calibrations should be performed for multiple pressure points. This multiple number of times), and the piston floating position at the time of calibration and its allowable values are set.
- the two shut-off valves 50, 60 are opened, and the pressure generator 30 to change pressure.
- the pressure is adjusted by feeding back a signal from a pressure gauge built in the pressure generator 30 or a high precision pressure gauge 40.
- the generated pressure of each pressure balance is controlled while controlling the pressure generator 30 and the two shutoff valves 50 and 60. Alternately measure with high-precision pressure gauge 40. This specific method will be described below.
- the pressure generated by the standard weight-type pressure balance 10 is printed on the high-precision pressure gauge 40. After adjusting the position, after the pressure has stabilized sufficiently, obtain the measured value Ir of the standard weight-type pressure balance 10 using the high-precision pressure gauge 40. Also, measure the temperature of the piston of the standard weight type pressure balance 10 and the piston floating position and environmental conditions. All these measured values are sent to the measurement controller 80.
- the pressure generated by the calibrated weight-type pressure balance 20 is applied to the high-precision pressure gauge 40. After position adjustment, after the pressure has stabilized sufficiently, Acquire the measurement value It of the pressure generated by the pressure balance 20 for calibration. Also, measure the piston temperature of the standard weight type pressure balance 10 and the piston floating position and environmental conditions. All these measured values are sent to the measurement control unit 80.
- the measurement procedure described above is based on a displacement comparison method using the high-precision pressure gauge 40 as a comparator.
- the generated pressure of the two pressure balances is measured separately, so the stability of the generated pressure can be evaluated individually. Furthermore, there is a merit that even if the generated pressure force of both pressure balances is unbalanced to some extent, the differential pressure between them can be estimated with high accuracy.
- the differential pressure ⁇ between the two pressure balances can be estimated from the following equation, for example, from the measurement results obtained using the above-described replacement comparison method.
- Ita and Ira are the average values of It and Ir, respectively, from which the measuring force was also obtained.
- f is the scaling factor of the high-precision pressure gauge 40 used, and can be calculated from the data already calibrated or being calibrated. Since the calculation formula of ⁇ including the evaluation of the scaling factor is described in detail in Non-Patent Document 3 mentioned above, it is omitted here.
- the weight-type pressure balance for calibration The generated pressure of 20 can be calibrated by the following formula.
- Pt and Pr represent the generated pressures of the calibrated and standard weight type pressure balances, respectively. Pr can be calculated by equations (1) to (3).
- Second shut off Close the shutoff valve 60. In this state, the piston floating position of the standard weight type pressure balance 10 is adjusted to the position of zero floating by the capacity fine adjustment function of the pressure generator 30.
- the program termination process is performed as follows. That is, the pressure generator 30 returns the pressure of the entire calibration system to a zero pressure state. The combination of the weights loaded on the standard weight-type pressure balance 10 and the calibrated weight-type pressure balance 20 is returned to the state at the start of the program by the automatic weight changers 13 and 23.
- FIG. 4 is a diagram showing a calibration example by the automatic comparison and calibration apparatus of the above embodiment.
- the pressure-balance automatic balance calibration device according to the present invention first increases lOMPa force to lOOMPa while performing calibration in lOMPa steps, and then similarly from lOOMPa to lOMPa in lOMPa steps. Shows the results when the pressure is lowered.
- FIG. 4 (a) shows the pressure of the entire calibration system as a function of elapsed time.
- the pressure of the calibration system as a whole was obtained as a value force obtained by averaging the pressure measured by the high-precision pressure gauge 40 during the time when the displacement comparison measurement was performed at each calibration pressure point. From this figure, it can be confirmed that automatic calibration is performed at regular time intervals by automatic operation.
- Fig. 4 (b) and Fig. 4 (c) show each of the standard weight-type pressure balance 10 and the calibrated weight-type pressure balance 20 during the displacement comparison measurement at each calibration pressure point. Piston 'cylinder temperature And the time average value of the piston position. Each piston 'cylinder temperature is
- the movable range of the piston of the double-weight pressure balance used in this calibration example is about ⁇ 5 mm, but for high-precision calibration, the piston position is controlled to about ⁇ 0.5 mm or less. There is a need to.
- each piston position is controlled within ⁇ 0.2 mm by force feedback control controlled by operation of the pressure generator 30 and the two shut-off valves 50, 60. FIG. It can be confirmed from (c) that the piston position control necessary for high-accuracy calibration is possible.
- FIG. 4 (d) is a diagram showing the calibration pressure value of the calibrated weight-type pressure balance 20 obtained by automatic operation of the apparatus of the present invention as a deviation from the nominal pressure. The deviation is shown in ppm (X 10 _6 ). From the figure, it can be seen that the calibration values at each calibration point are obtained with the elapsed time. In the conventional calibration, the calibration value was calculated by analysis after the series of calibration work by the calibration operator was completed. However, in this calibration device, while calibration is being performed, the calibration value is measured after each calibration point is measured. Immediately, the calibration value at that point can be calculated.
- the automatic comparison and calibration apparatus can also be used for characteristic evaluation of a weight-type pressure balance that can be obtained only by normal calibration. For example, by repeating comparative calibration while changing the piston floating position of the calibrated weight type pressure balance without changing the piston floating position of the standard weight type pressure balance, It is possible to clarify the effect of the balance's piston floating position on the generated pressure. Similarly, the effect on the generated pressure due to the speed of the piston rotation can be evaluated.
- FIG. 5 is a diagram showing the results of evaluating the influence of the piston floating position on the calibrated weight-type pressure balance on the generated pressure obtained by the automatic comparison and calibration apparatus of the above example.
- Fig. 5 (a) shows the pressure of the entire calibration system
- Fig. 5 (b) shows the piston positions of the standard weight-type pressure balance 10 and the calibrated weight-type pressure balance 20
- Fig. 5 (c) shows both weights.
- the relative change in differential pressure between the pressure balances is shown as a function of elapsed time.
- the automatic comparison and calibration apparatus of the above example was first used at 10 MPa. While maintaining the piston floating position of the standard weight-type pressure balance almost constant, the piston floating position of the weight-type pressure balance to be calibrated is increased from + 1. Omm to 1. Omm in 5 steps in a 0.5mm step. The comparison calibration was repeated, and then the same measurement was repeated at each calibration pressure while increasing the pressure of the calibration system to lOOMPa in 10 MPa steps. These measurements are performed fully automatically by a prior program.
- FIG. 5 (c) shows the relative change in the differential pressure between the two weight-type pressure balances for each combination of the generated pressure and the piston position.
- Te is set to Oppm the amount of change of approximately Omm piston position of the calibration weight type pressure balance 20 (X 10 _6).
- the amount of change in pressure depends on the piston position of the pressure balance 20 to be calibrated, and the amount of change is a minute change of about ⁇ 5 ppm. I understand.
- the apparatus of the present invention enables accurate evaluation of characteristics such as the influence of the piston floating position on the pressure to be calibrated on the generated pressure.
- the automatic comparison and calibration apparatus since the automatic comparison and calibration apparatus according to the present invention has the above-described configuration, it can be applied regardless of whether the medium used for calibration is a gas or a liquid.
- the reference pressure can be applied to gauge pressure calibration with atmospheric pressure or absolute pressure calibration with vacuum.
- a gap-control-type weight-type pressure balance is used as a weight-type pressure balance to be calibrated. By repeating comparative calibration while changing the gap control pressure, the effect of the gap control pressure on the generated pressure is affected. Can also be evaluated. In this case, it is necessary to add a pressure generator to control the clearance control pressure.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
【課題】重錘形圧力天びんを自動で校正するための、圧力の高精度発生機能を備えた自動比較校正装置を実現する。
【解決手段】圧力発生器30は、標準用重錘形圧力天びん10及び被校正用重錘形圧力天びん20のピストンの浮上位置を調整するとともに、ピストン浮上位置測定器11、21で測定して得られたピストン浮上位置信号をインターフェイス70を通じて入力し、ピストン浮上位置信号に基づいてフィードバック制御によりピストンの浮上位置を調整し、第1の定容量遮断弁50、第2の定容量遮断弁60はその開閉により回路を切り替え、高精度圧力計40は各圧力天びんの発生圧力を測定し、計測制御部80は、被校正用重錘形圧力天びん20の発生圧力を自動で比較校正できるように事前に校正に必要なパラメータを設定可能な専用プログラムを搭載している。
Description
明 細 書
重錘形圧力天びん自動比較校正装置
技術分野
[0001] 本発明は、圧力標準器として広く用いられて 、る重錘形圧力天びんを自動で校正 するための、圧力の高精度発生機能を備えた自動比較校正装置に関するものである 背景技術
[0002] 重錘形圧力天びん(Pressure Balance)は、圧力を安定に発生させることができる装 置であり、圧力標準器として用いられていることが多い。図 1に、従来の重錘形圧力 天びんの概略図を示す。重錘形圧力天びんの構成要素として重要なのは、ピストン 1 、シリンダ 2及び重錘 3である。シリンダは支柱 4に取り付けられる。
[0003] 精密に質量が決定された重錘 3とピストン 1による力をピストン 1に作用させ、その負 荷されたピストン 1を平衡位置に浮上させるのに必要な圧力 Pは次の式で表される。
P =W/A
ここで、 Wは力、 Aはピストン'シリンダにより決定される有効断面積である。
[0004] 発生圧力の安定度は、機器の精度、圧力範囲により異なるが、良いものでは相対 的に 10_6のオーダ以下である。通常、ピストン 1とシリンダ 2の間の機械的接触を避け るために、ピストン 1、又はシリンダ 2を図示していないモータ、又は作業者の手回しに より回転させる。
[0005] より正確には、非特許文献 1、 2に記載されているように、重錘形圧力天びんによる 圧力基準面における発生圧力 Pは次式で表される (非特許文献 1、 2参照)。
P= (W/A) + ( p f- a) -g -h (1)
ここで、 (p f— p a^g 'h はヘッド差補正であり、 f は圧力媒体の密度、 p aは 空気密度、 gは局所重力加速度、 hはピストンの下端面と圧力基準面の鉛直距離で ある。
[0006] Wは、ピストン、重錘による重力と圧力媒体の表面張力によりピストンに働く力を含 んだ力であり、次式で表される。
W =M -g - (l - p a/ m) + y - C (2)
ここで Mはピストン質量を含んだ重錘の質量、 p mはピストンと重錘の密度、 γは圧 力媒体の表面張力、 Cはピストンの円周長である。
[0007] 重錘形圧力天びんの発生圧力を正確に決定するためには、式(1)における有効断 面積 Αの決定が特に重要である。一般的に、 Aは圧力と温度の関数であり、その評 価方法はピストン'シリンダの構造によって異なる。
[0008] 図 1は、典型的なピストン.シリンダの構造である単純型のピストン.シリンダの概略 図である。単純型のピストン'シリンダの有効断面積は圧力に対する線形性を仮定し て次式で表される。
A (P, t) = A (0, tr) - (1 + λ · Ρ) - { 1 + a s - (t-tr) } (3)
ここで Α (Ρ, t)は圧力 Ρ、温度 t°Cでのピストン 'シリンダの有効断面積 A (0, tr)は 圧力 OPa、参照温度 tr°Cでの有効断面積、 λは有効断面積の圧力変形係数、 a sは ピストンとシリンダの線膨張係数 a pと a cの和である。
[0009] 有効断面積 A (0, tr)は、上位標準器との比較校正、またはピストン'シリンダの直 径'真円度 ·円筒度等の形状測定力 精密に決定される。
[0010] 重錘形圧力天びんの校正と特性評価のためには、 2台の重錘形圧力天びんの比 較校正 (クロスフロート)法が広く用いられて 、る。 2台の圧力天びんの発生圧力が等 しいか否かを判断するために、いくつかの方法が提案されてきているが、代表的な方 法は圧力天びんのピストンの降下速度を観測する方法である。降下速度はピストン浮 上位置の時間変化力 得られる。比較校正の概略図を図 2に示す。比較校正により、 発生圧力が既知の標準用重錘形圧力天びん 10を用いて、被校正用重錘形圧力天 びん 20の未知の発生圧力を校正することができる。
[0011] 通常の比較校正では、はじめに、両重錘形圧力天びん 10、 20に目的の圧力発生 に必要な質量の重錘を積載し、遮断弁 5を開き、圧力ポンプ 6によって両重錘形圧力 天びんと接続配管内を加圧する。圧力ポンプ 6の調整により両重錘形圧力天びんの ピストンを適正位置に浮上させた状態で遮断弁 5を閉じ、ピストンを回転させた状態 でその圧力における各圧力天びん固有のピストン自然降下速度を測定する。各ビス トン浮上位置の測定は、ピストン浮上位置測定器 11、 21を用いて行う。
[0012] その後、遮断弁 5を開け圧力ポンプ 6の調整により、ピストンを適正位置に浮上させ た後、ピストンを回転させた状態で各圧力天びんのピストン降下速度を測定する。も し、各降下速度が上記の各自然降下速度と異なる場合には、 2台の圧力天びんの発 生圧力は非平衡であるので、いずれかの圧力天びんに微小分銅を負荷し発生圧力 を調整する。以上の測定を各降下速度が一致するまで繰り返す。各降下速度が各自 然降下速度と一致したとき、平衡状態が得られており両圧力天びんの発生圧力が等 しいと見なせる。
[0013] 平衡状態が得られたときの、両圧力天びんのピストン浮上位置はピストン浮上位置 測定器 11、 21を用いて、ピストン'シリンダ温度はピストン'シリンダ温度測定器 12、 22を用いて、大気密度は温湿度計と大気圧計等力もなる環境測定器 7により測定 可能である。被校正用重錘形圧力天びん 20の発生圧力は、既知の標準用重錘形 圧力天びん 10のパラメータと校正中に測定したパラメータから、上記した式 (1)、(2)、 ( 3)を用いて計算可能であり、この圧力点での校正値である発生圧力値が求まる。
[0014] 他の圧力点での校正が必要な場合、上記校正手順を繰り返す。なお、標準用重錘 形圧力天びんを用いて、被校正用重錘形圧力天びんの発生圧力を比較校正する置 換比較法はすでに紹介されて!ヽる(非特許文献 3参照)。
非特許文献 1 :JIS7610— 1, - 2, - 3, 重錘形圧力天びん (2000)
非特許文献 2 :小畠時彦、圧力標準の開発と信頼性確保、高圧力の科学と技術、第 1 4卷第 2号、 2004
非特干文献 3 : T. Kooata and D. A. Olson, Accurate Determination of Equil ibrium State between Two Pressure Balances using a Pressure Transducer," Metrologia, 42—6, S231-S234, 2005.
発明の開示
発明が解決しょうとする課題
[0015] 上記した従来の比較校正手段では、校正作業者が、重錘の加除、圧力印可、そし て、 2台の圧力天びんの発生圧力が等しいか否かの判断を行っていた。しかし、これ らの作業を滞りなく実施し、平衡状態実現の判断を的確にするためには、校正作業 者の技術力 ·熟練度が必要であり、それらが十分でない場合、測定結果の信頼性が
確保されな 、場合があった。
[0016] 改善策として、重錘形圧力天びんの比較校正に必要な作業を自動化することが挙 げられる。
[0017] 本発明は、重錘形圧力天びんの従来の比較校正において、作業者が行っていた 重錘の加除、圧力印可、校正 2台の圧力天びんの発生圧力が等しいか否かの判断 作業を作業者の技術力や熟練度に依らずに、自動的に行えるようにする重錘形圧力 天びん自動比較校正装置を実現することを課題とする。
課題を解決するための手段
[0018] 本発明は上記課題を解決するために、標準用重錘形圧力天びんを用いて、被校 正用重錘形圧力天びんの発生圧力を自動で比較校正できる自動比較校正装置で あって、圧力発生器、高精度圧力計、標準用重錘形圧力天びんと圧力発生器の間 を遮断する第 1の遮断弁、被校正用重錘形圧力天びんと圧力発生器の間を遮断す る第 2の遮断弁、及び計測制御部を備えて 、ることを特徴とする自動比較校正装置 を提供する。
[0019] 前記第 1の遮断弁及び第 2の遮断弁は、それぞれ弁開閉により内部の容量が変化 しな 、定容積弁であることが好まし 、。
[0020] 前記圧力発生器は、容量微調整が可能であることが好ま 、。
[0021] 前記計測制御部は、圧力発生器、第 1の遮断弁及び第 2の遮断弁を制御可能な制 御回路と、高精度圧力計による圧力値を測定する計測回路とを有することが好ましい
[0022] 前記計測制御部は、外部計測装置の測定信号を入力し、該外部制御装置を制御 するための信号を出力することが可能な外部接続インターフェイスを有していることが 好ましい。
[0023] 前記圧力発生器は、標準用重錘形圧力天びん及び被校正用重錘形圧力天びん のピストンの浮上位置を調整するとともに、ピストン浮上位置測定器で測定して得られ たピストン浮上位置信号を前記インターフェイスを通じて入力し、該ピストン浮上位置 信号に基づいてフィードバック制御によりピストンの浮上位置を調整することが好まし い。
[0024] 前記計測制御部は、被校正用重錘形圧力天びんの発生圧力を自動で比較校正で きるように事前に校正に必要なパラメータを設定可能な専用プログラムが搭載されて 、ることが好まし!/、。
発明の効果
[0025] 以上のような構成から成る本発明に係る重錘形圧力天びん自動比較校正装置によ れば、次のような効果がある。
(1)重錘形圧力天びんの比較校正を校正作業者の技術力や熟練度に依らずに定ま つた時間内に高精度に実現することができる。即ち、重錘形圧力天びんの従来の比 較校正において、作業者が行っていた重錘の加除、圧力印可、校正 2台の圧力天び んの発生圧力が等しいか否かの校正する作業を作業者の技術力 ·熟練度に依らず に、自動比較校正装置により実施可能である。
[0026] (2)校正系全体の圧力の増減が圧力発生器によって調整可能であり、また、標準用 重錘形圧力天びんと被校正用重錘形圧力天びんの発生圧力がある程度、非平衡で あっても比較校正を自動で実施できる。
[0027] (3)本発明で使用される 2つの遮断弁は、弁開閉により内部の容量が変化しない定 容積弁であり、弁開閉によるピストン位置の変化を小さく抑えることができるとともに、 ピストン位置の微細な調整が可能である。そして、圧力発生器は、容量微調整が可 能である。
[0028] (4)圧力発生器と 2つの遮断弁を制御する制御回路、高精度圧力計による圧力値を 測定する計測回路を有する計測制御部を備え、計測制御部は、外部計測装置の測 定信号を入力し、外部制御装置を制御するための信号を出力することが可能な外部 接続インターフェイスを有して ヽるから、比較校正に必要な計測 ·制御を計測制御部 により一元的に管理できる。
[0029] (5)外部接続インターフェイスを通じて計測制御部は、標準用と被校正用の両重錘 形圧力天びんのピストン'シリンダ温度、ピストンの浮上位置'回転速度等の信号を取 得し、重錘を交換するための外部装置等を制御することができ、ピストン浮上位置の 調整を圧力発生器により行うが、ピストン浮上位置信号をインターフェイスを通じて取 得しフィードバック制御により位置調整することができるので、高精度にピストン浮上
位置が制御可能である。
[0030] (6)自動比較校正装置は、事前に校正に必要なパラメータを設定可能な専用プログ ラムにより、自動で比較校正を実施でき、しかも、一連の校正作業に必要な内容を事 前に決定できるので、校正作業を無人で全自動で実施できる。
図面の簡単な説明
[0031] [図 1]従来の重錘形圧力天びんの概略図である。
[図 2]従来の圧力天びんの校正方法を示した説明図である。
[図 3]本発明に係る自動比較校正装置の実施例を説明する図である。
[図 4]実施例の自動比較校正装置による校正例の結果を示す図である。
[図 5]実施例の自動比較校正装置による特性評価例を示す図である。
符号の説明
[0032] 1 ピストン
2 シリンダ
3 重錘
4 支柱
5 遮断弁
6 圧力ポンプ
7 環境測定器
10 標準用重錘形圧力天びん
11 ピストン浮上位置測定器 (標準用重錘形圧力天びん用)
12 ピストン'シリンダ温度測定器 (標準用重錘形圧力天びん用)
13 重錘自動交換器 (標準用重錘形圧力天びん用)
20 被校正用重錘形圧力天びん
21 ピストン浮上位置測定器 (被校正用重錘形圧力天びん用)
22 ピストン'シリンダ温度測定器 (被校正用重錘形圧力天びん用)
23 重錘自動交換器 (被校正用重錘形圧力天びん用)
30 圧力発生器
40 高精度圧力計
50 第 1の定容量遮断弁
51 弁制御器 (第 1の定容量遮断弁用)
60 第 2の定容量遮断弁
61 弁制御器 (第 2の定容量遮断弁用)
70 インターフェイス
80 計測制御部
発明を実施するための最良の形態
[0033] 本発明に係る重錘形圧力天びん自動比較校正装置を実施するための最良の形態 を実施例に基づいて図面を参照して、以下に説明する。なお、ここでは、前記従来の 比較校正と異なる部分のみ詳細に説明し、その他の従来例と同様の動作を行うもの は、同一の符号を付し、その詳細な説明は省略する。
実施例
[0034] 図 3は、本発明装置の 1実施例の構成図である。本構成により、発生圧力が既知の 標準用重錘形圧力天びん 10を用いて、被校正用重錘形圧力天びん 20の未知の発 生圧力を校正することができる。本発明の主体は自動比較校正の構成にあるので、 各重錘形圧力天びん 10、 20の電子、機構系の説明は省略する。また、校正中の各 重錘形圧力天びんのピストンの回転は、図示しないモータにより制御される。
[0035] 圧力調整は、圧力発生器 30を用いて行う。圧力発生器 30は、重錘形圧力天びん 10、 20のピストン位置を適正な位置に浮上させるために容量微調整機能を持つ。圧 力発生器 30は計測制御部 80から制御可能である。
[0036] 発生圧力の測定は、高精度圧力計 40を用いて行う。高精度圧力計 40の測定値は 計測制御部 80に送られる。
[0037] 標準用重錘形圧力天びん 10及び被校正用重錘形圧力天びん 20のピストン浮上 位置は、ピストン浮上位置測定器 11、 21からインターフェイス 70を通じて計測制御 部 80に入力される。
[0038] 標準用重錘形圧力天びん 10及び被校正用重錘形圧力天びん 20のピストン'シリ ンダ温度は、ピストン'シリンダ温度測定器 12、 22からインターフェイス 70を通じて計 測制御部 80に入力される。
[0039] 標準用重錘形圧力天びん 10及び被校正用重錘形圧力天びん 20のそれぞれにお ける重錘の加除は重錘自動交 3、 23を利用して行うことができる。本発明の主 体は自動比較校正装置の構成にあるので、重錘自動交換器 13、 23の説明は省略 する。
[0040] 準用重錘形圧力天びん 10及び被校正用重錘形圧力天びん 20の重錘自動交換 器 13、 23は、インターフェイス 70を通じて、計測制御部 80から制御可能である。
[0041] 発生圧力が等しいか否かの判定は、標準用重錘形圧力天びん 10と高精度圧力計 40の間の遮断弁 50、及び被校正用重錘形圧力天びん 20と高精度圧力計 40の間 の遮断弁 60を用いて、高精度圧力計 40を比較器として使用する置換比較方法 (前 掲の非特許文献 3参照)により行う。この置換比較方法による本発明に係る自動比較 校正装置の作用については、後記する。
[0042] 遮断弁 50、 60は、弁の開閉により内部容量が変化しない定容量遮断弁であり、計 測制御部 80から弁制御器 51、 61に制御信号を送ることで、その開閉を制御可能で ある。
[0043] 環境状態の測定信号 (大気の温度、相対湿度、及び大気圧)は、環境測定器 7から インターフェイス 70を通じて計測制御部 80に入力される。
[0044] (作用)
以下、本発明に係る自動比較校正装置の作用を、この装置を用いた校正の手順を 通して説明する。
[0045] はじめに、計測制御部 80にある測定プログラムに、校正に必要なパラメータ、例え ば、校正を行う圧力点とその順番 (圧力天びんの精度等級に応じた試験圧力の値及 び分割数、比較試験における圧力変更方法の詳細は、 JIS B 7610- 2 重錘形 圧力天びん 第 2部:試験方法 7. 2試験要件 bに記載されている。)、およびそれら の校正の繰り返し回数 (複数の圧力点にそれぞれ 1回の校正を行う結果、複数圧力 点に複数回の校正をおこうが、この複数回の回数)、また、校正時のピストン浮上位 置とその許容値等を設定する。
[0046] プログラムの開始により、設定された手順及びパラメータに従って校正作業がはじま る。
[0047] まず、標準用重錘形圧力天びん 10及び被校正用重錘形圧力天びん 20が最初の 校正圧力を発生するために必要な重錘がプログラムにより計算され、その制御信号 が計測制御部 80からインターフェイス 70を通じて重錘自動交換器 13、 23により送ら れる。これにより、両重錘自動交換器 13、 23は、標準用重錘形圧力天びん 10及び 被校正用重錘形圧力天びん 20に必要な重錘を載せる。
[0048] 次に、標準用重錘形圧力天びん 10及び被校正用重錘形圧力天びん 20を含む校 正装置全体の圧力を調整するため、 2つの遮断弁 50、 60を開き、圧力発生器 30で 圧力を変化させる。この際、圧力の調整は、圧力発生器 30に内蔵された圧力計、又 は高精度圧力計 40の信号をフィードバックすることにより行う。
[0049] 上記の圧力調整により、校正系全体の圧力がほぼ目的の値に達した後は、圧力発 生器 30と 2つの遮断弁 50、 60を制御しながら、各圧力天びんの発生圧力を交互に 高精度圧力計 40で測定する。この具体的な方法について以下に述べる。
[0050] はじめに、標準用重錘形圧力天びん 10と圧力発生器 30の間を遮断する第 1の遮 断弁 50を開き、被校正用重錘形圧力天びん 20と圧力発生器 30の間を遮断する第 2 の遮断弁 60を閉じる。この状態で、標準用重錘形圧力天びん 10のピストン浮上位置 を、圧力発生器 30の容量微調整機能によって調整可能である。ピストン浮上位置の 調整は、ピストン浮上位置信号をフィードバックすることにより行うので高精度な位置 決めが可能である。
[0051] 前記の状態で標準用重錘形圧力天びん 10の発生圧力が、高精度圧力計 40に印 カロされている。位置調整後、圧力が十分に安定した後、高精度圧力計 40による標準 用重錘形圧力天びん 10の発生圧力の測定値 Irを取得する。また、標準用重錘形圧 力天びん 10のピストン'シリンダ温度、ピストン浮上位置、環境状態の測定を行う。こ れらの測定値は全て、計測制御部 80に送られる。
[0052] 次に、 2つの遮断弁 50、 60の開閉をそれぞれ切り替える。この状態で、被校正用重 錘形圧力天びん 20のピストン浮上位置を、圧力発生器 30の容量微調整機能によつ て調整可能である。
[0053] 前記の状態で被校正用重錘形圧力天びん 20の発生圧力が、高精度圧力計 40に 印加されている。位置調整後、圧力が十分に安定した後、高精度圧力計 40による被
校正用重錘形圧力天びん 20の発生圧力の測定値 Itを取得する。また、標準用重錘 形圧力天びん 10のピストン'シリンダ温度、ピストン浮上位置、環境状態の測定を行う 。これらの測定値は全て、計測制御部 80に送られる。
[0054] 圧力発生器 30と 2つの遮断弁 50、 60を制御しながら、標準用重錘形圧力天びん 1 0に対するピストン位置調整手順と各種データの測定手順、被校正用重錘形圧力天 びん 20に対するピストン位置の調整手順と各種データの測定手順を事前に設定さ れた回数繰り返す。
[0055] 上記した測定手順は、高精度圧力計 40を比較器とした置換比較法に基づ ヽて ヽ る。置換比較法を用いた測定では、 2台の圧力天びんの発生圧力が別々に測定され るので、発生圧力の安定度を個別に評価できる。さらに、両圧力天びんの発生圧力 力 ある程度非平衡であっても、その間の差圧を高精度で推定可能であるというメリツ トがある。
[0056] 上記した置換比較法を用いて、得られた測定結果から、 2台の圧力天びん間の差 圧 Δ Ρを例えば、次式から推定可能である。
A P= (lta-Ira) /ί (4)
ここで、 Ita、 Iraは、それぞれ測定力も得られた It、 Irの平均値である。 fは使用した 高精度圧力計 40のスケーリングファクターであり、事前校正、または、校正中のデー タから算出可能である。スケーリングファクターの評価を含めた Δ Ρの算出式に関して は、前掲の非特許文献 3に詳しく記載されているのでここでは、省略する。
[0057] 上記の測定力 得られた 2つの重錘形圧力天びん間の発生圧力の差圧と既知であ る標準用重錘形圧力天びん 10の発生圧力から、被校正用重錘形圧力天びん 20の 発生圧力を次式により、校正可能である。
Pt=Pr+ Δ Ρ (5)
ここで、 Pt、 Prは、それぞれ被校正用、標準用重錘形圧力天びんの発生圧力を表 している。 Prは、式(1)から(3)により、計算可能である。
[0058] 上記の置換比較測定終了後、この校正圧力点での終了処理を次のように行う。
[0059] はじめに、標準用重錘形圧力天びん 10と圧力発生器 30の間を遮断する第 1の遮 断弁 50を開き、被校正用重錘形圧力天びん 20と圧力発生器 30の間を遮断する第 2
の遮断弁 60を閉じる。この状態で、標準用重錘形圧力天びん 10のピストン浮上位置 を、圧力発生器 30の容量微調整機能によって、浮上ゼロの位置に調整する。
[0060] 次に、 2つの遮断弁 50、 60の開閉をそれぞれ切り替える。この状態で、被校正用重 錘形圧力天びん 20のピストン浮上位置を、圧力発生器 30の容量微調整機能によつ て浮上ゼロの位置に調整する。
[0061] 次に両重錘形圧力天びんを含む校正装置全体の圧力を等しくするため、 2つの遮 断弁 50、 60を開く。
[0062] 以上で、一つの校正点での校正は終了である。
[0063] プログラムに設定された次の校正圧力点での校正手順に移行する。以後、必要な 校正圧力点で、上記校正手順を繰り返す。
[0064] 全ての校正圧力点での校正手順が終了したとき、プログラムの終了処理を次のとお り行う。即ち、圧力発生器 30で校正系全体の圧力を圧力ゼロの状態に戻す。標準用 重錘形圧力天びん 10及び被校正用重錘形圧力天びん 20に積載されている重錘の 組み合わせを、重錘自動交換器 13、 23により、プログラム開始時の状態に戻す。
[0065] 以上で校正は終了である。また、以上の校正に必要な制御 ·測定.計算は、専用プ ログラムにより全自動で実施可能である。
[0066] (校正例)
図 4は、上記実施例の自動比較校正装置による校正例を示す図である。本校正例 では、本発明に係る重錘形圧力天びん自動比較校正装置により、はじめに lOMPa 力も lOOMPaまで、 lOMPaステップで校正を実施しながら圧力を上昇させ、その後 、同様に、 lOOMPaから lOMPaまで lOMPaステップで圧力を下降させたときの結 果を示している。
[0067] 図 4 (a)は、校正系全体の圧力を経過時間の関数として示している。校正系全体の 圧力は、各校正圧力点において、置換比較測定を実施した間の高精度圧力計 40に よる測定圧力を時間平均した値力 得られた。この図から自動運転により、一定の時 間間隔で自動校正が行われて 、ることを確認できる。
[0068] 図 4 (b)と図 4 (c)は、各校正圧力点において、置換比較測定を実施した間の標準 用重錘形圧力天びん 10と被校正用重錘形圧力天びん 20の各ピストン'シリンダ温度
とピストン位置の時間平均値を示している。各ピストン 'シリンダ温度は、本校正中、士
0. c程度で安定であることが確認できる。これは、校正作業を無人で全自動で実 施しているため、校正作業者の体温等による温度上昇の影響を校正系が受けないこ とが主な理由である。
[0069] また、本校正例に使用した両重錘形圧力天びんのピストンの可動範囲は約 ± 5 m mであるが、高精度校正のためには、ピストン位置を約 ±0. 5mm以下に制御する必 要がある。本発明装置においては、各ピストン位置は、圧力発生器 30と 2つの遮断 弁 50、 60の操作により制御される力 フィードバック制御により、 ±0. 2mmの以内で 制御されていることが、図 4 (c)から確認でき、高精度校正に必要なピストン位置制御 が可會となつて ヽることがわかる。
[0070] 図 4 (d)は、本発明装置の自動運転で得られた被校正用重錘形圧力天びん 20の 校正圧力値を公称圧力からの偏差で示した図である。偏差量は ppm ( X 10_6)で示 した。同図から、各校正点での校正値が、経過時間とともに得られていることがわかる 。従来の校正では、校正作業者による一連の校正作業が全て終了した後に解析によ り校正値が算出されていたが、本校正装置においては校正を実施している間、各校 正点の測定後直ちに、その点の校正値を算出することができる。
[0071] 本発明に係る自動比較校正装置は、通常の校正だけでなぐ重錘形圧力天びんの 特性評価にも使用することができる。例えば、標準用重錘形圧力天びんのピストン浮 上位置は変化させずに、被校正用重錘形圧力天びんのピストン浮上位置を変化させ ながら比較校正を繰り返すことにより、被校正用重錘形圧力天びんのピストン浮上位 置による発生圧力への影響を明らかにすることができる。同様にピストン回転の速さ による発生圧力への影響も評価可能である。
[0072] 図 5は、上記実施例の自動比較校正装置により得られた、被校正用重錘形圧力天 びんのピストン浮上位置による発生圧力への影響を評価した結果を示す図である。 図 5 (a)は校正系全体の圧力、図 5 (b)は標準用重錘形圧力天びん 10と被校正用重 錘形圧力天びん 20の各ピストン位置、図 5 (c)は両重錘形圧力天びんの間の差圧の 相対変化量を、それぞれ経過時間の関数として示して ヽる。
[0073] この例では、上記実施例の自動比較校正装置により、はじめに 10 MPaにおいて
、標準用重錘形圧力天びんのピストン浮上位置はほぼ一定に保ちながら、被校正用 重錘形圧力天びんのピストン浮上位置を + 1. Ommから 1. Ommまで 0. 5mmス テツプで 5段階に変化させ比較校正を繰り返し、その後、校正系の圧力を 10 MPa ステップで、 lOOMPaまで上昇させながら、各校正圧力において同様の測定を繰り 返している。これらの測定は事前のプログラムにより、全自動で実施される。
[0074] 図 5 (a)と図 5 (b)から、各校正圧力において、標準用重錘形圧力天びん 10のピスト ン位置はほぼ 0 mmの位置に保ちながら、被校正用重錘形圧力天びん 20のピスト ン位置を 5段階に制御できていることが確認できる。
[0075] 図 5 (c)には、各発生圧力とピストン位置の組み合わせ毎に両重錘形圧力天びんの 間の差圧の相対変化量が示されて 、るが、比較しやす 、ように各校正圧力にお!/、て 被校正用重錘形圧力天びん 20のピストン位置がほぼ Ommのときの変化量を Oppm ( X 10_6)としている。
[0076] 図 5 (c)から圧力の変化量が被校正用重錘形圧力天びん 20のピストン位置に依存 していること、また、その変化量は、 ± 5ppm程度の微小な変化であることがわかる。
[0077] 以上の校正例のとおり、本発明装置により、被校正用重錘形圧力天びんのピストン 浮上位置による発生圧力への影響等の特性評価が精度良く実施可能である。
[0078] 以上、本発明を実施するための最良の形態を実施例に基づいて説明した力 本発 明はこのような実施例に限定されることなぐ特許請求の範囲記載の技術的事項の 範囲内で、
、ろな実施例があることは言うまでもな 、。
産業上の利用可能性
[0079] 本発明に係る自動比較校正装置は、以上のような構成であるから、校正に使用す る媒体が、気体の場合でも、液体の場合でも適用できる。また、基準圧力が、大気圧 のゲージ圧力校正でも、真空の絶対圧力校正でも適用できる。
[0080] 被校正用重錘形圧力天びんとして、隙間制御型重錘形圧力天びんを用い、その隙 間制御圧力を変化させながら比較校正を繰り返すことにより、隙間制御圧力による発 生圧力への影響も評価可能である。この場合、隙間制御圧力の制御のために、圧力 発生器を追加する必要がある。
Claims
[1] 標準用重錘形圧力天びんを用いて、被校正用重錘形圧力天びんの発生圧力を自 動で比較校正できる自動比較校正装置であって、
圧力発生器、高精度圧力計、標準用重錘形圧力天びんと圧力発生器の間を遮断 する第 1の遮断弁、被校正用重錘形圧力天びんと圧力発生器の間を遮断する第 2の 遮断弁、及び計測制御部を備えて ヽることを特徴とする自動比較校正装置。
[2] 前記第 1の遮断弁及び第 2の遮断弁は、それぞれ弁開閉により内部の容量が変化 しな 、定容積弁であることを特徴とする請求項 1に記載の自動比較校正装置。
[3] 前記圧力発生器は、容量微調整が可能であることを特徴とする請求項 1又は 2に記 載の自動比較校正装置。
[4] 前記計測制御部は、圧力発生器、第 1の遮断弁及び第 2の遮断弁を制御可能な制 御回路と、高精度圧力計による圧力値を測定する計測回路とを有することを特徴とす る請求項 1、 2又は 3に記載の自動比較校正装置。
[5] 前記計測制御部は、外部計測装置の測定信号を入力し、該外部制御装置を制御 するための信号を出力することが可能な外部接続インターフェイスを有していることを 特徴とする請求項 1、 2、 3又は 4に記載の自動比較校正装置。
[6] 前記圧力発生器は、標準用重錘形圧力天びん及び被校正用重錘形圧力天びん のピストンの浮上位置を調整するとともに、ピストン浮上位置測定器で測定して得られ たピストン浮上位置信号を前記インターフェイスを通じて入力し、該ピストン浮上位置 信号に基づいてフィードバック制御によりピストンの浮上位置を調整することを特徴と する請求項 5に記載の自動比較校正装置。
[7] 前記計測制御部は、被校正用重錘形圧力天びんの発生圧力を自動で比較校正で きるように事前に校正に必要なパラメータを設定可能な専用プログラムが搭載されて いることを特徴とする請求項 1〜6のいずれか 1項に記載の自動比較校正装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008521160A JP4963121B2 (ja) | 2006-06-16 | 2007-06-06 | 重錘形圧力天びん自動比較校正装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-167516 | 2006-06-16 | ||
JP2006167516 | 2006-06-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007145106A1 true WO2007145106A1 (ja) | 2007-12-21 |
Family
ID=38831623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/061423 WO2007145106A1 (ja) | 2006-06-16 | 2007-06-06 | 重錘形圧力天びん自動比較校正装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4963121B2 (ja) |
WO (1) | WO2007145106A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200452329Y1 (ko) | 2008-08-22 | 2011-02-24 | 대우조선해양 주식회사 | 멀티 포트 블록을 이용한 압력계 교정장치 |
WO2013042607A1 (ja) * | 2011-09-20 | 2013-03-28 | 独立行政法人産業技術総合研究所 | 圧力計校正装置 |
CN105973530A (zh) * | 2016-03-25 | 2016-09-28 | 上海市计量测试技术研究院 | 一种用于超高压活塞压力计的测量比对方法及装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60207028A (ja) * | 1984-03-31 | 1985-10-18 | Toshiba Corp | 重錘形差圧計 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002286576A (ja) * | 2001-03-26 | 2002-10-03 | Mitsubishi Heavy Ind Ltd | 圧力校正装置 |
-
2007
- 2007-06-06 JP JP2008521160A patent/JP4963121B2/ja active Active
- 2007-06-06 WO PCT/JP2007/061423 patent/WO2007145106A1/ja active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60207028A (ja) * | 1984-03-31 | 1985-10-18 | Toshiba Corp | 重錘形差圧計 |
Non-Patent Citations (3)
Title |
---|
KOBATA T. AND OLSON D.A.: "Accurate determination of equilibrium state between two pressure balances using a pressure transducer", METROLOGIA, vol. 42, no. 6, 2005, pages S231 - S234, XP003024645 * |
KOBATA T.: "Atsuryoku Hyojun no Kaihatsu to Shinraisei Kakuho", THE REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY, vol. 14, no. 2, 2004, pages 184 - 189, XP003024646 * |
Shadan Hojin Keiryo Kanri Kyokai, Keiryo Hyojun Kanri Gijutsu Manual IV, Atsuryoku Hyojun no Kanri Gijutsu Manual, 1979, pages 72 to 92 (chapter 3, Jisuigata Atsuryoku Hyojunki, 3-3 Kosei to Kanri) * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200452329Y1 (ko) | 2008-08-22 | 2011-02-24 | 대우조선해양 주식회사 | 멀티 포트 블록을 이용한 압력계 교정장치 |
WO2013042607A1 (ja) * | 2011-09-20 | 2013-03-28 | 独立行政法人産業技術総合研究所 | 圧力計校正装置 |
US9476790B2 (en) | 2011-09-20 | 2016-10-25 | National Institute Of Advanced Industrial Science And Technology | Pressure gauge calibration apparatus |
CN105973530A (zh) * | 2016-03-25 | 2016-09-28 | 上海市计量测试技术研究院 | 一种用于超高压活塞压力计的测量比对方法及装置 |
CN105973530B (zh) * | 2016-03-25 | 2018-09-28 | 上海市计量测试技术研究院 | 一种用于超高压活塞压力计的测量比对方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
JP4963121B2 (ja) | 2012-06-27 |
JPWO2007145106A1 (ja) | 2009-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101472146B1 (ko) | 실제 흐름 검증을 실시하는 방법 | |
KR101423062B1 (ko) | 상류의 질량 유량 검증 시스템 및 질량 유량 측정 장치의 성능 검증 방법 | |
JP3260454B2 (ja) | 質量流量計、流体の質量測定方法及び粘度測定装置 | |
US5461901A (en) | Testing apparatus for pressure gauges implementing pneumatic feedback to control stepless regulating valve | |
US9400004B2 (en) | Transient measurements of mass flow controllers | |
JP5337542B2 (ja) | マスフローメータ、マスフローコントローラ、それらを含むマスフローメータシステムおよびマスフローコントローラシステム | |
US10663337B2 (en) | Apparatus for controlling flow and method of calibrating same | |
CN106969812A (zh) | 流量传感器校准方法及系统 | |
US9506498B2 (en) | Gap sensing method for fluid film bearings | |
WO2007145106A1 (ja) | 重錘形圧力天びん自動比較校正装置 | |
US11519769B2 (en) | Flow rate control system and flow rate measurement method | |
Calcatelli et al. | The IMGC-CNR flowmeter for automatic measurements of low-range gas flows | |
JP2000039347A (ja) | 流量検査装置 | |
KR20090014711A (ko) | 압력 게이지 교정 방법 및 이를 이용한 압력 게이지 교정시스템 | |
Berg et al. | NIST–IMGC comparison of gas flows below one litre per minute | |
CN113514135A (zh) | 基于质量流量反馈调节的流量盘流量测量装置和方法 | |
Kajikawa et al. | Density measurement of pressure transmitting oil at high pressures up to 100 MPa by changing the vertical position of a precise pressure gauge | |
Peksa et al. | Method of measuring the change in volume of a diaphragm bellows used in a volume displacer of a constant-pressure gas flowmeter (with a practical guide) | |
CN112432675B (zh) | 一种基于位置传感器的差压流量计零点偏置自动修正方法 | |
US20230358628A1 (en) | Realization of the pascal from the boltzmann constant using mass comparison of artifacts in vacuum and gas | |
CN114046862B (zh) | 航空发动机燃油质量流量计量校正方法及计量校正系统 | |
Bair | Verification of gas flow traceability from 0.1 sccm to 1 sccm using a piston gauge | |
TWI416619B (zh) | 執行實際流動驗證的方法 | |
Kobata | A fully automated calibration system for pressure balance | |
Stekleins et al. | VACUUM GAUGE PERFORMANCE VERIFICATION SYSTEM. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07744767 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008521160 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07744767 Country of ref document: EP Kind code of ref document: A1 |