WO2007142021A1 - Opening regulation valve and variable capacity compressor employing it - Google Patents

Opening regulation valve and variable capacity compressor employing it Download PDF

Info

Publication number
WO2007142021A1
WO2007142021A1 PCT/JP2007/060397 JP2007060397W WO2007142021A1 WO 2007142021 A1 WO2007142021 A1 WO 2007142021A1 JP 2007060397 W JP2007060397 W JP 2007060397W WO 2007142021 A1 WO2007142021 A1 WO 2007142021A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
opening
case member
opening adjustment
valve body
Prior art date
Application number
PCT/JP2007/060397
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiro Adachi
Tomoyasu Takahashi
Yoshie Sato
Original Assignee
Valeo Thermal Systems Japan Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermal Systems Japan Corporation filed Critical Valeo Thermal Systems Japan Corporation
Publication of WO2007142021A1 publication Critical patent/WO2007142021A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/225Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves with throttling valves or valves varying the pump inlet opening or the outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1863Controlled by crankcase pressure with an auxiliary valve, controlled by
    • F04B2027/1881Suction pressure

Definitions

  • the present invention provides an opening adjustment valve that is provided in a flow path that communicates a suction port and a suction chamber of a compressor, and that variably controls the opening of the flow path, and a variable capacity that uses the opening adjustment valve.
  • an opening adjustment valve that is provided in a flow path that communicates a suction port and a suction chamber of a compressor, and that variably controls the opening of the flow path, and a variable capacity that uses the opening adjustment valve.
  • the valve body of the opening adjustment valve undergoes minute repeated movement at a minute flow rate, and this minute repeated movement causes pressure pulsation of the refrigerant gas. It has been pointed out that the pressure pulsation of the medium gas propagates from the suction port to the external refrigerant circuit, and this pressure pulsation causes the evaporator to vibrate in the same way, generating noise.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-136776
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-289177
  • a bypass passage is provided so that the refrigerant can flow even at a minute flow rate, and an air damper is formed by using the bypass passage.
  • the force bypass passage is formed by cutting out the case of the pressure regulating valve, and after the passage is closed, the refrigerant flows through the notch.
  • the opening area changes almost linearly in the process of gradually decreasing, the passage area of the refrigerant becomes only a notch cross-sectional area at a minute flow rate, and the passage area changes rapidly, so the suction characteristics change suddenly and the performance decreases. Inconvenience.
  • the present invention has been made in view of the circumstances described above, and at the time of shifting to a minute flow rate, even if the passage cross section is gradually changed, a sudden change in the suction characteristics can be avoided.
  • the main challenge is to provide a possible opening adjustment valve and a variable displacement compressor using this valve.
  • an opening adjusting valve is disposed in a flow path that connects a suction port and a suction chamber of a compressor, and variably controls an opening area of the flow path.
  • a cylindrical case member having a peripheral wall in which a plurality of through holes are formed, and a valve body accommodated in the case member so as to be slidable in the axial direction and biased in a valve closing direction by a return spring.
  • a stopper portion for restricting movement of the valve body in the valve closing direction so as to leave an opening region of the through hole upstream of the valve body (Claim 1). .
  • the valve element moves in the valve closing direction by the return spring and attempts to block the communication between the upstream side of the valve element and the through hole. Movement force of the valve body in the valve closing direction so as to leave the opening area of the hole. Because it is regulated by the S stopper part, the communication between the upstream side of the valve body and the through hole is completely blocked by this stopper part. None will happen. For this reason, the passage cross section between the upstream side and the downstream side of the valve element is prevented from suddenly changing due to the complete closure of the through-hole, and the passage cross section between the upstream side and the downstream side is gradually changed at the time of high flow force and minute flow rate. It is possible to prevent the passage cross section from changing suddenly when the flow rate is small.
  • the stagger portion is formed on the inner side of the column portion formed between adjacent through holes in the peripheral wall of the case member (Claim 2).
  • the stagger portion is formed on the inner side of the column portion formed between adjacent through holes in the peripheral wall of the case member (Claim 2).
  • the return spring and the valve body are also accommodated in the case member for the upstream force, and the stopper portion is formed on, for example, the peripheral edge of the lid member attached to the upstream force case member (claim 3).
  • the lid member is attached to the case member from the upstream side, there is no possibility that the lid member is detached by the fluid pressure sucked.
  • the lid member may be fixed to the case member by locking a claw portion provided on the lid member to the case member (claim 4).
  • the claw portion and the stopper portion may be formed separately, or the claw portion and the stopper portion may be formed integrally (claims 5 and 6).
  • the opening adjustment valve as described above is useful when used as a compressor, particularly in a variable displacement compressor, that is, when a compressor capable of setting the flow rate of the working fluid to a minute flow rate is used. (Claim 7).
  • the opening adjustment valve that is disposed in the flow path that communicates the suction port and the suction chamber of the compressor and variably controls the opening area of the flow path is provided with a through hole.
  • a through hole Comprises a case member formed on the peripheral wall, and a valve body housed in the case member and urged in the valve closing direction by the return panel, and moves the valve body in the valve closing direction. Since the opening area of the through hole remains on the upstream side of the valve body by the strobe portion, the passage cross section between the upstream side of the valve body and the through hole is subjected to a high flow rate force and a minute flow rate. By gradually changing it, it is possible to prevent sudden changes in the passage cross section, and it is possible to avoid sudden changes in inhalation characteristics.
  • FIG. 1 is a cross-sectional view showing a configuration example of a variable capacity compressor according to the present invention.
  • FIG. 2 is an enlarged view of a portion where an opening degree adjusting valve is provided in a flow path communicating the suction port and the suction chamber.
  • FIG. 3 is a view showing the state of the opening adjustment valve at a high flow rate.
  • FIG. 3 (a) is a cross-sectional view taken along line A—A in FIG. ) Is a perspective view. o
  • FIG. 4 A diagram showing the state of the opening adjustment valve at a minute flow rate.
  • Fig. 4 (a) is a cross-sectional view taken along line AOC AO C in Fig. 4 (b), and
  • Fig. 4 (b) is a perspective view. It is.
  • FIG. 5 is an exploded view showing the opening adjustment valve.
  • FIG. 5 (a) is a cross-sectional view taken along line A—A in FIG. 5 (b), and
  • FIG. 5 (b) is a perspective view. is there.
  • Fig. 6 is a view showing another example of the opening adjustment valve.
  • Fig. 6 (a) is a cross-sectional view taken along the line A-A in Fig. 6 (b), and
  • Fig. 5 (b) is a diagram. It is a perspective view.
  • FIG. 1 a variable capacity compressor suitable for a refrigeration cycle using a refrigerant as a working fluid is shown.
  • This compressor is, for example, a clutchless type swash plate type variable capacity compressor, and includes a cylinder block 1, a rear head 3 assembled to the rear side of the cylinder block 1 via a valve plate 2, and a cylinder block 1.
  • the front side of the cylinder block 1 is assembled so as to cover the front side, and the front head 5 that defines the crank chamber 4 is configured.
  • the front head 5, cylinder block 1, nozzle plate 2, and rear head 3 are fastened in the axial direction by fastening bolts 6.
  • a drive shaft 7 disposed in the crank chamber 4 is rotatably held by the front head 5 and the cylinder block 1 via bearings 8 and 9, and this drive shaft 7 is used for traveling (not shown). It is connected to the engine through a belt and pulley, and the power of the traveling engine is transmitted to rotate.
  • the cylinder block 1 is formed with a recess 11 in which the bearing 9 is accommodated, and a plurality of cylinder bores 12 arranged at equal intervals on a circumference centered on the recess 11.
  • a single-head piston 13 is inserted into each cylinder bore 12 so as to be reciprocally slidable.
  • a thrust flange 14 that rotates integrally with the drive shaft 7 is fixed to the drive shaft 7 in the crank chamber 4.
  • the thrust flange 14 is rotatably supported by an inner wall surface of the front head 5 formed substantially perpendicular to the drive shaft 7 via a thrust bearing 15.
  • a swash plate 21 is connected to the thrust flange 15 via a link member 20.
  • the swash plate 21 is held so as to be tiltable via a hinge ball 22 provided on the drive shaft 7, and rotates integrally with the rotation of the thrust flange 14. Then, the engaging portion 13a of the single-headed piston 13 is moored to the peripheral portion of the swash plate 21 through a pair of bushes 23 provided at the front and rear.
  • the valve plate 2 is formed with suction holes 31 and discharge holes 32 corresponding to the respective cylinder bores 12, and the rear head 3 is a suction chamber that stores the working fluid supplied to the compression chamber 25. 33 and a discharge chamber 34 for storing the working fluid discharged from the compression chamber 25 are provided.
  • the suction chamber 33 is formed in the center portion of the rear head 3, and the discharge chamber 34 is formed around the suction chamber 33.
  • the suction chamber 33 communicates with a suction port 35 connected to the low pressure side of the external refrigerant circuit (the outlet side of the evaporator), and the discharge chamber 34 is connected to the high pressure side of the external refrigerant circuit (the inlet side of the radiator) Connected to a discharge port (not shown).
  • the suction chamber 33 is connected to a suction valve (not shown).
  • the discharge chamber 34 can communicate with the compression chamber 25 via the discharge hole 32 that is opened and closed by a discharge valve (not shown). ing.
  • the discharge capacity of this compressor is determined by the stroke of the piston 13, and this stroke is determined by the inclination angle of the swash plate 21 with respect to the plane perpendicular to the drive shaft 7. That is, the difference between the pressure acting on the front surface of the piston 13, that is, the pressure in the compression chamber 25 (pressure in the cylinder bore) and the pressure acting on the back surface of the piston 13, that is, the pressure in the crank chamber 4 (crank chamber pressure).
  • the inclination of the swash plate 21 is determined where the pressure and the urging force of the destroke spring 28 that urges the hinge ball 22 in the direction of decreasing the piston stroke are balanced, thereby determining the piston stroke and the discharge capacity. Is now decided! /
  • the rear head 3 is provided with a pressure control valve (not shown) that variably controls at least one of the communication state between the discharge chamber 34 and the crank chamber 4 and the communication state between the crank chamber 4 and the suction chamber 33.
  • the pressure control valve controls the pressure in the crank chamber 4 to adjust the piston stroke, that is, the discharge capacity.
  • the swash plate 21 rotates with a predetermined inclination, so that the edge portion of the swash plate 21 swings with a predetermined width in the axial direction of the drive shaft 7. .
  • the piston 13 held at the edge of the swash plate 21 reciprocates with a predetermined stroke in the axial direction of the drive shaft 7, changing the volume of the compression chamber 25 defined in the cylinder bore 12, and
  • the refrigerant is sucked into the compression chamber 25 from the suction chamber 33 through the suction hole 31 opened and closed by the suction valve, and during the compression stroke, the refrigerant is drawn through the discharge hole 32 opened and closed by the discharge valve.
  • the compressed refrigerant is discharged from the compression chamber 25 to the discharge chamber 34.
  • an opening degree adjusting valve 40 is disposed on the downstream side of the suction port 35, that is, in the flow path 36 that connects the suction port 35 and the suction chamber 33.
  • the opening adjustment valve 40 has a bottomed cylindrical case member 41, and a valve body 42 is accommodated in the case member 41 so as to be slidable in the axial direction. Yes.
  • the case member 41 has a plurality of through holes (for example, four through holes) 43 formed in the peripheral wall at equal intervals, and the upstream end opening 41b and the bottom 41a of the case member 41 are connected between adjacent through holes.
  • a column portion 44 having a predetermined width is formed.
  • the bottom 41a of the case member 41 has a predetermined diameter in the center.
  • a through hole 45 is formed, and an annular groove 46 is formed around the through hole 45 to serve as a panel receiver for receiving a return spring described later.
  • the upstream end opening 41b is formed with a lid mounting portion 47 having an inner diameter larger than that of the peripheral wall in which the through hole 43 is formed, and the through hole 43 is formed in a substantially rectangular shape.
  • an engagement margin 49 is formed by cutting away toward the upstream end opening 41b.
  • the valve body 42 is formed in a bottomed cylindrical shape having a diameter substantially equal to the inner diameter of the case member 41 so that a predetermined clearance is secured between the valve member 42 and the case member 41, and the downstream side ( The lower part of the figure is accommodated so as to open. Then, one end of the return spring 50 can be accommodated from the downstream side, and the return spring 50 is fitted between the annular groove 46 of the case member 41, and the upstream end opening 41b is closed by the return spring 50. Always energized in the valve closing direction (upstream).
  • a lid member 51 is engaged with the upstream end opening 41b of the case member 41.
  • the lid member 51 is formed in a ring shape, and a locking portion that protrudes outward in the radial direction so as to be held by the lid mounting portion on the side of the ring portion 52.
  • a plurality of protrusions 53 are formed at equal intervals in the circumferential direction.
  • claw portions 54 extending toward the downstream side are formed at the lower end of the ring portion 52 at equal intervals according to the number of through holes.
  • the claw portions 54 are extended from between the adjacent locking projections 53 in the axial direction of the case member 41 (by downward force in the figure), and are formed at four positions at intervals of 90 degrees.
  • a barb 54a projecting outward is formed at the tip, and the barb 54a can be engaged by being accommodated in an engagement margin 49 formed at the upstream end edge of the through hole 43. Therefore, the claw portion 54 is engaged with the engagement margin 49 so that it does not protrude downstream from the upstream end edge of the through hole 43!
  • Stopper part 55 is formed.
  • the stopper portion 55 is formed in accordance with the position of the column portion 44 of the case member 41, and is formed with a width equal to or smaller than the width of the column portion 44.
  • the stopper protrusion 55 is formed. It is arranged below the portion 53 and is formed inside the support portion 44 without facing the through hole 43.
  • the tip of the stagger 55 is downstream of the tip of the claw 54, and It is located downstream of the upstream edge of the through-hole 43 (the amount of extension of the stopper 55 to the downstream side is larger than the amount of extension of the claw 54 to the downstream side, It protrudes below the upstream edge of the through hole 43).
  • valve body 42 When the refrigerant flow rate decreases, the valve body 42 is displaced to a position where the pressure of the refrigerant received from the upstream side and the spring force of the return spring 50 received from the downstream side are balanced, and the refrigerant to be sucked in Depending on the flow rate, the size of the opening region of the through hole 43 formed on the upstream side of the valve element 42 changes.
  • the spring force of the return spring 50 overcomes the force of the refrigerant that pushes the valve element 42 from the upstream side, and displaces the valve element 42 to the most upstream side that can be moved.
  • the valve body 42 since the tip of the stubbing portion 55 formed on the lid member 51 protrudes downstream from the upstream end edge of the through hole 43, the valve body 42 abuts against the stopper portion 55 and moves to the upstream side. The above displacement is prevented, and an opening region of the through hole 43 that is not blocked by the valve body 42 remains on the upstream side of the valve body 42. For this reason, the refrigerant flowing from the suction port 35 is guided to the suction chamber 33 through the opening region force of the through-hole 43 on the upstream side of the valve body 42 to the periphery of the cover member 51.
  • the movement of the valve body 42 in the valve closing direction is left in the stopper portion 55 so as to leave the opening region of the through hole 43 upstream of the valve body 42 even at a minute flow rate. Therefore, the communication between the upstream side of the valve element 42 and the through hole 43 is not completely blocked by the stopper portion 55. For this reason, the cross section of the passage between the upstream side of the valve element 42 and the through hole 43 can be gradually changed from a high flow rate to a micro flow rate, and the passage cross section rapidly changes when the flow rate changes to a micro flow rate. This makes it possible to prevent sudden changes in inhalation characteristics.
  • the stopper portion 55 is a through hole 43 adjacent to the peripheral wall of the case member 41. Since the stopper portion 55 protrudes downstream from the through-hole 43, the opening area of the through-hole 43 is not blocked, and the valve body 42 is disposed. With this displacement, it is possible to ensure a continuous change in the passage cross section.
  • the return spring 50 and the valve element 42 are accommodated in the case member 41 by the upstream force, and the lid member 51 is attached to the upstream opening end of the case member 41 from the upstream side. It is possible to obtain a strong structure with no risk of detachment due to inhaled fluid pressure.
  • FIG. 6 shows a modified example of the opening degree adjustment valve.
  • the stopper portion 55 is disposed between the claw portions 54 and the stopper portion 55 is formed separately from the claw portion 54.
  • the stopper portion 55 and the claw portion are formed.
  • 54 is integrally formed, and the stopper portion 55 is formed so as to extend from the tip of the claw portion 54 to the downstream side. Since the other configuration is the same as the above configuration example, the same reference numerals are assigned to the same portions and the description thereof is omitted.
  • the stopper portion 55 cannot be disposed inside the support portion 44, but the valve body is brought into contact with the stopper portion 55 before the through-hole 43 is completely closed. Therefore, as long as the stopper 55 is made small, it is possible to prevent the passage cross section from changing suddenly when shifting to a minute flow rate. It is possible to avoid a sudden change in characteristics.

Abstract

An opening regulation valve in which a sudden change in suction characteristics can be avoided by gradually varying the cross-section of a passage even when a transition is made to minute flow rate. A variable capacity compressor employing it is also provided. The opening regulation valve disposed in a channel allowing communication between the suction port and the suction chamber of a compressor and performing variable control on the opening area of the channel comprises a tubular case member (41) having a circumferential wall provided with a plurality of through holes (43), a valve element (42) contained in the case member (41) slidably in the axial direction and urged by a reset spring (50) in the valve close direction, and a stopper portion (55) for regulating the movement of the valve element (42) in the valve closing direction so as to leave the opening region of the through hole (43) on the upstream side of the valve element (42).

Description

明 細 書  Specification
開度調整弁及びこれを用いた可変容量型圧縮機  Opening adjustment valve and variable displacement compressor using the same
技術分野  Technical field
[0001] この発明は、圧縮機の吸入ポートと吸入室とを連通する流路に設けられ、流路の開 度を可変制御する開度調整弁と、この開度調整弁を用いた可変容量型圧縮機に関 する。  [0001] The present invention provides an opening adjustment valve that is provided in a flow path that communicates a suction port and a suction chamber of a compressor, and that variably controls the opening of the flow path, and a variable capacity that uses the opening adjustment valve. For mold compressors.
背景技術  Background art
[0002] 可変容量型圧縮機において、吸入弁を通過するガス量が減少する低流量域では、 吸入弁の自励振動が発生し、この自励振動により引き起こされるガスの圧力脈動が システムの流入路を伝播して蒸発器に到達し、蒸発器が振動して騒音が発生する不 都合がある。  [0002] In a variable capacity compressor, in a low flow rate region where the amount of gas passing through the intake valve decreases, the self-excited vibration of the intake valve occurs, and the pressure pulsation of the gas caused by this self-excited vibration flows into the system. There is an inconvenience that it propagates along the road and reaches the evaporator, and the evaporator vibrates and generates noise.
[0003] このため、従来においては、圧縮機の吸入ポートと吸入室とを連通する流路に、該 流路の開口面積を制御する開度制御弁を設け、この開度制御弁により、吸入流量が 少ないときに吸入路の開口面積を小さくし、吸入流量が大きいときに吸入路の開口 面積を大きくするようにした構成が提案されて ヽる (特許文献 1参照)。  [0003] For this reason, conventionally, an opening control valve that controls the opening area of the flow path is provided in the flow path that connects the suction port and the suction chamber of the compressor. There has been proposed a configuration in which the opening area of the suction path is reduced when the flow rate is small, and the opening area of the suction path is increased when the suction flow rate is large (see Patent Document 1).
[0004] ところが、上述の開度調整弁にあっては、微小流量時に開度調整弁の弁体に微小 反復移動が生じ、この微小反復移動よつて冷媒ガスの圧力脈動が惹起され、この冷 媒ガスの圧力脈動が吸入ポートから外部冷媒回路へ伝播し、この圧力脈動により蒸 発器が同様に振動して騒音が発生する不都合が指摘されている。  [0004] However, in the above-described opening adjustment valve, the valve body of the opening adjustment valve undergoes minute repeated movement at a minute flow rate, and this minute repeated movement causes pressure pulsation of the refrigerant gas. It has been pointed out that the pressure pulsation of the medium gas propagates from the suction port to the external refrigerant circuit, and this pressure pulsation causes the evaporator to vibrate in the same way, generating noise.
[0005] このため、微小流量時においても冷媒ガスが流れるようにバイパス通路を設けると 共に、復帰パネが内蔵されたエアダンバのピストンにより弁体を形成することで周期 の短 、変動外力に弁体が追従しな 、ようにし、微小流量時における弁頭部体の微小 反復移動による圧力脈動を抑制するようにした構成が考えられて 、る (特許文献 2)。 特許文献 1 :特開 2000— 136776号公報  [0005] For this reason, a bypass passage is provided so that refrigerant gas flows even at a minute flow rate, and a valve body is formed by a piston of an air damper with a built-in return panel, so that the valve body has a short cycle and a variable external force. Therefore, a configuration is considered in which pressure pulsation due to minute repetitive movement of the valve head body at a minute flow rate is suppressed (Patent Document 2). Patent Document 1: Japanese Patent Application Laid-Open No. 2000-136776
特許文献 2 :特開 2001— 289177号公報  Patent Document 2: Japanese Patent Laid-Open No. 2001-289177
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0006] しカゝしながら、上述した特許文献 2で示される構成にぉ ヽては、微小流量時にお!ヽ ても冷媒が流れるようにバイパス通路が設けられ、それによる不具合をエアダンパを 形成して解消しょうとするものである力 バイパス通路は、圧力調整弁のケースを切り 欠 、て形成され、流路を閉塞した後にこの切欠きを介して冷媒を流す構成であるた め、流路が徐々に小さくなる過程では開口面積はほぼリニアに変化するものの、微小 流量時には冷媒の通路面積が切欠きの断面積のみとなり、通路面積が急激に変化 するため、吸入特性が急変し、性能低下を招く不都合がある。 Problems to be solved by the invention [0006] However, with the configuration shown in Patent Document 2 described above, a bypass passage is provided so that the refrigerant can flow even at a minute flow rate, and an air damper is formed by using the bypass passage. The force bypass passage is formed by cutting out the case of the pressure regulating valve, and after the passage is closed, the refrigerant flows through the notch. Although the opening area changes almost linearly in the process of gradually decreasing, the passage area of the refrigerant becomes only a notch cross-sectional area at a minute flow rate, and the passage area changes rapidly, so the suction characteristics change suddenly and the performance decreases. Inconvenience.
[0007] 本発明は、上述した事情に鑑みてなされたものであり、微小流量時への移行時に ぉ 、ても通路断面を徐々に変化させることで急激な吸入特性の変化を回避すること が可能な開度調整弁と、これを用いた可変容量型圧縮機を提供することを主たる課 題としている。  [0007] The present invention has been made in view of the circumstances described above, and at the time of shifting to a minute flow rate, even if the passage cross section is gradually changed, a sudden change in the suction characteristics can be avoided. The main challenge is to provide a possible opening adjustment valve and a variable displacement compressor using this valve.
課題を解決するための手段  Means for solving the problem
[0008] 上記課題を達成するために、この発明に係る開度調整弁は、圧縮機の吸入ポート と吸入室とを連通する流路に配置され、前記流路の開口面積を可変制御するものに おいて、複数の透孔が形成された周壁を有する筒状のケース部材と、前記ケース部 材に軸方向で摺動可能に収容され、復帰ばねにより閉弁方向へ付勢された弁体と、 前記弁体よりも上流側で前記透孔の開口領域を残すように該弁体の閉弁方向への 移動を規制するストッパー部とを具備することを特徴として 、る (請求項 1)。  [0008] In order to achieve the above object, an opening adjusting valve according to the present invention is disposed in a flow path that connects a suction port and a suction chamber of a compressor, and variably controls an opening area of the flow path. In this case, a cylindrical case member having a peripheral wall in which a plurality of through holes are formed, and a valve body accommodated in the case member so as to be slidable in the axial direction and biased in a valve closing direction by a return spring. And a stopper portion for restricting movement of the valve body in the valve closing direction so as to leave an opening region of the through hole upstream of the valve body (Claim 1). .
[0009] したがって、微小流量時においては、弁体が復帰ばねにより閉弁方向へ移動し、弁 体の上流側と透孔との連通を遮断しょうとするが、弁体よりも上流側で透孔の開口領 域を残すように弁体の閉弁方向への移動力 Sストッパー部により規制されるので、この ストッパ部により、弁体の上流側と透孔との連通が完全に閉塞されることがなくなる。こ のため、透孔が完全に閉塞されることによる通路断面の急変を防いで弁体の上流側 と下流側との間の通路断面を高流量時力 微小流量時にかけて徐々に変化させるこ とが可能となり、微小流量時へ移行した時に通路断面が急激に変化することを防ぐこ とが可能となる。  [0009] Therefore, when the flow rate is very small, the valve element moves in the valve closing direction by the return spring and attempts to block the communication between the upstream side of the valve element and the through hole. Movement force of the valve body in the valve closing direction so as to leave the opening area of the hole. Because it is regulated by the S stopper part, the communication between the upstream side of the valve body and the through hole is completely blocked by this stopper part. Nothing will happen. For this reason, the passage cross section between the upstream side and the downstream side of the valve element is prevented from suddenly changing due to the complete closure of the through-hole, and the passage cross section between the upstream side and the downstream side is gradually changed at the time of high flow force and minute flow rate. It is possible to prevent the passage cross section from changing suddenly when the flow rate is small.
[0010] 特に、ストツバ部を、ケース部材の周壁の隣り合う透孔間に形成された支柱部の内 側に配設する構成とすることで (請求項 2)、ストツバ部が透孔によって形成される通 路断面の一部を遮ることがなくなり、弁体の変位に伴い通路断面の連続的な変化を 確実にすることが可能となる。また、最大開口時の開口面積を大きくとることができる。 [0010] In particular, the stagger portion is formed on the inner side of the column portion formed between adjacent through holes in the peripheral wall of the case member (Claim 2). Through A part of the road cross section is not obstructed, and it is possible to ensure a continuous change in the cross section of the passage with the displacement of the valve element. Moreover, the opening area at the time of maximum opening can be taken large.
[0011] また、復帰ばねと弁体とをケース部材に上流側力も収容し、ストッパー部を上流側 力 ケース部材に装着された蓋部材の例えば周縁に形成するとよ ヽ (請求項 3)。こ のような構成においては、蓋部材が上流側からケース部材に装着されるので、蓋部 材が吸入される流体圧によって外れる恐れがなくなる。  [0011] In addition, the return spring and the valve body are also accommodated in the case member for the upstream force, and the stopper portion is formed on, for example, the peripheral edge of the lid member attached to the upstream force case member (claim 3). In such a configuration, since the lid member is attached to the case member from the upstream side, there is no possibility that the lid member is detached by the fluid pressure sucked.
[0012] ここで、蓋部材を、自身に設けられた爪部を前記ケース部材に係止させることで該 ケース部材に固定するようにしてもよい(請求項 4)。このような構成にあっては、爪部 とストッパー部とを別々に形成するようにしても、爪部とストッパー部とを一体に形成す るようにしてもよい(請求項 5, 6)。 Here, the lid member may be fixed to the case member by locking a claw portion provided on the lid member to the case member (claim 4). In such a configuration, the claw portion and the stopper portion may be formed separately, or the claw portion and the stopper portion may be formed integrally (claims 5 and 6).
[0013] 以上のような開度調整弁は、圧縮機として特に可変容量型圧縮機に用いた場合、 即ち、作動流体の流量を微小流量とすることが可能な圧縮機を用いた場合に有用で ある(請求項 7)。 [0013] The opening adjustment valve as described above is useful when used as a compressor, particularly in a variable displacement compressor, that is, when a compressor capable of setting the flow rate of the working fluid to a minute flow rate is used. (Claim 7).
発明の効果  The invention's effect
[0014] 以上述べたように、この発明によれば、圧縮機の吸入ポートと吸入室とを連通する 流路に配置されて流路の開口面積を可変制御する開度調整弁を、透孔が周壁に複 数形成されたケース部材と、このケース部材に収納されて復帰パネにより閉弁方向 へ付勢された弁体とを有して構成し、弁体の閉弁方向への動きを、ストツバ部によつ て弁体よりも上流側で透孔の開口領域が残るように規制したので、弁体の上流側と透 孔との間の通路断面を高流量時力 微小流量時にかけて徐々に変化させて通路断 面の急激な変化を防ぐことが可能となり、吸入特性の急変を回避することが可能とな る。  [0014] As described above, according to the present invention, the opening adjustment valve that is disposed in the flow path that communicates the suction port and the suction chamber of the compressor and variably controls the opening area of the flow path is provided with a through hole. Comprises a case member formed on the peripheral wall, and a valve body housed in the case member and urged in the valve closing direction by the return panel, and moves the valve body in the valve closing direction. Since the opening area of the through hole remains on the upstream side of the valve body by the strobe portion, the passage cross section between the upstream side of the valve body and the through hole is subjected to a high flow rate force and a minute flow rate. By gradually changing it, it is possible to prevent sudden changes in the passage cross section, and it is possible to avoid sudden changes in inhalation characteristics.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]図 1は、本発明に係る可変容量型圧縮機の構成例を示す断面図である。 FIG. 1 is a cross-sectional view showing a configuration example of a variable capacity compressor according to the present invention.
[図 2]図 2は、吸入ポートと吸入室とを連通する流路に開度調整弁を配設した部分の 拡大図である。  [FIG. 2] FIG. 2 is an enlarged view of a portion where an opening degree adjusting valve is provided in a flow path communicating the suction port and the suction chamber.
[図 3]図 3は、高流量時における開度調整弁の状態を示す図であり、図 3 (a)は図 3 (b )の A— A線で切断した断面図、図 3 (b)は斜視図である。 o [FIG. 3] FIG. 3 is a view showing the state of the opening adjustment valve at a high flow rate. FIG. 3 (a) is a cross-sectional view taken along line A—A in FIG. ) Is a perspective view. o
[図 4]微小流量時における開度調整弁の状態を示す図であり、図 4 (a)は図 4 (b)の A O C AO C線で切断した断面図、図 4 (b)は斜視図である。  [Fig. 4] A diagram showing the state of the opening adjustment valve at a minute flow rate. Fig. 4 (a) is a cross-sectional view taken along line AOC AO C in Fig. 4 (b), and Fig. 4 (b) is a perspective view. It is.
[図 5]図 5は、開度調整弁を示す分解図であり、図 5 (a)は図 5 (b)の A— A線で切断 した断面図、図 5 (b)は斜視図である。  [FIG. 5] FIG. 5 is an exploded view showing the opening adjustment valve. FIG. 5 (a) is a cross-sectional view taken along line A—A in FIG. 5 (b), and FIG. 5 (b) is a perspective view. is there.
[図 6]図 6は、開度調整弁の他の例を示す図であり、図 6 (a)は図 6 (b)の A— A線で 切断した断面図、図 5 (b)は斜視図である。  [Fig. 6] Fig. 6 is a view showing another example of the opening adjustment valve. Fig. 6 (a) is a cross-sectional view taken along the line A-A in Fig. 6 (b), and Fig. 5 (b) is a diagram. It is a perspective view.
符号の説明  Explanation of symbols
吸入室  Suction chamber
35 吸入ポート  35 Suction port
36 流路  36 flow path
40 開度調整弁  40 Opening adjustment valve
41 ケース部材  41 Case material
42 弁体  42 Disc
43 透孔  43 Through-hole
44 支柱部  44 Prop
50 復帰ばね  50 Return spring
51 蓋部材  51 Lid member
54 爪部  54 Claw
55 ストツバ部  55 Stutsuba
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、この発明の最良の実施形態を添付図面を参照しながら説明する。  Hereinafter, the best embodiment of the present invention will be described with reference to the accompanying drawings.
[0018] 図 1にお 、て、冷媒を作動流体とする冷凍サイクルに適した可変容量型圧縮機が 示されている。この圧縮機は、例えばクラッチレスタイプの斜板型可変容量圧縮機で あり、シリンダブロック 1と、このシリンダブロック 1のリア側にバルブプレート 2を介して 組み付けられたリアヘッド 3と、シリンダブロック 1のフロント側を覆うように組付けられ、 シリンダブロック 1のフロント側でクランク室 4を画成するフロントヘッド 5とを有して構成 されている。これらフロントヘッド 5、シリンダブロック 1、ノ レブプレート 2、及び、リアへ ッド 3は、締結ボルト 6により軸方向に締結されている。 [0019] クランク室 4に配される駆動軸 7は、フロントヘッド 5及びシリンダブロック 1にべアリン グ 8, 9を介して回転自在に保持されており、この駆動軸 7は、図示しない走行用ェン ジンとベルト及びプーリを介して接続され、走行用エンジンの動力が伝達されて回転 するようになっている。 In FIG. 1, a variable capacity compressor suitable for a refrigeration cycle using a refrigerant as a working fluid is shown. This compressor is, for example, a clutchless type swash plate type variable capacity compressor, and includes a cylinder block 1, a rear head 3 assembled to the rear side of the cylinder block 1 via a valve plate 2, and a cylinder block 1. The front side of the cylinder block 1 is assembled so as to cover the front side, and the front head 5 that defines the crank chamber 4 is configured. The front head 5, cylinder block 1, nozzle plate 2, and rear head 3 are fastened in the axial direction by fastening bolts 6. [0019] A drive shaft 7 disposed in the crank chamber 4 is rotatably held by the front head 5 and the cylinder block 1 via bearings 8 and 9, and this drive shaft 7 is used for traveling (not shown). It is connected to the engine through a belt and pulley, and the power of the traveling engine is transmitted to rotate.
[0020] シリンダブロック 1には、前記ベアリング 9が収容される凹部 11と、この凹部 11を中 心とする円周上に等間隔に配された複数のシリンダボア 12とが形成されており、それ ぞれのシリンダボア 12には、片頭ピストン 13が往復摺動可能に挿入されている。  [0020] The cylinder block 1 is formed with a recess 11 in which the bearing 9 is accommodated, and a plurality of cylinder bores 12 arranged at equal intervals on a circumference centered on the recess 11. A single-head piston 13 is inserted into each cylinder bore 12 so as to be reciprocally slidable.
[0021] 前記駆動軸 7には、クランク室 4内において、該駆動軸 7と一体に回転するスラスト フランジ 14が固定されている。このスラストフランジ 14は、駆動軸 7に対して略垂直に 形成されたフロントヘッド 5の内壁面にスラスト軸受 15を介して回転自在に支持され ている。そして、このスラストフランジ 15には、リンク部材 20を介して斜板 21が連結さ れている。  A thrust flange 14 that rotates integrally with the drive shaft 7 is fixed to the drive shaft 7 in the crank chamber 4. The thrust flange 14 is rotatably supported by an inner wall surface of the front head 5 formed substantially perpendicular to the drive shaft 7 via a thrust bearing 15. A swash plate 21 is connected to the thrust flange 15 via a link member 20.
[0022] 斜板 21は、駆動軸 7上に設けられたヒンジボール 22を介して傾動可能に保持され 、スラストフランジ 14の回転に同期して一体に回転するようになっている。そして、斜 板 21の周縁部分には、前後に設けられた一対のシユー 23を介して片頭ピストン 13 の係合部 13aが係留されて 、る。  The swash plate 21 is held so as to be tiltable via a hinge ball 22 provided on the drive shaft 7, and rotates integrally with the rotation of the thrust flange 14. Then, the engaging portion 13a of the single-headed piston 13 is moored to the peripheral portion of the swash plate 21 through a pair of bushes 23 provided at the front and rear.
[0023] したがって、駆動軸 7が回転すると、これに伴って斜板 21が回転し、この斜板 21の 回転運動がシユー 23を介して片頭ピストン 13の往復直線運動に変換され、シリンダ ボア 12内において片頭ピストン 13とバルブプレート 2との間に形成された圧縮室 25 の容積を変化するようにして 、る。  Accordingly, when the drive shaft 7 rotates, the swash plate 21 rotates along with this, and the rotational motion of the swash plate 21 is converted into the reciprocating linear motion of the single-headed piston 13 via the bush 23, and the cylinder bore 12 The volume of the compression chamber 25 formed between the single-headed piston 13 and the valve plate 2 is changed inside.
[0024] 前記バルブプレート 2には、それぞれのシリンダボア 12に対応して吸入孔 31及び 吐出孔 32が形成され、また、リアヘッド 3には、圧縮室 25に供給する作動流体を収 容する吸入室 33と、圧縮室 25から吐出した作動流体を収容する吐出室 34とが画設 されている。この例において、吸入室 33は、リアヘッド 3の中央部分に形成され、吐出 室 34は吸入室 33の周囲に形成されている。  The valve plate 2 is formed with suction holes 31 and discharge holes 32 corresponding to the respective cylinder bores 12, and the rear head 3 is a suction chamber that stores the working fluid supplied to the compression chamber 25. 33 and a discharge chamber 34 for storing the working fluid discharged from the compression chamber 25 are provided. In this example, the suction chamber 33 is formed in the center portion of the rear head 3, and the discharge chamber 34 is formed around the suction chamber 33.
[0025] 吸入室 33は、外部冷媒回路の低圧側 (蒸発器の出口側)に接続される吸入ポート 35に連通し、吐出室 34は、外部冷媒回路の高圧側 (放熱器の入口側)に接続される 図示しない吐出ポートに連通している。また、吸入室 33は、図示しない吸入弁によつ て開閉される前記吸入孔 31を介して圧縮室 25に連通可能となっており、吐出室 34 は、図示しない吐出弁によって開閉される前記吐出孔 32を介して圧縮室 25に連通 可能となっている。 [0025] The suction chamber 33 communicates with a suction port 35 connected to the low pressure side of the external refrigerant circuit (the outlet side of the evaporator), and the discharge chamber 34 is connected to the high pressure side of the external refrigerant circuit (the inlet side of the radiator) Connected to a discharge port (not shown). The suction chamber 33 is connected to a suction valve (not shown). The discharge chamber 34 can communicate with the compression chamber 25 via the discharge hole 32 that is opened and closed by a discharge valve (not shown). ing.
[0026] この圧縮機の吐出容量は、ピストン 13のストロークによって決定され、このストローク は、駆動軸 7と垂直な面に対する斜板 21の傾斜角度によって決定される。即ち、ビス トン 13の前面に力かる圧力、即ち圧縮室 25の圧力(シリンダボア内の圧力)と、ピスト ン 13の背面に力かる圧力、即ちクランク室 4の圧力(クランク室圧)との差圧、及び、ピ ストンストロークを小さくする方向にヒンジボール 22を付勢するデストロークスプリング 28の付勢力とがバランスするところで斜板 21の傾きが決定され、これによりピストンス トロークが決定されて吐出容量が決定されるようになって!/、る。  The discharge capacity of this compressor is determined by the stroke of the piston 13, and this stroke is determined by the inclination angle of the swash plate 21 with respect to the plane perpendicular to the drive shaft 7. That is, the difference between the pressure acting on the front surface of the piston 13, that is, the pressure in the compression chamber 25 (pressure in the cylinder bore) and the pressure acting on the back surface of the piston 13, that is, the pressure in the crank chamber 4 (crank chamber pressure). The inclination of the swash plate 21 is determined where the pressure and the urging force of the destroke spring 28 that urges the hinge ball 22 in the direction of decreasing the piston stroke are balanced, thereby determining the piston stroke and the discharge capacity. Is now decided! /
[0027] 尚、リアヘッド 3には、吐出室 34とクランク室 4との連通状態、及び、クランク室 4と吸 入室 33との連通状態の少なくとも一方を可変制御する図示しない圧力制御弁が装 着され、この圧力制御弁によって、クランク室 4の圧力を制御し、ピストンストローク、 即ち、吐出容量を調節するようにしている。  The rear head 3 is provided with a pressure control valve (not shown) that variably controls at least one of the communication state between the discharge chamber 34 and the crank chamber 4 and the communication state between the crank chamber 4 and the suction chamber 33. The pressure control valve controls the pressure in the crank chamber 4 to adjust the piston stroke, that is, the discharge capacity.
[0028] したがって、駆動軸 7が回転すると斜板 21が所定の傾斜を有して回転するので、斜 板 21の縁部は駆動軸 7の軸方向に所定の幅で揺動することとなる。これにより、斜板 21の縁部に保持されたピストン 13は、駆動軸 7の軸方向に所定のストロークで往復 動し、シリンダボア 12内に画成された圧縮室 25の容積を変化させ、吸入行程時にお いては、吸入弁によって開閉される吸入孔 31を介して吸入室 33から圧縮室 25に冷 媒を吸引し、圧縮行程時においては、吐出弁によって開閉される吐出孔 32を介して 圧縮された冷媒を圧縮室 25から吐出室 34に吐出するようにしている。  [0028] Accordingly, when the drive shaft 7 rotates, the swash plate 21 rotates with a predetermined inclination, so that the edge portion of the swash plate 21 swings with a predetermined width in the axial direction of the drive shaft 7. . As a result, the piston 13 held at the edge of the swash plate 21 reciprocates with a predetermined stroke in the axial direction of the drive shaft 7, changing the volume of the compression chamber 25 defined in the cylinder bore 12, and During the stroke, the refrigerant is sucked into the compression chamber 25 from the suction chamber 33 through the suction hole 31 opened and closed by the suction valve, and during the compression stroke, the refrigerant is drawn through the discharge hole 32 opened and closed by the discharge valve. The compressed refrigerant is discharged from the compression chamber 25 to the discharge chamber 34.
[0029] このような圧縮機において、吸入ポート 35の下流側、即ち、吸入ポート 35と吸入室 33とを連通する流路 36には、開度調整弁 40が配設されている。  In such a compressor, an opening degree adjusting valve 40 is disposed on the downstream side of the suction port 35, that is, in the flow path 36 that connects the suction port 35 and the suction chamber 33.
この開度調整弁 40は、図 2乃至図 5に示されるように、有底円筒状のケース部材 41 を有し、このケース部材 41に弁体 42が軸線方向で摺動可能に収容されている。  As shown in FIGS. 2 to 5, the opening adjustment valve 40 has a bottomed cylindrical case member 41, and a valve body 42 is accommodated in the case member 41 so as to be slidable in the axial direction. Yes.
[0030] ケース部材 41は、周壁に複数の透孔 (例えば 4つの透孔) 43が等間隔に形成され 、隣り合う透孔間にケース部材 41の上流端開口部 41bと底部 41aとを連結する所定 幅の支柱部 44が形成されている。ケース部材 41の底部 41aには、中央に所定の径 の通孔 45が形成され、その周囲に環状溝 46が形成されて後述する復帰ばねを受け るパネ受けとしている。また、上流端開口部 41bには、透孔 43が形成された周壁より も内径を大きくした蓋体載置部 47が形成され、透孔 43は、略矩形状に形成されてお り、その上流縁中程に上流端開口部 41bへ向力つて切り欠かれた係合代 49が形成 されている。 [0030] The case member 41 has a plurality of through holes (for example, four through holes) 43 formed in the peripheral wall at equal intervals, and the upstream end opening 41b and the bottom 41a of the case member 41 are connected between adjacent through holes. A column portion 44 having a predetermined width is formed. The bottom 41a of the case member 41 has a predetermined diameter in the center. A through hole 45 is formed, and an annular groove 46 is formed around the through hole 45 to serve as a panel receiver for receiving a return spring described later. Further, the upstream end opening 41b is formed with a lid mounting portion 47 having an inner diameter larger than that of the peripheral wall in which the through hole 43 is formed, and the through hole 43 is formed in a substantially rectangular shape. In the middle of the upstream edge, an engagement margin 49 is formed by cutting away toward the upstream end opening 41b.
[0031] 弁体 42は、ケース部材 41との間に所定のクリアランスが確保されるように、ケース部 材 41の内径にほぼ等しい径に形成された有底円筒状に形成され、下流側(図中、下 方)が開口するように収容されている。そして、下流側より復帰ばね 50の一端部を収 容可能とし、この復帰ばね 50をケース部材 41の環状溝 46との間に弹装し、この復帰 ばね 50により、上流端開口部 41bを閉塞する閉弁方向(上流側)へ常時付勢されて いる。  [0031] The valve body 42 is formed in a bottomed cylindrical shape having a diameter substantially equal to the inner diameter of the case member 41 so that a predetermined clearance is secured between the valve member 42 and the case member 41, and the downstream side ( The lower part of the figure is accommodated so as to open. Then, one end of the return spring 50 can be accommodated from the downstream side, and the return spring 50 is fitted between the annular groove 46 of the case member 41, and the upstream end opening 41b is closed by the return spring 50. Always energized in the valve closing direction (upstream).
[0032] そして、ケース部材 41の上流端開口部 41bには、蓋部材 51が係合されている。こ の蓋部材 51は、リング状に形成されているもので、リング部 52の側方には、蓋体載置 部に保持されるように径方向外方に向力つて突出された係止突部 53が周方向に等 間隔に複数形成されている。  A lid member 51 is engaged with the upstream end opening 41b of the case member 41. The lid member 51 is formed in a ring shape, and a locking portion that protrudes outward in the radial direction so as to be held by the lid mounting portion on the side of the ring portion 52. A plurality of protrusions 53 are formed at equal intervals in the circumferential direction.
[0033] また、リング部 52の下端には、下流側(図中、下方)に向かって延設された爪部 54 が透孔の数に合わせて等間隔に形成されている。この例において爪部 54は、隣り合 う係止突部 53の間からケース部材 41の軸線方向に(図中の下方に向力つて)延設さ れ、 90度の間隔で 4箇所に形成され、先端部に外方へ突出する返し 54aが形成され 、この返し 54aを前記透孔 43の上流端縁に形成された係合代 49に収容することによ つて係合可能としている。したがって、爪部 54は、透孔 43の上流端縁よりも下流側へ 突出しな!/、ように係合代 49に係合されて 、る。  Further, claw portions 54 extending toward the downstream side (downward in the figure) are formed at the lower end of the ring portion 52 at equal intervals according to the number of through holes. In this example, the claw portions 54 are extended from between the adjacent locking projections 53 in the axial direction of the case member 41 (by downward force in the figure), and are formed at four positions at intervals of 90 degrees. Then, a barb 54a projecting outward is formed at the tip, and the barb 54a can be engaged by being accommodated in an engagement margin 49 formed at the upstream end edge of the through hole 43. Therefore, the claw portion 54 is engaged with the engagement margin 49 so that it does not protrude downstream from the upstream end edge of the through hole 43!
[0034] さらに、隣り合う爪部 54間には、下流側に延びて弁体 42よりも上流側で透孔の開 口領域を残すように該弁体 42の閉弁方向への移動を規制するストッパー部 55が形 成されている。このストッパ部 55は、ケース部材 41の支柱部 44の位置に合わせて形 成されており、支柱部 44の幅に等しいか、それより小さい幅に形成されており、この 例では、係止突部 53の下方に配置されており、支柱部 44の内側に透孔 43に臨むこ となく形成されている。このストツバ部 55の先端は、爪部 54の先端よりも下流側で、且 つ、透孔 43の上流端縁よりも下流側に位置している (ストッパ部 55の下流側への延 出量は、爪部 54の下流側への延出量よりも大きくなつており、透孔 43の上流側端縁 よりも下方に突出している)。 [0034] Further, the movement of the valve body 42 in the valve closing direction is restricted between the adjacent claw portions 54 so as to extend downstream and leave the opening area of the through hole upstream of the valve body 42. Stopper part 55 is formed. The stopper portion 55 is formed in accordance with the position of the column portion 44 of the case member 41, and is formed with a width equal to or smaller than the width of the column portion 44. In this example, the stopper protrusion 55 is formed. It is arranged below the portion 53 and is formed inside the support portion 44 without facing the through hole 43. The tip of the stagger 55 is downstream of the tip of the claw 54, and It is located downstream of the upstream edge of the through-hole 43 (the amount of extension of the stopper 55 to the downstream side is larger than the amount of extension of the claw 54 to the downstream side, It protrudes below the upstream edge of the through hole 43).
[0035] 以上の構成において、高流量時には、吸入ポート 35から流入する冷媒量も多くな るので、弁体 42が復帰ばね 50のばね力の杭して下流側へ変位し、図 3に示されるよ うに、ケース部材 41の底部 41aに当接し、弁体 42の上流側に形成される透孔 43の 開口領域が最大となる。したがって、吸入ポート 35から流入した冷媒は、透孔 43から カバー部材 41の周囲へ抜けて吸入室 33に導かれることとなる。  [0035] In the above configuration, when the flow rate is high, the amount of refrigerant flowing in from the suction port 35 increases, so that the valve element 42 is displaced to the downstream side due to the spring force of the return spring 50, and is shown in FIG. As described above, the opening area of the through-hole 43 formed on the upstream side of the valve body 42 in contact with the bottom 41a of the case member 41 is maximized. Therefore, the refrigerant flowing from the suction port 35 passes through the through hole 43 to the periphery of the cover member 41 and is guided to the suction chamber 33.
[0036] そして、冷媒流量が低下してくると、弁体 42は、上流側から受ける冷媒の圧力と下 流側から受ける復帰ばね 50のばね力とが釣り合った位置まで変位し、吸入する冷媒 流量に応じて弁体 42よりも上流側に形成される透孔 43の開口領域の大きさが変化 することとなる。  [0036] When the refrigerant flow rate decreases, the valve body 42 is displaced to a position where the pressure of the refrigerant received from the upstream side and the spring force of the return spring 50 received from the downstream side are balanced, and the refrigerant to be sucked in Depending on the flow rate, the size of the opening region of the through hole 43 formed on the upstream side of the valve element 42 changes.
[0037] これに対して、微小流量時においては、復帰ばね 50のばね力が弁体 42を上流側 から押す冷媒の力に打ち勝ち、弁体 42を移動可能な最も上流側へ変位させる。この 際、蓋部材 51に形成されたストツバ部 55の先端は透孔 43の上流端縁よりも下流側 へ突出しているので、弁体 42は、ストッパ部 55に当接して上流側へのそれ以上の変 位が阻止され、弁体 42の上流側には、この弁体 42によって閉塞されない透孔 43の 開口領域が残される。このため、吸入ポート 35から流入した冷媒は、この弁体 42より も上流側の透孔 43の開口領域力もカバー部材 51の周囲へ抜けて吸入室 33に導か れることとなる。  On the other hand, when the flow rate is very small, the spring force of the return spring 50 overcomes the force of the refrigerant that pushes the valve element 42 from the upstream side, and displaces the valve element 42 to the most upstream side that can be moved. At this time, since the tip of the stubbing portion 55 formed on the lid member 51 protrudes downstream from the upstream end edge of the through hole 43, the valve body 42 abuts against the stopper portion 55 and moves to the upstream side. The above displacement is prevented, and an opening region of the through hole 43 that is not blocked by the valve body 42 remains on the upstream side of the valve body 42. For this reason, the refrigerant flowing from the suction port 35 is guided to the suction chamber 33 through the opening region force of the through-hole 43 on the upstream side of the valve body 42 to the periphery of the cover member 51.
[0038] したがって、上述の構成においては、微小流量時においても、弁体 42よりも上流側 で透孔 43の開口領域を残すように弁体 42の閉弁方向への移動がストッパー部 55に より規制されるので、このストッパ部 55により、弁体 42の上流側と透孔 43との連通が 完全に遮断されることがなくなる。このため、弁体 42の上流側と透孔 43との間の通路 断面を高流量時から微小流量時にかけて徐々に変化させることが可能となり、微小 流量時へ移行した時に通路断面が急激に変化することを防ぐことが可能となり、吸入 特性の急変を回避することが可能となる。  Therefore, in the above-described configuration, the movement of the valve body 42 in the valve closing direction is left in the stopper portion 55 so as to leave the opening region of the through hole 43 upstream of the valve body 42 even at a minute flow rate. Therefore, the communication between the upstream side of the valve element 42 and the through hole 43 is not completely blocked by the stopper portion 55. For this reason, the cross section of the passage between the upstream side of the valve element 42 and the through hole 43 can be gradually changed from a high flow rate to a micro flow rate, and the passage cross section rapidly changes when the flow rate changes to a micro flow rate. This makes it possible to prevent sudden changes in inhalation characteristics.
[0039] 特に、この例においては、ストッパ部 55がケース部材 41の周壁の隣り合う透孔 43 間に形成された支柱部 44の内側に配設されているので、ストッパ部 55が透孔 43より も下流側に突出していても、透孔 43の開口面積を遮ることがなくなり、弁体 42の変位 に伴い通路断面の連続的な変化を確保することが可能となる。 In particular, in this example, the stopper portion 55 is a through hole 43 adjacent to the peripheral wall of the case member 41. Since the stopper portion 55 protrudes downstream from the through-hole 43, the opening area of the through-hole 43 is not blocked, and the valve body 42 is disposed. With this displacement, it is possible to ensure a continuous change in the passage cross section.
[0040] また、復帰ばね 50や弁体 42をケース部材 41に上流側力 収容し、ケース部材 41 の上流側開口端に蓋部材 51を上流側から装着させるようにしているので、蓋部材 51 が吸入される流体圧によって外れる恐れはなぐ強度的に強固な構造を得ることが可 能となる。 [0040] Further, the return spring 50 and the valve element 42 are accommodated in the case member 41 by the upstream force, and the lid member 51 is attached to the upstream opening end of the case member 41 from the upstream side. It is possible to obtain a strong structure with no risk of detachment due to inhaled fluid pressure.
[0041] 図 6にお 、て、上記開度調整弁の変形例が示されて!/、る。上述した構成例では、ス トツパ部 55を爪部 54間に配設し、ストツバ部 55を爪部 54と別体に形成するようにして いたが、この例においては、ストッパ部 55と爪部 54とを一体に形成し、ストッパー部 5 5を爪部 54の先端から下流側へ延設するように形成するようにしている。尚、他の構 成は、前記構成例と同様であるので、同一箇所に同一符号を付して説明を省略する  FIG. 6 shows a modified example of the opening degree adjustment valve. In the configuration example described above, the stopper portion 55 is disposed between the claw portions 54 and the stopper portion 55 is formed separately from the claw portion 54. However, in this example, the stopper portion 55 and the claw portion are formed. 54 is integrally formed, and the stopper portion 55 is formed so as to extend from the tip of the claw portion 54 to the downstream side. Since the other configuration is the same as the above configuration example, the same reference numerals are assigned to the same portions and the description thereof is omitted.
[0042] このような構成においては、ストッパー部 55を支柱部 44の内側に配置させることが できなくなるが、透孔 43を完全に閉塞する前の段階で弁体をストツバ部 55に当接さ せて閉方向への移動を規制するようにしているので、ストッパ部 55が小さく形成され ている限り、微小流量時へ移行した時に通路断面が急激に変化することを防ぐことが 可能となり、吸入特性の急激な変化を回避することが可能となる。 [0042] In such a configuration, the stopper portion 55 cannot be disposed inside the support portion 44, but the valve body is brought into contact with the stopper portion 55 before the through-hole 43 is completely closed. Therefore, as long as the stopper 55 is made small, it is possible to prevent the passage cross section from changing suddenly when shifting to a minute flow rate. It is possible to avoid a sudden change in characteristics.

Claims

請求の範囲 The scope of the claims
[1] 圧縮機の吸入ポートと吸入室とを連通する流路に配置され、前記流路の開口面積を 可変制御する開度調整弁において、  [1] In an opening adjustment valve that is disposed in a flow path that communicates a suction port and a suction chamber of the compressor and that variably controls the opening area of the flow path,
複数の透孔が形成された周壁を有する筒状のケース部材と、  A cylindrical case member having a peripheral wall formed with a plurality of through holes;
前記ケース部材に軸線方向で摺動可能に収容され、復帰ばねにより閉弁方向へ 付勢された弁体と、  A valve body accommodated in the case member so as to be slidable in the axial direction and biased in a valve closing direction by a return spring;
前記弁体よりも上流側で前記透孔の開口領域を残すように該弁体の閉弁方向への 移動を規制するストッパー部とを具備することを特徴とする開度調整弁。  An opening degree adjusting valve comprising: a stopper portion for restricting movement of the valve body in a valve closing direction so as to leave an opening region of the through hole upstream of the valve body.
[2] 前記ストツバ部を、前記周壁の隣り合う透孔間に形成された支柱部の内側に配設す ることを特徴とする請求項 1記載の開度調整弁。  [2] The opening adjustment valve according to claim 1, wherein the stagger portion is disposed inside a support portion formed between adjacent through holes of the peripheral wall.
[3] 前記復帰ばねと前記弁体とは前記ケース部材に上流側から収容され、前記ストツバ 一部は上流側力も前記ケース部材に装着される蓋部材に形成されていることを特徴 とする請求項 1記載の開度調整弁。 [3] The return spring and the valve body are accommodated in the case member from the upstream side, and a part of the strobe is formed on the lid member that is also attached to the case member for the upstream force. Item 1. The opening adjustment valve according to item 1.
[4] 前記蓋部材は、自身に設けられた爪部を前記ケース部材に係止させることで該ケー ス部材に固定されることを特徴とする請求項 3記載の開度調整弁。 4. The opening adjustment valve according to claim 3, wherein the lid member is fixed to the case member by locking a claw portion provided on the lid member to the case member.
[5] 前記爪部と前記ストッパー部とは別々に形成されて ヽることを特徴とする請求項 4記 載の開度調整弁。 [5] The opening adjustment valve according to claim 4, wherein the claw portion and the stopper portion are formed separately.
[6] 前記爪部と前記ストッパー部とは一体に形成されて ヽることを特徴とする請求項 4記 載の開度調整弁。  6. The opening adjustment valve according to claim 4, wherein the claw portion and the stopper portion are formed integrally.
[7] 請求項 1乃至 6のいずれかに記載の開度調整弁を備えたことを特徴とする可変容量 型圧縮機。  [7] A variable displacement compressor comprising the opening adjustment valve according to any one of claims 1 to 6.
PCT/JP2007/060397 2006-06-08 2007-05-22 Opening regulation valve and variable capacity compressor employing it WO2007142021A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006160345A JP2007327446A (en) 2006-06-08 2006-06-08 Opening adjusting valve and variable displacement compressor using this valve
JP2006-160345 2006-06-08

Publications (1)

Publication Number Publication Date
WO2007142021A1 true WO2007142021A1 (en) 2007-12-13

Family

ID=38801284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060397 WO2007142021A1 (en) 2006-06-08 2007-05-22 Opening regulation valve and variable capacity compressor employing it

Country Status (2)

Country Link
JP (1) JP2007327446A (en)
WO (1) WO2007142021A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111219325A (en) * 2020-01-19 2020-06-02 沈维强 Flow-adjustable hydraulic pump

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101693042B1 (en) * 2010-06-08 2017-01-04 한온시스템 주식회사 Variable displacement swash plate type compressor
KR101452569B1 (en) * 2012-02-13 2014-10-21 한라비스테온공조 주식회사 swash plate type variable capacity compressor
KR101452568B1 (en) * 2012-02-13 2014-10-21 한라비스테온공조 주식회사 swash plate type variable capacity compressor
KR101883174B1 (en) * 2012-08-23 2018-07-30 한온시스템 주식회사 swash plate type variable capacity compressor
KR20140035114A (en) * 2012-09-13 2014-03-21 한라비스테온공조 주식회사 Check valve for compressor
JP6192369B2 (en) * 2013-06-07 2017-09-06 サンデンホールディングス株式会社 Reciprocating compressor
JP6421747B2 (en) * 2015-12-24 2018-11-14 株式会社豊田自動織機 Compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289177A (en) * 2000-04-04 2001-10-19 Sanden Corp Piston type variable displacement compressor
JP2004027846A (en) * 2002-05-10 2004-01-29 Sanden Corp Compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289177A (en) * 2000-04-04 2001-10-19 Sanden Corp Piston type variable displacement compressor
JP2004027846A (en) * 2002-05-10 2004-01-29 Sanden Corp Compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111219325A (en) * 2020-01-19 2020-06-02 沈维强 Flow-adjustable hydraulic pump
CN111219325B (en) * 2020-01-19 2021-11-05 上海韦航装备科技有限公司 Flow-adjustable hydraulic pump

Also Published As

Publication number Publication date
JP2007327446A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
JP5697975B2 (en) Check valve and variable displacement compressor using the same
WO2007142021A1 (en) Opening regulation valve and variable capacity compressor employing it
JP5870902B2 (en) Variable capacity swash plate compressor
EP1959137B1 (en) Suction throttle valve for variable displacement type compressor
JP2003042062A (en) Capacity control valve
WO2005095796A1 (en) Control device and pressure control valve for variable displacement compressor
US8529219B2 (en) Variable displacement compressor
JP4412186B2 (en) Variable capacity compressor
JP4734623B2 (en) Variable capacity clutchless compressor
KR100193911B1 (en) Swash plate compressor
US6540488B2 (en) Slant plate-type variable displacement compressors with capacity control mechanisms
WO2002101237A1 (en) Variable displacement compressor
JP2020034130A (en) Compressor
JP2004218610A (en) Compressor
WO2007086261A1 (en) Variable displacement-type clutchless compressor
JP2003278650A (en) Displacement control valve for variable displacement compressor
JP2002048059A (en) Variable displacement cam plate type compressor
JP2020034129A (en) Compressor
JP2714398B2 (en) Refrigeration circuit with refrigerant flow control mechanism
JP4049888B2 (en) Variable displacement swash plate compressor
JP2004211570A (en) Variable displacement compressor
JP2009138629A (en) Variable capacity compressor
JP4498988B2 (en) Opening adjustment valve
JPH109146A (en) Variable displacement compressor
JP2022074203A (en) Opening adjustment valve of compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743831

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 07743831

Country of ref document: EP

Kind code of ref document: A1