JP2022074203A - Opening adjustment valve of compressor - Google Patents

Opening adjustment valve of compressor Download PDF

Info

Publication number
JP2022074203A
JP2022074203A JP2020184050A JP2020184050A JP2022074203A JP 2022074203 A JP2022074203 A JP 2022074203A JP 2020184050 A JP2020184050 A JP 2020184050A JP 2020184050 A JP2020184050 A JP 2020184050A JP 2022074203 A JP2022074203 A JP 2022074203A
Authority
JP
Japan
Prior art keywords
valve body
valve
stopper
opening
window portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020184050A
Other languages
Japanese (ja)
Inventor
雅典 雨森
Masanori Amemori
優貴 兼子
Yuki Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Japan Co Ltd
Original Assignee
Valeo Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Japan Co Ltd filed Critical Valeo Japan Co Ltd
Priority to JP2020184050A priority Critical patent/JP2022074203A/en
Publication of JP2022074203A publication Critical patent/JP2022074203A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)

Abstract

To provide an opening adjustment valve in which stable movement of a valve element is secured and which therefore enables suppression of the propagation of pressure pulsation, at a low flow rate operation of a compressor.SOLUTION: An opening adjustment valve 30 provided in a suction passage reaching a suction chamber from a suction port is constituted of: a cylindrical guide cylinder 31 with open one end portion; a valve element 41 arranged movably in the guide cylinder: a stopper 51 in which a through-hole 52 for flowing a refrigerant is formed at the center thereof, and which is provided at one end portion of the guide cylinder 31, and blocks the through-hole 52 while the valve element 41 abuts on the stopper 51; and a spring 61 energizing the valve element 41 toward the stopper side. A window portion 37 is provided at a sidewall 33 of the guide cylinder 31 and is adjusted in an opening area according to a position of the valve element 41, the upstream side inner edge shape of the window portion 37 includes a linear short side 37a arranged in an orientation orthogonal to a moving direction of the valve element 41, and having a prescribed length, and a sideway side 37b which is spread in a fan shape toward a downstream side than both ends of the short side.SELECTED DRAWING: Figure 2

Description

本発明は、圧縮機の吸入ポートから吸入室に至る吸入通路の開度を可変する機能を備えた開度調整弁に関し、特に低流量時における弁体の挙動を安定させ、吸入室からの圧力脈動の伝搬を低減することが可能な圧縮機の開度調整弁に関する。 The present invention relates to an opening adjustment valve having a function of varying the opening of the suction passage from the suction port of the compressor to the suction chamber, and stabilizes the behavior of the valve body particularly at a low flow rate, and the pressure from the suction chamber. The present invention relates to an opening adjustment valve of a compressor capable of reducing pulsation propagation.

可変容量斜板式圧縮機においては、吸入弁の振動に起因する圧力脈動の蒸発器への伝搬を低減するために、圧縮機の吸入ポートから吸入室に至る吸入通路に、この通路の開度を調整する開度調整弁を配置することが知られている。このような開度調整弁は、弁体を閉方向に付勢する付勢部材(スプリング)が組み込まれており、作動流体からの圧力とスプリング力とが釣り合ったところで弁開度が決まるようになっている。 In a variable displacement swash plate compressor, in order to reduce the propagation of pressure pulsation to the evaporator due to the vibration of the suction valve, the opening of this passage is set in the suction passage from the suction port of the compressor to the suction chamber. It is known to arrange an opening degree adjusting valve for adjusting. Such an opening adjustment valve incorporates an urging member (spring) that urges the valve body in the closing direction, so that the valve opening is determined when the pressure from the working fluid and the spring force are balanced. It has become.

例えば、特許文献1には、内部に収容空間を有し、吸入ポートと収容空間とを連通する流入口と、吸入室と収容空間とを連通する流出口とを備えた弁ハウジングと、収容空間に収容され、前後の圧力差に基づき収容空間内を移動して流出口の開度を調整する弁体と、弁体を流出口の開度を小さくするとともに流入口を閉塞する方向に付勢する付勢部材とを備えた開度調整弁を吸入通路に設けた圧縮機が開示されている。弁ハウジングの側面に形成された流出口(窓部)は矩形状に形成されている。 For example, Patent Document 1 describes a valve housing having a storage space inside and having an inlet that communicates with a suction port and a storage space, and a valve housing having an outlet that communicates between a suction chamber and the storage space, and a storage space. A valve body that is accommodated in the air and moves in the accommodation space based on the pressure difference between the front and rear to adjust the opening of the outlet, and the valve body is urged to reduce the opening of the outlet and close the inlet. A compressor is disclosed in which an opening degree adjusting valve provided with an urging member is provided in a suction passage. The outlet (window portion) formed on the side surface of the valve housing is formed in a rectangular shape.

国際公開WO2017/115715号International release WO2017 / 115715

この構成においては、窓部が矩形状に形成されているため、弁体の変位に伴って窓部の開口面積は線形に変化する。このため、弁体によって窓部が閉塞している状態から弁体が変位し、窓部が開口し始めると、窓部の開口面積(開度調整弁の開度)が一気に大きくなり、上流側の圧力が一気に下流側に抜けて弁体前後の圧力差が急激に小さくなる。このため、弁体は付勢部材の付勢力で窓部を閉塞する方向に動き、窓部が閉塞されると、弁体前後の圧力差が再び大きくなって弁体が窓部の開口面積を過剰に大きくし、この動作の繰り返しによって弁体がハンチングする(開度調整弁の開度が安定しなくなる)。このため、低流量時においては、吸入室からの圧力脈動の伝搬を十分に抑えることができなくなる不都合が生じる。
これに対して、高流量時においては、上流側の圧力が十分に高まるため、弁体は付勢部材の付勢力に抗して大きく変位し、窓部の開口面積が十分に大きくなる。このため、弁体の微小な変位によって窓部の開口面積が変わったとしても、弁体前後の圧力差が過剰に変動することはなく、弁体がハンチングを起こすことはない。
In this configuration, since the window portion is formed in a rectangular shape, the opening area of the window portion changes linearly with the displacement of the valve body. Therefore, when the valve body is displaced from the state where the window portion is blocked by the valve body and the window portion starts to open, the opening area of the window portion (opening of the opening adjustment valve) suddenly increases, and the upstream side The pressure of the valve suddenly drops to the downstream side, and the pressure difference between the front and rear of the valve body suddenly decreases. Therefore, the valve body moves in the direction of closing the window portion by the urging force of the urging member, and when the window portion is closed, the pressure difference between the front and rear of the valve body becomes large again, and the valve body increases the opening area of the window portion. The valve body is hunted by repeating this operation by making it excessively large (the opening of the opening adjusting valve becomes unstable). Therefore, at a low flow rate, there is a problem that the propagation of pressure pulsation from the suction chamber cannot be sufficiently suppressed.
On the other hand, at the time of high flow rate, the pressure on the upstream side is sufficiently increased, so that the valve body is largely displaced against the urging force of the urging member, and the opening area of the window portion becomes sufficiently large. Therefore, even if the opening area of the window portion changes due to a slight displacement of the valve body, the pressure difference between the front and rear of the valve body does not excessively fluctuate, and the valve body does not cause hunting.

本発明は、係る事情に鑑みてなされたものであり、低流量時において、弁体のハンチングによって吸入室からの圧力脈動が伝搬する不都合をなくすこと、すなわち、低流量時においても弁体の安定した動きを確保して圧力脈動の伝搬を抑えることが可能な開度調整弁を提供することを主たる課題としている。 The present invention has been made in view of the above circumstances, and eliminates the inconvenience of propagating pressure pulsation from the suction chamber due to hunting of the valve body at a low flow rate, that is, stability of the valve body even at a low flow rate. The main task is to provide an opening adjustment valve that can secure the movement and suppress the propagation of pressure pulsation.

上記課題を達成するために、本発明に係る圧縮機の開度調整弁は、圧縮機の吸入ポートから吸入室に至る吸入通路に設けられ、この吸入通路を流れる作動流体の流量の増減に応じて前記吸入通路の開度を調整する開度調整弁であって、
少なくとも前記吸入ポート側に向けられる一方の端部が開放された円筒状のガイド筒と、
前記ガイド筒内を移動可能に配置された弁体と、
前記ガイド筒の前記一方の端部に設けられ、中央に冷媒を流すための貫通孔が形成されたストッパと、
前記弁体を前記ストッパ側に向けて付勢する付勢部材と、を有し、
前記ガイド筒の側壁には、前記弁体の位置に応じて開口面積が調整される窓部が設けられ、前記貫通孔は、前記弁体が前記ストッパに当接することにより閉塞され、前記窓部の上流側の内縁形状は、前記弁体の移動方向に対して直交する向きに延設された所定の長さを有する直線状の短辺と、その短辺の両端より下流側に向けて末広がりに広がる側辺と、を含むことを特徴としている。
In order to achieve the above problems, the opening degree adjusting valve of the compressor according to the present invention is provided in the suction passage from the suction port of the compressor to the suction chamber, and the flow rate of the working fluid flowing through the suction passage is increased or decreased. An opening adjustment valve that adjusts the opening of the suction passage.
At least a cylindrical guide tube with one end open toward the suction port side,
A valve body movably arranged in the guide cylinder and
A stopper provided at the one end of the guide cylinder and having a through hole for flowing a refrigerant in the center, and a stopper.
It has an urging member that urges the valve body toward the stopper side, and has.
The side wall of the guide cylinder is provided with a window portion whose opening area is adjusted according to the position of the valve body, and the through hole is closed by the valve body coming into contact with the stopper, and the window portion is closed. The shape of the inner edge on the upstream side of the valve body is a linear short side having a predetermined length extending in a direction orthogonal to the moving direction of the valve body, and diverging toward the downstream side from both ends of the short side. It is characterized by including the sides that spread out in.

したがって、低流量時に弁体がストッパから離反して(開弁して)先端部が窓部の短辺を過ると、窓部の短辺と弁体の先端との間に形成される細長い開口部分を介して冷媒が流れ始める。また、弁体がさらに変位して、弁体の先端部が側辺上を移動する過程では、弁体の移動に伴い開口面積は急激には大きくならず、徐々に増加することになる。このため、低流量時においても、流量の変化に対して弁体前後の圧力差が大きく変化することはないので、弁体の動きが安定し、開度調整弁の開度(窓部の開口面積)が小さい状態を維持しやすくなる。その結果、吸入室から吸入ポートへ伝搬する圧力脈動(吸入配管へ伝わる圧力脈動)を効果的に低減することが可能となる。
しかも、低流量時において開弁した際には、短辺を一辺とする細長い開口を介して冷媒が流れるので、圧力脈動の伝搬を一層抑えることが可能となる。
Therefore, when the valve body separates from the stopper (opens) at a low flow rate and the tip portion passes the short side of the window portion, an elongated shape is formed between the short side of the window portion and the tip of the valve body. Refrigerant begins to flow through the opening. Further, in the process in which the valve body is further displaced and the tip portion of the valve body moves on the side side, the opening area does not suddenly increase with the movement of the valve body, but gradually increases. Therefore, even when the flow rate is low, the pressure difference between the front and rear of the valve body does not change significantly with respect to the change in the flow rate, so that the movement of the valve body is stable and the opening degree of the opening adjustment valve (opening of the window portion). It becomes easier to maintain a small area). As a result, the pressure pulsation propagating from the suction chamber to the suction port (pressure pulsation transmitted to the suction pipe) can be effectively reduced.
Moreover, when the valve is opened at a low flow rate, the refrigerant flows through an elongated opening having a short side as one side, so that the propagation of pressure pulsation can be further suppressed.

これに対して、高流量時においては、弁体が付勢部材に抗して大きく変位し、側辺から離れて窓部が大きく開口する状態となるので、従来の矩形状の窓部とほぼ同等の開口面積にすることが可能となり、開度調整弁での圧損を小さくして性能低下を抑えることが可能となる。 On the other hand, at the time of high flow rate, the valve body is largely displaced against the urging member, and the window portion is greatly opened away from the side side, so that it is almost the same as the conventional rectangular window portion. It is possible to make the opening area the same, and it is possible to reduce the pressure loss in the opening adjustment valve and suppress the deterioration of performance.

以上の構成において、弁体のストッパが当接する部位の外側には、弁体の先端が窓部に差し掛かる前に窓部に通じる絞り流路を形成する絞り流路形成手段を設けてもよい。
このような構成においては、弁体がストッパから離れて弁体の先端が窓部に差し掛かるまでの間においても、作動流体は、弁体がストッパから離れると絞り流路形成手段によって形成される絞り流路を介して下流側へ流れ始める。このため、弁体の先端が窓部に差し掛かって初めて冷媒が下流側へ流れるわけではないので、弁体の変位量に対する流量の変化をさらに緩やかにすることが可能となり、極低流量時においても弁体の動きを安定させることが可能となる。
In the above configuration, a throttle flow path forming means for forming a throttle flow path leading to the window portion may be provided on the outside of the portion where the stopper of the valve body abuts. ..
In such a configuration, the working fluid is formed by the throttle flow path forming means when the valve body is separated from the stopper even until the valve body is separated from the stopper and the tip of the valve body approaches the window portion. It begins to flow downstream through the throttle flow path. For this reason, the refrigerant does not flow to the downstream side only when the tip of the valve body reaches the window portion, so that the change in the flow rate with respect to the displacement amount of the valve body can be made more gradual, and even at an extremely low flow rate. It is possible to stabilize the movement of the valve body.

ここで、絞り流路形成手段は、弁体のストッパとの当接部位の外側にテーパ面を形成し、このテーパ面を、弁体の閉弁位置において一部分が窓部と重なるように形成することによって構成してもよい。
このような構成においては、ガイド筒の窓部が、閉弁位置において絞り流路形成手段と重なっているので、弁体がストッパ離れると同時に弁体上流側の作動流体が絞り流路を介して窓部から下流側へ流れ始める。その結果、弁体の先端が窓部に差し掛かる前の極低流量時において、この開度調整弁は弁体の動きを安定させ、吸入配管へ伝わる圧力脈動を効果的に低減することが可能となる。
Here, the throttle flow path forming means forms a tapered surface on the outside of the contact portion with the stopper of the valve body, and forms this tapered surface so that a part of the tapered surface overlaps with the window portion at the valve closing position of the valve body. It may be configured by.
In such a configuration, since the window portion of the guide cylinder overlaps with the throttle flow path forming means at the valve closed position, the working fluid on the upstream side of the valve body passes through the throttle flow path at the same time as the valve body separates from the stopper. It begins to flow from the window to the downstream side. As a result, this opening adjustment valve can stabilize the movement of the valve body and effectively reduce the pressure pulsation transmitted to the suction pipe at the time of extremely low flow rate before the tip of the valve body reaches the window portion. Will be.

なお、前記ストッパの弁体が当接する当接端部の周囲は、ガイド筒の側壁で覆われていることが望ましい。
ストッパの弁体が当接する当接端部の外側(周囲)にもガイド筒の側壁を配置することで、下流側への冷媒の抜け易さを制限し、弁体がストッパから離れて開度調整弁が開いたときに、上流側の圧力が急激に抜けて、弁体が開閉を繰り返すハンチングを起こりにくくすることが可能となる。
It is desirable that the periphery of the contact end portion with which the valve body of the stopper comes into contact is covered with the side wall of the guide cylinder.
By arranging the side wall of the guide cylinder on the outside (periphery) of the contact end where the valve body of the stopper abuts, the ease of escape of the refrigerant to the downstream side is restricted, and the valve body opens away from the stopper. When the regulating valve is opened, the pressure on the upstream side is suddenly released, and it becomes possible to prevent hunting in which the valve body repeatedly opens and closes.

以上述べたように、本発明によれば、圧縮機の吸入ポートから吸入室に至る吸入通路に設けられる開度調整弁のガイド筒の側壁に設けられる窓部について、上流側の内縁形状を、弁体の移動方向に対して直交する向きに延設された所定の長さを有する直線状の短辺と、その短辺の両端より下流側に向けて末広がりに広がる側辺とを有して構成したので、低流量時において開弁したときに、弁体の変位に伴う開口面積の変化を徐々に増加させることができる。このため、流量の変化に対して弁体前後の圧力差が大きく変化することはないので、弁体のハンチングを回避して弁体の動きを安定させることができ、低流量時においても開度調整弁の開度(窓部の開口)を小さい状態で維持することが可能となる。しかも、窓部が開口する初期においては、短辺を一辺とする細長い開口が形成されるので、圧力脈動は一層伝搬しにくくなる。その結果、低流量時において、吸入配管へ伝わる圧力脈動を効果的に低減することが可能となる。 As described above, according to the present invention, the inner edge shape on the upstream side of the window portion provided on the side wall of the guide cylinder of the opening degree adjusting valve provided in the suction passage from the suction port of the compressor to the suction chamber is defined. It has a linear short side having a predetermined length extending in a direction orthogonal to the movement direction of the valve body, and a side side extending toward the downstream side from both ends of the short side. Since it is configured, when the valve is opened at a low flow rate, the change in the opening area due to the displacement of the valve body can be gradually increased. Therefore, since the pressure difference between the front and rear of the valve body does not change significantly with respect to the change in the flow rate, it is possible to avoid hunting of the valve body and stabilize the movement of the valve body, and the opening even at a low flow rate. It is possible to maintain the opening degree of the adjusting valve (opening of the window portion) in a small state. Moreover, in the initial stage when the window portion opens, an elongated opening having a short side as one side is formed, so that the pressure pulsation is more difficult to propagate. As a result, it is possible to effectively reduce the pressure pulsation transmitted to the suction pipe at a low flow rate.

また、高流量で運転される時には、吸入通路上の開度調整弁は、ほぼ全開状態となるので、従来と同様に十分な開度を確保することが可能となり、圧損を少なくして性能低下を防ぐことが可能となる。 In addition, when operating at a high flow rate, the opening adjustment valve on the suction passage is almost fully opened, so it is possible to secure a sufficient opening as in the past, reducing pressure loss and reducing performance. Can be prevented.

図1は、本発明に係る圧縮機の一例である可変容量斜板式圧縮機を示す側断面図である。FIG. 1 is a side sectional view showing a variable capacity swash plate type compressor which is an example of the compressor according to the present invention. 図2は、図1の圧縮機に用いられる開度調整弁の例を示す図であり、(a)はその外観を示す斜視図、(b)は、その内部構造を示す斜視図である。2A and 2B are views showing an example of an opening degree adjusting valve used in the compressor of FIG. 1, where FIG. 2A is a perspective view showing the appearance thereof, and FIG. 2B is a perspective view showing the internal structure thereof. 図3は、吸入通路上に取り付けられた開度調整弁の取り付け状態を示す断面図である。FIG. 3 is a cross-sectional view showing a mounting state of an opening degree adjusting valve mounted on the suction passage. 図4は、本発明に係る開度調整弁の側面図であり、窓部を正面から見た図である。FIG. 4 is a side view of the opening degree adjusting valve according to the present invention, and is a view of the window portion as viewed from the front. 図5は、弁体とストッパが当接する付近の構造を示す図であり、弁体がストッパに当接した状態から弁体が離れ始めた状態を説明する図である。FIG. 5 is a diagram showing a structure in the vicinity where the valve body and the stopper come into contact with each other, and is a diagram for explaining a state in which the valve body starts to separate from the state where the valve body comes into contact with the stopper. 図6は、本発明に係る開度調整弁の弁体の変位量に対する開度調整弁の開度(窓部の開口面積)の変化を示す特性線図であり、破線は従来の開度調整弁の特性を示し、実線は本発明に係る開度調整弁の特性を示す。FIG. 6 is a characteristic diagram showing a change in the opening degree (opening area of the window portion) of the opening degree adjusting valve with respect to the displacement amount of the valve body of the opening degree adjusting valve according to the present invention, and the broken line is a conventional opening degree adjusting. The characteristics of the valve are shown, and the solid line shows the characteristics of the opening degree adjusting valve according to the present invention. 図7は、弁体の変位量が大きくなる高流量時での開度調整弁の状態を示す図であり、(a)はその側面図、(b)は、その側断面図である。7A and 7B are views showing a state of an opening degree adjusting valve at a high flow rate when the displacement amount of the valve body becomes large, FIG. 7A is a side view thereof, and FIG. 7B is a side sectional view thereof. 図8は、弁体の変位量が小さく、弁体の先端が窓部の側辺に差し掛かる低流量時での開度調整弁の状態を示す図であり、(a)はその側面図、(b)は、その側断面図である。FIG. 8 is a diagram showing a state of the opening degree adjusting valve at a low flow rate when the displacement amount of the valve body is small and the tip of the valve body approaches the side surface of the window portion, and FIG. 8A is a side view thereof. (B) is a side sectional view thereof. 図9は、弁体の変位量がさらに小さく、弁体の先端が窓部の短辺に達しない極低流量時での開度調整弁の状態を示す図であり、(a)はその側面図、(b)は、その側断面図である。FIG. 9 is a diagram showing a state of the opening degree adjusting valve at an extremely low flow rate in which the displacement amount of the valve body is further small and the tip of the valve body does not reach the short side of the window portion, and FIG. 9A is a side view thereof. FIG. 3B is a side sectional view thereof. 図10は、本発明に係る開度調整弁の変形例を示す側面図であり、窓部を正面から見た図である。FIG. 10 is a side view showing a modified example of the opening degree adjusting valve according to the present invention, and is a view of the window portion viewed from the front.

以下、本発明に係る圧縮機として、可変容量斜板式圧縮機を用いた場合について、添付図面を参照しながら説明する。 Hereinafter, a case where a variable capacity swash plate type compressor is used as the compressor according to the present invention will be described with reference to the attached drawings.

図1において、図示しない凝縮器、膨張弁、蒸発器とともに冷凍回路の一部をなす可変容量斜板式圧縮機1(以下は圧縮機1と呼称する)が示されている。この圧縮機1は、シリンダブロック2と、このシリンダブロック2のリア側にバルブプレート3を介して組み付けられたリアハウジング4と、シリンダブロック2のフロント側を覆うように組付けられ、シリンダブロック2のフロント側でクランク室5を画成するフロントハウジング6とを有して構成されている。これらフロントハウジング6、シリンダブロック2、バルブプレート3、及び、リアハウジング4は、図示しない締結ボルトにより軸方向に締結されて圧縮機ハウジング7を構成している。 FIG. 1 shows a variable capacitance swash plate compressor 1 (hereinafter referred to as a compressor 1) that forms a part of a refrigeration circuit together with a condenser, an expansion valve, and an evaporator (not shown). The compressor 1 is assembled so as to cover the cylinder block 2, the rear housing 4 attached to the rear side of the cylinder block 2 via the valve plate 3, and the front side of the cylinder block 2. It is configured to have a front housing 6 that defines a crank chamber 5 on the front side of the above. The front housing 6, the cylinder block 2, the valve plate 3, and the rear housing 4 are axially fastened by fastening bolts (not shown) to form the compressor housing 7.

クランク室5に配される駆動軸8は、フロントハウジング6及びシリンダブロック2にベアリング9(シリンダブロック側のみを示す)を介して回転自在に保持されており、この駆動軸8は、フロントハウジング6から突出して図示しない走行用エンジンにベルト及びプーリを介して接続され、走行用エンジンの動力が伝達されて回転するようになっている。 The drive shaft 8 arranged in the crank chamber 5 is rotatably held by the front housing 6 and the cylinder block 2 via a bearing 9 (only the cylinder block side is shown), and the drive shaft 8 is rotatably held by the front housing 6. It protrudes from the engine and is connected to a traveling engine (not shown) via a belt and a pulley so that the power of the traveling engine is transmitted to rotate the engine.

シリンダブロック2には、前記ベアリング9が収容される支持孔11と、この支持孔11を中心とする円周上に等間隔に配された複数のシリンダボア12とが形成されており、それぞれのシリンダボア12には、片頭ピストン13が往復摺動可能に挿入されている。 The cylinder block 2 is formed with a support hole 11 in which the bearing 9 is housed, and a plurality of cylinder bores 12 arranged at equal intervals on the circumference centered on the support hole 11, and each cylinder bore is formed. A single-headed piston 13 is inserted into the 12 so as to be slidable back and forth.

クランク室5には、駆動軸8の回転に同期して回転する斜板14が駆動軸上に設けられ、この斜板14の周縁部分には、前後に設けられた一対のシュー15を介して片頭ピストン13の係合部13aが係留されている。 In the crank chamber 5, a swash plate 14 that rotates in synchronization with the rotation of the drive shaft 8 is provided on the drive shaft, and a pair of shoes 15 provided in the front-rear direction are provided on the peripheral edge portion of the swash plate 14. The engaging portion 13a of the single-headed piston 13 is moored.

したがって、駆動軸8が回転すると、これに伴って斜板14が回転し、この斜板14の回転運動がシュー15を介して片頭ピストン13の往復直線運動に変換され、シリンダボア12内において片頭ピストン13とバルブプレート3との間に形成される圧縮室16の容積を変化するようになっている。 Therefore, when the drive shaft 8 rotates, the swash plate 14 rotates accordingly, and the rotational motion of the swash plate 14 is converted into a reciprocating linear motion of the single-headed piston 13 via the shoe 15, and the single-headed piston in the cylinder bore 12 The volume of the compression chamber 16 formed between the 13 and the valve plate 3 is changed.

前記バルブプレート3には、それぞれのシリンダボア12に対応して吸入孔17及び吐出孔18が形成され、また、リアハウジング4には、圧縮室16に供給する作動流体を収容する吸入室20と、圧縮室16から吐出した作動流体を収容する吐出室21とが画設されている。この例において、吸入室20は、リアハウジング4の中央部分に形成され、吐出室21は吸入室20の周囲に円環状に形成されている。 The valve plate 3 is formed with a suction hole 17 and a discharge hole 18 corresponding to the respective cylinder bores 12, and the rear housing 4 has a suction chamber 20 for accommodating the working fluid to be supplied to the compression chamber 16. A discharge chamber 21 for accommodating the working fluid discharged from the compression chamber 16 is defined. In this example, the suction chamber 20 is formed in the central portion of the rear housing 4, and the discharge chamber 21 is formed in an annular shape around the suction chamber 20.

吸入室20は、円環状の吐出室21を貫通するように径方向に延設された吸入ポート22を介して外部冷媒回路の低圧側(蒸発器の出口側)と連通し、吐出室21は、外部冷媒回路の高圧側(凝縮器の入口側)に接続される図示しない吐出ポートと連通している。また、吸入室20は、吸入弁23によって開閉される前記吸入孔17を介して圧縮室16に連通可能となっており、吐出室21は、吐出弁24によって開閉される前記吐出孔18を介して圧縮室16に連通可能となっている。 The suction chamber 20 communicates with the low pressure side (outlet side of the evaporator) of the external refrigerant circuit via a suction port 22 extending radially so as to penetrate the annular discharge chamber 21, and the discharge chamber 21 , Communicats with a discharge port (not shown) connected to the high pressure side (condenser inlet side) of the external refrigerant circuit. Further, the suction chamber 20 can communicate with the compression chamber 16 through the suction hole 17 opened and closed by the suction valve 23, and the discharge chamber 21 communicates with the compression chamber 16 via the discharge hole 18 opened and closed by the discharge valve 24. It is possible to communicate with the compression chamber 16.

したがって、吸入行程時においては、吸入弁23によって開閉される吸入孔17を介して吸入室20から圧縮室16に冷媒を吸引し、圧縮行程時においては、吐出弁24によって開閉される吐出孔18を介して圧縮された冷媒を圧縮室16から吐出室21に吐出するようにしている。 Therefore, during the suction stroke, the refrigerant is sucked from the suction chamber 20 into the compression chamber 16 through the suction hole 17 opened and closed by the suction valve 23, and during the compression stroke, the discharge hole 18 is opened and closed by the discharge valve 24. The refrigerant compressed via the above is discharged from the compression chamber 16 to the discharge chamber 21.

このような圧縮機1において、リアハウジングの吸入ポート22の下流側、即ち、吸入ポート22から吸入室20に通じる吸入通路25には、この吸入通路25の開度を可変する開度調整弁30が設けられている。 In such a compressor 1, an opening degree adjusting valve 30 that changes the opening degree of the suction passage 25 is provided on the downstream side of the suction port 22 of the rear housing, that is, the suction passage 25 leading from the suction port 22 to the suction chamber 20. Is provided.

図2において、開度調整弁30の構成例が示されている。この開度調整弁30は、ガイド筒31と、このガイド筒31内に配置された弁体41と、ガイド筒31の端部に設けられたストッパ51と、付勢部材としてのスプリング61とを有して構成されている。 FIG. 2 shows a configuration example of the opening degree adjusting valve 30. The opening degree adjusting valve 30 includes a guide cylinder 31, a valve body 41 arranged in the guide cylinder 31, a stopper 51 provided at the end of the guide cylinder 31, and a spring 61 as an urging member. Has and is configured.

ガイド筒31は、内部に円柱状の弁体収容空間32を有する側壁33を備え、吸入ポート側に向けられる一方の端部が開放され、他方の端部が底壁34によって閉塞された有底筒状に形成されている。このガイド筒31(側壁33)の開放端の周縁部には、径方向外側に向けて突出されたフランジ状の突き当て部35が形成されている。また、側壁33の突き当て部35の直近には、後述するストッパ51の係合爪56を係止可能とするスリット36が周方向に等間隔に複数(例えば、4つ)形成されている。 The guide cylinder 31 is provided with a side wall 33 having a columnar valve body accommodating space 32 inside, and one end directed toward the suction port side is opened, and the other end is closed by a bottom wall 34. It is formed in a tubular shape. A flange-shaped abutting portion 35 projecting outward in the radial direction is formed on the peripheral edge of the open end of the guide cylinder 31 (side wall 33). Further, in the immediate vicinity of the abutting portion 35 of the side wall 33, a plurality (for example, four) slits 36 are formed at equal intervals in the circumferential direction so as to be able to lock the engaging claws 56 of the stopper 51 described later.

側壁33の軸方向の中間部には、ガイド筒31の内外を貫通させる窓部37が周方向に等間隔に複数(例えば、前記スリット36と同位相で周方向等間隔に4つ)形成されている。
さらに、ガイド筒31の底壁34には、弁体収容空間32に収容される弁体41の背後を吸入室圧と一致させる均圧口38が形成されている。
A plurality of window portions 37 penetrating the inside and outside of the guide cylinder 31 are formed at equal intervals in the circumferential direction (for example, four at equal intervals in the circumferential direction in the same phase as the slit 36) in the intermediate portion in the axial direction of the side wall 33. ing.
Further, the bottom wall 34 of the guide cylinder 31 is formed with a pressure equalizing port 38 that matches the back of the valve body 41 housed in the valve body accommodating space 32 with the suction chamber pressure.

ストッパ51は、中央に冷媒を流すための貫通孔52が形成され、ガイド筒31の上流側となる一方の端部に取り付けられている。
具体的には、ストッパ51は、ガイド筒31(側壁33)の内周面とほぼ同等径の外周面を備えた内篏壁53と、この内篏壁53に続いて形成され、ガイド筒31の開放端(突き当て部35)に軸方向で当接し得るように拡径されたフランジ部54と、このフランジ部54から外側へ突設された嵌合部55と、内篏壁53の外周面に設けられた係合爪56とを有し、内篏壁53の下流端の全周に亘って後述する弁体41が当接するシート部57が形成されている。
The stopper 51 has a through hole 52 formed in the center for allowing the refrigerant to flow, and is attached to one end on the upstream side of the guide cylinder 31.
Specifically, the stopper 51 is formed by following the inner frame wall 53 having an outer peripheral surface having a diameter substantially equal to the inner peripheral surface of the guide cylinder 31 (side wall 33) and the guide cylinder 31. A flange portion 54 whose diameter has been expanded so that it can abut on the open end (butting portion 35) in the axial direction, a fitting portion 55 projecting outward from the flange portion 54, and an outer circumference of the inner wall 53. A seat portion 57 having an engaging claw 56 provided on the surface and with which the valve body 41 described later abuts is formed over the entire circumference of the downstream end of the inner wall 53.

前記スリット36は、ストッパ51の内篏壁53によって内側から閉塞されており、前記シート部57より上流側に位置している。また、窓部37は、シート部57よりも下流側に位置しており、したがって、シート部57の周囲は、全周に亘って側壁33によって覆われた状態となっている。 The slit 36 is closed from the inside by the inner wall 53 of the stopper 51, and is located on the upstream side of the seat portion 57. Further, the window portion 37 is located on the downstream side of the seat portion 57, and therefore, the periphery of the seat portion 57 is covered by the side wall 33 over the entire circumference.

嵌合部55は、フランジ部54の外縁から軸方向に延設されると共にガイド筒の一方の端部(突き当て部35)よりも径方向外側へ斜めに張り出すように周方向に等間隔に複数(この例では4つ)形成され、径方向に弾性変形可能となっている。また、この複数の嵌合部55の先端外縁を結んだ仮想円は、吸入通路25の内径よりも若干大きく形成されている。 The fitting portions 55 extend axially from the outer edge of the flange portion 54 and are equidistant in the circumferential direction so as to project diagonally outward in the radial direction from one end (butting portion 35) of the guide cylinder. Multiple (four in this example) are formed, and elastically deformable in the radial direction. Further, the virtual circle connecting the outer edges of the tips of the plurality of fitting portions 55 is formed to be slightly larger than the inner diameter of the suction passage 25.

前記吸入通路25の吸入室20に近い内壁には、図3にも示されるように、環状の嵌合溝26が形成され、この嵌合溝26の下流側には、ガイド筒31の突き当て部35が吸入通路25の軸方向で上流側から当接する段部27が形成されている。この段部27から嵌合溝26の上流端までの軸方向寸法は、突き当て部35の下流端から嵌合部55の上流端までの軸方向寸法にほぼ等しく形成されている。したがって、嵌合部55は、吸入通路25の内壁に設けられた嵌合溝26に配置された状態においては、嵌合部55の先端が嵌合溝26の上流端に係止され、突き当て部35が段部27に当接した状態となり、ストッパ51及びガイド筒31は、吸入通路25の軸方向への移動が規制された状態となる。 As shown in FIG. 3, an annular fitting groove 26 is formed on the inner wall of the suction passage 25 near the suction chamber 20, and a guide cylinder 31 is abutted on the downstream side of the fitting groove 26. A step portion 27 is formed in which the portion 35 abuts from the upstream side in the axial direction of the suction passage 25. The axial dimension from the step portion 27 to the upstream end of the fitting groove 26 is formed to be substantially equal to the axial dimension from the downstream end of the abutting portion 35 to the upstream end of the fitting portion 55. Therefore, in the state where the fitting portion 55 is arranged in the fitting groove 26 provided on the inner wall of the suction passage 25, the tip of the fitting portion 55 is locked to the upstream end of the fitting groove 26 and abuts against the fitting portion 55. The portion 35 is in contact with the step portion 27, and the stopper 51 and the guide cylinder 31 are in a state where the movement of the suction passage 25 in the axial direction is restricted.

弁体41は、ガイド筒31の弁体収容空間32に軸方向に移動可能に収容されているもので、先端側に設けられた頂壁部42とこの頂壁部42の周縁から軸方向に延設された周壁43とから形成され、基端側が解放された中空円筒状のピストンによって構成されている。弁体41の外径は、ガイド筒31の内径(弁体収容空間32)にほぼ等しく形成され、周壁43の外周面はガイド筒31(側壁33)の内周面に対して所定のクリアランスを介して摺接されるようになっている。また、弁体41の軸方向の長さは、特に限定されるものではないが、弁体41の頂壁部42がストッパ51(内篏壁53の先端)に当接した状態において、弁体41の周壁43で、ガイド筒31の側壁33に形成された窓部37が閉塞されるような長さに設定されている。 The valve body 41 is accommodated in the valve body accommodating space 32 of the guide cylinder 31 so as to be movable in the axial direction. It is composed of a hollow cylindrical piston formed from an extended peripheral wall 43 and whose base end side is open. The outer diameter of the valve body 41 is formed to be substantially equal to the inner diameter of the guide cylinder 31 (valve body accommodating space 32), and the outer peripheral surface of the peripheral wall 43 has a predetermined clearance with respect to the inner peripheral surface of the guide cylinder 31 (side wall 33). It is designed to be rubbed through. The axial length of the valve body 41 is not particularly limited, but the valve body is in a state where the top wall portion 42 of the valve body 41 is in contact with the stopper 51 (the tip of the inner window wall 53). The peripheral wall 43 of 41 is set to a length such that the window portion 37 formed on the side wall 33 of the guide cylinder 31 is closed.

スプリング61は、弁体41をストッパ51に向かって付勢するように弁体41の内側に収容されている。この例において、スプリング61は、弁体41の頂壁部42の内面とガイド筒31の底壁34の均圧口38の周縁との間に、所定のセット力で弾装されている。 The spring 61 is housed inside the valve body 41 so as to urge the valve body 41 toward the stopper 51. In this example, the spring 61 is impacted with a predetermined setting force between the inner surface of the top wall portion 42 of the valve body 41 and the peripheral edge of the pressure equalizing port 38 of the bottom wall 34 of the guide cylinder 31.

このような構成において、ガイド筒31の側壁33には、図4にも示されるような形状の窓部37が形成されている。この窓部37の上流側の内縁形状は、弁体41の移動方向に対して直交する向きに延設された所定の長さを有する直線状の短辺37aと、その短辺37aの両端より下流側に向けて末広がりに広がる側辺37bと、を有し、この側辺37bは、弁体41の移動方向に延びる(弁体41の移動方向に対して略平行に延設された)側縁37cに移行するようになっている。したがって、窓部37の周方向の幅は、上流端において短辺37aの長さであり、下流側に向かうにつれて徐々に広くなり、その後、両側縁37cで規定される周方向巾で一定となる。 In such a configuration, the side wall 33 of the guide cylinder 31 is formed with a window portion 37 having a shape as shown in FIG. The shape of the inner edge of the window portion 37 on the upstream side is from a linear short side 37a having a predetermined length extending in a direction orthogonal to the moving direction of the valve body 41 and both ends of the short side 37a. It has a side side 37b that spreads toward the downstream side, and this side side 37b extends in the moving direction of the valve body 41 (extended substantially parallel to the moving direction of the valve body 41). It is designed to shift to the edge 37c. Therefore, the circumferential width of the window portion 37 is the length of the short side 37a at the upstream end, gradually widens toward the downstream side, and then becomes constant at the circumferential width defined by both side edges 37c. ..

また、図5にも示されるように、弁体41のストッパ51(シート部57)との当接部位の外側(周囲)には、テーパ面41aが形成されている。このテーパ面41aは、弁体41の閉弁位置において一部分が窓部37と重なるように形成されている。したがって、弁体41とガイド筒31との間には、閉弁時においても弁体41のストッパ51との当接部位の外側(周囲)と窓部37とを連通させ、テーパ面41aとガイド筒31の側壁33とによって絞られた絞り流路39が形成されている。
したがって、絞り流路39は、閉弁状態において最も絞られた状態にあり、弁体41が変位すると通路断面が徐々に大きくなり、絞り状態が徐々に緩められるようになっている。
Further, as shown in FIG. 5, a tapered surface 41a is formed on the outside (periphery) of the contact portion of the valve body 41 with the stopper 51 (seat portion 57). The tapered surface 41a is formed so that a part thereof overlaps with the window portion 37 at the valve closing position of the valve body 41. Therefore, between the valve body 41 and the guide cylinder 31, even when the valve is closed, the outside (periphery) of the contact portion of the valve body 41 with the stopper 51 and the window portion 37 are communicated with each other, and the tapered surface 41a and the guide are communicated with each other. A throttle flow path 39 narrowed down by the side wall 33 of the cylinder 31 is formed.
Therefore, the throttle flow path 39 is in the most throttled state in the valve closed state, and when the valve body 41 is displaced, the passage cross section gradually increases and the throttle flow state is gradually loosened.

以上の構成により、弁体41がストッパ51のシート部57に当接している状態を弁体41の変位量が零の状態とすると、弁体41の変位量の増加に伴い、開度調整弁の開度は、図6の実線に示されるようになる。すなわち、弁体41がストッパ51のシート部57から離れて弁体41の先端が窓部37の短辺37aに至るまでの間は、弁体41のテーパ面41aによって側壁33との間に形成される絞り流路39により、変位量の増加に伴って開度調整弁30の開度が緩やかに増加する。その後、弁体41の先端が窓部37の短辺37aに差し掛かると(変位量α)、それ以後は、弁体の変位量の増加に伴って、短辺37aを一辺とする細長い台形状の開口(弁体41の移動方向に対して直交する向きに延びる細長い開口)が徐々に大きくなる。このため、開度調整弁30の開度の増加割り合いは、変位量α以降においても緩やかに増加するものの、下に凸形状の非線形の曲線に沿って増加する。その後、弁体41が側辺47bから外れると(変位量β)、それ以後は、窓部37の両側縁47cで規定される幅によって開度調整弁30の開度が増加し、従前の矩形状の窓部を有する開度調整弁と同様の傾きで増加することとなる。 With the above configuration, assuming that the displacement amount of the valve body 41 is zero when the valve body 41 is in contact with the seat portion 57 of the stopper 51, the opening degree adjusting valve is increased as the displacement amount of the valve body 41 increases. The opening degree of is shown by the solid line in FIG. That is, until the valve body 41 is separated from the seat portion 57 of the stopper 51 and the tip of the valve body 41 reaches the short side 37a of the window portion 37, it is formed between the valve body 41 and the side wall 33 by the tapered surface 41a of the valve body 41. Due to the throttle flow path 39, the opening degree of the opening degree adjusting valve 30 gradually increases as the displacement amount increases. After that, when the tip of the valve body 41 approaches the short side 37a of the window portion 37 (displacement amount α), thereafter, as the displacement amount of the valve body increases, an elongated trapezoidal shape having the short side 37a as one side. The opening (an elongated opening extending in a direction orthogonal to the moving direction of the valve body 41) gradually increases. Therefore, the increase ratio of the opening degree of the opening degree adjusting valve 30 gradually increases even after the displacement amount α, but increases along a downwardly convex non-linear curve. After that, when the valve body 41 deviates from the side side 47b (displacement amount β), after that, the opening degree of the opening degree adjusting valve 30 increases according to the width defined by both side edges 47c of the window portion 37, and the conventional rectangle It will increase with the same inclination as the opening adjustment valve having a window portion of the shape.

以上の構成において、開度調整弁30を圧縮機1に取り付けるには、弁体41を収容したガイド筒31にストッパ51を取り付けた状態で、ガイド筒31の底壁34を挿入端として吸入通路25に吸入ポート22から挿入して押し込む。これによりストッパ51の嵌合部55は内側に縮むように弾性変形しながら吸入通路25を移動する。そして、開度調整弁30をガイド筒31の突き当て部35が段部27に当接するまで押し込むと、嵌合部55の上流端が嵌合溝26に達し、嵌合部55が自身の復元力により復元されて嵌合溝26内で拡がり、嵌合部55が軸方向への移動を規制するように嵌合溝26に嵌合される。 In the above configuration, in order to attach the opening degree adjusting valve 30 to the compressor 1, the suction passage is provided with the bottom wall 34 of the guide cylinder 31 as the insertion end with the stopper 51 attached to the guide cylinder 31 accommodating the valve body 41. Insert it into 25 from the suction port 22 and push it in. As a result, the fitting portion 55 of the stopper 51 moves in the suction passage 25 while elastically deforming so as to shrink inward. Then, when the opening degree adjusting valve 30 is pushed in until the abutting portion 35 of the guide cylinder 31 comes into contact with the step portion 27, the upstream end of the fitting portion 55 reaches the fitting groove 26, and the fitting portion 55 restores itself. It is restored by force and expands in the fitting groove 26, and the fitting portion 55 is fitted into the fitting groove 26 so as to restrict axial movement.

次に、吸入通路25に開度調整弁30を取り付けた上述した圧縮機1を空調装置に利用した場合についての動作について説明する。 Next, the operation when the above-mentioned compressor 1 having the opening degree adjusting valve 30 attached to the suction passage 25 is used for the air conditioner will be described.

空調制御装置の指令により圧縮機1が作動した直後においては、空調装置の冷力を確保するために高冷媒流量で運転される。このため、吸入通路25上の開度調整弁30は、図7に示されるように、ガイド筒31に収容された弁体41が、吸入ポート22から流入する流体によってスプリング61の付勢力に抗して大きく変位することで開弁し、窓部37がほぼ全開状態となり、このために弁体の開度が小さい状態に比して、冷媒流量を増加できる。 Immediately after the compressor 1 is operated by the command of the air conditioning control device, it is operated at a high refrigerant flow rate in order to secure the cooling power of the air conditioning device. Therefore, in the opening adjustment valve 30 on the suction passage 25, as shown in FIG. 7, the valve body 41 housed in the guide cylinder 31 resists the urging force of the spring 61 by the fluid flowing from the suction port 22. The valve is opened by a large displacement, and the window portion 37 is in a substantially fully opened state. Therefore, the flow rate of the refrigerant can be increased as compared with the state in which the opening degree of the valve body is small.

その後、空調制御装置は、十分な冷力が確保されると、圧縮機1の運転を制御して冷媒流量を低下させる。特に可変容量斜板式圧縮機においては、冷媒流量を減らすためにピストンストロークを減らし、冷媒流量を削減して低流量状態で運転される。冷媒流量が低流量になると、図8に示すように、開度調整弁30の弁体41はスプリング力と冷媒流量とのバランスにより窓部37の開度が小さくなり、吸入通路25を絞る方向に作用する。したがって、吸入通路25は開度調整弁30によって絞られることになるので、吸入弁23によって発生する脈動を吸入配管に伝搬させることを防ぐことが可能となる。 After that, when sufficient cooling power is secured, the air conditioning control device controls the operation of the compressor 1 to reduce the flow rate of the refrigerant. In particular, in the variable capacity swash plate type compressor, the piston stroke is reduced in order to reduce the refrigerant flow rate, the refrigerant flow rate is reduced, and the compressor is operated in a low flow rate state. When the flow rate of the refrigerant becomes low, as shown in FIG. 8, the opening of the window 37 of the valve body 41 of the opening adjustment valve 30 becomes smaller due to the balance between the spring force and the flow rate of the refrigerant, and the suction passage 25 is narrowed. Acts on. Therefore, since the suction passage 25 is throttled by the opening degree adjusting valve 30, it is possible to prevent the pulsation generated by the suction valve 23 from propagating to the suction pipe.

しかし、従来の矩形状の窓部を有する開度調整弁は、冷媒流量の低下に伴い、弁の開度が小さくなると、微小な弁体の移動に対して開口面積の相対的な変化が大きい。このため、この従来の開度調整弁は、弁体の移動が振動等により微小に大きくなると、開口面積が過剰に大きくなり、開度調整弁の上流側圧力が開弁に伴い急激に抜けると閉弁する方向に動き、再度開度調整弁の上流側圧力が高まると開度を大きくする方向に動くことを繰り返すハンチングを起こし、弁体41の動きが安定し難くなる。その結果、低流量での運転時において、従来の開度調整弁は、開度調整弁による吸入通路25の絞りが安定しなくなるため、吸入弁23から発生する圧力脈動が開度調整弁を介して吸入配管に伝搬する不都合を避けることができない。 However, in the conventional opening adjustment valve having a rectangular window portion, when the opening of the valve becomes smaller as the flow rate of the refrigerant decreases, the relative change in the opening area is large with respect to the minute movement of the valve body. .. Therefore, in this conventional opening adjustment valve, when the movement of the valve body becomes slightly large due to vibration or the like, the opening area becomes excessively large, and the pressure on the upstream side of the opening adjustment valve is suddenly released as the valve opens. When the valve moves in the direction of closing and the pressure on the upstream side of the opening adjustment valve increases again, hunting occurs in which the movement is repeated in the direction of increasing the opening, and the movement of the valve body 41 becomes difficult to stabilize. As a result, in the conventional opening adjustment valve, the throttle of the suction passage 25 by the opening adjustment valve becomes unstable during operation at a low flow rate, so that the pressure pulsation generated from the suction valve 23 passes through the opening adjustment valve. Therefore, the inconvenience of propagating to the suction pipe cannot be avoided.

これに対して、本発明に係る開度調整弁30においては、窓部37の上流側の内縁形状が、弁体41の移動方向に対して直交する向きに延設された所定の長さを有する直線状の短辺37aと、その短辺37aの両端より下流側に向けて末広がりに広がる側辺37bと、を有して構成されている。この構成の開度調整弁30は、低流量時において、弁体41の先端が窓部37の短辺37aを過って窓部が開き始めると、弁体41の移動に伴う開口面積は徐々に増加することになる。そのため、弁体前後の圧力差が大きく変化することはないので、弁体41が開口面積を大きくしたり小さくしたりを繰り返すハンチングを起こすことなく、開度調整弁30の開口は安定して小さい開口面積を維持することができる。しかも、この開度調整弁30は、窓部37の開口初期においては、短辺を一辺とする細長い台形状の開口(弁体41の移動方向に対して直交する向きに延びる細長い開口)を介して冷媒が流れることになる。 On the other hand, in the opening degree adjusting valve 30 according to the present invention, the inner edge shape on the upstream side of the window portion 37 has a predetermined length extending in a direction orthogonal to the moving direction of the valve body 41. It is configured to have a linear short side 37a and a side side 37b that spreads toward the downstream side from both ends of the short side 37a. In the opening adjustment valve 30 having this configuration, when the tip of the valve body 41 passes the short side 37a of the window portion 37 and the window portion starts to open at a low flow rate, the opening area due to the movement of the valve body 41 gradually increases. Will increase to. Therefore, since the pressure difference between the front and rear of the valve body does not change significantly, the opening of the opening opening adjusting valve 30 is stable and small without causing hunting in which the valve body 41 repeatedly increases or decreases the opening area. The opening area can be maintained. Moreover, at the initial stage of opening of the window portion 37, the opening degree adjusting valve 30 is via an elongated trapezoidal opening having a short side as one side (an elongated opening extending in a direction orthogonal to the moving direction of the valve body 41). The refrigerant will flow.

このために、この開度調整弁30は、弁体41のハンチングによる急激な動きを抑え、低流量時において窓部37の開口を小さい状態で維持することができ、また、吸入弁23から発生する圧力脈動を絞られた細長い開口で遮りやすくなる。その結果、この開度調整弁30は、吸入室20から吸入ポート22へ伝搬する圧力脈動(吸入配管へ伝わる圧力脈動)を効果的に低減することが可能となる。 Therefore, the opening degree adjusting valve 30 can suppress abrupt movement due to hunting of the valve body 41, can keep the opening of the window portion 37 in a small state at a low flow rate, and is generated from the suction valve 23. It is easy to block the pressure pulsation with a narrowed elongated opening. As a result, the opening degree adjusting valve 30 can effectively reduce the pressure pulsation propagating from the suction chamber 20 to the suction port 22 (pressure pulsation transmitted to the suction pipe).

また、上述の構成においては、弁体41のストッパ51との当接部位(シート部57)の外側にテーパ面41aが形成されている。弁体41が閉弁位置に位置する時に、このテーパ面41aの一部分が窓部37と重なるように形成することで、閉弁時においても弁体41のストッパ51との当接部位の外側(周囲)と窓部37との間に絞り流路39が形成されている。この構成において、弁体41がストッパ51から離れた直後であって、弁体41の先端が窓部37に差し掛かる前の状態においても、上流側の冷媒は、絞り流路39を介して窓部37から少量が流出される。 Further, in the above configuration, the tapered surface 41a is formed on the outside of the contact portion (seat portion 57) of the valve body 41 with the stopper 51. When the valve body 41 is located at the valve closed position, a part of the tapered surface 41a is formed so as to overlap the window portion 37, so that the outside of the contact portion of the valve body 41 with the stopper 51 even when the valve is closed ( A throttle flow path 39 is formed between the perimeter) and the window portion 37. In this configuration, even in a state immediately after the valve body 41 is separated from the stopper 51 and before the tip of the valve body 41 reaches the window portion 37, the refrigerant on the upstream side flows through the window through the throttle flow path 39. A small amount is discharged from the portion 37.

したがって、弁体41の先端が窓部37に差し掛かからないような極低流量時においても、図9に示されるように、絞り流路39を介して冷媒を流すことが可能となる。このような状態においても、弁体41の動きを安定させることができ、吸入配管へ伝わる脈動を効果的に低減することが可能となる。
しかも、ストッパ51の弁体41が当接する当接端部(シート部57)の外側(周囲)は、ガイド筒31の側壁33で覆われているので、下流側への冷媒の抜け易さをより制限することができる。この構成の開度調整弁30は、弁体41がストッパ51から離れた際に、上流側の圧力が急激に抜ける不都合はなく、弁体41が開口面積を大きくしたり小さくしたりを繰り返すハンチングを回避することが可能となる。
Therefore, as shown in FIG. 9, the refrigerant can flow through the throttle flow path 39 even at an extremely low flow rate such that the tip of the valve body 41 does not reach the window portion 37. Even in such a state, the movement of the valve body 41 can be stabilized, and the pulsation transmitted to the suction pipe can be effectively reduced.
Moreover, since the outside (periphery) of the contact end portion (seat portion 57) with which the valve body 41 of the stopper 51 abuts is covered with the side wall 33 of the guide cylinder 31, it is easy for the refrigerant to escape to the downstream side. Can be more restricted. The opening adjustment valve 30 having this configuration does not have the inconvenience of suddenly releasing the pressure on the upstream side when the valve body 41 separates from the stopper 51, and the valve body 41 repeatedly increases or decreases the opening area. Can be avoided.

なお、ガイド筒31の窓部37の形状は、図6の実線に示される特性とほぼ同様の特性が得られる形状で有れば、図4で示される形状に限定されるものではない。例えば、図10に示されるように、窓部37の上流側の内縁形状を、弁体41の移動方向に対して直交する向きに延設され、図4で示される場合よりも長い長さを有する直線状の短辺37aと、その短辺の両端より下流側に向けて末広がりに広がる湾曲した側辺37bと、を含むものであってもよい。 The shape of the window portion 37 of the guide cylinder 31 is not limited to the shape shown in FIG. 4 as long as the shape can obtain substantially the same characteristics as the characteristics shown by the solid line in FIG. For example, as shown in FIG. 10, the inner edge shape on the upstream side of the window portion 37 is extended in a direction orthogonal to the moving direction of the valve body 41, and has a longer length than that shown in FIG. It may include a linear short side 37a and a curved side 37b that spreads toward the downstream side from both ends of the short side.

また、以上の構成においては、可変容量斜板式圧縮機を例としたが、吸入脈動が発生する圧縮機であればその他の形式の圧縮機にも適用可能である。 Further, in the above configuration, the variable capacitance swash plate type compressor is taken as an example, but it can be applied to other types of compressors as long as it is a compressor that generates suction pulsation.

1 可変容量斜板式圧縮機
20 吸入室
22 吸入ポート
25 吸入通路
30 開度調整弁
31 ガイド筒
33 側壁
37 窓部
37a 短辺
37b 側辺
39 絞り流路
41 弁体
41a テーパ面
51 ストッパ
52 貫通孔
61 スプリング
1 Variable capacity swash plate compressor 20 Suction chamber 22 Suction port 25 Suction passage 30 Opening adjustment valve 31 Guide cylinder 33 Side wall 37 Window 37a Short side 37b Side side 39 Squeezing flow path 41 Valve body 41a Tapered surface 51 Stopper 52 Through hole 61 spring

Claims (4)

圧縮機の吸入ポートから吸入室に至る吸入通路に設けられ、この吸入通路を流れる作動流体の流量の増減に応じて前記吸入通路の開度を調整する開度調整弁であって、
少なくとも前記吸入ポート側に向けられる一方の端部が開放された円筒状のガイド筒と、
前記ガイド筒内を移動可能に配置された弁体と、
前記ガイド筒の前記一方の端部に設けられ、中央に冷媒を流すための貫通孔が形成されたストッパと、
前記弁体を前記ストッパ側に向けて付勢する付勢部材と、を有し、
前記ガイド筒の側壁には、前記弁体の位置に応じて開口面積が調整される窓部が設けられ、
前記貫通孔は、前記弁体が前記ストッパに当接することにより閉塞され、
前記窓部の上流側の内縁形状は、前記弁体の移動方向に対して直交する向きに延設された所定の長さを有する直線状の短辺と、その短辺の両端より下流側に向けて末広がりに広がる側辺と、を含むことを特徴とする開度調整弁。
An opening adjustment valve provided in the suction passage from the suction port of the compressor to the suction chamber and adjusting the opening of the suction passage according to an increase or decrease in the flow rate of the working fluid flowing through the suction passage.
At least a cylindrical guide tube with one end open toward the suction port side,
A valve body movably arranged in the guide cylinder and
A stopper provided at the one end of the guide cylinder and having a through hole for flowing a refrigerant in the center, and a stopper.
It has an urging member that urges the valve body toward the stopper side, and has.
A window portion whose opening area is adjusted according to the position of the valve body is provided on the side wall of the guide cylinder.
The through hole is closed when the valve body comes into contact with the stopper, and the through hole is closed.
The inner edge shape on the upstream side of the window portion is formed on a linear short side having a predetermined length extending in a direction orthogonal to the moving direction of the valve body and on the downstream side from both ends of the short side. An opening adjustment valve characterized by including a side surface that spreads toward the end.
前記弁体の前記ストッパが当接する部位の外側には、前記弁体の先端が前記窓部に差し掛かる前に前記窓部に通じる絞り流路を形成する絞り流路形成手段が設けられていることを特徴とする請求項1記載の開度調整弁。 On the outside of the portion of the valve body to which the stopper abuts, a throttle flow path forming means for forming a throttle flow path leading to the window portion before the tip of the valve body reaches the window portion is provided. The opening degree adjusting valve according to claim 1. 前記絞り流路形成手段は、前記弁体の前記ストッパとの当接部位の外側にテーパ面を有し、このテーパ面を、前記弁体の閉弁位置において一部分が前記窓部と重なるように形成することで構成されることを特徴とする請求項2に記載の開度調整弁。 The throttle flow path forming means has a tapered surface on the outside of the contact portion of the valve body with the stopper so that the tapered surface partially overlaps the window portion at the valve closing position of the valve body. The opening degree adjusting valve according to claim 2, wherein the valve is formed by forming the valve. 前記ストッパの前記弁体が当接する当接端部の周囲は、前記ガイド筒の前記側壁で覆われていることを特徴とする請求項1乃至3に記載の開度調整弁。 The opening degree adjusting valve according to claim 1, wherein the periphery of the contact end portion of the stopper with which the valve body abuts is covered with the side wall of the guide cylinder.
JP2020184050A 2020-11-04 2020-11-04 Opening adjustment valve of compressor Pending JP2022074203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020184050A JP2022074203A (en) 2020-11-04 2020-11-04 Opening adjustment valve of compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020184050A JP2022074203A (en) 2020-11-04 2020-11-04 Opening adjustment valve of compressor

Publications (1)

Publication Number Publication Date
JP2022074203A true JP2022074203A (en) 2022-05-18

Family

ID=81606088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020184050A Pending JP2022074203A (en) 2020-11-04 2020-11-04 Opening adjustment valve of compressor

Country Status (1)

Country Link
JP (1) JP2022074203A (en)

Similar Documents

Publication Publication Date Title
JP4429931B2 (en) Opening adjustment valve
JP4330576B2 (en) Compressor
US9670914B2 (en) Check valve for compressor
JP6495634B2 (en) Variable capacity compressor
JPWO2019167912A1 (en) Capacity control valve
JPWO2019146674A1 (en) Capacity control valve
JP5697975B2 (en) Check valve and variable displacement compressor using the same
JP2005337232A (en) Variable capacity compressor
JP2007327446A (en) Opening adjusting valve and variable displacement compressor using this valve
JP4412186B2 (en) Variable capacity compressor
JP2006207465A (en) Variable displacement compressor
JP2022074203A (en) Opening adjustment valve of compressor
US10815980B2 (en) Variable displacement swash plate type compressor
JP6857946B2 (en) Compressor
JP2020034130A (en) Compressor
JP6879252B2 (en) Variable capacity swash plate compressor
JP2002048059A (en) Variable displacement cam plate type compressor
JP2020034129A (en) Compressor
JP4599327B2 (en) Variable capacity compressor
KR102524602B1 (en) Suction valve for variable capacity type compressure
US11339773B2 (en) Variable displacement compressor
JP2010090834A (en) Variable displacement compressor
KR20200093887A (en) Suction valve for variable capacity type compressor
JP4498988B2 (en) Opening adjustment valve
JP5053740B2 (en) Volume control valve for variable capacity compressor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221227