WO2007142009A1 - Power conversion apparatus and compressor - Google Patents

Power conversion apparatus and compressor Download PDF

Info

Publication number
WO2007142009A1
WO2007142009A1 PCT/JP2007/060248 JP2007060248W WO2007142009A1 WO 2007142009 A1 WO2007142009 A1 WO 2007142009A1 JP 2007060248 W JP2007060248 W JP 2007060248W WO 2007142009 A1 WO2007142009 A1 WO 2007142009A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
switch
power
input terminals
conversion device
Prior art date
Application number
PCT/JP2007/060248
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Haga
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2007142009A1 publication Critical patent/WO2007142009A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/297Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency

Definitions

  • the present invention relates to a power conversion device, and more particularly to a matrix converter.
  • AC-AC conversion conversion to AC power DC power
  • DC-AC conversion conversion from DC power to AC power
  • a rectifier circuit is used for AC-DC conversion
  • an inverter is used for DC-AC conversion.
  • Non-Patent Document 1 Sato et al., 3 others, “Method of improving the voltage utilization rate of matrix converters”, Proceedings of the Institute of Electrical Engineers of Japan 2003, March 2003, p. 95- 96
  • Non-Patent Document 2 Satoshi Ito, 2 others “Improvement method of input / output waveform of matrix converter by virtual ACZDCZAC conversion method”, IEEJ Technical Report, Semiconductor Power Conversion 'Industrial Power Electrical Application Joint Study Group, 2002 November, p. 75-80
  • the rectifier circuit requires at least six switching element forces, and the inverter also requires at least six switching elements. . For this reason, the loss generated in the power converter increased.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to reduce the number of switching elements and to reduce the loss generated in the power converter.
  • a first aspect of the power conversion device includes first to third input terminals (111 to 113), first to third output terminals (114 to 116), and reverse blocking capability.
  • Bi-directional switches (S, S, S, S, S, S, S, S, S, S;) having the first to third inputs.
  • AC voltage (V, V, V) input to the power terminal is exchanged as desired using the bidirectional switch.
  • the first to third rear tutors (L1 to L3) connected to each of the force terminals and the respective one ends thereof are connected to each other, and the respective other ends are connected to the first to third output terminals.
  • a second aspect of the power converter according to the present invention is (la), the first aspect of the power converter, and the switching operation of the matrix converter (11) is combined with the power converter and It is determined based on the switching operations of the rectifier circuit (12) and the inverter (13) that constitute an equivalent circuit.
  • a third aspect of the power converter according to the present invention is the second aspect of the power converter, wherein the rectifier circuit (12) and the inverter (13) are a voltage type and a current type, respectively. is there.
  • a fourth aspect of the power conversion device includes first to third input terminals (111 to 113), first to third output terminals (114 to 116), and reverse blocking capability.
  • Bi-directional switches (S, S, S, S, S, S, S, S, S, S;) having the first to third inputs.
  • First to third rear tutors (L1 to L3) connected to each of the power terminals, and first to third capacitors (C1 to C3) each having one end connected to each other.
  • the other end of each of the third to third capacitors is selectably connected to any one of the first to third input terminals and the first to third output terminals.
  • a fifth mode (lb) of the power converter according to the present invention is the fourth mode of the power converter, and the switching operation of the matrix converter (11) is combined with the power converter and It is determined based on each switching operation of the rectifier circuit (12; 121) and the inverter (13; 13 1) constituting the equivalent circuit.
  • a sixth aspect of the power converter according to the present invention is a fifth aspect of the power converter, wherein each of the first to third capacitors (C1 to C3) is the first to third.
  • the rectifier circuit (12) and the input The barter (13) is a voltage type and a current type, respectively, and when each of the first to third capacitors is connected to the first to third input terminals (111 to 113), the rectifier The circuit and the inverter are current type and voltage type, respectively.
  • a seventh aspect of the power converter according to the present invention is any one of the first to sixth aspects of the power converter, wherein the first to third input terminals (111 to 113) and And a clamp circuit (2) connected between the first to third output terminals (114 to 116).
  • a compressor according to the present invention is equipped with any one of the first to seventh aspects (la; lb) of the power converter.
  • a three-phase AC power source is connected to the first to third input terminals, and the first to third rear tuttles are connected via the matrix converter.
  • energy can be stored in the first to third rear tuttles, and thus the voltage across the first to third capacitors can be boosted.
  • each of the first to third capacitors constitutes the first to third reactors and the LC filter, it is possible to reduce the high frequency component included in the voltage output to the first to third output terminals. it can.
  • the number of switching elements is small and the loss generated in the power conversion device can be reduced.
  • the bidirectional switch has a reverse blocking capability, it is possible to prevent a current from flowing backward in the bidirectional switch.
  • an element such as an interphase reactor is not required to prevent the backflowed current from flowing to other bidirectional switches. Therefore, the number of elements can be reduced, and thus loss generated in the elements can be reduced.
  • the generation of the switching pattern is relatively easy.
  • each of the other ends of the first to third capacitors is connected to the first to third input terminals, thereby the power conversion device. Can function as a step-down converter.
  • the first to third capacitors By connecting each of the other ends to the first to third output terminals, the power conversion device can function as a boost converter. Therefore, the variable region of the voltage output to the first to third output terminals can be expanded.
  • the seventh aspect of the power conversion device of the present invention it is possible to absorb the surge voltage generated by the switching of the bidirectional switch. Further, the clamp circuit is claimed in claim
  • the overvoltage generated at the time of switching the connection of one end of the first to third capacitors can be absorbed.
  • the efficiency of the compressor can be increased.
  • FIG. 1 is a diagram conceptually showing a power conversion device described in a first embodiment.
  • FIG. 2 is a circuit diagram conceptually showing a bidirectional switch.
  • FIG. 3 is a circuit diagram conceptually showing a bidirectional switch.
  • FIG. 4 is a circuit diagram conceptually showing a clamp circuit.
  • FIG. 5 is a circuit diagram conceptually showing an equivalent circuit.
  • FIG. 6 is a diagram conceptually showing a power conversion device described in a second embodiment.
  • FIG. 7 is a diagram conceptually showing a control circuit.
  • FIG. 8 is a circuit diagram conceptually showing an equivalent circuit.
  • FIG. 9 is a block diagram conceptually showing a control unit.
  • FIG. 1 conceptually shows the power conversion device la according to the present embodiment.
  • the power conversion device 1 a includes a matrix converter 11, rear tuttles L1 to L3, and capacitors C1 to C3.
  • FIG. 1 further shows a three-phase AC power source V, a motor 4 and a clamp circuit 2.
  • the matrix converter 11 has input terminals 111 to 113, output terminals 114 to 116, and bidirectional switches S 1, S 2, S 3, S 3, S 3, S 3, S 3, S 5 and S 5.
  • Bidirectional switches S, S, S, S, S, S, S, S, S, S, S, S, S, S, S, S, S are all reverse blocking ability
  • the three-phase AC voltages v, V and V input to the input terminals 111 to 113 are changed to the desired three-phase AC voltage V.
  • FIG. 2 and FIG. 3 are bidirectional switches S 1, S 2, S 3, S 3, S 3, S 3, S 3, S 3, S 3, S 3, S 3, S 3, S 3,
  • sulated Gate Bipolar Transistor 61 and 62, diodes Dl and D2, and terminals a and b.
  • the emitter E is connected to the terminal a
  • the collector C is connected to the terminal b via the diode D1.
  • the power sword of the diode D1 is connected to the collector C.
  • IBGT62 emitter E is connected to terminal b
  • collector C is connected to terminal a via diode D2.
  • the power sword of the diode D2 is connected to the collector C.
  • One of the terminals a and b is connected to any one of the input terminals 111 to 113, and the other is connected to any force of the output terminals 114 to 116, respectively.
  • the circuit shown in FIG. 3 includes IGBTs 63 and 64, diodes D3 and D4, and terminals a and b.
  • the collector C of the IGBT 63 is connected to the terminal a.
  • the anode and the power sword of the diode D3 are connected to the emitter E and the collector C of the IGBT 63, respectively.
  • collector C is connected to terminal b and emitter E is connected to emitter E of IGBT63.
  • the anode and the power sword of the diode 4 are connected to the emitter E and the collect C of the IGBT 64, respectively.
  • the IGBT 63 is controlled to be on and the IGBT 64 is controlled to be off.
  • Control A2 current can flow from terminal a to terminal b through IGBT 63 and diode D4 in this order. At this time, the current flow (reverse flow) from the terminal b to the terminal a is blocked by the diode D4.
  • control B2 current can flow from terminal b to terminal a through IGBT 64 and diode D3 in this order. At this time, the current flow (reverse flow) from the terminal a to the terminal b is blocked by the diode D3.
  • the circuit can prevent backflow.
  • an element such as an interphase reactor is not required, and the number of elements can be reduced. However, by reducing the number of elements, it is possible to reduce the loss caused by the elements.
  • a capacitor may be connected between each of the emitters E and the collectors C of the IGBTs 61 to 64.
  • the surge voltage generated by the switching of S can be absorbed by the capacitor.
  • Rear tuttles L1 to L3 are connected to input terminals 111 to 113, respectively.
  • Capacitors C1 to C3 have one ends connected to each other and the other ends connected to output terminals 114 to 116, respectively.
  • the energy supplied from the three-phase AC power source V can be stored in the rear tuttles L1 to L3 by short-circuiting the rear tuttles L1 to L3 via the matrix converter 11. Therefore, the voltage across the capacitors C1 to C3 can be boosted. Therefore, the voltage utilization factor can be 1 or more.
  • voltage-type three-phase AC voltages V, V, V are input to the input terminals 111 to 113, and power is output from the output terminals 114 to 116.
  • each of the capacitors C1 to C3 constitutes an LC filter with the rear tuttles L1 to L3, it is possible to reduce high-frequency components included in the voltages output to the output terminals 114 to 116, and thus the motor 4
  • the pulsation component of the torque generated in the noise and the noise can be reduced.
  • the harmonic component can be reduced more effectively.
  • the clamp circuit 2 can be connected to the power converter la.
  • the clamp circuit 2 is connected between the input terminals 111 to 113 and the output terminals 114 to 116.
  • FIG. 4 illustrates a specific configuration of the clamp circuit 2.
  • the clamp circuit 2 includes diodes 21 to D32, a capacitor C21, and terminals 21 to 26.
  • the terminal 21 is connected to the anode of the diode D21 and the force sword of the diode D22.
  • the terminal 22 is connected to the anode of the diode D23 and the force sword of the diode D24.
  • Terminal 23 is connected to the anode of diode D25 and the force sword of diode D26.
  • the force swords of the diodes D21, D23, and D25 are connected to one end 211 of the capacitor 21, respectively.
  • the anodes of the diodes D22, D24, and D26 are connected to the other end 212 of the capacitor 21.
  • the terminal 24 is connected to the anode of the diode D27 and the force sword of the diode D28.
  • Terminal 25 is connected to the anode of diode D29 and the force sword of diode D30.
  • Terminal 26 is connected to the anode of diode D31 and the force sword of diode D32.
  • Each force sword of the diodes D27, D29, and D31 is connected to one end 211.
  • the anodes of the diodes D28, D30, D32 are connected to the other end 212.
  • Terminals 21 to 23 are connected to input terminals 111 to 113, respectively, and terminals 24 to 26 are connected to output terminals 114 to 116, respectively.
  • the generated surge voltage can be absorbed by capacitor C21.
  • the power conversion device la according to the present embodiment can be mounted on, for example, a compressor having a motor.
  • a powerful compressor can increase efficiency. This is because the power conversion device la can supply a voltage larger than the power supply voltage to the motor, so that a predetermined motor output can be obtained even if the current flowing through the power conversion device la and the motor is small. . In other words, since the current may be small, it is a force that can reduce the loss generated in the power converter la and the motor.
  • the signal (switching pattern) to be given to each gate G for this purpose is determined based on, for example, a circuit equivalent to the power conversion device la (hereinafter referred to as “equivalent circuit”).
  • FIG. 5 shows an equivalent circuit.
  • the equivalent circuit is obtained by replacing the matrix converter 11 with a circuit composed of the rectifier circuit 12 and the inverter 13 in the power conversion device 1a shown in FIG. Specifically, since the rectifier circuit 12 and the inverter 13 are configured as follows, the rectifier circuit 12 and the inverter 13 together form a circuit equivalent to the power conversion device la.
  • the rectifier circuit 12 has switches S 1, S 2, S 3, S *, S *, and S *. Switch S, S, S, S
  • each IGBT emitter E is connected to input terminals 111-113.
  • Switch S and switch S * are complementary to each other.
  • switch S * is controlled off (on).
  • the rectifier circuit 12 functions as a voltage type rectifier circuit.
  • the inverter 13 has switches S 1, S 2, S 3, S *, S *, and S *. Switch S, S, S
  • S *, S *, and S * are each composed of an IGBT and a diode.
  • the node is connected to the collector C of the IGBT.
  • Each IGBT emitter is connected to output terminals 114-116, and each diode The anode is connected to the collector C of each IGBT of the switches S 1, S 2 and S. Suites
  • Switch S and Switch S * have complementary switching
  • the inverter 13 functions as a current type inverter.
  • FIG. 6 conceptually shows the power converter lb according to the embodiment of the present invention.
  • the power conversion device 1 b includes a matrix converter 11, rear tuttles L1 to L3, and capacitors C1 to C3. . Since the configuration of the matrix converter 11 and the connection relationship between the rear tuttles L1 to L3 and the matrix converter 11 are the same as those in the first embodiment, the description thereof is omitted. Further, FIG. 3 further shows the three-phase AC power source V, the motor 4 and the clamp circuit 2 which are the same as those in the first embodiment.
  • Capacitors C1 to C3 have one ends connected to each other and the other ends connected selectively to one of input terminals 111 to 113 and output terminals 114 to 116.
  • the switch S is connected between the other ends of the capacitors C1 to C3 and the input terminals 111 to 113 and the output terminals 114 to 116.
  • the switch S includes a set of terminals A connected to the input terminals 111 to 113, a set of terminals B connected to the output terminals 114 to 116, and a set of terminals P connected to the capacitors C1 to C3.
  • Have The switch S can switch the connection between the terminal P and the terminal A (connection P—A) and the connection between the terminal P and the terminal B (connection P—B).
  • the switch S is switched, for example, by bidirectional switches S, S, S, S, S, S, S, S, S, S, S, S, S, S, S, S, S
  • At least one of the rotational speeds ⁇ of the motor 4 can be executed.
  • the switch S is switched based on the currents i, i, i, etc. flowing through the output terminals 114 to 116.
  • FIG. 7 shows switching of the switch S based on one of the three-phase AC voltages V 1, V 2, and V.
  • the control circuit 8 shows a control circuit 8 for executing the control.
  • the control circuit 8 has a comparator 81.
  • a predetermined value ⁇ of the voltage is given to one input terminal of the comparator 81, and the actually measured voltage V is given to the other input terminal.
  • the comparator 81 compares the voltage V with a predetermined value ⁇ and switches the switch S.
  • a signal Sig is output to give to the switch S.
  • the switch S may be switched based on the rotational speed ⁇ ! More specifically, the actually measured rotational speed ⁇ is compared with a predetermined rotational speed value ⁇ using, for example, a comparator. When the rotational speed ⁇ is equal to or higher than the predetermined value ⁇ , the signal Sig (PB) is output. When the rotational speed ⁇ is smaller than the predetermined value ⁇ 0, the signal Sig (PA) is output.
  • the power converter lb is stepped down by connecting the terminal P to the terminal A, that is, by connecting the other ends of the capacitors C1 to C3 to the input terminals 111 to 113, respectively. It can function as a converter. At this time, current-type three-phase AC voltages V, V, V are input to the input terminals 111 to 113, and voltage-type 3 is output from the output terminals 114 to 116.
  • the tolls L1 to L3 and the LC filter are configured, the high frequency components contained in the voltage output to the output terminals 114 to 116 can be reduced.
  • the power converter lb is connected to the first implementation. It is possible to function as the power conversion device la described in the embodiment. Therefore, output terminal 114 ⁇
  • variable region of the voltage output to 116 can be expanded.
  • the power converter lb can be mounted on a compressor. Such a compressor can be operated variably from low speed to high speed. Moreover, in the high speed range, the power conversion device lb functions as the power conversion device la described in the first embodiment, so the efficiency of the compressor is high.
  • switch S After switch S is switched, it may be determined whether or not switch S needs to be switched after a predetermined time has elapsed, and the next switch may be executed.
  • the power conversion device lb When the connection P-B is executed by the switch S, the power conversion device lb functions as the power conversion device la. Therefore, the power conversion device lb is the same as that described in the first embodiment.
  • the switching pattern of the matrix converter 11 can be generated by this method.
  • the connection P-A is executed by the switch S
  • the power converter lb functions as a step-down converter. Therefore, the switching pattern can be determined based on a circuit equivalent to the step-down converter. it can.
  • FIG. 8 shows a working equivalent circuit.
  • the equivalent circuit is obtained by replacing the matrix converter 11 with a circuit composed of a rectifier circuit 121 and an inverter 131 for the step-down converter.
  • the rectifier circuit 121 and the inverter 131 are configured as follows, the rectifier circuit 121 and the inverter 131 combine with each other and are equivalent to the power converter lb when functioning as a step-down converter. Configure the circuit.
  • the rectifier circuit 121 includes switches S 1, S 2, S 3, S *, S *, and S *. Switches S, S, S,
  • Each of S *, S *, and S * is composed of an IGBT and a diode.
  • the diode ano
  • IGBT collector C is connected to input terminals 111-113.
  • the rectifier circuit 121 is a current type
  • Inverter 131 has switches S 1, S 2, S 3, S *, S *, and S *. Switch S, S, S, S
  • S *, S *, and S * are each composed of an IGBT and a diode.
  • the diode is
  • the anode is connected to the emitter E of the IGBT and the force sword is connected to the collector C of the IGBT.
  • each IGBT emitter E is the output terminal
  • each IGBT is connected to the output terminals 114 to 116, and the emitter E of each IGBT is connected to the emitter C of each of the switches S *, S *, and S *.
  • switch S * and the switch S * are complementarily switched.
  • the inverter 131 is a voltage type
  • the switching pattern of the rectifier circuit 12 of the equivalent circuit and the switch of the inverter 13 Based on the switching pattern, the switching pattern of the matrix converter 11 can be obtained using the equation (1) described in the first embodiment.
  • FIG. 9 conceptually shows a control unit that acquires the switching pattern of the matrix converter 11.
  • the control unit includes a switching determination unit 31, an equivalent circuit acquisition unit 32, and a generation unit 33.
  • the switching determination unit 31 determines whether the switch S is executing the connection P-A or the connection P-B. This is given to the equivalent circuit selector 32.
  • the equivalent circuit selection unit 32 includes a rectifier circuit selection unit 321 and an inverter selection unit 322.
  • the rectifier circuit selection unit 321 selects one of the rectifier circuit 12 (FIG. 5) and the rectifier circuit 121 (FIG. 8) based on the signals Rl and R2.
  • FIG. 9 shows a case where either the rectifier circuit 12 or the rectifier circuit 121 is selected by the switch 323.
  • Inverter selection section 322 selects one of inverter 13 (Fig. 5) and inverter 131 (Fig. 8) based on signals Rl and R2.
  • FIG. 9 shows the case where one of the inverter 13 and the inverter 131 is selected by the switch 324!
  • the rectification circuit selection unit 321 selects the rectification circuit 121, and the inverter selection unit 322 selects the inverter 131.
  • the rectification circuit selection unit 321 selects the rectification circuit 12, and the inverter selection unit 322 selects the inverter 13.
  • the selected rectifier circuits 12, 121 and inverters 13, 131 are connected to the generation unit 33.
  • the generation unit 33 switches the matrix converter 11 based on the equivalent circuit (FIGS. 5 and 8) configured by the rectifier circuits 12 and 121 and the inverters 13 and 131 selected by the equivalent circuit selection unit 32. Form a pattern. Specifically, the switching pattern is calculated using the above-described equation (1). Therefore, as in the first embodiment, the generation of the switching pattern of the matrix converter 11 is relatively easy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

A power conversion apparatus (1a) is provided with a matrix converter (11), reactors (L1-L3) and capacitors (C1-C3). The matrix converter (11) is provided with input terminals (111-113), output terminals (114-116) and bidirectional switches (SRU, SRV, SRW, SSU, SSV, SSW, STU, STV, STW). The input terminals (111-113) are supplied with three-phase alternating current voltages (VR, VS, VT) from a three-phase alternating power supply (V). All of the bidirectional switches are capable of reverse blocking, and convert the three-phase alternating current voltages (VR, VS, VT) inputted to the input terminals (111-113) into desired three-phase alternating current voltages (VU, VV, VW). The reactors (L1-L3) are connected to the input terminals (111-113). The capacitors (C1-C3) are connected at ends on one side and other ends are connected to the output terminals (114-116).

Description

明 細 書  Specification
電力変換装置及び圧縮機  Power converter and compressor
技術分野  Technical field
[0001] 本発明は電力変換装置に関し、特にマトリックスコンバータに関する。  TECHNICAL FIELD [0001] The present invention relates to a power conversion device, and more particularly to a matrix converter.
背景技術  Background art
[0002] 従来から交流電力から所望の交流電力に変換 (AC— AC変換)する電力変換装置 として、交流電力力 直流電力への変換 (AC— DC変換)と、直流電力から交流電力 への変換 (DC— AC変換)とを組み合わせたものが用いられている。例えば、 AC— DC変換に整流回路が用いられ、 DC— AC変換にはインバータが用いられる。  Conventionally, as a power conversion device that converts AC power to desired AC power (AC-AC conversion), conversion to AC power DC power (AC-DC conversion) and conversion from DC power to AC power A combination of (DC-AC conversion) is used. For example, a rectifier circuit is used for AC-DC conversion, and an inverter is used for DC-AC conversion.
[0003] なお、本発明に関連する技術を以下に示す。  [0003] Techniques related to the present invention are shown below.
[0004] 非特許文献 1:佐藤以、外 3名、「マトリックスコンバータの電圧利用率改善法」、平成 15年電気学会産業応用部門大会講演論文集 4、平成 15年 3月、 p. 95- 96 非特許文献 2 :伊藤淳ー、外 2名「仮想 ACZDCZAC変換方式によるマトリックスコ ンバータの入出力波形改善法」、電気学会研究会資料、半導体電力変換'産業電力 電気応用合同研究会、 2002年 11月、 p. 75-80  [0004] Non-Patent Document 1: Sato et al., 3 others, “Method of improving the voltage utilization rate of matrix converters”, Proceedings of the Institute of Electrical Engineers of Japan 2003, March 2003, p. 95- 96 Non-Patent Document 2: Satoshi Ito, 2 others “Improvement method of input / output waveform of matrix converter by virtual ACZDCZAC conversion method”, IEEJ Technical Report, Semiconductor Power Conversion 'Industrial Power Electrical Application Joint Study Group, 2002 November, p. 75-80
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかし、例えば 3相交流電力を所望の 3相交流電力に変換する場合には、整流回 路には少なくとも 6つのスイッチング素子力 インバータにも少なくとも 6つのスィッチ ング素子が、それぞれ必要である。このため、電力変換装置で生じる損失が増大して いた。 [0005] However, for example, when converting three-phase AC power into desired three-phase AC power, the rectifier circuit requires at least six switching element forces, and the inverter also requires at least six switching elements. . For this reason, the loss generated in the power converter increased.
[0006] 本発明は上述した事情に鑑みてなされたものであり、スイッチング素子数を低減し、 持って電力変換装置で生じる損失を低減することが目的とされる。  [0006] The present invention has been made in view of the above-described circumstances, and an object of the present invention is to reduce the number of switching elements and to reduce the loss generated in the power converter.
課題を解決するための手段  Means for solving the problem
[0007] この発明にかかる電力変換装置の第 1の態様は、第 1乃至第 3の入力端子(111〜 113)と、第 1乃至第 3の出力端子(114〜116)と、逆阻止能力を有する双方向スィ ツチ(S , S , S , S , S , S , S , S , S ;)とを有し、前記第 1乃至第 3の入 力端子に入力された交流電圧 (V , V , V )を前記双方向スィッチを用いて所望の交 [0007] A first aspect of the power conversion device according to the present invention includes first to third input terminals (111 to 113), first to third output terminals (114 to 116), and reverse blocking capability. Bi-directional switches (S, S, S, S, S, S, S, S, S;) having the first to third inputs. AC voltage (V, V, V) input to the power terminal is exchanged as desired using the bidirectional switch.
R S T  R S T
流電圧 (V , V , V )に変換するマトリックスコンバータ(11)と、前記第 1乃至第 3の入  A matrix converter (11) for converting current voltages (V 1, V 2, V 3), and the first to third inputs
U V W  U V W
力端子のそれぞれに接続される第 1乃至第 3のリアタトル (L1〜L3)と、それぞれの 一端が互いに接続され、それぞれの他端が第 1乃至第 3の出力端子に接続される第 The first to third rear tutors (L1 to L3) connected to each of the force terminals and the respective one ends thereof are connected to each other, and the respective other ends are connected to the first to third output terminals.
1乃至第 3のコンデンサ(C1〜C3)とを備える。 1 to 3 capacitors (C1 to C3).
[0008] この発明にかかる電力変換装置の第 2の態様は(la)、電力変換装置の第 1の態様 であって、前記マトリックスコンバータ(11)のスイッチング動作は、両者相まって前記 電力変換装置と等価な回路を構成する整流回路(12)及びインバータ(13)の、それ ぞれのスイッチング動作に基づ 、て決定される。 [0008] A second aspect of the power converter according to the present invention is (la), the first aspect of the power converter, and the switching operation of the matrix converter (11) is combined with the power converter and It is determined based on the switching operations of the rectifier circuit (12) and the inverter (13) that constitute an equivalent circuit.
[0009] この発明に力かる電力変換装置の第 3の態様は、電力変換装置の第 2の態様であ つて、前記整流回路(12)及び前記インバータ(13)はそれぞれ電圧型及び電流型 である。 [0009] A third aspect of the power converter according to the present invention is the second aspect of the power converter, wherein the rectifier circuit (12) and the inverter (13) are a voltage type and a current type, respectively. is there.
[0010] この発明にかかる電力変換装置の第 4の態様は、第 1乃至第 3の入力端子(111〜 113)と、第 1乃至第 3の出力端子(114〜116)と、逆阻止能力を有する双方向スィ ツチ(S , S , S , S , S , S , S , S , S ;)とを有し、前記第 1乃至第 3の入 [0010] A fourth aspect of the power conversion device according to the present invention includes first to third input terminals (111 to 113), first to third output terminals (114 to 116), and reverse blocking capability. Bi-directional switches (S, S, S, S, S, S, S, S, S;) having the first to third inputs.
RU RV RW SU SV SW TU TV TW RU RV RW SU SV SW TU TV TW
力端子に入力された交流電圧 (V , V , V )を前記双方向スィッチを用いて所望の交  AC voltage (V, V, V) input to the power terminal is exchanged as desired using the bidirectional switch.
R S T  R S T
流電圧 (V , V , V )に変換するマトリックスコンバータ(11)と、前記第 1乃至第 3の入  A matrix converter (11) for converting current voltages (V 1, V 2, V 3), and the first to third inputs
U V W  U V W
力端子のそれぞれに接続される第 1乃至第 3のリアタトル (L1〜L3)と、それぞれの 一端が互いに接続される第 1乃至第 3のコンデンサ (C1〜C3)とを備え、前記第 1乃 至第 3のコンデンサのそれぞれの他端は、前記第 1乃至第 3の入力端子、及び前記 第 1乃至第 3の出力端子のいずれか一方に選択可能に接続される。  First to third rear tutors (L1 to L3) connected to each of the power terminals, and first to third capacitors (C1 to C3) each having one end connected to each other. The other end of each of the third to third capacitors is selectably connected to any one of the first to third input terminals and the first to third output terminals.
[0011] この発明にかかる電力変換装置の第 5の態様(lb)は、電力変換装置の第 4の態様 であって、前記マトリックスコンバータ(11)のスイッチング動作は、両者相まって前記 電力変換装置と等価な回路を構成する整流回路(12 ; 121)及びインバータ(13 ; 13 1)の、それぞれのスイッチング動作に基づいて決定される。  A fifth mode (lb) of the power converter according to the present invention is the fourth mode of the power converter, and the switching operation of the matrix converter (11) is combined with the power converter and It is determined based on each switching operation of the rectifier circuit (12; 121) and the inverter (13; 13 1) constituting the equivalent circuit.
[0012] この発明に力かる電力変換装置の第 6の態様は、電力変換装置の第 5の態様であ つて、前記第 1乃至第 3のコンデンサ (C1〜C3)のそれぞれが前記第 1乃至第 3の出 力端子(114〜116)に接続されている場合には、前記整流回路(12)及び前記イン バータ(13)はそれぞれ電圧型及び電流型であり、前記第 1乃至第 3のコンデンサの それぞれが前記第 1乃至第 3の入力端子(111〜113)に接続されている場合には、 前記整流回路及び前記インバータはそれぞれ電流型及び電圧型である。 [0012] A sixth aspect of the power converter according to the present invention is a fifth aspect of the power converter, wherein each of the first to third capacitors (C1 to C3) is the first to third. When connected to the third output terminal (114 to 116), the rectifier circuit (12) and the input The barter (13) is a voltage type and a current type, respectively, and when each of the first to third capacitors is connected to the first to third input terminals (111 to 113), the rectifier The circuit and the inverter are current type and voltage type, respectively.
[0013] この発明にかかる電力変換装置の第 7の態様は、電力変換装置の第 1乃至第 6の 態様のいずれかであって、前記第 1乃至第 3の入力端子(111〜113)と、前記第 1 乃至第 3の出力端子(114〜116)との間に接続されるクランプ回路(2)を更に備える [0013] A seventh aspect of the power converter according to the present invention is any one of the first to sixth aspects of the power converter, wherein the first to third input terminals (111 to 113) and And a clamp circuit (2) connected between the first to third output terminals (114 to 116).
[0014] この発明に力かる圧縮機は、電力変換装置の第 1乃至第 7の態様( la; lb)の 、ず れかを搭載する。 [0014] A compressor according to the present invention is equipped with any one of the first to seventh aspects (la; lb) of the power converter.
発明の効果  The invention's effect
[0015] この発明にかかる電力変換装置の第 1の態様によれば、第 1乃至第 3の入力端子 に 3相交流電源を接続して、第 1乃至第 3のリアタトルをマトリックスコンバータを介し て短絡させることで、第 1乃至第 3のリアタトルにエネルギーを蓄積することができ、以 つて第 1乃至第 3のコンデンサの両端電圧を昇圧することができる。また、第 1乃至第 3のコンデンサのそれぞれが第 1乃至第 3のリアタトルと LCフィルタを構成するので、 第 1乃至第 3の出力端子に出力される電圧に含まれる高周波成分を低減することが できる。し力も、整流回路とインバータとを用いた AC— AC変換回路に比べ、スィッチ ング素子数は少なくて良ぐ以つて電力変換装置で生じる損失が低減できる。  According to the first aspect of the power conversion device of the present invention, a three-phase AC power source is connected to the first to third input terminals, and the first to third rear tuttles are connected via the matrix converter. By short-circuiting, energy can be stored in the first to third rear tuttles, and thus the voltage across the first to third capacitors can be boosted. In addition, since each of the first to third capacitors constitutes the first to third reactors and the LC filter, it is possible to reduce the high frequency component included in the voltage output to the first to third output terminals. it can. As compared with an AC-AC conversion circuit using a rectifier circuit and an inverter, the number of switching elements is small and the loss generated in the power conversion device can be reduced.
[0016] 更に、双方向スィッチは逆阻止能力を有するので、双方向スィッチで電流が逆流す ることを防止できる。電流の逆流を防止することで、逆流した電流が他の双方向スイツ チへと流れることを防止するための、例えば相間リアタトルなどの素子が不要である。 よって、素子数を低減することができ、以つて素子で生じる損失を低減することができ る。  [0016] Furthermore, since the bidirectional switch has a reverse blocking capability, it is possible to prevent a current from flowing backward in the bidirectional switch. By preventing the backflow of current, an element such as an interphase reactor is not required to prevent the backflowed current from flowing to other bidirectional switches. Therefore, the number of elements can be reduced, and thus loss generated in the elements can be reduced.
[0017] この発明にかかる電力変換装置の第 2、第 3、第 5及び第 6の態様によれば、スイツ チングパターンの生成が比較的容易になる。  [0017] According to the second, third, fifth and sixth aspects of the power conversion device according to the present invention, the generation of the switching pattern is relatively easy.
[0018] この発明にかかる電力変換装置の第 4の態様によれば、第 1乃至第 3のコンデンサ の他端のそれぞれを第 1乃至第 3の入力端子に接続することで、当該電力変換装置 を降圧コンバータとして機能させることができる。他方、第 1乃至第 3のコンデンサの 他端のそれぞれを第 1乃至第 3の出力端子に接続することで、当該電力変換装置を 昇圧コンバータとして機能させることができる。よって、第 1乃至第 3の出力端子に出 力される電圧の可変領域を拡張することができる。 [0018] According to the fourth aspect of the power conversion device of the present invention, each of the other ends of the first to third capacitors is connected to the first to third input terminals, thereby the power conversion device. Can function as a step-down converter. On the other hand, the first to third capacitors By connecting each of the other ends to the first to third output terminals, the power conversion device can function as a boost converter. Therefore, the variable region of the voltage output to the first to third output terminals can be expanded.
[0019] この発明にかかる電力変換装置の第 7の態様によれば、双方向スィッチのスィッチ ングで生じるサージ電圧を吸収することができる。また、当該クランプ回路を、請求項[0019] According to the seventh aspect of the power conversion device of the present invention, it is possible to absorb the surge voltage generated by the switching of the bidirectional switch. Further, the clamp circuit is claimed in claim
2にかかる電力変換装置に適用することで、第 1乃至第 3のコンデンサの一端の接続 切換え時に生じる過電圧を吸収することができる。 When applied to the power converter according to No. 2, the overvoltage generated at the time of switching the connection of one end of the first to third capacitors can be absorbed.
[0020] この発明にかかる圧縮機によれば、圧縮機の効率を高めることができる。 [0020] According to the compressor of the present invention, the efficiency of the compressor can be increased.
[0021] この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによ つて、より明白となる。 [0021] The objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]第 1の実施の形態で説明される、電力変換装置を概念的に示す図である。  FIG. 1 is a diagram conceptually showing a power conversion device described in a first embodiment.
[図 2]双方向スィッチを概念的に示す回路図である。  FIG. 2 is a circuit diagram conceptually showing a bidirectional switch.
[図 3]双方向スィッチを概念的に示す回路図である。  FIG. 3 is a circuit diagram conceptually showing a bidirectional switch.
[図 4]クランプ回路を概念的に示す回路図である。  FIG. 4 is a circuit diagram conceptually showing a clamp circuit.
[図 5]等価回路を概念的に示す回路図である。  FIG. 5 is a circuit diagram conceptually showing an equivalent circuit.
[図 6]第 2の実施の形態で説明される、電力変換装置を概念的に示す図である。  FIG. 6 is a diagram conceptually showing a power conversion device described in a second embodiment.
[図 7]制御回路を概念的に示す図である。  FIG. 7 is a diagram conceptually showing a control circuit.
[図 8]等価回路を概念的に示す回路図である。  FIG. 8 is a circuit diagram conceptually showing an equivalent circuit.
[図 9]制御部を概念的に示すブロック図である。  FIG. 9 is a block diagram conceptually showing a control unit.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 第 1の実施の形態. [0023] First Embodiment.
図 1は、本実施の形態にかかる電力変換装置 laを概念的に示す。電力変換装置 1 aは、マトリックスコンバータ 11と、リアタトル L1〜L3と、コンデンサ C1〜C3とを備える FIG. 1 conceptually shows the power conversion device la according to the present embodiment. The power conversion device 1 a includes a matrix converter 11, rear tuttles L1 to L3, and capacitors C1 to C3.
。なお、図 1には更に 3相交流電源 V、モータ 4及びクランプ回路 2が示されている。 . FIG. 1 further shows a three-phase AC power source V, a motor 4 and a clamp circuit 2.
[0024] マトリックスコンバータ 11は、入力端子 111〜113と、出力端子 114〜116と、双方 向スィッチ S , S , S , S , S , S , S , S , S とを有する。入力端子 111〜 The matrix converter 11 has input terminals 111 to 113, output terminals 114 to 116, and bidirectional switches S 1, S 2, S 3, S 3, S 3, S 3, S 3, S 5 and S 5. Input terminal 111-
RU RV RW SU SV SW TU TV TW  RU RV RW SU SV SW TU TV TW
113には、 3相交流電源 Vから 3相交流電圧 V , V , Vが供給される。 [0025] 双方向スィッチ S , S , S , S , S , S , S , S , S は、いずれも逆阻止能 113 is supplied with three-phase AC voltages V 1, V 2 and V from a three-phase AC power source V. [0025] Bidirectional switches S, S, S, S, S, S, S, S, S, S are all reverse blocking ability
RU RV RW SU SV SW TU TV TW  RU RV RW SU SV SW TU TV TW
力を有する。そして、双方向スィッチ s , s , s , s SU, s SV, s SW, s TU, s TV, s は、  Have power. And the bidirectional switches s, s, s, s SU, s SV, s SW, s TU, s TV, s are
RU RV RW TW  RU RV RW TW
入力端子 111〜113に入力された 3相交流電圧 v , V , Vを、所望の 3相交流電圧 V  The three-phase AC voltages v, V and V input to the input terminals 111 to 113 are changed to the desired three-phase AC voltage V.
R S T U  R S T U
, V , V に変換する。  , V, V to convert.
V W  V W
[0026] 図 2及び図 3はいずれも、双方向スィッチ S ,S ,S ,S ,S ,S , S ,S ,  Both FIG. 2 and FIG. 3 are bidirectional switches S 1, S 2, S 3, S 3, S 3, S 3, S 3,
RU RV RW SU SV SW TU TV  RU RV RW SU SV SW TU TV
S の各々に採用される具体的な回路を例示する。図 2に示される回路は、 IGBT(ln The specific circuit employ | adopted as each of S is illustrated. The circuit shown in Figure 2 is IGBT (ln
TW TW
sulated Gate Bipolar Transistor) 61 , 62と、ダイオード Dl, D2と、端子 a, bとを有す る。 IGBT61は、ェミッタ Eが端子 aに、コレクタ Cがダイオード D1を介して端子 bにそ れぞれ接続される。このとき当該コレクタ Cには、ダイオード D1の力ソードが接続され る。 IBGT62は、ェミッタ Eが端子 bに、コレクタ Cがダイオード D2を介して端子 aにそ れぞれ接続される。このとき、当該コレクタ Cには、ダイオード D2の力ソードが接続さ れる。端子 a, bの一方は入力端子 111〜113のいずれかに、他方は出力端子 114 〜116のいずれ力に、それぞれ接続される。  sulated Gate Bipolar Transistor) 61 and 62, diodes Dl and D2, and terminals a and b. In the IGBT 61, the emitter E is connected to the terminal a, and the collector C is connected to the terminal b via the diode D1. At this time, the power sword of the diode D1 is connected to the collector C. In IBGT62, emitter E is connected to terminal b, and collector C is connected to terminal a via diode D2. At this time, the power sword of the diode D2 is connected to the collector C. One of the terminals a and b is connected to any one of the input terminals 111 to 113, and the other is connected to any force of the output terminals 114 to 116, respectively.
[0027] 力かる回路によれば、 IGBT61をオンに、 IGBT62をオフにそれぞれ制御すること で (制御 A1)、端子 bから端子 aへとダイオード D1及び IGBT61をこの順に介して電 流を流すことができる。このとき、端子 aから端子 bへの電流の流れ (逆流)は、ダイォ ード D1によって阻止される。他方、 IGBT61をオフに、 IGBT62をオンにそれぞれ制 御することで (制御 B1)、端子 aから端子 bへとダイオード D2及び IGBT62をこの順に 介して電流を流すことができる。このとき、端子 bから端子 aへの電流の流れ (逆流)は 、ダイオード D2によって阻止される。制御 Al, B1のいずれにおいても、当該回路は 逆流を阻止することができる。当該回路の力かる能力は、逆阻止能力と称される。  [0027] According to the power circuit, by controlling IGBT 61 on and IGBT 62 off (control A1), current flows from terminal b to terminal a through diode D1 and IGBT 61 in this order. Can do. At this time, the current flow (reverse flow) from the terminal a to the terminal b is blocked by the diode D1. On the other hand, by controlling the IGBT 61 to be turned off and the IGBT 62 to be turned on (control B1), a current can flow from the terminal a to the terminal b through the diode D2 and the IGBT 62 in this order. At this time, the current flow (reverse flow) from the terminal b to the terminal a is blocked by the diode D2. Regardless of the control Al or B1, the circuit can prevent backflow. The power of the circuit is called reverse blocking capability.
[0028] 図 3に示される回路は、 IGBT63, 64と、ダイオード D3, D4と、端子 a, bとを有する 。 IGBT63のコレクタ Cは端子 aに接続される。ダイオード D3のアノード及び力ソード はそれぞれ、 IGBT63のェミッタ E及びコレクタ Cに接続される。 IGBT64は、コレクタ Cが端子 bに、ェミッタ Eが IGBT63のェミッタ Eにそれぞれ接続される。ダイオード 4のアノード及び力ソードはそれぞれ、 IGBT64のェミッタ E及びコレクト Cに接続され る。  [0028] The circuit shown in FIG. 3 includes IGBTs 63 and 64, diodes D3 and D4, and terminals a and b. The collector C of the IGBT 63 is connected to the terminal a. The anode and the power sword of the diode D3 are connected to the emitter E and the collector C of the IGBT 63, respectively. In IGBT64, collector C is connected to terminal b and emitter E is connected to emitter E of IGBT63. The anode and the power sword of the diode 4 are connected to the emitter E and the collect C of the IGBT 64, respectively.
[0029] 力かる回路によれば、 IGBT63をオンに、 IGBT64をオフにそれぞれ制御すること で (制御 A2)、端子 aから端子 bへと IGBT63及びダイオード D4をこの順に介して電 流を流すことができる。このとき、端子 bから端子 aへの電流の流れ (逆流)は、ダイォ ード D4によって阻止される。他方、 IGBT63をオフに、 IGBT64をオンにそれぞれ制 御することで (制御 B2)、端子 bから端子 aへと IGBT64及びダイオード D3をこの順に 介して電流を流すことができる。このとき、端子 aから端子 bへの電流の流れ (逆流)は 、ダイオード D3によって阻止される。制御 A2, B2のいずれにおいても、当該回路は 逆流を阻止することができる。 [0029] According to the power circuit, the IGBT 63 is controlled to be on and the IGBT 64 is controlled to be off. (Control A2), current can flow from terminal a to terminal b through IGBT 63 and diode D4 in this order. At this time, the current flow (reverse flow) from the terminal b to the terminal a is blocked by the diode D4. On the other hand, by controlling IGBT 63 off and IGBT 64 on (control B2), current can flow from terminal b to terminal a through IGBT 64 and diode D3 in this order. At this time, the current flow (reverse flow) from the terminal a to the terminal b is blocked by the diode D3. In both control A2 and B2, the circuit can prevent backflow.
[0030] 図 2及び図 3に示される回路を有する双方向スィッチ S , S , S , S , S , S [0030] Bidirectional switches S, S, S, S, S, S having the circuit shown in FIG. 2 and FIG.
RU RV RW SU SV SW  RU RV RW SU SV SW
, S , S , S によれば、電流の逆流が防止されるので、 R相の双方向スィッチ S , , S 1, S 2, S prevents reverse current flow, so the R-phase bidirectional switch S 1,
TU TV TW RU TU TV TW RU
S , S で電流が逆流して S相や Τ相の双方向スィッチ S , S , S , S , S , S Bidirectional switch S, S, S, S, S, S
RV RW SU SV SW TU TV TW RV RW SU SV SW TU TV TW
へと流れることを防止できる。他の相についても同様である。よって、例えば相間リア タトルなどの素子が不要であり、素子数を低減することができる。しカゝも、素子数が低 減することで、当該素子で生じる損失を低減することができる。  Can be prevented from flowing into The same applies to the other phases. Therefore, for example, an element such as an interphase reactor is not required, and the number of elements can be reduced. However, by reducing the number of elements, it is possible to reduce the loss caused by the elements.
[0031] なお、 IGBT61〜64のそれぞれのェミッタ Eとコレクタ Cとの間には、コンデンサを 接続しても良い。この場合、双方向スィッチ S , S , S , S , S , S , S , S ,  [0031] A capacitor may be connected between each of the emitters E and the collectors C of the IGBTs 61 to 64. In this case, the bidirectional switches S, S, S, S, S, S, S, S, S,
RU RV RW SU SV SW TU TV  RU RV RW SU SV SW TU TV
S のスイッチングで生じるサージ電圧を、当該コンデンサで吸収することができる。  The surge voltage generated by the switching of S can be absorbed by the capacitor.
TW  TW
[0032] 双方向スィッチ S  [0032] Bidirectional switch S
RU, S  RU, S
RV,S  RV, S
RW, S  RW, S
SU,S  SU, S
SV, S  SV, S
SW,S  SW, S
TU,S  TU, S
TV,S で変換して得られた所 TW  TW obtained by conversion with TV and S TW
望の 3相交流電圧 v , V , V は、出力端子 114  The desired three-phase AC voltages v, V, and V
U V W 〜116を介して、モータ 4に供給され る。  Supplied to motor 4 via U V W ~ 116.
[0033] リアタトル L1〜L3はそれぞれ、入力端子 111〜113に接続される。  [0033] Rear tuttles L1 to L3 are connected to input terminals 111 to 113, respectively.
[0034] コンデンサ C1〜C3は、それぞれの一端が互いに接続され、それぞれの他端が出 力端子 114〜116に接続される。  [0034] Capacitors C1 to C3 have one ends connected to each other and the other ends connected to output terminals 114 to 116, respectively.
[0035] 上述した電力変換装置 laによれば、リアタトル L1〜L3をマトリックスコンバータ 11 を介して短絡させることで、 3相交流電源 Vから供給されるエネルギーをリアタトル L1 〜L3に蓄積することができ、以つてコンデンサ C1〜C3の両端電圧を昇圧することが できる。よって、電圧利用率を 1以上にすることができる。このとき、入力端子 111〜1 13には電圧型の 3相交流電圧 V , V , Vが入力され、出力端子 114〜116からは電 [0035] According to the power converter la described above, the energy supplied from the three-phase AC power source V can be stored in the rear tuttles L1 to L3 by short-circuiting the rear tuttles L1 to L3 via the matrix converter 11. Therefore, the voltage across the capacitors C1 to C3 can be boosted. Therefore, the voltage utilization factor can be 1 or more. At this time, voltage-type three-phase AC voltages V, V, V are input to the input terminals 111 to 113, and power is output from the output terminals 114 to 116.
R S T  R S T
流型の 3相交流電圧 V , V , Vが出力される。  Current-type three-phase AC voltages V, V, and V are output.
U V W [0036] また、コンデンサ C1〜C3のそれぞれがリアタトル L1〜L3と LCフィルタを構成する ので、出力端子 114〜116に出力される電圧に含まれる高周波成分を低減すること ができ、以つてモータ 4に生じるトルクの脈動成分や、騒音を低減することができる。 例えば、上記非特許文献 1に紹介されるトルク脈動低減法を適用すれば、より効果的 に当該高調波成分を低減することができる。 UVW [0036] In addition, since each of the capacitors C1 to C3 constitutes an LC filter with the rear tuttles L1 to L3, it is possible to reduce high-frequency components included in the voltages output to the output terminals 114 to 116, and thus the motor 4 The pulsation component of the torque generated in the noise and the noise can be reduced. For example, if the torque pulsation reduction method introduced in Non-Patent Document 1 is applied, the harmonic component can be reduced more effectively.
[0037] し力も、整流回路とインバータとを用いた AC— AC変換回路に比べ、スイッチング 素子数は少なくて良ぐ以つて電力変換装置 laで生じる損失が低減できる。  [0037] As compared with an AC-AC conversion circuit using a rectifier circuit and an inverter, the number of switching elements is smaller and the loss generated in the power conversion device la can be reduced.
[0038] 電力変換装置 laには、クランプ回路 2を接続することができる。図 1では、クランプ 回路 2が、入力端子 111〜113と、出力端子 114〜116との間に接続されている。  [0038] The clamp circuit 2 can be connected to the power converter la. In FIG. 1, the clamp circuit 2 is connected between the input terminals 111 to 113 and the output terminals 114 to 116.
[0039] 図 4は、クランプ回路 2の具体的な構成を例示する。クランプ回路 2は、ダイオード 21〜D32と、コンデンサ C21と、端子 21〜26とを有する。端子 21には、ダイオード D21のアノードと、ダイオード D22の力ソードがそれぞれ接続される。端子 22には、 ダイオード D23のアノードと、ダイオード D24の力ソードがそれぞれ接続される。端子 23には、ダイオード D25のアノードと、ダイオード D26の力ソードがそれぞれ接続さ れる。ダイオード D21, D23, D25のそれぞれの力ソードは、コンデンサ 21の一端 21 1に接続される。ダイオード D22, D24, D26のそれぞれのアノードは、コンデンサ 2 1の他端 212に接続される。  FIG. 4 illustrates a specific configuration of the clamp circuit 2. The clamp circuit 2 includes diodes 21 to D32, a capacitor C21, and terminals 21 to 26. The terminal 21 is connected to the anode of the diode D21 and the force sword of the diode D22. The terminal 22 is connected to the anode of the diode D23 and the force sword of the diode D24. Terminal 23 is connected to the anode of diode D25 and the force sword of diode D26. The force swords of the diodes D21, D23, and D25 are connected to one end 211 of the capacitor 21, respectively. The anodes of the diodes D22, D24, and D26 are connected to the other end 212 of the capacitor 21.
[0040] 端子 24には、ダイオード D27のアノードと、ダイオード D28の力ソードがそれぞれ 接続される。端子 25には、ダイオード D29のアノードと、ダイオード D30の力ソードが それぞれ接続される。端子 26には、ダイオード D31のアノードと、ダイオード D32の 力ソードがそれぞれ接続される。ダイオード D27, D29, D31のそれぞれの力ソード は、一端 211に接続される。ダイオード D28, D30, D32のそれぞれのアノードは、 他端 212に接続される。  [0040] The terminal 24 is connected to the anode of the diode D27 and the force sword of the diode D28. Terminal 25 is connected to the anode of diode D29 and the force sword of diode D30. Terminal 26 is connected to the anode of diode D31 and the force sword of diode D32. Each force sword of the diodes D27, D29, and D31 is connected to one end 211. The anodes of the diodes D28, D30, D32 are connected to the other end 212.
[0041] 端子 21〜23はそれぞれ入力端子 111〜113に接続され、端子 24〜26はそれぞ れ出力端子 114〜116に接続される。  [0041] Terminals 21 to 23 are connected to input terminals 111 to 113, respectively, and terminals 24 to 26 are connected to output terminals 114 to 116, respectively.
[0042] かかるクランプ回路 2によれば、双方向スィッチ S , S , S , S , S , S , S ,  [0042] According to the clamp circuit 2, the bidirectional switches S 1, S 2, S 3, S 3, S 3, S 5, S 5, 6
RU RV RW SU SV SW TU  RU RV RW SU SV SW TU
S , S のスイッチングによって入力端子 111〜113と出力端子 114〜116との間に Switching between S and S between input terminals 111 to 113 and output terminals 114 to 116
TV TW TV TW
生じるサージ電圧を、コンデンサ C21で吸収することができる。 [0043] 本実施の形態に力かる電力変換装置 laは、例えばモータを有する圧縮機に搭載 することができる。力かる圧縮機によれば、効率を高めることができる。なぜなら、電力 変換装置 laは電源電圧よりも大きい電圧をモータに供給することができるので、電力 変換装置 la及びモータに流れる電流が小さくても、所定のモータ出力を得ることがで きるからである。換言すれば、電流が小さくて良いので、電力変換装置 la及びモータ で生じる損失を低減できる力 である。 The generated surge voltage can be absorbed by capacitor C21. [0043] The power conversion device la according to the present embodiment can be mounted on, for example, a compressor having a motor. A powerful compressor can increase efficiency. This is because the power conversion device la can supply a voltage larger than the power supply voltage to the motor, so that a predetermined motor output can be obtained even if the current flowing through the power conversion device la and the motor is small. . In other words, since the current may be small, it is a force that can reduce the loss generated in the power converter la and the motor.
[0044] <スイッチングパターンの生成 >  [0044] <Switching pattern generation>
双方向スィッチ S , S , S , S , S , S , S , S , S のスイッチングを制御  Controls switching of bidirectional switches S, S, S, S, S, S, S, S, S, S
RU RV RW SU SV SW TU TV TW  RU RV RW SU SV SW TU TV TW
するための、それぞれのゲート Gに与える信号 (スイッチングパターン)は、例えば、電 力変換装置 laと等価な回路 (以下、「等価回路」という。)に基づいて決定される。  The signal (switching pattern) to be given to each gate G for this purpose is determined based on, for example, a circuit equivalent to the power conversion device la (hereinafter referred to as “equivalent circuit”).
[0045] 図 5は、カゝかる等価回路を示す。当該等価回路は、図 1で示される電力変換装置 1 aについて、マトリックスコンバータ 11を、整流回路 12とインバータ 13とで構成される 回路に置き換えて得られる。具体的には、整流回路 12及びインバータ 13が以下のよ うに構成されることで、整流回路 12とインバータ 13とは両者相まって、電力変換装置 laと等価な回路を構成する。  [0045] FIG. 5 shows an equivalent circuit. The equivalent circuit is obtained by replacing the matrix converter 11 with a circuit composed of the rectifier circuit 12 and the inverter 13 in the power conversion device 1a shown in FIG. Specifically, since the rectifier circuit 12 and the inverter 13 are configured as follows, the rectifier circuit 12 and the inverter 13 together form a circuit equivalent to the power conversion device la.
[0046] 整流回路 12は、スィッチ S , S , S , S *, S *, S *を有する。スィッチ S , S , S , S  The rectifier circuit 12 has switches S 1, S 2, S 3, S *, S *, and S *. Switch S, S, S, S
R S T R S T R S T R  R S T R S T R S T R
*, S *, S *はいずれも、 IGBTとダイオードとで構成される。当該ダイオードのアノード *, S *, S * are both composed of IGBT and diode. Anode of the diode
S T S T
及び力ソードはそれぞれ、当該 IGBTのェミッタ E及びコレクタ Cに接続される。スイツ チ S , S , Sについては、それぞれの IGBTのェミッタ Eが入力端子 111〜113に接 And the power sword are connected to the emitter E and collector C of the IGBT, respectively. For switches S, S, S, each IGBT emitter E is connected to input terminals 111-113.
R S T R S T
続される。スィッチ S *, S *, S *については、それぞれの IGBTのコレクタ Cが入力端  Continued. For switches S *, S *, S *, the collector C of each IGBT is connected to the input terminal.
R S T  R S T
子 111〜113に接続される。スィッチ Sとスィッチ S *とは相補的なスイッチングが行  Connected to children 111-113. Switch S and switch S * are complementary to each other.
R R  R R
われる。つまり、スィッチ Sがオン (オフ)の場合には、スィッチ S *はオフ (オン)に制  Is called. That is, when switch S is on (off), switch S * is controlled off (on).
R R  R R
御される。スィッチ Sとスィッチ S *、及びスィッチ Sとスィッチ S *についても同様であ  It is controlled. The same applies to switch S and switch S *, and switch S and switch S *.
S S T T  S S T T
る。よって、整流回路 12は電圧型の整流回路として機能する。  The Therefore, the rectifier circuit 12 functions as a voltage type rectifier circuit.
[0047] インバータ 13は、スィッチ S , S , S , S *, S *, S *を有する。スィッチ S , S , S The inverter 13 has switches S 1, S 2, S 3, S *, S *, and S *. Switch S, S, S
U V W U V W U V W  U V W U V W U V W
, S *, S *, S *はいずれも、 IGBTとダイオードとで構成される。当該ダイオードのカソ , S *, S *, and S * are each composed of an IGBT and a diode. The diode cathode
U V W U V W
ードは、当該 IGBTのコレクタ Cに接続される。スィッチ S , S , S については、それ  The node is connected to the collector C of the IGBT. For switches S, S, S
U V W  U V W
ぞれの IGBTのェミッタが出力端子 114〜 116に接続され、それぞれのダイオードの アノードが、スィッチ S , S , Sのそれぞれの IGBTのコレクタ Cに接続される。スイツ Each IGBT emitter is connected to output terminals 114-116, and each diode The anode is connected to the collector C of each IGBT of the switches S 1, S 2 and S. Suites
R S T  R S T
チ S *, S *, S *については、それぞれのダイオードのアノードが出力端子 114〜11 H For S *, S *, S *, the anode of each diode is the output terminal 114 ~ 11
U V W U V W
6に接続され、それぞれの IGBTのェミッタ E力 スィッチ S *, S *, S *のそれぞれの I  Each IGBT emitter E force switch S *, S *, S *
R S T R S T
GBTのェミッタ Eに接続される。スィッチ Sとスィッチ S *とは相補的なスイッチングが Connected to GBT emitter E. Switch S and Switch S * have complementary switching
U U  U U
行われる。スィッチ Sとスィッチ S *、及びスィッチ S とスィッチ S *についても同様で  Done. The same applies to switch S and switch S *, and switch S and switch S *.
V V W W  V V W W
ある。よって、インバータ 13は電流型のインバータとして機能する。  is there. Therefore, the inverter 13 functions as a current type inverter.
[0048] 力かる等価回路の整流回路 12のスイッチングパターンと、インバータ 13のスィッチ ングパターンとに基づいて、マトリックスコンバータ 11のスイッチングパターンを、式(1 )によって得ることができる。ここで、符号 M (S) (S = S , S , S , S , S , S , S Based on the switching pattern of the rectifier circuit 12 of the equivalent circuit and the switching pattern of the inverter 13, the switching pattern of the matrix converter 11 can be obtained by Expression (1). Where M (S) (S = S, S, S, S, S, S, S
RU RV RW SU SV SW  RU RV RW SU SV SW
, S , S )は、双方向スィッチ S , S , S , S , S , S , S , S , S のそれ , S, S) are those of the bidirectional switches S, S, S, S, S, S, S, S, S
TU TV TW RU RV RW SU SV SW TU TV TW TU TV TW RU RV RW SU SV SW TU TV TW
ぞれのゲート Gに与える信号を表す。符号 M (S) (S = S , S , S , S *, S *, S *)は、  Represents the signal given to each gate G. The code M (S) (S = S, S, S, S *, S *, S *) is
R S T R S T  R S T R S T
整流回路 12のスィッチ S れの IGBTのゲート Gに与  Rectifier circuit 12 switch S
R, S  R, S
S, S  S, S
T, S *  T, S *
R, S *  R, S *
S, S *のそれぞ  S, S *
T  T
える信号を表す。符号 M (S) (S = S , S , S , S *, S *, S *)は、インバータ 13のス  Signal. The code M (S) (S = S, S, S, S *, S *, S *)
U V W U V W  U V W U V W
イッチ S , S , S , S *, S *, S *のそれぞれの IGBTのゲート Gに与える信号を表す Indicates the signal given to the gate G of each IGBT of switches S, S, S, S *, S *, S *
U V W U V W U V W U V W
。そして、 M (S)は、スィッチ s(s = s RU,s RV,s RW,s SU,s SV,s SW,s TU,s TV,s ;  . M (S) is a switch s (s = s RU, s RV, s RW, s SU, s SV, s SW, s TU, s TV, s;
TW s TW s
=S , S , S , S *, S *, S *; S = S , S , S , S *, S *, S *)がオンの場合には 1を、= S, S, S, S *, S *, S *; S = S, S, S, S *, S *, S *) is 1
U V W U V W R S T R S T U V W U V W R S T R S T
オフの場合には 0を示す。  Shows 0 when off.
[0049] [数 1] [0049] [Equation 1]
Figure imgf000012_0001
f ( ()i ()l (ls_! s2AAΛ1ト
Figure imgf000012_0001
f (() i () l (ls_! s2AAΛ1
[0050] 力かるスイッチングパターンの生成によれば、マトリックスコンバータ 11のスィッチン グパターンの生成が比較的容易になる。 [0050] According to the generation of a powerful switching pattern, the generation of the switching pattern of the matrix converter 11 becomes relatively easy.
[0051] 第 2の実施の形態. [0051] Second embodiment.
図 6は、本発明の形態にカゝかる電力変換装置 lbを概念的に示す。電力変換装置 1 bは、マトリックスコンバータ 11と、リアタトル L1〜L3と、コンデンサ C1〜C3とを備える 。マトリックスコンバータ 11の構成及びリアタトル L1〜L3のマトリックスコンバータ 11と の接続関係は、第 1の実施の形態と同様であるので説明を省略する。また、図 3には 更に 3相交流電源 V、モータ 4及びクランプ回路 2が示されている力 これらも第 1の 実施の形態と同様である。 FIG. 6 conceptually shows the power converter lb according to the embodiment of the present invention. The power conversion device 1 b includes a matrix converter 11, rear tuttles L1 to L3, and capacitors C1 to C3. . Since the configuration of the matrix converter 11 and the connection relationship between the rear tuttles L1 to L3 and the matrix converter 11 are the same as those in the first embodiment, the description thereof is omitted. Further, FIG. 3 further shows the three-phase AC power source V, the motor 4 and the clamp circuit 2 which are the same as those in the first embodiment.
[0052] コンデンサ C1〜C3は、それぞれの一端が互いに接続され、それぞれの他端が、 入力端子 111〜113、及び出力端子 114〜116の 、ずれか一方に選択可能に接続 される。 Capacitors C1 to C3 have one ends connected to each other and the other ends connected selectively to one of input terminals 111 to 113 and output terminals 114 to 116.
[0053] 具体的には、コンデンサ C1〜C3のそれぞれの他端と、入力端子 111〜113及び 出力端子 114〜116との間にスィッチ Sが接続される。スィッチ Sは、入力端子 111〜 113に接続される一組の端子 Aと、出力端子 114〜 116に接続される一組の端子 B と、コンデンサ C1〜C3に接続される一組の端子 Pとを有する。そして、スィッチ Sは、 端子 Pと端子 Aとの接続 (接続 P— A)と、端子 Pと端子 Bとの接続 (接続 P— B)とを切 り換えることができる。  Specifically, the switch S is connected between the other ends of the capacitors C1 to C3 and the input terminals 111 to 113 and the output terminals 114 to 116. The switch S includes a set of terminals A connected to the input terminals 111 to 113, a set of terminals B connected to the output terminals 114 to 116, and a set of terminals P connected to the capacitors C1 to C3. Have The switch S can switch the connection between the terminal P and the terminal A (connection P—A) and the connection between the terminal P and the terminal B (connection P—B).
[0054] スィッチ Sの切換えは、例えば双方向スィッチ S , S , S , S , S , S , S , S  [0054] The switch S is switched, for example, by bidirectional switches S, S, S, S, S, S, S, S, S
RU RV RW SU SV SW TU  RU RV RW SU SV SW TU
, S のデューティ比、出力端子 114〜116から出力される 3相交流電圧 V , V , V , S duty ratio, three-phase AC voltage output from output terminals 114 to 116 V, V, V
TV TW U V W TV TW U V W
、及びモータ 4の回転速度 ωの少なくとも 、ずれか一つに基づ 、て実行することがで きる。例えば、 3相交流電圧 V , V , Vや、入力端子 111〜113に流れる電流 i , i , i  , And at least one of the rotational speeds ω of the motor 4 can be executed. For example, three-phase AC voltages V, V, V and currents i, i, i flowing through the input terminals 111 to 113
R S T R S T  R S T R S T
、出力端子 114〜116に流れる電流 i , i , iなどに基づいてスィッチ Sの切換えを実  The switch S is switched based on the currents i, i, i, etc. flowing through the output terminals 114 to 116.
U V W  U V W
行しても良い。  You may do it.
[0055] 図 7は、 3相交流電圧 V , V , Vのうちの一つの電圧 Vに基づいてスィッチ Sの切換  [0055] FIG. 7 shows switching of the switch S based on one of the three-phase AC voltages V 1, V 2, and V.
U S T U  U S T U
えを実行する制御回路 8を示す。制御回路 8は比較器 81を有する。比較器 81の入 力端の一方には電圧の所定値 νθが与えられ、当該入力端の他方には実測された電 圧 Vが与えられる。比較器 81は、電圧 Vと所定値 νθとを比較して、スィッチ Sの切換 8 shows a control circuit 8 for executing the control. The control circuit 8 has a comparator 81. A predetermined value νθ of the voltage is given to one input terminal of the comparator 81, and the actually measured voltage V is given to the other input terminal. The comparator 81 compares the voltage V with a predetermined value νθ and switches the switch S.
U U U U
えを指示する信号 Sigを出力し、スィッチ Sに与える。  A signal Sig is output to give to the switch S.
[0056] 具体的には、電圧 Vが所定値 νθ以上の場合には、接続 P— Aを指示する信号 Sig [0056] Specifically, when the voltage V is greater than or equal to a predetermined value νθ, the signal Sig indicating the connection PA
U  U
(PA)を出力する。他方、電圧 Vが所定値 νθより小さい場合には、接続 P— Bを指示  Output (PA). On the other hand, if the voltage V is less than the predetermined value νθ, indicate connection P-B.
U  U
する信号 Sig (PB)を出力する。スィッチ Sは、与えられた信号 Sigに基づいて切換え を実行する。 [0057] 同様に、 3相交流電圧の他の電圧 v , Vを用いてスィッチ Sの切換えを実行しても Output signal Sig (PB). Switch S performs switching based on the applied signal Sig. [0057] Similarly, even if switch S is switched using other voltages v and V of the three-phase AC voltage,
S T  S T
良い。  good.
[0058] 例えば、回転速度 ωに基づ!/、てスィッチ Sの切換えを実行しても良 、。具体的には 、実測された回転速度 ωと、回転速度の所定値 ω θとを例えば比較器で比較する。 そして、回転速度 ωが所定値 ω θ以上の場合は信号 Sig (PB)を出力し、回転速度 ωが所定値 ω 0より小さ 、場合は信号 Sig (PA)を出力する。  [0058] For example, the switch S may be switched based on the rotational speed ω! More specifically, the actually measured rotational speed ω is compared with a predetermined rotational speed value ωθ using, for example, a comparator. When the rotational speed ω is equal to or higher than the predetermined value ωθ, the signal Sig (PB) is output. When the rotational speed ω is smaller than the predetermined value ω0, the signal Sig (PA) is output.
[0059] 電力変換装置 lbによれば、端子 Pを端子 Aに接続することで、つまりコンデンサ C1 〜C3の他端のそれぞれを入力端子 111〜113に接続することで、電力変換装置 lb を降圧コンバータとして機能させることができる。このとき、入力端子 111〜113には 電流型の 3相交流電圧 V , V , Vが入力され、出力端子 114〜116からは電圧型の 3  [0059] According to the power converter lb, the power converter lb is stepped down by connecting the terminal P to the terminal A, that is, by connecting the other ends of the capacitors C1 to C3 to the input terminals 111 to 113, respectively. It can function as a converter. At this time, current-type three-phase AC voltages V, V, V are input to the input terminals 111 to 113, and voltage-type 3 is output from the output terminals 114 to 116.
R S T  R S T
相交流電圧 V , V , Vが出力される。しかも、コンデンサ C1〜C3のそれぞれがリアク  Phase AC voltages V, V, V are output. In addition, each of capacitors C1 to C3
U V W  U V W
トル L1〜L3と LCフィルタを構成するので、出力端子 114〜116に出力される電圧に 含まれる高周波成分を低減することができる。  Since the tolls L1 to L3 and the LC filter are configured, the high frequency components contained in the voltage output to the output terminals 114 to 116 can be reduced.
[0060] 他方、端子 Pを端子 Bに接続することで、つまりコンデンサ C1〜C3の他端のそれぞ れを出力端子 114〜116に接続することで、電力変換装置 lbを、第 1の実施の形態 で説明した電力変換装置 laとして機能させることができる。よって、出力端子 114〜[0060] On the other hand, by connecting the terminal P to the terminal B, that is, by connecting each of the other ends of the capacitors C1 to C3 to the output terminals 114 to 116, the power converter lb is connected to the first implementation. It is possible to function as the power conversion device la described in the embodiment. Therefore, output terminal 114 ~
116に出力される電圧の可変領域を拡張することができる。 The variable region of the voltage output to 116 can be expanded.
[0061] 電力変換装置 lbは圧縮機に搭載することができる。かかる圧縮機では、低速から 高速まで可変で運転することができる。しかも高速域では、電力変換装置 lbは第 1の 実施の形態で説明した電力変換装置 laとして機能するので、圧縮機の効率が高い [0061] The power converter lb can be mounted on a compressor. Such a compressor can be operated variably from low speed to high speed. Moreover, in the high speed range, the power conversion device lb functions as the power conversion device la described in the first embodiment, so the efficiency of the compressor is high.
[0062] 例えば、スィッチ Sの切換え後は、所定の時間が経過してからスィッチ Sの切換えの 要否を判断して、次の切換えを実行しても良い。 [0062] For example, after switch S is switched, it may be determined whether or not switch S needs to be switched after a predetermined time has elapsed, and the next switch may be executed.
[0063] <スイッチングパターンの生成 > [0063] <Generation of switching pattern>
スィッチ Sによって接続 P— Bが実行されている場合には、電力変換装置 lbは電力 変換装置 laとして機能するので、電力変換装置 lbにおいても、第 1の実施の形態で 説明したのと同様の方法でマトリックスコンバータ 11のスイッチングパターンを生成す ることがでさる。 [0064] 他方、スィッチ Sによって接続 P— Aが実行されている場合には、電力変換装置 lb は降圧コンバータとして機能するので、当該降圧コンバータと等価な回路に基づいて スイッチングパターンを決定することができる。 When the connection P-B is executed by the switch S, the power conversion device lb functions as the power conversion device la. Therefore, the power conversion device lb is the same as that described in the first embodiment. The switching pattern of the matrix converter 11 can be generated by this method. [0064] On the other hand, when the connection P-A is executed by the switch S, the power converter lb functions as a step-down converter. Therefore, the switching pattern can be determined based on a circuit equivalent to the step-down converter. it can.
[0065] 図 8は、力かる等価回路を示す。当該等価回路は、上記降圧コンバータについて、 マトリックスコンバータ 11を、整流回路 121とインバータ 131とで構成される回路に置 き換えて得られる。具体的には、整流回路 121及びインバータ 131が以下のように構 成されることで、整流回路 121とインバータ 131とは両者相まって、降圧コンバータと して機能する際の電力変換装置 lbと等価な回路を構成する。  FIG. 8 shows a working equivalent circuit. The equivalent circuit is obtained by replacing the matrix converter 11 with a circuit composed of a rectifier circuit 121 and an inverter 131 for the step-down converter. Specifically, since the rectifier circuit 121 and the inverter 131 are configured as follows, the rectifier circuit 121 and the inverter 131 combine with each other and are equivalent to the power converter lb when functioning as a step-down converter. Configure the circuit.
[0066] 整流回路 121は、スィッチ S , S , S , S *, S *, S *を有する。スィッチ S , S , S ,  The rectifier circuit 121 includes switches S 1, S 2, S 3, S *, S *, and S *. Switches S, S, S,
R S T R S T R S T  R S T R S T R S T
S *, S *, S *はいずれも、 IGBTとダイオードとで構成される。当該ダイオードのァノー Each of S *, S *, and S * is composed of an IGBT and a diode. The diode ano
R S T R S T
ドは、当該 IGBTのェミッタ Eに接続される。スィッチ S , S , Sについては、それぞれ  Is connected to the emitter E of the IGBT. For switches S, S and S, respectively
R S T  R S T
の IGBTのコレクタ Cが入力端子 111〜113に接続される。スィッチ S *, S *, S *につ  IGBT collector C is connected to input terminals 111-113. Switch S *, S *, S *
R S T  R S T
いては、それぞれのダイオードの力ソードが入力端子 111〜113に接続される。スィ ツチ Sとスィッチ S *とは相補的なスイッチングが行われる。スィッチ Sとスィッチ S * In this case, the force sword of each diode is connected to the input terminals 111 to 113. Switch S and switch S * are complementarily switched. Switch S and Switch S *
R R S S、 及びスィッチ Sとスィッチ S *についても同様である。よって、整流回路 121は電流型 The same applies to R R S S, and switch S and switch S *. Therefore, the rectifier circuit 121 is a current type
T T  T T
の整流回路として機能する。  Functions as a rectifier circuit.
[0067] インバータ 131は、スィッチ S , S , S , S *, S *, S *を有する。スィッチ S , S , S  Inverter 131 has switches S 1, S 2, S 3, S *, S *, and S *. Switch S, S, S
U V W U V W U V  U V W U V W U V
, S *, S *, S *はいずれも、 IGBTとダイオードとで構成される。当該ダイオードは、 , S *, S *, and S * are each composed of an IGBT and a diode. The diode is
W U V W W U V W
アノードが当該 IGBTのェミッタ Eに、力ソードが当該 IGBTのコレクタ Cにそれぞれ接 続される。スィッチ S , S , S については、それぞれの IGBTのェミッタ Eが出力端子  The anode is connected to the emitter E of the IGBT and the force sword is connected to the collector C of the IGBT. For switches S 1, S 2, S, each IGBT emitter E is the output terminal
U V W  U V W
114〜116に接続され、それぞれの IGBTのコレクタ C力 スィッチ S, S, Sのそれ  114-116 connected to each IGBT collector C force switch S, S, S of that
R S T  R S T
ぞれのダイオードの力ソードに接続される。スィッチ S *, S *, S *については、それぞ  Connected to the power sword of each diode. For switches S *, S *, S *
U V W  U V W
れの IGBTのコレクタ Cが出力端子 114〜116に接続され、それぞれの IGBTのエミ ッタ Eが、スィッチ S *, S *, S *のそれぞれの IGBTのェミッタ Cに接続される。スイツ  The collector C of each IGBT is connected to the output terminals 114 to 116, and the emitter E of each IGBT is connected to the emitter C of each of the switches S *, S *, and S *. Suites
R S T  R S T
チ Sとスィッチ S *とは相補的なスイッチングが行われる。スィッチ Sとスィッチ S *、及 The switch S * and the switch S * are complementarily switched. Switch S and Switch S *, and
U U V V U U V V
びスィッチ S とスィッチ S *についても同様である。よって、インバータ 131は電圧型  The same applies to switch S and switch S *. Therefore, the inverter 131 is a voltage type
W W  W W
のインバータとして機能する。  Functions as an inverter.
[0068] かかる等価回路の整流回路 12のスイッチングパターンと、インバータ 13のスィッチ ングパターンとに基づいて、第 1の実施の形態で説明した式(1)を用いて、マトリック スコンバータ 11のスイッチングパターンを得ることができる。 [0068] The switching pattern of the rectifier circuit 12 of the equivalent circuit and the switch of the inverter 13 Based on the switching pattern, the switching pattern of the matrix converter 11 can be obtained using the equation (1) described in the first embodiment.
[0069] 図 9は、マトリックスコンバータ 11のスイッチングパターンを取得する制御部を概念 的に示す。かかる制御部は、切換判別部 31と、等価回路取得部 32と、生成部 33とを 有する。  FIG. 9 conceptually shows a control unit that acquires the switching pattern of the matrix converter 11. The control unit includes a switching determination unit 31, an equivalent circuit acquisition unit 32, and a generation unit 33.
[0070] 切換判別部 31は、スィッチ Sが接続 P— A及び接続 P— Bのいずれを実行している のかを判別し、前者の場合には信号 R1を、後者の場合には信号 R2を等価回路選 択部 32に与える。  [0070] The switching determination unit 31 determines whether the switch S is executing the connection P-A or the connection P-B. This is given to the equivalent circuit selector 32.
[0071] 等価回路選択部 32は、整流回路選択部 321と、インバータ選択部 322とを含む。  The equivalent circuit selection unit 32 includes a rectifier circuit selection unit 321 and an inverter selection unit 322.
整流回路選択部 321は、整流回路 12 (図 5)及び整流回路 121 (図 8)のいずれか一 方を信号 Rl, R2に基づいて選択する。図 9では、スィッチ 323によって整流回路 12 及び整流回路 121いずれかを選択する場合が示されている。  The rectifier circuit selection unit 321 selects one of the rectifier circuit 12 (FIG. 5) and the rectifier circuit 121 (FIG. 8) based on the signals Rl and R2. FIG. 9 shows a case where either the rectifier circuit 12 or the rectifier circuit 121 is selected by the switch 323.
[0072] インバータ選択部 322は、インバータ 13 (図 5)及びインバータ 131 (図 8)のいずれ か一方を信号 Rl, R2に基づいて選択する。図 9では、スィッチ 324によってインバー タ 13及びインバータ 131の ヽずれかを選択する場合が示されて!/ヽる。  [0072] Inverter selection section 322 selects one of inverter 13 (Fig. 5) and inverter 131 (Fig. 8) based on signals Rl and R2. FIG. 9 shows the case where one of the inverter 13 and the inverter 131 is selected by the switch 324!
[0073] 具体的には、等価回路選択部 32に信号 R1が入力された場合には、整流回路選択 部 321は整流回路 121を、インバータ選択部 322はインバータ 131を選択する。他 方、等価回路選択部 32に信号 R2が入力された場合には、整流回路選択部 321は 整流回路 12を、インバータ選択部 322はインバータ 13を選択する。選択された整流 回路 12, 121及びインバータ 13, 131は、生成部 33に接続される。  Specifically, when the signal R1 is input to the equivalent circuit selection unit 32, the rectification circuit selection unit 321 selects the rectification circuit 121, and the inverter selection unit 322 selects the inverter 131. On the other hand, when the signal R2 is input to the equivalent circuit selection unit 32, the rectification circuit selection unit 321 selects the rectification circuit 12, and the inverter selection unit 322 selects the inverter 13. The selected rectifier circuits 12, 121 and inverters 13, 131 are connected to the generation unit 33.
[0074] 生成部 33は、等価回路選択部 32で選択された整流回路 12, 121及びインバータ 13, 131で構成される等価回路(図 5及び図 8)に基づいて、マトリックスコンバータ 1 1のスイッチングパターンを形成する。具体的には、上述した式(1)を用いて当該スィ ツチングパターンを算出する。よって、第 1の実施の形態と同様に、マトリックスコンパ ータ 11のスイッチングパターンの生成が比較的容易となる。  The generation unit 33 switches the matrix converter 11 based on the equivalent circuit (FIGS. 5 and 8) configured by the rectifier circuits 12 and 121 and the inverters 13 and 131 selected by the equivalent circuit selection unit 32. Form a pattern. Specifically, the switching pattern is calculated using the above-described equation (1). Therefore, as in the first embodiment, the generation of the switching pattern of the matrix converter 11 is relatively easy.
[0075] この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示 であって、この発明がそれに限定されるものではない。例示されていない無数の変形 例力 この発明の範囲力 外れることなく想定され得るものと解される。  [0075] Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. Innumerable variations not illustrated The power of the scope of the present invention It is understood that the power can be assumed without departing.

Claims

請求の範囲 The scope of the claims
[1] 第 1乃至第 3の入力端子(111〜113)と、第 1乃至第 3の出力端子(114〜116)と 、逆阻止能力を有する双方向スィッチ(S , S , S , S , S , S , S , S , S  [1] First to third input terminals (111 to 113), first to third output terminals (114 to 116), and bidirectional switches (S 1, S 2, S 3, S 5, S, S, S, S, S
RU RV RW SU SV SW TU TV TW  RU RV RW SU SV SW TU TV TW
)とを有し、前記第 1乃至第 3の入力端子に入力された交流電圧 (V , v . V )を前記  ), And the AC voltage (V, v. V) input to the first to third input terminals is
R S T  R S T
双方向スィッチを用いて所望の交流電圧 (V , V , V )に変換するマトリックスコンパ  Matrix comparator that converts to the desired AC voltage (V, V, V) using a bidirectional switch
U V W  U V W
ータ(11)と、  (11),
前記第 1乃至第 3の入力端子のそれぞれに接続される第 1乃至第 3のリアタトル (L1 〜: L3)と、  First to third rear turtles (L1 to L3) connected to the first to third input terminals,
それぞれの一端が互いに接続され、それぞれの他端が第 1乃至第 3の出力端子に 接続される第 1乃至第 3のコンデンサ (C1〜C3)と  First to third capacitors (C1 to C3) each having one end connected to each other and each other connected to the first to third output terminals
を備える、電力変換装置。  A power conversion device comprising:
[2] 請求項 1記載の電力変換装置(la)であって [2] A power conversion device (la) according to claim 1,
前記マトリックスコンバータ(11)のスイッチング動作は、両者相まって前記電力変換 装置と等価な回路を構成する整流回路(12)及びインバータ(13)の、それぞれのス イッチング動作に基づいて決定される、電力変換装置。  The switching operation of the matrix converter (11) is determined based on the respective switching operations of the rectifier circuit (12) and the inverter (13) that together form a circuit equivalent to the power converter. apparatus.
[3] 前記整流回路(12)及び前記インバータ(13)はそれぞれ電圧型及び電流型であ る、請求項 2記載の電力変換装置。 [3] The power converter according to claim 2, wherein the rectifier circuit (12) and the inverter (13) are a voltage type and a current type, respectively.
[4] 第 1乃至第 3の入力端子(111〜113)と、第 1乃至第 3の出力端子(114〜116)と[4] First to third input terminals (111 to 113), first to third output terminals (114 to 116),
、逆阻止能力を有する双方向スィッチ(S , S , S , S , S , S , S , S , S , Bidirectional switch with reverse blocking capability (S, S, S, S, S, S, S, S, S, S
RU RV RW SU SV SW TU TV TW  RU RV RW SU SV SW TU TV TW
)とを有し、前記第 1乃至第 3の入力端子に入力された交流電圧 (V , v . V )を前記  ), And the AC voltage (V, v. V) input to the first to third input terminals is
R S T  R S T
双方向スィッチを用いて所望の交流電圧 (V , V , V )に変換するマトリックスコンパ  Matrix comparator that converts to the desired AC voltage (V, V, V) using a bidirectional switch
U V W  U V W
ータ(11)と、  (11),
前記第 1乃至第 3の入力端子のそれぞれに接続される第 1乃至第 3のリアタトル (L1 〜: L3)と、  First to third rear turtles (L1 to L3) connected to the first to third input terminals,
それぞれの一端が互いに接続される第 1乃至第 3のコンデンサ (C1〜C3)と を備え、  First to third capacitors (C1 to C3) each having one end connected to each other,
前記第 1乃至第 3のコンデンサのそれぞれの他端は、前記第 1乃至第 3の入力端子 、及び前記第 1乃至第 3の出力端子のいずれか一方に選択可能に接続される、電力 変換装置。 The other end of each of the first to third capacitors is selectively connected to any one of the first to third input terminals and the first to third output terminals. Conversion device.
[5] 請求項 4記載の電力変換装置(lb)であって、  [5] The power converter (lb) according to claim 4,
前記マトリックスコンバータ(11)のスイッチング動作は、両者相まって前記電力変換 装置と等価な回路を構成する整流回路(12 ; 121)及びインバータ(13 ; 131)の、そ れぞれのスイッチング動作に基づ 、て決定される、電力変換装置。  The switching operation of the matrix converter (11) is based on the switching operation of the rectifier circuit (12; 121) and the inverter (13; 131), which together constitute a circuit equivalent to the power converter. The power conversion device to be determined.
[6] 前記第 1乃至第 3のコンデンサ (C1〜C3)のそれぞれが前記第 1乃至第 3の出力 端子(114〜116)に接続されている場合には、前記整流回路(12)及び前記インバ ータ(13)はそれぞれ電圧型及び電流型であり、 [6] When each of the first to third capacitors (C1 to C3) is connected to the first to third output terminals (114 to 116), the rectifier circuit (12) and the The inverter (13) is voltage type and current type respectively.
前記第 1乃至第 3のコンデンサのそれぞれが前記第 1乃至第 3の入力端子(111〜 Each of the first to third capacitors is connected to the first to third input terminals (111 to
113)に接続されている場合には、前記整流回路及び前記インバータはそれぞれ電 流型及び電圧型である、請求項 5記載の電力変換装置。 113. The power conversion device according to claim 5, wherein the rectifier circuit and the inverter are each of a current type and a voltage type when connected to 113).
[7] 前記第 1乃至第 3の入力端子(111〜113)と、前記第 1乃至第 3の出力端子(114[7] The first to third input terminals (111 to 113) and the first to third output terminals (114
〜 116)との間に接続されるクランプ回路(2)を ~ 116) between the clamp circuit (2)
更に備える、請求項 1記載の電力変換装置。  The power conversion device according to claim 1, further comprising:
[8] 前記第 1乃至第 3の入力端子(111〜113)と、前記第 1乃至第 3の出力端子(114[8] The first to third input terminals (111 to 113) and the first to third output terminals (114
〜 116)との間に接続されるクランプ回路(2)を ~ 116) between the clamp circuit (2)
更に備える、請求項 4記載の電力変換装置。  The power conversion device according to claim 4, further comprising:
[9] 請求項 1乃至請求項 8のいずれか一つに記載の電力変換装置(la ; lb)を搭載す る、圧縮機。 [9] A compressor equipped with the power conversion device (la; lb) according to any one of claims 1 to 8.
PCT/JP2007/060248 2006-06-07 2007-05-18 Power conversion apparatus and compressor WO2007142009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-158663 2006-06-07
JP2006158663A JP2007330023A (en) 2006-06-07 2006-06-07 Power conversion device and compressor

Publications (1)

Publication Number Publication Date
WO2007142009A1 true WO2007142009A1 (en) 2007-12-13

Family

ID=38801273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060248 WO2007142009A1 (en) 2006-06-07 2007-05-18 Power conversion apparatus and compressor

Country Status (2)

Country Link
JP (1) JP2007330023A (en)
WO (1) WO2007142009A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105981280A (en) * 2014-02-07 2016-09-28 国立大学法人北海道大学 Power conversion device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5533945B2 (en) 2012-06-15 2014-06-25 株式会社安川電機 Power converter
KR101839558B1 (en) 2016-09-30 2018-03-16 엘지전자 주식회사 Motor driving apparatus and air conditioner including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069754A (en) * 1998-08-20 2000-03-03 Fuji Electric Co Ltd Converter circuit
JP2004248430A (en) * 2003-02-14 2004-09-02 Fuji Electric Holdings Co Ltd Control device of ac-ac power converter
JP2005045912A (en) * 2003-07-22 2005-02-17 Matsushita Electric Ind Co Ltd Matrix converter circuit and motor drive device
JP2005333783A (en) * 2004-05-21 2005-12-02 Toyota Motor Corp Electric power output device and vehicle equipped with the same
JP2006121799A (en) * 2004-10-20 2006-05-11 Yaskawa Electric Corp Method of protecting pwm cycloconverter, and pwm cycloconverter
WO2006112275A1 (en) * 2005-04-15 2006-10-26 Kabushiki Kaisha Yaskawa Denki Matrix converter apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069754A (en) * 1998-08-20 2000-03-03 Fuji Electric Co Ltd Converter circuit
JP2004248430A (en) * 2003-02-14 2004-09-02 Fuji Electric Holdings Co Ltd Control device of ac-ac power converter
JP2005045912A (en) * 2003-07-22 2005-02-17 Matsushita Electric Ind Co Ltd Matrix converter circuit and motor drive device
JP2005333783A (en) * 2004-05-21 2005-12-02 Toyota Motor Corp Electric power output device and vehicle equipped with the same
JP2006121799A (en) * 2004-10-20 2006-05-11 Yaskawa Electric Corp Method of protecting pwm cycloconverter, and pwm cycloconverter
WO2006112275A1 (en) * 2005-04-15 2006-10-26 Kabushiki Kaisha Yaskawa Denki Matrix converter apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105981280A (en) * 2014-02-07 2016-09-28 国立大学法人北海道大学 Power conversion device
EP3104510A4 (en) * 2014-02-07 2017-09-20 National University Corporation Hokkaido University Power conversion device
CN105981280B (en) * 2014-02-07 2019-06-07 国立大学法人北海道大学 Power-converting device

Also Published As

Publication number Publication date
JP2007330023A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
KR101374982B1 (en) Power converter
JP5631499B2 (en) Power converter
JP4626722B1 (en) Power converter and control method thereof
US20100259955A1 (en) Soft switching power converter
JP5400961B2 (en) Power converter
WO2007123204A1 (en) Direct ac power converting apparatus
Chiang et al. DC/DC boost converter functionality in a three-phase indirect matrix converter
JP5962804B1 (en) Power converter control device
WO2007069314A1 (en) Power converting apparatus
JP2004266972A (en) Alternating current-alternating current power converter
WO2007142009A1 (en) Power conversion apparatus and compressor
JP6771700B1 (en) Power converter
JP4423950B2 (en) AC / AC direct converter controller
JP4304862B2 (en) Power converter
JP2004180422A (en) Pwm rectifier
JP4471076B2 (en) PWM cycloconverter
Lee et al. Design and implementation of a reverse matrix converter for permanent magnet synchronous motor drives
JP3177085B2 (en) Power converter
Kato et al. Control method for a three-port interface converter using an indirect matrix converter with an active snubber circuit
JP2008099508A (en) Power converter and air conditioner using the same
JP2013062937A (en) Drive device for electric motor, and refrigeration cycle device
JP7054816B2 (en) Power converter
JP6419288B2 (en) Inverter
JP2001238467A (en) Power conversion system
Chiang et al. A three-port interface converter by using an indirect matrix converter with the neutral point of the motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743683

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 07743683

Country of ref document: EP

Kind code of ref document: A1