WO2007141857A1 - External appearance inspection device - Google Patents

External appearance inspection device Download PDF

Info

Publication number
WO2007141857A1
WO2007141857A1 PCT/JP2006/311515 JP2006311515W WO2007141857A1 WO 2007141857 A1 WO2007141857 A1 WO 2007141857A1 JP 2006311515 W JP2006311515 W JP 2006311515W WO 2007141857 A1 WO2007141857 A1 WO 2007141857A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
inspector
imaging
subject
image
Prior art date
Application number
PCT/JP2006/311515
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuyuki Hashimoto
Hiroyuki Tokita
Hiroshi Naiki
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to JP2008520093A priority Critical patent/JPWO2007141857A1/en
Priority to CN200680054865XA priority patent/CN101460832B/en
Priority to PCT/JP2006/311515 priority patent/WO2007141857A1/en
Publication of WO2007141857A1 publication Critical patent/WO2007141857A1/en
Priority to US12/329,847 priority patent/US20090097737A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8803Visual inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers

Definitions

  • the present invention relates to an appearance inspection apparatus that inspects the appearance of a subject such as a substrate of a semiconductor wafer by visual inspection by an inspector.
  • inspection of defects such as film irregularities and scratches such as resist applied to the substrate is performed.
  • inspection is performed as follows by an appearance inspection apparatus (see Patent Documents 1 and 2).
  • the semiconductor wafer is taken out from the cassette for storing the semiconductor wafer by the transfer robot and transferred to the macro inspection unit.
  • the semiconductor wafer is supported by a mounting table that can swing and rotate the semiconductor wafer.
  • the inspector operates the joystick, etc. provided in the visual inspection device, or automatically swings the mounting table with a preset recipe, thereby swinging the semiconductor wafer and checking for defects by visual observation. To check the quality of the wafer.
  • the semiconductor wafer is transported to a micro-inspection unit as necessary.
  • the enlarged observation of the defective part on the surface of the semiconductor wafer is performed by microscopic observation.
  • the semiconductor wafer is transferred by a transfer robot and stored in the cassette again.
  • Patent Document 1 JP-A-9-186209
  • Patent Document 2 JP-A-6-349908
  • Patent Document 3 Japanese Patent Laid-Open No. 7-27709 Disclosure of the invention
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an appearance inspection apparatus capable of sharing a defect image during appearance inspection.
  • the present invention has been made to solve the above-described problems.
  • an appearance inspection apparatus for appearance inspection of a subject the subject is held in order to perform a visual appearance inspection.
  • a specimen holding unit that swings the subject; and an imaging unit that images the subject and generates image data.
  • the imaging unit has an optical axis that performs an appearance inspection.
  • An appearance inspection apparatus characterized by being arranged so as to substantially coincide with a line of sight for observing a subject.
  • the illumination unit that illuminates the subject the swing position storage unit for storing the swing position information of the subject holding unit, and the swing position information
  • the swing position storage operation section to be stored in the swing position storage section and the swing position storage operation section are operated.
  • a line-of-sight information detection unit that detects and detects the line-of-sight information of the examiner with respect to the subject; the swing position information stored in the swing position storage unit; and the line of sight detected by the line-of-sight information detection unit
  • at least one of the swing holding unit and the imaging unit moving mechanism is controlled, and the positional relationship between the optical axis of the imaging unit and the subject is determined from the line of sight of the examiner.
  • the relative position with respect to the subject is set to be equal, and the subject is It is preferable to provide an imaging operation control unit that performs an imaging operation for the body.
  • the swing position storage operation unit when the swing position storage operation unit is operated by the inspector, the swing position storage The swing position information of the swing holding section is stored in the section, and the eye position information of the examiner with respect to the subject is detected by detecting that the swing position storing operation section is operated by the line of sight information detection section. Then, according to the swing position information and the examiner's line-of-sight information, the imaging operation control unit sets the positional relationship between the optical axis of the imaging unit and the subject to be equal to the relative position between the examiner's line-of-sight and the subject. And the imaging operation for the subject can be performed. Therefore, an image equivalent to the image of the subject viewed by the examiner when the swing position storage operation unit is operated can be taken.
  • FIG. 1 is a plan view showing a configuration of an appearance inspection apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of an appearance inspection apparatus according to the first embodiment of the present invention.
  • FIG. 3A is a schematic configuration diagram for explaining a modification of the first embodiment.
  • FIG. 3B is a schematic configuration diagram for explaining a modification of the first embodiment.
  • FIG. 4A is a schematic configuration diagram for explaining another modification of the first embodiment.
  • FIG. 4B is a schematic configuration diagram for explaining another modification of the first embodiment.
  • FIG. 5 is a block diagram showing a configuration of an appearance inspection apparatus according to a second embodiment of the present invention.
  • FIG. 6 is a schematic configuration diagram showing a state at the time of imaging in the second embodiment.
  • FIG. 7A Eyes in the second embodiment? It is a schematic block diagram which shows the state at the time of observation.
  • FIG. 7B is a schematic configuration diagram showing a state during visual observation in the second embodiment.
  • FIG. 8 is a schematic configuration diagram showing a schematic configuration of an appearance inspection apparatus according to a third embodiment of the present invention.
  • FIG. 9 is a schematic configuration diagram for explaining a modification of the third embodiment.
  • FIG. 10 is a plan view showing a schematic configuration of an appearance inspection apparatus according to a fourth embodiment of the present invention.
  • FIG. 11 is a schematic explanatory view showing a schematic configuration of an inspection unit and an operation unit of an appearance inspection apparatus according to a fourth embodiment of the present invention.
  • FIG. 12 is a functional block diagram of a line-of-sight information detection unit of an appearance inspection apparatus according to a fourth embodiment of the present invention.
  • FIG. 13 is a schematic diagram for explaining an example of image processing by an inspector image processing unit of the appearance inspection apparatus according to the fourth embodiment of the present invention.
  • FIG. 14 is a flowchart for explaining the macro inspection operation of the visual inspection apparatus according to the fourth embodiment of the present invention.
  • FIG. 15 is a flowchart illustrating a line-of-sight information detection step of the visual inspection apparatus according to the fourth embodiment of the present invention.
  • FIG. 16 is a schematic diagram showing an example of a reference image using a target according to a second modification of the fourth embodiment of the present invention.
  • FIG. 17 is a plan view showing a schematic configuration of an appearance inspection apparatus according to a fifth embodiment of the present invention.
  • FIG. 18 is a schematic explanatory view showing a schematic configuration of an inspection unit and an operation unit of an appearance inspection apparatus according to a fifth embodiment of the present invention.
  • FIG. 19 is a schematic diagram showing a positional relationship between a subject and a movable index viewed from an inspector in an appearance inspection apparatus according to a fifth embodiment of the present invention.
  • FIG. 20 is a schematic explanatory view showing a schematic configuration of an inspection unit and an operation unit of an appearance inspection apparatus according to a sixth embodiment of the present invention.
  • Gaze information detection unit (index position calculation unit)
  • Gaze information detection unit (Position information calculation unit)
  • FIG. 1 is a plan view showing a configuration of an appearance inspection apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the appearance inspection apparatus according to the first embodiment of the present invention.
  • an appearance inspection apparatus 100 includes an inspection unit 102 for performing macro inspection and micro inspection on a substrate 1 such as a semiconductor wafer to be inspected, and an inspection unit 102.
  • a substrate 1 such as a semiconductor wafer to be inspected
  • an inspection unit 102 On the other hand, uninspected substrate 1 is supplied and inspected by inspection unit 102
  • the loader unit 103 for discharging the substrate 1 is provided.
  • the loader unit 103 is disposed on the back side of the inspection unit as viewed from the front side of the inspection unit 102 (the side on which the inspector 104 performs inspection).
  • the loader unit 103 is provided with a substrate transfer robot 105.
  • the substrate transfer robot 105 is configured to supply the substrate 1 to the inspection unit 102 from the back side of the inspection unit 102 (in the direction of arrow B in FIG. 1).
  • a cassette 124 for storing the substrate 1 is mounted on the back side of the substrate transfer robot 105.
  • a substrate transfer device 113 is provided on the base of the inspection unit 102.
  • This substrate transfer device 113 is provided with three transfer arms 115a, 115b, and 115c centered on a rotating shaft 114 for each equiangularity (120 degrees).
  • Each transfer arm 115a, 115b, and 115c includes Nodes (chucks) 116a, 116b, and 116c are provided, respectively.
  • the substrate transfer device 113 rotates around the rotating shaft 114, for example, counterclockwise in the drawing (in the direction of the arrow), and the transfer arms 115a, 115b, and 115c are transferred to the substrate transfer robot 105, respectively.
  • (Position) Pl, Macro inspection position (Position) P2, Micro inspection delivery position P3 are now positioned!
  • a mounting table 2 (see FIG. 2) that is a swing mechanism for macro inspection for macro inspection of the surface of the substrate 1 by visual inspection by an inspector 104 ) Is provided. Further, a light source 3 (see FIG. 2) is provided as an illumination device above the macro inspection position P2.
  • a micro inspection unit (microscope device 119) is provided on the gantry of the inspection unit 102.
  • an image of the substrate 1 magnified by the microscope device 119 is captured by a CCD camera or the like and displayed on the monitor 122 (display device 5) or can be observed through the eyepiece 120. ing.
  • an operation unit 123 for performing the operation of the loader unit 103 and performing macro inspection and micro inspection in the inspection unit 102 is provided on the front surface of the inspection unit 102.
  • an operation unit 123 for performing the operation of the loader unit 103 and performing macro inspection and micro inspection in the inspection unit 102 is provided on the left side of the operation unit 123.
  • micro inspection is performed on the left side of the operation unit 123.
  • a monitor 122 for displaying an enlarged image of the substrate 1 taken through the microscope device 119 is provided.
  • control device 6 that controls the entire apparatus such as the operation of the loader unit 103, the macro inspection and the micro inspection of the inspection unit 102 is provided.
  • the control device 6 includes, for example, a substrate transfer robot A function of performing the substrate transfer operation of the board 105 and the transfer operation control of the substrate transfer device 113 is provided.
  • FIG. 2 only the configuration related to the macro inspection among the configurations of the appearance inspection apparatus 100 is shown.
  • the cassette for storing the semiconductor wafer, the micro inspection section, and the transport mechanism for transporting the semiconductor wafer. Etc. are not shown.
  • each configuration shown in FIG. 2 will be described.
  • the substrate 1 is mounted on the mounting table 2 (substrate holding unit).
  • the mounting table 2 has a mechanism for holding the substrate 1 by vacuum suction, a mechanism for rotating the substrate 1 in a plane parallel to the main surface of the substrate 1, and an angle between the main surface of the substrate 1 and the horizontal surface. It has a mechanism to change to
  • the light source 3 is a light source for irradiating the surface of the substrate 1 with illumination light.
  • Light source 3 includes a halogen lamp, a Fresnel lens, and a liquid crystal scattering plate. By turning on and off the power supply of the liquid crystal scattering plate, switching between the scattering plate and the transparent plate is possible, and illumination is possible by switching between scattered light and convergent light.
  • the substrate 1 is arranged so as to irradiate diffused light or convergent light from the vertical direction.
  • the imaging device 4 (imaging unit) includes an imaging optical system with a function of changing the imaging magnification and an imaging device such as a CCD (Charge Coupled Device), and images the surface of the substrate 1 to form a still image or a moving image. Image data to be generated. This imaging device 4 is arranged in the vicinity of the visual position P of the inspector.
  • the display device 5 includes a monitor and displays an image captured by the image capturing device 4.
  • the focal length during imaging of the imaging device 4 is a so-called standard lens of about 45 mm to 65 mm in terms of a 35 mm film camera.
  • the distance from the substrate 1 to the imaging device 4 is inspected from the substrate 1 It is desirable to be approximately equal to the distance to the person's eyes. With this configuration, an image close to the actual visual observation can be obtained.
  • the control device 6 includes a CPU (Central Processing Unit) and the like, controls the rotation and swing of the substrate 1 by the mounting table 2, controls the light amount of the light source 3, etc. Control of the imaging magnification and imaging operation of the imaging device 4 and control of image display by the display device 5 are performed, and image data captured by the imaging device 4 is stored in an internal storage unit (not shown). The state is stored and stored in association with the captured image.
  • CPU Central Processing Unit
  • the storage unit can store information for a long period of time, such as a hard disk recording medium. It includes media and media that temporarily store information, such as RAM (Random Access Memory).
  • RAM Random Access Memory
  • the imaging device 4 (imaging unit) is arranged so that the angular relationship between the light source 3 and the substrate 1 and the line of sight when viewing is substantially equal to the angular relationship between the light source 3 and the substrate 1 and the optical axis of the imaging. ing.
  • the imaging device 4 when performing an appearance inspection, is configured so that the imaging optical axis and the line of sight of the inspector observing the substrate 1 substantially coincide, that is, the imaging direction and the viewing direction are substantially equal.
  • the imaging position P of the examiner that is, the viewpoint of the inspector
  • the position of the imaging device 4 should be as close as possible to the visual position P, and the imaging direction of the imaging device 4 should be matched as much as possible to the visual direction of the inspector. Is desirable.
  • the imaging device 4 is mounted on the examiner's head (the center of the forehead, etc.)
  • the imaging device 4 may be attached to or near one eye of the inspector, such as being installed in a part.
  • FIG. 2 shows an example in which the imaging device 4 is attached to the temporal region.
  • the image displayed on the display device 5 is confirmed, and the visual image and the display image are the same.
  • an operation such as correcting the position of the imaging device 4 may be performed.
  • the inspector wears a goggle-type head mount display on the eye, and the captured image of the substrate 1 imaged by the imaging device 4 is displayed on the head-mounted display, so that an image visually observed by the inspector can be obtained.
  • the image captured by the imaging device 4 may be matched.
  • the control device 6 makes various settings for the mounting table 2, the light source 3, and the imaging device 4. That is, the control device 6 holds the substrate 1 at a certain angle with respect to the horizontal plane based on a signal output from the operation unit 123 and indicating a result of the operation by the inspector or based on preset information. A signal instructing to do is output to the mounting table 2.
  • the mounting table 2 supports the substrate 1 at the designated angle based on this signal.
  • the control device 6 outputs a signal indicating the rotation speed, the rotation direction, and the like to the mounting table 2 together with the rotation instruction.
  • the mounting table 2 rotates the substrate 1 in a plane parallel to the main surface based on this signal.
  • the control device 6 outputs a signal for instructing setting of the light amount or the like to the light source 3.
  • the light source 3 irradiates the substrate 1 with illumination light such as a predetermined light amount, wavelength, or diffused light or convergent light.
  • control device 6 outputs a signal indicating setting of imaging conditions and the like to the imaging device 4.
  • the imaging device 4 sets the imaging magnification and the like based on this signal.
  • the control device 6 outputs a signal instructing imaging to the imaging device 4.
  • the imaging device 4 images the surface of the substrate 1, generates image data, and outputs it to the control device 6.
  • the control device 6 stores the image data in the internal storage unit, reads the image data from the storage unit at a predetermined timing, and outputs it to the display device 5.
  • the display device 5 displays an image based on this image data. A moving image is displayed on the display device 5 by repeating the above operation.
  • the imaging device 4 continuously generates image data constituting the moving image and outputs it to the control device 6.
  • the control device 6 sequentially outputs the image data output from the imaging device 4 to the display device 5.
  • the display device 5 displays a moving image based on the image data continuously output from the control device 6.
  • an inspector performs an appearance inspection of the substrate 1.
  • a signal indicating the result of the operation of the joystick or the like by the examiner is input from the operation unit 123 to the control device 6.
  • the control device 6 Based on this signal, the control device 6 outputs a signal indicating the swing of the substrate 1 (change in the swing direction and angle) to the mounting table 2.
  • the mounting table 2 swings the substrate 1 based on this signal.
  • the inspector presses the switch or the like of the operation unit 123 in order to save the image at that time.
  • the operation unit 123 outputs a signal indicating an operation of a switch or the like to the control device 6.
  • the control device 6 stores the image data output from the imaging device 4 in the internal storage unit as still image data indicating the inspection result.
  • the control device 6 reads out the internal storage unit force image data and outputs it to the display device 5.
  • the display device 5 displays an image based on the image data. As a result, the visual image at the time of inspection can be reconfirmed after inspection.
  • the inspector checks the image displayed on the display device 5 during the inspection, and corrects the position of the imaging device 4 if the image obtained by visual inspection differs significantly from the display image. You can do the work. Further, moving image data that does not store only specific still image data as an inspection result may be stored as an inspection result.
  • the imaging device 4 may capture only a still image, and only when the inspector's power is instructed by the control device 6 that has received an imaging instruction, the still image at that time is displayed. You may output to the control apparatus 6.
  • the imaging device 4 when observing the substrate 1 by visual observation, the imaging device 4 is retracted to a position that does not interfere with the observation (see FIG. 3A), and a position that is the same as or close to the visual position P at the time of imaging. Move the imaging device 4 to (see Fig. 3B).
  • An imaging holding unit 10 is provided that holds and moves the imaging device 4 and fixes the imaging device 4 at a predetermined position during observation and imaging.
  • the imaging holding unit 10 can be realized, for example, by mounting the imaging device 4 on a rail capable of transporting an object in a uniaxial direction and sliding the imaging device 4 vertically or horizontally. Further, as shown in FIGS. 3A and 3B, the imaging device 4 may be mounted on the arm 11 configured to be extendable and the imaging device 4 may be moved by the arm 11.
  • the imaging device 4 may be moved using a mechanism having a multi-joint structure having a plurality of arms.
  • the operation of the imaging holding unit 10 is controlled by the control device 6. That is, when the imaging device 4 is at the imaging position in FIG. 3B when the inspector visually observes the substrate 1, the control device 6 outputs a signal indicating the withdrawal of the imaging device 4 to the imaging holding unit 10. Based on this signal, the imaging holding unit 10 moves the imaging device 4 to a position that does not interfere with observation. At the time of imaging, the control device 6 detects an imaging instruction from the examiner, and outputs a signal indicating movement of the imaging device 4 to the imaging position to the imaging holding unit 10 based on the instruction. Based on this signal, the imaging holding unit 10 moves the imaging device 4 to a position that is the same as or close to the viewing position P.
  • the visual image and the image generated by the imaging device 4 are the same (the visual position P is the same as the position of the imaging device 4 at the time of imaging, and the visual direction and the imaging direction of the imaging device 4 are the same).
  • the position of the imaging device 4 at the time of imaging is set as a fixed position, and the viewing position P is matched with this fixed position.
  • a visual sight is provided to make the visual position P a fixed position.
  • each of two glass plates is marked with a cross or the like, and each glass plate is arranged at a distance along a direction perpendicular to the main surface of the glass plate. Observe substrate 1 so that the marks on the glass plate overlap.
  • a correspondence relationship between the height (height or sitting height) of the inspector and the height of the imaging device 4 is obtained in advance, and the height of the imaging device 4 is set according to the height of the inspector. Also good.
  • the imaging direction of the imaging device 4 is also set in advance according to the viewing direction. According to this modified example, the inspector can perform an appearance inspection of the substrate 1 without worrying about the imaging device 4 at the time of visual observation.
  • the viewing position P10 (the position of the inspector's viewpoint) and the position P20 of the imaging device 4 (for example, the center of the imaging surface of the imaging device included in the imaging device 4) are fixed positions.
  • the reference axis extending in the viewing direction (for example, the axis connecting the viewing position P10 and the center position of the substrate 1) and the reference plane extending in the imaging direction of the imaging device 4
  • the angles at which the axes (for example, the optical axis toward the center position C of the substrate 1 of the imaging optical system included in the imaging device 4) and the horizontal plane are set to be equal.
  • the position P20 and the visual position P10 of the imaging device 4 are on the contour line L formed by connecting the points of the equidistant points to the center position C force of the substrate 1 where the height of any reference horizontal plane force is equal.
  • the substrate 1 can be rotated (rotated) by the mounting table 2 while maintaining the angle between the main surface and the horizontal plane around the rotation axis ⁇ extending vertically through the center position C of the substrate 1 It is.
  • the arrangement of the substrate light source 3, the inspector's visual position P10, and the imaging device 4 should be controlled so as to satisfy the following relative relationship!
  • the directional force toward the center position C of the substrate 1 of the light source 3 (illumination part) during visual observation.
  • the reference extending from the optical axis direction, the normal direction of the substrate 1 and the center position C of the substrate 1 to the inspector's viewing direction.
  • Three angular forces in the direction of the axis mutually
  • the light source during imaging by the imaging device 4 The center position of the substrate 1 of the substrate 3 of the light source 3, the normal direction of the substrate 1 and the center position of the substrate 1 To C
  • the three optical angles of the imaging optical system of the powerful imaging device 4 should be equal to each other.
  • the relative positions of the light source 3 during visual observation, the center position C of the substrate 1 and the visual position PIO are the light source 3, the center position C of the substrate 1, and the imaging device 4 when the imaging device 4 captures images. It should be equal to each relative position. In other words, the positional relationship is such that the entire arrangement position 1S is rotated around the center position C when viewed and when imaged.
  • the position P20 and the viewing position P10 of the imaging device 4 do not necessarily have to be on the contour line L. That is, the light source 3, the main surface of the substrate 1, and the relative position of the viewing position P10, and the directional force from the light source 3 to the center position C when viewed, the optical axis, the reference axis extending in the viewing direction, and the main surface of the substrate 1 While maintaining the angle relationship between the axes of the normal lines, the mounting table 2 is rotated and swung during imaging, and the light source 3, the main surface of the substrate 1, the respective positions of the imaging device 4, and the optical axis 3 It is possible to convert the optical axis toward the center position C, the optical axis toward the center position C of the imaging optical system, and the angular relationship of each axis of the normal of the peripheral surface of the substrate 1.
  • the mounting table 2 is controlled so that the rotation angle around the normal line at the center position C of the substrate 1 is relatively equal when viewed and imaged. This makes it possible to obtain images that coincide vertically and horizontally when viewed and when imaged. Further, when observing the diffracted light by the pattern formed on the substrate 1, a similar image can be obtained at the time of visual observation and at the time of imaging.
  • the angle formed by the line segment connecting the visual position P10 and the center position C of the substrate 1 and the line segment connecting the position P20 of the imaging device 4 and the center position C of the substrate 1 are expressed as follows. Let ⁇ 1. Further, it is assumed that the storage unit of the control device 6 stores information such as the position information of the viewing position P10 and the position P20 of the imaging device 4 and the angle ⁇ 1.
  • the operation unit outputs a signal indicating the operation of the switch or the like to the control device 6.
  • the control device 6 Upon detecting this signal, the control device 6 sends a signal indicating that the substrate 1 is rotated by the angle ⁇ 1 to the mounting table 2. Output. Based on this signal, the mounting table 2 rotates the substrate 1 by an angle ⁇ 1 about the rotation axis ⁇ in a direction from the viewing position P10 toward the position P20 of the imaging device 4 (see FIG. 4B). Subsequently, the imaging device 4 captures the surface of the substrate 1 to generate image data and outputs it to the control device 6.
  • the control device 6 stores image data in an internal storage unit.
  • the light source 3 irradiates the substrate 1 with irradiation light from the vertical direction (or the direction parallel to the rotation axis 0). It is desirable to do so. In addition, it is desirable that the center position of light irradiation by the light source 3 matches the center position C of the substrate 1. According to this modification, even when the imaging device 4 cannot be disposed at the viewing position, the same image as the visual image can be obtained.
  • the position of the imaging device 4 is arranged at a position that does not block the observation of the substrate during visual observation.
  • the image data indicating the same image as the visual image is generated and stored (stored), so that the result of the visual inspection is shared. be able to. Further, when re-checking the result of the appearance inspection, it is only necessary to display the stored image data, so that it is not necessary to perform the inspection again and work efficiency can be improved.
  • FIG. 5 is a block diagram showing the configuration of the appearance inspection apparatus according to the present embodiment.
  • the mirror unit 7 (reflecting plate holding unit) including the mirror 7a (reflecting plate) that reflects the light irradiated from the light source 3 and scattered or diffracted by the substrate 1 is formed between the substrate 1 and the viewing position P. It is provided in between.
  • the mirror unit 7 includes a mechanism that rotates the mirror 7a around one end thereof, or a mechanism that translates the mirror 7a in a vertical plane or a horizontal plane.
  • the mechanism for rotating or translating the mirror 7a is configured as described in the first embodiment, such as a multi-joint structure having a plurality of arms, a rail capable of conveying an object in a uniaxial direction, and a telescopic structure. If it is configured with arms, etc.
  • the imaging device 4 is arranged at a position conjugate with the viewing position P via the mirror 7a of the mirror unit 7. ing.
  • the conjugate position is a position where the visual image from the visual position P and the image based on the light that is scattered or diffracted by the substrate 1 and reflected by the mirror 7a and incident on the imaging device 4 are the same. is there.
  • the imaging device 4 is arranged in advance at a predetermined position, and at the time of imaging, the mirror unit 7 is in a position where an image visually observed by the inspector and an image based on light incident on the imaging device 4 are the same. Place mirror 7a.
  • the mirror 7a is arranged between the substrate 1 and the viewing position P during imaging, and the imaging device 4 captures an image based on the light reflected by the mirror 7a.
  • Image data generated by the imaging device 4 at the time of imaging is output to the control device 6 and stored in an internal storage unit.
  • the control device 6 outputs a signal instructing the movement of the mirror 7 a to the mirror unit 7.
  • the mirror unit 7 drives a motor or the like (not shown) and rotates the mirror 7a around its one end, so that the light from the substrate 1 reaches the eyes of the inspector directly, and the inspector The mirror 7a is retracted to a position that does not interfere with the observation so that the substrate 1 can be visually observed (see FIG. 7A).
  • the mirror unit 7 drives a motor or the like (not shown) based on a signal from the control device 6 and translates the mirror 7a in a vertical plane or a horizontal plane, thereby allowing light from the substrate 1 to move.
  • the mirror 7a is retracted to a position that does not obstruct the observation so that it can reach the eyes of the inspector and the inspector can visually observe the substrate 1 (see FIG. 7B).
  • the control device 6 outputs a signal instructing movement of the mirror 7a to the mirror unit 7, and based on this signal, the mirror unit 7 Moves the mirror 7a to a predetermined imaging position by rotating or translating the mirror 7a.
  • the viewing position P is preferably a fixed position.
  • a visual aim for setting the visual position P to the fixed position may be provided.
  • the positional relationship between the imaging device 4 and the mirror 7a at the time of imaging is fixed, the image captured by the imaging device 4 is displayed on the display device 5, and the state of FIG. 6 and the state of FIG. 7A or 7B are displayed. Switch the power many times, shift the viewing position while checking the image displayed on the display device 5, and determine the viewing position so that the image displayed by the display device 5 matches the image by visual observation. You can do it.
  • the visual position P The position of the imaging device 4 is fixed, the state shown in FIG. 6 and the state shown in FIG. 7A or 7B are switched several times, and the position of the mirror 7a (the angle is also changed) while checking the image displayed by the display device 5.
  • the position of the mirror 7a may be determined so that the image displayed by the display device 5 coincides with the visual image.
  • the viewing position P and the position of the mirror 7a are fixed, the power of the state shown in FIG. 6 and the state shown in FIG. 7A or 7B is switched many times, and the image pickup device 4 is checked while checking the image displayed by the display device 5. If the position of the image pickup device 4 is determined so that the image displayed by the display device 5 matches the visual image, the position of the image pickup device 4 is changed.
  • the same effects as those of the first embodiment can be obtained. Further, even when the imaging device 4 cannot be arranged at a position as shown in the first embodiment (a position where the light from the substrate 1 reaches without passing through a reflector), The same image can be obtained.
  • a half mirror 8 (semi-transmissive reflector) is provided between the substrate 1 and the viewing position P.
  • the half mirror 8 has a function of transmitting and reflecting light scattered or diffracted by the substrate 1.
  • the light transmitted through the half mirror 8 reaches the eyes of the inspector located at the viewing position P and is recognized by the inspector as a surface image of the substrate 1.
  • the light reflected by the half mirror 8 enters the imaging device 4.
  • the imaging device 4 is disposed at a position conjugate with the viewing position P via the half mirror 8.
  • the imaging device 4 may be disposed on the half mirror 8 with the imaging surface facing upward and the force imaging surface facing downward.
  • image data is generated by the imaging device 4, and the image data is output to the control device 6 and stored in an internal storage unit. Further, the image data is read from the storage unit and output to the display device 5, and the image is displayed on the display device 5. The inspector judges whether there is a defect while swinging the substrate 1 or the like. When saving image data due to defects, etc. Based on the instruction from the user, the control device 6 stores the image data output from the imaging device 4 in the storage unit. Further, the determination of the viewing position P, the position of the imaging device 4, and the position of the half mirror 8 may be performed in the same manner as in the second embodiment.
  • a partition wall member 9 is provided so as to separate the appearance inspection apparatus from the inspector.
  • the bulkhead member 9 allows various vapors, particles, dust and other contaminants released from the inspector to drift in the air and flow in the direction of the substrate 1 being inspected at the shortest distance. It is provided to prevent this.
  • An opening is provided in a part of the partition member 9, and a half mirror 8 is disposed in the opening. That is, the half mirror 8 also has a role as an observation window for observing the substrate 1.
  • the portion excluding 120 and the force may be surrounded by a partition member called a mini-environment.
  • the appearance inspection device is provided with a partition member 9 (mini-ene), and a filter funnel (FFU) is provided above it to forcibly introduce clean air into the appearance inspection device.
  • a configuration may be adopted in which minute foreign matter generated inside the appearance inspection apparatus is dropped downward and discharged to the outside of the apparatus. That is, the partition member 9 is formed so as to cover not only the appearance inspection apparatus and the inspector but also the entire appearance inspection apparatus, and a transparent plate is disposed in the opening of the partition member 9 so that the partition wall A half mirror 8 may be provided outside the member 9.
  • the same effects as those of the first embodiment can be obtained. Further, by providing the half mirror 8 in place of the mirror 7a, it is not necessary to provide a mechanism for rotating or moving the mirror 7a, so that the structure becomes simpler compared with the second embodiment.
  • the visual image and the image captured by the imaging device 4 may be substantially the same. “Substantially the same” means that, for example, the difference in the appearance of the image generated according to the imaging magnification in the imaging device 4 does not make the image different, and the type of defect, the position of the defect, etc. are the same. As long as you can determine If we consider it as one, it is a thing.
  • FIG. 10 is a plan view showing a schematic configuration of an appearance inspection apparatus according to the fourth embodiment of the present invention.
  • FIG. 11 is a schematic explanatory view showing a schematic configuration of an inspection unit and an operation unit of the appearance inspection apparatus according to the fourth embodiment of the present invention.
  • FIG. 12 is a functional block diagram of the line-of-sight information detection unit of the appearance inspection apparatus according to the fourth embodiment of the present invention.
  • FIG. 13 is a schematic diagram for explaining an example of image processing by the inspector image processing unit of the appearance inspection apparatus according to the fourth embodiment of the present invention.
  • FIG. 11 is a partially developed view for schematic illustration, and does not accurately represent the projection relationship (the same applies to FIGS. 18 and 20).
  • the appearance inspection apparatus 200 of the present embodiment irradiates the substrate 1, which is the subject, with illumination light to check for the presence or absence of defects in the substrate 1, such as surface flaws, dust adhesion, film thickness defects, and the like. These locations are used to check the generation positions, and the schematic configuration includes a transport unit 203, an inspection unit 202, and an operation unit 217 as shown in FIG.
  • the transport unit 203 supplies the uninspected substrate 1 set in the cassette 205 to the inspection unit 202, and discharges the substrate 1 that has been inspected by the inspection unit 202 to the cassette 205.
  • a substrate transfer robot 204 for transferring the substrate 1 between the cassette 205 and the inspection unit 202 is provided.
  • the inspection unit 202 swings the substrate 1 supplied by the transport unit 203 and irradiates it with illumination light, and performs a visual inspection by the inspector 208, and the surface of the substrate 1 It is now possible to perform microscopic inspection with a microscope.
  • the schematic configuration of the inspection unit 202 is as follows: a rotary conveyance mechanism 206, a macro detection swing mechanism 209 (swing holding unit), an illumination unit 234, a camera 211 (imaging unit), an inspector Imaging power Mera 221 (inspector imaging unit), line-of-sight information detection unit 231 (inspector image processing unit), control unit 230, and micro inspection unit 213.
  • the rotational transport mechanism 206 is a mechanism for rotationally transporting the substrate 1 between predetermined transport positions provided at equiangular pitches in a horizontal plane.
  • the substrate 1 is transferred to and from the substrate transfer robot 204 as the transfer position.
  • the micro inspection delivery position P3 is set at an equiangular pitch of 120 ° on the same circumference.
  • the substrate delivery position P1 is disposed on the transfer unit 203 side
  • the macro inspection position P2 is disposed on the operation unit 217 side
  • the micro inspection delivery position P3 is disposed on the intermediate position thereof.
  • the rotary transport mechanism 206 includes three pieces that extend in the radial direction equally divided by 120 ° from the rotary shaft provided at the center of the circle where the transport positions are arranged, and hold the substrate 1 by suction.
  • a configuration including transfer arms 207a, 207b, and 207c is employed.
  • the macro inspection swing mechanism 209 moves up and down at the center of the macro inspection position P2, and swings by holding the central portion of the substrate 1 conveyed to the macro inspection position P2.
  • the swing operation of the macro inspection swing mechanism 209 is controlled by the control unit 230 based on the operation of the inspector 208 through the operation unit 217 or the swing data stored in advance.
  • the illumination unit 234 is provided on the macro inspection rocking mechanism 209 so that the entire surface of the substrate 1 can be irradiated with illumination light. It is preferable that the illumination light is switched between substantially convergent light and moderately scattered light as necessary.
  • the camera 211 captures the substrate 1 held by the macro inspection swing mechanism 209 and obtains a visible image of the substrate 1.
  • a CCD camera is employed, and the obtained visible image can be sent to the control unit 230 and displayed on the monitor 218 or stored in a storage unit (not shown) such as a hard disk.
  • the camera 211 has a camera moving mechanism 232 (imaging unit moving mechanism) at a position rotated by an angle ⁇ with respect to a standard line-of-sight direction in which the inspector 208 observes the substrate 1 in plan view. ) Is movably supported.
  • a camera moving mechanism 232 imaging unit moving mechanism
  • the camera moving mechanism 232 is a position equivalent to the inspector 208 viewing the camera 211 with respect to the substrate 1 according to the rocking position of the rocking mechanism 209 for macro inspection.
  • This is a mechanism for placing the
  • a mechanism that combines the XYZ stage and the rotational stage around two axes can be used.
  • the camera moving mechanism 232 is not used for visual inspection during macro inspection by the inspector 208. Since it is sufficient that the degree of freedom of movement necessary to reproduce the movement of the point and the line-of-sight direction is provided, the present invention is not limited to the above configuration. For example, a combination of rotational movement around the vertical axis passing through the oscillation center of the macro inspection rocking mechanism 209, vertical movement, and rotational movement around the horizontal axis may be employed.
  • the movement amount of the camera moving mechanism 232 is controlled by a movement control unit 233 connected to the control unit 230.
  • the movable range of the camera moving mechanism 232 is preferably set to a range having a margin in consideration of the height difference of the plurality of inspectors 208, changes in the inspection posture, and the like.
  • the inspector imaging camera 221 and the line-of-sight information detection unit 231 detect the viewpoint position of the inspector 208 by imaging the face 208a of the inspector 208 and image-processing the image.
  • the line-of-sight information detection unit of the apparatus 200 is configured.
  • the inspector imaging camera 221 images the face 208a of the inspector 208, for example, C
  • the imaging data can be sent to the line-of-sight information detection unit 231.
  • the inspector imaging camera 221 may be placed anywhere as long as the viewpoint 208 relative to the substrate 1 at the macro inspection position P2 can be detected by imaging the face 208a of the inspector 208.
  • FIG. As shown in FIG. 4, the optical system is arranged on an optical path branched by a knife mirror 220 provided between the substrate 1 held by the rocking mechanism for macro inspection 209 and the inspector 208.
  • the line-of-sight information detection unit 231 includes an image processing unit 222, an initial information storage unit 223, an image comparison unit 224, and a position calculation unit 225.
  • the image processing unit 222 controls the imaging operation of the inspector imaging camera 221 to transfer the image data of the inspector 208 acquired by the inspector imaging camera 221, and the position of the eye and the size of the eye in the imaging frame are transferred. Image processing is performed so that information such as the size can be compared. For example, as shown in Fig. 13, the image of the face 208a is edge-extracted and converted to a line image. Extraction of features such as the right eye 208d, left eye 208e, face outline 208f, etc. is performed using these line images. From each shape, right eye width d, left eye width d, right eye center coordinate G , Left eye center coordinates G, viewpoint center position Q, interocular distance d, etc.
  • the coordinate value is a pixel coordinate obtained by measuring the origin O force of the imaging frame 226.
  • the initial information storage unit 223 captures an image of the face 208a, which serves as a reference image for calculating the viewpoint position by the inspector imaging camera 221, performs image processing by the image processing unit 222, and then stores the image data. To do.
  • the reference image is acquired by being imaged by the inspector imaging camera 221 in a state where the face 208a of the inspector 208 is positioned at a predetermined reference image imaging position.
  • the image comparison unit 224 is an inspector 2 imaged after the start of the examination and processed by the image processing unit 222.
  • the inspection at the reference image acquisition position is obtained.
  • the gaze information is obtained based on the gaze of the person 208. That is, the correlation between the image data stored in the initial information storage unit 223 and the newly acquired image data is examined, the movement positions of the right eye 208d and the left eye 208e are specified, and the above-described feature amount is calculated.
  • the position calculation unit 225 captures the line-of-sight information of the inspector 208 calculated by the image comparison unit 224, the arrangement position of the inspector imaging camera 221 and the reference image stored in the initial information storage unit 223. Based on the position, it is converted into spatial coordinates, and converted into the line-of-sight information of the inspector 208 with respect to the swing center position of the substrate 1 in the appearance inspection apparatus 200.
  • the control unit 230 is a means for performing overall device control related to macro inspection, and includes, for example, an external storage unit such as a CPU, a memory, an input / output interface, and a hard disk. In these memories and the external storage unit, appropriate data, for example, swing position information described later is stored as required. For this reason, the control unit 230 also serves as a swing position storage unit.
  • an external storage unit such as a CPU, a memory, an input / output interface, and a hard disk.
  • appropriate data for example, swing position information described later is stored as required. For this reason, the control unit 230 also serves as a swing position storage unit.
  • the control unit 230 is electrically connected to the camera 211, the movement control unit 233, the macro inspection swing mechanism 209, the line-of-sight information detection unit 231 and the operation unit 217, respectively. I can now give and receive! Therefore, it also serves as an imaging operation control unit that controls the imaging operation by the camera 211.
  • a plurality of modes are set for the imaging operation of the camera 211.
  • a defect is detected in the inspection, it is a sequential imaging mode in which a defect image is captured each time.
  • the swing position information at which the defect is detected and the gaze information of the inspector 208 at that time are stored. It is now possible to select an imaging mode at any time, which is performed at any time according to an operation input from the operation unit 217.
  • the micro-inspection unit 213 conveys and moves the substrate 1 between the micro-inspection 214 having an observation position in the vicinity of the micro-inspection delivery position P3, and the micro-inspection delivery position P3 and the observation position of the microscope 214. It consists of an XY stage 215 that moves the position of the substrate 1 relative to the observation position 214.
  • the microscope 214 obtains image data of an observation image of the micro inspection by an imaging unit (not shown), and allows an inspector 208 near the operation unit 217 to observe through the eyepiece 216.
  • the operation unit 217 is for the inspector 208 who performs macro inspection and micro inspection of the substrate 1 to operate the appearance inspection apparatus 200.
  • the operation input unit includes a keyboard, various buttons, and switches. Etc. are arranged. These operation input units include, for example, an operation input unit for starting, ending, suspending examinations, continuing examinations with different subjects and setting various conditions, and operation input units for manually operating each mechanism. included.
  • the operation input section related to the macro inspection is provided with at least a joystick 217a for operating the swing of the macro inspection swing mechanism 209 and a swing position storage button 217b (swing position storage operation section). It is connected to the.
  • the rocking position storage button 217b stores the rocking position information of the rocking mechanism 209 for macro inspection when pressed by the inspector 208, and instructs the inspector 208 to acquire the line-of-sight information at that time.
  • An operation input unit is provided.
  • the monitor 218 is a display unit for displaying an operation menu, a captured image of the microscope 214, a captured image of the camera 211, and the like as necessary under the control of the control unit 230.
  • an inspection position for the inspector 208 to perform macro inspection and micro inspection is provided as a standing position or a seating position.
  • the macro inspection is performed by visually observing the substrate 1 held on the macro inspection swing mechanism 209 through the observation window 219 from the inspection position.
  • the observation window 219 may be simply a transparent window as long as it is capable of visually checking for defects.For example, a position through which a standard line of sight passes so that the position and posture of the line of sight 208b of the inspector 208 can be stabilized. A figure serving as an index indicating a cross with a cross or a circle may be drawn.
  • the micro-inspection is performed by looking through the eyepiece lens 216 from the inspection position or viewing an image displayed on the monitor 218.
  • FIG. 14 is a flowchart for explaining the macro inspection operation of the visual inspection apparatus according to the fourth embodiment of the present invention.
  • FIG. 15 is a flowchart for explaining the line-of-sight information detection step of the appearance inspection apparatus according to the fourth embodiment of the present invention.
  • the macro inspection operation is performed according to the flow shown in FIG.
  • step S1 an initial setting process for macro inspection is performed.
  • various conditions are set as necessary.
  • conditions necessary for macro inspection such as setting and adjustment of illumination conditions of the illumination unit 234 are set.
  • an imaging mode when a defect is detected is selected, and a flag is set for the control unit 230.
  • a reference image of the inspector 208 may be acquired.
  • the inspector 208 takes an image with the inspector imaging camera 221 with the face 208a placed at the reference image capturing position, performs predetermined image processing with the image processing unit 222, and stores the initial information storage unit. Save to 223.
  • such a reference image may be acquired when the appearance inspection apparatus 200 is activated, or may be performed as needed.
  • the inspection process may be temporarily stopped when the inspector 208 changes.
  • the imaging of the reference image can be omitted.
  • step S2 the substrate 1 is transported to the macro inspection position P2.
  • the uninspected substrate 1 transferred in the cassette 205 is transferred to the substrate transfer position P1 by the substrate transfer robot 204, and is sucked and held on the transfer arm 207a, for example. Then, the rotary transport mechanism 206 is rotated by 120 °, and the transport arm 207a is moved to the macro detection position P2. At this time, the transfer arm 207 at the micro inspection delivery position P3 Since c has moved to the substrate transfer position PI, the substrate 1 to be inspected next from the substrate transfer robot 204 is set on the transfer arm 207c.
  • step S3 visual inspection is performed while the substrate 1 held by the macro inspection swing mechanism 209 is swung.
  • the substrate 1 transported to the macro inspection position P2 is released from the suction of the transport arm 207a. Then, the substrate 1 is transferred onto the macro inspection swing mechanism 209 that moves relative to the transfer arm 207a in the vertical direction, and is sucked and held by the macro inspection swing mechanism 209. The substrate 1 is illuminated, the substrate 1 is swung, and the inspector 208 performs visual inspection at various swung positions.
  • the substrate 1 is swung according to the information when the start of inspection is input from the operation unit 217. Automatically swinging force
  • the inspector 208 can stop swinging as necessary and switch to manual operation using the swing position storage button 217b to swing the defect at an angle that makes it easier to see the defect. If information on the rocking position and rocking pattern for inspection is not stored in advance, the inspector 208 is manually operated from the beginning to swing the substrate 1 for visual inspection.
  • the inspector 208 When a defect is visually observed during the swing inspection, the inspector 208 immediately presses the swing position storage button 217b to store the swing position of the macro inspection swing mechanism 209.
  • step S4 an interrupt is generated in the control unit 230, and it is determined in step S4 whether or not the rocking position storage button 217b has been pressed.
  • control unit 230 If it is determined that the rocking position storage button 217b has been pressed, the control unit 230 immediately executes steps S5 and S7.
  • step S12 If it is determined that the swing position storage button 217b is not pressed, the process proceeds to step S12.
  • Step S5 is a line-of-sight information detection step, which is started by sending a control signal from the control unit 230 to the line-of-sight information detection unit 231.
  • step S20 the inspector 208 in the imaging frame 226 is imaged by the inspector imaging camera 221.
  • the control signal from the control unit 230 to the line-of-sight information detection unit 231 is sent out as soon as the shaking position storage button 217b is pressed. (Referred to as a face image) substantially represents the inspector 208 when the rocking position storage button 217b is pressed.
  • step S21 the face image is subjected to image processing by the image processing unit 222, converted into a line image as shown in FIG. 13, for example, and sent to the image comparison unit 224.
  • step S22 the image comparison unit 224 compares the face image after image processing with the reference image stored in the initial information storage unit 223, and information on changes in eye position and eye size. To get.
  • the right eye 208d, left eye 208e, facial contour 208f, etc. are extracted from each image, and the right eye width, left eye width, right eye center coordinate, left eye center coordinate, viewpoint center position, and binocular distance are extracted from each shape.
  • a feature amount such as a distance is calculated on the image.
  • the respective quantities are d, d, G, G, Q, d for the reference image, and (d + Ad), (d for the face image
  • G and Q represent vector quantities.
  • the general inspector 208 uses a reasonable observation posture and captures defects at the center of the visual field where they can be seen stably in order to reduce inspection variations.
  • the inspector 208 detects the defect, in order to see the defect well, the inspector 208 faces the face 208a to the side where the defect is visible and places the defect at the center of the visual field, and finally detects the defect. It is assumed that it will be confirmed.
  • ⁇ > 1 the inspector 208 is closer to the inspector imaging camera 221, and when ⁇ is 1, it is farther away. It can be seen that it is in a state of force.
  • the right eye approaches the inspector imaging camera 221 and the left eye
  • the face 208a rotates in such a direction that the side is far from the inspector imaging camera 221.
  • the common offset due to the movement in the optical axis direction is calculated from the magnitude of the ratio of ⁇ , ⁇ , ⁇ .
  • the amount of movement and the amount of rotation can be separated.
  • the viewpoint center position of the inspector 208 with respect to the reference image imaging position and the line-of-sight direction can be calculated based on the information of the reference image and the face image that are two two-dimensional images. .
  • the line-of-sight information including the viewpoint center position and the line-of-sight direction is sent to the position calculation unit 225.
  • step S23 the position calculation unit 225 causes the gaze information of the inspector 208 calculated by the image comparison unit 224 to be stored in the pre-stored arrangement position of the inspector imaging camera 221 and the initial information storage unit 223. Based on the position at which the stored reference image is captured, it is converted into spatial coordinates, and calculation is performed to convert it into the line-of-sight information of the inspector 208 with respect to the swing center position of the substrate 1 in the appearance inspection apparatus 200.
  • step S6 the line-of-sight information of the inspector 208 calculated in step S5 is sent to the control unit 230 and stored.
  • next step S7 is executed in parallel with steps S5 and S6.
  • step S7 the state of the swing position of the macro inspection swing mechanism 209 when the swing position storage button 217b is pressed is stored in the control unit 230 as swing position information.
  • the swing position information is stored in the position coordinates of the swing center and the swing mechanism 209 for macro inspection. It consists of information corresponding to the normal direction of the substrate 1 held.
  • Step S8 is executed with the above steps S6 and S7 completed.
  • step S8 it is determined whether or not to capture a defect image at the time when the swing position storage button 217b is pressed. That is, referring to the flag of the imaging mode, if it is the sequential imaging mode, the process proceeds to step S9.
  • step S9 the relative positional relationship between the substrate 1 and the line of sight of the inspector 208 is calculated from the line-of-sight information and the swing position information stored in the control unit 230, and the viewpoint position of the inspector 208 and
  • the oscillating position of the oscillating mechanism 209 for macro inspection and the camera 211 The arrangement position and orientation are calculated.
  • step S10 the macro inspection swing mechanism 209 is moved to the swing position calculated in step S9, and the camera 211 is also moved to the calculated image pickup position.
  • the imaging position of the camera 211 may be set to the position obtained by rotating the viewpoint position of the inspector 208 by the angle ⁇ . That is, the imaging optical axis 211a of the camera 211 may be in a state equivalent to rotating the line of sight 208b about the vertical axis by the angle ⁇ with respect to the center of oscillation of the substrate 1. Also, as inspector 208A (see FIG. 11,
  • the camera moving mechanism 232 detects the camera 211.
  • the imaging position of the camera 211 can be set to be equivalent to the viewpoint position of the examiner 208A.
  • Such adjustment of the relative position is not limited to the movement of rotating the macro inspection swing mechanism 209 about the vertical axis.
  • the relative position between the camera 211 and the substrate 1 As long as it can be equivalent to the converted positional relation, only the macro inspection swing mechanism 209 may be swung in an appropriate direction and angle. Also, move both the camera 211 and the swing mechanism 209 for macro inspection. For macro inspection like this If the swing mechanism 209 is moved cooperatively, there is an advantage that the movable range of the camera 211 can be reduced.
  • step S11 the camera 211 captures an image of the substrate 1 and displays it on the monitor 218 or stores image data in a hard disk or the like as necessary. Then, the process proceeds to step S12.
  • step S12 whether or not to continue the inspection is determined by whether or not an operation input for ending the inspection is performed.
  • step S13 If the inspection end input has been performed, it is determined that the inspection is not continued, and the process proceeds to step S13.
  • step S3 In other cases, the above steps are repeated from step S3.
  • step S13 whether or not to continue the examination by replacing the subject with the next substrate 1 is confirmed by confirming the operation input.
  • step S2 When an operation input is performed to continue the inspection with the substrate 1 replaced, the suction of the substrate 1 to the macro inspection swing mechanism 209 is released, and the macro inspection swing mechanism 209 is prevented from moving the rotary transport mechanism 206.
  • the substrate 1 is retracted to a position where it does not become, and the substrate 1 is attracted to the transfer arm 207b. Then, the above steps are repeated from step S2.
  • the line-of-sight information of the inspector 208 is acquired by the line-of-sight information detection unit 231 by operating the swing position storage button 217b, and the control unit In step 230, the swing position information of the swing mechanism 209 for macro inspection is acquired.
  • the substrate 1 can be imaged in a state where the imaging optical axis 211a of the camera 211 is optically equivalent to the line of sight of the inspector 208.
  • a visible image of the substrate 1 that is the same as that viewed by 208 can be taken and displayed on the motor 218 or stored as image data. Therefore, the defect information detected by the inspector 208 is transmitted to other inspectors 208 as a visible image or recorded, so that it is easy to check and share defect information between inspectors. .
  • the camera 211 can be arranged at a position different from the inspection position of the inspector 208. If it does not hinder, it can be imaged at a position. Therefore, efficient detection and imaging can be performed.
  • the inspector 208 performs inspection by moving the viewpoint so that the defect is easy to see, and detects the defect at a position deviating from the standard viewing position.
  • the shifted position can be detected as line-of-sight information. Therefore, even in such a case, it is possible to easily acquire a defect in the same state as that of visual observation as a visible image, and it is possible to improve inspection accuracy and inspection efficiency.
  • an illumination unit moving mechanism 235 and an illumination position control unit 236 are added to the appearance inspection apparatus 200 of the above embodiment, and the illumination unit 234 is held movably. Is. The following description will be focused on differences from the above embodiment.
  • the illumination unit moving mechanism 235 is for variably holding at least one of the illumination position and illumination direction of the illumination unit 234 with respect to the substrate 1, and also has a stage analog according to the movement direction.
  • the predetermined illumination position and illumination direction are maintained, and when a defect image is captured, visual inspection of the substrate 1 is performed in accordance with the movement of the macro inspection rocking mechanism 209 and the camera 211. Adjust the relative lighting position and the lighting direction at least V ⁇ ⁇ ⁇ ⁇ ⁇ as needed.
  • the illumination position control unit 236 is for controlling the movement direction movement amount of the illumination unit moving mechanism 235 in accordance with a control signal from the control unit 230.
  • step S9 the substrate 1 is moved in accordance with the moving position of the camera 211 and the rocking position of the macro inspection rocking mechanism 209. It is determined whether or not the illumination light is required to move. If movement is necessary, the movement position of the illumination unit 234 is calculated. If movement is necessary, the camera 211, macro The lighting unit 234 also moves together with the rocking mechanism 209 for scissors.
  • the movement of the illumination unit 234 is necessary because the camera 211 and the macro inspection swing mechanism 209 are moved, so that the illumination light conditions for the substrate 1, such as the illumination position, illumination direction, and illumination range, are allowed. If there is a possibility that a defect image different from the visual image may be captured by changing beyond the limit, or the optical characteristics of the camera 211 such as exposure sensitivity, angle of view, and depth of field are inspected by the inspector 208. For example, there are cases where it is necessary to optimize the illumination conditions under conditions different from those at the time of visual observation during imaging. In either case, the moving condition of the illumination unit 234 is set by conducting an experiment or the like in advance.
  • the illumination position and the illumination direction can be varied according to the movement positions of the camera 211 and the macro inspection swing mechanism 209.
  • a defect image can be taken closer to the image at the time of visual inspection by matching the light condition with the light condition or by optimizing the illumination condition at the time of imaging according to the characteristics of the camera 211.
  • FIG. 16 is a schematic diagram showing an example of a reference image using the target of the second modified example of the fourth embodiment of the present invention.
  • the image processing captured by the inspector imaging camera 221 is modified so that the line-of-sight information is acquired based on features other than the position and size of the eyes.
  • the inspector 208 has a target for acquiring gaze information on the face 208a or a part of the body in advance, and calculates the position and size of the target from the image captured by the inspector imaging camera 221 to obtain the gaze information. Is converted to.
  • the inspector imaging camera 221 and the line-of-sight information detection unit 231 are used as a target imaging unit and a target image processing unit, respectively.
  • a detection sticker, a plate or the like having a predetermined color, shape, size, or the like is set at a site that is linked to the movement of the head of the examiner 208.
  • FIG. 16 An example is shown in FIG. 16, and a right target 238a (target) and a left target 238b (target) are provided on the front side of the work cap 237.
  • the right target 238a (target) such as a circle, can easily detect the center position.
  • the detected plate 238 is attached.
  • the target is In addition, for example, it can be attached to the face or head of the examiner 208 or can be provided on work glasses worn by the examiner 208.
  • the reference image is captured in a state where the inspector 208 is wearing the work cap 237. Then, from this reference image, the correspondence between the center positions of the right target 238a and the left target 238b and the positional relationship between the right eye center G, the left eye center G, and the viewpoint center position Q is calculated.
  • the initial information storage unit 223 stores the image.
  • the image processing unit 222 can use the images of the right target 238a and the left target 238b, which allow easy image recognition and position information acquisition, instead of the images of the right eye 208d and the left eye 208e of the examiner 208.
  • the configuration of the image processing unit 222 can be simplified, and the processing efficiency can be improved.
  • FIG. 17 is a plan view showing a schematic configuration of an appearance inspection apparatus according to the fifth embodiment of the present invention.
  • FIG. 18 is a schematic explanatory view showing a schematic configuration of an inspection unit and an operation unit of the appearance inspection apparatus according to the fifth embodiment of the present invention.
  • FIG. 19 is a schematic diagram showing the positional relationship between the subject and the movable index as viewed by the inspector in the appearance inspection apparatus according to the fifth embodiment of the present invention.
  • the appearance inspection apparatus 210 of the present embodiment is the same as the appearance inspection apparatus 200 of the fourth embodiment except that the inspector imaging camera 221 and the half mirror 220 are deleted. 240 (movable index), an index moving mechanism 241 and an index position operation unit 242 are added, and a line-of-sight information detection unit 243 (index position calculation unit) is provided instead of the line-of-sight information detection unit 231.
  • 240 movable index
  • an index moving mechanism 241 and an index position operation unit 242 are added
  • a line-of-sight information detection unit 243 index position calculation unit
  • the indicator plate 240 is a light-transmitting plate member provided at a position close to the observation window 219 between the observation window 219 and the substrate 1.
  • Indices 240a such as the X mark, are also provided that also provide graphic power that makes it easy to align the center position with the substrate 1 within the field of view of the inspector 208.
  • the index moving mechanism 241 moves and moves the index plate 240 in the direction intersecting the line of sight 208b so that the index 240a of the index plate 240 can indicate the passing position of the line of sight 208b. It is.
  • the gripping frame of the index plate 240 is moved in two axial directions along the observation window 219 in accordance with the operation input of the index position operation unit 242 operated by the inspector 208, and the movement position is detected.
  • the movement position information can be sent to the line-of-sight information detection unit 243.
  • the line-of-sight information detection unit 243 converts the movement position information sent from the index movement mechanism 241 into the position information of the center position of the index 240a of the index plate 240, and the center position and the oscillation center position of the substrate 1
  • the line-of-sight information is calculated on the assumption that the line-of-sight 208b is on the line connecting the lines.
  • the inspector 208 performs the macro inspection in substantially the same manner according to the flow shown in FIG. 14, except for the following points.
  • step S1 operations related to the inspector imaging camera 221 such as acquisition of a reference image are not performed.
  • step S3 when the inspector 208 detects a defect, the inspector 208 operates the index position operation unit 242 to move the index plate 240 so that the center position of the index 240a coincides with the center of the substrate 1 when the defect is seen. Thereafter, the swing position storage button 217b is pressed.
  • the swing position storage button 217b is pressed without moving the indicator plate 240, for example, the swing position storage button 217b is pressed. If the index position operation unit 242 has been operated within a certain period of time before that, the operation input of the rocking position storage button 217b is invalidated and the index plate is displayed on the monitor 218. It is preferable to provide an error recording prevention process that displays a message warning that 240 has been moved.
  • step S5 when the swing position storage button 217b is pressed, the line-of-sight information detection unit 243 also calculates the line-of-sight information for the movement position information force of the index movement mechanism 241.
  • the movement position information held by the index movement mechanism 241 is converted into the position coordinates of the center position of the index 240a, and the coordinates are converted to a coordinate system based on the rocking center position of the rocking mechanism 209 for macro inspection. Then, the direction vector of the line of sight 208b is obtained.
  • step S6 since the distance to the inspector 208 cannot be calculated, the absolute position of the viewpoint is unknown. Therefore, in step S6, only the eye direction is memorized. Is done.
  • step S9 the relationship between the imaging optical axis 21 la and the substrate 1 matches the relationship between the line of sight 208b stored in the line-of-sight information and the substrate 1, and the oscillation center of the substrate 1 is arranged at the image center.
  • the imaging position is calculated so that the framing can be performed so as to obtain the entire image of the substrate 1 and the focus position can be adjusted to the center of the substrate 1.
  • the index movement mechanism 241 and the line-of-sight information detection unit 243 constitute a line-of-sight information detection unit, and when line-of-sight information is detected without using an image processing unit. It is an example.
  • the image pickup position of the image pickup unit is calculated without calculating the absolute position of the viewpoint.
  • a visible image of the substrate 1 that is the same as that observed by the inspector 208 is captured, and the visible image is displayed on the monitor 218. It can be saved as data. Then, the line-of-sight information is acquired by moving the indicator plate 240 in accordance with the line of sight of the examiner 208, so that the line-of-sight information can be easily detected.
  • FIG. 20 is a schematic explanatory diagram showing a schematic configuration of an inspection unit and an operation unit of the visual inspection apparatus according to the sixth embodiment of the present invention.
  • the appearance inspection apparatus 250 of the present embodiment is the same as the appearance inspection apparatus 200 of the fourth embodiment except that the inspector imaging camera 221 and the half mirror 220 are deleted, and the position detection sensor 239 And a line-of-sight information detection unit 244 (position information calculation unit) is provided instead of the line-of-sight information detection unit 231.
  • the differences from the fourth embodiment will be mainly described below.
  • the position detection sensor 239 is a position detection sensor that detects the position and the direction with respect to the gravitational acceleration. During the inspection, the position detection sensor 239 is located at a position close to the eyes of the inspector 208, such as the side of the head. It is fixed stably. Therefore, the mounting position of the position detection sensor 239 has a fixed positional relationship with the eye position, and the position information power of the position detection sensor 239 at the mounting position can be approximated by approximating the viewpoint center by appropriately setting the mounting accuracy of the mounting tool. Calculate position Can be issued.
  • the position detection sensor 239 can be fixed to the head by, for example, an inspector 208 wearing a detachable attachment such as a headband, a frame, or a hat to which the position detection sensor 239 is attached. Can be adopted.
  • the detection output of the position detection sensor 239 is sent to the line-of-sight information detection unit 244.
  • the position detection sensor 239 Each time the position detection sensor 239 is attached to the inspector 208, the position detection sensor 239 appropriately performs position calibration. For example, an inspector 208 wearing the position detection sensor 239 stands at the reference position, visually observes the calibration reference at a predetermined position, and stores the position information in that state as calibration data in the line-of-sight information detection unit 244. To do.
  • the line-of-sight information detection unit 244 acquires the position information from the position detection sensor 239 when the swing position storage button 217b is pressed, compares it with the calibration data stored in advance, and sees the calibration reference of the inspector 208
  • the line-of-sight information is calculated from the shift amount with respect to the line of sight.
  • the inspector 208 performs macro inspection in substantially the same manner according to the flow shown in FIG. 14, except for the following points.
  • step S1 operations related to the inspector imaging camera 221 such as acquisition of a reference image are not performed.
  • step S5 when the swing position storage button 217b is pressed, the position information force line-of-sight information of the position detection sensor 239 is calculated by the line-of-sight information detection unit 244.
  • This line-of-sight information includes the position coordinates of the approximate viewpoint center position and information on the line-of-sight direction.
  • the position detection sensor 239 and the line-of-sight information detection unit 244 constitute a line-of-sight information detection unit, and an example of detecting line-of-sight information without using an image processing unit. It has become.
  • a visible image of the substrate 1 that is the same as that observed by the inspector 208 is captured and displayed on the monitor 218, or as image data. And can be saved. Since the line-of-sight information is acquired by the position detection sensor 239, the line-of-sight information can be detected more easily.
  • a control computer having a monitor for displaying an inspection image arranged outside a clean room or the like and an appearance inspection apparatus are connected via a communication line, and the control computer is The operation information based on the result of the operation by the operator is transmitted to the visual inspection device, and the visual inspection device that has received the operation information is operated based on the operation information so that the visual inspection device is operated remotely. May be.
  • the appearance inspection device stops at each inspection point. Since the image is almost the same as the image at the time of visual observation, and the image can be obtained at other locations through the communication line, it is different from the inspection device where there is no need for an inspector in front of each inspection device. Inspection by remote control at a place becomes possible.
  • the connection between the control computer and the visual inspection apparatus may be a connection via a wired or wireless network, or a connection by serial communication using a dedicated line.
  • the control computer a computer having the same configuration as a general-purpose computer may be used.
  • the control computer includes a control unit such as a CPU and a chip set, an operation unit such as a mouse, a keyboard, and a switch, a hard disk drive that stores information and a memory unit such as a RAM, a monitor that displays information, etc. It is configured to include each unit such as a powerful display unit and an interface unit corresponding to TCP / IP communication.
  • the image data generated by the imaging unit is transmitted to the control unit force control computer of the appearance inspection apparatus.
  • the control computer receives this image data and displays an image based on the image data on the monitor. While inspecting the image, the inspector swings the substrate via the control computer's operation unit and determines the presence and type of defects, thereby checking the appearance.
  • the substrate is inspected in the same manner as when the inspection is performed in front of the dredger.
  • the appearance inspection apparatus Since the appearance inspection apparatus is usually placed in a clean room, the appearance inspection of the substrate can be performed without entering the inspector-powered clean room, thus improving work efficiency. Also, if there are multiple visual inspection devices, the visual inspection devices and the control computer outside the clean room are connected by a communication line, and the computer power for control can be controlled by each person. This makes it possible to operate multiple visual inspection devices. Therefore, the number of inspectors required for the inspection work can be reduced, the use efficiency of the apparatus can be improved, and the investment cost can be reduced.
  • the imaging unit captures the same image as the visual image. That is, the image displayed on the monitor of the control computer is the same as the image obtained by visual inspection when the inspector inspects the appearance of the substrate in front of the appearance inspection device. Therefore, it is possible to inspect the appearance of the substrate with images that are familiar to the user! / There is no sense of incongruity due to a difference in viewpoint.
  • the image data stored in the storage unit of the control unit is transmitted to the control computer outside the clean room as the inspection result. Also good.
  • the control unit reads out the internal storage unit image data and transmits it to the control computer.
  • the control computer receives the image data and stores it in the internal storage unit.
  • This image data is appropriately read from the storage unit and processed based on an instruction from the operator of the control computer, and an image is displayed on the monitor.
  • the appearance inspection result can be reconfirmed even outside the clean room, so that it is not necessary to enter the clean room again when it is necessary to reconfirm the result, thereby improving work efficiency. .
  • the facial image power captured by the inspector imaging camera 221 is also calculated by calculating the distance to the face 208a of the inspector 208 and acquiring the position information of the inspector 208.
  • the distance measuring unit may be provided in the inspector imaging camera 221 to acquire the distance information of the face 208a. In this case, the image processing of the face image can be simplified.
  • the distance measuring unit may project triangulation by projecting distance measuring light toward the inspector 208, or perform stereo measurement using the inspector imaging power Mera 221 as a stereo measurement camera, or use the t It is out.
  • the outline of an eye is extracted to obtain line-of-sight information.
  • the shape may be extracted.
  • a white eye part and a black eye part may be detected.
  • the position of the black eye part for example, even when the inspector 208 looks away from the front of the face 208a obliquely, the accurate line-of-sight information can be obtained.
  • the appearance inspection apparatus may be an apparatus that performs only a macro inspection.
  • the subject is not limited to a semiconductor wafer.
  • an appearance inspection of the liquid crystal substrate may be performed. Since the liquid crystal substrate is often large, it may be difficult to perform the inspection by swinging the swinging direction. However, according to the present invention, the defect that was seen by shifting the viewpoint of the inspector is observed. There is an advantage that images can be easily captured.
  • the constituent elements described in each of the above embodiments can be appropriately combined and implemented within the scope of the technical idea of the present invention, if technically possible.
  • the illumination unit moving mechanism 235 and the illumination position control unit 236 of the first modification of the fourth embodiment are the fifth and fifth

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

An external appearance inspection device, where a placement table (2) holds a substrate (1) and swings the substrate (1). A light source (3) applies illumination light on the surface of the substrate (1). An imaging device (4) images the substrate (1), creates image data, and outputs the data to a control device (6). The imaging device (4) is placed near a viewing point (P) of an inspector. The control device (6) stores the image data, outputted from the imaging device (4), in its storage section.

Description

明 細 書  Specification
外観検査装置  Appearance inspection device
技術分野  Technical field
[0001] 本発明は、半導体ウェハの基板等の被検体の外観を、検査者の目視によって検査 する外観検査装置に関する。  The present invention relates to an appearance inspection apparatus that inspects the appearance of a subject such as a substrate of a semiconductor wafer by visual inspection by an inspector.
背景技術  Background art
[0002] 従来、半導体ウェハ等の基板を用いた製造工程において、基板に塗布されたレジ スト等の膜むらや傷等の欠陥の検査が行われる。例えば半導体ウェハの外観検査の 場合、外観検査装置によって以下のように検査が行われる (特許文献 1、 2参照)。ま ず、半導体ウェハを収納するカセットから、搬送ロボットによって半導体ウェハが取り 出されて、マクロ検査部に搬送される。マクロ検査部においては、半導体ウェハを揺 動および回転することが可能な載置台によって半導体ウェハが支持される。検査者 は、外観検査装置に設けられたジョイスティック等を操作したり、予め設定されたレシ ピにより載置台を自動揺動させることにより、半導体ウェハを揺動させ、目視観察によ り欠陥の有無を検査し、ウェハの良否を判定する。  Conventionally, in a manufacturing process using a substrate such as a semiconductor wafer, inspection of defects such as film irregularities and scratches such as resist applied to the substrate is performed. For example, in the case of appearance inspection of a semiconductor wafer, inspection is performed as follows by an appearance inspection apparatus (see Patent Documents 1 and 2). First, the semiconductor wafer is taken out from the cassette for storing the semiconductor wafer by the transfer robot and transferred to the macro inspection unit. In the macro inspection unit, the semiconductor wafer is supported by a mounting table that can swing and rotate the semiconductor wafer. The inspector operates the joystick, etc. provided in the visual inspection device, or automatically swings the mounting table with a preset recipe, thereby swinging the semiconductor wafer and checking for defects by visual observation. To check the quality of the wafer.
[0003] 続いて、必要に応じて、半導体ゥヱハはミクロ検査部に搬送される。ミクロ検査部に おいては、顕微鏡観察によって、半導体ウェハ表面の欠陥部の拡大観察が行われる 。ミクロ検査の終了後、半導体ウェハは、搬送ロボットによって搬送され、再びカセット に収納される。  [0003] Subsequently, the semiconductor wafer is transported to a micro-inspection unit as necessary. In the micro-inspection part, the enlarged observation of the defective part on the surface of the semiconductor wafer is performed by microscopic observation. After the micro inspection is completed, the semiconductor wafer is transferred by a transfer robot and stored in the cassette again.
[0004] 近年、ステージ上に載置した半導体ウェハの全面を撮像装置によって撮像すること による自動マクロ検査も行われている(例えば特許文献 3参照)。しかし、目視で明ら 力に欠陥と分力る大きな欠陥がある場合や、裏面を検査する場合など、従来の目視 による方法のマクロ検査装置が適しており、迅速な場合がある。そのため、上述したよ うに半導体ウェハを回転、揺動させ、目視によるマクロ検査が行われている。  [0004] In recent years, automatic macro inspection has also been performed by imaging an entire surface of a semiconductor wafer placed on a stage with an imaging device (see, for example, Patent Document 3). However, there are cases where there is a large defect that is visually divided into defects, and when the back surface is inspected, the conventional macro inspection device using the visual method is suitable and may be quick. Therefore, as described above, the semiconductor wafer is rotated and swung, and macro inspection is performed visually.
特許文献 1 :特開平 9— 186209号公報  Patent Document 1: JP-A-9-186209
特許文献 2:特開平 6 - 349908号公報  Patent Document 2: JP-A-6-349908
特許文献 3:特開平 7— 27709号公報 発明の開示 Patent Document 3: Japanese Patent Laid-Open No. 7-27709 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかし、目視によるマクロ検査にぉ 、ては、散乱光、回折光等を観察して 、るため、 照明光、載置台の揺動角度、検査者の眼の位置により、同じレシピによる揺動検査を 行っても、欠陥が検査者により、見えたり見えな力つたりする場合があり、検査結果に ばらつきが発生するという問題点があった。また、欠陥を確認できるのは検査者一人 のみであり、欠陥形状や欠陥位置等の情報が残らないため、結果を再確認して、検 查者同士で欠陥情報を共有ィ匕することが困難であるという問題点があった。  [0005] However, in the case of visual macro inspection, in order to observe scattered light, diffracted light, etc., the same recipe is used depending on the illumination light, the swing angle of the mounting table, and the position of the eye of the inspector. Even when a rocking inspection is performed, there are cases where defects may be seen or exerted by the inspector, resulting in variations in inspection results. In addition, only one inspector can confirm the defect, and no information such as the defect shape or defect position remains, so it is difficult to reconfirm the result and share the defect information between the inspectors. There was a problem that.
[0006] 本発明は、上述した問題点に鑑みてなされたものであって、外観検査時の欠陥画 像の共有ィ匕を図ることができる外観検査装置を提供することを目的とする。  The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an appearance inspection apparatus capable of sharing a defect image during appearance inspection.
課題を解決するための手段  Means for solving the problem
[0007] 本発明は、上記の課題を解決するためになされたもので、被検体の外観検査用の 外観検査装置において、目視による外観検査を行うために、前記被検体を保持する と共に、該被検体を揺動させる被検体保持部と、前記被検体を撮像し、画像データ を生成する撮像部とを備え、前記撮像部は、その光軸が、外観検査を行うとき、検査 者が前記被検体を観察する視線とほぼ一致するように配置されることを特徴とする外 観検査装置である。 [0007] The present invention has been made to solve the above-described problems. In an appearance inspection apparatus for appearance inspection of a subject, the subject is held in order to perform a visual appearance inspection. A specimen holding unit that swings the subject; and an imaging unit that images the subject and generates image data. The imaging unit has an optical axis that performs an appearance inspection. An appearance inspection apparatus characterized by being arranged so as to substantially coincide with a line of sight for observing a subject.
[0008] また、本発明の外観検査装置では、被検体を照明する照明部と、前記被検体保持 部の揺動位置情報を記憶するための揺動位置記憶部と、前記揺動位置情報を、前 記被検体の欠陥を目視検査する検査者の操作に応じて、前記揺動位置記憶部に記 憶させる揺動位置記憶操作部と、該揺動位置記憶操作部が操作されたことを検知し て、前記被検体に対する検査者の視線情報を検出する視線情報検出部と、前記揺 動位置記憶部に記憶された前記揺動位置情報と、前記視線情報検出部で検出され た前記視線情報とに応じて、前記揺動保持部および前記撮像部移動機構の少なくと もいずれかを制御して、前記撮像部の光軸と前記被検体との位置関係が、前記検査 者の視線と前記被検体との相対位置と同等になるように設定するとともに、前記被検 体に対する撮像動作を行う撮像動作制御部とを備えることが好ましい。  [0008] Further, in the appearance inspection apparatus of the present invention, the illumination unit that illuminates the subject, the swing position storage unit for storing the swing position information of the subject holding unit, and the swing position information In response to the operation of the inspector who visually inspects the defect of the subject, the swing position storage operation section to be stored in the swing position storage section and the swing position storage operation section are operated. A line-of-sight information detection unit that detects and detects the line-of-sight information of the examiner with respect to the subject; the swing position information stored in the swing position storage unit; and the line of sight detected by the line-of-sight information detection unit In accordance with the information, at least one of the swing holding unit and the imaging unit moving mechanism is controlled, and the positional relationship between the optical axis of the imaging unit and the subject is determined from the line of sight of the examiner. The relative position with respect to the subject is set to be equal, and the subject is It is preferable to provide an imaging operation control unit that performs an imaging operation for the body.
この場合、揺動位置記憶操作部が検査者によって操作された場合、揺動位置記憶 部に揺動保持部の揺動位置情報を記憶するとともに、視線情報検出部により揺動位 置記憶操作部が操作されたことを検知して被検体に対する検査者の視線情報を検 出する。そしてこれら揺動位置情報と検査者の視線情報とに応じて、撮像動作制御 部が、撮像部の光軸と被検体との位置関係を、検査者の視線と被検体との相対位置 と同等になるように設定するとともに、被検体に対する撮像動作を行うことができる。し たがって、揺動位置記憶操作部が操作されたときに検査者が見た状態の被検体の 画像と同等の画像を撮像することができる。 In this case, when the swing position storage operation unit is operated by the inspector, the swing position storage The swing position information of the swing holding section is stored in the section, and the eye position information of the examiner with respect to the subject is detected by detecting that the swing position storing operation section is operated by the line of sight information detection section. Then, according to the swing position information and the examiner's line-of-sight information, the imaging operation control unit sets the positional relationship between the optical axis of the imaging unit and the subject to be equal to the relative position between the examiner's line-of-sight and the subject. And the imaging operation for the subject can be performed. Therefore, an image equivalent to the image of the subject viewed by the examiner when the swing position storage operation unit is operated can be taken.
発明の効果  The invention's effect
[0009] 本発明によれば、目視による像と同一の像を示す画像データを生成し、保存するよ うにしたので、目視による外観検査の結果を共有ィ匕することができるという効果が得ら れる。また、検査結果を確認する際には、再度検査を行う必要がなくなるので、作業 効率を向上させることができるという効果も得られる。  [0009] According to the present invention, since image data showing the same image as the visual image is generated and stored, the result of visual inspection can be shared. It is. In addition, when checking the inspection result, there is no need to perform the inspection again, so that the work efficiency can be improved.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]本発明の第 1の実施形態による外観検査装置の構成を示す平面図である。  FIG. 1 is a plan view showing a configuration of an appearance inspection apparatus according to a first embodiment of the present invention.
[図 2]本発明の第 1の実施形態による外観検査装置の構成を示すブロック図である。  FIG. 2 is a block diagram showing a configuration of an appearance inspection apparatus according to the first embodiment of the present invention.
[図 3A]第 1の実施形態の変形例を説明するための概略構成図である。  FIG. 3A is a schematic configuration diagram for explaining a modification of the first embodiment.
[図 3B]第 1の実施形態の変形例を説明するための概略構成図である。  FIG. 3B is a schematic configuration diagram for explaining a modification of the first embodiment.
[図 4A]第 1の実施形態の他の変形例を説明するための概略構成図である。  FIG. 4A is a schematic configuration diagram for explaining another modification of the first embodiment.
[図 4B]第 1の実施形態の他の変形例を説明するための概略構成図である。  FIG. 4B is a schematic configuration diagram for explaining another modification of the first embodiment.
[図 5]本発明の第 2の実施形態による外観検査装置の構成を示すブロック図である。  FIG. 5 is a block diagram showing a configuration of an appearance inspection apparatus according to a second embodiment of the present invention.
[図 6]第 2の実施形態における撮像時の状態を示す概略構成図である。  FIG. 6 is a schematic configuration diagram showing a state at the time of imaging in the second embodiment.
[図 7A]第 2の実施形態における目?見観察時の状態を示す概略構成図である。  [FIG. 7A] Eyes in the second embodiment? It is a schematic block diagram which shows the state at the time of observation.
[図 7B]第 2の実施形態における目視観察時の状態を示す概略構成図である。  FIG. 7B is a schematic configuration diagram showing a state during visual observation in the second embodiment.
[図 8]本発明の第 3の実施形態による外観検査装置の概略構成を示す概略構成図で ある。  FIG. 8 is a schematic configuration diagram showing a schematic configuration of an appearance inspection apparatus according to a third embodiment of the present invention.
[図 9]第 3の実施形態の変形例を説明するための概略構成図である。  FIG. 9 is a schematic configuration diagram for explaining a modification of the third embodiment.
[図 10]本発明の第 4の実施形態による外観検査装置の概略構成を示す平面図であ る。 [図 11]本発明の第 4の実施形態による外観検査装置の検査部および操作部の概略 構成を示す模式説明図である。 FIG. 10 is a plan view showing a schematic configuration of an appearance inspection apparatus according to a fourth embodiment of the present invention. FIG. 11 is a schematic explanatory view showing a schematic configuration of an inspection unit and an operation unit of an appearance inspection apparatus according to a fourth embodiment of the present invention.
[図 12]本発明の第 4の実施形態による外観検査装置の視線情報検出部の機能プロ ック図である。  FIG. 12 is a functional block diagram of a line-of-sight information detection unit of an appearance inspection apparatus according to a fourth embodiment of the present invention.
[図 13]本発明の第 4の実施形態による外観検査装置の検査者画像処理部による画 像処理の一例について説明するための模式図である。  FIG. 13 is a schematic diagram for explaining an example of image processing by an inspector image processing unit of the appearance inspection apparatus according to the fourth embodiment of the present invention.
[図 14]本発明の第 4の実施形態による外観検査装置のマクロ検査の動作について説 明するフローチャートである。  FIG. 14 is a flowchart for explaining the macro inspection operation of the visual inspection apparatus according to the fourth embodiment of the present invention.
[図 15]本発明の第 4の実施形態による外観検査装置の視線情報検出工程について 説明するフローチャートである。  FIG. 15 is a flowchart illustrating a line-of-sight information detection step of the visual inspection apparatus according to the fourth embodiment of the present invention.
[図 16]本発明の第 4の実施形態の第 2変形例のターゲットを用いた基準画像の例を 示す模式図である。  FIG. 16 is a schematic diagram showing an example of a reference image using a target according to a second modification of the fourth embodiment of the present invention.
[図 17]本発明の第 5の実施形態による外観検査装置の概略構成を示す平面図であ る。  FIG. 17 is a plan view showing a schematic configuration of an appearance inspection apparatus according to a fifth embodiment of the present invention.
[図 18]本発明の第 5の実施形態による外観検査装置の検査部および操作部の概略 構成を示す模式説明図である。  FIG. 18 is a schematic explanatory view showing a schematic configuration of an inspection unit and an operation unit of an appearance inspection apparatus according to a fifth embodiment of the present invention.
[図 19]本発明の第 5の実施形態による外観検査装置において、検査者から見た被検 体と可動指標との位置関係を示す模式図である。  FIG. 19 is a schematic diagram showing a positional relationship between a subject and a movable index viewed from an inspector in an appearance inspection apparatus according to a fifth embodiment of the present invention.
[図 20]本発明の第 6の実施形態による外観検査装置の検査部および操作部の概略 構成を示す模式説明図である。  FIG. 20 is a schematic explanatory view showing a schematic configuration of an inspection unit and an operation unit of an appearance inspection apparatus according to a sixth embodiment of the present invention.
符号の説明 Explanation of symbols
1 基板 (被検体) 1 Substrate (subject)
2 載置台 (被検体保持部)  2 Mounting table (Subject holding part)
3 光源 (照明部)  3 Light source (illumination part)
4 撮像装置 (撮像部)  4 Imaging device (imaging part)
5 表示装置  5 Display device
6 制御装置 (制御部)  6 Control device (control unit)
7 ミラー部 (反射板保持部) ミラー (反射板) 7 Mirror part (reflector holding part) Mirror (reflector)
ハーフミラー(半透過反射板) Half mirror (semi-transmissive reflector)
隔壁部材 Bulkhead member
撮像保持部  Imaging holder
アーム (撮像保持部) Arm (Imaging holding unit)
0、 200、 210、 250 外観検査装置0, 200, 210, 250 Visual inspection equipment
2、 202 検査部2, 202 Inspection Department
3 ローダ部3 Loader section
4、 208、 208A 検査者4, 208, 208A Inspector
6 回転搬送機構6 Rotating transfer mechanism
8a 顔面8a face
8b, 208c 視線8b, 208c eyes
9 マクロ検査用揺動機構 (揺動保持部)9 Macro inspection rocking mechanism (rocking holding part)
1 カメラ (撮像部)1 Camera (imaging part)
1a 撮像光軸1a Imaging optical axis
7 操作部7 Operation unit
7a ジ 3ィスティック7a
7b 揺動位置記憶ボタン (揺動位置記憶操作部)8 モニタ7b Oscillation position memory button (Oscillation position memory operation section) 8 Monitor
9 観察窓9 Observation window
1 検査者撮像カメラ (検査者撮像部)1 Inspector imaging camera (Inspector imaging unit)
2 画像処理部2 Image processing section
3 初期情報保存部3 Initial information storage
4 画像比較部4 Image comparison unit
5 位置計算部5 Position calculator
6 撮像フレーム6 Imaging frame
0 制御ユニット0 Control unit
1 視線情報検出ユニット 232 カメラ移動機構 1 Gaze information detection unit 232 Camera movement mechanism
233 移動制御部  233 Movement control unit
234 照明部  234 Lighting section
235 照明部移動機構  235 Illumination unit moving mechanism
236 照明位置制御部  236 Lighting position controller
238 検出用プレート  238 Detection plate
238a 右ターゲット(ターゲット)  238a Right target (target)
238b 左ターゲット(ターゲット)  238b Left target (target)
239 位置検出センサ  239 Position detection sensor
240 指標板 (可動指標)  240 Indicator plate (movable indicator)
240a 指標  240a indicator
241 指標移動機構  241 Indicator moving mechanism
242 指標位置操作部  242 Index position operation section
243 視線情報検出ユニット (指標位置演算部)  243 Gaze information detection unit (index position calculation unit)
244 視線情報検出ユニット (位置情報演算部)  244 Gaze information detection unit (Position information calculation unit)
Q 視点中心位置  Q Viewpoint center position
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、図面を参照し、本発明を実施するための最良の形態について説明する。す ベての図面において、実施形態が異なる場合であっても、同一または相当する部材 には同一の符号を付し、共通する説明は省略する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. In all the drawings, even if the embodiments are different, the same or corresponding members are denoted by the same reference numerals, and common description is omitted.
[0013] [第 1の実施形態] [0013] [First embodiment]
本発明の第 1の実施形態に係る外観検査装置について説明する。  An appearance inspection apparatus according to a first embodiment of the present invention will be described.
図 1は、本発明の第 1の実施形態による外観検査装置の構成を示す平面図である 。図 2は、本発明の第 1の実施形態による外観検査装置の構成を示すブロック図であ る。  FIG. 1 is a plan view showing a configuration of an appearance inspection apparatus according to the first embodiment of the present invention. FIG. 2 is a block diagram showing the configuration of the appearance inspection apparatus according to the first embodiment of the present invention.
本実施形態の外観検査装置 100は、図 1、 2に示すように、検査対象となる半導体 ウェハなどの基板 1に対するマクロ検査とミクロ検査とを行うための検査部 102と、この 検査部 102に対して未検査の基板 1を供給するとともに、検査部 102により検査済み の基板 1を排出するローダ部 103を設けた構成となっている。 As shown in FIGS. 1 and 2, an appearance inspection apparatus 100 according to this embodiment includes an inspection unit 102 for performing macro inspection and micro inspection on a substrate 1 such as a semiconductor wafer to be inspected, and an inspection unit 102. On the other hand, uninspected substrate 1 is supplied and inspected by inspection unit 102 The loader unit 103 for discharging the substrate 1 is provided.
[0014] ローダ部 103は、検査部 102の正面側(検査者 104が検査を行う側)から見て検査 部の奥側に配置されている。このローダ部 103には、基板搬送ロボット 105が設けら れている。この基板搬送ロボット 105は、検査部 102の奥側(図 1の矢印 B方向)から 基板 1を、検査部 102に対して供給 Z排出するようになっている。基板搬送ロボット 1 05の奥側には、基板 1を収納するカセット 124が搭載されている。  [0014] The loader unit 103 is disposed on the back side of the inspection unit as viewed from the front side of the inspection unit 102 (the side on which the inspector 104 performs inspection). The loader unit 103 is provided with a substrate transfer robot 105. The substrate transfer robot 105 is configured to supply the substrate 1 to the inspection unit 102 from the back side of the inspection unit 102 (in the direction of arrow B in FIG. 1). A cassette 124 for storing the substrate 1 is mounted on the back side of the substrate transfer robot 105.
また検査部 102のベース上には、基板搬送装置 113が設けられている。この基板 搬送装置 113は、回転軸 114を中心に 3本の搬送アーム 115a、 115b, 115cを等角 度(120度)毎に設けたもので、それぞれの搬送アーム 115a、 115b, 115cには、そ れぞれノヽンド(チャック) 116a、 116b, 116cが設けられている。この基板搬送装置 1 13は、回転軸 114を中心に、例えば図面上反時計回り(矢印方向)に回転し、各搬 送アーム 115a、 115b, 115cがそれぞれ基板搬送ロボット 105との基板受け渡し位 置(ポジション) Pl、マクロ検査位置(ポジション) P2、ミクロ検査受け渡し位置 P3のい ずれかにポジショニングされるようになって!/、る。  A substrate transfer device 113 is provided on the base of the inspection unit 102. This substrate transfer device 113 is provided with three transfer arms 115a, 115b, and 115c centered on a rotating shaft 114 for each equiangularity (120 degrees). Each transfer arm 115a, 115b, and 115c includes Nodes (chucks) 116a, 116b, and 116c are provided, respectively. The substrate transfer device 113 rotates around the rotating shaft 114, for example, counterclockwise in the drawing (in the direction of the arrow), and the transfer arms 115a, 115b, and 115c are transferred to the substrate transfer robot 105, respectively. (Position) Pl, Macro inspection position (Position) P2, Micro inspection delivery position P3 are now positioned!
[0015] マクロ検査位置 P2には、マクロ検査部の一構成として、検査者 104の目視により基 板 1の表面をマクロ検査するためのマクロ検査用揺動機構である載置台 2 (図 2参照) が設けられている。さらに、マクロ検査位置 P2の上方には、照明装置として光源 3 (図 2参照)が設けられている。  [0015] At the macro inspection position P2, as a component of the macro inspection section, a mounting table 2 (see FIG. 2) that is a swing mechanism for macro inspection for macro inspection of the surface of the substrate 1 by visual inspection by an inspector 104 ) Is provided. Further, a light source 3 (see FIG. 2) is provided as an illumination device above the macro inspection position P2.
[0016] また、検査部 102の架台上には、ミクロ検査部(顕微鏡装置 119)が設けられている 。このミクロ検査部では、顕微鏡装置 119で拡大された基板 1の像を CCDカメラ等に より撮像し、モニタ 122 (表示装置 5)上に表示したり、接眼レンズ 120を通して観察し たりできるようになつている。  In addition, a micro inspection unit (microscope device 119) is provided on the gantry of the inspection unit 102. In this micro-inspection unit, an image of the substrate 1 magnified by the microscope device 119 is captured by a CCD camera or the like and displayed on the monitor 122 (display device 5) or can be observed through the eyepiece 120. ing.
検査部 102の前面には、ローダ部 103の動作、および検査部 102でのマクロ検査、 ミクロ検査の操作を行うための操作部 123が設けられるとともに、この操作部 123の左 側にはミクロ検査にお ヽて顕微鏡装置 119を通して撮像された基板 1の拡大画像等 を映し出すモニタ 122が設けられている。  On the front surface of the inspection unit 102, an operation unit 123 for performing the operation of the loader unit 103 and performing macro inspection and micro inspection in the inspection unit 102 is provided. On the left side of the operation unit 123, micro inspection is performed. A monitor 122 for displaying an enlarged image of the substrate 1 taken through the microscope device 119 is provided.
また、ローダ部 103の動作や検査部 102のマクロ検査、ミクロ検査の動作などの装 置全体の制御を行う制御装置 6を備える。この制御装置 6には、例えば基板搬送ロボ ット 105の基板受け渡し動作や、基板搬送装置 113の搬送動作制御などを行う機能 が備えられている。 In addition, a control device 6 that controls the entire apparatus such as the operation of the loader unit 103, the macro inspection and the micro inspection of the inspection unit 102 is provided. The control device 6 includes, for example, a substrate transfer robot A function of performing the substrate transfer operation of the board 105 and the transfer operation control of the substrate transfer device 113 is provided.
[0017] 図 2においては、外観検査装置 100の構成のうち、マクロ検査に係る構成のみが図 示されており、半導体ウェハを収納するカセットや、ミクロ検査部、半導体ウェハを搬 送する搬送機構等については図示が省略されている。以下、図 2に示す各構成につ いて説明する。  In FIG. 2, only the configuration related to the macro inspection among the configurations of the appearance inspection apparatus 100 is shown. The cassette for storing the semiconductor wafer, the micro inspection section, and the transport mechanism for transporting the semiconductor wafer. Etc. are not shown. Hereinafter, each configuration shown in FIG. 2 will be described.
基板 1は載置台 2 (基板保持部)に載置される。載置台 2は、基板 1を真空吸着によ つて保持する機構や、基板 1の主面に平行な平面内で基板 1を回転する機構、基板 1の主面と水平面との間の角度を任意に変更する機構等を備えている。  The substrate 1 is mounted on the mounting table 2 (substrate holding unit). The mounting table 2 has a mechanism for holding the substrate 1 by vacuum suction, a mechanism for rotating the substrate 1 in a plane parallel to the main surface of the substrate 1, and an angle between the main surface of the substrate 1 and the horizontal surface. It has a mechanism to change to
[0018] 光源 3は、基板 1の表面に照明光を照射するための光源である。光源 3は、ハロゲ ンランプ、フレネルレンズ、液晶散乱板を備え、液晶散乱板の電源の ONZOFFによ り、散乱板と透明板との切り換えを行い、散乱光と収束光とを切り替えて照明が可能 となっており、例えば鉛直方向から基板 1に拡散光や収束光を照射するように配置さ れている。撮像装置 4 (撮像部)は、撮像倍率の変倍機能を有する撮像光学系と CC D (Charge Coupled Device)等の撮像素子を備え、基板 1の表面を撮像し、静止画像 または動画像を構成する画像データを生成する。この撮像装置 4は、検査者の目視 位置 Pの近傍に配置されている。表示装置 5はモニタ等を備え、撮像装置 4によって 撮像された画像を表示する。 The light source 3 is a light source for irradiating the surface of the substrate 1 with illumination light. Light source 3 includes a halogen lamp, a Fresnel lens, and a liquid crystal scattering plate. By turning on and off the power supply of the liquid crystal scattering plate, switching between the scattering plate and the transparent plate is possible, and illumination is possible by switching between scattered light and convergent light. For example, the substrate 1 is arranged so as to irradiate diffused light or convergent light from the vertical direction. The imaging device 4 (imaging unit) includes an imaging optical system with a function of changing the imaging magnification and an imaging device such as a CCD (Charge Coupled Device), and images the surface of the substrate 1 to form a still image or a moving image. Image data to be generated. This imaging device 4 is arranged in the vicinity of the visual position P of the inspector. The display device 5 includes a monitor and displays an image captured by the image capturing device 4.
なお、撮像装置 4の撮像時の焦点距離は、 35mmフィルムカメラ換算で 45mmから 65mm程度のいわゆる標準レンズであることが望ましぐまた、基板 1から撮像装置 4 までの距離は、基板 1から検査者の目までの距離と略等しいことが望ましい。この構 成により実際の目視観察時に近い画像を得ることができる。  In addition, it is desirable that the focal length during imaging of the imaging device 4 is a so-called standard lens of about 45 mm to 65 mm in terms of a 35 mm film camera. The distance from the substrate 1 to the imaging device 4 is inspected from the substrate 1 It is desirable to be approximately equal to the distance to the person's eyes. With this configuration, an image close to the actual visual observation can be obtained.
[0019] 制御装置 6 (制御部)は、 CPU (Central Proccessing Unit:中央処理装置)等を備え 、載置台 2による基板 1の回転および揺動等の制御や、光源 3の光量等の制御、撮 像装置 4の撮像倍率や撮像動作の制御、表示装置 5による画像表示の制御を行うと 共に、撮像装置 4によって撮像された画像データを図示せぬ内部の記憶部に、上記 撮像時の制御状態を撮像した画像と対応させて格納して記憶する。 The control device 6 (control unit) includes a CPU (Central Processing Unit) and the like, controls the rotation and swing of the substrate 1 by the mounting table 2, controls the light amount of the light source 3, etc. Control of the imaging magnification and imaging operation of the imaging device 4 and control of image display by the display device 5 are performed, and image data captured by the imaging device 4 is stored in an internal storage unit (not shown). The state is stored and stored in association with the captured image.
なお、記憶部とは、ハードディスク記録媒体のような、長期間の情報記憶が可能な 媒体から、 RAM (Random Access Memory)のような、一時的に情報を記憶する媒体 までを含むものとする。 The storage unit can store information for a long period of time, such as a hard disk recording medium. It includes media and media that temporarily store information, such as RAM (Random Access Memory).
[0020] 撮像装置 4 (撮像部)は、光源 3と基板 1と目視時の視線の角度関係と、光源 3と基 板 1と撮像の光軸の角度関係とがほぼ等しくなるように配置されている。言い換えると 、撮像装置 4は、外観検査を行うとき、撮像の光軸と、検査者が基板 1を観察する視 線とがほぼ一致するように、つまり撮像方向と目視方向とがほぼ等しくなるように、検 查者の目視位置 P (すなわち検査者の視点)の近傍に配置されているため、検査者 の目視による像とほぼ同一の画像を生成することができる。検査者の目視による像と 同一の画像を得るためには、撮像装置 4の位置を目視位置 Pになるべく近い位置と すると共に、撮像装置 4の撮像方向を検査者の目視方向になるべく一致させることが 望ましい。撮像装置 4の位置を目視位置 Pになるべく近い位置とするためには、例え ば、撮像装置 4を検査者の頭部 (額の中央等)に装着したり、例えば、眼鏡のフレー ムゃレンズ部分に設置するなど撮像装置 4を検査者の片目、または片目付近に装着 したりすればよい。図 2には、 1例として、側頭部に撮像装置 4を装着した場合を図示 した。  [0020] The imaging device 4 (imaging unit) is arranged so that the angular relationship between the light source 3 and the substrate 1 and the line of sight when viewing is substantially equal to the angular relationship between the light source 3 and the substrate 1 and the optical axis of the imaging. ing. In other words, when performing an appearance inspection, the imaging device 4 is configured so that the imaging optical axis and the line of sight of the inspector observing the substrate 1 substantially coincide, that is, the imaging direction and the viewing direction are substantially equal. In addition, since it is arranged in the vicinity of the viewing position P of the examiner (that is, the viewpoint of the inspector), it is possible to generate an image that is almost the same as the image visually observed by the inspector. In order to obtain the same image as the inspector's visual image, the position of the imaging device 4 should be as close as possible to the visual position P, and the imaging direction of the imaging device 4 should be matched as much as possible to the visual direction of the inspector. Is desirable. In order to make the position of the imaging device 4 as close as possible to the viewing position P, for example, the imaging device 4 is mounted on the examiner's head (the center of the forehead, etc.) The imaging device 4 may be attached to or near one eye of the inspector, such as being installed in a part. FIG. 2 shows an example in which the imaging device 4 is attached to the temporal region.
[0021] また、撮像装置 4の撮像方向と検査者の目視方向とをほぼ同一とするためには、表 示装置 5に表示された画像を確認し、目視による像と表示画像とが同一となるように、 撮像装置 4の位置を修正する等の作業を行えばよい。また、ゴーグル型のヘッドマウ ントディスプレイを検査者が眼部に装着し、撮像装置 4によって撮像された基板 1の 撮像画像をそのヘッドマウントディスプレイに表示することにより、検査者の目視によ る像と、撮像装置 4によって撮像された画像とを一致させることを行ってもよい。  [0021] Further, in order to make the imaging direction of the imaging device 4 substantially the same as the viewing direction of the inspector, the image displayed on the display device 5 is confirmed, and the visual image and the display image are the same. Thus, an operation such as correcting the position of the imaging device 4 may be performed. In addition, the inspector wears a goggle-type head mount display on the eye, and the captured image of the substrate 1 imaged by the imaging device 4 is displayed on the head-mounted display, so that an image visually observed by the inspector can be obtained. The image captured by the imaging device 4 may be matched.
[0022] 次に、マクロ検査時の各構成の動作について説明する。検査時に制御装置 6は載 置台 2、光源 3、および撮像装置 4の各種設定を行う。すなわち、制御装置 6は、操作 部 123から出力された、検査者による操作の結果を示す信号に基づいて、あるいは 予め設定されている情報に基づいて、水平面に対して基板 1をある角度で保持する ことを指示する信号を載置台 2へ出力する。載置台 2は、この信号に基づいて、指示 された角度で基板 1を支持する。基板 1を回転しながら検査を行う場合には、制御装 置 6は、回転の指示と共に回転速度や回転方向等を示す信号を載置台 2へ出力す る。載置台 2は、この信号に基づいて、基板 1を主面に平行な平面内で回転させる。 また、制御装置 6は、光量等の設定を指示する信号を光源 3へ出力する。光源 3は、 この信号に基づいて、所定の光量、波長、または拡散光、収束光等の照明光を基板 1に照射する。 Next, the operation of each component at the time of macro inspection will be described. At the time of inspection, the control device 6 makes various settings for the mounting table 2, the light source 3, and the imaging device 4. That is, the control device 6 holds the substrate 1 at a certain angle with respect to the horizontal plane based on a signal output from the operation unit 123 and indicating a result of the operation by the inspector or based on preset information. A signal instructing to do is output to the mounting table 2. The mounting table 2 supports the substrate 1 at the designated angle based on this signal. When the inspection is performed while rotating the substrate 1, the control device 6 outputs a signal indicating the rotation speed, the rotation direction, and the like to the mounting table 2 together with the rotation instruction. The The mounting table 2 rotates the substrate 1 in a plane parallel to the main surface based on this signal. In addition, the control device 6 outputs a signal for instructing setting of the light amount or the like to the light source 3. Based on this signal, the light source 3 irradiates the substrate 1 with illumination light such as a predetermined light amount, wavelength, or diffused light or convergent light.
[0023] また、制御装置 6は、撮像装置 4に対して撮像条件等の設定を示す信号を出力す る。撮像装置 4は、この信号に基づいて、撮像倍率等を設定する。続いて、制御装置 6は、撮像を指示する信号を撮像装置 4へ出力する。撮像装置 4は、この信号に基づ いて、基板 1の表面を撮像し、画像データを生成して制御装置 6へ出力する。制御装 置 6は、内部の記憶部に画像データをー且格納した後、所定のタイミングで画像デー タを記憶部から読み出し、表示装置 5へ出力する。表示装置 5は、この画像データに 基づいた画像を表示する。上記の動作の繰り返しによって、表示装置 5には動画像 が表示される。すなわち、撮像装置 4は、動画像を構成する画像データを連続的に 生成し、制御装置 6へ出力する。制御装置 6は、撮像装置 4から出力された画像デー タを順番に表示装置 5へ出力する。表示装置 5は、制御装置 6から連続的に出力され た画像データに基づ ヽた動画像を表示する。  In addition, the control device 6 outputs a signal indicating setting of imaging conditions and the like to the imaging device 4. The imaging device 4 sets the imaging magnification and the like based on this signal. Subsequently, the control device 6 outputs a signal instructing imaging to the imaging device 4. Based on this signal, the imaging device 4 images the surface of the substrate 1, generates image data, and outputs it to the control device 6. The control device 6 stores the image data in the internal storage unit, reads the image data from the storage unit at a predetermined timing, and outputs it to the display device 5. The display device 5 displays an image based on this image data. A moving image is displayed on the display device 5 by repeating the above operation. That is, the imaging device 4 continuously generates image data constituting the moving image and outputs it to the control device 6. The control device 6 sequentially outputs the image data output from the imaging device 4 to the display device 5. The display device 5 displays a moving image based on the image data continuously output from the control device 6.
[0024] 撮像と同時に、検査者によって基板 1の外観検査が行われる。操作部 123から、検 查者によるジョイスティック等の操作の結果を示す信号が制御装置 6に入力される。 制御装置 6は、この信号に基づいて、基板 1の揺動 (揺動の方向および角度の変化) を示す信号を載置台 2へ出力する。載置台 2は、この信号に基づいて、基板 1を揺動 させる。  [0024] At the same time as imaging, an inspector performs an appearance inspection of the substrate 1. A signal indicating the result of the operation of the joystick or the like by the examiner is input from the operation unit 123 to the control device 6. Based on this signal, the control device 6 outputs a signal indicating the swing of the substrate 1 (change in the swing direction and angle) to the mounting table 2. The mounting table 2 swings the substrate 1 based on this signal.
[0025] 目視によって欠陥が発見された場合、そのときの画像を保存しておくため、検査者 によって操作部 123のスィッチ等が押下される。操作部 123は、スィッチ等の操作を 示す信号を制御装置 6へ出力する。制御装置 6は、この信号を検出すると、撮像装置 4から出力された画像データを、検査結果を示す静止画像データとして内部の記憶 部に格納する。検査の終了後、操作部 123を介して、検査結果の表示が指示された 場合、制御装置 6は、内部の記憶部力 画像データを読み出して表示装置 5へ出力 する。表示装置 5は、画像データに基づいた画像を表示する。これにより、検査時の 目視による像を検査後に再確認することができる。 [0026] なお、検査者は、検査中に表示装置 5に表示された画像を確認し、目視〖こよる像と 表示画像とが著しく異なる場合には、撮像装置 4の位置を修正する等の作業を行え ばよい。また、特定の静止画像データのみを検査結果として保存するのではなぐ動 画像データを検査結果として保存してもよい。また、撮像装置 4は、静止画像のみの 撮像を行うものであってもよぐ検査者力も撮像の指示を受けた制御装置 6からの指 示があつたときのみ、その時点での静止画像を制御装置 6へ出力してもよい。 When a defect is found by visual inspection, the inspector presses the switch or the like of the operation unit 123 in order to save the image at that time. The operation unit 123 outputs a signal indicating an operation of a switch or the like to the control device 6. When detecting this signal, the control device 6 stores the image data output from the imaging device 4 in the internal storage unit as still image data indicating the inspection result. When the display of the inspection result is instructed via the operation unit 123 after the end of the inspection, the control device 6 reads out the internal storage unit force image data and outputs it to the display device 5. The display device 5 displays an image based on the image data. As a result, the visual image at the time of inspection can be reconfirmed after inspection. [0026] It should be noted that the inspector checks the image displayed on the display device 5 during the inspection, and corrects the position of the imaging device 4 if the image obtained by visual inspection differs significantly from the display image. You can do the work. Further, moving image data that does not store only specific still image data as an inspection result may be stored as an inspection result. In addition, the imaging device 4 may capture only a still image, and only when the inspector's power is instructed by the control device 6 that has received an imaging instruction, the still image at that time is displayed. You may output to the control apparatus 6.
[0027] 次に、本実施形態の変形例について説明する。図 3A、 3Bに示されるように、目視 による基板 1の観察時には、観察の邪魔にならない位置に撮像装置 4を退避させて おき(図 3A参照)、撮像時に目視位置 Pと同一または近傍の位置に撮像装置 4を移 動させる(図 3B参照)。  Next, a modified example of the present embodiment will be described. As shown in FIGS. 3A and 3B, when observing the substrate 1 by visual observation, the imaging device 4 is retracted to a position that does not interfere with the observation (see FIG. 3A), and a position that is the same as or close to the visual position P at the time of imaging. Move the imaging device 4 to (see Fig. 3B).
[0028] 撮像装置 4を保持して移動すると共に、観察時および撮像時に撮像装置 4を所定 の位置に固定する撮像保持部 10が設けられている。この撮像保持部 10は、例えば 一軸方向に物体を搬送可能なレールに撮像装置 4を装着し、上下ある 、は左右に撮 像装置 4をスライドさせることにより、実現することができる。また、図 3A、 3Bに示した ように、伸縮可能に構成されたアーム 11に撮像装置 4を装着し、このアーム 11によつ て撮像装置 4を移動させてもょ ヽ。  An imaging holding unit 10 is provided that holds and moves the imaging device 4 and fixes the imaging device 4 at a predetermined position during observation and imaging. The imaging holding unit 10 can be realized, for example, by mounting the imaging device 4 on a rail capable of transporting an object in a uniaxial direction and sliding the imaging device 4 vertically or horizontally. Further, as shown in FIGS. 3A and 3B, the imaging device 4 may be mounted on the arm 11 configured to be extendable and the imaging device 4 may be moved by the arm 11.
また、複数本のアームを有する多関節構造を備えた機構を用いて、撮像装置 4を移 動させてもよい。  Further, the imaging device 4 may be moved using a mechanism having a multi-joint structure having a plurality of arms.
[0029] 撮像保持部 10の動作は、制御装置 6によって制御される。すなわち、検査者による 基板 1の目視時に、撮像装置 4が図 3Bの撮像位置にある場合には、制御装置 6は、 撮像装置 4の退避を示す信号を撮像保持部 10へ出力する。撮像保持部 10は、この 信号に基づいて、観察の邪魔にならない位置に撮像装置 4を移動させる。また、撮像 時には、制御装置 6は、検査者による撮像の指示を検出し、その指示に基づいて、撮 像装置 4の撮像位置への移動を示す信号を撮像保持部 10へ出力する。撮像保持部 10は、この信号に基づいて、目視位置 Pと同一または近傍の位置に撮像装置 4を移 動させる。  [0029] The operation of the imaging holding unit 10 is controlled by the control device 6. That is, when the imaging device 4 is at the imaging position in FIG. 3B when the inspector visually observes the substrate 1, the control device 6 outputs a signal indicating the withdrawal of the imaging device 4 to the imaging holding unit 10. Based on this signal, the imaging holding unit 10 moves the imaging device 4 to a position that does not interfere with observation. At the time of imaging, the control device 6 detects an imaging instruction from the examiner, and outputs a signal indicating movement of the imaging device 4 to the imaging position to the imaging holding unit 10 based on the instruction. Based on this signal, the imaging holding unit 10 moves the imaging device 4 to a position that is the same as or close to the viewing position P.
[0030] 目視による像と、撮像装置 4によって生成された画像とを同一とする(目視位置 Pと 撮像時の撮像装置 4の位置を同一とすると共に、目視方向と撮像装置 4の撮像方向 を同一とする)ためには、以下のようにすればよい。例えば、撮像時の撮像装置 4の 位置を固定位置とし、目視位置 Pをこの固定位置に一致させる。この場合、目視位置 Pを固定位置とするための目視の照準を設ける。例えば、 2枚のガラス板 (レチクル板 )のそれぞれに十字等の印を付け、ガラス板の主面に垂直な方向に沿って距離を隔 てて各ガラス板を配置し、検査者は、それらのガラス板に付けられた印が重なって見 えるように基板 1を観察する。 [0030] The visual image and the image generated by the imaging device 4 are the same (the visual position P is the same as the position of the imaging device 4 at the time of imaging, and the visual direction and the imaging direction of the imaging device 4 are the same). To be the same), the following may be performed. For example, the position of the imaging device 4 at the time of imaging is set as a fixed position, and the viewing position P is matched with this fixed position. In this case, a visual sight is provided to make the visual position P a fixed position. For example, each of two glass plates (reticle plates) is marked with a cross or the like, and each glass plate is arranged at a distance along a direction perpendicular to the main surface of the glass plate. Observe substrate 1 so that the marks on the glass plate overlap.
[0031] また、例えば検査者の高さ (身長あるいは座高)と撮像装置 4の高さとの対応関係を 予め求めておき、検査者の高さに応じて撮像装置 4の高さを設定してもよい。上記の 目視方向に合わせて撮像装置 4の撮像方向も予め設定しておく。本変形例によれば 、検査者は、目視時に撮像装置 4を気にすることなぐ基板 1の外観検査を行うことが できる。 [0031] Also, for example, a correspondence relationship between the height (height or sitting height) of the inspector and the height of the imaging device 4 is obtained in advance, and the height of the imaging device 4 is set according to the height of the inspector. Also good. The imaging direction of the imaging device 4 is also set in advance according to the viewing direction. According to this modified example, the inspector can perform an appearance inspection of the substrate 1 without worrying about the imaging device 4 at the time of visual observation.
[0032] 次に、本実施形態の他の変形例について説明する。図 4A、 4Bに示されるように、 目視位置 P10 (検査者の視点の位置)と撮像装置 4の位置 P20 (例えば撮像装置 4 が備える撮像素子の撮像面の中心)とを固定位置とする。上述した方法と同一の方 法等により、目視方向に伸びる基準軸 (例えば目視位置 P10と基板 1の中心位置じと を結ぶ軸)が水平面となす角度と、撮像装置 4の撮像方向に伸びる基準軸 (例えば 撮像装置 4が備える撮像光学系の基板 1の中心位置 Cに向けた光軸)が水平面とな す角度は等しく設定されている。また、撮像装置 4の位置 P20と目視位置 P10は、任 意の基準水平面力もの高さが等しぐ基板 1の中心位置 C力も等距離の点を結んで 形成される等高線 L上にある。また、基板 1は、載置台 2によって、基板 1の中心位置 Cを通って鉛直方向に伸びる回転軸 Θを中心として、主面と水平面とがなす角度を 保ったまま、回転(回動)可能である。  Next, another modification of the present embodiment will be described. As shown in FIGS. 4A and 4B, the viewing position P10 (the position of the inspector's viewpoint) and the position P20 of the imaging device 4 (for example, the center of the imaging surface of the imaging device included in the imaging device 4) are fixed positions. Using the same method as described above, the reference axis extending in the viewing direction (for example, the axis connecting the viewing position P10 and the center position of the substrate 1) and the reference plane extending in the imaging direction of the imaging device 4 The angles at which the axes (for example, the optical axis toward the center position C of the substrate 1 of the imaging optical system included in the imaging device 4) and the horizontal plane are set to be equal. In addition, the position P20 and the visual position P10 of the imaging device 4 are on the contour line L formed by connecting the points of the equidistant points to the center position C force of the substrate 1 where the height of any reference horizontal plane force is equal. In addition, the substrate 1 can be rotated (rotated) by the mounting table 2 while maintaining the angle between the main surface and the horizontal plane around the rotation axis Θ extending vertically through the center position C of the substrate 1 It is.
ここで、基板 光源 3と、検査者の目視位置 P10、撮像装置 4の配置は、次のよう な相対的な関係を満たすように制御すればよ!、。  Here, the arrangement of the substrate light source 3, the inspector's visual position P10, and the imaging device 4 should be controlled so as to satisfy the following relative relationship!
まず、目視観察時の光源 3 (照明部)の基板 1の中心位置 Cへ向力 光軸方向、基 板 1の法線方向、および基板 1の中心位置 Cから検査者の目視方向へ伸びる基準軸 の方向の相互になす 3つの角度力 撮像装置 4による撮像時の光源 3の基板 1の中 心位置 Cへ向力う光軸の方向、基板 1の法線方向、および基板 1の中心位置 Cに向 力う撮像装置 4の撮像光学系の光軸の相互になる 3つの角度に、それぞれ等しくなる ようにする。そして、目視観察時の光源 3、基板 1の中心位置 C、目視位置 PIOのそ れぞれの相対位置が、撮像装置 4による撮像時の光源 3、基板 1の中心位置 C、撮像 装置 4の位置のそれぞれの相対位置と等しくなるようにする。すなわち、各配置位置 1S 中心位置 Cを中心に目視時と撮像時とで全体として回動したような位置関係にな るようにする。 First, the directional force toward the center position C of the substrate 1 of the light source 3 (illumination part) during visual observation. The reference extending from the optical axis direction, the normal direction of the substrate 1 and the center position C of the substrate 1 to the inspector's viewing direction. Three angular forces in the direction of the axis mutually The light source during imaging by the imaging device 4 The center position of the substrate 1 of the substrate 3 of the light source 3, the normal direction of the substrate 1 and the center position of the substrate 1 To C The three optical angles of the imaging optical system of the powerful imaging device 4 should be equal to each other. The relative positions of the light source 3 during visual observation, the center position C of the substrate 1 and the visual position PIO are the light source 3, the center position C of the substrate 1, and the imaging device 4 when the imaging device 4 captures images. It should be equal to each relative position. In other words, the positional relationship is such that the entire arrangement position 1S is rotated around the center position C when viewed and when imaged.
そのため、例えば、光源 3に中心位置 Cを中心として自在に回動する回動装置があ れば、撮像装置 4の位置 P20と目視位置 P10とは、必ずしも等高線 L上にある必要は ない。すなわち、目視時に光源 3、基板 1の主面、目視位置 P10のそれぞれの相対 位置、およびの光源 3から中心位置 Cへ向力 光軸、目視方向に伸びる基準軸、基 板 1の主面の法線の各軸の角度関係を一定に保ったまま、撮像時に載置台 2を回転 、揺動し、光源 3、基板 1の主面、撮像装置 4のそれぞれの位置、および光軸 3から中 心位置 Cへ向力う光軸、撮像光学系の中心位置 Cに向けた光軸、基板 1の周面の法 線の各軸の角度関係に変換が可能となって 、てもよ 、。  Therefore, for example, if the light source 3 has a turning device that freely turns around the center position C, the position P20 and the viewing position P10 of the imaging device 4 do not necessarily have to be on the contour line L. That is, the light source 3, the main surface of the substrate 1, and the relative position of the viewing position P10, and the directional force from the light source 3 to the center position C when viewed, the optical axis, the reference axis extending in the viewing direction, and the main surface of the substrate 1 While maintaining the angle relationship between the axes of the normal lines, the mounting table 2 is rotated and swung during imaging, and the light source 3, the main surface of the substrate 1, the respective positions of the imaging device 4, and the optical axis 3 It is possible to convert the optical axis toward the center position C, the optical axis toward the center position C of the imaging optical system, and the angular relationship of each axis of the normal of the peripheral surface of the substrate 1.
さらに、基板 1の中心位置 Cでの法線回りの回転角度も目視時、撮像時で相対的に 角度関係が等しくなるように載置台 2を制御する。これにより目視時と撮像時とで上下 左右の一致した画像が得られる。また基板 1に形成されたパターンによる回折光の観 察においても目視時、撮像時で同様な画像が得られる。  Further, the mounting table 2 is controlled so that the rotation angle around the normal line at the center position C of the substrate 1 is relatively equal when viewed and imaged. This makes it possible to obtain images that coincide vertically and horizontally when viewed and when imaged. Further, when observing the diffracted light by the pattern formed on the substrate 1, a similar image can be obtained at the time of visual observation and at the time of imaging.
[0033] ここで、目視位置 P10と基板 1の中心位置 Cとを結ぶ線分、および撮像装置 4の位 置 P20と基板 1の中心位置 Cとを結ぶ線分によって形成される角の角度を θ 1とする 。また、制御装置 6の記憶部には、目視位置 P10および撮像装置 4の位置 P20の位 置情報や角度 Θ 1等の情報が格納されているものとする。  [0033] Here, the angle formed by the line segment connecting the visual position P10 and the center position C of the substrate 1 and the line segment connecting the position P20 of the imaging device 4 and the center position C of the substrate 1 are expressed as follows. Let θ1. Further, it is assumed that the storage unit of the control device 6 stores information such as the position information of the viewing position P10 and the position P20 of the imaging device 4 and the angle Θ1.
[0034] まず、図 4Aの状態にぉ 、て、検査者による目視が行われる。ここではレクチル板等 によって目視方向に伸びる基準軸が決定されているものとする。続いて、目視時の像 を画像として保存するため、検査者によって図示せぬ操作部のスィッチ等が押下さ れる。  First, in the state of FIG. 4A, visual inspection is performed by an inspector. Here, it is assumed that the reference axis extending in the viewing direction is determined by a reticle plate or the like. Subsequently, in order to save the visual image as an image, a switch or the like of the operation unit (not shown) is pressed by the inspector.
操作部は、スィッチ等の操作を示す信号を制御装置 6へ出力する。制御装置 6は、 この信号を検出すると、基板 1を角度 θ 1だけ回転することを示す信号を載置台 2へ 出力する。載置台 2は、この信号に基づいて、目視位置 P10から撮像装置 4の位置 P 20へ向かう向きに、回転軸 Θを中心に基板 1を角度 θ 1だけ回転させる(図 4B参照) 。続いて、撮像装置 4は基板 1の表面を撮像して画像データを生成し、制御装置 6へ 出力する。制御装置 6は、内部の記憶部に画像データを保存する。 The operation unit outputs a signal indicating the operation of the switch or the like to the control device 6. Upon detecting this signal, the control device 6 sends a signal indicating that the substrate 1 is rotated by the angle θ 1 to the mounting table 2. Output. Based on this signal, the mounting table 2 rotates the substrate 1 by an angle θ1 about the rotation axis Θ in a direction from the viewing position P10 toward the position P20 of the imaging device 4 (see FIG. 4B). Subsequently, the imaging device 4 captures the surface of the substrate 1 to generate image data and outputs it to the control device 6. The control device 6 stores image data in an internal storage unit.
[0035] なお、目視による像と、撮像装置 4によって生成された画像とを同一とするためには 、光源 3は鉛直方向(または回転軸 0に平行な方向)から照射光を基板 1に照射する ことが望ましい。また、光源 3による光の照射の中心位置が基板 1の中心位置 Cと一 致することが望ましい。本変形例によれば、撮像装置 4を目視位置に配置することが できない場合であっても、目視による像と同一の画像を得ることができる。 Note that in order to make the visual image and the image generated by the imaging device 4 the same, the light source 3 irradiates the substrate 1 with irradiation light from the vertical direction (or the direction parallel to the rotation axis 0). It is desirable to do so. In addition, it is desirable that the center position of light irradiation by the light source 3 matches the center position C of the substrate 1. According to this modification, even when the imaging device 4 cannot be disposed at the viewing position, the same image as the visual image can be obtained.
また、撮像装置 4の位置は、目視観察時の基板の観察を遮ることのない位置に配 置されているのが望ましい。特に、基板搬送装置 113の回転軸 114よりも観察者に対 して奥側(ローダ部103側)にあることが望ましい。 In addition, it is desirable that the position of the imaging device 4 is arranged at a position that does not block the observation of the substrate during visual observation. In particular, it is desirable to be on the back side (loader unit 103 side) with respect to the observer with respect to the rotating shaft 114 of the substrate transport apparatus 113.
[0036] 上述したように、本実施形態によれば、目視による像と同一の像を示す画像データ を生成し、保存 (記憶)するようにしたので、目視による外観検査の結果を共有化する ことができる。また、外観検査の結果を再確認する際には、保存した画像データを表 示等するだけでよいので、再度検査を行う必要がなくなり、作業効率を向上させること ができる。  [0036] As described above, according to the present embodiment, the image data indicating the same image as the visual image is generated and stored (stored), so that the result of the visual inspection is shared. be able to. Further, when re-checking the result of the appearance inspection, it is only necessary to display the stored image data, so that it is not necessary to perform the inspection again and work efficiency can be improved.
[0037] [第 2の実施形態]  [0037] [Second Embodiment]
次に、本発明の第 2の実施形態について説明する。図 5は、本実施形態による外観 検査装置の構成を示すブロック図である。  Next, a second embodiment of the present invention will be described. FIG. 5 is a block diagram showing the configuration of the appearance inspection apparatus according to the present embodiment.
本実施形態においては、光源 3から照射されて基板 1によって散乱または回折され た光を反射するミラー 7a (反射板)を含むミラー部 7 (反射板保持部)が基板 1と目視 位置 Pとの間に設けられている。このミラー部 7は、ミラー 7aをその一端を中心として 回動する機構、もしくはミラー 7aを鉛直面内または水平面内で平行移動する機構を 備えている。ミラー 7aを回動もしくは平行移動する機構は、第 1の実施形態において 説明した、複数本のアームを有する多関節構造や、一軸方向に物体を搬送可能なレ ール、伸縮自在に構成されたアーム等を用いて構成すればょ 、。  In the present embodiment, the mirror unit 7 (reflecting plate holding unit) including the mirror 7a (reflecting plate) that reflects the light irradiated from the light source 3 and scattered or diffracted by the substrate 1 is formed between the substrate 1 and the viewing position P. It is provided in between. The mirror unit 7 includes a mechanism that rotates the mirror 7a around one end thereof, or a mechanism that translates the mirror 7a in a vertical plane or a horizontal plane. The mechanism for rotating or translating the mirror 7a is configured as described in the first embodiment, such as a multi-joint structure having a plurality of arms, a rail capable of conveying an object in a uniaxial direction, and a telescopic structure. If it is configured with arms, etc.
[0038] 撮像装置 4は、ミラー部 7のミラー 7aを介して、目視位置 Pと共役な位置に配置され ている。共役な位置とは、目視位置 Pからの目視による像と、基板 1によって散乱また は回折されミラー 7aによって反射されて撮像装置 4に入射した光に基づいた画像と が同一となるような位置である。言い換えると、撮像装置 4は所定の位置に予め配置 されており、撮像時にミラー部 7は、検査者の目視による像と、撮像装置 4に入射した 光に基づいた画像とが同一となる位置にミラー 7aを配置する。 [0038] The imaging device 4 is arranged at a position conjugate with the viewing position P via the mirror 7a of the mirror unit 7. ing. The conjugate position is a position where the visual image from the visual position P and the image based on the light that is scattered or diffracted by the substrate 1 and reflected by the mirror 7a and incident on the imaging device 4 are the same. is there. In other words, the imaging device 4 is arranged in advance at a predetermined position, and at the time of imaging, the mirror unit 7 is in a position where an image visually observed by the inspector and an image based on light incident on the imaging device 4 are the same. Place mirror 7a.
[0039] 図 6に示されるように、撮像時にミラー 7aは基板 1と目視位置 Pとの間に配置されて おり、ミラー 7aによって反射された光に基づいた像を撮像装置 4が撮像する。撮像時 に撮像装置 4によって生成された画像データは制御装置 6に出力され、内部の記憶 部に保存される。一方、目視による基板 1の外観観察時には、制御装置 6は、ミラー 7 aの移動を指示する信号をミラー部 7へ出力する。ミラー部 7は、この信号に基づいて 図示せぬモータ等を駆動し、ミラー 7aをその一端を中心として回転させることにより、 基板 1からの光が直接検査者の目に届いて、検査者による基板 1の目視が可能とな るように、観察の邪魔にならない位置にミラー 7aを退避させる(図 7A参照)。  As shown in FIG. 6, the mirror 7a is arranged between the substrate 1 and the viewing position P during imaging, and the imaging device 4 captures an image based on the light reflected by the mirror 7a. Image data generated by the imaging device 4 at the time of imaging is output to the control device 6 and stored in an internal storage unit. On the other hand, when visually observing the appearance of the substrate 1, the control device 6 outputs a signal instructing the movement of the mirror 7 a to the mirror unit 7. Based on this signal, the mirror unit 7 drives a motor or the like (not shown) and rotates the mirror 7a around its one end, so that the light from the substrate 1 reaches the eyes of the inspector directly, and the inspector The mirror 7a is retracted to a position that does not interfere with the observation so that the substrate 1 can be visually observed (see FIG. 7A).
[0040] あるいは、ミラー部 7は、制御装置 6からの信号に基づいて図示せぬモータ等を駆 動し、ミラー 7aを鉛直面内または水平面内で平行移動することにより、基板 1からの 光が直接検査者の目に届いて、検査者による基板 1の目視が可能となるように、観察 の邪魔にならない位置にミラー 7aを退避させる(図 7B参照)。欠陥の発見時等に検 查者による指示に基づいて撮像を行う際には、制御装置 6はミラー 7aの移動を指示 する信号をミラー部 7へ出力し、この信号に基づいて、ミラー部 7はミラー 7aを回動ま たは平行移動させることにより、ミラー 7aを所定の撮像位置に移動させる。  Alternatively, the mirror unit 7 drives a motor or the like (not shown) based on a signal from the control device 6 and translates the mirror 7a in a vertical plane or a horizontal plane, thereby allowing light from the substrate 1 to move. The mirror 7a is retracted to a position that does not obstruct the observation so that it can reach the eyes of the inspector and the inspector can visually observe the substrate 1 (see FIG. 7B). When imaging is performed based on an instruction from the examiner when a defect is found, the control device 6 outputs a signal instructing movement of the mirror 7a to the mirror unit 7, and based on this signal, the mirror unit 7 Moves the mirror 7a to a predetermined imaging position by rotating or translating the mirror 7a.
[0041] 本実施形態において、目視位置 Pは固定位置であることが望ましい。そのためには 、例えば、第 1の実施形態において説明したように、目視位置 Pを固定位置とするた めの目視の照準を設ければよい。あるいは、撮像時の撮像装置 4およびミラー 7aの 位置関係を固定して、撮像装置 4によって撮像された画像を表示装置 5に表示すると 共に、図 6の状態と図 7Aまたは図 7Bの状態とを何度力切り替え、表示装置 5によつ て表示された画像を確認しながら目視位置をずらしていき、表示装置 5によって表示 された画像と目視による像とがー致するように目視位置を決定してもよ ヽ。  [0041] In the present embodiment, the viewing position P is preferably a fixed position. For this purpose, for example, as described in the first embodiment, a visual aim for setting the visual position P to the fixed position may be provided. Alternatively, the positional relationship between the imaging device 4 and the mirror 7a at the time of imaging is fixed, the image captured by the imaging device 4 is displayed on the display device 5, and the state of FIG. 6 and the state of FIG. 7A or 7B are displayed. Switch the power many times, shift the viewing position while checking the image displayed on the display device 5, and determine the viewing position so that the image displayed by the display device 5 matches the image by visual observation. You can do it.
[0042] また、撮像時のミラー 7aと撮像装置 4の位置関係を決定する場合には、目視位置 P および撮像装置 4の位置を固定して、図 6の状態と図 7Aまたは図 7Bの状態とを何度 か切り替え、表示装置 5によって表示された画像を確認しながらミラー 7aの位置 (角 度も含む)を変化させて 、き、表示装置 5によって表示された画像と目視による像とが 一致するようにミラー 7aの位置を決定すればよい。あるいは、目視位置 Pおよびミラー 7aの位置を固定して、図 6の状態と図 7Aまたは図 7Bの状態とを何度力切り替え、表 示装置 5によって表示された画像を確認しながら撮像装置 4の位置を変化させていき 、表示装置 5によって表示された画像と目視による像とがー致するように撮像装置 4 の位置を決定すればょ 、。 [0042] When determining the positional relationship between the mirror 7a and the imaging device 4 at the time of imaging, the visual position P The position of the imaging device 4 is fixed, the state shown in FIG. 6 and the state shown in FIG. 7A or 7B are switched several times, and the position of the mirror 7a (the angle is also changed) while checking the image displayed by the display device 5. In other words, the position of the mirror 7a may be determined so that the image displayed by the display device 5 coincides with the visual image. Alternatively, the viewing position P and the position of the mirror 7a are fixed, the power of the state shown in FIG. 6 and the state shown in FIG. 7A or 7B is switched many times, and the image pickup device 4 is checked while checking the image displayed by the display device 5. If the position of the image pickup device 4 is determined so that the image displayed by the display device 5 matches the visual image, the position of the image pickup device 4 is changed.
[0043] 本実施形態によれば、第 1の実施形態と同様の効果を得ることができる。また、第 1 の実施形態に示されるような位置 (反射板を介さなくても基板 1からの光が届く位置) に撮像装置 4を配置することができない場合であっても、目視による像と同一の画像 を得ることができる。  [0043] According to the present embodiment, the same effects as those of the first embodiment can be obtained. Further, even when the imaging device 4 cannot be arranged at a position as shown in the first embodiment (a position where the light from the substrate 1 reaches without passing through a reflector), The same image can be obtained.
[0044] [第 3の実施形態]  [0044] [Third embodiment]
次に、本発明の第 3の実施形態について説明する。図 8に示されるように、本実施 形態においては、基板 1と目視位置 Pとの間にハーフミラー 8 (半透過反射板)が設け られている。ハーフミラー 8は、基板 1によって散乱または回折された光を透過させる 機能および反射する機能を備えている。ハーフミラー 8を透過した光は、目視位置 P に位置する検査者の目に届き、基板 1の表面像として、検査者によって認識される。 また、ハーフミラー 8によって反射された光は撮像装置 4に入射する。第 2の実施形態 と同様に、撮像装置 4は、ハーフミラー 8を介して、目視位置 Pと共役な位置に配置さ れている。なお、図 8においては、撮像装置 4が、撮像面を上向きにしてハーフミラー 8の下に配置されている力 撮像面を下向きにしてハーフミラー 8の上に配置されて いてもよい。  Next, a third embodiment of the present invention will be described. As shown in FIG. 8, in the present embodiment, a half mirror 8 (semi-transmissive reflector) is provided between the substrate 1 and the viewing position P. The half mirror 8 has a function of transmitting and reflecting light scattered or diffracted by the substrate 1. The light transmitted through the half mirror 8 reaches the eyes of the inspector located at the viewing position P and is recognized by the inspector as a surface image of the substrate 1. Further, the light reflected by the half mirror 8 enters the imaging device 4. Similar to the second embodiment, the imaging device 4 is disposed at a position conjugate with the viewing position P via the half mirror 8. In FIG. 8, the imaging device 4 may be disposed on the half mirror 8 with the imaging surface facing upward and the force imaging surface facing downward.
[0045] 本実施形態の動作は第 1の実施形態と同様である。すなわち、撮像装置 4によって 画像データが生成され、その画像データは制御装置 6へ出力され、内部の記憶部に 格納される。また、画像データは記憶部から読み出されて表示装置 5へ出力され、表 示装置 5において画像が表示される。検査者は、基板 1の揺動等を行いながら、欠陥 の有無を判断する。欠陥があった場合等により画像データを保存する際には、操作 者による指示に基づいて、撮像装置 4から出力された画像データを制御装置 6が記 憶部に格納する。また、目視位置 Pや、撮像装置 4の位置、ハーフミラー 8の位置の 決定は、第 2の実施形態と同様にして行えばよい。 The operation of this embodiment is the same as that of the first embodiment. That is, image data is generated by the imaging device 4, and the image data is output to the control device 6 and stored in an internal storage unit. Further, the image data is read from the storage unit and output to the display device 5, and the image is displayed on the display device 5. The inspector judges whether there is a defect while swinging the substrate 1 or the like. When saving image data due to defects, etc. Based on the instruction from the user, the control device 6 stores the image data output from the imaging device 4 in the storage unit. Further, the determination of the viewing position P, the position of the imaging device 4, and the position of the half mirror 8 may be performed in the same manner as in the second embodiment.
[0046] 次に、本実施形態の変形例について説明する。図 9に示されるように、外観検査装 置と検査者との間を区切るように隔壁部材 9が設けられている。この隔壁部材 9は、検 查者から放出される各種の蒸気、粒子、および塵埃等の汚染物の一部が空気中を 漂って、検査中の基板 1の方向に最短距離で流れていくのを防止するために設けら れている。この隔壁部材 9の一部に開口部が設けられ、その開口部にハーフミラー 8 が配置されている。つまり、ハーフミラー 8は、基板 1を観察するための観察窓として の役割も有している。 Next, a modification of this embodiment will be described. As shown in FIG. 9, a partition wall member 9 is provided so as to separate the appearance inspection apparatus from the inspector. The bulkhead member 9 allows various vapors, particles, dust and other contaminants released from the inspector to drift in the air and flow in the direction of the substrate 1 being inspected at the shortest distance. It is provided to prevent this. An opening is provided in a part of the partition member 9, and a half mirror 8 is disposed in the opening. That is, the half mirror 8 also has a role as an observation window for observing the substrate 1.
[0047] なお、図 1の外観検査装置 100のローダ部 103の基板搬送ロボット 105の可動な範 囲部分と、検査部 102のうち、モニタ 122、操作部 123、および顕微鏡装置 119の接 眼レンズ 120を除く部分と力 ミニエン(Mini-environment)と呼ばれる隔壁部材で囲 まれていてもよい。  It should be noted that the movable range portion of the substrate transfer robot 105 of the loader unit 103 of the appearance inspection device 100 of FIG. 1 and the eyepiece lens of the monitor 122, the operation unit 123, and the microscope device 119 among the inspection unit 102. The portion excluding 120 and the force may be surrounded by a partition member called a mini-environment.
外観検査装置に、隔壁部材 9 (ミニエン)が設けられ、その上部にフィルタファンュ- ット (FFU)を設けて、外観検査装置の内部に洗浄度の高い空気を強制的に導入す ることにより、外観検査装置内部で発生した微小な異物を下方に落下させ、装置外 部に排出する構成としてもよい。つまり、隔壁部材 9は、外観検査装置と検査者との 間を遮るのみならず、外観検査装置全体を覆うように形成され、また、隔壁部材 9の 開口部には透明板を配置し、隔壁部材 9の外側にハーフミラー 8を設けてもよい。  The appearance inspection device is provided with a partition member 9 (mini-ene), and a filter funnel (FFU) is provided above it to forcibly introduce clean air into the appearance inspection device. Thus, a configuration may be adopted in which minute foreign matter generated inside the appearance inspection apparatus is dropped downward and discharged to the outside of the apparatus. That is, the partition member 9 is formed so as to cover not only the appearance inspection apparatus and the inspector but also the entire appearance inspection apparatus, and a transparent plate is disposed in the opening of the partition member 9 so that the partition wall A half mirror 8 may be provided outside the member 9.
[0048] 本実施形態によれば、第 1の実施形態と同様の効果を得ることができる。また、ミラ 一 7aに代えてハーフミラー 8を設けることにより、ミラー 7aを回動または移動する機構 を設けなくてよいので、第 2の実施形態と比較して、構造がより簡単になる。  [0048] According to the present embodiment, the same effects as those of the first embodiment can be obtained. Further, by providing the half mirror 8 in place of the mirror 7a, it is not necessary to provide a mechanism for rotating or moving the mirror 7a, so that the structure becomes simpler compared with the second embodiment.
[0049] なお、ミラー 7aやハーフミラー 8に代えて、プリズムやバンドパスフィルタ一等を用い てもよい。また、上述した全ての実施形態において、目視による像と、撮像装置 4によ つて撮像された画像は実質的に同一であればよい。実質的に同一とは、例えば撮像 装置 4における撮像倍率に応じて発生する像の見え方の違いを、像を異ならしめるも のとはせず、欠陥の種別および欠陥の位置等が同一であると判断できる限り、像を同 一とみなすと 、うことである。 Note that a prism, a band-pass filter, or the like may be used instead of the mirror 7a and the half mirror 8. In all the embodiments described above, the visual image and the image captured by the imaging device 4 may be substantially the same. “Substantially the same” means that, for example, the difference in the appearance of the image generated according to the imaging magnification in the imaging device 4 does not make the image different, and the type of defect, the position of the defect, etc. are the same. As long as you can determine If we consider it as one, it is a thing.
[0050] [第 4の実施形態]  [0050] [Fourth embodiment]
本発明の第 4の実施形態に係る外観検査装置について説明する。  An appearance inspection apparatus according to a fourth embodiment of the present invention will be described.
図 10は、本発明の第 4の実施形態による外観検査装置の概略構成を示す平面図 である。図 11は、本発明の第 4の実施形態による外観検査装置の検査部および操作 部の概略構成を示す模式説明図である。図 12は、本発明の第 4の実施形態による 外観検査装置の視線情報検出部の機能ブロック図である。図 13は、本発明の第 4の 実施形態による外観検査装置の検査者画像処理部による画像処理の一例について 説明するための模式図である。ここで、図 11は、模式図のため部分的に展開して図 示しており、投影関係を正確に表現しているものではない(図 18、 20も同様)。  FIG. 10 is a plan view showing a schematic configuration of an appearance inspection apparatus according to the fourth embodiment of the present invention. FIG. 11 is a schematic explanatory view showing a schematic configuration of an inspection unit and an operation unit of the appearance inspection apparatus according to the fourth embodiment of the present invention. FIG. 12 is a functional block diagram of the line-of-sight information detection unit of the appearance inspection apparatus according to the fourth embodiment of the present invention. FIG. 13 is a schematic diagram for explaining an example of image processing by the inspector image processing unit of the appearance inspection apparatus according to the fourth embodiment of the present invention. Here, FIG. 11 is a partially developed view for schematic illustration, and does not accurately represent the projection relationship (the same applies to FIGS. 18 and 20).
[0051] 本実施形態の外観検査装置 200は、被検体である基板 1に照明光を照射して、基 板 1の欠陥の有無、例えば、表面キズ、ゴミ付着、膜厚不良などの有無やそれらの発 生位置を調べるためのものであり、その概略構成は、図 10に示すように、搬送部 203 、検査部 202、および操作部 217からなる。  [0051] The appearance inspection apparatus 200 of the present embodiment irradiates the substrate 1, which is the subject, with illumination light to check for the presence or absence of defects in the substrate 1, such as surface flaws, dust adhesion, film thickness defects, and the like. These locations are used to check the generation positions, and the schematic configuration includes a transport unit 203, an inspection unit 202, and an operation unit 217 as shown in FIG.
[0052] 搬送部 203は、カセット 205にセットされた未検査の基板 1を検査部 202に供給す るとともに、検査部 202により検査が終了した基板 1をカセット 205に排出するための もので、基板 1をカセット 205と検査部 202との間で搬送する基板搬送ロボット 204を 備えている。  [0052] The transport unit 203 supplies the uninspected substrate 1 set in the cassette 205 to the inspection unit 202, and discharges the substrate 1 that has been inspected by the inspection unit 202 to the cassette 205. A substrate transfer robot 204 for transferring the substrate 1 between the cassette 205 and the inspection unit 202 is provided.
[0053] 検査部 202は、本実施形態では、搬送部 203により供給された基板 1を揺動して照 明光を照射して検査者 208による目視検査を行うマクロ検査と、基板 1の表面を顕微 鏡観察するミクロ検査とが行えるようになって 、る。  In the present embodiment, the inspection unit 202 swings the substrate 1 supplied by the transport unit 203 and irradiates it with illumination light, and performs a visual inspection by the inspector 208, and the surface of the substrate 1 It is now possible to perform microscopic inspection with a microscope.
検査部 202の概略構成は、図 10、 11に示すように、回転搬送機構 206、マクロ検 查用揺動機構 209 (揺動保持部)、照明部 234、カメラ 211 (撮像部)、検査者撮像力 メラ 221 (検査者撮像部)、視線情報検出ユニット 231 (検査者画像処理部)、制御ュ ニット 230およびミクロ検査部 213からなる。  As shown in FIGS. 10 and 11, the schematic configuration of the inspection unit 202 is as follows: a rotary conveyance mechanism 206, a macro detection swing mechanism 209 (swing holding unit), an illumination unit 234, a camera 211 (imaging unit), an inspector Imaging power Mera 221 (inspector imaging unit), line-of-sight information detection unit 231 (inspector image processing unit), control unit 230, and micro inspection unit 213.
[0054] 回転搬送機構 206は、基板 1を水平面内で等角度ピッチに設けられた所定の搬送 位置の間で回転搬送するための機構である。  The rotational transport mechanism 206 is a mechanism for rotationally transporting the substrate 1 between predetermined transport positions provided at equiangular pitches in a horizontal plane.
本実施形態では、搬送位置として、基板搬送ロボット 204との間で基板 1を受け渡し する基板受け渡し位置 PIと、マクロ検査を行うために基板 1を揺動させるマクロ検査 用揺動機構 209にセットするマクロ検査位置 P2と、ミクロ検査を行うために基板 1をミ クロ検査部 213に受け渡すミクロ検査受け渡し位置 P3とが、同一円周上に 120° の 等角度ピッチで設定されている。例えば、図 10に示すように、基板受け渡し位置 P1 が搬送部 203側、マクロ検査位置 P2が操作部 217側にそれぞれ配置され、ミクロ検 查受け渡し位置 P3がその中間位置に配置されて 、る。 In this embodiment, the substrate 1 is transferred to and from the substrate transfer robot 204 as the transfer position. Substrate delivery position PI to be scanned, macro inspection position P2 to be set on the macro inspection swing mechanism 209 that swings the substrate 1 to perform macro inspection, and substrate 1 to micro inspection section 213 for micro inspection The micro inspection delivery position P3 is set at an equiangular pitch of 120 ° on the same circumference. For example, as shown in FIG. 10, the substrate delivery position P1 is disposed on the transfer unit 203 side, the macro inspection position P2 is disposed on the operation unit 217 side, and the micro inspection delivery position P3 is disposed on the intermediate position thereof.
また、回転搬送機構 206としては、それら搬送位置が配置された円の中心に設けら れた回転軸から 120° に等分割された径方向に延ばされ、基板 1を吸着保持する 3 本の搬送アーム 207a、 207b, 207cからなる構成を採用している。  In addition, the rotary transport mechanism 206 includes three pieces that extend in the radial direction equally divided by 120 ° from the rotary shaft provided at the center of the circle where the transport positions are arranged, and hold the substrate 1 by suction. A configuration including transfer arms 207a, 207b, and 207c is employed.
[0055] マクロ検査用揺動機構 209は、マクロ検査位置 P2の中心で昇降し、マクロ検査位 置 P2に搬送された基板 1の中心部を吸着保持して揺動させるものである。  [0055] The macro inspection swing mechanism 209 moves up and down at the center of the macro inspection position P2, and swings by holding the central portion of the substrate 1 conveyed to the macro inspection position P2.
マクロ検査用揺動機構 209の揺動動作は、操作部 217を通した検査者 208の操作 、または予め記憶された揺動データに基づいて制御ユニット 230により制御される。  The swing operation of the macro inspection swing mechanism 209 is controlled by the control unit 230 based on the operation of the inspector 208 through the operation unit 217 or the swing data stored in advance.
[0056] 照明部 234は、本実施形態では、マクロ検査用揺動機構 209の上部に設けられ、 基板 1上の全体に照明光を照射できるようになつている。照明光は、必要に応じて略 収束光と適度に散乱された散乱光とが切り替えられるようにすることが好ましい。  In the present embodiment, the illumination unit 234 is provided on the macro inspection rocking mechanism 209 so that the entire surface of the substrate 1 can be irradiated with illumination light. It is preferable that the illumination light is switched between substantially convergent light and moderately scattered light as necessary.
[0057] カメラ 211は、マクロ検査用揺動機構 209に保持された基板 1を撮像し、基板 1の可 視画像を取得するためのものである。本実施形態では、 CCDカメラを採用し、取得し た可視画像を制御ユニット 230に送り、モニタ 218に表示したり、例えばハードデイス クなどの不図示の記憶部に記憶したりすることができる。  The camera 211 captures the substrate 1 held by the macro inspection swing mechanism 209 and obtains a visible image of the substrate 1. In the present embodiment, a CCD camera is employed, and the obtained visible image can be sent to the control unit 230 and displayed on the monitor 218 or stored in a storage unit (not shown) such as a hard disk.
そしてカメラ 211は、図 10に示すように、平面視では、検査者 208が基板 1を観察 する標準的な視線方向に対して角度 Θだけ回転した位置に、カメラ移動機構 232 ( 撮像部移動機構)によって可動に支持されている。  As shown in FIG. 10, the camera 211 has a camera moving mechanism 232 (imaging unit moving mechanism) at a position rotated by an angle Θ with respect to a standard line-of-sight direction in which the inspector 208 observes the substrate 1 in plan view. ) Is movably supported.
[0058] カメラ移動機構 232は、図 11に示すように、マクロ検査用揺動機構 209の揺動位置 に応じて、カメラ 211を基板 1に対して検査者 208が目視するのと等価な位置に配置 するための機構である。その構成は、例えば、 XYZステージと 2軸回りの回転ステー ジの組み合わせ力 なる機構を採用することができる。  As shown in FIG. 11, the camera moving mechanism 232 is a position equivalent to the inspector 208 viewing the camera 211 with respect to the substrate 1 according to the rocking position of the rocking mechanism 209 for macro inspection. This is a mechanism for placing the For this configuration, for example, a mechanism that combines the XYZ stage and the rotational stage around two axes can be used.
ただし、カメラ移動機構 232は、検査者 208のマクロ検査における目視検査時の視 点の移動や視線方向を再現するのに必要な移動自由度を備えていればよいため、 上記構成には限定されない。例えば、マクロ検査用揺動機構 209の揺動中心を通る 鉛直軸回りの回転移動、鉛直方向移動、水平軸回りの回転移動の組み合わせなど を採用してもよい。 However, the camera moving mechanism 232 is not used for visual inspection during macro inspection by the inspector 208. Since it is sufficient that the degree of freedom of movement necessary to reproduce the movement of the point and the line-of-sight direction is provided, the present invention is not limited to the above configuration. For example, a combination of rotational movement around the vertical axis passing through the oscillation center of the macro inspection rocking mechanism 209, vertical movement, and rotational movement around the horizontal axis may be employed.
カメラ移動機構 232の移動量は、制御ユニット 230に接続された移動制御部 233に より制御される。  The movement amount of the camera moving mechanism 232 is controlled by a movement control unit 233 connected to the control unit 230.
なお、カメラ移動機構 232の可動範囲は、複数の検査者 208の身長差や検査姿勢 の変化などを考慮して、余裕を持った範囲に設定することが好ましい。  It should be noted that the movable range of the camera moving mechanism 232 is preferably set to a range having a margin in consideration of the height difference of the plurality of inspectors 208, changes in the inspection posture, and the like.
[0059] 検査者撮像カメラ 221と視線情報検出ユニット 231とは、検査者 208の顔面 208a を撮像してその画像を画像処理することにより、検査者 208の視点位置を検出するも ので、外観検査装置 200の視線情報検出部を構成して ヽる。 [0059] The inspector imaging camera 221 and the line-of-sight information detection unit 231 detect the viewpoint position of the inspector 208 by imaging the face 208a of the inspector 208 and image-processing the image. The line-of-sight information detection unit of the apparatus 200 is configured.
[0060] 検査者撮像カメラ 221は、検査者 208の顔面 208aを撮像するものであり、例えば C[0060] The inspector imaging camera 221 images the face 208a of the inspector 208, for example, C
CDカメラなど力もなる。そして、撮像データを視線情報検出ユニット 231に送出でき るようになっている。 CD camera etc. will also be powerful. The imaging data can be sent to the line-of-sight information detection unit 231.
検査者撮像カメラ 221の配置位置は、検査者 208の顔面 208aを撮像して、マクロ 検査位置 P2の基板 1に対する視点位置が検出できれば、どこに配置してもよいが、 本実施形態では、図 11に示すように、マクロ検査用揺動機構 209に保持された基板 1と検査者 208との間に設けられたノヽーフミラー 220により分岐された光路上に配置 されている。  The inspector imaging camera 221 may be placed anywhere as long as the viewpoint 208 relative to the substrate 1 at the macro inspection position P2 can be detected by imaging the face 208a of the inspector 208. In the present embodiment, FIG. As shown in FIG. 4, the optical system is arranged on an optical path branched by a knife mirror 220 provided between the substrate 1 held by the rocking mechanism for macro inspection 209 and the inspector 208.
[0061] 視線情報検出ユニット 231は、図 12に示すように、画像処理部 222、初期情報保 存部 223、画像比較部 224、および位置計算部 225からなる。  As shown in FIG. 12, the line-of-sight information detection unit 231 includes an image processing unit 222, an initial information storage unit 223, an image comparison unit 224, and a position calculation unit 225.
画像処理部 222は、検査者撮像カメラ 221の撮像動作を制御して検査者撮像カメ ラ 221により取得された検査者 208の画像データを転送せしめ、撮像フレーム内での 目の位置、目の大きさなどの情報が比較可能となるように画像処理するものである。 例えば、図 13に示すように、顔面 208aの画像をエッジ抽出して線画像に変換する このような線画像で特徴抽出を行うことにより、右目 208d、左目 208e、顔の輪郭 20 8fなどを抽出し、それぞれの形状から、右目の幅 d、左目の幅 d、右目中心座標 G 、左目中心座標 G、視点中心位置 Q、両眼間距離 dなどの特徴量を算出することが The image processing unit 222 controls the imaging operation of the inspector imaging camera 221 to transfer the image data of the inspector 208 acquired by the inspector imaging camera 221, and the position of the eye and the size of the eye in the imaging frame are transferred. Image processing is performed so that information such as the size can be compared. For example, as shown in Fig. 13, the image of the face 208a is edge-extracted and converted to a line image. Extraction of features such as the right eye 208d, left eye 208e, face outline 208f, etc. is performed using these line images. From each shape, right eye width d, left eye width d, right eye center coordinate G , Left eye center coordinates G, viewpoint center position Q, interocular distance d, etc.
2 3  twenty three
できる。ここで、座標値は、撮像フレーム 226の原点 O力も計った画素の座標である。  it can. Here, the coordinate value is a pixel coordinate obtained by measuring the origin O force of the imaging frame 226.
[0062] 初期情報保存部 223は、検査者撮像カメラ 221で視点位置を算出する基準画像と なる顔面 208aの画像を撮像し、画像処理部 222によりに画像処理した後に、その画 像データを保存するものである。 [0062] The initial information storage unit 223 captures an image of the face 208a, which serves as a reference image for calculating the viewpoint position by the inspector imaging camera 221, performs image processing by the image processing unit 222, and then stores the image data. To do.
基準画像は、検査者 208の顔面 208aを予め決められた基準画像撮像位置に位置 させた状態で、検査者撮像カメラ 221により撮像して取得する。  The reference image is acquired by being imaged by the inspector imaging camera 221 in a state where the face 208a of the inspector 208 is positioned at a predetermined reference image imaging position.
[0063] 画像比較部 224は、検査開始後に撮像され画像処理部 222で処理された検査者 2[0063] The image comparison unit 224 is an inspector 2 imaged after the start of the examination and processed by the image processing unit 222.
08の顔面 208aの画像データを、初期情報保存部 223に保存されている画像データ と比較することにより、目の位置、目の大きさの変化に関する情報を取得し、基準画 像取得位置における検査者 208の視線を基準として視線情報を求めるものである。 すなわち、初期情報保存部 223に保存された画像データと新たに取得された画像 データとの相関を調べて、右目 208d、左目 208eの移動位置を特定し、上記のような 特徴量を算出する。 By comparing the image data of 08's face 208a with the image data stored in the initial information storage unit 223, information on changes in eye position and eye size is obtained, and the inspection at the reference image acquisition position is obtained. The gaze information is obtained based on the gaze of the person 208. That is, the correlation between the image data stored in the initial information storage unit 223 and the newly acquired image data is examined, the movement positions of the right eye 208d and the left eye 208e are specified, and the above-described feature amount is calculated.
[0064] 位置計算部 225は、画像比較部 224で算出された検査者 208の視線情報を、検査 者撮像カメラ 221の配置位置、および初期情報保存部 223に保存された基準画像 が撮像された位置に基づいて、空間座標に換算し、外観検査装置 200内の、基板 1 の揺動中心位置に対する検査者 208の視線情報に換算するものである。  [0064] The position calculation unit 225 captures the line-of-sight information of the inspector 208 calculated by the image comparison unit 224, the arrangement position of the inspector imaging camera 221 and the reference image stored in the initial information storage unit 223. Based on the position, it is converted into spatial coordinates, and converted into the line-of-sight information of the inspector 208 with respect to the swing center position of the substrate 1 in the appearance inspection apparatus 200.
[0065] 制御ユニット 230は、マクロ検査に係る装置制御全般を行うための手段であり、例え ば、 CPU、メモリ、入出力インタフェース、ハードディスクなどの外部記憶部などにより 構成される。これらのメモリ、外部記憶部には、必要に応じて適宜のデータ、例えば、 後述する揺動位置情報などが記憶される。このため、制御ユニット 230は、揺動位置 記憶部を兼ねている。  [0065] The control unit 230 is a means for performing overall device control related to macro inspection, and includes, for example, an external storage unit such as a CPU, a memory, an input / output interface, and a hard disk. In these memories and the external storage unit, appropriate data, for example, swing position information described later is stored as required. For this reason, the control unit 230 also serves as a swing position storage unit.
そして、制御ユニット 230は、カメラ 211、移動制御部 233、マクロ検査用揺動機構 209、視線情報検出ユニット 231、および操作部 217とそれぞれ電気的に接続され、 それぞれに対して制御信号やデータの授受を行うことができるようになって!/、る。その ため、カメラ 211による撮像動作を制御する撮像動作制御部を兼ねて 、る。  The control unit 230 is electrically connected to the camera 211, the movement control unit 233, the macro inspection swing mechanism 209, the line-of-sight information detection unit 231 and the operation unit 217, respectively. I can now give and receive! Therefore, it also serves as an imaging operation control unit that controls the imaging operation by the camera 211.
カメラ 211の撮像動作は、本実施形態では複数のモードが設定されている。例えば 、検査で欠陥が検出されたらその都度欠陥画像を撮像する逐次撮像モード、検査中 は欠陥が検出された揺動位置情報とその際の検査者 208の視線情報とを記憶する のみで、記憶された揺動位置での欠陥画像の撮像は操作部 217からの操作入力に 応じて随時行う随時撮像モード、とが選択できるようになって!/、る。 In the present embodiment, a plurality of modes are set for the imaging operation of the camera 211. For example When a defect is detected in the inspection, it is a sequential imaging mode in which a defect image is captured each time. During the inspection, the swing position information at which the defect is detected and the gaze information of the inspector 208 at that time are stored. It is now possible to select an imaging mode at any time, which is performed at any time according to an operation input from the operation unit 217.
[0066] ミクロ検査部 213は、ミクロ検査受け渡し位置 P3の近傍に観察位置を有する顕微 鏡 214と、ミクロ検査受け渡し位置 P3と顕微鏡 214の観察位置との間で基板 1を搬送 移動するとともに、顕微鏡 214の観察位置に対して、基板 1の位置を移動する XYス テージ 215からなる。 [0066] The micro-inspection unit 213 conveys and moves the substrate 1 between the micro-inspection 214 having an observation position in the vicinity of the micro-inspection delivery position P3, and the micro-inspection delivery position P3 and the observation position of the microscope 214. It consists of an XY stage 215 that moves the position of the substrate 1 relative to the observation position 214.
顕微鏡 214は、不図示の撮像部により、ミクロ検査の観察画像の画像データを取得 するとともに、接眼レンズ 216を通して、操作部 217近傍にいる検査者 208が観察で きるようになつている。  The microscope 214 obtains image data of an observation image of the micro inspection by an imaging unit (not shown), and allows an inspector 208 near the operation unit 217 to observe through the eyepiece 216.
[0067] 操作部 217は、基板 1のマクロ検査およびミクロ検査を行う検査者 208が、外観検 查装置 200の操作を行うためのものであり、操作入力部として、キーボード、種々の ボタン、スィッチなどが配列されたものである。これら操作入力部には、例えば、検査 の開始、終了、一時停止、被検体を代えての検査続行や各種の条件設定などを行う 操作入力部や、各機構を手動動作させる操作入力部などが含まれる。  [0067] The operation unit 217 is for the inspector 208 who performs macro inspection and micro inspection of the substrate 1 to operate the appearance inspection apparatus 200. The operation input unit includes a keyboard, various buttons, and switches. Etc. are arranged. These operation input units include, for example, an operation input unit for starting, ending, suspending examinations, continuing examinations with different subjects and setting various conditions, and operation input units for manually operating each mechanism. included.
マクロ検査に関する操作入力部は、少なくとも、マクロ検査用揺動機構 209の揺動 を操作するジョイスティック 217aと、揺動位置記憶ボタン 217b (揺動位置記憶操作 部)とが設けられ、それぞれ制御ユニット 230に接続されている。  The operation input section related to the macro inspection is provided with at least a joystick 217a for operating the swing of the macro inspection swing mechanism 209 and a swing position storage button 217b (swing position storage operation section). It is connected to the.
揺動位置記憶ボタン 217bは、検査者 208により押されたときにマクロ検査用揺動 機構 209の揺動位置情報を記憶するとともに、その時の検査者 208の視線情報の取 得を指示するための操作入力部である。  The rocking position storage button 217b stores the rocking position information of the rocking mechanism 209 for macro inspection when pressed by the inspector 208, and instructs the inspector 208 to acquire the line-of-sight information at that time. An operation input unit.
モニタ 218は、制御ユニット 230の制御に応じて、操作メニュー、顕微鏡 214の撮像 画像、カメラ 211の撮像画像などを必要に応じて表示するための表示部である。  The monitor 218 is a display unit for displaying an operation menu, a captured image of the microscope 214, a captured image of the camera 211, and the like as necessary under the control of the control unit 230.
[0068] 操作部 217の近傍には、検査者 208がマクロ検査、ミクロ検査を行うための検査位 置が、立ち位置あるいは座位置として設けられて 、る。 [0068] In the vicinity of the operation unit 217, an inspection position for the inspector 208 to perform macro inspection and micro inspection is provided as a standing position or a seating position.
マクロ検査は、この検査位置から、観察窓 219を通して、マクロ検査用揺動機構 20 9に保持された基板 1を目視観察することにより行われる。 観察窓 219は欠陥を視認しゃすいものであれば、単に透明な窓でもよいが、検査 者 208の視線 208bの位置、姿勢を安定させることができるように、例えば、標準的な 視線が通る位置を十字線や丸印などで示す指標となる図形が描かれていてもよい。 ミクロ検査は、この検査位置から接眼レンズ 216をのぞいたり、モニタ 218に表示さ れる画像を見たりして行われる。 The macro inspection is performed by visually observing the substrate 1 held on the macro inspection swing mechanism 209 through the observation window 219 from the inspection position. The observation window 219 may be simply a transparent window as long as it is capable of visually checking for defects.For example, a position through which a standard line of sight passes so that the position and posture of the line of sight 208b of the inspector 208 can be stabilized. A figure serving as an index indicating a cross with a cross or a circle may be drawn. The micro-inspection is performed by looking through the eyepiece lens 216 from the inspection position or viewing an image displayed on the monitor 218.
[0069] 次に、本実施形態の外観検査装置 200の動作について、マクロ検査の動作を中心 に説明する。 [0069] Next, the operation of the appearance inspection apparatus 200 of the present embodiment will be described focusing on the operation of the macro inspection.
図 14は、本発明の第 4の実施形態による外観検査装置のマクロ検査の動作につい て説明するフローチャートである。図 15は、本発明の第 4の実施形態による外観検査 装置の視線情報検出工程について説明するフローチャートである。  FIG. 14 is a flowchart for explaining the macro inspection operation of the visual inspection apparatus according to the fourth embodiment of the present invention. FIG. 15 is a flowchart for explaining the line-of-sight information detection step of the appearance inspection apparatus according to the fourth embodiment of the present invention.
[0070] マクロ検査動作は、図 14に示すフローにしたがって行われる。 The macro inspection operation is performed according to the flow shown in FIG.
ステップ S1では、マクロ検査の初期設定工程を行う。初期設定項目は、必要に応じ て種々の条件設定を行う。例えば、照明部 234の照明条件の設定、調整などマクロ 検査に必要な条件設定を行う。また、欠陥を検出した場合の撮像モードを選択し、制 御ユニット 230に対してフラグ設定を行う。  In step S1, an initial setting process for macro inspection is performed. For the initial setting items, various conditions are set as necessary. For example, conditions necessary for macro inspection such as setting and adjustment of illumination conditions of the illumination unit 234 are set. In addition, an imaging mode when a defect is detected is selected, and a flag is set for the control unit 230.
また、ステップ S1では、検査者 208の基準画像の取得を行うようにしてもよい。すな わち、検査者 208が、基準画像撮像位置に顔面 208aを配置した状態で、検査者撮 像カメラ 221で撮像し、画像処理部 222で所定の画像処理を行って、初期情報保存 部 223に保存する。  In step S1, a reference image of the inspector 208 may be acquired. In other words, the inspector 208 takes an image with the inspector imaging camera 221 with the face 208a placed at the reference image capturing position, performs predetermined image processing with the image processing unit 222, and stores the initial information storage unit. Save to 223.
ただし、このような基準画像は、外観検査装置 200の起動時に取得するようにしても よいし、必要に応じて随時行ってもよい。例えば、検査者 208が交替する際などに検 查工程を一時停止して行ってもよい。また、予め検査者 208となる人の基準画像が保 存されて!/ヽる場合には、基準画像の撮像を省略することができる。  However, such a reference image may be acquired when the appearance inspection apparatus 200 is activated, or may be performed as needed. For example, the inspection process may be temporarily stopped when the inspector 208 changes. In addition, when the reference image of the person who will be the inspector 208 is saved in advance !, the imaging of the reference image can be omitted.
[0071] ステップ S2では、基板 1をマクロ検査位置 P2に搬送する。 [0071] In step S2, the substrate 1 is transported to the macro inspection position P2.
すなわち、カセット 205に入れて搬送された未検査の基板 1は、基板搬送ロボット 2 04により、基板受け渡し位置 P1に受け渡され、例えば、搬送アーム 207aに吸着保 持される。そして、回転搬送機構 206を 120° 回転して、搬送アーム 207aをマクロ検 查位置 P2に移動する。このとき、ミクロ検査受け渡し位置 P3にあった搬送アーム 207 cが基板受け渡し位置 PIに移動しているので、搬送アーム 207cに基板搬送ロボット 204から次に検査する基板 1がセットされる。 That is, the uninspected substrate 1 transferred in the cassette 205 is transferred to the substrate transfer position P1 by the substrate transfer robot 204, and is sucked and held on the transfer arm 207a, for example. Then, the rotary transport mechanism 206 is rotated by 120 °, and the transport arm 207a is moved to the macro detection position P2. At this time, the transfer arm 207 at the micro inspection delivery position P3 Since c has moved to the substrate transfer position PI, the substrate 1 to be inspected next from the substrate transfer robot 204 is set on the transfer arm 207c.
[0072] ステップ S3では、マクロ検査用揺動機構 209に保持した基板 1を揺動させながら目 視検査を行う。 In step S3, visual inspection is performed while the substrate 1 held by the macro inspection swing mechanism 209 is swung.
すなわち、マクロ検査位置 P2に搬送された基板 1は、搬送アーム 207aの吸着を解 除される。そして、基板 1は、搬送アーム 207aに対して上下方向に相対移動するマク 口検査用揺動機構 209上に移載され、マクロ検査用揺動機構 209に吸着保持される そこで、照明部 234により基板 1を照明し、基板 1を揺動させ、種々の揺動位置にお いて、検査者 208が目視検査を行う。  That is, the substrate 1 transported to the macro inspection position P2 is released from the suction of the transport arm 207a. Then, the substrate 1 is transferred onto the macro inspection swing mechanism 209 that moves relative to the transfer arm 207a in the vertical direction, and is sucked and held by the macro inspection swing mechanism 209. The substrate 1 is illuminated, the substrate 1 is swung, and the inspector 208 performs visual inspection at various swung positions.
基板 1の揺動は、予め検査のための揺動位置、揺動パターンの情報が制御ユニット 230に記憶されている場合は、操作部 217から検査開始が入力されるとそれらの情 報にしたがって自動的に揺動される力 検査者 208は必要に応じて揺動を止めて摇 動位置記憶ボタン 217bによる手動操作に切り替え、より欠陥が見やすい角度に揺動 させることができる。予め検査のための揺動位置、揺動パターンの情報が記憶されて いない場合は、初めから検査者 208が手動操作することにより基板 1を揺動させて目 視検査する。  If the control unit 230 previously stores information on the swing position and the swing pattern for inspection, the substrate 1 is swung according to the information when the start of inspection is input from the operation unit 217. Automatically swinging force The inspector 208 can stop swinging as necessary and switch to manual operation using the swing position storage button 217b to swing the defect at an angle that makes it easier to see the defect. If information on the rocking position and rocking pattern for inspection is not stored in advance, the inspector 208 is manually operated from the beginning to swing the substrate 1 for visual inspection.
[0073] 検査者 208は、この揺動検査中に欠陥が目視された場合、マクロ検査用揺動機構 209の揺動位置を記憶するためにただちに揺動位置記憶ボタン 217bを押す。  When a defect is visually observed during the swing inspection, the inspector 208 immediately presses the swing position storage button 217b to store the swing position of the macro inspection swing mechanism 209.
すると、制御ユニット 230に割り込みが発生し、ステップ S4において揺動位置記憶 ボタン 217bが押されたかどうかが判定される。  Then, an interrupt is generated in the control unit 230, and it is determined in step S4 whether or not the rocking position storage button 217b has been pressed.
揺動位置記憶ボタン 217bが押されたと判定されると、制御ユニット 230は、ただち にステップ S5、 S7を実行する。  If it is determined that the rocking position storage button 217b has been pressed, the control unit 230 immediately executes steps S5 and S7.
揺動位置記憶ボタン 217bが押されていないと判定されると、ステップ S12へ移行 する。  If it is determined that the swing position storage button 217b is not pressed, the process proceeds to step S12.
[0074] ステップ S5は、視線情報検出工程であり、制御ユニット 230から視線情報検出ュ- ット 231に制御信号を送出することにより開始される。  Step S5 is a line-of-sight information detection step, which is started by sending a control signal from the control unit 230 to the line-of-sight information detection unit 231.
本実施形態の視線情報検出工程は、図 15に示すフローにしたがって実行される。 ステップ S20では、検査者撮像カメラ 221により撮像フレーム 226内の検査者 208 を撮像する。制御ユニット 230からの視線情報検出ユニット 231への制御信号は、揺 動位置記憶ボタン 217bが押されるとただちに送出されるので、このとき撮像される検 查者 208の顔面 208aの画像 (以下、単に顔面画像と称する)は、実質的に揺動位置 記憶ボタン 217bが押されたときの検査者 208を写している。 The line-of-sight information detection step of this embodiment is executed according to the flow shown in FIG. In step S20, the inspector 208 in the imaging frame 226 is imaged by the inspector imaging camera 221. The control signal from the control unit 230 to the line-of-sight information detection unit 231 is sent out as soon as the shaking position storage button 217b is pressed. (Referred to as a face image) substantially represents the inspector 208 when the rocking position storage button 217b is pressed.
ステップ S21では、この顔面画像を、画像処理部 222により画像処理し、例えば図 13に示すような線画像に変換して画像比較部 224に送出する。  In step S21, the face image is subjected to image processing by the image processing unit 222, converted into a line image as shown in FIG. 13, for example, and sent to the image comparison unit 224.
[0075] ステップ S22では、画像比較部 224によって、画像処理後の顔面画像と初期情報 保存部 223に保存されている基準画像を比較し、目の位置、目の大きさの変化に関 する情報を取得する。 [0075] In step S22, the image comparison unit 224 compares the face image after image processing with the reference image stored in the initial information storage unit 223, and information on changes in eye position and eye size. To get.
そしてそれぞれの画像から、右目 208d、左目 208e、顔の輪郭 208fなどを抽出し、 それぞれの形状から、右目の幅、左目の幅、右目中心座標、左目中心座標、視点中 心位置、両眼間距離などの特徴量を画像上で算出する。以下では、それぞれの量を 、基準画像の場合、 d、 d、 G、 G、 Q、 dとし、顔面画像の場合、(d + Ad )、(d  The right eye 208d, left eye 208e, facial contour 208f, etc. are extracted from each image, and the right eye width, left eye width, right eye center coordinate, left eye center coordinate, viewpoint center position, and binocular distance are extracted from each shape. A feature amount such as a distance is calculated on the image. In the following, the respective quantities are d, d, G, G, Q, d for the reference image, and (d + Ad), (d for the face image
1 2 1 2 3 1 1 2 1 2 1 2 3 1 1 2
+ Ad )、 (G + ^G )、 (G + ^G )、(Q+ AQ)ゝ (d + Ad )とする。ここで、 G、+ Ad), (G + ^ G), (G + ^ G), (Q + AQ) ゝ (d + Ad). Where G,
2 1 1 2 2 3 3 12 1 1 2 2 3 3 1
G、 Qは、ベクトル量を表すものとする。 G and Q represent vector quantities.
2  2
そして、右目の幅、左目の幅、両眼間距離のそれぞれの変化分の比、 γ = (d + Δά )/ά , y =(d + Δά )/ά , y =(d + Δά )/άの大きさを比較し、検査者 Then, the right eye width, the left eye width, and the ratio of each change in the interocular distance, γ = (d + Δά) / ά, y = (d + Δά) / ά, y = (d + Δά) / Compare the size of ά and examiner
1 1 2 2 2 2 3 3 3 3 1 1 2 2 2 2 3 3 3 3
撮像カメラ 221の撮像光学系の画角特性力も実際の 3次元空間における距離に換 算することで、基準画像の撮像位置に対する視点中心位置と視線方向との変化を求 めることができる。  By converting the field angle characteristic force of the imaging optical system of the imaging camera 221 into the distance in the actual three-dimensional space, it is possible to obtain the change between the viewpoint center position and the line-of-sight direction with respect to the imaging position of the reference image.
本実施形態では、一般的な検査者 208は、検査バラツキを低減するために、無理 のない観察姿勢をとり、欠陥を安定して見える視野中心でとらえることを利用している 。すなわち、検査者 208は、欠陥を検知すると、欠陥を良好に視認するために、顔面 208aを欠陥の見える側に対して正対させるとともに、欠陥を視野中心に置いて、最 終的に欠陥を確認することを前提としている。  In the present embodiment, the general inspector 208 uses a reasonable observation posture and captures defects at the center of the visual field where they can be seen stably in order to reduce inspection variations. In other words, when the inspector 208 detects the defect, in order to see the defect well, the inspector 208 faces the face 208a to the side where the defect is visible and places the defect at the center of the visual field, and finally detects the defect. It is assumed that it will be confirmed.
[0076] 例えば、 γ = γ = γ = γ、となる場合は、顔面 208aが基準画像の撮像時と平 [0076] For example, when γ = γ = γ = γ, the face 208a is in the same level as when the reference image is captured.
1 2 3  one two Three
行移動している。 Ύ = 1は、基準画像の撮像時に顔面 208aが配置された平面内の平行移動を表し 、 γ > 1では、検査者 208がより検査者撮像カメラ 221に近づいた状態、 γく 1では より遠ざ力つた状態であることが分かる。 The line is moving. Ύ = 1 represents the translation in the plane where the face 208a is placed when the reference image is captured. When γ> 1, the inspector 208 is closer to the inspector imaging camera 221, and when γ is 1, it is farther away. It can be seen that it is in a state of force.
また、 Ύ 、 Ύ 、 Ύ の大きさに差がある場合は、顔面 208aの水平面内における回 Also, if there is a difference in the size of Ύ, Ύ, 回, the rotation of the face 208a in the horizontal plane
1 2 3 one two Three
転が生じて 、ることを意味する。  It means that a roll occurs.
例えば、 γ > y > y であれば、右目側が検査者撮像カメラ 221に近づき、左目  For example, if γ> y> y, the right eye approaches the inspector imaging camera 221 and the left eye
1 2 3  one two Three
側が検査者撮像カメラ 221から遠のくような方向に顔面 208aが回転していることが分 かる。  It can be seen that the face 208a rotates in such a direction that the side is far from the inspector imaging camera 221.
検査者 208が検査者撮像カメラ 221の光軸方向に移動し、かつ顔面 208aを回転さ せた場合は、 γ 、 γ 、 γ の比の大きさから、光軸方向移動による共通のオフセット  When the inspector 208 moves in the optical axis direction of the inspector imaging camera 221 and rotates the face 208a, the common offset due to the movement in the optical axis direction is calculated from the magnitude of the ratio of γ, γ, γ.
1 2 3  one two Three
分を割り出すことにより、それぞれの移動量、回転量を分離することができる。  By determining the minutes, the amount of movement and the amount of rotation can be separated.
[0077] このようにして、 2枚の 2次元画像である基準画像と顔面画像との情報に基づいて、 基準画像撮像位置に対する検査者 208の視点中心位置をおよび視線方向を算出 することができる。 [0077] In this manner, the viewpoint center position of the inspector 208 with respect to the reference image imaging position and the line-of-sight direction can be calculated based on the information of the reference image and the face image that are two two-dimensional images. .
これらの視点中心位置および視線方向からなる視線情報は、位置計算部 225に送 出される。  The line-of-sight information including the viewpoint center position and the line-of-sight direction is sent to the position calculation unit 225.
[0078] ステップ S23では、位置計算部 225において、画像比較部 224で算出された検査 者 208の視線情報を、予め記憶された検査者撮像カメラ 221の配置位置、および初 期情報保存部 223に保存された基準画像が撮像された位置に基づいて、空間座標 に換算し、外観検査装置 200内の、基板 1の揺動中心位置に対する検査者 208の 視線情報に換算する演算を行う。  In step S23, the position calculation unit 225 causes the gaze information of the inspector 208 calculated by the image comparison unit 224 to be stored in the pre-stored arrangement position of the inspector imaging camera 221 and the initial information storage unit 223. Based on the position at which the stored reference image is captured, it is converted into spatial coordinates, and calculation is performed to convert it into the line-of-sight information of the inspector 208 with respect to the swing center position of the substrate 1 in the appearance inspection apparatus 200.
以上で、視線情報検出工程が終了する。  This completes the line-of-sight information detection step.
[0079] 次に、ステップ S6 (図 14参照)では、ステップ S5で算出された検査者 208の視線情 報を制御ユニット 230に送出して記憶する。  Next, in step S6 (see FIG. 14), the line-of-sight information of the inspector 208 calculated in step S5 is sent to the control unit 230 and stored.
[0080] 一方、ステップ S5、 S6に並行して、次のステップ S7が実行される。  On the other hand, the next step S7 is executed in parallel with steps S5 and S6.
ステップ S7では、揺動位置記憶ボタン 217bが押されたときのマクロ検査用揺動機 構 209の揺動位置の状態を揺動位置情報として、制御ユニット 230内に記憶する。 揺動位置情報は、例えば、揺動中心の位置座標と、マクロ検査用揺動機構 209に保 持された基板 1の法線方向に対応する情報などからなる。 In step S7, the state of the swing position of the macro inspection swing mechanism 209 when the swing position storage button 217b is pressed is stored in the control unit 230 as swing position information. For example, the swing position information is stored in the position coordinates of the swing center and the swing mechanism 209 for macro inspection. It consists of information corresponding to the normal direction of the substrate 1 held.
以上のステップ S6、 S7が終了した状態で、ステップ S8が実行される。  Step S8 is executed with the above steps S6 and S7 completed.
[0081] ステップ S8では、揺動位置記憶ボタン 217bが押された時点の欠陥画像を撮像す るかどうかを判定する。すなわち、撮像モードのフラグを参照し、逐次撮像モードであ れば、ステップ S 9に移行する。  In step S8, it is determined whether or not to capture a defect image at the time when the swing position storage button 217b is pressed. That is, referring to the flag of the imaging mode, if it is the sequential imaging mode, the process proceeds to step S9.
随時撮像モードであれば、ステップ S 12に移行する。  If it is an imaging mode at any time, the process proceeds to step S12.
[0082] ステップ S9では、制御ユニット 230に記憶された視線情報と揺動位置情報とから、 基板 1と検査者 208の視線との相対的な位置関係を演算し、検査者 208の視点位置 および視線方向を、カメラ 211の撮像位置および撮像光軸に置き換えた場合に、光 学的に略等価な位置関係になるような、マクロ検査用揺動機構 209の揺動位置およ びカメラ 211の配置位置、姿勢を算出する。  [0082] In step S9, the relative positional relationship between the substrate 1 and the line of sight of the inspector 208 is calculated from the line-of-sight information and the swing position information stored in the control unit 230, and the viewpoint position of the inspector 208 and When the line-of-sight direction is replaced with the imaging position of the camera 211 and the imaging optical axis, the oscillating position of the oscillating mechanism 209 for macro inspection and the camera 211 The arrangement position and orientation are calculated.
[0083] 次にステップ S10では、ステップ S9で算出した揺動位置にマクロ検査用揺動機構 2 09を移動するとともに、同じく算出した撮像位置にカメラ 211を移動する。  [0083] Next, in step S10, the macro inspection swing mechanism 209 is moved to the swing position calculated in step S9, and the camera 211 is also moved to the calculated image pickup position.
例えば、図 11に示すように、揺動情報力 算出される基板 1の法線ベクトルが Nの とき、視線情報力も検出される視線 208bが、標準的な視線方向と一致したとする。こ のとき、マクロ検査用揺動機構 209を鉛直軸回りに角度 Θだけ回転すれば、カメラ 21 1の撮像位置は、検査者 208の視点位置を角度 Θだけ回転させた位置とすればよい 。すなわち、カメラ 211の撮像光軸 211aは、視線 208bを基板 1の揺動中心に対して 、鉛直軸回りに視線 208bを角度 Θだけ回転したのと同等の状態とすればよい。 また、検査者 208A (図 11参照)のように、標準的な視線方向力もずれた方向から 検査して、視線情報力も視線 208cが検出される場合には、カメラ移動機構 232によ りカメラ 211の位置、姿勢を調整することにより、カメラ 211の撮像位置を検査者 208 Aの視点位置と同等に設定することができる。  For example, as shown in FIG. 11, when the normal vector of the substrate 1 for which the swing information force is calculated is N, it is assumed that the line of sight 208b in which the line-of-sight information force is detected matches the standard line-of-sight direction. At this time, if the macro inspection rocking mechanism 209 is rotated about the vertical axis by the angle Θ, the imaging position of the camera 211 may be set to the position obtained by rotating the viewpoint position of the inspector 208 by the angle Θ. That is, the imaging optical axis 211a of the camera 211 may be in a state equivalent to rotating the line of sight 208b about the vertical axis by the angle Θ with respect to the center of oscillation of the substrate 1. Also, as inspector 208A (see FIG. 11), when the line-of-sight information force is detected from the direction in which the line-of-sight direction force is also shifted and the line-of-sight information force 208c is detected, the camera moving mechanism 232 detects the camera 211. By adjusting the position and orientation, the imaging position of the camera 211 can be set to be equivalent to the viewpoint position of the examiner 208A.
[0084] このような相対位置の調整は、マクロ検査用揺動機構 209を鉛直軸回りに回転させ る移動に限定されるものではなぐカメラ 211と基板 1との相対位置を、視線情報およ び揺動位置情報力 換算される位置関係と同等とすることができれば、マクロ検査用 揺動機構 209のみを適宜の方向、角度に揺動させてもよい。また、カメラ 211の移動 とマクロ検査用揺動機構 209の揺動との両方を行ってもょ 、。このようにマクロ検査用 揺動機構 209を協調的に移動すれば、カメラ 211の可動範囲を低減することができ るという利点がある。 Such adjustment of the relative position is not limited to the movement of rotating the macro inspection swing mechanism 209 about the vertical axis. The relative position between the camera 211 and the substrate 1 As long as it can be equivalent to the converted positional relation, only the macro inspection swing mechanism 209 may be swung in an appropriate direction and angle. Also, move both the camera 211 and the swing mechanism 209 for macro inspection. For macro inspection like this If the swing mechanism 209 is moved cooperatively, there is an advantage that the movable range of the camera 211 can be reduced.
[0085] ステップ S11では、カメラ 211により、基板 1を撮像し、必要に応じて、モニタ 218に 表示したり、ハードディスクなどに画像データを記憶したりする。そして、ステップ S12 に移行する。  In step S11, the camera 211 captures an image of the substrate 1 and displays it on the monitor 218 or stores image data in a hard disk or the like as necessary. Then, the process proceeds to step S12.
[0086] ステップ S 12では、検査を続行するかどうかを、検査を終了する操作入力が行われ ているかどうかで判定する。  [0086] In step S12, whether or not to continue the inspection is determined by whether or not an operation input for ending the inspection is performed.
検査終了入力が行われている場合には、検査を続行しないと判定し、ステップ S13 に移行する。  If the inspection end input has been performed, it is determined that the inspection is not continued, and the process proceeds to step S13.
それ以外の場合には、ステップ S3から以上の工程を繰り返す。  In other cases, the above steps are repeated from step S3.
[0087] ステップ S13では、被検体を次の基板 1に代えて検査を続行するかどうかについて 、操作入力を確認して判定する。 In step S13, whether or not to continue the examination by replacing the subject with the next substrate 1 is confirmed by confirming the operation input.
基板 1を代えて検査を続行する操作入力が行われた場合、マクロ検査用揺動機構 209に対する基板 1の吸着を解除し、マクロ検査用揺動機構 209を回転搬送機構 20 6の移動の妨げとならない位置に退避させ、基板 1を搬送アーム 207bに吸着する。 そして、ステップ S2から以上の工程を繰り返す。  When an operation input is performed to continue the inspection with the substrate 1 replaced, the suction of the substrate 1 to the macro inspection swing mechanism 209 is released, and the macro inspection swing mechanism 209 is prevented from moving the rotary transport mechanism 206. The substrate 1 is retracted to a position where it does not become, and the substrate 1 is attracted to the transfer arm 207b. Then, the above steps are repeated from step S2.
基板 1を代えて検査を続行する操作入力が行われて 、な 、場合、すべてのマクロ 検査を終了する。  If the operation input is continued to replace the board 1 and the inspection is continued, all macro inspections are terminated.
[0088] 随時撮像モードが設定されている場合には、操作部 217を通して、欠陥画像を撮 像する操作入力が行われると、制御ユニット 230に対して割り込み処理が行われ、ス テツプ S9、 S10、 SI 1と同等の処理が実行される。  [0088] When the imaging mode is set at any time, when an operation input for capturing a defective image is performed through the operation unit 217, an interrupt process is performed on the control unit 230, and steps S9 and S10 are performed. Processing equivalent to SI 1 is executed.
[0089] このように、本実施形態の外観検査装置 200によれば、揺動位置記憶ボタン 217b を押して操作することで、視線情報検出ユニット 231により検査者 208の視線情報を 取得し、制御ユニット 230によりマクロ検査用揺動機構 209の揺動位置情報を取得 する。そして、これらの視線情報および揺動位置情報に基づいて、カメラ 211の撮像 光軸 211aを検査者 208の視線と光学的に同等な位置に配置した状態で基板 1を撮 像できるので、検査者 208が目視した状態と同様の基板 1の可視画像を撮像し、モ- タ 218に表示したり、画像データとして保存したりすることができる。 したがって、検査者 208が検出した欠陥を可視画像として他の検査者 208などに伝 達したり、記録したりすることで、検査者間で、欠陥情報の確認や共有を行うことが容 易となる。 As described above, according to the appearance inspection apparatus 200 of the present embodiment, the line-of-sight information of the inspector 208 is acquired by the line-of-sight information detection unit 231 by operating the swing position storage button 217b, and the control unit In step 230, the swing position information of the swing mechanism 209 for macro inspection is acquired. Based on these line-of-sight information and swing position information, the substrate 1 can be imaged in a state where the imaging optical axis 211a of the camera 211 is optically equivalent to the line of sight of the inspector 208. A visible image of the substrate 1 that is the same as that viewed by 208 can be taken and displayed on the motor 218 or stored as image data. Therefore, the defect information detected by the inspector 208 is transmitted to other inspectors 208 as a visible image or recorded, so that it is easy to check and share defect information between inspectors. .
その際、マクロ検査用揺動機構 209の位置に応じてカメラ 211を移動することにより 、カメラ 211を検査者 208の検査位置と異なる位置に配置することができるので、検 查者 208の検査の妨げとならな 、位置で撮像することができる。そのため効率的な検 查および撮像を行うことができる。  At that time, by moving the camera 211 according to the position of the macro inspection swing mechanism 209, the camera 211 can be arranged at a position different from the inspection position of the inspector 208. If it does not hinder, it can be imaged at a position. Therefore, efficient detection and imaging can be performed.
また、基板 1が一定の揺動位置にある場合、欠陥が見やすくなるように、検査者 20 8が視点を移動して検査を行 ヽ、標準的な目視位置から外れた位置で欠陥を検出し た場合にも、そのずれた位置を視線情報として検出することができる。そのため、この ような場合にも、目視と同様の状態の欠陥を可視画像として容易に取得することがで き、検査精度や検査効率を向上することができる。  In addition, when the substrate 1 is at a fixed swing position, the inspector 208 performs inspection by moving the viewpoint so that the defect is easy to see, and detects the defect at a position deviating from the standard viewing position. In this case, the shifted position can be detected as line-of-sight information. Therefore, even in such a case, it is possible to easily acquire a defect in the same state as that of visual observation as a visible image, and it is possible to improve inspection accuracy and inspection efficiency.
[0090] 次に、第 4の実施形態に係る第 1変形例について説明する。 Next, a first modification according to the fourth embodiment will be described.
本変形例は、図 11に 2点鎖線で示したように、上記実施形態の外観検査装置 200 に、照明部移動機構 235と照明位置制御部 236とを追加し、照明部 234を可動保持 したものである。以下上記実施形態と異なる点を中心に説明する。  In this modified example, as indicated by a two-dot chain line in FIG. 11, an illumination unit moving mechanism 235 and an illumination position control unit 236 are added to the appearance inspection apparatus 200 of the above embodiment, and the illumination unit 234 is held movably. Is. The following description will be focused on differences from the above embodiment.
[0091] 照明部移動機構 235は、基板 1に対する照明部 234の照明位置および照明方向 の少なくともいずれかを可変して保持するためのもので、移動方向に応じたステージ 類力もなる。本変形例では、目視検査時には、所定の照明位置、照明方向を保持し 、欠陥画像を撮像する場合に、マクロ検査用揺動機構 209、カメラ 211の移動に合わ せて、基板 1に対する目視検査時の相対的な照明位置および照明方向の少なくとも Vヽずれかを必要に応じて可変するようにして 、る。 [0091] The illumination unit moving mechanism 235 is for variably holding at least one of the illumination position and illumination direction of the illumination unit 234 with respect to the substrate 1, and also has a stage analog according to the movement direction. In this modified example, at the time of visual inspection, the predetermined illumination position and illumination direction are maintained, and when a defect image is captured, visual inspection of the substrate 1 is performed in accordance with the movement of the macro inspection rocking mechanism 209 and the camera 211. Adjust the relative lighting position and the lighting direction at least V 少 な く と も as needed.
照明位置制御部 236は、制御ユニット 230からの制御信号に応じて、照明部移動 機構 235の移動方向移動量を制御するためのものである。  The illumination position control unit 236 is for controlling the movement direction movement amount of the illumination unit moving mechanism 235 in accordance with a control signal from the control unit 230.
[0092] 本変形例では、図 14のフローと略同様の動作を行うが、ステップ S9において、カメ ラ 211の移動位置およびマクロ検査用揺動機構 209の揺動位置に応じて、基板 1に 対する照明光を移動が必要かどうか判定し、移動が必要であれば照明部 234の移動 位置を算出する。移動が必要な場合は、ステップ S10において、カメラ 211、マクロ検 查用揺動機構 209とともに照明部 234も移動する。 In this modified example, an operation substantially similar to the flow of FIG. 14 is performed. However, in step S9, the substrate 1 is moved in accordance with the moving position of the camera 211 and the rocking position of the macro inspection rocking mechanism 209. It is determined whether or not the illumination light is required to move. If movement is necessary, the movement position of the illumination unit 234 is calculated. If movement is necessary, the camera 211, macro The lighting unit 234 also moves together with the rocking mechanism 209 for scissors.
照明部 234の移動が必要となるのは、カメラ 211、マクロ検査用揺動機構 209が移 動することにより、基板 1に対する照明光の条件、例えば、照明位置、照明方向、照 明範囲が許容限度を超えて変化することで目視画像と異なる欠陥画像が撮像される おそれがある場合や、カメラ 211の光学特性、例えば、露光感度、画角や被写界深 度などが検査者 208の目の特性と異なるために、撮像時に目視時と異なる条件で照 明条件を最適化する必要がある場合などが挙げられる。いずれの場合も、予め実験 などをすることにより、照明部 234の移動条件を設定しておく。  The movement of the illumination unit 234 is necessary because the camera 211 and the macro inspection swing mechanism 209 are moved, so that the illumination light conditions for the substrate 1, such as the illumination position, illumination direction, and illumination range, are allowed. If there is a possibility that a defect image different from the visual image may be captured by changing beyond the limit, or the optical characteristics of the camera 211 such as exposure sensitivity, angle of view, and depth of field are inspected by the inspector 208. For example, there are cases where it is necessary to optimize the illumination conditions under conditions different from those at the time of visual observation during imaging. In either case, the moving condition of the illumination unit 234 is set by conducting an experiment or the like in advance.
[0093] このように本変形例では、カメラ 211、マクロ検査用揺動機構 209の移動位置に応 じて、照明位置や照明方向を可変することができるので、より正確に目視検査時の照 明条件と一致させたり、撮像時の照明条件をカメラ 211の特性に合わせて最適化し たりして、目視検査時の画像により近 、欠陥画像を撮像することができると 、う利点 がある。 As described above, in this modification, the illumination position and the illumination direction can be varied according to the movement positions of the camera 211 and the macro inspection swing mechanism 209. There is an advantage that a defect image can be taken closer to the image at the time of visual inspection by matching the light condition with the light condition or by optimizing the illumination condition at the time of imaging according to the characteristics of the camera 211.
[0094] 次に、第 4の実施形態に係る第 2変形例について説明する。  Next, a second modification example according to the fourth embodiment will be described.
図 16は、本発明の第 4の実施形態の第 2変形例のターゲットを用いた基準画像の 例を示す模式図である。  FIG. 16 is a schematic diagram showing an example of a reference image using the target of the second modified example of the fourth embodiment of the present invention.
本変形例は、上記実施形態において、検査者撮像カメラ 221により撮像された画 像処理において、目の位置や大きさ以外の特徴により視線情報を取得するように変 形したものである。例えば、検査者 208が予め顔面 208aや体の一部に視線情報を 取得するためのターゲットを備え、検査者撮像カメラ 221による撮像画像から、ターゲ ットの位置や大きさを算出して視線情報に変換するようにしたものである。本変形例 の場合、検査者撮像カメラ 221、視線情報検出ユニット 231は、それぞれターゲット 撮像部、ターゲット画像処理部として用いられて 、る。  In this embodiment, in the above-described embodiment, the image processing captured by the inspector imaging camera 221 is modified so that the line-of-sight information is acquired based on features other than the position and size of the eyes. For example, the inspector 208 has a target for acquiring gaze information on the face 208a or a part of the body in advance, and calculates the position and size of the target from the image captured by the inspector imaging camera 221 to obtain the gaze information. Is converted to. In the case of this modification, the inspector imaging camera 221 and the line-of-sight information detection unit 231 are used as a target imaging unit and a target image processing unit, respectively.
[0095] ターゲットとしては、例えば、色、形状や大きさなどの決まった検出用シール、プレ ートなどを、検査者 208の頭部の動きに連動する部位にセットする。 [0095] As the target, for example, a detection sticker, a plate or the like having a predetermined color, shape, size, or the like is set at a site that is linked to the movement of the head of the examiner 208.
図 16に示すのは、その一例であって、作業帽 237の前面側に、丸印など中心位置 の検出が容易な形状力 なる右ターゲット 238a (ターゲット)、左ターゲット 238b (タ ーゲット)が設けられた検出用プレート 238を取り付けたものである。ターゲットは、こ の他にも、例えば、検査者 208の顔や頭部に装着したり、検査者 208が身につける 作業用眼鏡などに設けたりすることができる。 An example is shown in FIG. 16, and a right target 238a (target) and a left target 238b (target) are provided on the front side of the work cap 237. The right target 238a (target), such as a circle, can easily detect the center position. The detected plate 238 is attached. The target is In addition, for example, it can be attached to the face or head of the examiner 208 or can be provided on work glasses worn by the examiner 208.
[0096] 本変形例によれば、検査者 208が作業帽 237をかぶった状態で、基準画像を撮像 しておく。そして、この基準画像から、右ターゲット 238a、左ターゲット 238bの中心位 置と、右目中心 G、左目中心 Gや視点中心位置 Qとの位置関係の対応を算出し、 [0096] According to this modification, the reference image is captured in a state where the inspector 208 is wearing the work cap 237. Then, from this reference image, the correspondence between the center positions of the right target 238a and the left target 238b and the positional relationship between the right eye center G, the left eye center G, and the viewpoint center position Q is calculated.
1 2  1 2
初期情報保存部 223に画像を保存しておく。  The initial information storage unit 223 stores the image.
このため、画像処理部 222では、検査者 208の右目 208d、左目 208eの画像に代 えて、画像認識および位置情報の取得が容易な右ターゲット 238a、左ターゲット 23 8bの画像を用いることができるので、画像処理部 222の構成をより簡素なものとし、 処理効率を向上することができる。  For this reason, the image processing unit 222 can use the images of the right target 238a and the left target 238b, which allow easy image recognition and position information acquisition, instead of the images of the right eye 208d and the left eye 208e of the examiner 208. Thus, the configuration of the image processing unit 222 can be simplified, and the processing efficiency can be improved.
[0097] [第 5の実施形態] [0097] [Fifth Embodiment]
本発明の第 5の実施形態に係る外観検査装置について説明する。  An appearance inspection apparatus according to a fifth embodiment of the present invention will be described.
図 17は、本発明の第 5の実施形態による外観検査装置の概略構成を示す平面図 である。図 18は、本発明の第 5の実施形態による外観検査装置の検査部および操作 部の概略構成を示す模式説明図である。図 19は、本発明の第 5の実施形態による 外観検査装置において、検査者力 見た被検体と可動指標との位置関係を示す模 式図である。  FIG. 17 is a plan view showing a schematic configuration of an appearance inspection apparatus according to the fifth embodiment of the present invention. FIG. 18 is a schematic explanatory view showing a schematic configuration of an inspection unit and an operation unit of the appearance inspection apparatus according to the fifth embodiment of the present invention. FIG. 19 is a schematic diagram showing the positional relationship between the subject and the movable index as viewed by the inspector in the appearance inspection apparatus according to the fifth embodiment of the present invention.
[0098] 本実施形態の外観検査装置 210は、図 17、 18に示すように、第 4の実施形態の外 観検査装置 200において、検査者撮像カメラ 221、ハーフミラー 220を削除し、指標 板 240 (可動指標)、指標移動機構 241、および指標位置操作部 242を追加し、視 線情報検出ユニット 231に代えて視線情報検出ユニット 243 (指標位置演算部)を備 えたものである。以下、上記第 4の実施形態と異なる点を中心に説明する。  As shown in FIGS. 17 and 18, the appearance inspection apparatus 210 of the present embodiment is the same as the appearance inspection apparatus 200 of the fourth embodiment except that the inspector imaging camera 221 and the half mirror 220 are deleted. 240 (movable index), an index moving mechanism 241 and an index position operation unit 242 are added, and a line-of-sight information detection unit 243 (index position calculation unit) is provided instead of the line-of-sight information detection unit 231. The following description will focus on differences from the fourth embodiment.
[0099] 指標板 240は、観察窓 219と基板 1との間で、観察窓 219に近接する位置に設け た光透過性の板部材であり、図 19に示すように、例えば十字、丸印、 X印など、検査 者 208の視野内で基板 1に対して中心位置の位置合わせが容易となる図形力もなる 指標 240aが設けられて 、る。  [0099] The indicator plate 240 is a light-transmitting plate member provided at a position close to the observation window 219 between the observation window 219 and the substrate 1. For example, as shown in FIG. Indices 240a, such as the X mark, are also provided that also provide graphic power that makes it easy to align the center position with the substrate 1 within the field of view of the inspector 208.
指標移動機構 241は、指標板 240を可動保持して、視線 208bに交差する方向に 移動し、指標板 240の指標 240aが、視線 208bの通過位置を標示できるようにしたも のである。本実施形態では、検査者 208が操作する指標位置操作部 242の操作入 力に応じて、指標板 240の把持枠を観察窓 219に沿う 2軸方向に移動するとともに、 その移動位置を検出し、その移動位置情報を視線情報検出ユニット 243に送出でき るようになっている。 The index moving mechanism 241 moves and moves the index plate 240 in the direction intersecting the line of sight 208b so that the index 240a of the index plate 240 can indicate the passing position of the line of sight 208b. It is. In the present embodiment, the gripping frame of the index plate 240 is moved in two axial directions along the observation window 219 in accordance with the operation input of the index position operation unit 242 operated by the inspector 208, and the movement position is detected. The movement position information can be sent to the line-of-sight information detection unit 243.
[0100] 視線情報検出ユニット 243は、指標移動機構 241から送出された移動位置情報を 指標板 240の指標 240aの中心位置の位置情報に変換し、その中心位置と基板 1の 揺動中心位置とを結ぶ線分上に視線 208bがあるとして、視線情報を算出するもので ある。  [0100] The line-of-sight information detection unit 243 converts the movement position information sent from the index movement mechanism 241 into the position information of the center position of the index 240a of the index plate 240, and the center position and the oscillation center position of the substrate 1 The line-of-sight information is calculated on the assumption that the line-of-sight 208b is on the line connecting the lines.
[0101] 本実施形態の外観検査装置 210によれば、検査者 208は、図 14に示すフローに 従って略同様にマクロ検査を行うが、次の点が異なる。  [0101] According to the appearance inspection apparatus 210 of the present embodiment, the inspector 208 performs the macro inspection in substantially the same manner according to the flow shown in FIG. 14, except for the following points.
ステップ S1では、基準画像の取得など検査者撮像カメラ 221に係る動作は行わな い。  In step S1, operations related to the inspector imaging camera 221 such as acquisition of a reference image are not performed.
ステップ S3では、検査者 208は、欠陥を検出すると指標位置操作部 242を操作し て、指標板 240を移動し、欠陥が見えたときの基板 1の中心に指標 240aの中心位置 を一致させる。そして、その後に、揺動位置記憶ボタン 217bを押す。  In step S3, when the inspector 208 detects a defect, the inspector 208 operates the index position operation unit 242 to move the index plate 240 so that the center position of the index 240a coincides with the center of the substrate 1 when the defect is seen. Thereafter, the swing position storage button 217b is pressed.
ここで、指標板 240を移動しない状態で揺動位置記憶ボタン 217bが押されて、視 線情報が不正確に記録されることを防止するために、例えば、揺動位置記憶ボタン 2 17bが押されたとき、それ以前の一定時間内に指標位置操作部 242が操作されたか どうか判定し、操作されていない場合には、揺動位置記憶ボタン 217bの操作入力を 無効化し、モニタ 218に指標板 240が移動されて 、な 、旨を警告するメッセージを表 示する、 t 、つた誤記録防止工程を設けることが好ま 、。  Here, in order to prevent the sighting information from being recorded inaccurately when the swing position storage button 217b is pressed without moving the indicator plate 240, for example, the swing position storage button 217b is pressed. If the index position operation unit 242 has been operated within a certain period of time before that, the operation input of the rocking position storage button 217b is invalidated and the index plate is displayed on the monitor 218. It is preferable to provide an error recording prevention process that displays a message warning that 240 has been moved.
[0102] また、ステップ S5では、揺動位置記憶ボタン 217bが押されると、視線情報検出ュ ニット 243により、指標移動機構 241の移動位置情報力も視線情報を算出する。すな わち、指標移動機構 241が保持する移動位置情報を指標 240aの中心位置の位置 座標に換算し、マクロ検査用揺動機構 209の揺動中心位置を基準とした座標系に座 標変換し、視線 208bの方向ベクトルなどを求める。 [0102] In step S5, when the swing position storage button 217b is pressed, the line-of-sight information detection unit 243 also calculates the line-of-sight information for the movement position information force of the index movement mechanism 241. In other words, the movement position information held by the index movement mechanism 241 is converted into the position coordinates of the center position of the index 240a, and the coordinates are converted to a coordinate system based on the rocking center position of the rocking mechanism 209 for macro inspection. Then, the direction vector of the line of sight 208b is obtained.
この場合、第 4の実施形態とは異なり、検査者 208までの距離は算出できないので 、視点の絶対位置は不明となる。そのため、ステップ S6では、視線方向のみが記憶 される。 In this case, unlike the fourth embodiment, since the distance to the inspector 208 cannot be calculated, the absolute position of the viewpoint is unknown. Therefore, in step S6, only the eye direction is memorized. Is done.
そしてステップ S9では、撮像光軸 21 laと基板 1との関係が、視線情報に記憶され た視線 208bと基板 1との関係に一致するとともに、基板 1の揺動中心を画像中心に 配置して基板 1の全体像を取得するようにフレーミング可能で、基板 1の中心にピント 位置を合わせることができるような撮像位置を算出する。  In step S9, the relationship between the imaging optical axis 21 la and the substrate 1 matches the relationship between the line of sight 208b stored in the line-of-sight information and the substrate 1, and the oscillation center of the substrate 1 is arranged at the image center. The imaging position is calculated so that the framing can be performed so as to obtain the entire image of the substrate 1 and the focus position can be adjusted to the center of the substrate 1.
[0103] このように、本実施形態は、指標移動機構 241と視線情報検出ユ ット 243とで視 線情報検出部を構成するもので、画像処理部を用いることなく視線情報を検出する 場合の例になっている。また、視点の絶対位置を算出しないで、撮像部の撮像位置 を算出する例ともなつている。 As described above, in this embodiment, the index movement mechanism 241 and the line-of-sight information detection unit 243 constitute a line-of-sight information detection unit, and when line-of-sight information is detected without using an image processing unit. It is an example. In addition, the image pickup position of the image pickup unit is calculated without calculating the absolute position of the viewpoint.
したがって、本実施形態によれば、第 4の実施形態と同様に、検査者 208が目視し た状態と同様の基板 1の可視画像を撮像し、その可視画像をモニタ 218に表示したり 、画像データとして保存したりすることができる。そして、指標板 240を検査者 208の 視線に合わせて動かすことにより視線情報を取得するので、簡便に視線情報を検出 することができる。  Therefore, according to the present embodiment, as in the fourth embodiment, a visible image of the substrate 1 that is the same as that observed by the inspector 208 is captured, and the visible image is displayed on the monitor 218. It can be saved as data. Then, the line-of-sight information is acquired by moving the indicator plate 240 in accordance with the line of sight of the examiner 208, so that the line-of-sight information can be easily detected.
[0104] [第 6の実施形態] [Sixth Embodiment]
本発明の第 6の実施形態に係る外観検査装置について説明する。  An appearance inspection apparatus according to a sixth embodiment of the present invention will be described.
図 20は、本発明の第 6の実施形態による外観検査装置の検査部および操作部の 概略構成を示す模式説明図である。  FIG. 20 is a schematic explanatory diagram showing a schematic configuration of an inspection unit and an operation unit of the visual inspection apparatus according to the sixth embodiment of the present invention.
[0105] 本実施形態の外観検査装置 250は、図 20に示すように、第 4の実施形態の外観検 查装置 200において、検査者撮像カメラ 221、ハーフミラー 220を削除し、位置検出 センサ 239を追加し、視線情報検出ユニット 231に代えて視線情報検出ユニット 244 (位置情報演算部)を備えたものである。以下、上記第 4の実施形態と異なる点を中 心に説明する。 As shown in FIG. 20, the appearance inspection apparatus 250 of the present embodiment is the same as the appearance inspection apparatus 200 of the fourth embodiment except that the inspector imaging camera 221 and the half mirror 220 are deleted, and the position detection sensor 239 And a line-of-sight information detection unit 244 (position information calculation unit) is provided instead of the line-of-sight information detection unit 231. The differences from the fourth embodiment will be mainly described below.
[0106] 位置検出センサ 239は、位置および重力加速度に対する方向を検出する位置検 出センサであり、検査中に検査者 208の頭部の検査者 208の目に近い位置、例えば 頭側部などに安定して固定される。したがって、位置検出センサ 239の装着位置は、 目の位置と一定の位置関係にあり、装着具の装着精度を適宜設定することによって、 装着位置における位置検出センサ 239の位置情報力も近似的な視点中心位置を算 出することができる。 [0106] The position detection sensor 239 is a position detection sensor that detects the position and the direction with respect to the gravitational acceleration. During the inspection, the position detection sensor 239 is located at a position close to the eyes of the inspector 208, such as the side of the head. It is fixed stably. Therefore, the mounting position of the position detection sensor 239 has a fixed positional relationship with the eye position, and the position information power of the position detection sensor 239 at the mounting position can be approximated by approximating the viewpoint center by appropriately setting the mounting accuracy of the mounting tool. Calculate position Can be issued.
位置検出センサ 239の頭部への固定方法は、例えば位置検出センサ 239が取り付 けられたヘッドバンド、フレーム、帽子などの着脱自在な装着具を検査者 208が身に つけるなどの固定方法を採用することができる。  The position detection sensor 239 can be fixed to the head by, for example, an inspector 208 wearing a detachable attachment such as a headband, a frame, or a hat to which the position detection sensor 239 is attached. Can be adopted.
位置検出センサ 239の検出出力は、視線情報検出ユニット 244に送出されるように なっている。  The detection output of the position detection sensor 239 is sent to the line-of-sight information detection unit 244.
位置検出センサ 239は、検査者 208に装着するたびに、適宜に位置校正を行う。 例えば、位置検出センサ 239を装着した検査者 208が基準位置に立って、所定位置 に校正用基準を配置した状態で目視し、その状態での位置情報を校正データとして 視線情報検出ユニット 244に記憶する。  Each time the position detection sensor 239 is attached to the inspector 208, the position detection sensor 239 appropriately performs position calibration. For example, an inspector 208 wearing the position detection sensor 239 stands at the reference position, visually observes the calibration reference at a predetermined position, and stores the position information in that state as calibration data in the line-of-sight information detection unit 244. To do.
視線情報検出ユニット 244は、揺動位置記憶ボタン 217bが押されたときに、位置 検出センサ 239から位置情報を取得し、予め記憶された校正データと比較し、検査 者 208の校正用基準を見る視線に対するずれ量から、視線情報を算出するものであ る。  The line-of-sight information detection unit 244 acquires the position information from the position detection sensor 239 when the swing position storage button 217b is pressed, compares it with the calibration data stored in advance, and sees the calibration reference of the inspector 208 The line-of-sight information is calculated from the shift amount with respect to the line of sight.
[0107] 本実施形態の外観検査装置 250によれば、検査者 208は、図 14に示すフローに 従って略同様にマクロ検査を行うが、次の点が異なる。  According to the appearance inspection apparatus 250 of the present embodiment, the inspector 208 performs macro inspection in substantially the same manner according to the flow shown in FIG. 14, except for the following points.
ステップ S1では、基準画像の取得など検査者撮像カメラ 221に係る動作は行わな い。  In step S1, operations related to the inspector imaging camera 221 such as acquisition of a reference image are not performed.
ステップ S5では、揺動位置記憶ボタン 217bが押されると、視線情報検出ユニット 2 44により、位置検出センサ 239の位置情報力 視線情報を算出する。この視線情報 は、近似的な視点中心位置の位置座標と、視線方向の情報とを含んでいる。  In step S5, when the swing position storage button 217b is pressed, the position information force line-of-sight information of the position detection sensor 239 is calculated by the line-of-sight information detection unit 244. This line-of-sight information includes the position coordinates of the approximate viewpoint center position and information on the line-of-sight direction.
[0108] このように、本実施形態は、位置検出センサ 239と視線情報検出ユニット 244とで 視線情報検出部を構成するもので、画像処理部を用いることなく視線情報を検出す る場合の例になっている。 As described above, in this embodiment, the position detection sensor 239 and the line-of-sight information detection unit 244 constitute a line-of-sight information detection unit, and an example of detecting line-of-sight information without using an image processing unit. It has become.
したがって、本実施形態によれば、第 4の実施形態と同様に、検査者 208が目視し た状態と同様の基板 1の可視画像を撮像し、モニタ 218に表示したり、画像データと して保存したりすることができる。そして、位置検出センサ 239により視線情報を取得 するので、より簡便に視線情報を検出することができる。 [0109] また、上述した全ての実施形態において、クリーンルームの外等に配置された検査 画像を表示するモニタを備える制御用コンピュータと外観検査装置とを通信回線によ つて接続し、制御用コンピュータが、操作者による操作の結果に基づいた操作情報 を外観検査装置へ送信し、操作情報を受信した外観検査装置が、操作情報に基づ いて動作することにより、外観検査装置を遠隔操作するようにしてもよい。すなわち、 通常の検査者が検査装置で目視検査を行って!/、るのと同じ操作情報 (レシピ)で検 查を行う場合、本発明の外観検査装置を用いれば、検査ポイント毎に停止した画像 を目視時の画像とほぼ等 、画像として通信回線を通じて他の場所でも画像が得ら れるので、検査装置の 1台 1台の前に検査者が居る必要がなぐ検査装置とは別の場 所での遠隔操作による検査が可能となる。 Therefore, according to the present embodiment, as in the fourth embodiment, a visible image of the substrate 1 that is the same as that observed by the inspector 208 is captured and displayed on the monitor 218, or as image data. And can be saved. Since the line-of-sight information is acquired by the position detection sensor 239, the line-of-sight information can be detected more easily. In all the embodiments described above, a control computer having a monitor for displaying an inspection image arranged outside a clean room or the like and an appearance inspection apparatus are connected via a communication line, and the control computer is The operation information based on the result of the operation by the operator is transmitted to the visual inspection device, and the visual inspection device that has received the operation information is operated based on the operation information so that the visual inspection device is operated remotely. May be. In other words, when a normal inspector performs a visual inspection with an inspection device and performs inspection with the same operation information (recipe) as that used, the appearance inspection device according to the present invention stops at each inspection point. Since the image is almost the same as the image at the time of visual observation, and the image can be obtained at other locations through the communication line, it is different from the inspection device where there is no need for an inspector in front of each inspection device. Inspection by remote control at a place becomes possible.
[0110] 制御用コンピュータと外観検査装置との接続は、有線または無線のネットワークを 介した接続であってもよ 、し、専用線を用いたシリアル通信等による接続であってもよ い。この制御用コンピュータには、汎用的なコンピュータと同様の構成を備えたものを 用いればよい。すなわち、制御用コンピュータは、 CPUおよびチップセット等力 なる 制御部や、マウス、キーボード、スィッチ等力 なる操作部、情報を記憶するハードデ イスクドライブおよび RAM等力 なる記憶部、情報を表示するモニタ等力 なる表示 部、 TCP/IP通信等に対応したインタフェース部等の各部を備えたものとして構成さ れる。  [0110] The connection between the control computer and the visual inspection apparatus may be a connection via a wired or wireless network, or a connection by serial communication using a dedicated line. As the control computer, a computer having the same configuration as a general-purpose computer may be used. In other words, the control computer includes a control unit such as a CPU and a chip set, an operation unit such as a mouse, a keyboard, and a switch, a hard disk drive that stores information and a memory unit such as a RAM, a monitor that displays information, etc. It is configured to include each unit such as a powerful display unit and an interface unit corresponding to TCP / IP communication.
[0111] 従来から、外観検査装置において、被検体である基板に対してどのような検査を行 う力 すなわち、検査をするかしないか、また、どのような条件で検査するかを定義す る「レシピ情報」が用いられている。このレシピ情報を用いて、制御用コンピュータによ り、外観検査装置を制御してもよい。これにより、基板の搬送、マクロ検査、およびミク 口検査等からなる一連の検査処理が一括で自動的に行われる。  [0111] Conventionally, in the visual inspection apparatus, what kind of inspection force is applied to the substrate as the object, that is, whether or not to inspect, and under what conditions is defined. “Recipe information” is used. The appearance inspection apparatus may be controlled by a control computer using this recipe information. As a result, a series of inspection processes including substrate transport, macro inspection, and inspection of the mouth are automatically performed at once.
[0112] 外部の制御用コンピュータを介して外観検査装置を操作する場合、撮像部によつ て生成された画像データは、外観検査装置の制御部力 制御用コンピュータへ送信 される。制御用コンピュータはこの画像データを受信し、画像データに基づいた画像 をモニタに表示する。検査者は、この画像を見ながら、制御用コンピュータの操作部 を介して基板の揺動等を行い、欠陥の有無や種別等を判断することにより、外観検 查装置の前にいて検査を行う場合と同様にして、基板の外観検査を行う。 When operating the appearance inspection apparatus via an external control computer, the image data generated by the imaging unit is transmitted to the control unit force control computer of the appearance inspection apparatus. The control computer receives this image data and displays an image based on the image data on the monitor. While inspecting the image, the inspector swings the substrate via the control computer's operation unit and determines the presence and type of defects, thereby checking the appearance. The substrate is inspected in the same manner as when the inspection is performed in front of the dredger.
[0113] 外観検査装置は通常、クリーンルーム内に配置されるため、検査者力クリーンルー ムに入らなくても基板の外観検査を行えるので、作業効率が向上する。また、複数台 の外観検査装置がある場合に、それらの外観検査装置とクリーンルーム外の制御用 コンピュータとを通信回線によって接続し、制御用コンピュータ力 各外観検査装置 を制御可能に構成すれば、一人で複数台の外観検査装置を操作することができるよ うになる。したがって、検査作業に必要な検査者の人数を減らし、装置の使用効率を 向上させると共に、投資コストを削減することができる。  [0113] Since the appearance inspection apparatus is usually placed in a clean room, the appearance inspection of the substrate can be performed without entering the inspector-powered clean room, thus improving work efficiency. Also, if there are multiple visual inspection devices, the visual inspection devices and the control computer outside the clean room are connected by a communication line, and the computer power for control can be controlled by each person. This makes it possible to operate multiple visual inspection devices. Therefore, the number of inspectors required for the inspection work can be reduced, the use efficiency of the apparatus can be improved, and the investment cost can be reduced.
[0114] この場合、撮像部は、各実施形態において説明したように、目視による像と同一の 像を撮像している。つまり、制御用コンピュータのモニタに表示された画像は、外観検 查装置の前で検査者が基板の外観検査を行った場合の目視〖こよる像と同一となる。 したがって、従来から見慣れて!/ヽる画像で基板の外観検査を行うことができるので、 視点の違 ヽによる違和感は生じな 、。  [0114] In this case, as described in each embodiment, the imaging unit captures the same image as the visual image. That is, the image displayed on the monitor of the control computer is the same as the image obtained by visual inspection when the inspector inspects the appearance of the substrate in front of the appearance inspection device. Therefore, it is possible to inspect the appearance of the substrate with images that are familiar to the user! / There is no sense of incongruity due to a difference in viewpoint.
[0115] 目視による基板の外観検査を外観検査装置の前で行う場合であっても、検査結果 として制御部の記憶部に保存された画像データをクリーンルーム外の制御用コンビュ ータへ送信してもよい。この場合、例えば検査者によって画像データの送信が指示さ れると、制御部は内部の記憶部力 画像データを読み出して、制御用コンピュータへ 送信する。制御用コンピュータは画像データを受信し、内部の記憶部に保存する。こ の画像データは、制御用コンピュータの操作者による指示に基づいて適宜記憶部か ら読み出されて処理され、モニタに画像が表示される。これにより、クリーンルーム外 にお 、ても外観検査の結果を再確認することができるので、結果の再確認が必要な 場合に、再度クリーンルームに入る必要がなくなり、作業効率を向上させることができ る。  [0115] Even when visual inspection of the substrate is performed in front of the visual inspection device, the image data stored in the storage unit of the control unit is transmitted to the control computer outside the clean room as the inspection result. Also good. In this case, for example, when transmission of image data is instructed by the examiner, the control unit reads out the internal storage unit image data and transmits it to the control computer. The control computer receives the image data and stores it in the internal storage unit. This image data is appropriately read from the storage unit and processed based on an instruction from the operator of the control computer, and an image is displayed on the monitor. As a result, the appearance inspection result can be reconfirmed even outside the clean room, so that it is not necessary to enter the clean room again when it is necessary to reconfirm the result, thereby improving work efficiency. .
[0116] なお、上記第 4の実施形態の説明では、検査者撮像カメラ 221で撮像した顔面画 像力も検査者 208の顔面 208aまでの距離を算出し、検査者 208の位置情報を取得 する例として説明したが、検査者撮像カメラ 221に測距部を設けて、顔面 208aの距 離情報を取得するようにしてもよい。この場合、顔面画像の画像処理を簡素化するこ とがでさる。 測距部は、検査者 208に向けて測距光を投光して三角測量したり、検査者撮像力 メラ 221をステレオ計測カメラとしてステレオ計測を行ったり、 t 、つた部を採用するこ とがでさる。 [0116] In the description of the fourth embodiment, the facial image power captured by the inspector imaging camera 221 is also calculated by calculating the distance to the face 208a of the inspector 208 and acquiring the position information of the inspector 208. As described above, the distance measuring unit may be provided in the inspector imaging camera 221 to acquire the distance information of the face 208a. In this case, the image processing of the face image can be simplified. The distance measuring unit may project triangulation by projecting distance measuring light toward the inspector 208, or perform stereo measurement using the inspector imaging power Mera 221 as a stereo measurement camera, or use the t It is out.
[0117] また、上記第 4の実施形態の説明では、目の外形を特徴抽出して、視線情報を取 得する場合の例で説明したが、目の位置と目の大きさを検出できれば、他の形状を 抽出してもよい。例えば、白目部と黒目部とを検出するようにしてもよい。この場合、 黒目部の位置を検出することにより、例えば、検査者 208が顔面 208aの正面方向か ら斜めに目をそらして欠陥を目視する場合にも、正確な視線情報を得ることができる  [0117] In the description of the fourth embodiment, an example has been described in which the outline of an eye is extracted to obtain line-of-sight information. However, as long as the eye position and the eye size can be detected, there are other cases. The shape may be extracted. For example, a white eye part and a black eye part may be detected. In this case, by detecting the position of the black eye part, for example, even when the inspector 208 looks away from the front of the face 208a obliquely, the accurate line-of-sight information can be obtained.
[0118] また、上記の第 4〜第 6の実施形態の説明では、カメラ 211を検査者 208の頭部と 略同じ高さに配置した例で説明したが、カメラ 211の配置位置はこのような位置に限 定されるものではない。例えば、基板 1との間に、ミラーなどを配置して適宜光路を変 更すれば、よりコンパクトな装置を実現することができる。 [0118] In the above description of the fourth to sixth embodiments, an example in which the camera 211 is disposed at substantially the same height as the head of the inspector 208 has been described. It is not limited to a particular position. For example, a more compact device can be realized by arranging a mirror or the like between the substrate 1 and appropriately changing the optical path.
[0119] また、上記の説明では、基板を被検体としてミクロ検査とともにマクロ検査を行う場 合の例で説明したが、外観検査装置は、マクロ検査のみを行う装置でもよい。また、 被検体も半導体ウェハに限定されるものではない。 [0119] In the above description, an example in which a macro inspection is performed together with a micro inspection using a substrate as an object has been described. However, the appearance inspection apparatus may be an apparatus that performs only a macro inspection. The subject is not limited to a semiconductor wafer.
例えば、液晶基板の外観検査などを行うものであってもよい。液晶基板は大型のも のが多いため、揺動方向を細力べ振って検査を行うことが難しい場合があるが、本発 明によれば、検査者の視点をずらすことで見えた欠陥の画像も容易に撮像すること ができるという利点がある。  For example, an appearance inspection of the liquid crystal substrate may be performed. Since the liquid crystal substrate is often large, it may be difficult to perform the inspection by swinging the swinging direction. However, according to the present invention, the defect that was seen by shifting the viewpoint of the inspector is observed. There is an advantage that images can be easily captured.
[0120] 以上、図面を参照して本発明の実施形態について詳述してきたが、具体的な構成 はこれらの実施の形態に限られるものではなぐこの発明の要旨を逸脱しない範囲の 設計変更等も含まれる。 As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and design changes and the like within the scope not departing from the gist of the present invention. Is also included.
また、上記の各実施形態に記載された構成要素は、技術的に可能であれば、本発 明の技術的思想の範囲内で適宜組み合わせて実施することができる。例えば、第 4 の実施形態の第 1変形例の照明部移動機構 235、照明位置制御部 236は、第 5、第 Further, the constituent elements described in each of the above embodiments can be appropriately combined and implemented within the scope of the technical idea of the present invention, if technically possible. For example, the illumination unit moving mechanism 235 and the illumination position control unit 236 of the first modification of the fourth embodiment are the fifth and fifth
6の実施形態の構成と組み合わせて実施してもよ 、。 It may be implemented in combination with the configuration of the sixth embodiment.

Claims

請求の範囲 The scope of the claims
[1] 目視による被検体の外観検査を行うために、前記被検体を保持すると共に、該被 検体を揺動させる被検体保持部と、  [1] An object holding unit that holds the object and swings the object to visually inspect the appearance of the object;
前記被検体を撮像し、画像データを生成する撮像部とを備え、  An imaging unit that images the subject and generates image data;
前記撮像部は、その光軸が、外観検査を行うとき、検査者が前記被検体を観察す る視線とほぼ一致するように配置されることを特徴とする外観検査装置。  The appearance inspection apparatus, wherein the imaging unit is arranged so that an optical axis thereof substantially coincides with a line of sight when the examiner observes the subject when the appearance inspection is performed.
[2] 前記撮像部を保持すると共に、該撮像部を移動させる撮像保持部をさらに備え、 前記撮像保持部の動作を制御して、前記検査者による前記被検体の目視時には、 前記検査者による目視の邪魔にならない位置に前記撮像部を移動させ、前記被検 体の撮像時には、前記検査者による前記被検体の目視時の前記検査者の目視位置 と同一位置に前記撮像部を移動させることを特徴とする請求項 1に記載の外観検査 装置。  [2] An imaging holding unit that holds the imaging unit and moves the imaging unit is further provided. The operation of the imaging holding unit is controlled so that the examiner can visually observe the subject. The imaging unit is moved to a position that does not obstruct viewing, and the imaging unit is moved to the same position as the inspector's visual position when the subject is viewed by the inspector when the subject is imaged. The visual inspection apparatus according to claim 1, wherein:
[3] 前記被検体を照明する照明部を備え、  [3] An illumination unit that illuminates the subject is provided,
目視観察時における、前記照明部の前記被検体の中心位置へ向力 光軸の方向 、前記被検体の法線方向、および前記中心位置から前記検査者の目視方向に伸び る基準軸の方向の相互になす 3つの角度が、  At the time of visual observation, the direction of the optical axis, the direction of the normal axis of the subject, and the direction of the reference axis extending from the center position to the examiner's visual direction. The three angles formed by each other
前記撮像部による撮像時における、前記照明部の前記被検体の中心位置へ向か う光軸の方向、前記被検体の法線方向、および前記被検体の中心位置に向力う前 記撮像部の撮像光学系の光軸の方向の相互になす 3つの角度に、それぞれ等しぐ 前記目視観察時の前記照明部、前記被検体の中心位置、前記目視位置のそれぞ れの相対位置が、  The imaging unit that is directed to the direction of the optical axis toward the center position of the subject of the illumination unit, the normal direction of the subject, and the center position of the subject at the time of imaging by the imaging unit Are equal to the three angles of the optical axis directions of the imaging optical system, and the relative positions of the illumination unit, the center position of the subject, and the visual position at the time of visual observation are
前記撮像部による撮像時の前記照明部、前記被検体の中心位置、前記撮像部の 位置のそれぞれの相対位置と等しくなるように配置されることを特徴とする請求項 1に 記載の外観検査装置。  The visual inspection apparatus according to claim 1, wherein the visual inspection apparatus is arranged so as to be equal to the relative positions of the illumination unit, the center position of the subject, and the position of the imaging unit at the time of imaging by the imaging unit. .
[4] 前記撮像部は、撮像方向に伸びる光軸が水平面となす角度と、前記検査者の目視 方向に伸びる軸が水平面となす角度とが等しくなるように、前記検査者の目視位置と 同一の高さの位置に配置されており、  [4] The imaging unit is the same as the viewing position of the inspector so that the angle formed by the optical axis extending in the imaging direction and the horizontal plane is equal to the angle formed by the axis extending in the viewing direction of the inspector. Is located at the height of
さらに制御部を有し、 前記制御部は、前記被検体の撮像時に、前記被検体の回転を指示する信号を前 記被検体保持部へ出力し、 Furthermore, it has a control part, The control unit outputs a signal instructing rotation of the subject to the subject holding unit when imaging the subject,
前記被検体保持部は、前記制御部から出力された信号に基づいて、前記被検体 の中心を通り、鉛直方向に伸びる回転軸を中心として、前記検査者の目視による前 記被検体の像と、前記撮像部によって撮像された前記被検体の像とが同一となる位 置まで前記被検体を回転させることを特徴とする請求項 1に記載の外観検査装置。  Based on the signal output from the control unit, the subject holding unit has the image of the subject visually observed by the inspector with a rotation axis extending in the vertical direction passing through the center of the subject. 2. The appearance inspection apparatus according to claim 1, wherein the subject is rotated to a position where an image of the subject imaged by the imaging unit is the same.
[5] 制御部と、光を反射する反射板と、該反射板を保持すると共に、該反射板を移動さ せる反射板保持部とをさらに備え、 [5] A control unit, a reflecting plate that reflects light, and a reflecting plate holding unit that holds the reflecting plate and moves the reflecting plate,
前記制御部は、前記反射板保持部の動作を制御して、前記検査者による前記被 検体の目視時には、前記検査者による目視の邪魔にならない位置に前記反射板を 移動させ、前記被検体の撮像時には、前記反射板によって反射された光に基づいて 前記撮像部によって撮像された前記被検体の像と、前記検査者の目視による像とが 同一となる位置に前記反射板を移動させることを特徴とする請求項 1に記載の外観 検査装置。  The control unit controls the operation of the reflection plate holding unit to move the reflection plate to a position that does not interfere with the inspection by the inspector when the inspection is viewed by the inspector. At the time of imaging, the reflecting plate is moved to a position where the image of the subject imaged by the imaging unit and the image visually observed by the examiner are the same based on the light reflected by the reflecting plate. The appearance inspection apparatus according to claim 1, wherein
[6] 光を透過および反射する半透過反射板をさらに備え、該半透過反射板によって反 射された光に基づいて前記撮像部によって撮像された前記被検体の像と、前記半透 過反射膜を介した前記検査者の目視による像とが同一となる位置に前記半透過反 射板が配置されて 、ることを特徴とする請求項 1に記載の外観検査装置。  [6] The apparatus further includes a transflective plate that transmits and reflects light, the image of the subject imaged by the imaging unit based on the light reflected by the transflective plate, and the semitransparent reflection 2. The appearance inspection apparatus according to claim 1, wherein the transflective plate is arranged at a position where an image visually observed by the inspector through the film is the same.
[7] 被検体を照明する照明部と、 [7] an illumination unit for illuminating the subject;
前記被検体保持部の揺動位置情報を記憶するための揺動位置記憶部と、 前記揺動位置情報を、前記被検体の欠陥を目視検査する検査者の操作に応じて 、前記揺動位置記憶部に記憶させる揺動位置記憶操作部と、  A rocking position storage unit for storing rocking position information of the subject holding unit; and the rocking position information according to an operation of an inspector who visually inspects a defect of the subject. A swing position storing operation unit to be stored in the storage unit;
該揺動位置記憶操作部が操作されたことを検知して、前記被検体に対する検査者 の視線情報を検出する視線情報検出部と、  A line-of-sight information detection unit that detects that the swing position storage operation unit has been operated and detects the line-of-sight information of the examiner with respect to the subject;
前記揺動位置記憶部に記憶された前記揺動位置情報と、前記視線情報検出部で 検出された前記視線情報とに応じて、前記揺動保持部および前記撮像部移動機構 の少なくとも 、ずれかを制御して、前記撮像部の光軸と前記被検体との位置関係が、 前記検査者の視線と前記被検体との相対位置と同等になるように設定するとともに、 前記被検体に対する撮像動作を行う撮像動作制御部とを備えることを特徴とする請 求項 1に記載の外観検査装置。 According to the rocking position information stored in the rocking position storage unit and the line-of-sight information detected by the line-of-sight information detection unit, at least one of the rocking holding unit and the imaging unit moving mechanism is shifted. And the positional relationship between the optical axis of the imaging unit and the subject is set to be equal to the relative position of the examiner's line of sight and the subject, 2. The appearance inspection apparatus according to claim 1, further comprising an imaging operation control unit that performs an imaging operation on the subject.
[8] 前記視線情報検出部が、 [8] The line-of-sight information detector
検査者の顔面を含む画像を撮像する検査者撮像部と、  An inspector imaging unit that captures an image including the face of the inspector;
該検査者撮像部により撮像された前記顔面を含む画像から前記検査者の視点位 置を検出することにより前記検査者の視線情報を算出する検査者画像処理部とを備 えることを特徴とする請求項 7に記載の外観検査装置。  And an inspector image processing unit that calculates gaze information of the inspector by detecting a viewpoint position of the inspector from an image including the face imaged by the inspector imaging unit. The visual inspection apparatus according to claim 7.
[9] 前記視線情報検出部が、 [9] The line-of-sight information detector
検査者の視線に略連動するように設けられたターゲットを撮像するターゲット撮像 部と、  A target imaging unit that images a target provided so as to be substantially interlocked with the line of sight of the examiner;
該ターゲット撮像部により撮像された前記ターゲットの画像力 前記検査者の視線 情報を算出するターゲット画像処理部とを備えることを特徴とする請求項 7に記載の 外観検査装置。  The visual inspection apparatus according to claim 7, further comprising: a target image processing unit that calculates an image force of the target imaged by the target imaging unit, and calculates line-of-sight information of the inspector.
[10] 前記視線情報検出部が、 [10] The line-of-sight information detector
前記被検体を目視する際に目視位置と前記被検体との間で、検査者の視線の通 過する位置を標示する可動指標と、  A movable index for indicating a position where an examiner's line of sight passes between the visual position and the subject when viewing the subject;
該可動指標の位置情報を取得して、前記検査者の視線情報に変換する指標位置 演算部とを備えることを特徴とする請求項 7に記載の外観検査装置。  8. The appearance inspection apparatus according to claim 7, further comprising: an index position calculation unit that acquires position information of the movable index and converts the position information into gaze information of the inspector.
[11] 前記視線情報検出部が、 [11] The line-of-sight information detector
前記検査者に固定された位置検出センサと、  A position detection sensor fixed to the inspector;
該位置検出センサの位置情報を取得して、前記検査者の視線情報に変換する位 置情報演算部とを備えることを特徴とする請求項 7に記載の外観検査装置。  8. The appearance inspection apparatus according to claim 7, further comprising: a position information calculation unit that acquires position information of the position detection sensor and converts the position information into gaze information of the inspector.
PCT/JP2006/311515 2004-12-10 2006-06-08 External appearance inspection device WO2007141857A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008520093A JPWO2007141857A1 (en) 2006-06-08 2006-06-08 Appearance inspection device
CN200680054865XA CN101460832B (en) 2006-06-08 2006-06-08 External appearance inspection device
PCT/JP2006/311515 WO2007141857A1 (en) 2006-06-08 2006-06-08 External appearance inspection device
US12/329,847 US20090097737A1 (en) 2004-12-10 2008-12-08 Visual inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/311515 WO2007141857A1 (en) 2006-06-08 2006-06-08 External appearance inspection device

Publications (1)

Publication Number Publication Date
WO2007141857A1 true WO2007141857A1 (en) 2007-12-13

Family

ID=38801129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311515 WO2007141857A1 (en) 2004-12-10 2006-06-08 External appearance inspection device

Country Status (3)

Country Link
JP (1) JPWO2007141857A1 (en)
CN (1) CN101460832B (en)
WO (1) WO2007141857A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150866A (en) * 2007-11-29 2009-07-09 Toshiba Corp Appearance inspection apparatus, appearance inspection system, and appearance inspection method
JP2012187178A (en) * 2011-03-09 2012-10-04 Fujitsu Ltd Visual line detection device and visual line detection method
JP2015184184A (en) * 2014-03-25 2015-10-22 マツダ株式会社 Surface texture evaluation device
JP6048819B2 (en) * 2011-05-10 2016-12-21 パナソニックIpマネジメント株式会社 Display device, display method, integrated circuit, program
JP2017131804A (en) * 2016-01-25 2017-08-03 株式会社大気社 Coating equipment and operation method of coating equipment
WO2018008576A1 (en) * 2016-07-05 2018-01-11 日本電気株式会社 Inspection evaluating device, inspection evaluating method and program
WO2018062243A1 (en) * 2016-09-28 2018-04-05 株式会社デンソー Inspection device
WO2018062240A1 (en) * 2016-09-28 2018-04-05 株式会社デンソー Inspection device
JP2018054438A (en) * 2016-09-28 2018-04-05 株式会社デンソー Inspection device
WO2018062239A1 (en) * 2016-09-28 2018-04-05 株式会社デンソー Examination device
WO2018062241A1 (en) * 2016-09-28 2018-04-05 株式会社デンソー Inspection device
WO2018062244A1 (en) * 2016-09-28 2018-04-05 株式会社デンソー Inspection device
JP2019060780A (en) * 2017-09-27 2019-04-18 ファナック株式会社 Inspection device and inspection system
JP2021076482A (en) * 2019-11-11 2021-05-20 コニカミノルタ株式会社 Component inspection assisting device, component inspection assisting method, and program

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102401802A (en) * 2010-09-08 2012-04-04 上海宝钢工业检测公司 Light examination method of roller surface grinding quality
CN103868938A (en) * 2012-12-17 2014-06-18 中国振华集团永光电子有限公司 Filling quality detection method and apparatus for LED module
CN105891232A (en) * 2014-12-23 2016-08-24 北京金晶智慧有限公司 Method for rapidly inspecting large-area Low-E coated glass coating defects
CN108226177A (en) * 2016-12-21 2018-06-29 蓝思科技(长沙)有限公司 A kind of bad detection device of portable face oil
CN109269402A (en) * 2017-07-17 2019-01-25 天津玛特检测设备有限公司 The detection system of view-based access control model measurement
CN107907549A (en) * 2017-11-13 2018-04-13 武汉华星光电半导体显示技术有限公司 Inspecting substrate equipment and substrate inspecting method
CN108917663B (en) * 2018-07-10 2024-03-26 广东奥普特科技股份有限公司 Detection device and detection method for high-gloss-surface flatness
JP2021139718A (en) * 2020-03-04 2021-09-16 日本発條株式会社 Method for checking inspection system, inspection system, and computer program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015939A (en) * 1983-07-08 1985-01-26 Hitachi Ltd Inspecting device for foreign matter
JPH03289893A (en) * 1990-04-06 1991-12-19 Tokyo Electric Power Co Inc:The Visual field sharing device
JPH08322796A (en) * 1995-05-29 1996-12-10 Sharp Corp Method and apparatus for detecting direction of visual axis and man-machine interface apparatus containing the same
JP2000266511A (en) * 1999-03-19 2000-09-29 Olympus Optical Co Ltd Inspection device
JP2001305063A (en) * 2000-04-19 2001-10-31 Matsushita Electric Ind Co Ltd Projection device for fine work

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1174337C (en) * 2002-10-17 2004-11-03 南开大学 Apparatus and method for identifying gazing direction of human eyes and its use
CN100343867C (en) * 2005-06-15 2007-10-17 北京中星微电子有限公司 Method and apparatus for distinguishing direction of visual lines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015939A (en) * 1983-07-08 1985-01-26 Hitachi Ltd Inspecting device for foreign matter
JPH03289893A (en) * 1990-04-06 1991-12-19 Tokyo Electric Power Co Inc:The Visual field sharing device
JPH08322796A (en) * 1995-05-29 1996-12-10 Sharp Corp Method and apparatus for detecting direction of visual axis and man-machine interface apparatus containing the same
JP2000266511A (en) * 1999-03-19 2000-09-29 Olympus Optical Co Ltd Inspection device
JP2001305063A (en) * 2000-04-19 2001-10-31 Matsushita Electric Ind Co Ltd Projection device for fine work

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150866A (en) * 2007-11-29 2009-07-09 Toshiba Corp Appearance inspection apparatus, appearance inspection system, and appearance inspection method
JP2012187178A (en) * 2011-03-09 2012-10-04 Fujitsu Ltd Visual line detection device and visual line detection method
JP6048819B2 (en) * 2011-05-10 2016-12-21 パナソニックIpマネジメント株式会社 Display device, display method, integrated circuit, program
JP2015184184A (en) * 2014-03-25 2015-10-22 マツダ株式会社 Surface texture evaluation device
JP2017131804A (en) * 2016-01-25 2017-08-03 株式会社大気社 Coating equipment and operation method of coating equipment
WO2018008576A1 (en) * 2016-07-05 2018-01-11 日本電気株式会社 Inspection evaluating device, inspection evaluating method and program
JP2018054435A (en) * 2016-09-28 2018-04-05 株式会社デンソー Inspection device
JP2018054439A (en) * 2016-09-28 2018-04-05 株式会社デンソー Inspection device
JP2018054438A (en) * 2016-09-28 2018-04-05 株式会社デンソー Inspection device
WO2018062239A1 (en) * 2016-09-28 2018-04-05 株式会社デンソー Examination device
WO2018062243A1 (en) * 2016-09-28 2018-04-05 株式会社デンソー Inspection device
WO2018062241A1 (en) * 2016-09-28 2018-04-05 株式会社デンソー Inspection device
WO2018062244A1 (en) * 2016-09-28 2018-04-05 株式会社デンソー Inspection device
WO2018062240A1 (en) * 2016-09-28 2018-04-05 株式会社デンソー Inspection device
JP2018054440A (en) * 2016-09-28 2018-04-05 株式会社デンソー Inspection device
WO2018062242A1 (en) * 2016-09-28 2018-04-05 株式会社デンソー Inspection device
US10705025B2 (en) 2016-09-28 2020-07-07 Denso Corporation Inspection device
US10614565B2 (en) 2017-09-27 2020-04-07 Fanuc Corporation Inspection device and inspection system
JP2019060780A (en) * 2017-09-27 2019-04-18 ファナック株式会社 Inspection device and inspection system
JP2021076482A (en) * 2019-11-11 2021-05-20 コニカミノルタ株式会社 Component inspection assisting device, component inspection assisting method, and program
JP7310554B2 (en) 2019-11-11 2023-07-19 コニカミノルタ株式会社 PARTS INSPECTION SUPPORT DEVICE, PARTS INSPECTION SUPPORT METHOD AND PROGRAM

Also Published As

Publication number Publication date
CN101460832B (en) 2012-03-21
JPWO2007141857A1 (en) 2009-10-15
CN101460832A (en) 2009-06-17

Similar Documents

Publication Publication Date Title
WO2007141857A1 (en) External appearance inspection device
TWI408361B (en) Visual inspection apparatus
US20090097737A1 (en) Visual inspection apparatus
JP6643072B2 (en) Microscope system and control method thereof
JP5840677B2 (en) Inspection apparatus and method for moving semiconductor wafer
TWI411773B (en) Visual inspection apparatus, visual inspection methdo, and circumference inspection unit attachable to visual inspection apparatus
TWI443763B (en) Visual inspection apparatus
WO2006059647A1 (en) Surface inspection device and surface inspection method
JP4914761B2 (en) Appearance inspection device
JPWO2009133847A1 (en) Observation apparatus and observation method
TWI622764B (en) An automatic optical inspecting system for particle inspection from the surface
JP2011115556A (en) System for observing cornea for transplantation
KR20090107314A (en) Apparatus for inspecting surface and method for inspecting surface
JP2007033372A (en) Visual inspection device
JP5410330B2 (en) Stylus observation device
JP2007327903A (en) Visual inspection system
JP5316924B2 (en) Observation apparatus and observation method
JP4119828B2 (en) Inspection method of spherical surface by optical member inspection device
TWI353032B (en)
US9612110B2 (en) Observation device of cornea for transplantation, and auxiliary light source unit used for the same
JP2005257404A (en) Small-diameter member outer surface inspection method
JP2014126436A (en) Device for inspecting inside of workpiece having laminate structure
WO2021261302A1 (en) Defect inspection device
JP2007058199A (en) Observation device
JP2001165618A (en) Image recognition device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680054865.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06766488

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008520093

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06766488

Country of ref document: EP

Kind code of ref document: A1