WO2007142119A1 - 通信装置および無線通信システム - Google Patents

通信装置および無線通信システム Download PDF

Info

Publication number
WO2007142119A1
WO2007142119A1 PCT/JP2007/061101 JP2007061101W WO2007142119A1 WO 2007142119 A1 WO2007142119 A1 WO 2007142119A1 JP 2007061101 W JP2007061101 W JP 2007061101W WO 2007142119 A1 WO2007142119 A1 WO 2007142119A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot signal
symbol
pilot
unit
propagation path
Prior art date
Application number
PCT/JP2007/061101
Other languages
English (en)
French (fr)
Inventor
Shimpei To
Yasuhiro Hamaguchi
Hideo Nanba
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to EP07744489A priority Critical patent/EP2037608A1/en
Priority to JP2008520529A priority patent/JP4874334B2/ja
Publication of WO2007142119A1 publication Critical patent/WO2007142119A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0019Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy in which mode-switching is based on a statistical approach
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the present invention relates to a communication system that performs propagation path compensation by multiplexing pilot signals in transmission units.
  • FIG. 9 is a diagram showing an example of frequency / time resource division in the downlink of this E-UTRA.
  • the upper part of Fig. 9 shows an example of resource partitioning of the entire system
  • the lower part of Fig. 9 shows the symbol structure of one resource block.
  • one block (shaded area) in which the frequency and time are divided as shown in the upper part of Fig. 9 is a resource block
  • one resource block is the minimum unit that a user can access.
  • one resource block consists of pilot symbols and data symbols (including control information here).
  • two pilot symbols, a first pilot symbol and a second pilot symbol are provided in one resource block.
  • the first pilot symbol is a known signal used for cell search, frequency channel quality measurement, and propagation path estimation value calculation, and is always inserted into a resource block.
  • the subcarrier of the first pilot symbol is multiplied by a code specific to the base station, and this code has a role of specifying the base station and randomizing interference.
  • the second pilot symbol is a transmission or MIMO (M (ulti-Input Multi-Output) Used to calculate the estimated channel value when transmission is performed. Also, during transmissions other than the above, if the user moves at high speed, the channel estimation using the first pilot symbol alone cannot follow the fluctuation rate of fading, so the channel estimation using the second pilot symbol is also used. As a result, it is possible to suppress the degradation of the propagation path estimation accuracy. However, the second pilot symbol is not always inserted, and the propagation path estimation in normal single antenna transmission (without beam forming) is performed using the first pilot symbol.
  • Patent Document 1 is a proposal for improving demodulation accuracy using two pilot symbols.
  • Patent Document 1 compares the reception levels of the first pilot symbol whose transmission power is controlled and the second pilot symbol whose transmission power is not controlled, and the propagation level obtained from the high reception level and pilot symbols is compared.
  • a method is shown in which a channel estimation value is selected and demodulation is performed using only the selected channel estimation value. By using this method, it is possible to perform channel compensation using pilot symbols that can provide high channel estimation accuracy, and demodulation can be performed with high accuracy.
  • Patent Document 1 describes a method of selecting one of channel estimation values obtained from two pilot symbols according to the fading fluctuation speed and performing demodulation using only the selected channel estimation value. Is also written.
  • Patent Document 1 JP 2002-44172 A
  • the quality of the received signal (received SINR: signal to Interference plus Noise power) Ratio) is inferior.
  • first pilot symbols are transmitted at almost the same timing in all cells.
  • each subcarrier of the first pilot symbol is multiplied by a code unique to the base station, and this code is designed to randomize interference coming from other cells to some extent. completely It is impossible to remove the interference. For this reason, the propagation path estimation value calculated from the first pilot symbol includes an estimation error due to the influence of interference.
  • the demodulation accuracy deteriorates compared to the case where there is no interference of adjacent cell force.
  • the communication device is a communication device that includes a plurality of symbols and that receives a transmission unit in which a first pilot signal is multiplexed from a communication destination device, and that receives the first pilot signal. If the difference obtained by subtracting the reception quality of the first pilot signal from the reception quality of a symbol different from the assigned symbol is equal to or greater than the difference threshold value, the first symbol is assigned to a symbol different from the symbol assigned with the first pilot signal. Pilot signal control information for requesting the communication destination device to allocate a second pilot signal is generated, and the generated pilot signal control information is notified to the communication destination device.
  • the second pilot signal is multiplexed on a symbol different from the first pilot signal.
  • the difference is equal to or greater than the difference threshold, that is, when there is no terminal of an adjacent cell using the same resource, it is possible to request transmission of a second pilot symbol.
  • the difference threshold that is, when there is no terminal of an adjacent cell using the same resource
  • transmission of a second pilot symbol is requested. It is possible to estimate the propagation path with high accuracy using the two pilot signals.
  • by assigning the second pilot signal according to the reception quality unnecessary pilot symbol transmission can be avoided and the throughput can be prevented from being lowered.
  • the communication apparatus requests that the allocation of the second pilot signal be stopped when the difference is less than the difference threshold. Pilot signal control It is characterized by generating information.
  • a communication device is a communication device that includes a plurality of symbols and receives a transmission unit in which a first pilot signal is multiplexed from a communication destination device, and the first pilot
  • the measurement unit that measures the reception quality of the signal and the reception quality of the symbol different from the symbol to which the first pilot signal is assigned is compared with the two reception qualities measured by the measurement unit, and the difference is calculated.
  • the communication destination device assigning the second pilot signal to a symbol different from the symbol to which the first pilot signal is assigned when the difference calculated by the comparison unit and the difference calculated by the comparison unit is equal to or greater than a difference threshold value.
  • a pilot control information generating unit that generates pilot signal control information required for.
  • the communication apparatus of the present invention it is possible to request that the second pilot signal is multiplexed on a symbol different from the first pilot signal. Specifically, when the difference is equal to or greater than the difference threshold, that is, when there is no terminal of an adjacent cell using the same resource, it is possible to request transmission of a second pilot symbol.
  • the measurement unit assigns a signal assigned to a symbol different from the symbol to which the first pilot signal is assigned (when the second pilot signal or the second pilot signal is not assigned). Measures the reception quality of the data signal.
  • the measurement unit assigns a signal assigned to a symbol different from the symbol to which the first pilot signal is assigned (when the second pilot signal or the second pilot signal is not assigned).
  • Measures the reception quality of the data signal based on the difference in reception quality of pilot symbols assigned to different symbols, the presence or absence of a terminal using the same resource in an adjacent cell is detected, and transmission of a second pilot symbol is requested. It is possible to estimate the propagation path with high accuracy using the two pilot signals.
  • the estimated value selection unit obtains the first pilot signal power when the difference calculated by the comparison unit is less than a difference threshold.
  • a propagation path estimated value calculated using a propagation path estimated value or a propagation path estimated value obtained from the first pilot signal and the second pilot signal is selected.
  • the propagation path estimation value obtained from the first pilot signal or the propagation path estimation value obtained from the first pilot signal and the second pilot signal Since the channel estimation value calculated using is selected, it is possible to suppress degradation in channel estimation accuracy even when there is interference from adjacent cell forces.
  • the pilot control information generating unit requests pilot signal allocation to allocate the second pilot signal when the moving speed is equal to or higher than a speed threshold. Is generated.
  • the second pilot signal is requested to be allocated, and the propagation path estimation value obtained from the first pilot signal and the propagation obtained from the second pilot signal are requested.
  • the propagation path estimation value of the data symbol from the path estimation value By interpolating the propagation path estimation value of the data symbol from the path estimation value, deterioration in propagation path estimation accuracy can be suppressed.
  • a propagation path estimated value obtained from the first pilot signal and the second pilot signal force are obtained.
  • an inner / outer part that performs interpolation with the estimated channel value, and the propagation path compensation unit performs propagation path compensation using the estimated channel value interpolated by the inner / outer part. It is characterized by that.
  • a second pilot signal is assigned, and the propagation path estimated value obtained by the first pilot signal force and the second parameter are assigned by the interpolation / extrapolation unit. It is possible to suppress degradation of propagation path estimation accuracy by interpolating the propagation path estimation value of the data symbol from the obtained propagation path estimation value.
  • a communication apparatus is a communication apparatus configured by a plurality of symbols and transmitting a transmission unit in which a first pilot signal is multiplexed to a communication destination apparatus, wherein the communication destination apparatus
  • the reception quality of the first pilot signal received from 1 and the reception quality of a symbol different from the symbol to which the first pilot signal is assigned are input, and the difference between the two received reception qualities is compared.
  • pilot signal control information for instructing allocation of the second pilot signal to a symbol different from the symbol to which the first pilot signal has been allocated.
  • the second pilot signal is multiplexed in addition to the first pilot signal.
  • the special number is provided with.
  • the communication device (communication control device, base station, etc.) that controls the communication receives the reception quality from the communication destination device (terminal), thereby assigning the second pilot signal. It is possible to control whether the second pilot signal is allocated based on the determination result. As a result, the terminal device at the communication destination can perform propagation path estimation according to the arrival status of interference.
  • a communication device is a communication device that multiplexes a first pilot signal to a transmission unit composed of a plurality of symbol powers and transmits the multiplexed signal to a communication destination device. If the difference obtained by subtracting the reception quality of the first pilot signal from the reception quality of a symbol different from the pilot symbol to which the signal is assigned is equal to or greater than the difference threshold, the second symbol is changed to a symbol different from the symbol to which the pilot signal is assigned.
  • the second pilot And a control unit that controls multiplexing of signals.
  • control unit multiplexes the second pilot signal when a channel for transmitting data addressed to the communication destination device is different from the previous data transmission. It is characterized by Shinare.
  • the first pilot signal is a common pilot signal transmitted simultaneously in a plurality of cells
  • the second pilot signal is the first pilot signal. It is characterized by being assigned to symbols that are different in time.
  • the first pilot signal is a common pilot signal, it always receives interference from adjacent cells, and the second pilot signal is allocated to the data symbol, so that the terminal of the adjacent cell When the same resource is not used, it is difficult to receive interference from neighboring cells. Utilizing such characteristics, assigning the second pilot signal and performing propagation path estimation using the second pilot signal can improve propagation path estimation accuracy.
  • a communication apparatus includes a transmission unit in which a second pilot signal is multiplexed on symbols different from the first pilot signal and the first pilot signal.
  • a communication device that receives from a communication destination device, a measurement unit that measures reception quality of a first pilot signal and a second pilot signal, and a reception quality capability of the second pilot signal The first pilot signal
  • a comparator that calculates a difference obtained by subtracting the reception quality of the second pilot signal power when the difference is equal to or greater than a difference threshold value.
  • An estimation value selection unit that selects a channel estimation value and a channel compensation unit that performs channel compensation using the selected channel estimation value are provided.
  • the propagation path estimated value obtained from the second pilot signal is selected, and propagation path compensation is performed using the selected propagation path estimated value.
  • the propagation path compensation of the data symbol can be performed with high accuracy.
  • the estimated value selecting unit when the difference calculated by the comparing unit is less than a difference threshold value, is a propagation path estimated value obtained from the first pilot signal.
  • a propagation path estimated value calculated using a propagation path estimated value obtained from the first pilot signal and the second pilot signal is selected.
  • the propagation path estimation value obtained from the first pilot signal or the propagation path estimation value obtained from the first pilot signal and the second pilot signal Since the channel estimation value calculated using is selected, it is possible to suppress degradation in channel estimation accuracy even when there is interference from adjacent cell forces.
  • a radio communication system includes a plurality of symbols, and performs radio communication between a communication control apparatus and a terminal apparatus using a transmission unit in which a first pilot signal is multiplexed.
  • the communication control device is configured such that a difference obtained by subtracting the reception quality of the first pilot signal from the reception quality of a symbol different from the symbol to which the first pilot signal is assigned is equal to or greater than a difference threshold value.
  • the second pilot signal is multiplexed on a symbol different from the symbol to which the first pilot signal is assigned.
  • the first pilot signal can be multiplexed into a transmission unit, and the second pilot signal can be multiplexed according to the reception quality.
  • the propagation path can be estimated according to the arrival status of the interference in the communication device on the receiving side, and the second pilot signal is used when there is little interference arriving at the time of receiving the second pilot signal.
  • a base station base station apparatus
  • a terminal terminal apparatus
  • the base station has a function of transmitting a signal by multiplexing pilot signals.
  • the terminal may be any other terminal as long as it has a function of receiving a signal obtained by multiplexing pilot signals.
  • the base station apparatus is also called a communication control apparatus because it is a communication control side.
  • the present invention can be applied to a communication apparatus that performs communication by multiplexing pilot signals into transmission units, and the communication apparatus has one or both of the functions of the base station side and the terminal side. Is applicable.
  • a transmission unit is formed from a plurality of symbols, and the plurality of symbols are pilot symbols (PS: Pilot Symbols) that impose pilot signals and data symbols (DS: Data Symbols) that impair data. And divided.
  • pilot symbols the symbols assigned to the first pilot signal (first pilot signal) are first pilot symbols (FPS) and second pilot signals (second pilot signals).
  • FPS first pilot symbols
  • second pilot signals second pilot signals
  • FIG. 1 is a diagram illustrating a situation of an interference wave arriving from an adjacent cell in the E-UTRA system.
  • FIG. 2 is a diagram illustrating an example of the influence of interference waves on reception quality. However, for the sake of simplicity, an example of the cell configuration when the number of adjacent cells is one is shown.
  • FIG. 2 shows a configuration example of one frame and a variation example of received CQI (Channel Quality Information) in terminal A according to the terminal allocation status of the adjacent cell (cell 2).
  • CQI Channel Quality Information
  • the reception CQI is measured at each terminal and the measurement result is reported to the base station. In the present invention, the measurement result of the reception CQI is used.
  • the reception CQI in the upper part of FIG. 2 shows the reception CQI in terminal A when the same resource as that allocated to terminal A in cell 1 is also used in cell 2 (hereinafter referred to as “reception CQI91 "). For example, it is assigned to terminal B.
  • the received CQI in the lower part of Fig. 2 shows the received CQI in terminal A (hereinafter referred to as “received CQI 92”) when the same resource assigned to terminal A in cell 1 is not used in cell 2.
  • reception CQI91 when the same resource as that assigned to terminal A is assigned to terminal B of cell 2, the signal addressed to terminal B is observed as interference in terminal A.
  • the received CQI at terminal A is always at a low level in the frame.
  • the reception CQI 92 when the same resource as that assigned to terminal A is not used in the second channel, as shown in the reception CQI 92, during the first pilot transmission period, as in the case of the reception CQI 91, the reception CQI 91
  • the reception CQI is high in other transmission periods.
  • the first pilot symbol is always transmitted at almost the same timing in all cells. Therefore, data symbols and second pilot symbols are transmitted only when a user is assigned, so they are not affected by interference depending on the allocation status of neighboring cells. This is because there are cases.
  • the data symbol propagation path compensation is performed using values obtained by interpolating and extrapolating the propagation path estimation values obtained from the first pilot symbol and the second pilot symbol. In this way, by switching the channel estimation value used for channel compensation, channel compensation according to the presence / absence of interference arriving from the P-contact cell (terminal allocation status in the P-contact cell) and the fading fluctuation rate. Therefore, demodulation errors can be reduced.
  • the reception pilot QQI of the first pilot symbol and the reception CQI of the data symbol are measured and compared at each terminal. At this time, if the received CQI of the data symbol is higher than the received CQI of the first pilot symbol by a predetermined threshold or more, it is determined that there is no interference from the adjacent cell, and the base station is requested to transmit the second pilot symbol. To do. On the other hand, if the difference between the received CQI of the data symbol and the received CQI of the first pilot symbol is less than a predetermined threshold, it is determined that there is interference from an adjacent cell, and in this case, it is obtained from the first pilot symbol.
  • the base station is not requested to transmit the second pilot symbol.
  • the second pilot symbol is received when the difference between the received CQI of the transmitted second pilot symbol and the received CQI of the first pilot symbol is less than a predetermined threshold.
  • a request to stop transmission is sent from the terminal to the base station.
  • a data symbol is transmitted instead, and it is possible to transmit a larger amount of data than when the second pilot symbol is transmitted.
  • FIG. 3 is a block diagram showing a configuration of the terminal apparatus 100 according to the first embodiment
  • FIG. 4 is a block diagram showing a configuration of the base station apparatus 200 according to the first embodiment.
  • the terminal device 100 includes an antenna unit 10, a radio unit 11, a switch 12, a receiver 39, and a transmitter 40.
  • the receiver 39 includes an A / D (Analog to Digital) conversion unit (A / D) 13, a synchronization unit 14, a GI (Guard Interval) removal unit 15, an S / P (Serial to Parallel) conversion unit (S / P).
  • FFT Fast Fourier Transform
  • channel selection unit channel selection unit 18
  • symbol separation unit copy unit 20
  • propagation path compensation unit 21
  • demapping unit demapping unit 22
  • P / S Parallel to Serial conversion unit 23
  • Decoding unit Decoding unit 24, CQI (Channel Quality Indicator) measurement unit (measurement unit) 25, buffer 26, CQI comparison unit (comparison unit) 27, propagation path estimation unit 28, inner side * outer side 29, and estimated value
  • CQI Channel Quality Indicator
  • the transmitter 40 includes a CQI information generation unit 31, a pilot control information generation unit 32, a coding unit 33, a modulation unit 34, an S / P conversion unit (S / P) 35, an IFFT (Inverse FFT) unit 36, a GI ⁇ An input section 37 and a D / A (Digital to Analog) conversion section (D / A) 38 are provided.
  • a CQI information generation unit 31 a pilot control information generation unit 32, a coding unit 33, a modulation unit 34, an S / P conversion unit (S / P) 35, an IFFT (Inverse FFT) unit 36, a GI ⁇ An input section 37 and a D / A (Digital to Analog) conversion section (D / A) 38 are provided.
  • the channel selection unit 18 selects only the frequency channel assigned to the own terminal, and the signal addressed to the own terminal from the output signal of the FFT unit 17 Extract only.
  • the allocation information (scheduling information) at this time uses the demodulation result of the information notified in advance from the base station.
  • the symbol separation unit 19 separates the pilot symbols and data symbols multiplexed.
  • the second pilot symbol may or may not be multiplexed.
  • Information indicating the presence or absence of the second pilot symbol is transmitted from the base station as pilot symbol information. Shall be notified in advance.
  • the symbol separation unit 19 separates the first and second pilot symbols and the data symbol, and the two pilot symbols are sent to the CQI measurement unit 25 and the propagation path estimation unit 28.
  • CQI measurement section 25 first measures CQI of the first pilot symbol and stores the result in power S buffer 26 as a result. Similarly, the CQI of the second pilot symbol is also measured by the CQI measurement unit 25, and the result and the CQI measurement result of the first pilot symbol stored in the buffer 26 are input to the CQI comparison unit 27.
  • CQI comparison section 27 CQI in the first pilot symbol and CQI in the second pilot symbol are compared, and the comparison result obtained by calculating the difference between CQI in the first pilot symbol and CQI in the second pilot symbol is the estimated value selection section 30. Is sent to the pilot control information generating unit 32. Also, the CQI in the first pilot symbol stored in the buffer 26 is sent to the CQI information generating unit 31 and notified to the base station side as CQI information.
  • the propagation path estimation unit 28 performs propagation path estimation using the first pilot symbol and the second pilot symbol, and sends the calculated two propagation path estimation values to the interpolation / extrapolation unit 29.
  • the propagation path estimation method in the present embodiment uses a technique of performing complex division on a received pilot signal in the frequency domain using a known pilot signal.
  • Interpolation 'extrapolation unit 29 receives the calculated propagation path estimation value and fluctuation speed information indicating the fluctuation speed of the propagation path (the moving speed of the terminal), and the fluctuation speed is set to a predetermined threshold ( If the speed is lower than the speed threshold value), the input two propagation path estimated values are output to the estimated value selecting section 30 as they are. Conversely, when the fluctuation speed is higher than a predetermined threshold, in order to calculate the propagation path estimated value following the fuzzing fluctuation, the propagation path estimated value calculated from the first pilot symbol and Interpolation and extrapolation calculation (simple linear interpolation in this embodiment) are performed on the propagation path estimation value calculated from the second pilot symbol, and the result is output to the estimated value selection unit 30.
  • the fluctuation speed information is information measured in advance at the terminal, and the upper layer block (not shown) Power shall be notified.
  • the estimated value selection unit 30 receives the propagation path estimation value, the fluctuation speed information, and the CQI comparison result.
  • the force fluctuation speed is lower than a predetermined threshold value
  • the CQI of the second pilot symbol is the first pilot symbol.
  • the channel estimation value calculated from the second pilot symbol is output to the channel compensation unit 21.
  • the fluctuation rate is slower than a predetermined threshold, but the CQI of the second pilot symbol is less than the predetermined threshold than the CQI of the first pilot symbol, the propagation path calculated from the first pilot symbol
  • the estimated value is output to the channel compensator 21. If the fluctuation speed is higher than a predetermined threshold value, the result of the inner / outer processing of the first pilot symbol and the second pilot symbol is output to the propagation path compensation unit 21 (inner * outer (The input from part 29 is output as is)
  • the operation of the terminal-side receiver 39 is described for the case where the second pilot symbol is multiplexed.
  • the operation of the receiver 39 in the present embodiment for the case where the second pilot symbol is not multiplexed In particular, the operation related to CQI measurement will be explained.
  • the propagation path estimation in this case is performed using only the first pilot symbol, and the propagation path compensation is not performed. This is performed using a channel estimation value obtained from the first pilot symbol.
  • the base station is requested to transmit the second pilot symbol. Because it is necessary, the CQI of the data symbol is measured by the CQI measurement unit 25. This measurement is performed using only a part (one symbol) of the data symbol input from the symbol separation unit 19 to the copy unit 20. At this time (when the second pilot symbol is not multiplexed), the copy unit 20 performs a process of copying only a part of the data symbol in the frame and outputting it to the CQI measurement unit 25. The CQI of the data symbol measured in this way is output to the CQI comparator together with the CQI of the first pilot symbol, and the two CQIs are compared.
  • the CQI information generation unit 31 in FIG. 3 receives the CQI measurement result of the first pilot symbol, and generates CQI information used in the base station when performing frequency scheduling or adaptive modulation. . This CQI information is input to the encoding unit 33.
  • Pilot control information generating section 32 has the variable speed information notified from the higher layer and the CQI comparison result of the first pilot symbol and the second pilot symbol notified from CQI comparing section 27, or the first pilot symbol. And either of the comparison results of CQI of the data symbol are input. If the fluctuation rate is slower than a predetermined threshold value and the CQI of the second pilot symbol or data symbol is higher than the predetermined threshold value compared to the CQI of the first pilot symbol, the pi The control information generator 32 generates information for requesting the base station to transmit a second pilot symbol.
  • transmission section data is further input from the upper layer to encoding section 33 to which CQI information and pilot signal control information are input, and error correction encoding is performed on each of the data. .
  • the IFFT unit 36 converts the signal in the frequency domain into a signal in the time domain.
  • a GI is added in the GI insertion unit 37, and the D / A conversion unit 38 converts the digital signal into an analog signal.
  • the signal after D / A conversion is frequency-converted to a frequency band that can be transmitted by the radio unit 11 via the switch 12 and then transmitted from the antenna unit 10.
  • the base station when the rate of change is high or when there is no terminal of an adjacent cell using the same resource, the base station is requested to transmit (assign) a second pilot symbol. In other cases, transmission efficiency can be improved by stopping or not requiring transmission (assignment) of the second pilot symbol.
  • the base station apparatus 200 in the present embodiment includes an antenna unit 50, a radio unit 51, a switch 52, a receiver 69, and a transmitter 70.
  • the receiver 69 includes an A / D conversion unit (A / D) 53, a synchronization unit 54, a GI removal unit 55, an S / P conversion unit (S / P) 56, an FFT unit 57, a demodulation unit 58, and A decoding unit 59 is provided.
  • the transmitter 70 includes a pilot signal control unit (control unit) 60, a coding unit 61, a modulation unit 62, an S / P conversion unit (SZP) 63, a pilot signal generation unit 64, a switch 65, an IFFT unit 66, a GI A insertion part 67 and a D / A conversion part (D / A) 68 are provided.
  • the base station shown in FIG. 4 converts the signal received by antenna unit 50 into a frequency that can be AZD converted by radio unit 51, and passes switch 52.
  • the A / D converter 53 converts the digital signal.
  • symbol synchronization is established by the synchronization unit 54, and the GI removal unit 55 removes the GI for each symbol, and then the S / P conversion.
  • the FFT unit 57 converts the time domain signal into a frequency domain signal. This signal is demodulated in the demodulator 58 (propagation path compensation or demapping), and then subjected to error correction decoding in the decoder 59 to reproduce data.
  • Data, CQI information, and pilot signal control information from the terminal obtained in the receiver 69 are output to an upper layer (not shown).
  • CQI information is used as a parameter for frequency scheduling and adaptive modulation.
  • the pilot signal control information is a force that is a second pilot symbol transmission request from the terminal, or a transmission stop request, which is also output to the upper layer and is transmitted to the terminal from the base station. Used to determine Further, the pilot signal control information is also output to pilot signal control unit 60, where information indicating the presence / absence of a second pilot symbol (pilot symbol information notified to the terminal side) is generated.
  • the pilot symbol information is input to the encoder 61, the pilot signal generator 64, and the switch 65.
  • encoding section 61 receives scheduling information indicating a scheduling result, modulation scheme information used for data transmission, modulation scheme information indicating a coding rate, and transmission data. Correction coding is performed.
  • the encoded information is modulated by the modulation unit 62 and then time-multiplexed with the pilot signal by the switching operation by the switch 65 via the S / P conversion unit 63.
  • This pilot signal is generated in pilot signal generating section 64 based on pilot symbol information, and switching of switch 65 is also performed based on pilot symbol information.
  • this embodiment is directed to the OFDMA system, it is assumed that blocks for performing these operations are provided for frequency channels (N channels).
  • the data signals for N channels multiplexed with the pilot signal in switch 65 are input to IFFT section 66, and are collectively converted into signals in the time domain.
  • a GI is inserted for each symbol in the GI insertion section 67, and an analog signal is input in the D / A conversion section 68. Converted to a signal. Then, the frequency is converted to a frequency that can be transmitted by the wireless unit 51 via the switch 52, and then transmitted from the antenna unit 50.
  • the CQI of the second pilot symbol is also measured (S 13), and the channel estimation unit 28 calculates a channel estimation value using the first pilot symbol and the second pilot symbol (S 14 and S 15). .
  • the fading fluctuation speed and the predetermined threshold V Comparison with (speed threshold) is performed (S16).
  • step S16 As a result of the comparison in step S16, if the fluctuation speed is greater than or equal to the threshold value V (N16 in S16), in order to perform propagation path compensation that follows fading that fluctuates at high speed, Unit 29 performs inner and outer shell processing on the channel estimation value calculated from the first pilot symbol and the channel estimation value calculated from the second pilot symbol, and interpolates the two channel estimation values. A new channel estimation value is calculated (S17). Then, as shown in S 18, the propagation path compensation unit 21 performs propagation path compensation of the data symbol using the propagation path estimated value calculated by the inner and outer shell processes. In this way, channel compensation and demodulation are After this is done, control information related to the next frame is transmitted to the base station.
  • V threshold value
  • the process proceeds from S18 to S23, and the pilot control information generating unit 32 generates pilot signal control information for requesting the base station to transmit the second pilot symbol, and the generated pilot signal control information is transmitted via the radio unit 11. To the base station.
  • step S19 determines that there is no terminal using the same resource in the adjacent cell, selects the propagation path estimation value obtained from the second pilot symbol, and the propagation path compensation unit 21 selects the second pilot symbol with good reception status.
  • the propagation path compensation of the data symbol is performed using the propagation path estimated value obtained from (S21). Pilot control information generating section 32 generates pilot signal control information for requesting the base station to continue transmission of the second pilot symbol, and sends the generated pilot signal control information to the base station.
  • step S11 it is determined that the second pilot symbol is not multiplexed.
  • the CQI measurement unit 25 measures the CQI of the first pilot symbol (S24), and also measures the CQI of the data symbol (S25).
  • the propagation path estimation unit 28 calculates the propagation path estimation value using the first pilot symbol (S26), and the propagation path compensation unit 21 uses the calculated propagation path estimation value to calculate the data symbol. Propagation path compensation is performed (S27).
  • the fluctuation speed of fading is compared with a predetermined threshold V (S28). If the fluctuation speed is equal to or higher than the threshold V (NO in S28), channel compensation using two pilot symbols is performed.
  • the pilot control information generating unit 32 generates pilot signal control information for requesting the base station to transmit the second pilot symbol, and sends the generated pilot signal control information to the base station (S23). If it is determined in step S28 that the fluctuation speed is less than the threshold value V (YES in S28), the CQI comparison unit 27 performs CQI in the data symbol and CQI in the first pilot symbol. Are compared (S29). As a result, if the difference between the CQI of the data symbol and the CQI of the first pie symbol is less than a predetermined threshold T (YES in S29), the pilot control information generating unit 32 stops the transmission of the second pilot symbol.
  • Pilot signal control information requesting the base station to continue is generated, and the generated pilot signal control information is sent to the base station (S22).
  • the pilot control information generating unit 32 Pilot signal control information requesting the base station to transmit symbols is generated, and the generated pilot signal control information is sent to the base station (S23).
  • the terminal when the difference between the CQI of the second pilot symbol and the CQI of the first pilot symbol is less than a predetermined threshold, the terminal propagates from the first pilot symbol.
  • the form of performing channel compensation using only the path estimation value Unlike this, the form of performing channel compensation using the average of the channel estimation values of the first pilot symbol and the second pilot symbol is also possible.
  • Yo! By adopting such a form, there is a possibility that a good channel estimation value can be obtained even in the situation where interference from the P-contact cell arrives.
  • a value calculated using two channel estimation values (a value obtained by performing interpolation in the frequency direction) may be used.
  • the propagation path estimated value may be calculated by averaging the subcarriers in several first pilot symbols in the time direction and the frequency direction.
  • the second pilot symbol may be calculated. Compare the CQI of the first pilot symbol and the CQI after calculating the average of multiple first pilot symbols, and use the channel estimation value obtained from the second pilot symbol when the difference exceeds a predetermined threshold. By performing this, demodulation can be performed with higher accuracy.
  • it is a propagation path condition (with few propagation path fluctuations in the time direction and the frequency direction) that can average several subcarriers in the first pilot symbol in the time direction and the frequency direction.
  • the terminal transmits or stops transmission of the second pilot symbol.
  • the determination may be made on the base station side.
  • the CQI of each pilot symbol or data symbol is reported from the terminal to the base station.
  • a system suitable for determining whether pilot symbols are transmitted or stopped by the base station in this way a system that performs transmission diversity from a base station having multiple antennas (sectors) or a site diversity that operates from multiple base stations A system is conceivable. In these transmission diversity, although the first pilot symbol transmits a different signal for each antenna (because it is used for cell search etc.), the same signal is transmitted from multiple antennas (base stations) for data symbols.
  • CQI for data symbols (or second pilot symbols) is higher than CQI for pilot symbols. Therefore, when such transmission is performed, it is only necessary to control the pilot symbols led by the base station, which does not require judgment from the terminal side.
  • the channel compensation is performed using the channel estimation value obtained from the first pilot symbol by performing channel compensation using the channel estimation value obtained from the multiplexed second pilot symbol at the terminal side. Compared to the above, a good demodulation characteristic can be obtained.
  • the base station apparatus shown in FIG. 4 may have the following configuration.
  • the base station apparatus receives the reception quality (propagation channel estimated value) of the first pilot symbol and the second pilot symbol (or data symbol) from the terminal via the radio unit 51.
  • the base station apparatus further inputs the reception quality of the received first pilot symbol and the reception quality of a symbol different from the symbol to which the first pilot symbol is assigned, and compares the two received reception qualities.
  • pilot signal control information is generated that instructs to assign a second pilot signal to a symbol different from the symbol to which the first pilot symbol is assigned.
  • pilot control information generation unit Pilot signal control section 60 controls multiplexing of the second pilot symbols in addition to the first pilot symbols based on the generated pilot signal control information.
  • the transmission request of the second pilot symbol is a terminal. If transmitted, the base station always multiplexes the second pilot symbol in the transmission of the next frame.
  • adaptive frequency scheduling channel assignment
  • the frequency channel assigned at the time of transmission of the next frame is not always the same as the previous frame, and the assigned frequency If the channels are different, there is a possibility that even if the second pilot symbol is multiplexed and transmitted, the second pilot symbol is not used for propagation path compensation. Therefore, in the second embodiment of the present invention, the second pilot symbol is not multiplexed when it is not assigned to the same frequency channel as the previous frame.
  • FIG. 7 is a flowchart showing the operation on the base station side according to the present embodiment. However, since the control on the terminal side can be realized by the same flowchart as in the first embodiment, the description is omitted.
  • the base station receives pilot signal control information notified from the terminal (S100). This pilot signal control information is control information for requesting transmission or suspension of the second pilot symbol.
  • pilot signal control unit 60 compares the fluctuating speed with a predetermined threshold V (S102). .
  • the pilot signal control unit 60 includes the second in the resource allocated to the terminal in the next frame. Signal transmission is performed by multiplexing pilot symbols (S104). On the contrary, if it is determined that the fading fluctuation speed is less than the threshold V as a result of the comparison in step S102 (YES in S102), the pilot signal control unit 60 uses the channel assigned to the corresponding terminal in the next frame. Is determined to be the same as the channel assigned during transmission of the previous frame (S103).
  • the pilot signal control unit 60 If it is determined that the same channel as the previous frame is allocated in the next frame (YES in S103), the pilot signal control unit 60 includes the second pilot symbol in the resource allocated to the corresponding terminal in the next frame. Is transmitted by multiplexing (S104). Conversely, if it is determined that a channel different from the previous frame transmission is allocated in the next frame (NO in S103), the pilot signal control unit 60 transmits the next frame to the resource allocated to the corresponding terminal. Without the second pilot symbol being multiplexed Signal transmission (SI 05).
  • the channel estimation value obtained from the second pilot symbol is more error due to interference than the channel estimation value obtained from the first pilot symbol. Because there are few
  • the second pilot symbol is the first pilot. Although it has better reception characteristics than symbols, the reception characteristics of the first pilot symbols are also considered to be sufficiently good.
  • pilot symbols are multiplexed in consideration of not only the presence / absence of interference from adjacent cells but also the position of the terminal.
  • FIG. 8 is a flowchart showing the operation of the terminal according to the present embodiment.
  • the terminal side is configured to determine whether to transmit or stop transmission of the second pilot symbol.
  • the pilot signal control unit 60 on the base station side differs from this. It is good also as a structure which performs the determination by.
  • the control flow on the terminal side in this embodiment is obtained by adding the determination of step S200 to the flowchart of FIG. 5 on the terminal side in the first embodiment.
  • the CQI comparison unit 27 compares the CQI of the first pilot symbol with a predetermined threshold U (quality threshold). As a result of the comparison, the CQI of the first pilot symbol is equal to or greater than the threshold U.
  • the base station is requested to stop transmitting the second pilot symbol (or continue to stop transmitting) (S22). If the CQI of the first pilot symbol is less than the threshold U, the second pilot symbol is transmitted. To the base station (S23).
  • the first pilot symbol in addition to the first pilot signal (first pilot signal) allocated to the first pilot symbol, the first pilot symbol depends on the reception quality. Since the second pilot symbol (second pilot signal) assigned to a different symbol is multiplexed and transmitted, the terminal using the same resource is not present in the adjacent cell while suppressing a decrease in transmission efficiency. By using the second pilot symbol and estimating the propagation path, it is possible to improve the propagation path estimation accuracy.
  • the power described using CQI as an example of the reception quality is not limited to this. If the parameter represents the level of the desired signal to be received and the level of the interference signal, CQI Let's use another index.
  • FIG. 1 A diagram showing a situation of interference waves coming from adjacent cells in an E-UTRA system.
  • FIG. 2 is a diagram illustrating an example of the influence of interference waves on reception quality.
  • FIG. 3 is a block diagram illustrating an example of a configuration of a terminal device according to the first embodiment.
  • FIG. 4 is a block diagram illustrating an example of a configuration of a base station apparatus according to the first embodiment.
  • FIG. 5 is a flowchart showing an example of an operation for generating pilot signal control information on the terminal side.
  • FIG. 6 is a flowchart showing an example of the operation of multiplexing the second pilot signal on the base station side.
  • FIG. 7 is a flowchart showing an example of the operation on the base station side in the second embodiment.
  • FIG. 8 is a flowchart showing an example of the operation on the terminal side of the third embodiment.
  • FIG. 9 is a diagram showing an example of frequency / time / resource division in the downlink of E-UTRA.

Abstract

【課題】受信品質に応じて、第一のパイロット信号を送信単位へ多重するとともに、第二のパイロット信号を多重する通信装置を提供する。 【解決手段】複数のシンボルから構成され、第一のパイロット信号を多重した送信単位を通信先装置から受信する通信装置であって、前記第一のパイロット信号を割り当てたシンボルとは異なるシンボルの受信品質から、前記パイロット信号の受信品質を差し引いた差分が差分閾値以上の場合、前記第一のパイロット信号を割り当てたシンボルとは異なるシンボルに第二のパイロット信号を割り当てることを要求するパイロット信号制御情報を生成するパイロット制御情報生成部32を備えることを特徴とする。

Description

明 細 書
通信装置および無線通信システム
技術分野
[0001] 本発明は、送信単位にパイロット信号を多重して伝搬路補償を行なう通信システム に関する。
背景技術
[0002] 近年のデータ通信量の増加に伴い、より高い周波数利用効率を有する移動体通信 システムの必要性が高まっており、それらの実現を目指した様々な技術が提案されて いる。周波数利用効率を高める可能性を持った技術のひとつに OFDMA (Orthogo nal Frequency Division Multiple Access)力、あり、 3GPP、丄、 he 3rd Gene ration Partnership Project)を中心に標準化が進められている E-UTRA (Evol ved Universal Terrestrial Radio Access)システムのダウンリンクアクセス方 式への採用も決定されている (非特許文献 1)。
[0003] 図 9は、この E-UTRAのダウンリンクにおける周波数.時間リソースの分割例を示す 図である。但し、図 9の上段はシステム全体のリソースの分割例を、図 9の下段は 1リソ ースブロックのシンボル構成をそれぞれ示している。 E-UTRAダウンリンクでは周波 数および時間を図 9の上段に示すように分割した 1つのブロック (斜線部)をリソースブ ロックとし、 1リソースブロックをユーザがアクセスする最小単位としている。 1つのリソ ースブロックは図 9の下段に示すように、パイロットシンボルとデータシンボル(ここで は制御情報も含むものとする)から構成される。ここで、図 9の下段に示すように、 1つ のリソースブロックにはファーストパイロットシンボルとセカンドパイロットシンボルの 2 つのパイロットシンボルが設けられている。このうち、ファーストパイロットシンボルはセ ルサーチや周波数チャネルの品質測定、伝搬路推定値の算出に用いられる既知の 信号であり、リソースブロックに常時挿入される。
[0004] このファーストパイロットシンボルのサブキャリアには基地局固有の符号が乗算され ているが、この符号は基地局の特定や干渉のランダム化を行なう役割を持っている。 セカンドパイロットシンボルは基本的に、指向性ビームを形成した伝送や MIMO (M ulti- Input Multi— Output)伝送が行なわれる際の伝搬路推定値の算出に使用 される。また、上記以外の伝送の際にも、ユーザが高速移動する場合にはファースト パイロットシンボルを用いた伝搬路推定だけではフェージングの変動速度に追従でき ないため、セカンドパイロットシンボルによる伝搬路推定も併用することにより、伝搬路 推定精度の劣化を抑えることができる。但し、セカンドパイロットシンボルは常に揷入 されるとは限らず、通常のシングノレアンテナ伝送(ビーム形成なし)における伝搬路推 定はファーストパイロットシンボルを用いて行なわれる。
[0005] このような、 2つのパイロットシンボルを用いて復調精度の向上を図る提案として特 許文献 1がある。特許文献 1には、送信電力制御された第 1のパイロットシンボルと送 信電力制御されていない第 2のパイロットシンボルの受信レベルを比較し、受信レべ ルの高レ、パイロットシンボルから得られる伝搬路推定値を選択し、選択された伝搬路 推定値のみを用いて復調を行なう手法が示されている。この手法を用いることにより、 高い伝搬路推定精度が得られるパイロットシンボルを用いた伝搬路補償が可能となり 、復調を高精度に行なうことができる。また、特許文献 1には、フェージングの変動速 度に応じて 2つのパイロットシンボルから得られる伝搬路推定値のどちらかを選択し、 選択された伝搬路推定値のみを用いて復調を行なう手法についても記されている。 特許文献 1 :特開 2002-44172号公報
非特許文献 1 : 3GPP, TR 25. 814 νθ. 3. 1 , "Physical Layer Aspects for Evolved UTRA"
発明の開示
発明が解決しょうとする課題
[0006] し力 ながら、 E-UTRAシステムは全てのセルで同一周波数帯域を用いるシステ ムであるため、隣接セル力も到来する干渉の影響により受信信号の品質 (受信 SINR : signal to Interference plus Noise power Ratio)は劣ィ匕する。特に、ファ 一ストパイロットシンボルは全てのセルにおいてほぼ同一タイミングで送信されるため
、常に隣接セルからの干渉を受けることとなる。先に述べたように、ファーストパイロッ トシンボルの各サブキャリアには基地局固有の符号が乗算されており、この符号によ り他セルから到来する干渉をある程度ランダム化できる設計となっているが、完全に 干渉を除去することは不可能である。このため、ファーストパイロットシンボルから算出 される伝搬路推定値には干渉の影響による推定誤差が含まれており、この伝搬路推 定値を用いてデータシンボルの伝搬路補償および復調を行なう場合には、隣接セル 力 の干渉がない場合と比較して復調精度が劣化するという問題がある。
[0007] 特許文献 1は、 1つのパイロットシンボルによる受信レベルが低い場合に、常に送信 を行なっている別のパイロットシンボルから得られる伝搬路推定値を用いて伝搬路補 償を行なうものである力 どちらのパイロットシンボルを選択するかは主に信号の距離 減衰に応じて決められており、マルチセル環境下において隣接セルから到来する干 渉については全く考慮されていない。すなわち、基地局-端末間距離が短い場合に は送信電力制御されていなレ、パイロットシンボル、基地局-端末間距離が長い場合に は送信電力制御されたパイロットシンボルを選択する。
[0008] また、干渉存在下では、算出された受信レベルにも干渉の影響による誤差が含ま れるため、受信レベルが高い方のパイロットシンボルから得られる推定精度が必ずし も高いとは限らず、 E-UTRAシステムに特許文献 1による手法を適用しても復調精 度は向上しない、または劣化する場合がある。
[0009] さらに、特許文献 1では常に 2つのパイロットシンボルを送信することが前提となって いる力 常に 2つのパイロットシンボルを送信することは効率的ではなぐ E- UTRAシ ステムではセカンドパイロットシンボルは必要に応じて送信される状況が考えられるた め、特許文献 1に示された手法を常に適用することはできない。
[0010] フェージング変動への追従についても、特許文献 1では、フェージング変動速度に 応じて用いるパイロットシンボルを選択する(高速の場合には送信電力制御されてい ないパイロットシンボル、低速の場合には送信電力制御されたパイロットシンボルを選 択する)ことが示されている力 E-UTRAシステムでは図 9に示すようにファーストパ ィロットシンボルおよびセカンドパイロットシンボルはデータシンボルと時間多重される ため、変動速度が高速である場合にはどちらかのパイロットシンボルを選択しても変 動に追従することはできない。このため、高速フェージング環境下において特許文献 1に示される手法を E-UTRAシステムに適用する場合には、伝搬路推定精度が著し く劣化してしまう。 [0011] 本発明は、このような事情に鑑みてなされたものであり、第一のパイロット信号を送 信単位へ多重するとともに、受信品質に応じて、第二のパイロット信号を多重する通 信装置および無線通信システムを提供することを目的とする。
課題を解決するための手段
[0012] (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわ ち、本発明に係る通信装置は、複数のシンボルから構成され、第一のパイロット信号 を多重した送信単位を通信先装置から受信する通信装置であって、前記第一のパイ ロット信号を割り当てたシンボルとは異なるシンボルの受信品質から、前記第一のパ ィロット信号の受信品質を差し引いた差分が差分閾値以上の場合、前記第一のパイ ロット信号を割り当てたシンボルとは異なるシンボルに第二のパイロット信号を割り当 てることを前記通信先装置に要求するパイロット信号制御情報を生成し、前記生成し たパイロット信号制御情報を前記通信先装置へ通知することを特徴とする。
[0013] このように、本発明に係る通信装置によれば、第一のパイロット信号とは異なるシン ボルに第二のパイロット信号の多重を行なうことを要求することができる。具体的には 、前記差分が差分閾値以上の場合、すなわち、同一リソースを用いる隣接セルの端 末が存在しない場合に、セカンドパイロットシンボルの送信を要求することができる。 このように、異なるシンボルに割り当てられたパイロットシンボルの受信品質の差分に 基づいて、隣接するセルにおいて同じリソースを使用している端末の有無を検出し、 セカンドパイロットシンボルの送信を要求するので、第二のパイロット信号を用いて高 精度な伝搬路推定を行なうことが可能となる。さらに、受信品質に応じて第二のパイ ロット信号を割り当てることにより、不要なパイロットシンボルの伝送を避け、スループ ットの低下を防止することができる。
[0014] (2)また、本発明に係る通信装置において、前記通信装置は、前記差分が前記差 分閾値未満の場合、前記第二のパイロット信号の割り当てを停止することを要求する パイロット信号制御情報を生成することを特徴とする。
[0015] このように、前記差分が前記差分閾値未満の場合、すなわち、同一リソースを用い る隣接セルの端末が存在する場合に、第二のパイロット信号の割り当てを停止し、ま たは要求しないことにより伝送効率の向上を図ることができる。 [0016] (3)さらに、本発明に係る通信装置において、前記通信装置は、前記第一のパイ口 ット信号の受信品質が品質閾値以上となる場合、前記第二のパイロット信号の割り当 てを停止することを要求するパイロット信号制御情報を生成することを特徴とする。
[0017] このように、第一のパイロット信号の受信品質が良好な場合に、第二のパイロット信 号の割り当てを停止するので、伝送効率の向上を図ることができる。
[0018] (4)本発明に係る通信装置は、複数のシンボルから構成され、第一のパイロット信 号を多重した送信単位を通信先装置から受信する通信装置であって、前記第一の パイロット信号の受信品質と、前記第一のパイロット信号を割り当てたシンボルとは異 なるシンボルの受信品質とを測定する測定部と、前記測定部が測定した二つの受信 品質を比較し、前記差分を算出する比較部と、前記比較部が算出した差分が差分閾 値以上である場合、前記第一のパイロット信号を割り当てたシンボルとは異なるシン ボルに第二のパイロット信号を割り当てることを前記通信先装置に要求するパイロット 信号制御情報を生成するパイロット制御情報生成部と、を備えることを特徴とする。
[0019] このように、本発明に係る通信装置によれば、第一のパイロット信号とは異なるシン ボルに第二のパイロット信号の多重を行なうことを要求することができる。具体的には 、前記差分が差分閾値以上の場合、すなわち、同一リソースを用いる隣接セルの端 末が存在しない場合に、セカンドパイロットシンボルの送信を要求することができる。 測定部は、第一のパイロット信号に加え、前記第一のパイロット信号を割り当てたシン ボルとは異なるシンボルに割り当てられた信号 (第二のパイロット信号あるいは第二の パイロット信号が割り当てられていない場合はデータ信号)の受信品質を測定する。 このように、異なるシンボルに割り当てられたパイロットシンボルの受信品質の差分に 基づいて、隣接するセルにおいて同じリソースを使用している端末の有無を検出し、 セカンドパイロットシンボルの送信を要求するので、第二のパイロット信号を用いて高 精度な伝搬路推定を行なうことが可能となる。さらに、受信品質に応じて第二のパイ ロット信号を割り当てることにより、不要なパイロットシンボルの伝送を避け、スループ ットの低下を防止することができる。
[0020] (5)本発明に係る通信装置において、前記送信単位に前記第二のパイロット信号 が多重され、前記差分が差分閾値以上である場合は、前記第二のパイロット信号か ら得られる伝搬路推定値を選択する推定値選択部と、前記選択した伝搬路推定値を 用いて伝搬路補償を行なう伝搬路補償部と、を更に備えることを特徴とする。
[0021] このように、送信単位に第二のパイロット信号が多重され、差分が差分閾値以上で ある場合は、第二のパイロット信号から得られる伝搬路推定値を選択し、その選択し た伝搬路推定値を用いて伝搬路補償を行なうので、第一のパイロットシンボル力 得 られる伝搬路推定値を用いて伝搬路補償を行なう場合に比べ、データシンボルの伝 搬路補償を高精度に行なうことが可能となる。
[0022] (6)また、本発明に係る通信装置において、前記推定値選択部は、前記比較部が 算出した差分が差分閾値未満であった場合は、前記第一のパイロット信号力 得ら れる伝搬路推定値、または前記第一のパイロット信号と前記第二のパイロット信号と から得られる伝搬路推定値を用いて算出した伝搬路推定値を選択することを特徴と する。
[0023] このように、差分閾値未満であった場合は、第一のパイロット信号から得られる伝搬 路推定値、または第一のノ ィロット信号と第二のパイロット信号とから得られる伝搬路 推定値を用いて算出した伝搬路推定値を選択するので、隣接するセル力 の干渉が ある場合においても、伝搬路推定精度の劣化を抑制することが可能になる。
[0024] (7)本発明に係る通信装置において、前記パイロット制御情報生成部は、移動速 度が速度閾値以上である場合、前記第二のパイロット信号を割り当てることを要求す るパイロット信号制御情報を生成することを特徴とする。
[0025] このように、端末の移動速度が速い場合は、第二のパイロット信号の割り当てを要 求し、第一のパイロット信号から得られる伝搬路推定値と第二のパイロット信号から得 られる伝搬路推定値からデータシンボルの伝搬路推定値を補間して算出することに より、伝搬路推定精度の劣化を抑制することができる。
[0026] (8)本発明に係る通信装置において、前記移動速度が速度閾値以上である場合、 前記第一のパイロット信号から得られる伝搬路推定値と、前記第二のパイロット信号 力、ら得られる伝搬路推定値との補間を行なう内揷*外揷部を、更に備え、前記伝搬路 補償部は、前記内揷'外揷部が補間した伝搬路推定値を用いて伝搬路補償を行なう ことを特徴とする。 [0027] このように、端末の移動速度が速い場合は、第二のパイロット信号を割り当て、前記 内挿 ·外挿部によって、第一のパイロット信号力 得られる伝搬路推定値と第二のパ ィロット信号力 得られる伝搬路推定値からデータシンボルの伝搬路推定値を補間し て算出することにより、伝搬路推定精度の劣化を抑制することができる。
[0028] (9)本発明に係る通信装置は、複数のシンボルから構成され、第一のパイロット信 号を多重した送信単位を通信先装置へ送信する通信装置であって、前記通信先装 置から受信した前記第一のパイロット信号の受信品質と、前記第一のパイロット信号 を割り当てたシンボルとは異なるシンボルの受信品質とを入力し、入力した二つの受 信品質を比較して前記差分を算出する比較部と、前記比較部が算出した差分に基 づいて、前記第一のパイロット信号を割り当てたシンボルとは異なるシンボルに第二 のノ ィロット信号を割り当てることを指示するパイロット信号制御情報を生成するパイ ロット制御情報生成部と、生成したパイロット信号制御情報に基づレ、て、前記第一の パイロット信号に加え、前記第二のパイロット信号を多重することを制御する制御部と
、を備えることを特 ί数とする。
[0029] このように、通信を制御する通信装置 (通信制御装置、基地局など)におレヽて、通信 先装置 (端末)から受信品質を受信することによって、第二のパイロット信号の割り当 てが必要であるかを判断し、判断結果に基づいて、第二のパイロット信号の割り当て を制御することができる。これにより、通信先の端末装置において、干渉の到来状況 に応じた伝搬路推定を行なうことができる。
[0030] (10)本発明に係る通信装置は、複数のシンボル力 構成される送信単位へ第一 のパイロット信号を多重して通信先装置へ送信する通信装置であって、前記第一の パイロット信号を割り当てたパイロットシンボルとは異なるシンボルの受信品質から、 前記第一のパイロット信号の受信品質を差し引いた差分が差分閾値以上の場合、前 記パイロット信号を割り当てたシンボルとは異なるシンボルに第二のパイロット信号を 割り当てることを要求するパイロット信号制御情報を前記通信先装置力も受信する無 線部と、受信したパイロット信号制御情報に基づいて、前記第一のパイロット信号に 加え、前記第二のパイロット信号を多重することを制御する制御部と、を備えることを 特徴とする。 [0031] このように、通信を制御する通信装置 (通信制御装置、基地局など)において、通信 先装置 (端末)から受信品質を受信することによって、第二のパイロット信号の割り当 てが必要であるかを判断し、判断結果に基づいて、第二のパイロット信号の割り当て を制御することができる。これにより、通信先の端末装置において、干渉の到来状況 に応じた伝搬路推定を行なうことができる。
[0032] (11)本発明に係る通信装置において、前記制御部は、前記通信先装置宛のデー タを伝送するチャネルが前回のデータ伝送時と異なる場合、前記第二のパイロット信 号を多重しなレ、ことを特徴とする。
[0033] このように、通信を制御する通信装置 (通信制御装置、基地局など)におレ、て、パイ ロット信号制御情報を受信することによって、通信先装置 (端末)からの第二のパイ口 ット信号の割り当ての要求を把握し、パイロット信号の割り当てを制御することができ る。これにより、通信先の端末装置において、干渉の到来状況に応じた伝搬路推定 を行なうことができる。
[0034] (12)本発明に係る通信装置において、前記第一のパイロット信号は、複数のセル において同時に送信される共通パイロット信号であり、前記第二のパイロット信号は、 前記第一のパイロット信号とは時間的に異なるシンボルに割り当てられることを特徴と する。
[0035] このように、第一のパイロット信号は、共通パイロット信号であるため、隣接セルから の干渉を必ず受け、第二のパイロット信号は、データシンボルに割り当てることより、 隣接するセルの端末が同じリソースを使用しない場合は、隣接セルからの干渉を受 けにくい。このような特性を利用して、第二のパイロット信号を割り当て、それを用いて 伝搬路推定を行なうことにより、伝搬路推定精度の向上を図ることができる。
[0036] (13)本発明に係る通信装置は、複数のシンボルから構成され、第一のパイロット信 号と前記第一のパイロット信号とは異なるシンボルに第二のパイロット信号を多重した 送信単位を通信先装置から受信する通信装置であって、第一のパイロット信号と第 二のパイロット信号の受信品質を測定する測定部と、前記第二のパイロット信号の受 信品質力 前記第一のパイロット信号の受信品質を差し引いた差分を算出する比較 部と、前記差分が差分閾値以上である場合は前記第二のパイロット信号力 得られる 伝搬路推定値を選択する推定値選択部と、選択した伝搬路推定値を用いて伝搬路 補償を行なう伝搬路補償部と、を備えることを特徴とする。
[0037] このように、差分が差分閾値以上である場合は、第二のパイロット信号から得られる 伝搬路推定値を選択し、その選択した伝搬路推定値を用いて伝搬路補償を行なうの で、第一のパイロットシンボルから得られる伝搬路推定値を用いて伝搬路補償を行な う場合に比べ、データシンボルの伝搬路補償を高精度に行なうことが可能となる。
[0038] (14)本発明に係る通信装置において、前記推定値選択部は、前記比較部が算出 した差分が差分閾値未満である場合は、前記第一のパイロット信号から得られる伝搬 路推定値、または前記第一のパイロット信号と前記第二のパイロット信号とから得られ る伝搬路推定値を用いて算出した伝搬路推定値を選択することを特徴とする。
[0039] このように、差分閾値未満であった場合は、第一のパイロット信号から得られる伝搬 路推定値、または第一のノ ィロット信号と第二のパイロット信号とから得られる伝搬路 推定値を用いて算出した伝搬路推定値を選択するので、隣接するセル力 の干渉が ある場合においても、伝搬路推定精度の劣化を抑制することが可能になる。
[0040] (15)本発明に係る無線通信システムは、複数のシンボルから構成され、第一のパ ィロット信号を多重した送信単位を用いて通信制御装置と端末装置との間で通信を 行なう無線通信システムであって、前記通信制御装置は、前記第一のパイロット信号 を割り当てたシンボルとは異なるシンボルの受信品質から、前記第一のパイロット信 号の受信品質を差し引いた差分が差分閾値以上の場合、前記第一のパイロット信号 を割り当てたシンボルとは異なるシンボルに第二のパイロット信号を多重することを特 徴とする。
[0041] このように、無線通信システムによれば、干渉信号の到来状況に応じて、第一のパ ィロット信号とは異なるシンボルに第二のパイロット信号の多重を行なうことができる。 これにより、受信側の通信装置において干渉の影響の少ない第二のパイロット信号を 用いた伝搬路推定を行なう場合には、受信側の通信装置における伝搬路推定精度 を向上させることができる。さらに、受信品質に応じて第二のパイロット信号を割り当て ることにより、不要なパイロットシンボルの伝送を避け、スループットの低下を防止する こと力 Sできる。 発明の効果
[0042] 本発明によれば、第一のパイロット信号を送信単位へ多重するとともに、受信品質 に応じて、第二のパイロット信号を多重することができる。これにより、受信側の通信 装置において干渉の到来状況に応じた伝搬路推定を行なうことができ、第二のパイ ロット信号受信時に到来する干渉が少ない場合には、第二のパイロット信号を用いた 伝搬路推定を行なうことにより高精度な伝搬路推定を行なうことができる。
発明を実施するための最良の形態
[0043] 次に、本発明の実施形態について、図面を参照しながら説明する。各図面におい て同一の構成または機能を有する構成要素および相当部分には、同一の符号を付 し、その説明は省略する。また、フローチャートにおいても、同様の処理を示す場合 は同じステップ番号を付し、説明を省略する。
[0044] 以下では、 E-UTRAシステムにおいて、指向性ビームの形成を行なわないシング ルアンテナによるダウンリンク伝送を行なう場合を例として、本発明によるデータシン ボルの伝搬路補償法およびそれを用レ、る無線通信システムや送受信機構成につい て説明する。但し、本発明はダウンリンク伝送だけでなぐアップリンク伝送にも適用 可能である。
[0045] また、以下の説明では、基地局(基地局装置)と端末 (端末装置)とを一例として用 いて説明するが、基地局は、パイロット信号を多重して信号を送信する機能を有し、 端末は、パイロット信号を多重した信号を受信する機能を有するものであればその他 のものであってもよい。基地局装置は、通信を制御する側であることより、通信制御装 置ともいう。さらに、本発明は、パイロット信号を送信単位へ多重して通信を行なう通 信装置に適用することが可能であり、通信装置は、基地局側あるいは端末側の一方 、あるいは両方の機能を有するものが該当する。
[0046] 送信単位は、複数のシンボルから形成され、複数のシンボルは、パイロット信号を 害 ijり当てるパイロットシンボル(PS : Pilot Symbols)とデータを害 ijり当てるデータシン ボル(DS : Data Symbols)とに分けられる。パイロットシンボルのうち、ファーストパ ィロット信号 (第一のパイロット信号)を割り当てるシンボルをファーストパイロットシンポ ノレ(FPS : First Pilot Symbols)、セカンドパイロット信号(第二のパイロット信号) を割り当てるシンボルをセカンドパイロットシンボル(SPS : Second Pilot Symbols
)として説明する。
[0047] また、以下では、ノ ィロットシンボルから得られる伝搬路推定値とは、パイロットシン ボルに割り当てられたパイロット信号から得られる伝搬路推定値と同様のことを意味 する。また、パイロットシンボルの受信品質とは、パイロットシンボルに割り当てられた パイロット信号の受信品質と同様のことを意味する。本明細書内ではこれらを厳密に 区別してレヽなレ、。データシンボルにつレ、ても同様である。
[0048] 図 1は、 E-UTRAシステムにおいて隣接セルから到来する干渉波の状況について 示す図である。また、図 2は、干渉波が受信品質に与える影響の一例を示す図である 。但し、簡単のため隣接セル数は 1つとした場合のセル構成例を示す。図 2は、 1フレ ームの構成例と、隣接セル (セル 2)の端末割り当て状況に応じた端末 Aにおける受 信 CQI (Channel Quality Information)の変動例を示している。 E-UTRAシス テムでは、端末における受信品質に応じた周波数スケジューリングや適応変調を行 なうために、各端末において受信 CQIを測定し、測定結果をそれぞれ基地局に報告 する方式を用いており、本発明ではこの受信 CQIの測定結果を利用するものとする。
[0049] 図 2上段の受信 CQIは、セル 1において端末 Aに割り当てられたリソースと全く同一 のリソースがセル 2においても使用されている場合の端末 Aにおける受信 CQIを示す (以下、「受信 CQI91」と記す)。例えば、端末 Bに割り当てられている場合である。図 2下段の受信 CQIはセル 1において端末 Aに割り当てられたリソースと同じリソースが セル 2において使用されていない場合の端末 Aにおける受信 CQI (以下、「受信 CQI 92」と記す)を示す。受信 CQI91に示すように、端末 Aに割り当てられたリソースと同 じリソースがセル 2の端末 Bに割り当てられている場合には、端末 B宛の信号が端末 Aにおいては干渉として観測されるため、端末 Aにおける受信 CQIはフレーム中で常 に低いレベルとなる。これに対し、端末 Aに割り当てられたリソースと同じリソースがセ ノレ 2では使用されていない場合には、受信 CQI92に示すように、ファーストパイロット の送信期間では、受信 CQI91の場合と同様、受信 CQIは低いレベルとなっているが 、それ以外の送信期間では高い受信 CQIが得られている。これは、先に述べたように 、ファーストパイロットシンボルは常に全てのセルにおいてほぼ同一タイミングで送信 されるため、必ず干渉の影響を受けるのに対し、データシンボルおよびセカンドパイ ロットシンボルはユーザが割り当てられた場合にのみ送信されるため、隣接セルの割 り当て状況によっては干渉の影響を受けない場合もあるためである。
[0050] 受信 CQI92に示すような状況の場合、ファーストパイロットシンボルは干渉の影響 を受けているため、ファーストパイロットシンボルから得られる伝搬路推定値には誤差 が多く含まれるのに対し、セカンドパイロットシンボルは干渉の影響を受けていないた め、セカンドパイロットシンボルから得られる伝搬路推定値には誤差が少なレ、。したが つて、このような状況においてセカンドパイロットシンボルから得られる伝搬路推定値 を用いた伝搬路補償を行なう場合には、ファーストパイロットシンボルから得られる伝 搬路推定値を用いる場合に比べ、データシンボルの伝搬路補償を高精度に行なうこ とができる。
[0051] (第 1の実施形態)
第 1の実施形態では、隣接セルからの干渉がない状況においてセカンドパイロット シンボルを伝送し、セカンドパイロットシンボルから得られる伝搬路推定値を用いてデ ータシンボルの伝搬路補償を行なう。
[0052] 具体的には、各端末において受信されたファーストパイロットシンボルとセカンドパ ィロットシンボルの受信 CQIを比較し、セカンドパイロットシンボルの受信 CQIがファ 一ストパイロットシンボルの受信 CQIよりも予め決められた閾値 (差分閾値)以上高い 場合には隣接セルからの干渉がなレ、ものと判断して、セカンドパイロットシンボルから 得られる伝搬路推定値を用いてデータシンボルの伝搬路補償を行なう。一方、セカ ンドパイロットシンボルの受信 CQIとファーストパイロットシンボルの受信 CQIの差が 予め決められた閾値未満となる場合には隣接セルからの干渉があるものと判断し、こ の場合には、ファーストパイロットシンボルから得られる伝搬路推定値を用いてデータ シンボルの伝搬路補償を行なう。ここで、干渉電力が高い場合には受信 CQI値の誤 差が大きくなり誤った判断をしてしまう状況が考えられるが、閾値をある程度高レ、値に 設定しておくことにより干渉の影響が大きい場合の誤差の影響を軽減することができ る。
[0053] さらに、フェージングの変動速度(端末の移動速度)が高速である場合には、フエ一 ジング変動に追従した伝搬路補償を行なうために、ファーストパイロットシンボルとセ カンドパィロットシンボルから得られる伝搬路推定値を内挿および外挿処理した値を 用いてデータシンボルの伝搬路補償を行なう。このように、伝搬路補償に用いる伝搬 路推定値の切り替えを行なうことにより、 P 接セルから到来する干渉の有無(P 接セ ルにおける端末割り当て状況)とフェージングの変動速度に応じた伝搬路補償を行 なうことが可能となり、復調誤りを低減することができる。
[0054] 但し、先に述べたように、 E-UTRAシステムでは常にセカンドパイロットシンボルが 伝送されるとは限らず、また、常にセカンドパイロットシンボルを伝送することはスルー プットの低下を招き、効率的ではない。そこで本実施形態では、セカンドパイロットシ ンボルの伝送を受信品質に応じて端末側から基地局側に要求する制御を行なう手 法を用いる。
[0055] これは、まず、セカンドパイロットシンボルが伝送されていない状況において、各端 末ではファーストパイロットシンボルの受信 CQIとデータシンボルの受信 CQIを測定 し、比較を行なう。この時、データシンボルの受信 CQIがファーストパイロットシンボル の受信 CQIよりも予め決められた閾値以上高い場合には隣接セルからの干渉がない ものと判断して、セカンドパイロットシンボルの伝送を基地局に要求する。一方、デー タシンボルの受信 CQIとファーストパイロットシンボルの受信 CQIの差が予め決めら れた閾値未満となる場合には隣接セルからの干渉があるものと判断し、この場合には ファーストパイロットシンボルから得られる伝搬路推定値を用いた伝搬路補償を行なう ので、セカンドパイロットシンボルの伝送を基地局に要求しない。また、セカンドパイ口 ットシンボルが伝送されてレ、る状況では、伝送されたセカンドパイロットシンボルの受 信 CQIとファーストパイロットシンボルの受信 CQIの差が予め決められた閾値未満と なる場合に、セカンドパイロットシンボルの伝送を停止する要求を端末から基地局へ 送る。但し、セカンドパイロットシンボルを伝送しない場合には、代わりにデータシンポ ルが送信され、セカンドパイロットシンボルを伝送する場合に比べ、多くのデータを送 信すること力 Sできる。
[0056] このように、受信品質に応じてセカンドパイロットシンボルを送信することにより、不 要なパイロットシンボルの伝送を避け、スループットの低下を防止することができる。 [0057] ここで、本実施形態による伝搬路補償法を用いる端末装置構成と基地局装置構成 を示す。図 3は、第 1の実施形態に係る端末装置 100の構成を示すブロック図であり 、図 4は、第 1の実施形態に係る基地局装置 200の構成を示すブロック図である。
[0058] 図 3に示すように、本実施形態による端末装置 100は、アンテナ部 10、無線部 11、 スィッチ 12、受信機 39、並びに、送信機 40を備える。受信機 39は、 A/D (Analog to Digital)変換部(A/D) 13、同期部 14、 GI (Guard Interval)除去部 15、 S /P (Serial to Parallel)変換部(S/P) 16、 FFT (Fast Fourier Transform) 部 17、チャネル選択部 18、シンボル分離部 19、コピー部 20、伝搬路補償部 21、デ マッピング部 22、 P/S (Parallel to Serial)変換部(PZS) 23、復号部 24、 CQI ( Channel Quality Indicator)測定部(測定部) 25、バッファ 26、 CQI比較部(比 較部) 27、伝搬路推定部 28、内揷*外揷部 29、並びに、推定値選択部 30を備える。 また、送信機 40は、 CQI情報生成部 31、パイロット制御情報生成部 32、符号部 33、 変調部 34、 S/P変換部(S/P) 35、 IFFT (Inverse FFT)部 36、 GI揷入部 37、 並びに、 D/A (Digital to Analog)変換部(D/A) 38を備える。
[0059] 基地局から伝送される図 9に示すようなフレームを受信する場合、図 3に示す端末 装置 100では、アンテナ部 10で受信された信号を無線部 11にて A/D変換可能な 周波数に変換し、スィッチ 12を経由して A/D変換部 13においてディジタル信号に 変換する。次に、同期部 14にてシンボル同期を確立し、 GI除去部 15においてシン ボル毎に GIを除去した後、 S/P変換部 16を経由して FFT部 17において時間領域 の信号を周波数領域の信号に変換する。
[0060] 受信信号には他端末宛の信号も含まれているため、チャネル選択部 18において、 自端末に割り当てられた周波数チャネルのみを選択し、 FFT部 17の出力信号から 自端末宛の信号のみを抽出する。この時の割り当て情報 (スケジューリング情報)は、 基地局から事前に通知された情報の復調結果を用レ、るものとする。
[0061] チャネル選択部 18において自端末宛の信号のみを抽出した後、シンボル分離部 1 9において多重されているパイロットシンボルとデータシンボルを分離する。先に述べ たように、セカンドパイロットシンボルは多重される場合とされない場合がある力 セカ ンドパイロットシンボルの有無を示す情報はパイロットシンボル情報として基地局から 事前に通知されるものとする。セカンドパイロットシンボルが多重される場合には、シ ンボル分離部 19においてファーストおよびセカンドパイロットシンボルとデータシンポ ルが分離され、 2つのパイロットシンボルは CQI測定部 25および伝搬路推定部 28へ 送られる。
[0062] CQI測定部 25では、まずファーストパイロットシンボルの CQIが測定され、その結果 力 Sバッファ 26に格納される。同様にセカンドパイロットシンボルの CQIも CQI測定部 2 5において測定され、その結果とバッファ 26に格納されているファーストパイロットシン ボルの CQI測定結果とが CQI比較部 27に入力される。
[0063] CQI比較部 27では、ファーストパイロットシンボルにおける CQIとセカンドパイロット シンボルにおける CQIの比較が行なわれ、ファーストパイロットシンボルにおける CQI とセカンドパイロットシンボルにおける CQIの差分を算出した比較結果が推定値選択 部 30とパイロット制御情報生成部 32に送られる。また、バッファ 26に格納されたファ 一ストパイロットシンボルにおける CQIは CQI情報生成部 31に送られ、 CQI情報とし て基地局側へ通知されることとなる。
[0064] 伝搬路推定部 28では、ファーストパイロットシンボルおよびセカンドパイロットシンポ ルを用いた伝搬路推定がそれぞれ行なわれ、算出された 2つの伝搬路推定値は内 挿'外挿部 29に送られる。但し、本実施形態における伝搬路推定方法は、既知であ るパイロット信号を用いて、周波数領域において受信パイロット信号を複素除算する 手法を用いるものとする。
[0065] 内挿'外挿部 29には算出された伝搬路推定値と、伝搬路の変動速度 (端末の移動 速度)を示す変動速度情報が入力され、変動速度が予め決められた閾値 (速度閾値 )より低速である場合には入力された 2つの伝搬路推定値をそのまま推定値選択部 3 0へ出力する。逆に、変動速度が予め決められた閾値より高速である場合には、フエ 一ジング変動に追随した伝搬路推定値の算出を行なうために、ファーストパイロットシ ンボルから算出された伝搬路推定値とセカンドパイロットシンボルから算出された伝 搬路推定値に対して内挿および外揷演算 (本実施形態では簡単な線形補間)を行 ない、その結果を推定値選択部 30へ出力する。ここで、本実施形態では、変動速度 情報は端末において予め測定した情報であるものとし、図示しない上位層のブロック 力 通知されるものとする。
[0066] 推定値選択部 30には、伝搬路推定値と変動速度情報、 CQI比較結果が入力され る力 変動速度が予め決められた閾値より低速であり、セカンドパイロットシンボルの CQIがファーストパイロットシンボルの CQIより予め決められた閾値以上高い場合に は、セカンドパイロットシンボルから算出された伝搬路推定値を伝搬路補償部 21へ 出力する。逆に、変動速度が予め決められた閾値より低速であるが、セカンドパイロッ トシンボルの CQIがファーストパイロットシンボルの CQIより予め決められた閾値未満 である場合には、ファーストパイロットシンボルから算出された伝搬路推定値を伝搬路 補償部 21へ出力する。また、変動速度が予め決められた閾値より高速である場合に は、ファーストパイロットシンボルとセカンドパイロットシンボルを内揷 '外揷処理した結 果を伝搬路補償部 21へ出力する(内揷*外揷部 29からの入力をそのまま出力する)
[0067] このようにパイロットシンボルの品質や変動速度に応じて選択された伝搬路推定値 を入力された伝搬路補償部 21では、その伝搬路推定値を用いて先に入力されたデ ータシンボルの伝搬路補償を行なう。伝搬路補償後のデータ信号はデマッピング部 22に送られ、変調方式識別情報に基づき復調される。この変調方式識別情報はデ ータ伝送に用いる変調方式および符号化率を伝搬路の変動に応じて変更する場合 に、該当するフレームにおいて用いられている変調方式および符号化率を示す情報 であり、基地局から事前に通知される。復調後のデータ信号は P/S変換部 23を経 由後、復号部 24において誤り訂正復号され、得られた受信データは図示しない上位 層へ送られる。
[0068] 上記では、セカンドパイロットシンボルが多重される場合について端末側受信機 39 の動作を説明したが、次に、セカンドパイロットシンボルが多重されない場合につい ての本実施形態における受信機 39の動作、特に CQIの測定に関する動作を説明す る。セカンドパイロットシンボルが多重されない場合には、セカンドパイロットシンボル による伝搬路推定や、ファーストパイロットシンボルとセカンドパイロットシンボルの伝 搬路推定値の内揷'外揷処理を行なうことは不可能である。したがって、この場合の 伝搬路推定はファーストパイロットシンボルのみを用いて行なわれ、伝搬路補償はフ アーストパイロットシンボルから得られる伝搬路推定値を用いて行なわれる。但し、本 実施形態では、この場合にもデータシンボルの伝送期間に他セルからの干渉が到来 しているか否かを判定し、干渉がない場合にはセカンドパイロットシンボルの伝送を 基地局に要求する必要があるため、データシンボルの CQIを CQI測定部 25におい て測定する。この測定は、シンボル分離部 19からコピー部 20へ入力されたデータシ ンボルの一部(1シンボル)のみを用いて行なわれるものとする。この時(セカンドパイ ロットシンボルが多重されていない場合)、コピー部 20ではフレーム内のデータシン ボルを一部だけコピーし CQI測定部 25へ出力する処理が行なわれる。このように測 定されたデータシンボルの CQIは、ファーストパイロットシンボルの CQIと共に CQI比 較部へ出力され、 2つの CQIの比較が行なわれる。
[0069] このような構成とすることにより、セカンドパイロットシンボルが多重されていない場合 においても、隣接セルにおいて同一リソースを用いて通信を行なっている端末の有 無を判断し、セカンドパイロットシンボルを多重するか否かを決定することができる。
[0070] 次に、端末側の送信機 40について説明する。先に述べたように、図 3の CQI情報 生成部 31には、ファーストパイロットシンボルの CQI測定結果が入力され、周波数ス ケジユーリングや適応変調を行なう際に基地局において用いられる CQI情報が生成 される。この CQI情報は符号部 33に入力される。
[0071] パイロット制御情報生成部 32には、上位層から通知される変動速度情報と、 CQI比 較部 27から通知されるファーストパイロットシンボルとセカンドパイロットシンボルの C QIの比較結果、またはファーストパイロットシンボルとデータシンボルの CQIの比較 結果のいずれか一方が入力される。このうち、変動速度が予め決められた閾値よりも 低速であり、さらに、ファーストパイロットシンボルの CQIに比べセカンドパイロットシン ボルまたはデータシンボルの CQIが予め決められた閾値以上高い場合には、パイ口 ット制御情報生成部 32は、セカンドパイロットシンボルの伝送を基地局に要求する情 報を生成する。逆に、変動速度が予め決められた閾値よりも低速であるが、ファースト パイロットシンボルの CQIに比べセカンドパイロットシンボルまたはデータシンボルの CQIが予め決められた閾値未満である場合には、パイロット制御情報生成部 32は、 セカンドパイロットシンボルの伝送を停止する力、、またはセカンドパイロットシンボルの 伝送を要求しない情報を生成する。また、変動速度が予め決められた閾値よりも高速 である場合には、パイロット制御情報生成部 32は、 CQIの比較結果に依らず、セカン ドパイロットシンボルの伝送を基地局に要求する情報を生成する。このように生成され たセカンドパイロットシンボルの多重の要求または多重の停止を通知するパイロット信 号制御情報 (パイロットシンボル制御情報、制御情報)は符号部 33に入力される。
[0072] 上述のように、 CQI情報とパイロット信号制御情報が入力される符号部 33には、さ らに上位層から送信データが入力され、それらのデータにそれぞれ誤り訂正符号化 が施される。そして、変調部 34にて変調され S/P変換部 35を経由した後、 IFFT部 36において周波数領域の信号から時間領域の信号に変換される。 IFFT後に、 GI 揷入部 37において GIが付加され、 D/A変換部 38においてディジタル信号からァ ナログ信号へ変換される。 D/A変換後の信号は、スィッチ 12を経由し無線部 11に て送信可能な周波数帯へ周波数変換された後、アンテナ部 10から送信される。
[0073] このような構成とすることにより、変動速度が高速であるか、同一リソースを用いる隣 接セルの端末が存在しない場合に、セカンドパイロットシンボルの送信 (割り当て)を 基地局に要求することができ、それ以外の場合にはセカンドパイロットシンボルの送 信 (割り当て)を停止する、または要求しないことにより伝送効率の向上を図ることがで きる。
[0074] 次に、本実施形態における基地局装置 200の構成について説明する。図 4に示す ように、本実施形態における基地局装置 200は、アンテナ部 50、無線部 51、スィッチ 52と、受信機 69、並びに、送信機 70を備える。このうち受信機 69は、 A/D変換部( A/D) 53、同期部 54、 GI除去部 55、 S/P変換部(S/P) 56、 FFT部 57、復調部 58、並びに、復号部 59を備える。また、送信機 70は、パイロット信号制御部(制御部 ) 60、符号部 61、変調部 62、 S/P変換部(SZP) 63、パイロット信号生成部 64、ス イッチ 65、 IFFT部 66、 GI揷入部 67、並びに、 D/A変換部(D/A) 68を備える。
[0075] 端末から伝送される信号を受信する場合、図 4に示す基地局では、アンテナ部 50 で受信した信号を無線部 51にて AZD変換可能な周波数に変換し、スィッチ 52を経 由して A/D変換部 53においてディジタル信号に変換する。次に、同期部 54にてシ ンボル同期を確立し、 GI除去部 55においてシンボル毎に GIを除去した後、 S/P変 換部 56を経由して FFT部 57において時間領域の信号を周波数領域の信号に変換 する。この信号は復調部 58において復調 (伝搬路補償ゃデマッピング)された後、復 号部 59において誤り訂正復号され、データが再生される。同様の処理により、端末か ら通知される CQI情報やパイロット信号制御情報も得られる。但し、本実施形態では OFDMAシステムを対象としているため、基地局における復調部および復号部は周 波数チャネル (例えば、 Nチャネル)分備えられているものとする(図 4では省略して示 している)。
[0076] 受信機 69において得られた端末からのデータや CQI情報、パイロット信号制御情 報は、図示していない上位層に出力される。このうち、 CQI情報は周波数スケジユー リングや適応変調を行なう際のパラメータとして用いられる。また、ノ ィロット信号制御 情報は、端末からのセカンドパイロットシンボルの送信要求である力、、または送信停 止要求であるが、これも上位層へ出力され、基地局から端末へ伝送を行なうビット数 の決定等に用いられる。さらに、パイロット信号制御情報は、パイロット信号制御部 60 にも出力され、ここでセカンドパイロットシンボルの有無を示す情報 (端末側へ通知さ れるパイロットシンボル情報)が生成される。そして、パイロットシンボル情報は、符号 部 61やパイロット信号生成部 64、スィッチ 65に入力される。
[0077] 符号部 61には、パイロットシンボル情報の他に、スケジューリング結果を示すスケジ ユーリング情報やデータ伝送に用いる変調方式'符号化率を示す変調方式情報、送 信データが入力され、それぞれ誤り訂正符号化が施される。符号化されたこれらの情 報は、変調部 62において変調された後、 S/P変換部 63を経由して、スィッチ 65に よる切り替え動作によりパイロット信号と時間多重される。このパイロット信号は、パイ ロットシンボル情報に基づいてパイロット信号生成部 64において生成されるものであ り、スィッチ 65の切り替えもパイロットシンボル情報に基づいて行なわれる。但し、本 実施形態では OFDMAシステムを対象としているので、これらの動作を行なうブロッ クは周波数チャネル (Nチャネル)分備えられてレ、るものとする。
[0078] スィッチ 65においてパイロット信号と多重された Nチャネル分のデータ信号は IFFT 部 66に入力され、一括して時間領域の信号に変換される。このような信号に対し、 GI 揷入部 67においてシンボル毎に GIが揷入され、 D/A変換部 68においてアナログ 信号に変換される。そして、スィッチ 52を経由して無線部 51において送信可能な周 波数に周波数変換された後、アンテナ部 50から送信される。
[0079] このような構成とすることにより、端末からの要求に従ってセカンドパイロットシンボル の送信(割り当て)の停止を行なレ、、セカンドパイロットシンボルの有無を端末に通知 すること力 Sできる。また、端末では受信状況 (干渉信号の有無)に応じて良好な伝搬 路推定値を用いた伝搬路補償を行なうことができる。
[0080] 次に、本実施形態における端末および基地局の第二のパイロットシンボルを多重 する制御にかかわる制御フローを図 5、図 6にそれぞれ示す。図 5は、端末側におい て、パイロット信号制御情報を生成する動作を示すフローチャートである。図 5に示す ように、まず端末側ではデータ伝送に先立って送信される制御信号を受信し (S10) 、パイロットシンボル情報を得る。このパイロットシンボル情報はセカンドパイロットシン ボルが多重されているか否かを示しており、シンボル分離部 19並びにコピー部 20は 、パイロットシンボル情報よりセカンドパイロットシンボルの有無を判断する(S l l)。ス テツプ S 11におレ、て、セカンドパイロットシンボルが多重されてレ、ると判断される場合 には(S 11で YES)、 CQI測定部 25は、ファーストパイロットシンボルの CQIの測定を 行なう(S12)。さらに、セカンドパイロットシンボルの CQIの測定も行ない(S 13)、また 、伝搬路推定部 28は、ファーストパイロットシンボルおよびセカンドパイロットシンボル を用いた伝搬路推定値の算出を行なう(S 14、 S 15)。次に、このように算出された 2 つの伝搬路推定値のいずれか、または両方を用いてデータシンボルの伝搬路補償 を行なうことになる力 まずここで、フェージング変動速度と予め決められた閾値 V (速 度閾値)との比較を行なう(S 16)。
[0081] ステップ S 16における比較の結果、変動速度が閾値 V以上である場合には(S 16で N〇)、高速に変動するフェージングに追随した伝搬路補償を行なうため、内揷 '外揷 部 29は、ファーストパイロットシンボルから算出された伝搬路推定値とセカンドパイ口 ットシンボルから算出された伝搬路推定値に対して内揷および外揷処理を施し、 2つ の伝搬路推定値を補間した新たな伝搬路推定値を算出する(S 17)。そして、 S 18に 示すように、伝搬路補償部 21は、内揷'外揷処理により算出された伝搬路推定値を 用いてデータシンボルの伝搬路補償を行なう。このように伝搬路補償および復調が 行なわれた後、端末力 基地局へ次フレームに関する制御情報を送信することとなる 、この場合にはフェージングの変動速度が速いため、ファーストパイロットシンボル とセカンドパイロットシンボルの両方を用いた伝搬路補償を行なう必要がある。このた め、 S18から S23へ進み、パイロット制御情報生成部 32は、セカンドパイロットシンポ ルの送信を基地局へ要求するパイロット信号制御情報を生成し、生成したパイロット 信号制御情報を無線部 11を介して基地局へ送る。
[0082] また、ステップ S16における比較の結果、変動速度が閾値 V未満である場合には( S16で YES)、フェージング変動が低速であるため、ファーストパイロットシンボルまた はセカンドパイロットシンボルから得られる伝搬路推定値のいずれかを用いて伝搬路 補償を行なえばよい。そこで、 CQI比較部 27は、セカンドパイロットシンボルにおける CQIとファーストパイロットシンボルにおける CQIの比較を行なう(S19)。ステップ SI 9における比較の結果、セカンドパイロットシンボルの CQIとファーストパイロットシンポ ルの CQIの差が予め決められた閾値 T (差分閾値)未満である場合には(S19で YE S)、推定値選択部 30は、同一リソースを用いる端末が隣接セルに存在すると判断し 、ファーストパイロットシンボル力 得られる伝搬路推定値を選択し、伝搬路補償部 2 1は、選択された伝搬路推定値を用いてデータシンボルの伝搬路補償を行なう(S20 )。そして、この場合にはパイロット制御情報生成部 32は、伝搬路補償に用いられな いセカンドパイロットシンボルの送信停止を基地局へ要求するパイロット信号制御情 報を生成し、生成したパイロット信号制御情報を基地局へ送る(S22)。
[0083] 一方、ステップ S 19における比較の結果、セカンドパイロットシンボルの CQIとファ 一ストパイロットシンボルの CQIの差が予め決められた閾値 T以上である場合には(S 19で NO)、推定値選択部 30は、同一リソースを用いる端末が隣接セルに存在しな いと判断し、セカンドパイロットシンボルから得られる伝搬路推定値を選択し、伝搬路 補償部 21は、受信状況の良好なセカンドパイロットシンボルから得られる伝搬路推定 値を用いてデータシンボルの伝搬路補償を行なう(S21)。そして、パイロット制御情 報生成部 32は、セカンドパイロットシンボルの送信継続を基地局へ要求するパイロッ ト信号制御情報を生成し、生成したパイロット信号制御情報を基地局へ送る。
[0084] ステップ S 11において、セカンドパイロットシンボルが多重されていなレ、と判断され る場合には、 CQI測定部 25は、ファーストパイロットシンボルの CQIの測定を行なレ、( S24)、データシンボルの CQIの測定も行なう(S25)。次に、伝搬路推定部 28は、フ アーストパイロットシンボルを用いた伝搬路推定値の算出を行ない(S26)、伝搬路補 償部 21は、算出された伝搬路推定値を用いてデータシンボルの伝搬路補償を行な う(S27)。次に、フェージングの変動速度と予め決められた閾値 Vとを比較し(S28) 、変動速度が閾値 V以上である場合には(S28で NO)、 2つのパイロットシンボルを 用いた伝搬路補償を行なう必要があるため、パイロット制御情報生成部 32は、セカン ドパイロットシンボルの送信を基地局へ要求するパイロット信号制御情報を生成し、 生成したパイロット信号制御情報を基地局へ送る(S23)。また、ステップ S28におけ る比較の結果、変動速度が閾値 V未満であると判断される場合には(S28で YES)、 CQI比較部 27は、データシンボルにおける CQIとファーストパイロットシンボルにお ける CQIの比較を行なう(S29)。この結果、データシンボルの CQIとファーストパイ口 ットシンボルの CQIの差が予め決められた閾値 T未満である場合には(S29で YES) 、パイロット制御情報生成部 32は、セカンドパイロットシンボルの送信停止の継続を 基地局へ要求するパイロット信号制御情報を生成し、生成したパイロット信号制御情 報を基地局へ送る(S22)。一方、ステップ S29における比較の結果、データシンボル の CQIとファーストパイロットシンボルの CQIの差が予め決められた閾値 T以上である 場合には(S29で NO)、パイロット制御情報生成部 32は、セカンドパイロットシンボル の送信を基地局へ要求するパイロット信号制御情報を生成し、生成したパイロット信 号制御情報を基地局へ送る(S23)。
図 6は、基地局側において、第二のパイロット信号を多重する動作を示すフローチ ヤートである。基地局では、端末力も通知されるパイロット信号制御情報を受信する( S50)。受信したパイロット信号制御情報は、セカンドパイロットシンボルの送信または 送信停止を要求する制御情報であり、端末からセカンドパイロットシンボルの送信要 求がある場合には(S51で YES)、パイロット信号制御部 60は、次フレームにおいて 該当端末に割り当てるリソース内にセカンドパイロットシンボルを多重して信号伝送を 行なう(S52)。逆に、端末からセカンドパイロットシンボルの送信停止要求がある場合 には(S51で NO)、パイロット信号制御部 60は、次フレームにおいて該当端末に割り 当てるリソース内にセカンドパイロットシンボルを多重せず信号伝送を行なう(S53)。
[0086] このように端末および基地局の制御を行なうことにより、必要な場合にのみセカンド パイロットシンボルの伝送 (割り当て)を行なうことが可能となり、端末では受信状況( 干渉の到来状況やフェージング変動速度)に応じた伝搬路推定値の算出および伝 搬路補償を行なうことができる。
[0087] なお、以上に示した本実施形態では、セカンドパイロットシンボルの CQIとファースト パイロットシンボルの CQIの差が予め決められた閾値未満となる場合には、端末はフ アーストパイロットシンボルから得られる伝搬路推定値のみを用いて伝搬路補償を行 なう形態としていた力 これとは異なり、ファーストパイロットシンボルとセカンドパイロッ トシンボルの伝搬路推定値を平均した値を用いて伝搬路補償を行なう形態としてもよ レ、。このような形態とすることにより、 P 接セルからの干渉が到来する状況においても 良好な伝搬路推定値を得られる可能性がある。また、ファーストパイロットシンボルと セカンドパイロットシンボルの伝搬路推定値を平均した値に替えて、二つの伝搬路推 定値を用いて算出した値 (周波数方向における補間等を行なった値)であってもよい
[0088] また、伝搬路推定値は幾つかのファーストパイロットシンボル中のサブキャリアを時 間方向および周波数方向に平均して算出される場合も考えられるが、そのような場合 にも、セカンドパイロットシンボルの CQIと複数のファーストパイロットシンボルの平均 を算出した後の CQIを比較し、その差が予め決められた閾値以上となる場合にセカ ンドパイロットシンボルから得られる伝搬路推定値を用いて伝搬路補償を行なうことに より、より高い精度で復調を行なうことができる。この時、ファーストパイロットシンボル 中の幾つかのサブキャリアを時間方向および周波数方向に平均可能な伝搬路状況( 時間方向および周波数方向の伝搬路変動が少なレ、)であるということは、セカンドパ ィロットシンボルについても同様に平均して伝搬路推定値を算出することが可能であ る。そこで、セカンドパイロットシンボル中の幾つかのサブキャリアを時間方向および 周波数方向に平均して CQIや伝搬路推定値を算出し、それらを用いる構成としても よい。
[0089] さらに、本実施形態では、セカンドパイロットシンボルの送信または送信停止を端末 側が判断していたが、その判断を基地局側で行なうような形態としてもよい。この場合 には、端末からは各パイロットシンボルまたはデータシンボルの CQIが基地局へ通知 されることとなる。このようにパイロットシンボルの送信または送信停止を基地局主導 で決定するのに適したシステムとしては、複数アンテナ(セクタ)を有する基地局から 送信ダイバーシチを行なうシステムや、複数基地局からサイトダイバーシチを行なうシ ステム等が考えられる。これらの送信ダイバーシチでは、ファーストパイロットシンボル はアンテナ毎に異なる信号が送信されるものの(セルサーチ等に用いられるため)、 データシンボルについては同一信号が複数アンテナ(基地局)から送信されるため、 ファーストパイロットシンボルにおける CQIに比較して、データシンボル(またはセカン ドパイロットシンボル)における CQIの方が高くなる。したがって、このような伝送を行 なう場合には、端末側からの判断は必要なぐ基地局主導でパイロットシンボルの制 御を行なえばよい。そして、端末側では多重されたセカンドパイロットシンボルから得 られる伝搬路推定値を用いて伝搬路補償を行なうことにより、ファーストパイロットシン ボルから得られる伝搬路推定値を用いて伝搬路補償を行なった場合と比較して、良 好な復調特性を得ることができる。
[0090] 例えば、図 4に示す基地局装置は、次のような構成であってもよい。例えば、基地 局装置は、端末からファーストパイロットシンボルとセカンドパイロットシンボル (または データシンボル)の受信品質 (伝搬路推定値)を無線部 51を介して受信する。基地 局装置は、さらに、受信した前記ファーストパイロットシンボルの受信品質と、前記ファ 一ストパイロットシンボルを割り当てたシンボルとは異なるシンボルの受信品質とを入 力し、入力した二つの受信品質を比較して前記差分を算出する比較部と、比較部が 算出した差分に基づいて、前記ファーストパイロットシンボルを割り当てたシンボルと は異なるシンボルに第二のパイロット信号を割り当てることを指示するパイロット信号 制御情報を生成するパイロット制御情報生成部と、を備える。パイロット信号制御部 6 0は、生成したパイロット信号制御情報に基づいて、ファーストパイロットシンボルに加 え、セカンドパイロットシンボルを多重することを制御する。
[0091] (第 2の実施形態)
本発明による第 1の実施形態では、セカンドパイロットシンボルの送信要求が端末 力 送られた場合には、次フレームの伝送において基地局は必ずセカンドパイロット シンボルを多重するものとしていた。しかし、基地局において適応的な周波数スケジ ユーリング (チャネル割り当て)が行なわれる場合には、次フレームの伝送時に割り当 てられる周波数チャネルが前フレームと同一であるとは限らず、割り当てられる周波 数チャネルが異なる場合には、セカンドパイロットシンボルを多重して伝送しても、そ のセカンドパイロットシンボルは伝搬路補償に用いられない可能性がある。そこで、本 発明による第 2の実施形態では、前フレームと同一の周波数チャネルに割り当てられ ない場合にはセカンドパイロットシンボルを多重しないものとする。
[0092] 図 7は、本実施形態に係る基地局側の動作を示すフローチャートである。但し、端 末側の制御は第 1の実施形態と同一のフローチャートで実現できるため、説明を省略 する。図 7に示すように、基地局では、端末から通知されるパイロット信号制御情報を 受信する(S100)。このパイロット信号制御情報は、セカンドパイロットシンボルの送 信または送信停止を要求する制御情報である。パイロット信号制御部 60は、端末か らセカンドパイロットシンボルの送信要求がある場合には(S101で YES)、次に、フエ 一ジングの変動速度と予め決められた閾値 Vの比較を行なう(S102)。 S102におけ る比較の結果、フェージングの変動速度が閾値 V以上であると判断された場合には( S102で NO)、パイロット信号制御部 60は、次フレームにおいて該当端末に割り当て るリソース内にセカンドパイロットシンボルを多重して信号伝送を行なう(S104)。逆に 、ステップ S102における比較の結果、フェージングの変動速度が閾値 V未満である と判断された場合には(S102で YES)、パイロット信号制御部 60は、次フレームにお いて該当端末に割り当てるチャネルが前フレームの伝送時に割り当てたチャネルと 同一であるかの判断をする(S103)。
[0093] 次フレームにおいても前フレームと同一のチャネルが割り当てられると判断された 場合には(S103で YES)、パイロット信号制御部 60は、次フレームにおいて該当端 末に割り当てるリソース内にセカンドパイロットシンボルを多重して信号伝送を行なう( S104)。逆に、次フレームでは前フレーム伝送時と異なるチャネルが割り当てられる と判断された場合には(S103で N〇)、パイロット信号制御部 60は、次フレームにお レ、て該当端末に割り当てるリソース内にセカンドパイロットシンボルを多重せずに信 号伝送を行なう(SI 05)。
[0094] また、ステップ S101においてセカンドパイロットシンボルの送信要求がない、または 送信停止要求がある場合には(S101で NO)、次フレームにおいて該当端末に割り 当てるリソース内にセカンドパイロットシンボルを多重せずに信号伝送を行なう(S105
) o
[0095] このような制御を行なうことにより、伝搬路補償に用いられず無駄となる可能性のあ るセカンドパイロットの伝送を行なわず、その代わりにデータシンボルを伝送すること が可能となり、周波数利用効率の低下を防止することができる。
[0096] (第 3の実施形態)
上記各実施形態では、 P 接セルにおいて同一リソースを用いる端末が存在しない 状況においては、セカンドパイロットシンボルから得られる伝搬路推定値は、ファース トパイロットシンボルから得られる伝搬路推定値に比べ干渉による誤差が少ないため
、そのような状況下の全ての端末においてセカンドパイロットシンボルの送信を要求し 、セカンドパイロットシンボルを用いた伝搬路補償を行なうものとしていた。しかし、隣 接セルから到来する干渉の影響を大きく受けるのは基地局から離れた地点に位置す る端末であって、基地局周辺に位置する端末においては、セカンドパイロットシンポ ルの方がファーストパイロットシンボルに比べ良好な受信特性であるものの、ファース トパイロットシンボルの受信特性も十分良好であると考えられる。
[0097] これは、基地局周辺に位置する端末においては、希望信号(自端末宛の信号)は 非常に大きな電力で受信されるのに対し、隣接セルから到来する干渉信号は大きく 減衰してレ、ることによる。したがって、基地局周辺に位置する端末においてファースト パイロットシンボルによる伝搬路補償を行なう場合にも、セカンドパイロットシンボルに よる伝搬路補償を行なう場合とさほど変わらない特性が得られるものと考えられる。そ こで本実施形態では、隣接セルからの干渉の有無だけでなぐさらに端末の位置も 考慮してパイロットシンボルの多重を行なうこととする。
[0098] 図 8は、本実施形態に係る端末の動作を示すフローチャートである。本実施形態で は、第 1の実施形態と同様、端末側でセカンドパイロットシンボルの送信または送信 停止を判断する構成とするが、これとは異なり、基地局側のパイロット信号制御部 60 でその判断を行なう構成としてもよい。図 8に示すように、本実施形態における端末 側の制御フローは、第 1の実施形態おける端末側の図 5のフローチャートにステップ S200の判断が加わったものとなっている。このステップ S200は、 CQI比較部 27がフ アーストパイロットシンボルの CQIと予め決められた閾値 U (品質閾値)の比較を行な うもので、比較の結果、ファーストパイロットシンボルの CQIが閾値 U以上である場合 には、セカンドパイロットシンボルの送信停止(または送信停止の継続)を基地局へ要 求し(S22)、ファーストパイロットシンボルの CQIが閾値 U未満である場合には、セカ ンドパイロットシンボルの送信を基地局に要求する(S23)処理へそれぞれ進む。
[0099] このように、ファーストパイロットシンボルの CQIの比較処理(S200)を追加すること により、高い CQIが得られる(基地局から近レ、)端末に対してはセカンドパイロットシン ボルの伝送を行なわず、代わりにより多くのデータを伝送することができる。また、 CQ Iが低レ、(基地局から遠い)端末に対しては第 1の実施形態と同様、セカンドパイロット シンボルを用いた伝搬路推定を行なうことが可能となる。
[0100] (第 4の実施形態)
これまでの実施形態では、フェージング変動が高速である場合には、ファーストパイ ロットシンボルとセカンドパイロットシンボルのそれぞれから得られる伝搬路推定値を 内挿 ·外挿処理した伝搬路推定値を用いてデータシンボルの伝搬路補償を行なう構 成としていた。しかし、ファーストパイロットシンボルから得られる伝搬路推定値には隣 接セルから到来する干渉の影響による誤差が含まれることが多いため、 2つのパイ口 ットシンボルから得られる伝搬路推定値を内挿 ·外挿処理して得られる伝搬路推定値 の誤差も大きくなることが考えられる。そこで、本実施形態では、フェージング変動が 高速であり、さらに、同一リソースを用いる端末が隣接セルに存在しないと判断される 場合には、セカンドパイロットシンボルと共にサードパイロットシンボルの送信も要求 する構成とする。但し、本実施形態では、このサードパイロットシンボルはフレームの 最後尾に多重されるものとする。そして、端末がセカンドパイロットシンボルおよびサ ードパイロットシンボルが多重されたフレームを受信する場合、セカンドパイロットシン ボルとサードパイロットシンボルのそれぞれから得られる伝搬路推定値に対して内揷 •外揷処理を行なレ、、それにより得られる伝搬路推定値を用いてデータシンボルの伝 搬路補償を行なうものとする。この時、ファーストパイロットシンボルから得られる伝搬 路推定値には誤差が多く含まれるため、内挿 ·外挿処理に用いないものとする。
[0101] このように、パイロットシンボルの数を増やすことにより送信できるデータシンボルが 減少し、周波数利用効率はやや劣化するものの、フェージング変動と隣接セルから 到来する干渉の影響により伝搬路補償の精度が劣化することによってデータ誤りが 頻発することを防止することができる。
[0102] 以上のように、本発明に係る好適な実施形態によれば、ファーストパイロットシンポ ルに割り当てられるファーストパイロット信号 (第一のパイロット信号)に加え、受信品 質に応じて、ファーストパイロットシンボルとは異なるシンボルに割り当てられるセカン ドパイロットシンボル (第二のパイロット信号)を多重して送信するため、伝送効率の低 下を抑制しつつ、同一リソースを用いる端末が隣接セルに存在しない場合には、セカ ンドパイロットシンボルを用レ、た伝搬路推定を行なうことにより、伝搬路推定精度の向 上を図ることが可能になる。
[0103] なお、上記各実施形態では、受信品質の一例として CQIを用いて説明した力 これ に限られるわけではなぐ受信される希望信号のレベルと干渉信号のレベルを表す パラメータであれば CQIとは別の指標を用いてもょレ、。
図面の簡単な説明
[0104] [図 1]E-UTRAシステムにおいて隣接セルから到来する干渉波の状況について示す 図である。
[図 2]干渉波が受信品質に与える影響の一例を示す図である。
[図 3]第 1の実施形態の端末装置の構成の一例を示すブロック図である。
[図 4]第 1の実施形態の基地局装置の構成の一例を示すブロック図である。
[図 5]端末側において、パイロット信号制御情報を生成する動作の一例を示すフロー チャートである。
[図 6]基地局側において、第二のパイロット信号を多重する動作の一例を示すフロー チャートである。
[図 7]第 2の実施形態の基地局側の動作の一例を示すフローチャートである。
[図 8]第 3の実施形態の端末側の動作の一例を示すフローチャートである。 [図 9]E-UTRAのダウンリンクにおける周波数 ·時間、リソースの分割例を示す図であ る。
符号の説明
10、 50 アンテナ部
11、 51 無線部
12、 52、 65 スィッチ
13、 53 A/D変換部(AZD)
14、 54 同期部
15、 55 GI除去部
16、 35、 56、 63 S/P変換部(S/P)
17、 57 FFT部
18 チャネル選択部
19 シンボル分離部
20 コピー部
21 伝搬路補償部
22 デマッピング部
23 P/S変換部(PZS)
24、 59 復号部
25 CQI測定部(測定部)
26 バッファ
27 CQI比較部(比較部)
28 伝搬路推定部
29 内挿 ·外揷部
30 推定値選択部
31 CQI情報生成部
32 ノヽ。イロット制御情報生成部
33、 61 符号部
34、 62 変調部 、 66 IFFT部 、 67 GI挿入部 、 68 DZA変換部(D 、 69 受信機 、 70 送信機 復調部
パイ 'ロット信号生成部

Claims

請求の範囲
[1] 複数のシンボルから構成され、第一のパイロット信号を多重した送信単位を通信先 装置から受信する通信装置であって、
前記第一のパイロット信号を割り当てたシンボルとは異なるシンボルの受信品質か ら、前記第一のパイロット信号の受信品質を差し引いた差分が差分閾値以上の場合 、前記第一のパイロット信号を割り当てたシンボルとは異なるシンボルに第二のパイ口 ット信号を割り当てることを前記通信先装置に要求するパイロット信号制御情報を生 成し、前記生成したパイロット信号制御情報を前記通信先装置へ通知することを特徴 とする通信装置。
[2] 前記通信装置は、前記差分が前記差分閾値未満の場合、前記第二のパイロット信 号の割り当てを停止することを要求するパイロット信号制御情報を生成することを特 徴とする請求項 1記載の通信装置。
[3] 前記通信装置は、前記第一のパイロット信号の受信品質が品質閾値以上となる場 合、前記第二のパイロット信号の割り当てを停止することを要求するパイロット信号制 御情報を生成することを特徴とする請求項 1記載の通信装置。
[4] 複数のシンボルから構成され、第一のパイロット信号を多重した送信単位を通信先 装置から受信する通信装置であって、
前記第一のパイロット信号の受信品質と、前記第一のパイロット信号を割り当てたシ ンボルとは異なるシンボルの受信品質とを測定する測定部と、
前記測定部が測定した二つの受信品質を比較し、前記差分を算出する比較部と、 前記比較部が算出した差分が差分閾値以上である場合、前記第一のパイロット信 号を割り当てたシンボルとは異なるシンボルに第二のパイロット信号を割り当てること を前記通信先装置に要求するパイロット信号制御情報を生成するパイロット制御情 報生成部と、を備えることを特徴とする通信装置。
[5] 前記送信単位に前記第二のパイロット信号が多重され、前記差分が差分閾値以上 である場合は、前記第二のパイロット信号から得られる伝搬路推定値を選択する推定 値選択部と、
前記選択した伝搬路推定値を用いて伝搬路補償を行なう伝搬路補償部と、を更に 備えることを特徴とする請求項 4記載の通信装置。
[6] 前記推定値選択部は、前記比較部が算出した差分が差分閾値未満であった場合 は、前記第一のパイロット信号から得られる伝搬路推定値、または前記第一のパイ口 ット信号と前記第二のパイロット信号とから得られる伝搬路推定値を用いて算出した 伝搬路推定値を選択することを特徴とする請求項 5記載の通信装置。
[7] 前記パイロット制御情報生成部は、移動速度が速度閾値以上である場合、前記第 二のパイロット信号を割り当てることを要求するパイロット信号制御情報を生成するこ とを特徴とする請求項 5記載の通信装置。
[8] 前記移動速度が速度閾値以上である場合、前記第一のパイロット信号力 得られる 伝搬路推定値と、前記第二のパイロット信号から得られる伝搬路推定値との補間を行 なう内揷*外揷部を、更に備え、
前記伝搬路補償部は、前記内揷*外揷部が補間した伝搬路推定値を用いて伝搬 路補償を行なうことを特徴とする請求項 7記載の通信装置。
[9] 複数のシンボルから構成され、第一のパイロット信号を多重した送信単位を通信先 装置へ送信する通信装置であって、
前記通信先装置から受信した前記第一のパイロット信号の受信品質と、前記第一 のパイロット信号を割り当てたシンボルとは異なるシンボルの受信品質とを入力し、入 力した二つの受信品質を比較して前記差分を算出する比較部と、
前記比較部が算出した差分に基づいて、前記第一のパイロット信号を割り当てたシ ンボルとは異なるシンボルに第二のパイロット信号を割り当てることを指示するパイ口 ット信号制御情報を生成するパイロット制御情報生成部と、
生成したパイロット信号制御情報に基づレ、て、前記第一のパイロット信号に加え、 前記第二のパイロット信号を多重することを制御する制御部と、を備えることを特徴と する通信装置。
[10] 複数のシンボル力 構成される送信単位へ第一のパイロット信号を多重して通信先 装置へ送信する通信装置であって、
前記第一のパイロット信号を割り当てたパイロットシンボルとは異なるシンボルの受 信品質から、前記第一のパイロット信号の受信品質を差し引いた差分が差分閾値以 上の場合、前記パイロット信号を割り当てたシンボルとは異なるシンボルに第二のパ ィロット信号を割り当てることを要求するパイロット信号制御情報を前記通信先装置か ら受信する無線部と、
受信したパイロット信号制御情報に基づいて、前記第一のパイロット信号に加え、 前記第二のパイロット信号を多重することを制御する制御部と、を備えることを特徴と する通信装置。
[11] 前記制御部は、前記通信先装置宛のデータを伝送するチャネルが前回のデータ 伝送時と異なる場合、前記第二のパイロット信号を多重しないことを特徴とする請求 項 9または請求項 10記載の通信装置。
[12] 前記第一のパイロット信号は、複数のセルにおいて同時に送信される共通パイロッ ト信号であり、前記第二のパイロット信号は、前記第一のパイロット信号とは時間的に 異なるシンボルに割り当てられることを特徴とする請求項 1、請求項 9または請求項 1
0のレ、ずれかに記載の通信装置。
[13] 複数のシンボルから構成され、第一のパイロット信号と前記第一のノ ィロット信号と は異なるシンボルに第二のパイロット信号を多重した送信単位を通信先装置から受 信する通信装置であって、
第一のパイロット信号と第二のパイロット信号の受信品質を測定する測定部と、 前記第二のパイロット信号の受信品質力 前記第一のパイロット信号の受信品質を 差し S I V、た差分を算出する比較部と、
前記差分が差分閾値以上である場合は前記第二のパイロット信号力 得られる伝 搬路推定値を選択する推定値選択部と、
選択した伝搬路推定値を用いて伝搬路補償を行なう伝搬路補償部と、を備えること を特徴とする通信装置。
[14] 前記推定値選択部は、前記比較部が算出した差分が差分閾値未満である場合は 、前記第一のパイロット信号から得られる伝搬路推定値、または前記第一のパイロット 信号と前記第二のパイロット信号とから得られる伝搬路推定値を用いて算出した伝搬 路推定値を選択することを特徴とする請求項 13記載の通信装置。
[15] 複数のシンボルから構成され、第一のパイロット信号を多重した送信単位を用いて 通信制御装置と端末装置との間で通信を行なう無線通信システムであって、 前記通信制御装置は、前記第一のパイロット信号を割り当てたシンボルとは異なる シンボルの受信品質から、前記第一のパイロット信号の受信品質を差し引いた差分 が差分閾値以上の場合、前記第一のパイロット信号を割り当てたシンボルとは異なる シンボルに第二のパイロット信号を多重することを特徴とする無線通信システム。
PCT/JP2007/061101 2006-06-05 2007-05-31 通信装置および無線通信システム WO2007142119A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07744489A EP2037608A1 (en) 2006-06-05 2007-05-31 Communication device and radio communication system
JP2008520529A JP4874334B2 (ja) 2006-06-05 2007-05-31 通信装置および無線通信システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-155614 2006-06-05
JP2006155614 2006-06-05

Publications (1)

Publication Number Publication Date
WO2007142119A1 true WO2007142119A1 (ja) 2007-12-13

Family

ID=38801376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061101 WO2007142119A1 (ja) 2006-06-05 2007-05-31 通信装置および無線通信システム

Country Status (3)

Country Link
EP (1) EP2037608A1 (ja)
JP (1) JP4874334B2 (ja)
WO (1) WO2007142119A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035158A (ja) * 2006-07-28 2008-02-14 Sharp Corp スケジューリング方法、通信制御装置及び端末装置
WO2010065561A1 (en) * 2008-12-01 2010-06-10 Qualcomm Incorporated Wireless communication systems with femto nodes
JP2011066679A (ja) * 2009-09-17 2011-03-31 Nippon Hoso Kyokai <Nhk> Ofdm受信装置及び送信装置
JP2011530884A (ja) * 2008-08-06 2011-12-22 クゥアルコム・インコーポレイテッド ワイヤレス通信システム中の基地局のセル間の協調送信
JP2013533682A (ja) * 2010-06-09 2013-08-22 エントロピック・コミュニケーションズ・インコーポレイテッド プリアンブル短縮の方法および装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118417A1 (en) * 2011-03-03 2012-09-07 Telefonaktiebolaget L M Ericsson (Publ) Pilot signal assignment
US11849434B2 (en) 2020-03-18 2023-12-19 Qualcomm Incorporated Preempting, overwriting, or canceling symbols in a slot format indicator allocation
US11622348B2 (en) * 2020-03-27 2023-04-04 Qualcomm Incorporated Preemption of symbols in a slot format index

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002044172A (ja) 2000-07-26 2002-02-08 Sanyo Electric Co Ltd 位相補正回路および位相補正回路を備えた携帯無線端末
WO2005060298A1 (en) * 2003-12-12 2005-06-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for allocating a pilot signal adapted to the channel characteristics
WO2007013561A1 (ja) * 2005-07-29 2007-02-01 Matsushita Electric Industrial Co., Ltd. マルチキャリア送信装置、マルチキャリア受信装置、およびこれらの方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7164669B2 (en) * 2001-01-19 2007-01-16 Adaptix, Inc. Multi-carrier communication with time division multiplexing and carrier-selective loading

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002044172A (ja) 2000-07-26 2002-02-08 Sanyo Electric Co Ltd 位相補正回路および位相補正回路を備えた携帯無線端末
WO2005060298A1 (en) * 2003-12-12 2005-06-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for allocating a pilot signal adapted to the channel characteristics
WO2007013561A1 (ja) * 2005-07-29 2007-02-01 Matsushita Electric Industrial Co., Ltd. マルチキャリア送信装置、マルチキャリア受信装置、およびこれらの方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "E-UTRA downlink reference signal structure", NTT DOCOMO, TSG RAN WG 1 #42BIS R1-051187, October 2005 (2005-10-01), XP003019756, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_42bis/Docs/R1-051187.zip> *
LG ELECTRONICS: "Adaptive Insertion of 2nd Reference Symbol for Downlink HARQ", 3GPP TSG RAN WG1 MEETING #44BIS R1-060968, March 2006 (2006-03-01), XP003019758, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR_44bis/Docs/R1-060968.zip> *
PHILIPS: "Super-imposed 2nd reference symbols for E-UTRA downlink", 3GPP TSG RAN WG1 LTE AD HOC R1-060223, January 2006 (2006-01-01), XP003019757, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/LTE-AH-January-06/Docs/R1-060223.zip> *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035158A (ja) * 2006-07-28 2008-02-14 Sharp Corp スケジューリング方法、通信制御装置及び端末装置
JP2011530884A (ja) * 2008-08-06 2011-12-22 クゥアルコム・インコーポレイテッド ワイヤレス通信システム中の基地局のセル間の協調送信
WO2010065561A1 (en) * 2008-12-01 2010-06-10 Qualcomm Incorporated Wireless communication systems with femto nodes
JP2012510781A (ja) * 2008-12-01 2012-05-10 クゥアルコム・インコーポレイテッド フェムトノードを有する無線通信システム
US8634438B2 (en) 2008-12-01 2014-01-21 Qualcomm Incorporated Wireless communication systems with femto nodes
JP2011066679A (ja) * 2009-09-17 2011-03-31 Nippon Hoso Kyokai <Nhk> Ofdm受信装置及び送信装置
JP2013533682A (ja) * 2010-06-09 2013-08-22 エントロピック・コミュニケーションズ・インコーポレイテッド プリアンブル短縮の方法および装置

Also Published As

Publication number Publication date
JP4874334B2 (ja) 2012-02-15
JPWO2007142119A1 (ja) 2009-10-22
EP2037608A1 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP4689271B2 (ja) Mimoシステムにおけるパケット・データ送信
JP4874334B2 (ja) 通信装置および無線通信システム
US8700078B2 (en) Radio station, transmitting station, and frequency band sharing method
EP2238800B1 (en) Method, apparatus and computer program for signaling channel quality information in a network that employs relay nodes
US8325592B2 (en) Communication device, mobile station, and communication method
US9467210B2 (en) Transmission parameter adaptation in cooperative signal communication
US20100048237A1 (en) Base station apparatus, user equipment, and method used in mobile communication system
US20100202289A1 (en) Method and apparatus for interference management in a wireless communication system
US8243613B2 (en) Method and apparatus for estimating velocity of mobile station using channel quality indicator in a mobile communication system
US20070133695A1 (en) Method and system for channel assignment of OFDM channels
JP2011259490A (ja) 無線通信システムでセル間干渉を制御するための上りリンクリソース割り当て
US20120099512A1 (en) Radio communication system, radio base station, and radio communication method
EP2529587A1 (en) Method and arrangement in a wireless communication system
US8634351B2 (en) LTE baseband receiver and method for operating same
WO2011024661A1 (ja) 無線基地局、無線端末、無線中継局、および無線基地局システム
JP5268237B2 (ja) スケジューリング方法、通信制御装置及び端末装置
KR20090036664A (ko) 다중입출력 통신시스템의 동작 모드 선택 장치 및 방법
KR101678582B1 (ko) 통신 시스템에서의 적응형 링크 적용 방법 및 장치.
JP4789450B2 (ja) 回線品質報告方法、基地局装置および通信端末
KR20030096394A (ko) 기지국 장치, 패킷 전송 시스템 및 패킷 전송 방법
KR20110101318A (ko) 무선통신시스템에서 상향링크 간섭을 제어하기 위한 장치 및 방법
WO2009109257A1 (en) Interference-considerate scheduling in a wireless communication network
JP2008193340A (ja) 無線基地局装置、無線端末装置、無線通信システム、及びチャネルクオリティインジケータ推定方法
JP4564430B2 (ja) 通信装置、通信方法、無線通信システムおよび無線通信方法
JP2007189360A (ja) 通信制御装置、通信端末装置、及び、通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744489

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008520529

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007744489

Country of ref document: EP