WO2007138829A1 - Capacitive sensor - Google Patents

Capacitive sensor Download PDF

Info

Publication number
WO2007138829A1
WO2007138829A1 PCT/JP2007/059671 JP2007059671W WO2007138829A1 WO 2007138829 A1 WO2007138829 A1 WO 2007138829A1 JP 2007059671 W JP2007059671 W JP 2007059671W WO 2007138829 A1 WO2007138829 A1 WO 2007138829A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrode
electrode side
side substrate
gap
Prior art date
Application number
PCT/JP2007/059671
Other languages
French (fr)
Japanese (ja)
Inventor
Yasushi Shimomoto
Daisuke Kuzuyama
Satoshi Nozoe
Masao Hashimoto
Kazunobu Itonaga
Original Assignee
Omron Corporation
Omron Healthcare Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corporation, Omron Healthcare Co., Ltd. filed Critical Omron Corporation
Publication of WO2007138829A1 publication Critical patent/WO2007138829A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up

Definitions

  • the present invention relates to a capacitance type sensor that detects a physical quantity based on a change in capacitance between electrodes facing each other with a gap therebetween.
  • Capacitance sensors can be used for various sensors such as pressure sensors, acceleration sensors, and vibration detection sensors.
  • the capacitance type sensor has an advantage that the temperature characteristic is more stable than the piezo type sensor using a piezoresistive element or the like.
  • capacitive semiconductor sensors using silicon semiconductor substrates can be manufactured using IC manufacturing technology, they are highly uniform, and can be easily reduced in size and weight and integrated with circuits. Has the advantage of being.
  • the capacitive semiconductor sensor using the silicon semiconductor substrate can be mass-produced by a large-scale batch method, it has an advantage that low cost can be realized. From the above, the capacitance type sensor is generally widely used.
  • a capacitive sensor is a sensor that utilizes the fact that the capacitance (the amount of electricity to be charged) of two electrodes facing each other changes depending on the distance separating the electrodes. Convert and detect.
  • Patent Document 1 Japanese Patent Laid-Open Publication No. 2005-337774 (published December 8, 2005), a general electrostatic capacitance sensor is provided on a substrate.
  • a movable electrode provided on another substrate is arranged above the fixed electrode so as to face each other.
  • a spacer is provided between the substrate having the fixed electrode and the substrate having the movable electrode so that the fixed electrode and the movable electrode face each other with a gap therebetween.
  • the spacer having flexibility is divided into a substrate having a fixed electrode and a substrate having a movable electrode by an elastic adhesive member. Adhesion is a little different.
  • the adhesive member generally has viscosity and elasticity, and has a viscous component in which a stress proportional to the deflection rate of the substrate acts and an elastic component in which a stress proportional to the deflection amount of the substrate acts. There is also power. Since the viscosity component of the adhesive member has time dependency as described above, the greater the viscosity component of the adhesive member, the more the response to pressure is delayed due to the influence of viscosity.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a capacitive sensor that has flexibility and is excellent in responsiveness and hysteresis characteristics. is there.
  • the capacitive sensor of the present invention includes a first substrate on which a first electrode is provided, and a second substrate on which a second electrode is provided. And the first electrode and the second electrode are arranged to face each other, and the first electrode and the second electrode are provided with a gap between the first electrode and the second electrode.
  • a flexible spacer is provided so that at least one of the first electrode or the second electrode is sandwiched between the substrate and the second substrate.
  • the spacer includes an adhesive member bonded to the first substrate and the second substrate, and at least the first substrate or the second substrate. It consists of a gap holding member that is bonded to one side of the substrate and sandwiched between the above spacers! / At least closer to the gap holding member than the first electrode or the second electrode!
  • the above-mentioned adhesive member is disposed at a position, and is characterized by the above.
  • the gap holding member and at least one of the first substrate and the second substrate are not bonded.
  • the region where the gap holding member is disposed even if a physical quantity in the stacking direction is applied to the first substrate or the second substrate, the region where the gap holding member is disposed. In the region, it is possible to suppress the influence of the viscosity caused by the adhesion to be smaller than when the adhesion is made to both the first substrate and the second substrate.
  • an adhesive member is disposed at a position at least near the gap holding member with respect to the first electrode or the second electrode sandwiched between the flexible spacers.
  • the influence of viscosity can be kept small.
  • the influence of viscosity can be minimized with a flexible capacitive sensor as described above. Therefore, the response and hysteresis characteristics of a flexible capacitive sensor can be reduced. Improvements can be made. As a result, it is possible to realize a capacitance type sensor that has flexibility and is excellent in response and hysteresis characteristics.
  • the capacitive sensor of the present invention provides a first substrate provided with a first electrode and a second substrate provided with a second electrode.
  • the first electrode and the second electrode are arranged to face each other, and the first electrode and the second electrode are provided with a gap between the first electrode and the second electrode.
  • a flexible spacer is provided so that at least one of the first electrode and the second electrode is sandwiched between the substrate and the second substrate.
  • the spacer includes an adhesive member bonded to the first substrate and the second substrate, and at least the first substrate or the second substrate.
  • the gap holding member Adhering to the first substrate and the second substrate and the adhesive member to one of the substrates
  • the gap holding member is bonded with a weaker adhesive force than the first electrode or the second electrode sandwiched between the spacers.
  • the adhesive member is disposed at a position nearer to the member.
  • the gap holding member and at least one of the first substrate and the second substrate act on adhesion between the first substrate, the second substrate, and the adhesive member. It is configured to be bonded with an adhesive strength weaker than the adhesive strength.
  • the adhesive force is weakened, the viscosity component is generally reduced. Therefore, even if a physical quantity in the stacking direction is applied to the first substrate or the second substrate, the gap holding member is disposed. In such a region, it is possible to suppress the influence of the viscosity caused by the adhesion to be smaller than when the adhesion is made to both the first substrate and the second substrate.
  • an adhesive member is disposed at a position at least near the gap holding member with respect to the first electrode or the second electrode sandwiched between the flexible spacers.
  • the influence of viscosity can be kept small.
  • the influence of viscosity can be minimized with a flexible capacitive sensor as described above. Therefore, the response and hysteresis characteristics of a flexible capacitive sensor can be reduced. Improvements can be made. As a result, it is possible to realize a capacitance type sensor that has flexibility and is excellent in response and hysteresis characteristics.
  • FIG. 1 is a schematic view showing one embodiment of a capacitance type sensor according to the present invention.
  • FIG. 2 is a cross-sectional view showing an embodiment of the capacitive sensor.
  • FIG. 3 (a) is a graph showing the pressure responsiveness of a conventional capacitive sensor, and (b) is a graph showing the pressure-capacitance characteristics of a conventional capacitive sensor. .
  • FIG. 4 (a) is a graph showing the pressure responsiveness of the capacitance type sensor according to the present invention, and (b) is a graph showing the pressure capacitance characteristic of the capacitance type sensor according to the present invention. It is.
  • FIG. 5 is a graph showing the loss elastic modulus, storage elastic modulus and loss tangent of polyimide.
  • FIG. 6 is a graph showing the loss modulus, storage modulus and loss tangent of polyester resin.
  • FIG. 7 (a) is a schematic view showing another embodiment of the capacitive sensor according to the present invention
  • FIG. 7 (b) shows another embodiment of the capacitive sensor according to the present invention.
  • FIG. 8 (a) is a schematic diagram showing still another embodiment of the capacitive sensor of the present invention, and (b) is still another embodiment of the capacitive sensor of the present invention. It is the schematic which shows the form of.
  • FIG. 9 (a) is a schematic diagram showing still another embodiment of the capacitive sensor of the present invention, and (b) is still another embodiment of the capacitive sensor of the present invention. It is the schematic which shows the form of.
  • FIGS. 1 to 4B An embodiment of the present invention will be described below with reference to FIGS. 1 to 4B.
  • the drawings are simplified or modified as appropriate, and the dimensions and shapes of the respective parts are not necessarily drawn accurately.
  • FIG. 1 is a diagram showing a schematic configuration of the capacitive sensor 1 according to the present embodiment.
  • FIG. 2 is a cross-sectional view of the ⁇ ⁇ ⁇ cut surface of the capacitive sensor 1 in FIG. FIG. First, an outline of the configuration of the capacitive sensor 1 will be described with reference to FIGS. 1 and 2.
  • the capacitive sensor 1 in the present embodiment is a flexible capacitive sensor, and includes a movable electrode side substrate (first substrate) 2 and a fixed electrode side substrate (second 3) Spacer 4 consisting of a gear stabilizing member (gap retaining member) 7 and an adhesive sheet (adhesive member) 8, a movable electrode (first electrode) 5, and a fixed electrode (second electrode) It has six.
  • the movable electrode 5 On the surface of the movable electrode side substrate 2, the movable electrode 5 is formed by a thick film or thin film technique or the like, and the movable electrode 5 is provided in an array.
  • the movable electrode side substrate 2 is made of, for example, a conductive semiconductor silicon substrate, a polyimide film, a PET film, or an epoxy resin film.
  • the fixed electrode 6 is formed by a thick film or thin film technique or the like, and the fixed electrode 6 is provided in an array as shown in FIG. .
  • the fixed electrode side substrate 3 is made of, for example, an insulating glass substrate, a polyimide film, a PET film, or an epoxy resin film.
  • the spacer 4 holds the gap (space) between the movable electrode side substrate 2 and the fixed electrode side substrate 3 so that the movable electrode 5 and the fixed electrode 6 The gap between the two is maintained.
  • the size of the gap is arbitrarily set according to the width of the physical quantity to be detected by the capacitive sensor 1 and the deformation amount of the movable electrode side substrate 2.
  • the spacer 4 is composed of a gap stabilizing member 7 and an adhesive sheet 8. Since the capacitive sensor 1 is a flexible capacitive sensor, the spacer 4 is also composed of a flexible gap stabilizing member 7 and an adhesive sheet 8.
  • the movable electrode 5 also has, for example, Au, Cu, AL, or Ag, and is formed on the surface of the movable electrode side substrate 2 as described above.
  • the fixed electrode 6 is made of, for example, Au, Cu, AL, or Ag, and is formed on the surface of the fixed electrode side substrate 3 as described above.
  • the movable electrode 5 and the fixed electrode 6 are formed with substantially the same thickness.
  • the members are arranged in the order of the movable electrode side substrate 2, the movable electrode 5, the fixed electrode 6, and the fixed electrode side substrate 3, and the movable electrode side substrate 2 is A spacer 4 as a support portion is disposed above the fixed electrode side substrate 3 with a gap.
  • the movable electrode side substrate 2 is disposed with a gap above the fixed electrode side substrate 3, so that the movable electrode 5 and the fixed electrode side substrate formed on the surface of the movable electrode side substrate 2 are disposed.
  • 3 is arranged to face the fixed electrode 6 formed on the surface of 3 with a force gap.
  • the movable electrode side substrate 2 bends according to the applied pressure. Subsequently, the position of the movable electrode 5 approaches the fixed electrode 6 by the amount of deflection of the movable electrode side substrate 2. Then, a change in the capacitance between the movable electrode 5 and the fixed electrode 6 occurs due to a change in the distance between the movable electrode 5 and the fixed electrode 6. Therefore, if the change in capacitance is detected, the movable electrode side substrate 2 The physical quantity applied to the surface of the can be detected.
  • the spacer 4 is composed of the gap stabilizing collar member 7 and the adhesive sheet 8 as described above.
  • the gap stabilizing member 7 is configured so that the movable electrode 5 and the fixed electrode 6 are sandwiched between the movable electrode side substrate 2 and the fixed electrode side substrate 3, respectively. They are arranged in parallel.
  • the gap stabilizing member 7 has the same flexibility as that of the movable electrode side substrate 2 and has the same compressive strength as the movable electrode side substrate 2.
  • the gap stabilizing member 7 is made of, for example, polyimide, PET film, or epoxy film.
  • the adhesive sheet 8 has a gap stabilizing structure in which the movable electrode 5 and the fixed electrode 6 are sandwiched between the movable electrode side substrate 2 and the fixed electrode side substrate 3.
  • the members 7 are arranged in parallel so as to sandwich the member 7 therebetween.
  • the adhesive sheet 8 also has, for example, polyester resin, epoxy resin, polyurethane resin, or silicon resin.
  • the positional relationship between the gap stabilizing member 7 and the adhesive sheet 8 overlaps with each other in the vertical direction (the direction in which the movable electrode side substrate 2 and the fixed electrode side substrate 3 are stacked).
  • the rectangular parallelepiped is arranged in parallel so that there is no.
  • the positional relationship between the gap stabilizing member 7 and the adhesive sheet 8 is such that at least the gap stabilizing member 7 is disposed between the movable electrode 5 and the fixed electrode 6 and the adhesive sheet 8. It is summer.
  • the gap stabilizing member 7 is bonded (fixed) only in the horizontal direction (direction orthogonal to the direction in which the movable electrode side substrate 2 and the fixed electrode side substrate 3 are laminated) by the adhesive sheet 8.
  • the adhesive sheet 8 is fixed to both the movable electrode side substrate 2 and the fixed electrode side substrate 3, but the gap stabilizing member 7 is at least the movable electrode side substrate 2 or the fixed electrode side substrate 3.
  • the force is fixed to one side, or is not fixed to both the movable electrode side substrate 2 and the fixed electrode side substrate 3.
  • the fixing method for example, a method of integrally forming the movable electrode side substrate 2 or the fixed electrode side substrate 3 can be used.
  • the movable electrode side substrate 2 or the fixed electrode side substrate 3 and the gap stabilizing member 7 are simultaneously molded, or insert molding or outsert molding.
  • the fixing method at least the movable electrode side substrate 2 or the fixed power source is used. This is achieved by using thermocompression bonding in which one of the pole side substrate 3 and the gap stabilizing member 7 is melted and bonded with heat.
  • the gap stabilizing member 7 sandwiches the movable electrode 5 and the fixed electrode 6. Forces that indicate the arrangement of the arrangements Not necessarily limited to this.
  • the gap stabilizing member 7 is arranged so as to sandwich either the movable electrode 5 or the fixed electrode 6. It may be.
  • the spacer 4 includes an adhesive sheet 8 bonded to the movable electrode side substrate 2 and the fixed electrode side substrate 3, and at least the movable electrode side substrate 2.
  • the gap stabilizing member 7 is bonded to one of the fixed electrode side substrate 3 and the adhesive sheet 8 and the gap stabilizing member 7 are connected to the movable electrode side substrate 2 and the fixed electrode.
  • the movable electrode side substrate 2 and the fixed electrode side substrate 3 sandwiched between the spacers 4 are arranged so that they do not overlap with each other in the stacking direction with the side substrate 3.
  • the adhesive sheet 8 is not disposed at least at a position closer to the gap stabilizing member 7, and the adhesive sheet 8 and the gap stabilizing member 7 are bonded only in the direction orthogonal to the stacking direction. ing.
  • the gap stabilizing member 7 and at least one of the movable electrode side substrate 2 or the fixed electrode side substrate 3 are not bonded, and the adhesive sheet 8 and the gap stabilizing member 7 Are arranged so that they overlap each other in the stacking direction of the movable electrode side substrate 2 and the fixed electrode side substrate 3, and the adhesive sheet 8 and the gap stabilizing member 7 are arranged in the stacking direction. In other words, it is bonded only in the orthogonal direction.
  • an adhesive sheet 8 is disposed at least closer to the gap stabilizing member 7 with respect to the movable electrode 5 or the fixed electrode 6 sandwiched between the flexible spacers 4. Therefore, the gap around the movable electrode 5 or the fixed electrode 6 sandwiched between the spacers 4 is an area where the pressure applied to the movable electrode side substrate 2 or the fixed electrode side substrate 3 is actually detected.
  • the influence of viscosity can be kept small in the region where the eaves member 7 is disposed. Therefore, the influence of the viscosity can be suppressed to a small extent by the flexible capacitive sensor 1, so that the response and hysteresis characteristics of the flexible capacitive sensor 1 can be improved. It can be carried out. As a result, it is possible to realize a capacitive sensor 1 that has flexibility and is excellent in responsiveness and hysteresis characteristics.
  • FIGS. Fig. 3 (a) is a graph showing the pressure response of a conventional capacitive sensor
  • Fig. 3 (b) is a graph showing the hysteresis characteristics of a conventional capacitive sensor.
  • 4 (a) is a graph showing the pressure response of the capacitive sensor 1 according to the present invention
  • FIG. 4 (b) shows the hysteresis characteristic of the capacitive sensor 1 according to the present invention. It is a graph.
  • FIG. 5 is a graph showing the loss elastic modulus, storage elastic modulus and loss tangent of polyimide
  • FIG. 5 is a graph showing the loss elastic modulus, storage elastic modulus and loss tangent of polyimide
  • the loss modulus represents the viscous component of the material
  • the storage modulus represents the elastic component of the material. That is, in general, the reaction force generated when a material is bent has an elastic component and a viscous component.
  • the elastic component shows the degree of reaction force proportional to the amount of deflection of the material and has no time dependence.
  • the viscosity component indicates the degree of reaction force proportional to the deflection speed of the material, and has a time dependency, which causes a delay in response in a capacitive sensor.
  • the capacitance type sensor 1 used in the measurement of FIGS.
  • polyimide is used for the material of the movable electrode side substrate 2
  • polyimide is used for the material of the fixed electrode side substrate 3
  • the movable electrode is used for the material 5
  • Au is used for the material of the fixed electrode 6
  • polyimide is used for the material of the gap stabilization member 7
  • polyester resin is used for the material of the adhesive sheet 8.
  • the capacitance value of the graph when the pressure increases and the capacitance value of the graph when the pressure decreases When the difference is detected using the capacitance type sensor 1 of the present invention, the difference is smaller than when detected using the conventional capacitance type sensor. Since the difference between the capacitance value when the pressure increases and the capacitance value when the pressure decreases corresponds to hysteresis, the direction of the capacitance sensor 1 of the present invention is the conventional capacitance. Hysteresis is smaller than that of the sensor, and the hysteresis characteristics are improved.
  • the capacitive sensor 1 of the present invention has actually improved pressure responsiveness and hysteresis characteristics as compared with the conventional capacitive sensor.
  • the gap stabilizing member 7 has the same material force as the movable electrode side substrate 2 and the fixed electrode side substrate 3.
  • the gap stabilizing member 7 has the same flexibility and compressive strength as the movable electrode side substrate 2 and the fixed electrode side substrate 3, so that the capacitive sensor 1 is bent. Thus, even when pressure is applied to the capacitive sensor 1, the structure of the capacitive sensor 1 can be kept stable.
  • the gap stabilizing member 7 has a storage elastic modulus as an index indicating the influence of viscosity between the movable electrode side substrate 2 and the fixed electrode side substrate 3.
  • the loss tangent value which is the ratio of the loss elastic modulus
  • the material force has a loss tangent value less than or equal to the loss tangent value of the movable electrode side substrate 2 and the fixed electrode side substrate 3. Yes, if the loss tangent values of movable electrode side substrate 2 and fixed electrode side substrate 3 are not the same.
  • the movable electrode side substrate 2 or the fixed electrode side substrate 3 is made of a material having a loss tangent value equal to or smaller than the loss tangent value of the substrate having the larger loss tangent value.
  • the gap stabilizing member 7 a material having a loss tangent value of at least the movable electrode side substrate 2 or the fixed electrode side substrate 3 is used as the gap stabilizing member 7. Since at least the movable electrode side substrate 2 and the fixed electrode side substrate 3 themselves do not have a larger adhesive force than the adhesive sheet 8, the loss tangent value of the movable electrode side substrate 2 and the fixed electrode side substrate 3 itself is at least the adhesive Smaller than 8th. In other words, according to the above configuration, the gap stabilizing member 7 has a loss tangent value smaller than the loss tangent of the adhesive sheet 8. Therefore, response delay, hysteresis, and aging can be improved as compared with the case where only the adhesive sheet 8 is used.
  • the gap stabilization member 7 has a loss tangent value that is a value of a ratio between a storage elastic modulus and a loss elastic modulus as an index indicating the influence of viscosity.
  • it is preferably made of a material smaller than the loss tangent value of the movable electrode side substrate 2 and the fixed electrode side substrate 3.
  • a polyimide having a loss tangent tan ⁇ value of 0.01-0.03 is used as the material of the movable electrode side substrate 2 and the fixed electrode side substrate 3. It is preferable to use a material having a value equal to or less than the loss tangent for the gap stabilization flange.
  • the gap stabilizing member 7 has a loss tangent value smaller than the loss tangent of the adhesive sheet 8. Accordingly, response delay, hysteresis, and change with time can be improved as compared with the case where only the adhesive sheet 8 is used.
  • FIG. 5 shows the loss elastic modulus, storage elastic modulus, and loss tangent of polyimide, which is a material used for the movable electrode side substrate 2, the fixed electrode side substrate 3, and the gap stabilizing member 7 in this embodiment.
  • FIG. 6 shows the loss elastic modulus, storage elastic modulus, and loss tangent of polyester resin, which is a material used for the adhesive sheet 8 in the present embodiment.
  • E ′ represents the storage elastic modulus
  • E ′ ′ represents the loss elastic modulus
  • tan ⁇ represents the loss tangent (loss coefficient).
  • the loss is positive
  • the storage elastic modulus ⁇ of polyimide is 4000 to 4300 MPa
  • the loss elastic modulus E is 43 to 128 MPa
  • the loss tangent tan ⁇ is 0.01 to 0.03! / Speak.
  • the storage modulus ⁇ of polyester resin is 14.5 to 309 MPa
  • loss modulus E is 21.6 to 124
  • loss tangent tan ⁇ is 0.4 to 1. It has become 5.
  • the loss tangent of the material used for the movable electrode side substrate 2 and the fixed electrode side substrate 3 is much smaller than the material used for the adhesive member such as the adhesive sheet 8.
  • an elongated hole is provided in the region of the movable electrode side substrate 2 between the individual movable electrodes 5 arranged in an array. I like it.
  • each movable electrode 5 can be independent. Therefore, the surface of the movable electrode 5 can be made more parallel to the bent surface, and the decrease in sensitivity that occurs when the capacitive sensor 1 is bent can be suppressed. In addition, since it is separated from other adjacent movable electrode 5 by a slit, structural crosstalk can be reduced.
  • a capacitance plate is provided by stiffening the fixed electrode 6 by installing a reinforcing plate on the back surface of the fixed electrode 6 on the fixed electrode side substrate 3. It is preferable that the bending at the time of bending of the sensor 1 is concentrated in the region between the fixed electrodes 6.
  • the capacitance type sensor 1 has a configuration in which a plurality of movable electrodes 5 and fixed electrodes 6 are provided in an array, but the present invention is not necessarily limited thereto.
  • the capacitive sensor 1 may be configured to include a pair of the movable electrode 5 and the fixed electrode 6.
  • the gap stabilizing member 7 is bonded to at least one of the movable electrode side substrate 2 and the fixed electrode side substrate 3, but it is always configured. Is not limited to this.
  • the gap stabilizing member 7 is supplementarily bonded.
  • the auxiliary adhesion is weaker than the adhesive force that acts on the adhesion between the movable electrode side substrate 2 and the fixed electrode side substrate 3 and the adhesive sheet 8, and means adhesion with adhesive force.
  • the gap stabilizing member 7 and at least one of the movable electrode side substrate 2 or the fixed electrode side substrate 3 are bonded to the movable electrode side substrate 2 and the fixed electrode side substrate 3. It is configured to be bonded with an adhesive force weaker than the adhesive force acting on the adhesive.
  • the adhesive force is weakened, the viscosity component is generally reduced. Therefore, even if a physical quantity in the stacking direction is applied to the movable electrode side substrate 2 or the fixed electrode side substrate 3, the movable electrode side substrate 2 and the fixed electrode are not formed in the region where the gap stabilizing member 7 is disposed. It is possible to suppress the influence of the viscosity caused by the adhesion to be smaller than when the adhesion is made to both of the side substrates 3.
  • FIGS. 7 (a) to 8 (b) Another embodiment of the present invention will be described below with reference to FIGS. 7 (a) to 8 (b).
  • the configuration other than that described in the present embodiment is the same as that of the first embodiment.
  • members having the same functions as those shown in the drawings of the first embodiment are given the same reference numerals and explanations thereof are omitted.
  • the drawings are appropriately simplified or modified, and the dimensions and shapes of the respective parts are not necessarily drawn accurately.
  • the capacitive sensor 11 and the capacitive sensor 21 of the present embodiment are different from the capacitive sensor 1 of the first embodiment in that the gap stabilizing member 7 and the adhesive The shape of Route 8 is different.
  • FIG. 7 (a) is a diagram showing a schematic configuration of the capacitive sensor 11 in the present embodiment
  • FIG. 8 (b) is a diagram of the capacitive sensor 11 in FIG. 7 (a). It is a cross-sectional view of the C′C cut surface with the A direction force.
  • the surfaces of the gap stabilizing member 7 and the adhesive sheet 8 that are in contact with each other are comb-shaped as shown in FIG. 7 (b). That is, multiple The gap stabilizing member 7 and the adhesive sheet 8 are fitted to each other. Then, as shown in FIGS. 7 (a) and 7 (b), the adhesive sheet 8 is not disposed at a position closer to the movable electrode 5 and the fixed electrode 6 than the gap stabilizing member 7. Become a composition!
  • the positional relationship between the gap stabilizing member 7 and the adhesive sheet 8 is the same as in the case of the capacitive sensor 1, and the vertical direction (the movable electrode side substrate 2 and the fixed electrode side substrate 3 are separated from each other). They are arranged so that they do not overlap in the direction of lamination.
  • the gap stabilizing member 7 is bonded (fixed) only in the horizontal direction (direction orthogonal to the direction in which the movable electrode side substrate 2 and the fixed electrode side substrate 3 are laminated) by the adhesive sheet 8.
  • the adhesive sheet 8 is fixed to both the movable electrode side substrate 2 and the fixed electrode side substrate 3, but the gap stabilizing member 7 is at least the movable electrode side substrate 2 or the fixed electrode side. It is fixed to one of the substrates 3 or is not fixed to both the movable electrode side substrate 2 and the fixed electrode side substrate 3.
  • the area of the adhesive surface between the gap stabilizing member 7 and the adhesive sheet 8 is the case where the gap stabilizing member 7 and the adhesive sheet 8 are arranged in parallel. It is wider than the area of the adhesive surface. Therefore, the gap stabilizing member 7 can be more strongly bonded to the adhesive sheet 8. As a result, the structure of the capacitive sensor 11 can be kept more stable.
  • each of the surfaces of the gap stabilizing member 7 and the adhesive sheet 8 that are in contact with each other is formed of a plurality of uneven portions.
  • the configuration may be such that one is a concave portion and the other is a convex portion, each of which has a single concave portion or convex portion.
  • the area of the adhesive surface between the gap stabilizing member 7 and the adhesive sheet 8 is wider when the shape is composed of a plurality of concave and convex portions, the structure of the capacitive sensor 11 is kept more stable. be able to.
  • FIG. 8 (a) is a diagram showing a schematic configuration of the capacitive sensor 21 in the present embodiment
  • FIG. 8 (b) is a diagram of the capacitive sensor 21 in FIG. 8 (a).
  • the gap stabilizing collar member 7 has a shape surrounding the adhesive sheet 8 as shown in FIG. 8B. Then, as shown in FIGS. 8 (a) and 8 (b), the adhesive sheet 8 is not arranged at a position closer to the movable electrode 5 and the fixed electrode 6 than the gear stabilizing member 7 is. It has become.
  • the positional relationship between the gap stabilizing member 7 and the adhesive sheet 8 is the vertical direction (the movable electrode side substrate 2 and the fixed electrode side substrate 3 are They are arranged so that they do not overlap in the direction of lamination.
  • the gap stabilizing member 7 is bonded (fixed) only in the horizontal direction (direction orthogonal to the direction in which the movable electrode side substrate 2 and the fixed electrode side substrate 3 are laminated) by the adhesive sheet 8.
  • the adhesive sheet 8 is fixed to both the movable electrode side substrate 2 and the fixed electrode side substrate 3, but the gap stabilizing member 7 is at least the movable electrode side substrate 2 or the fixed electrode side. It is fixed to one of the substrates 3 or is not fixed to both the movable electrode side substrate 2 and the fixed electrode side substrate 3.
  • the area of the adhesive surface between the gap stabilizing member 7 and the adhesive sheet 8 is the case where the gap stabilizing member 7 and the adhesive sheet 8 are arranged in parallel. It is wider than the area of the adhesive surface. Therefore, the gap stabilizing member 7 can be more strongly bonded to the adhesive sheet 8. As a result, the structure of the capacitive sensor 21 can be kept more stable.
  • the gap stabilizing member 7 and the adhesive sheet 8 are arranged in the stacking direction of the movable electrode side substrate 2 and the fixed electrode side substrate 3.
  • the gap stabilization member 7 and the adhesive sheet 8 may overlap each other in the stacking direction of the movable electrode side substrate 2 and the fixed electrode side substrate 3, or the gap stabilization member 7 and the adhesive sheet 8. May be bonded in a direction other than the direction perpendicular to the stacking direction.
  • FIG. 10 is a diagram showing a schematic configuration of a capacitive sensor 31 in the embodiment
  • FIG. 9 (b) is a diagram showing a schematic configuration of a capacitive sensor 41 in the present embodiment.
  • the gap stabilizing member 7 and the adhesive sheet 8 overlap each other in the stacking direction. Further, the adhesive surface between the gap stabilizing member 7 and the adhesive sheet 8 is inclined (inclined) with respect to the stacking direction.
  • the gap stabilizing member 7 and the adhesive sheet 8 partially overlap each other in the stacking direction.
  • the adhesive surfaces of the gap stabilizing member 7 and the adhesive sheet 8 are bonded so as to exist in the stacking direction and the direction orthogonal to the stacking direction. .
  • the influence of the viscosity caused by adhesion is suppressed to be smaller than when the gap holding member is adhered to both the first substrate and the second substrate. It becomes possible. Furthermore, since the influence of viscosity can be reduced in the area around the first electrode or the second electrode sandwiched between the flexible spacers, the capacitive sensor having flexibility. Response and hysteresis characteristics can be improved. Therefore, there is an effect that it is possible to provide a capacitive sensor that has flexibility and is excellent in responsiveness and hysteresis characteristics.
  • the electrostatic capacitance sensor of the present invention is provided with a first electrode.
  • the first substrate and the second substrate on which the second electrode is provided, the first electrode and the second electrode are arranged to face each other, and the first electrode
  • at least one of the first electrode and the second electrode is provided between the first substrate and the second substrate.
  • the spacer is provided with a flexible spacer so as to be sandwiched between the first substrate and the second substrate.
  • a gap holding member that is bonded to at least one of the first substrate and the second substrate and is sandwiched between the spacers. At least the gap holding portion with respect to the first electrode or the second electrode.
  • the above-mentioned adhesive member is disposed at a position, and is characterized by the above.
  • the capacitive sensor of the present invention provides a first substrate provided with a first electrode and a second substrate provided with a second electrode.
  • the first electrode and the second electrode are arranged to face each other, and the first electrode and the second electrode are provided with a gap between the first electrode and the second electrode.
  • a flexible spacer is provided so that at least one of the first electrode and the second electrode is sandwiched between the substrate and the second substrate.
  • the spacer includes an adhesive member bonded to the first substrate and the second substrate, and at least the first substrate or the second substrate.
  • the gap holding member Adhering to the first substrate and the second substrate and the adhesive member to one of the substrates
  • the gap holding member is bonded with a weaker adhesive force than the first electrode or the second electrode sandwiched between the spacers.
  • the adhesive member is disposed at a position nearer to the member.
  • the adhesive member and the gap holding member are arranged so as not to overlap each other in the stacking direction of the first substrate and the second substrate.
  • the adhesive member and the gap holding member are arranged so that they are not overlapped with each other in the stacking direction of the first substrate and the second substrate.
  • Gap retention The member is bonded only in the direction orthogonal to the stacking direction. That is, even if a physical quantity in the stacking direction is applied to the first substrate or the second substrate, the gap holding member and the adhesive member are bonded only in the direction orthogonal to the stacking direction. Therefore, the influence of viscosity can be further reduced.
  • the adhesive member and the stabilizing member are fitted to each other so that the surfaces in contact with each other are uneven. .
  • the area of the adhesive surface between the gap holding member and the adhesive member becomes larger than the area of the adhesive surface in the case where the gap holding member and the adhesive member are arranged in parallel. Therefore, the gap holding member can be more strongly bonded to the adhesive member. That is, the gap holding member can be more firmly fixed in the capacitive sensor. Therefore, the structure of the capacitive sensor can be kept more stable.
  • the stabilizing member is disposed so as to surround a surface of the adhesive member other than the stacking direction.
  • the area of the adhesive surface between the gap holding member and the adhesive member becomes larger than the area of the adhesive surface in the case where the gap holding member and the adhesive member are arranged in parallel. Therefore, the gap holding member can be more strongly bonded to the adhesive member. That is, the gap holding member can be more firmly fixed in the capacitive sensor. Therefore, the structure of the capacitive sensor can be kept more stable.
  • the gap holding member has a storage elastic modulus and a loss elastic modulus as an index indicating the influence of viscosity between the first substrate and the second substrate.
  • the loss tangent value which is the value of the ratio between and, is the same
  • the material force has a loss tangent value less than or equal to the loss tangent value of the first substrate and the second substrate. If the loss tangent value of the second substrate is not the same as that of the second substrate, at least the loss tangent value of the substrate having the larger loss tangent value of the first substrate or the second substrate. It is preferable that the material force has the following loss tangent value.
  • a material having a loss tangent value of at least the first substrate or the second substrate or less is used as the gap holding member. Since at least the first substrate and the second substrate itself do not have a larger adhesive force than the adhesive member, the first substrate and the second substrate itself The value of the loss tangent is at least smaller than that of the adhesive member. That is, according to the above configuration, the gap holding member has a loss tangent value that is smaller than the loss tangent of the adhesive member. Accordingly, response delay, hysteresis, and change with time can be improved as compared with the case where only the adhesive member is used.
  • the gap holding member has a loss tangent value that is a value of a ratio between a storage elastic modulus and a loss elastic modulus as an index indicating the influence of viscosity. It is preferable that the material force is smaller than the loss tangent value of the first substrate and the second substrate.
  • the gap holding member has a loss tangent value smaller than the loss tangent of the adhesive member. Accordingly, response delay, hysteresis, and change with time can be improved as compared with the case where only the adhesive member is used.
  • the capacitive sensor of the present invention has flexibility and is excellent in responsiveness and hysteresis characteristics. Therefore, the present invention can be suitably used in an industrial field related to a capacitive sensor having flexibility.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

A spacer (4) consists of an adhesive sheet (8) bonded to a movable electrode side substrate (2) and a fixed electrode side substrate (3), a gap stabilization member (7) not bonded to at least one of the movable electrode side substrate (2) and the fixed electrode side substrate (3), or a gap stabilization member (7) bonded to at least one of the movable electrode side substrate (2) and the fixed electrode side substrate (3) with adhesive strength weaker than that acting between the movable electrode side substrate (2) and the fixed electrode side substrate (3). The adhesive sheet (8) is at least not arranged at a position closer to the movable electrode side substrate (2) or the fixed electrode side substrate (3) between spacers (4) than the gap stabilization member (7). A flexible capacitive sensor exhibiting excellent response and hysteresis characteristics is thereby provided.

Description

明 細 書  Specification
静電容量式センサ  Capacitive sensor
技術分野  Technical field
[0001] 本発明は、本発明は、ギャップを隔てて対向する電極間の静電容量の変化によつ て物理量を検出する静電容量式センサに関するものである。  The present invention relates to a capacitance type sensor that detects a physical quantity based on a change in capacitance between electrodes facing each other with a gap therebetween.
背景技術  Background art
[0002] 従来から、静電容量の変化によって物理量の変化を検出する静電容量式センサが 知られている。静電容量式センサは、圧力センサ、加速度センサ、および振動検出 センサ等の多様なセンサに利用することが可能である。また、静電容量式センサは、 ピエゾ抵抗素子等を用いるピエゾ式センサに比べて温度特性が安定して 、ると 、う 利点を有している。他にも、特にシリコン半導体基板を用いた静電容量型半導体セン サは、 IC製造技術を用いて製造できるので、均一性に富み、小型化、軽量化および 回路との一体ィ匕が容易であるという利点を有している。さらに、上記シリコン半導体基 板を用いた静電容量型半導体センサは、大規模なバッチ方式による大量生産が可 能であるので、低コストィ匕を実現できるという利点も有している。以上のことから、静電 容量式センサは一般に広く用いられることとなって 、る。  Conventionally, a capacitance type sensor that detects a change in physical quantity by a change in capacitance is known. Capacitance sensors can be used for various sensors such as pressure sensors, acceleration sensors, and vibration detection sensors. In addition, the capacitance type sensor has an advantage that the temperature characteristic is more stable than the piezo type sensor using a piezoresistive element or the like. In addition, since capacitive semiconductor sensors using silicon semiconductor substrates can be manufactured using IC manufacturing technology, they are highly uniform, and can be easily reduced in size and weight and integrated with circuits. Has the advantage of being. Furthermore, since the capacitive semiconductor sensor using the silicon semiconductor substrate can be mass-produced by a large-scale batch method, it has an advantage that low cost can be realized. From the above, the capacitance type sensor is generally widely used.
[0003] 静電容量式センサは、 2つの向き合った電極の静電容量(帯電する電気量)が電極 同士を隔てる距離によって変化することを利用したセンサであり、変化した静電容量 を電圧に変換して検出して 、る。  [0003] A capacitive sensor is a sensor that utilizes the fact that the capacitance (the amount of electricity to be charged) of two electrodes facing each other changes depending on the distance separating the electrodes. Convert and detect.
[0004] 一般的な静電容量式センサでは、特許文献 1:日本国公開特許公報「特開 2005 — 337774号公報(2005年 12月 8日公開)」に示すように、基板上に備えられた固 定電極の上方に、別の基板上に備えられた可動電極が対向するように配置されてい る。そして、上記固定電極と上記可動電極とがギャップを隔てて対向するように、固定 電極を備える基板と可動電極を備える基板との間にスぺーサが設けられている。  [0004] As shown in Patent Document 1: Japanese Patent Laid-Open Publication No. 2005-337774 (published December 8, 2005), a general electrostatic capacitance sensor is provided on a substrate. A movable electrode provided on another substrate is arranged above the fixed electrode so as to face each other. A spacer is provided between the substrate having the fixed electrode and the substrate having the movable electrode so that the fixed electrode and the movable electrode face each other with a gap therebetween.
[0005] また、静電容量式センサに可撓性が必要な場合には、可撓性を有するスぺーサを 、弾性を有する接着部材で固定電極を備える基板と可動電極を備える基板とに接着 すること〖こなる。 [0006] し力しながら、接着部材は一般的に粘性と弾性とを有しており、基板のたわみ速度 に比例した応力が働く粘性成分と基板のたわみ量に比例した応力が働く弾性成分と 力もなつている。そして、接着部材の粘性成分には上述したような時間依存性がある ので、接着部材の粘性成分が多いほど、粘性の影響を受けて圧力に対する応答が 遅れること〖こなる。 [0005] In addition, when flexibility is required for the capacitance type sensor, the spacer having flexibility is divided into a substrate having a fixed electrode and a substrate having a movable electrode by an elastic adhesive member. Adhesion is a little different. [0006] However, the adhesive member generally has viscosity and elasticity, and has a viscous component in which a stress proportional to the deflection rate of the substrate acts and an elastic component in which a stress proportional to the deflection amount of the substrate acts. There is also power. Since the viscosity component of the adhesive member has time dependency as described above, the greater the viscosity component of the adhesive member, the more the response to pressure is delayed due to the influence of viscosity.
[0007] 可撓性を有する接着部材は、架橋密度が小さ!/ヽため、分子構造から必然的粘性成 分が特に多くなり、粘性の影響を大きく受ける。従って、可撓性が必要な静電容量式 センサのスぺーサに、上記従来の接着部材を用いた場合には、静電容量式センサ に印加される圧力に対する応答が遅くなり、センサの応答性およびヒステリシス特性 が悪くなるといった問題を生じさせることになる。  [0007] Since a flexible adhesive member has a low crosslinking density, the viscosity component inevitably increases due to the molecular structure, and is greatly affected by the viscosity. Therefore, when the above-mentioned conventional adhesive member is used for the spacer of a capacitive sensor that requires flexibility, the response to the pressure applied to the capacitive sensor is delayed, and the response of the sensor This will cause problems such as deterioration in performance and hysteresis characteristics.
発明の開示  Disclosure of the invention
[0008] 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、可撓性 を有するとともに、応答性およびヒステリシス特性により優れた静電容量式センサを提 供することにある。  The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a capacitive sensor that has flexibility and is excellent in responsiveness and hysteresis characteristics. is there.
[0009] 本発明の静電容量式センサは、上記課題を解決するために、第 1の電極が設けら れている第 1の基板と第 2の電極が設けられている第 2の基板とを備え、上記第 1の 電極と上記第 2の電極とが対向して配置されているとともに、上記第 1の電極と上記 第 2の電極との間にギャップをもたせるために、上記第 1の基板と上記第 2の基板との 間に少なくとも上記第 1の電極または上記第 2の電極のうちの一方を挟むように可撓 性を有するスぺーサが設けられて ヽる可撓性を有する静電容量式センサにぉ ヽて、 上記スぺーサは、上記第 1の基板と上記第 2の基板とに対して接着されている接着 部材と、少なくとも上記第 1の基板または上記第 2の基板の一方に対して接着されて Vヽな 、ギャップ保持部材とからなっており、上記スぺーサに挟まれて!/、る上記第 1の 電極または上記第 2の電極に対して、少なくとも上記ギャップ保持部材よりも近!、位 置に上記接着部材が配置されて 、な 、ことを特徴として 、る。  [0009] In order to solve the above-described problem, the capacitive sensor of the present invention includes a first substrate on which a first electrode is provided, and a second substrate on which a second electrode is provided. And the first electrode and the second electrode are arranged to face each other, and the first electrode and the second electrode are provided with a gap between the first electrode and the second electrode. A flexible spacer is provided so that at least one of the first electrode or the second electrode is sandwiched between the substrate and the second substrate. As for the capacitive sensor, the spacer includes an adhesive member bonded to the first substrate and the second substrate, and at least the first substrate or the second substrate. It consists of a gap holding member that is bonded to one side of the substrate and sandwiched between the above spacers! / At least closer to the gap holding member than the first electrode or the second electrode! The above-mentioned adhesive member is disposed at a position, and is characterized by the above.
[0010] 上記の発明によれば、ギャップ保持部材と少なくとも第 1の基板または第 2の基板の 一方とが接着されていない構成になっている。つまり、第 1の基板または第 2の基板 に対して積層方向への物理量が加わっても、ギャップ保持部材が配置されている領 域では、第 1の基板および第 2の基板の両方に接着されている場合よりも接着によつ て生じる粘性の影響を小さく抑えることが可能になる。 [0010] According to the above invention, the gap holding member and at least one of the first substrate and the second substrate are not bonded. In other words, even if a physical quantity in the stacking direction is applied to the first substrate or the second substrate, the region where the gap holding member is disposed. In the region, it is possible to suppress the influence of the viscosity caused by the adhesion to be smaller than when the adhesion is made to both the first substrate and the second substrate.
[0011] さらに、可撓性を有するスぺーサに挟まれている第 1の電極または第 2の電極に対 して、少なくともギャップ保持部材よりも近 、位置に接着部材が配置されて 、な ヽの で、第 1の基板または第 2の基板に加わった物理量を実際に検出する領域である、 上記スぺーサに挟まれている第 1の電極または第 2の電極周辺の領域で上述したよ うに粘性の影響を小さく抑えることができる。よって、可撓性を有する静電容量式セン サで上述のように粘性の影響を小さく抑えることができるようになるので、可撓性を有 する静電容量式センサの応答性およびヒステリシス特性の向上を行うことができる。そ の結果、可撓性を有するとともに、応答性およびヒステリシス特性により優れた静電容 量式センサを実現できる。  [0011] Furthermore, an adhesive member is disposed at a position at least near the gap holding member with respect to the first electrode or the second electrode sandwiched between the flexible spacers. As described above, in the area around the first electrode or the second electrode sandwiched between the spacers, which is an area for actually detecting the physical quantity applied to the first board or the second board. Thus, the influence of viscosity can be kept small. As a result, the influence of viscosity can be minimized with a flexible capacitive sensor as described above. Therefore, the response and hysteresis characteristics of a flexible capacitive sensor can be reduced. Improvements can be made. As a result, it is possible to realize a capacitance type sensor that has flexibility and is excellent in response and hysteresis characteristics.
[0012] また、本発明の静電容量式センサは、上記課題を解決するために、第 1の電極が 設けられている第 1の基板と第 2の電極が設けられている第 2の基板とを備え、上記 第 1の電極と上記第 2の電極とが対向して配置されているとともに、上記第 1の電極と 上記第 2の電極との間にギャップをもたせるために、上記第 1の基板と上記第 2の基 板との間に少なくとも上記第 1の電極または上記第 2の電極のうちの一方を挟むよう に、可撓性を有するスぺーサが設けられている可撓性を有する静電容量式センサに おいて、上記スぺーサは、上記第 1の基板と上記第 2の基板とに対して接着されてい る接着部材と、少なくとも上記第 1の基板または上記第 2の基板の一方に対して、上 記第 1の基板および上記第 2の基板と接着部材との間の接着に働く接着力よりも弱い 接着力で接着されて!、るギャップ保持部材とからなっており、上記スぺーサに挟まれ て 、る上記第 1の電極または上記第 2の電極に対して、少なくとも上記ギャップ保持 部材よりも近 、位置に上記接着部材が配置されて 、な 、ことを特徴として 、る。  [0012] Further, in order to solve the above problems, the capacitive sensor of the present invention provides a first substrate provided with a first electrode and a second substrate provided with a second electrode. The first electrode and the second electrode are arranged to face each other, and the first electrode and the second electrode are provided with a gap between the first electrode and the second electrode. A flexible spacer is provided so that at least one of the first electrode and the second electrode is sandwiched between the substrate and the second substrate. In the capacitive sensor having the above, the spacer includes an adhesive member bonded to the first substrate and the second substrate, and at least the first substrate or the second substrate. Adhering to the first substrate and the second substrate and the adhesive member to one of the substrates The gap holding member is bonded with a weaker adhesive force than the first electrode or the second electrode sandwiched between the spacers. The adhesive member is disposed at a position nearer to the member.
[0013] 上記の発明によれば、ギャップ保持部材と少なくとも第 1の基板または第 2の基板の 一方とが、上記第 1の基板および上記第 2の基板と接着部材との間の接着に働く接 着力よりも弱い接着力で接着されている構成になっている。ここで、接着力が弱くな れば、粘性成分は一般的に少なくなるものである。従って、第 1の基板または第 2の 基板に対して積層方向への物理量が加わっても、ギャップ保持部材が配置されてい る領域では、第 1の基板および第 2の基板の両方に接着されている場合よりも接着に よって生じる粘性の影響を小さく抑えることが可能になる。 [0013] According to the above invention, the gap holding member and at least one of the first substrate and the second substrate act on adhesion between the first substrate, the second substrate, and the adhesive member. It is configured to be bonded with an adhesive strength weaker than the adhesive strength. Here, when the adhesive force is weakened, the viscosity component is generally reduced. Therefore, even if a physical quantity in the stacking direction is applied to the first substrate or the second substrate, the gap holding member is disposed. In such a region, it is possible to suppress the influence of the viscosity caused by the adhesion to be smaller than when the adhesion is made to both the first substrate and the second substrate.
[0014] さらに、可撓性を有するスぺーサに挟まれている第 1の電極または第 2の電極に対 して、少なくともギャップ保持部材よりも近 、位置に接着部材が配置されて 、な ヽの で、第 1の基板または第 2の基板に加わった物理量を実際に検出する領域である、 上記スぺーサに挟まれている第 1の電極または第 2の電極周辺の領域で上述したよ うに粘性の影響を小さく抑えることができる。よって、可撓性を有する静電容量式セン サで上述のように粘性の影響を小さく抑えることができるようになるので、可撓性を有 する静電容量式センサの応答性およびヒステリシス特性の向上を行うことができる。そ の結果、可撓性を有するとともに、応答性およびヒステリシス特性により優れた静電容 量式センサを実現できる。 [0014] Furthermore, an adhesive member is disposed at a position at least near the gap holding member with respect to the first electrode or the second electrode sandwiched between the flexible spacers. As described above, in the area around the first electrode or the second electrode sandwiched between the spacers, which is an area for actually detecting the physical quantity applied to the first board or the second board. Thus, the influence of viscosity can be kept small. As a result, the influence of viscosity can be minimized with a flexible capacitive sensor as described above. Therefore, the response and hysteresis characteristics of a flexible capacitive sensor can be reduced. Improvements can be made. As a result, it is possible to realize a capacitance type sensor that has flexibility and is excellent in response and hysteresis characteristics.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明における静電容量式センサの実施の一形態を示す概略図である。 FIG. 1 is a schematic view showing one embodiment of a capacitance type sensor according to the present invention.
[図 2]上記静電容量式センサの実施の一形態を示す断面図である。  FIG. 2 is a cross-sectional view showing an embodiment of the capacitive sensor.
[図 3] (a)は、従来の静電容量式センサの圧力応答性を示すグラフであって、(b)は、 従来の静電容量式センサの圧力 静電容量特性を示すグラフである。  [FIG. 3] (a) is a graph showing the pressure responsiveness of a conventional capacitive sensor, and (b) is a graph showing the pressure-capacitance characteristics of a conventional capacitive sensor. .
[図 4] (a)は、本発明における静電容量式センサの圧力応答性を示すグラフであって 、(b)は、本発明における静電容量式センサの圧力 静電容量特性を示すグラフで ある。  [FIG. 4] (a) is a graph showing the pressure responsiveness of the capacitance type sensor according to the present invention, and (b) is a graph showing the pressure capacitance characteristic of the capacitance type sensor according to the present invention. It is.
[図 5]ポリイミドの損失弾性率、貯蔵弾性率および損失正接を示すグラフである。  FIG. 5 is a graph showing the loss elastic modulus, storage elastic modulus and loss tangent of polyimide.
[図 6]ポリエステル榭脂の損失弾性率、貯蔵弾性率および損失正接を示すグラフであ る。  FIG. 6 is a graph showing the loss modulus, storage modulus and loss tangent of polyester resin.
[図 7] (a)は、本発明における静電容量式センサの他の実施の形態を示す概略図で あって、(b)は、本発明における静電容量式センサの他の実施の形態を示す概略図 である。  FIG. 7 (a) is a schematic view showing another embodiment of the capacitive sensor according to the present invention, and FIG. 7 (b) shows another embodiment of the capacitive sensor according to the present invention. FIG.
[図 8] (a)は、本発明における静電容量式センサのさらに他の実施の形態を示す概略 図であって、(b)は、本発明における静電容量式センサのさらに他の実施の形態を 示す概略図である。 [図 9] (a)は、本発明における静電容量式センサのさらに他の実施の形態を示す概略 図であって、(b)は、本発明における静電容量式センサのさらに他の実施の形態を 示す概略図である。 [FIG. 8] (a) is a schematic diagram showing still another embodiment of the capacitive sensor of the present invention, and (b) is still another embodiment of the capacitive sensor of the present invention. It is the schematic which shows the form of. [FIG. 9] (a) is a schematic diagram showing still another embodiment of the capacitive sensor of the present invention, and (b) is still another embodiment of the capacitive sensor of the present invention. It is the schematic which shows the form of.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 〔第 1の実施の形態〕  [First Embodiment]
本発明の一実施形態について図 1〜図 4の(b)に基づいて説明すれば、以下の通 りである。なお、以下の実施の形態において、図は適宜簡略ィ匕または変形されており 、各部の寸法および形状等は必ずしも正確に描かれて 、な 、。  An embodiment of the present invention will be described below with reference to FIGS. 1 to 4B. In the following embodiments, the drawings are simplified or modified as appropriate, and the dimensions and shapes of the respective parts are not necessarily drawn accurately.
[0017] 図 1は、本実施の形態における静電容量式センサ 1の概略的構成を示す図であり、 図 2は、図 1における静電容量式センサ 1の Β·Β切断面を A方向から見た断面図であ る。最初に、図 1および図 2を用いて静電容量式センサ 1の構成の概要についての説 明を行う。  FIG. 1 is a diagram showing a schematic configuration of the capacitive sensor 1 according to the present embodiment. FIG. 2 is a cross-sectional view of the Β · Β cut surface of the capacitive sensor 1 in FIG. FIG. First, an outline of the configuration of the capacitive sensor 1 will be described with reference to FIGS. 1 and 2.
[0018] 本実施の形態における静電容量式センサ 1は、可撓性を有する静電容量式センサ であって、可動電極側基板 (第 1の基板) 2、固定電極側基板 (第 2の基板) 3、ギヤッ プ安定化部材 (ギャップ保持部材) 7と接着シート (接着部材) 8とからなるスぺーサ 4、 可動電極 (第 1の電極) 5、および固定電極 (第 2の電極) 6を備えて 、る。  The capacitive sensor 1 in the present embodiment is a flexible capacitive sensor, and includes a movable electrode side substrate (first substrate) 2 and a fixed electrode side substrate (second 3) Spacer 4 consisting of a gear stabilizing member (gap retaining member) 7 and an adhesive sheet (adhesive member) 8, a movable electrode (first electrode) 5, and a fixed electrode (second electrode) It has six.
[0019] 可動電極側基板 2の表面上には、可動電極 5が厚膜または薄膜技術等によって形 成されており、可動電極 5をアレイ状に備えている。可動電極側基板 2は、例えば導 電性のある半導体シリコン基板、ポリイミドフィルム、 PETフィルム、またはエポキシ榭 脂フィルム等で構成されて 、る。  [0019] On the surface of the movable electrode side substrate 2, the movable electrode 5 is formed by a thick film or thin film technique or the like, and the movable electrode 5 is provided in an array. The movable electrode side substrate 2 is made of, for example, a conductive semiconductor silicon substrate, a polyimide film, a PET film, or an epoxy resin film.
[0020] また、固定電極側基板 3の表面上には、固定電極 6が厚膜または薄膜技術等によ つて形成されており、図 2に示すように固定電極 6をアレイ状に備えている。固定電極 側基板 3は、例えば絶縁性のあるガラス基板、ポリイミドフィルム、 PETフィルム、また はエポキシ榭脂フィルム等で構成されて 、る。  [0020] Further, on the surface of the fixed electrode side substrate 3, the fixed electrode 6 is formed by a thick film or thin film technique or the like, and the fixed electrode 6 is provided in an array as shown in FIG. . The fixed electrode side substrate 3 is made of, for example, an insulating glass substrate, a polyimide film, a PET film, or an epoxy resin film.
[0021] 後に詳述するが、スぺーサ 4は可動電極側基板 2と固定電極側基板 3との間のギヤ ップ (空間)の保持を行うことによって、可動電極 5と固定電極 6との間のギャップの保 持を行っている。上記ギャップの大きさは、静電容量式センサ 1で検出しょうとする物 理量の大きさの幅と可動電極側基板 2の変形量に応じて任意に設定されるものであ る。 As will be described in detail later, the spacer 4 holds the gap (space) between the movable electrode side substrate 2 and the fixed electrode side substrate 3 so that the movable electrode 5 and the fixed electrode 6 The gap between the two is maintained. The size of the gap is arbitrarily set according to the width of the physical quantity to be detected by the capacitive sensor 1 and the deformation amount of the movable electrode side substrate 2. The
また、スぺーサ 4はギャップ安定ィ匕部材 7と接着シート 8とからなっている。そして、静 電容量式センサ 1が可撓性を有する静電容量式センサであるため、スぺーサ 4も可 撓性を有するギャップ安定ィ匕部材 7と接着シート 8とから構成されている。  The spacer 4 is composed of a gap stabilizing member 7 and an adhesive sheet 8. Since the capacitive sensor 1 is a flexible capacitive sensor, the spacer 4 is also composed of a flexible gap stabilizing member 7 and an adhesive sheet 8.
[0022] 可動電極 5は、例えば Au、 Cu、 AL、または Ag等力もなるものであって、上述したよ うにして可動電極側基板 2の表面上に形成されるものである。同様に、固定電極 6は 、例えば Au、 Cu、 AL、または Ag等からなるものであって、上述したようにして固定電 極側基板 3の表面上に形成されるものである。また、可動電極 5と固定電極 6とは、お 互 、ほぼ同一の厚さ寸法で形成される。  The movable electrode 5 also has, for example, Au, Cu, AL, or Ag, and is formed on the surface of the movable electrode side substrate 2 as described above. Similarly, the fixed electrode 6 is made of, for example, Au, Cu, AL, or Ag, and is formed on the surface of the fixed electrode side substrate 3 as described above. In addition, the movable electrode 5 and the fixed electrode 6 are formed with substantially the same thickness.
[0023] なお、本実施の形態では、可動電極 5および固定電極 6にそれぞれ接続された配 線等の静電容量式センサに一般的に備えられている他の構成についての説明は省 略する。  [0023] In the present embodiment, description of other configurations generally provided in a capacitive sensor such as a wiring connected to movable electrode 5 and fixed electrode 6 is omitted. .
[0024] 次に、図 1を用いて静電容量式センサ 1の各部材同士の配置についての説明を行  Next, the arrangement of the members of the capacitive sensor 1 will be described with reference to FIG.
[0025] 図 1に示すように、可動電極側基板 2、可動電極 5、固定電極 6、固定電極側基板 3 の順番になるように各部材が配置されており、可動電極側基板 2が、支持部としての スぺーサ 4によって固定電極側基板 3の上部にギャップをもって配置されている。そし て、可動電極側基板 2が、固定電極側基板 3の上部にギャップをもって配置されてい ること〖こよって、可動電極側基板 2の表面上に形成された可動電極 5と固定電極側基 板 3の表面上に形成された固定電極 6と力 ギャップをもったまま対向して配置されて いる。 As shown in FIG. 1, the members are arranged in the order of the movable electrode side substrate 2, the movable electrode 5, the fixed electrode 6, and the fixed electrode side substrate 3, and the movable electrode side substrate 2 is A spacer 4 as a support portion is disposed above the fixed electrode side substrate 3 with a gap. The movable electrode side substrate 2 is disposed with a gap above the fixed electrode side substrate 3, so that the movable electrode 5 and the fixed electrode side substrate formed on the surface of the movable electrode side substrate 2 are disposed. 3 is arranged to face the fixed electrode 6 formed on the surface of 3 with a force gap.
[0026] 次に、静電容量式センサ 1が可動電極側基板 2の表面に対して加わった物理量を 検出する方法について説明を行う。  Next, a method for detecting the physical quantity applied to the surface of the movable electrode side substrate 2 by the capacitive sensor 1 will be described.
[0027] まず、可動電極側基板 2の表面に対して、図 1の A方向に圧力等の物理量が加わ ると、加わった圧力に応じて可動電極側基板 2がたわむ。続いて、可動電極側基板 2 がたわんだ分だけ、可動電極 5の位置が固定電極 6に近づく。そして、可動電極 5と 固定電極 6との間の距離の変化によって、可動電極 5と固定電極 6との間での静電容 量の変化が生じる。従って、上記静電容量の変化を検出すれば、可動電極側基板 2 の表面に対して加わった物理量を検出することができることになる。 First, when a physical quantity such as pressure is applied to the surface of the movable electrode side substrate 2 in the direction A in FIG. 1, the movable electrode side substrate 2 bends according to the applied pressure. Subsequently, the position of the movable electrode 5 approaches the fixed electrode 6 by the amount of deflection of the movable electrode side substrate 2. Then, a change in the capacitance between the movable electrode 5 and the fixed electrode 6 occurs due to a change in the distance between the movable electrode 5 and the fixed electrode 6. Therefore, if the change in capacitance is detected, the movable electrode side substrate 2 The physical quantity applied to the surface of the can be detected.
[0028] 続いて、本実施の形態の静電容量式センサ 1の特徴部分について説明する。  [0028] Subsequently, characteristic portions of the capacitive sensor 1 of the present embodiment will be described.
[0029] 本実施の形態における静電容量式センサ 1では、上述したようにスぺーサ 4がギヤ ップ安定ィ匕部材 7と接着シート 8とからなっている。ギャップ安定ィ匕部材 7は、図 1およ び図 2に示すように可動電極側基板 2と固定電極側基板 3との間に、可動電極 5およ び固定電極 6を挟み込むようにしてお互い並行に配置されている。また、ギャップ安 定ィ匕部材 7は、可動電極側基板 2と同等の可撓性を有しているとともに、可動電極側 基板 2同等の圧縮強さを有している。具体的には、ギャップ安定ィ匕部材 7は、例えば ポリイミド、 PETフィルム、またはエポキシフィルム等からなっている。  In the capacitance type sensor 1 according to the present embodiment, the spacer 4 is composed of the gap stabilizing collar member 7 and the adhesive sheet 8 as described above. As shown in FIGS. 1 and 2, the gap stabilizing member 7 is configured so that the movable electrode 5 and the fixed electrode 6 are sandwiched between the movable electrode side substrate 2 and the fixed electrode side substrate 3, respectively. They are arranged in parallel. The gap stabilizing member 7 has the same flexibility as that of the movable electrode side substrate 2 and has the same compressive strength as the movable electrode side substrate 2. Specifically, the gap stabilizing member 7 is made of, for example, polyimide, PET film, or epoxy film.
[0030] また、接着シート 8は、図 1および図 2に示すように可動電極側基板 2と固定電極側 基板 3との間に、可動電極 5および固定電極 6を挟み込んでいるギャップ安定ィ匕部材 7を挟み込むようにしてお互い並行に配置されている。接着シート 8は、例えばポリエ ステル樹脂、エポキシ榭脂、ポリウレタン榭脂、またはシリコン榭脂等力もなつている。  In addition, as shown in FIGS. 1 and 2, the adhesive sheet 8 has a gap stabilizing structure in which the movable electrode 5 and the fixed electrode 6 are sandwiched between the movable electrode side substrate 2 and the fixed electrode side substrate 3. The members 7 are arranged in parallel so as to sandwich the member 7 therebetween. The adhesive sheet 8 also has, for example, polyester resin, epoxy resin, polyurethane resin, or silicon resin.
[0031] 以上のように、ギャップ安定ィ匕部材 7と接着シート 8との位置関係は、お互いが上下 方向(可動電極側基板 2と固定電極側基板 3とが積層される方向)に重なりあわない ように直方体が並列に配置されたようになっている。また、ギャップ安定ィ匕部材 7と接 着シート 8との位置関係は、可動電極 5および固定電極 6と接着シート 8との間に少な くともギャップ安定ィ匕部材 7が配置されているようになつている。そして、ギャップ安定 化部材 7は接着シート 8によって水平方向(可動電極側基板 2と固定電極側基板 3と が積層される方向に対して直交する方向)でのみ接着(固定)されている。また、接着 シート 8は、可動電極側基板 2および固定電極側基板 3の両方に対して固定されてい るが、ギャップ安定ィ匕部材 7は、少なくとも可動電極側基板 2または固定電極側基板 3の一方に対して固定されている力、もしくは可動電極側基板 2および固定電極側基 板 3の両方に対して固定されていない。上記固定の方法としては、例えば、可動電極 側基板 2または固定電極側基板 3と一体成形する方法を用いることができる。また、 上記一体成形する方法としては、可動電極側基板 2または固定電極側基板 3とギヤッ プ安定ィ匕部材 7とを同時に成形、もしくはインサート成形またはアウトサート成形など がある。さらに、上記固定の方法としては、少なくとも可動電極側基板 2または固定電 極側基板 3とギャップ安定化部材 7とのうちの一方を熱で溶解して接着する熱圧着を 用いることちでさる。 As described above, the positional relationship between the gap stabilizing member 7 and the adhesive sheet 8 overlaps with each other in the vertical direction (the direction in which the movable electrode side substrate 2 and the fixed electrode side substrate 3 are stacked). The rectangular parallelepiped is arranged in parallel so that there is no. Further, the positional relationship between the gap stabilizing member 7 and the adhesive sheet 8 is such that at least the gap stabilizing member 7 is disposed between the movable electrode 5 and the fixed electrode 6 and the adhesive sheet 8. It is summer. The gap stabilizing member 7 is bonded (fixed) only in the horizontal direction (direction orthogonal to the direction in which the movable electrode side substrate 2 and the fixed electrode side substrate 3 are laminated) by the adhesive sheet 8. The adhesive sheet 8 is fixed to both the movable electrode side substrate 2 and the fixed electrode side substrate 3, but the gap stabilizing member 7 is at least the movable electrode side substrate 2 or the fixed electrode side substrate 3. The force is fixed to one side, or is not fixed to both the movable electrode side substrate 2 and the fixed electrode side substrate 3. As the fixing method, for example, a method of integrally forming the movable electrode side substrate 2 or the fixed electrode side substrate 3 can be used. Further, as the above-mentioned integral molding method, the movable electrode side substrate 2 or the fixed electrode side substrate 3 and the gap stabilizing member 7 are simultaneously molded, or insert molding or outsert molding. Further, as the fixing method, at least the movable electrode side substrate 2 or the fixed power source is used. This is achieved by using thermocompression bonding in which one of the pole side substrate 3 and the gap stabilizing member 7 is melted and bonded with heat.
[0032] なお、本実施の形態においては、可動電極 5および固定電極 6のそれぞれの配列 方向が同方向である場合に、ギャップ安定ィ匕部材 7が可動電極 5および固定電極 6 を挟むように配置されている構成を示した力 必ずしもこれに限らない。例えば、可動 電極 5および固定電極 6のそれぞれの配列方向が直交しているような場合には、ギヤ ップ安定ィ匕部材 7が可動電極 5または固定電極 6のどちらかを挟むように配置されて いてもよい。  In this embodiment, when the arrangement directions of the movable electrode 5 and the fixed electrode 6 are the same direction, the gap stabilizing member 7 sandwiches the movable electrode 5 and the fixed electrode 6. Forces that indicate the arrangement of the arrangements Not necessarily limited to this. For example, when the arrangement directions of the movable electrode 5 and the fixed electrode 6 are orthogonal to each other, the gap stabilizing member 7 is arranged so as to sandwich either the movable electrode 5 or the fixed electrode 6. It may be.
[0033] 本発明の静電容量式センサ 1は、スぺーサ 4は、可動電極側基板 2と固定電極側 基板 3とに対して接着されている接着シート 8と、少なくとも可動電極側基板 2または 固定電極側基板 3の一方に対して接着されて 、な 、ギャップ安定ィ匕部材 7とからなつ ており、接着シート 8とギャップ安定ィ匕部材 7とは、可動電極側基板 2と固定電極側基 板 3との積層方向でぉ互 、が重なり合わな 、ように配置されて 、るとともに、スぺーサ 4に挟まれて ヽる可動電極側基板 2または固定電極側基板 3に対して、少なくともギヤ ップ安定ィ匕部材 7よりも近い位置に接着シート 8が配置されておらず、接着シート 8と ギャップ安定ィ匕部材 7とが上記積層方向に対して直交する方向でのみ接着されてい る。  [0033] In the capacitive sensor 1 of the present invention, the spacer 4 includes an adhesive sheet 8 bonded to the movable electrode side substrate 2 and the fixed electrode side substrate 3, and at least the movable electrode side substrate 2. Alternatively, the gap stabilizing member 7 is bonded to one of the fixed electrode side substrate 3 and the adhesive sheet 8 and the gap stabilizing member 7 are connected to the movable electrode side substrate 2 and the fixed electrode. The movable electrode side substrate 2 and the fixed electrode side substrate 3 sandwiched between the spacers 4 are arranged so that they do not overlap with each other in the stacking direction with the side substrate 3. The adhesive sheet 8 is not disposed at least at a position closer to the gap stabilizing member 7, and the adhesive sheet 8 and the gap stabilizing member 7 are bonded only in the direction orthogonal to the stacking direction. ing.
[0034] 以上の構成によれば、ギャップ安定ィ匕部材 7と少なくとも可動電極側基板 2または 固定電極側基板 3の一方とが接着されておらず、接着シート 8とギャップ安定ィ匕部材 7とは、可動電極側基板 2と固定電極側基板 3との積層方向でお互いが重なり合わな V、ように配置されて 、るとともに、接着シート 8とギャップ安定ィ匕部材 7とが積層方向に 対して直交する方向でのみ接着されていることになつている。つまり、可動電極側基 板 2または固定電極側基板 3に対して積層方向への圧力が加わっても、ギャップ安 定化部材 7が配置されて ヽる領域では、可動電極側基板 2および固定電極側基板 3 の両方に接着されている場合よりも接着によって生じる粘性の影響を小さく抑えること が可能になる。  According to the above configuration, the gap stabilizing member 7 and at least one of the movable electrode side substrate 2 or the fixed electrode side substrate 3 are not bonded, and the adhesive sheet 8 and the gap stabilizing member 7 Are arranged so that they overlap each other in the stacking direction of the movable electrode side substrate 2 and the fixed electrode side substrate 3, and the adhesive sheet 8 and the gap stabilizing member 7 are arranged in the stacking direction. In other words, it is bonded only in the orthogonal direction. That is, even if pressure in the stacking direction is applied to the movable electrode side substrate 2 or the fixed electrode side substrate 3, in the region where the gap stabilizing member 7 is disposed, the movable electrode side substrate 2 and the fixed electrode It is possible to suppress the influence of the viscosity caused by the adhesion to be smaller than when the adhesion is made to both of the side substrates 3.
[0035] さらに、可撓性を有するスぺーサ 4に挟まれている可動電極 5または固定電極 6に 対して、少なくともギャップ安定ィ匕部材 7よりも近い位置に接着シート 8が配置されて いないので、可動電極側基板 2または固定電極側基板 3に加わった圧力を実際に検 出する領域である、スぺーサ 4に挟まれている可動電極 5または固定電極 6周辺のギ ヤップ安定ィ匕部材 7が配置されている領域で粘性の影響を小さく抑えることができる。 よって、可撓性を有する静電容量式センサ 1で粘性の影響を小さく抑えることができ るようになるので、可撓性を有する静電容量式センサ 1の応答性およびヒステリシス特 性の向上を行うことができる。その結果、可撓性を有するとともに、応答性およびヒス テリシス特性により優れた静電容量式センサ 1を実現できる。 [0035] Furthermore, an adhesive sheet 8 is disposed at least closer to the gap stabilizing member 7 with respect to the movable electrode 5 or the fixed electrode 6 sandwiched between the flexible spacers 4. Therefore, the gap around the movable electrode 5 or the fixed electrode 6 sandwiched between the spacers 4 is an area where the pressure applied to the movable electrode side substrate 2 or the fixed electrode side substrate 3 is actually detected. The influence of viscosity can be kept small in the region where the eaves member 7 is disposed. Therefore, the influence of the viscosity can be suppressed to a small extent by the flexible capacitive sensor 1, so that the response and hysteresis characteristics of the flexible capacitive sensor 1 can be improved. It can be carried out. As a result, it is possible to realize a capacitive sensor 1 that has flexibility and is excellent in responsiveness and hysteresis characteristics.
[0036] 続いて、図 3の(a)〜図 6を用いて、本発明の静電容量式センサ 1を用いた場合の 実際の効果について説明を行う。図 3の(a)は従来の静電容量式センサの圧力応答 性を示すグラフであり、図 3の(b)は従来の静電容量式センサのヒステリシス特性を示 すグラフである。また、図 4の(a)は本発明における静電容量式センサ 1の圧力応答 性を示すグラフであり、図 4の(b)は本発明における静電容量式センサ 1のヒステリシ ス特性を示すグラフである。そして、図 5はポリイミドの損失弾性率、貯蔵弾性率およ び損失正接を示すグラフであって、図 6はポリエステル榭脂の損失弾性率、貯蔵弾 性率および損失正接を示すグラフである。ここで損失弾性率は材料の粘性成分を、 貯蔵弾性率は材料の弾性成分を表している。すなわち、一般的に材料のたわみ時 に生じる反力には弾性成分と粘性成分とがある。このうち弾性成分は、材料のたわみ 量に比例した反力の程度を示し、時間的依存性がない。一方粘性成分は、材料のた わみ速度に比例した反力の程度を示すものであって、時間的依存性があり、静電容 量式センサにおいては応答性が遅れる要因になる。なお、図 4の(a)および図 4の(b )の測定時に用いた静電容量式センサ 1では、可動電極側基板 2の材質にポリイミド 、固定電極側基板 3の材質にポリイミド、可動電極 5の材質に Au、固定電極 6の材質 に Au、ギャップ安定ィ匕部材 7の材質にポリイミド、そして接着シート 8の材質にポリエ ステル榭脂を用いている。  [0036] Next, the actual effect when the electrostatic capacitance sensor 1 of the present invention is used will be described with reference to FIGS. Fig. 3 (a) is a graph showing the pressure response of a conventional capacitive sensor, and Fig. 3 (b) is a graph showing the hysteresis characteristics of a conventional capacitive sensor. 4 (a) is a graph showing the pressure response of the capacitive sensor 1 according to the present invention, and FIG. 4 (b) shows the hysteresis characteristic of the capacitive sensor 1 according to the present invention. It is a graph. FIG. 5 is a graph showing the loss elastic modulus, storage elastic modulus and loss tangent of polyimide, and FIG. 6 is a graph showing the loss elastic modulus, storage elastic modulus and loss tangent of polyester resin. Here, the loss modulus represents the viscous component of the material, and the storage modulus represents the elastic component of the material. That is, in general, the reaction force generated when a material is bent has an elastic component and a viscous component. Of these, the elastic component shows the degree of reaction force proportional to the amount of deflection of the material and has no time dependence. On the other hand, the viscosity component indicates the degree of reaction force proportional to the deflection speed of the material, and has a time dependency, which causes a delay in response in a capacitive sensor. In the capacitance type sensor 1 used in the measurement of FIGS. 4 (a) and 4 (b), polyimide is used for the material of the movable electrode side substrate 2, polyimide is used for the material of the fixed electrode side substrate 3, and the movable electrode. Au is used for the material 5, Au is used for the material of the fixed electrode 6, polyimide is used for the material of the gap stabilization member 7, and polyester resin is used for the material of the adhesive sheet 8.
[0037] まず、従来の静電容量式センサと本発明の静電容量式センサ 1との圧力応答性の 違いについて説明する。図 3の(a)および図 4の(a)において、実線はセンサにカロえ た圧力値を表し、点線はこの印加圧力に対するセンサの出力値を表す。図 3の(a)と 図 4の(a)とを見比べるとわ力るように、入力圧力のグラフの値に対して、センサ出力 のグラフの値は、本発明の静電容量式センサ 1を用いて検出した値の方が、従来の 静電容量式センサを用いて検出した値よりも実際の入力圧力の値に近くなつている。 つまり、本発明の静電容量式センサ 1の方が、従来の静電容量式センサよりも圧力応 答 ¾が高くなつている。 [0037] First, the difference in pressure response between the conventional capacitive sensor and the capacitive sensor 1 of the present invention will be described. In (a) of Fig. 3 and (a) of Fig. 4, the solid line represents the pressure value stored on the sensor, and the dotted line represents the sensor output value for this applied pressure. As shown in Fig. 3 (a) and Fig. 4 (a), the sensor output is compared to the input pressure graph value. The values of the graph in FIG. 6 are closer to the actual input pressure value than the value detected using the conventional capacitive sensor of the value detected using the capacitive sensor 1 of the present invention. Yes. That is, the capacitive sensor 1 of the present invention has a higher pressure response than the conventional capacitive sensor.
[0038] 続いて、従来の静電容量式センサと本発明の静電容量式センサ 1とのヒステリシス 特性の違いについて説明する。図 3の (b)および図 4の(b)において、実線はセンサ に加えた圧力値が上昇していく時のセンサの静電容量値、点線はセンサにカ卩えた圧 力値が下降していく時のセンサの静電容量値を表す。なお、図 3の(b)および図 4の( b)中の Cは静電容量を表しており、 Pは圧力を表している。図 3の(b)と図 4の(b)とを 見比べるとわ力るように、圧力の上昇時のグラフの静電容量の値と圧力の下降時の グラフの静電容量の値との差が、本発明の静電容量式センサ 1を用いて検出したとき の方が、従来の静電容量式センサを用いて検出したときよりも小さ 、差になって!/、る 。圧力の上昇時の静電容量の値と圧力の下降時の静電容量の値との差がヒステリシ スに相当することから、本発明の静電容量式センサ 1の方力 従来の静電容量式セ ンサよりもヒステリシスが小さくなつており、ヒステリシス特性が向上している。  [0038] Next, the difference in hysteresis characteristics between the conventional capacitive sensor and the capacitive sensor 1 of the present invention will be described. In (b) and (b) of Fig. 3, the solid line indicates the capacitance value of the sensor when the pressure value applied to the sensor increases, and the dotted line indicates that the pressure value stored in the sensor decreases. It represents the capacitance value of the sensor as it goes. Note that C in (b) in Fig. 3 and (b) in Fig. 4 represents capacitance, and P represents pressure. Comparing (b) in Fig. 3 with (b) in Fig. 4, the capacitance value of the graph when the pressure increases and the capacitance value of the graph when the pressure decreases When the difference is detected using the capacitance type sensor 1 of the present invention, the difference is smaller than when detected using the conventional capacitance type sensor. Since the difference between the capacitance value when the pressure increases and the capacitance value when the pressure decreases corresponds to hysteresis, the direction of the capacitance sensor 1 of the present invention is the conventional capacitance. Hysteresis is smaller than that of the sensor, and the hysteresis characteristics are improved.
[0039] 以上に示したように、本発明の静電容量式センサ 1は、従来の静電容量式センサに 比べて圧力応答性およびヒステリシス特性が実際に向上している。  [0039] As described above, the capacitive sensor 1 of the present invention has actually improved pressure responsiveness and hysteresis characteristics as compared with the conventional capacitive sensor.
[0040] また、本発明の静電容量式センサ 1では、ギャップ安定ィ匕部材 7は、可動電極側基 板 2および固定電極側基板 3と同一の材質力もなつていることが好ましい。  In the capacitive sensor 1 of the present invention, it is preferable that the gap stabilizing member 7 has the same material force as the movable electrode side substrate 2 and the fixed electrode side substrate 3.
[0041] これにより、ギャップ安定化部材 7が可動電極側基板 2および固定電極側基板 3と 同じだけの可撓性と圧縮強さを有することになるので、静電容量式センサ 1を曲げた り、静電容量式センサ 1に圧力をかけたりした場合でも、静電容量式センサ 1の構造 を安定に保つことが可能になる。  [0041] As a result, the gap stabilizing member 7 has the same flexibility and compressive strength as the movable electrode side substrate 2 and the fixed electrode side substrate 3, so that the capacitive sensor 1 is bent. Thus, even when pressure is applied to the capacitive sensor 1, the structure of the capacitive sensor 1 can be kept stable.
[0042] さらに、本発明の静電容量式センサ 1では、ギャップ安定ィ匕部材 7は、可動電極側 基板 2と固定電極側基板 3との、粘性の影響を示す指標としての貯蔵弾性率と損失 弾性率との比の値である損失正接の値が同一である場合には、可動電極側基板 2お よび固定電極側基板 3の損失正接の値以下の損失正接の値を有する材質力 なり、 可動電極側基板 2と固定電極側基板 3との損失正接の値が同一でない場合には、可 動電極側基板 2または固定電極側基板 3のうちの損失正接の値の大きい方の基板の 損失正接の値以下の損失正接の値を有する材質からなって 、ることが好ま U、。 Furthermore, in the capacitance type sensor 1 of the present invention, the gap stabilizing member 7 has a storage elastic modulus as an index indicating the influence of viscosity between the movable electrode side substrate 2 and the fixed electrode side substrate 3. When the loss tangent value, which is the ratio of the loss elastic modulus, is the same, the material force has a loss tangent value less than or equal to the loss tangent value of the movable electrode side substrate 2 and the fixed electrode side substrate 3. Yes, if the loss tangent values of movable electrode side substrate 2 and fixed electrode side substrate 3 are not the same. It is preferable that the movable electrode side substrate 2 or the fixed electrode side substrate 3 is made of a material having a loss tangent value equal to or smaller than the loss tangent value of the substrate having the larger loss tangent value.
[0043] これにより、損失正接の値が少なくとも可動電極側基板 2または固定電極側基板 3 以下の材料をギャップ安定ィ匕部材 7として用いることになる。少なくとも可動電極側基 板 2および固定電極側基板 3自体には接着シート 8よりも大きい接着力はないので、 可動電極側基板 2および固定電極側基板 3自体の損失正接の値は少なくとも接着シ ート 8よりも小さくなる。つまり、上記構成によれば、ギャップ安定ィ匕部材 7は、接着シ ート 8の損失正接よりも値の小さな損失正接の値を有することになる。従って、接着シ ート 8のみを用いた場合よりも、応答遅れ、ヒステリシス、および経時変化を改善するこ とがでさる。 Accordingly, a material having a loss tangent value of at least the movable electrode side substrate 2 or the fixed electrode side substrate 3 is used as the gap stabilizing member 7. Since at least the movable electrode side substrate 2 and the fixed electrode side substrate 3 themselves do not have a larger adhesive force than the adhesive sheet 8, the loss tangent value of the movable electrode side substrate 2 and the fixed electrode side substrate 3 itself is at least the adhesive Smaller than 8th. In other words, according to the above configuration, the gap stabilizing member 7 has a loss tangent value smaller than the loss tangent of the adhesive sheet 8. Therefore, response delay, hysteresis, and aging can be improved as compared with the case where only the adhesive sheet 8 is used.
[0044] さらに、本発明の静電容量式センサ 1では、ギャップ安定ィ匕部材 7は、粘性の影響 を示す指標としての貯蔵弾性率と損失弾性率との比の値である損失正接の値が、可 動電極側基板 2および固定電極側基板 3の損失正接の値よりも小さい材質からなつ ていることが好ましい。例を具体的に示すと、損失正接 tan δの値が 0. 01-0. 03の ポリイミドを可動電極側基板 2および固定電極側基板 3の材質に用いて 、る場合には 、当該ポリイミドの損失正接以下の値を有する材質をギャップ安定ィ匕部に用いること などが好ましい。  Furthermore, in the capacitance type sensor 1 of the present invention, the gap stabilization member 7 has a loss tangent value that is a value of a ratio between a storage elastic modulus and a loss elastic modulus as an index indicating the influence of viscosity. However, it is preferably made of a material smaller than the loss tangent value of the movable electrode side substrate 2 and the fixed electrode side substrate 3. Specifically, when a polyimide having a loss tangent tan δ value of 0.01-0.03 is used as the material of the movable electrode side substrate 2 and the fixed electrode side substrate 3, It is preferable to use a material having a value equal to or less than the loss tangent for the gap stabilization flange.
[0045] これにより、損失正接の値が少なくとも可動電極側基板 2または固定電極側基板 3 よりも小さい材料をギャップ安定ィ匕部材 7として用いることになる。つまり、上記構成に よれば、ギャップ安定化部材 7は、接着シート 8の損失正接よりも値の小さな損失正接 の値を有すること〖こなる。従って、接着シート 8のみを用いた場合よりも、応答遅れ、ヒ ステリシス、および経時変化を改善することができる。  Thus, a material whose loss tangent is at least smaller than that of the movable electrode side substrate 2 or the fixed electrode side substrate 3 is used as the gap stabilizing member 7. That is, according to the above configuration, the gap stabilizing member 7 has a loss tangent value smaller than the loss tangent of the adhesive sheet 8. Accordingly, response delay, hysteresis, and change with time can be improved as compared with the case where only the adhesive sheet 8 is used.
[0046] これについて、実際に図 5および図 6を用いて説明を行う。図 5は、本実施の形態で 可動電極側基板 2、固定電極側基板 3、およびギャップ安定ィ匕部材 7に用いている材 質であるポリイミドの損失弾性率、貯蔵弾性率および損失正接を示している。図 6は、 本実施の形態で接着シート 8に用いて ヽる材質であるポリエステル榭脂の損失弾性 率、貯蔵弾性率および損失正接を示している。図 5および図 6中の E'は貯蔵弾性率 を、 E' 'は損失弾性率を、 tan δは損失正接 (損失係数)を示している。なお、損失正 接 tan δは、 tan S =Ε,,ΖΕ,の関係にある。 This will be described with reference to FIGS. 5 and 6. FIG. 5 shows the loss elastic modulus, storage elastic modulus, and loss tangent of polyimide, which is a material used for the movable electrode side substrate 2, the fixed electrode side substrate 3, and the gap stabilizing member 7 in this embodiment. ing. FIG. 6 shows the loss elastic modulus, storage elastic modulus, and loss tangent of polyester resin, which is a material used for the adhesive sheet 8 in the present embodiment. In FIGS. 5 and 6, E ′ represents the storage elastic modulus, E ′ ′ represents the loss elastic modulus, and tan δ represents the loss tangent (loss coefficient). The loss is positive The contact tan δ is related to tan S = Ε, ΖΕ.
[0047] 図 5に示されるように、ポリイミドの貯蔵弾性率 Ε,は 4000〜4300MPa、損失弾性 率 E,,は 43〜128MPa、損失正接 tan δは 0. 01〜0. 03となって!/ヽる。また、図 6 に示されるように、ポリエステル榭脂の貯蔵弾性率 Ε,は 14. 5〜309MPa、損失弹 性率 E,,は 21. 6〜124、損失正接 tan δは 0. 4〜1. 5となっている。このように、可 動電極側基板 2および固定電極側基板 3等の基板に用いられる材質は、接着シート 8等の接着部材に用いられる材質に比べてはるかに損失正接が小さ 、。  [0047] As shown in Fig. 5, the storage elastic modulus Ε of polyimide is 4000 to 4300 MPa, the loss elastic modulus E is 43 to 128 MPa, and the loss tangent tan δ is 0.01 to 0.03! / Speak. As shown in Fig. 6, the storage modulus 榭 of polyester resin is 14.5 to 309 MPa, loss modulus E is 21.6 to 124, and loss tangent tan δ is 0.4 to 1. It has become 5. As described above, the loss tangent of the material used for the movable electrode side substrate 2 and the fixed electrode side substrate 3 is much smaller than the material used for the adhesive member such as the adhesive sheet 8.
[0048] また、本発明の静電容量式センサ 1では、アレイ状に配置された個々の可動電極 5 の間の可動電極側基板 2の領域に細長い孔 (スリット)が設けられていることが好まし い。  [0048] Further, in the capacitive sensor 1 of the present invention, an elongated hole (slit) is provided in the region of the movable electrode side substrate 2 between the individual movable electrodes 5 arranged in an array. I like it.
[0049] これにより、スリットが配列されている方向に静電容量式センサ 1を曲げた場合でも、 スリットが各可動電極 5間に設けられていることによって、可動電極側基板 2の変形に 対して各可動電極 5が独立性をもつことができる。従って、屈曲面に対して可動電極 5の面をより平行に近くすることができ、静電容量式センサ 1の屈曲時に生じる感度の 低下を抑えることができる。また隣接する他の可動電極 5とスリットによって隔てられて いるので、構造的なクロストークを低減できる。  Thus, even when the capacitive sensor 1 is bent in the direction in which the slits are arranged, the slits are provided between the movable electrodes 5, so that the deformation of the movable electrode side substrate 2 can be prevented. Thus, each movable electrode 5 can be independent. Therefore, the surface of the movable electrode 5 can be made more parallel to the bent surface, and the decrease in sensitivity that occurs when the capacitive sensor 1 is bent can be suppressed. In addition, since it is separated from other adjacent movable electrode 5 by a slit, structural crosstalk can be reduced.
[0050] さらに、本発明の静電容量式センサ 1では、固定電極側基板 3上の固定電極 6の裏 面に補強板を設置して固定電極 6を剛体ィ匕することによって、静電容量式センサ 1の 屈曲時の曲げを、各固定電極 6間の領域に集中させる構成にすることが好ましい。  [0050] Furthermore, in the capacitance type sensor 1 of the present invention, a capacitance plate is provided by stiffening the fixed electrode 6 by installing a reinforcing plate on the back surface of the fixed electrode 6 on the fixed electrode side substrate 3. It is preferable that the bending at the time of bending of the sensor 1 is concentrated in the region between the fixed electrodes 6.
[0051] これにより、固定電極 6の平面度を保持することが可能になるので、屈曲面での可 動電極 5の面と固定電極 6との面の関係をより平行に近くすることが可能になり、静電 容量式センサ 1の屈曲時に生じる感度の低下をさらに抑えることができる。  [0051] This makes it possible to maintain the flatness of the fixed electrode 6, so that the relationship between the surface of the movable electrode 5 and the surface of the fixed electrode 6 on the bent surface can be made more parallel. Thus, it is possible to further suppress the decrease in sensitivity that occurs when the capacitive sensor 1 is bent.
[0052] なお、本実施の形態においては、静電容量式センサ 1が可動電極 5および固定電 極 6をアレイ状に複数備えた構成を示したが、必ずしもこれに限らない。例えば、静電 容量式センサ 1が 1対の可動電極 5および固定電極 6を備える構成であってもよい。  In the present embodiment, the capacitance type sensor 1 has a configuration in which a plurality of movable electrodes 5 and fixed electrodes 6 are provided in an array, but the present invention is not necessarily limited thereto. For example, the capacitive sensor 1 may be configured to include a pair of the movable electrode 5 and the fixed electrode 6.
[0053] なお、本実施の形態では、少なくとも可動電極側基板 2または固定電極側基板 3の 一方に対してギャップ安定ィ匕部材 7が接着されて 、な 、構成になっているが、必ずし もこれに限らない。例えば、少なくとも可動電極側基板 2または固定電極側基板 3の 一方に対してギャップ安定ィ匕部材 7が補助的に接着されて 、てもよ 、。ここで言うとこ ろの補助的な接着とは、可動電極側基板 2および固定電極側基板 3と接着シート 8と の接着に働く接着力よりも弱!、接着力での接着を意味して 、る。 In the present embodiment, the gap stabilizing member 7 is bonded to at least one of the movable electrode side substrate 2 and the fixed electrode side substrate 3, but it is always configured. Is not limited to this. For example, at least the movable electrode side substrate 2 or the fixed electrode side substrate 3 On the other hand, the gap stabilizing member 7 is supplementarily bonded. In this case, the auxiliary adhesion is weaker than the adhesive force that acts on the adhesion between the movable electrode side substrate 2 and the fixed electrode side substrate 3 and the adhesive sheet 8, and means adhesion with adhesive force. The
[0054] 以上の構成によれば、ギャップ安定ィ匕部材 7と少なくとも可動電極側基板 2または 固定電極側基板 3の一方とが、可動電極側基板 2および固定電極側基板 3と接着シ ート 8との間の接着に働く接着力よりも弱い接着力で接着されている構成になってい る。ここで、接着力が弱くなれば、粘性成分は一般的に少なくなるものである。従って 、可動電極側基板 2または固定電極側基板 3に対して積層方向への物理量が加わつ ても、ギャップ安定ィ匕部材 7が配置されている領域では、可動電極側基板 2および固 定電極側基板 3の両方に接着されている場合よりも接着によって生じる粘性の影響を 小さく抑えることが可能になる。  According to the above configuration, the gap stabilizing member 7 and at least one of the movable electrode side substrate 2 or the fixed electrode side substrate 3 are bonded to the movable electrode side substrate 2 and the fixed electrode side substrate 3. It is configured to be bonded with an adhesive force weaker than the adhesive force acting on the adhesive. Here, when the adhesive force is weakened, the viscosity component is generally reduced. Therefore, even if a physical quantity in the stacking direction is applied to the movable electrode side substrate 2 or the fixed electrode side substrate 3, the movable electrode side substrate 2 and the fixed electrode are not formed in the region where the gap stabilizing member 7 is disposed. It is possible to suppress the influence of the viscosity caused by the adhesion to be smaller than when the adhesion is made to both of the side substrates 3.
[0055] 〔第 2の実施の形態〕  [Second Embodiment]
本発明の他の実施の形態について図 7の(a)〜図 8の(b)に基づいて説明すれば 、以下の通りである。なお、本実施の形態において説明すること以外の構成は、前記 第 1の実施の形態と同じである。また、説明の便宜上、前記第 1の実施の形態の図面 に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明 を省略する。さらに、以下の実施の形態において、図は適宜簡略ィ匕または変形され ており、各部の寸法および形状等は必ずしも正確に描かれて 、な 、。  Another embodiment of the present invention will be described below with reference to FIGS. 7 (a) to 8 (b). The configuration other than that described in the present embodiment is the same as that of the first embodiment. For convenience of explanation, members having the same functions as those shown in the drawings of the first embodiment are given the same reference numerals and explanations thereof are omitted. Further, in the following embodiments, the drawings are appropriately simplified or modified, and the dimensions and shapes of the respective parts are not necessarily drawn accurately.
[0056] 本実施の形態の静電容量式センサ 11、および静電容量式センサ 21は、前記第 1 の実施の形態の静電容量式センサ 1に対して、ギャップ安定化部材 7および接着シ ート 8の形状が異なって 、る。  [0056] The capacitive sensor 11 and the capacitive sensor 21 of the present embodiment are different from the capacitive sensor 1 of the first embodiment in that the gap stabilizing member 7 and the adhesive The shape of Route 8 is different.
[0057] まず、図 7の(a)および図 7の(b)を用いて本実施の形態における静電容量式セン サ 11のギャップ安定ィ匕部材 7および接着シート 8の形状の説明を行う。図 7の(a)は 本実施の形態における静電容量式センサ 11の概略的構成を示す図であり、図 8の( b)は、図 7の(a)における静電容量式センサ 11の C ' C切断面を A方向力も見た断面 図である。  First, the shapes of the gap stabilizing member 7 and the adhesive sheet 8 of the capacitive sensor 11 in the present embodiment will be described with reference to FIGS. 7 (a) and 7 (b). . FIG. 7 (a) is a diagram showing a schematic configuration of the capacitive sensor 11 in the present embodiment, and FIG. 8 (b) is a diagram of the capacitive sensor 11 in FIG. 7 (a). It is a cross-sectional view of the C′C cut surface with the A direction force.
[0058] 本実施の形態における静電容量式センサ 11では、ギャップ安定ィ匕部材 7と接着シ ート 8とのお互いに接する面のそれぞれが、図 7の (b)に示すような櫛状、つまり複数 の凹凸部力もなる形状になっており、ギャップ安定ィ匕部材 7と接着シート 8とが嵌合さ れるようになっている。そして、図 7の(a)および図 7の(b)に示すように、可動電極 5 および固定電極 6に対してギャップ安定ィ匕部材 7よりも近い位置に接着シート 8が配 置されな 、構成になって!/ヽる。 In the capacitive sensor 11 according to the present embodiment, the surfaces of the gap stabilizing member 7 and the adhesive sheet 8 that are in contact with each other are comb-shaped as shown in FIG. 7 (b). That is, multiple The gap stabilizing member 7 and the adhesive sheet 8 are fitted to each other. Then, as shown in FIGS. 7 (a) and 7 (b), the adhesive sheet 8 is not disposed at a position closer to the movable electrode 5 and the fixed electrode 6 than the gap stabilizing member 7. Become a composition!
[0059] また、ギャップ安定ィ匕部材 7と接着シート 8との位置関係は、静電容量式センサ 1の 場合と同様にお互いが上下方向(可動電極側基板 2と固定電極側基板 3とが積層さ れる方向)に重なりあわないように配置されている。そして、ギャップ安定ィ匕部材 7は 接着シート 8によって水平方向(可動電極側基板 2と固定電極側基板 3とが積層され る方向に対して直交する方向)でのみ接着(固定)されている。また、接着シート 8は、 可動電極側基板 2および固定電極側基板 3の両方に対して固定されて ヽるが、ギヤ ップ安定ィ匕部材 7は、少なくとも可動電極側基板 2または固定電極側基板 3の一方に 対して固定されているカゝ、もしくは可動電極側基板 2および固定電極側基板 3の両方 に対して固定されていない。  [0059] The positional relationship between the gap stabilizing member 7 and the adhesive sheet 8 is the same as in the case of the capacitive sensor 1, and the vertical direction (the movable electrode side substrate 2 and the fixed electrode side substrate 3 are separated from each other). They are arranged so that they do not overlap in the direction of lamination. The gap stabilizing member 7 is bonded (fixed) only in the horizontal direction (direction orthogonal to the direction in which the movable electrode side substrate 2 and the fixed electrode side substrate 3 are laminated) by the adhesive sheet 8. The adhesive sheet 8 is fixed to both the movable electrode side substrate 2 and the fixed electrode side substrate 3, but the gap stabilizing member 7 is at least the movable electrode side substrate 2 or the fixed electrode side. It is fixed to one of the substrates 3 or is not fixed to both the movable electrode side substrate 2 and the fixed electrode side substrate 3.
[0060] 以上の構成によれば、ギャップ安定ィ匕部材 7と接着シート 8との接着面の面積が、ギ ヤップ安定ィ匕部材 7と接着シート 8とが並列に並んでいる構成の場合での接着面の面 積よりも広くなる。よって、ギャップ安定ィ匕部材 7を接着シート 8に対してより強く接着さ せておくことが可能になる。その結果、静電容量式センサ 11の構造をより安定に保つ ことが可能になる。  [0060] According to the above configuration, the area of the adhesive surface between the gap stabilizing member 7 and the adhesive sheet 8 is the case where the gap stabilizing member 7 and the adhesive sheet 8 are arranged in parallel. It is wider than the area of the adhesive surface. Therefore, the gap stabilizing member 7 can be more strongly bonded to the adhesive sheet 8. As a result, the structure of the capacitive sensor 11 can be kept more stable.
[0061] なお、本実施の形態では、ギャップ安定ィ匕部材 7と接着シート 8とのお互いに接する 面のそれぞれが複数の凹凸部からなる形状をしている構成を示したが、必ずしもこれ に限らない。例えば、一方を凹部としてもう一方を凸部とするような、それぞれが 1つ の凹部または凸部カもなる形状をしている構成であってもよい。ただし、複数の凹凸 部からなる形状をしている方がギャップ安定ィ匕部材 7と接着シート 8との接着面の面 積が広くなるため、静電容量式センサ 11の構造をより安定に保つことができる。  [0061] In the present embodiment, the configuration in which each of the surfaces of the gap stabilizing member 7 and the adhesive sheet 8 that are in contact with each other is formed of a plurality of uneven portions is shown. Not exclusively. For example, the configuration may be such that one is a concave portion and the other is a convex portion, each of which has a single concave portion or convex portion. However, since the area of the adhesive surface between the gap stabilizing member 7 and the adhesive sheet 8 is wider when the shape is composed of a plurality of concave and convex portions, the structure of the capacitive sensor 11 is kept more stable. be able to.
[0062] 次に、図 8の(a)および図 8の(b)を用いて本実施の形態における静電容量式セン サ 21のギャップ安定ィ匕部材 7および接着シート 8の形状の説明を行う。図 8の(a)は、 本実施の形態における静電容量式センサ 21の概略的構成を示す図であり、図 8の( b)は図 8の(a)における静電容量式センサ 21の D ' D切断面を A方向力も見た断面 図である。 Next, the shape of the gap stabilizing member 7 and the adhesive sheet 8 of the capacitive sensor 21 in the present embodiment will be described with reference to FIG. 8 (a) and FIG. 8 (b). Do. FIG. 8 (a) is a diagram showing a schematic configuration of the capacitive sensor 21 in the present embodiment, and FIG. 8 (b) is a diagram of the capacitive sensor 21 in FIG. 8 (a). Cross section of D'D cut surface with force in A direction FIG.
[0063] 本実施の形態における静電容量式センサ 21では、図 8の(b)に示すように、ギヤッ プ安定ィ匕部材 7は接着シート 8の周囲を取り囲むような形状になっている。そして、図 8の(a)および図 8の(b)に示すように、可動電極 5および固定電極 6に対してギヤッ プ安定ィ匕部材 7よりも近い位置に接着シート 8が配置されない構成になっている。  In the capacitive sensor 21 according to the present embodiment, the gap stabilizing collar member 7 has a shape surrounding the adhesive sheet 8 as shown in FIG. 8B. Then, as shown in FIGS. 8 (a) and 8 (b), the adhesive sheet 8 is not arranged at a position closer to the movable electrode 5 and the fixed electrode 6 than the gear stabilizing member 7 is. It has become.
[0064] また、ギャップ安定ィ匕部材 7と接着シート 8との位置関係は、静電容量式センサ 1の 場合と同様にお互いが上下方向(可動電極側基板 2と固定電極側基板 3とが積層さ れる方向)に重なりあわないように配置されている。そして、ギャップ安定ィ匕部材 7は 接着シート 8によって水平方向(可動電極側基板 2と固定電極側基板 3とが積層され る方向に対して直交する方向)でのみ接着(固定)されている。また、接着シート 8は、 可動電極側基板 2および固定電極側基板 3の両方に対して固定されて ヽるが、ギヤ ップ安定ィ匕部材 7は、少なくとも可動電極側基板 2または固定電極側基板 3の一方に 対して固定されているカゝ、もしくは可動電極側基板 2および固定電極側基板 3の両方 に対して固定されていない。  [0064] As in the case of the capacitance sensor 1, the positional relationship between the gap stabilizing member 7 and the adhesive sheet 8 is the vertical direction (the movable electrode side substrate 2 and the fixed electrode side substrate 3 are They are arranged so that they do not overlap in the direction of lamination. The gap stabilizing member 7 is bonded (fixed) only in the horizontal direction (direction orthogonal to the direction in which the movable electrode side substrate 2 and the fixed electrode side substrate 3 are laminated) by the adhesive sheet 8. The adhesive sheet 8 is fixed to both the movable electrode side substrate 2 and the fixed electrode side substrate 3, but the gap stabilizing member 7 is at least the movable electrode side substrate 2 or the fixed electrode side. It is fixed to one of the substrates 3 or is not fixed to both the movable electrode side substrate 2 and the fixed electrode side substrate 3.
[0065] 以上の構成によれば、ギャップ安定ィ匕部材 7と接着シート 8との接着面の面積が、ギ ヤップ安定ィ匕部材 7と接着シート 8とが並列に並んでいる構成の場合での接着面の面 積よりも広くなる。よって、ギャップ安定ィ匕部材 7を接着シート 8に対してより強く接着さ せておくことが可能になる。その結果、静電容量式センサ 21の構造をより安定に保つ ことが可能になる。  [0065] According to the above configuration, the area of the adhesive surface between the gap stabilizing member 7 and the adhesive sheet 8 is the case where the gap stabilizing member 7 and the adhesive sheet 8 are arranged in parallel. It is wider than the area of the adhesive surface. Therefore, the gap stabilizing member 7 can be more strongly bonded to the adhesive sheet 8. As a result, the structure of the capacitive sensor 21 can be kept more stable.
[0066] また、第 1の実施の形態および第 2の実施の形態では、ギャップ安定ィ匕部材 7と接 着シート 8とは、可動電極側基板 2と固定電極側基板 3との積層方向でお互いが重な り合わな 、ように配置されて 、るとともに、ギャップ安定ィ匕部材 7と接着シート 8とが上 記積層方向に対して直交する方向でのみ接着されている構成を示した力 必ずしも これに限らない。例えば、ギャップ安定ィ匕部材 7と接着シート 8とは、可動電極側基板 2と固定電極側基板 3との積層方向でお互いが重なりあってもよいし、ギャップ安定ィ匕 部材 7と接着シート 8とが上記積層方向に対して直交する方向以外の方向で接着さ れていてもよい。  In the first embodiment and the second embodiment, the gap stabilizing member 7 and the adhesive sheet 8 are arranged in the stacking direction of the movable electrode side substrate 2 and the fixed electrode side substrate 3. A force showing a configuration in which the gap stabilizing member 7 and the adhesive sheet 8 are bonded only in a direction perpendicular to the stacking direction. Not necessarily this. For example, the gap stabilization member 7 and the adhesive sheet 8 may overlap each other in the stacking direction of the movable electrode side substrate 2 and the fixed electrode side substrate 3, or the gap stabilization member 7 and the adhesive sheet 8. May be bonded in a direction other than the direction perpendicular to the stacking direction.
[0067] 以下に、図 9の(a)および図 9の(b)を用いて具体的な例を示す。図 9の(a)は、本 実施の形態における静電容量式センサ 31の概略的構成を示す図であり、図 9の (b) 本実施の形態における静電容量式センサ 41の概略的構成を示す図である。 [0067] Specific examples are shown below using (a) in FIG. 9 and (b) in FIG. Figure 9 (a) shows the book FIG. 10 is a diagram showing a schematic configuration of a capacitive sensor 31 in the embodiment, and FIG. 9 (b) is a diagram showing a schematic configuration of a capacitive sensor 41 in the present embodiment.
[0068] まず、図 9の(a)の静電容量式センサ 31では、上記積層方向でギャップ安定ィ匕部 材 7と接着シート 8との一部が重なり合つている。また、ギャップ安定ィ匕部材 7と接着シ ート 8との接着面が上記積層方向に対して斜めになって (傾 、て) V、る。  First, in the capacitive sensor 31 in FIG. 9A, a part of the gap stabilizing member 7 and the adhesive sheet 8 overlap each other in the stacking direction. Further, the adhesive surface between the gap stabilizing member 7 and the adhesive sheet 8 is inclined (inclined) with respect to the stacking direction.
[0069] また、図 9の(b)の静電容量式センサ 41でも、上記積層方向でギャップ安定ィ匕部材 7と接着シート 8との一部が重なり合つている。そして、静電容量式センサ 41では、ギ ヤップ安定ィ匕部材 7と接着シート 8との接着面が上記積層方向と上記積層方向に対し て直交する方向とに存在するように接着されて ヽる。  [0069] Also in the capacitive sensor 41 of Fig. 9B, the gap stabilizing member 7 and the adhesive sheet 8 partially overlap each other in the stacking direction. In the capacitive sensor 41, the adhesive surfaces of the gap stabilizing member 7 and the adhesive sheet 8 are bonded so as to exist in the stacking direction and the direction orthogonal to the stacking direction. .
[0070] 以上の構成であっても、可動電極側基板 2または固定電極側基板 3に対して積層 方向への物理量が加わっても、ギャップ安定ィ匕部材 7が配置されている領域では、可 動電極側基板 2および固定電極側基板 3の両方に接着されている場合よりも接着に よって生じる粘性の影響を小さく抑えることは可能である。し力しながら、静電容量式 センサ 31および静電容量式センサ 41の構成に比べて、静電容量式センサ 1、静電 容量式センサ 11および静電容量式センサの構成の方力 第 1の基板または第 2の基 板に対して積層方向への物理量が加わった場合の接着によって生じる粘性の影響 を小さく抑えることができる。これは、静電容量式センサ 1、静電容量式センサ 11およ び静電容量式センサの構成に比べて、静電容量式センサ 31および静電容量式セン サ 41の構成は、上記積層方向にギャップ安定ィ匕部材 7と接着シート 8との接着面が 存在する分の粘性の影響をより受けるためである。  [0070] Even with the above configuration, even if a physical quantity in the stacking direction is applied to the movable electrode side substrate 2 or the fixed electrode side substrate 3, it is possible in the region where the gap stabilizing member 7 is disposed. It is possible to suppress the influence of the viscosity caused by the adhesion to be smaller than when the adhesion is made to both the moving electrode side substrate 2 and the fixed electrode side substrate 3. However, compared with the configuration of the capacitance type sensor 31 and the capacitance type sensor 41, the force of the configuration of the capacitance type sensor 1, the capacitance type sensor 11 and the capacitance type sensor No. 1 The effect of viscosity caused by adhesion when a physical quantity in the stacking direction is applied to this substrate or the second substrate can be suppressed. This is because the configurations of the capacitive sensor 31 and the capacitive sensor 41 are different from those of the capacitive sensor 1, the capacitive sensor 11 and the capacitive sensor. This is because the gap stabilizing portion 7 and the adhesive sheet 8 in the direction are more affected by the viscosity of the adhesive surface.
[0071] 本発明によれば、ギャップ保持部材が配置されて 、る領域では、第 1の基板および 第 2の基板の両方に接着されている場合よりも接着によって生じる粘性の影響を小さ く抑えることが可能になる。さらに、可撓性を有するスぺーサに挟まれている第 1の電 極または第 2の電極周辺の領域で粘性の影響を小さく抑えることができるので、可撓 性を有する静電容量式センサの応答性およびヒステリシス特性の向上を行うことがで きる。したがって、可撓性を有するとともに、応答性およびヒステリシス特性により優れ た静電容量式センサを提供することを可能にするという効果を奏する。  [0071] According to the present invention, in the region where the gap holding member is disposed, the influence of the viscosity caused by adhesion is suppressed to be smaller than when the gap holding member is adhered to both the first substrate and the second substrate. It becomes possible. Furthermore, since the influence of viscosity can be reduced in the area around the first electrode or the second electrode sandwiched between the flexible spacers, the capacitive sensor having flexibility. Response and hysteresis characteristics can be improved. Therefore, there is an effect that it is possible to provide a capacitive sensor that has flexibility and is excellent in responsiveness and hysteresis characteristics.
[0072] 本発明の静電容量式センサは、上記課題を解決するために、第 1の電極が設けら れている第 1の基板と第 2の電極が設けられている第 2の基板とを備え、上記第 1の 電極と上記第 2の電極とが対向して配置されているとともに、上記第 1の電極と上記 第 2の電極との間にギャップをもたせるために、上記第 1の基板と上記第 2の基板との 間に少なくとも上記第 1の電極または上記第 2の電極のうちの一方を挟むように可撓 性を有するスぺーサが設けられて ヽる可撓性を有する静電容量式センサにぉ ヽて、 上記スぺーサは、上記第 1の基板と上記第 2の基板とに対して接着されている接着 部材と、少なくとも上記第 1の基板または上記第 2の基板の一方に対して接着されて Vヽな 、ギャップ保持部材とからなっており、上記スぺーサに挟まれて!/、る上記第 1の 電極または上記第 2の電極に対して、少なくとも上記ギャップ保持部材よりも近!、位 置に上記接着部材が配置されて 、な 、ことを特徴として 、る。 [0072] In order to solve the above problems, the electrostatic capacitance sensor of the present invention is provided with a first electrode. The first substrate and the second substrate on which the second electrode is provided, the first electrode and the second electrode are arranged to face each other, and the first electrode In order to provide a gap between the first electrode and the second electrode, at least one of the first electrode and the second electrode is provided between the first substrate and the second substrate. The spacer is provided with a flexible spacer so as to be sandwiched between the first substrate and the second substrate. A gap holding member that is bonded to at least one of the first substrate and the second substrate and is sandwiched between the spacers. At least the gap holding portion with respect to the first electrode or the second electrode. Near than! The above-mentioned adhesive member is disposed at a position, and is characterized by the above.
[0073] また、本発明の静電容量式センサは、上記課題を解決するために、第 1の電極が 設けられている第 1の基板と第 2の電極が設けられている第 2の基板とを備え、上記 第 1の電極と上記第 2の電極とが対向して配置されているとともに、上記第 1の電極と 上記第 2の電極との間にギャップをもたせるために、上記第 1の基板と上記第 2の基 板との間に少なくとも上記第 1の電極または上記第 2の電極のうちの一方を挟むよう に、可撓性を有するスぺーサが設けられている可撓性を有する静電容量式センサに おいて、上記スぺーサは、上記第 1の基板と上記第 2の基板とに対して接着されてい る接着部材と、少なくとも上記第 1の基板または上記第 2の基板の一方に対して、上 記第 1の基板および上記第 2の基板と接着部材との間の接着に働く接着力よりも弱い 接着力で接着されて!、るギャップ保持部材とからなっており、上記スぺーサに挟まれ て 、る上記第 1の電極または上記第 2の電極に対して、少なくとも上記ギャップ保持 部材よりも近 、位置に上記接着部材が配置されて 、な 、ことを特徴として 、る。  [0073] Further, in order to solve the above problems, the capacitive sensor of the present invention provides a first substrate provided with a first electrode and a second substrate provided with a second electrode. The first electrode and the second electrode are arranged to face each other, and the first electrode and the second electrode are provided with a gap between the first electrode and the second electrode. A flexible spacer is provided so that at least one of the first electrode and the second electrode is sandwiched between the substrate and the second substrate. In the capacitive sensor having the above, the spacer includes an adhesive member bonded to the first substrate and the second substrate, and at least the first substrate or the second substrate. Adhering to the first substrate and the second substrate and the adhesive member to one of the substrates The gap holding member is bonded with a weaker adhesive force than the first electrode or the second electrode sandwiched between the spacers. The adhesive member is disposed at a position nearer to the member.
[0074] また、本発明の静電容量式センサでは、上記接着部材と上記ギャップ保持部材と は、第 1の基板と第 2の基板との積層方向でお互いが重なり合わないように配置され て 、るとともに、上記接着部材と上記ギャップ保持部材とが上記積層方向に対して直 交する方向でのみ接着されて 、ることが好ま 、。  [0074] In the capacitive sensor of the present invention, the adhesive member and the gap holding member are arranged so as not to overlap each other in the stacking direction of the first substrate and the second substrate. In addition, it is preferable that the adhesive member and the gap holding member are bonded only in a direction perpendicular to the stacking direction.
[0075] これにより、接着部材とギャップ保持部材とは、第 1の基板と第 2の基板との積層方 向でお互 、が重なり合わな 、ように配置されて 、るとともに、接着部材とギャップ保持 部材とが積層方向に対して直交する方向でのみ接着されて 、る構成になって 、る。 つまり、第 1の基板または第 2の基板に対して積層方向への物理量が加わっても、ギ ヤップ保持部材と接着部材とは、積層方向に対して直交する方向でのみ接着されて いることになるので、粘性の影響をさらに小さく抑えることが可能になる。 Thereby, the adhesive member and the gap holding member are arranged so that they are not overlapped with each other in the stacking direction of the first substrate and the second substrate. Gap retention The member is bonded only in the direction orthogonal to the stacking direction. That is, even if a physical quantity in the stacking direction is applied to the first substrate or the second substrate, the gap holding member and the adhesive member are bonded only in the direction orthogonal to the stacking direction. Therefore, the influence of viscosity can be further reduced.
[0076] また、本発明の静電容量式センサでは、前記接着部材と前記安定化部材とは、お 互 、の接する面がそれぞれ凹凸状になって嵌合されて 、ることが好ま U、。  [0076] Further, in the capacitance type sensor of the present invention, it is preferable that the adhesive member and the stabilizing member are fitted to each other so that the surfaces in contact with each other are uneven. .
[0077] これにより、ギャップ保持部材と接着部材との接着面の面積が、ギャップ保持部材と 接着部材とが並列に並んでいる構成の場合での接着面の面積よりも広くなる。よって 、ギャップ保持部材を接着部材に対してより強く接着させることが可能になる。つまり 、静電容量式センサ中にギャップ保持部材をより強固に固定しておくことが可能にな る。従って、静電容量式センサの構造をより安定に保つことが可能になる。  Thereby, the area of the adhesive surface between the gap holding member and the adhesive member becomes larger than the area of the adhesive surface in the case where the gap holding member and the adhesive member are arranged in parallel. Therefore, the gap holding member can be more strongly bonded to the adhesive member. That is, the gap holding member can be more firmly fixed in the capacitive sensor. Therefore, the structure of the capacitive sensor can be kept more stable.
[0078] また、本発明の静電容量式センサでは、前記安定化部材は、前記接着部材の前記 積層方向以外の面を囲むように配置されて 、ることが好ま 、。  In the capacitive sensor of the present invention, it is preferable that the stabilizing member is disposed so as to surround a surface of the adhesive member other than the stacking direction.
[0079] これにより、ギャップ保持部材と接着部材との接着面の面積が、ギャップ保持部材と 接着部材とが並列に並んでいる構成の場合での接着面の面積よりも広くなる。よって 、ギャップ保持部材を接着部材に対してより強く接着させることが可能になる。つまり 、静電容量式センサ中にギャップ保持部材をより強固に固定しておくことが可能にな る。従って、静電容量式センサの構造をより安定に保つことが可能になる。  Thereby, the area of the adhesive surface between the gap holding member and the adhesive member becomes larger than the area of the adhesive surface in the case where the gap holding member and the adhesive member are arranged in parallel. Therefore, the gap holding member can be more strongly bonded to the adhesive member. That is, the gap holding member can be more firmly fixed in the capacitive sensor. Therefore, the structure of the capacitive sensor can be kept more stable.
[0080] また、本発明の静電容量式センサでは、前記ギャップ保持部材は、前記第 1の基板 と前記第 2の基板との、粘性の影響を示す指標としての貯蔵弾性率と損失弾性率と の比の値である損失正接の値が同一である場合には、上記第 1の基板および上記 第 2の基板の損失正接の値以下の損失正接の値を有する材質力 なり、上記第 1の 基板と上記第 2の基板との損失正接の値が同一でない場合には、少なくとも上記第 1 の基板または上記第 2の基板のうちの損失正接の値の大きい方の基板の損失正接 の値以下の損失正接の値を有する材質力 なって 、ることが好ま U、。  [0080] Further, in the capacitance type sensor of the present invention, the gap holding member has a storage elastic modulus and a loss elastic modulus as an index indicating the influence of viscosity between the first substrate and the second substrate. When the loss tangent value, which is the value of the ratio between and, is the same, the material force has a loss tangent value less than or equal to the loss tangent value of the first substrate and the second substrate. If the loss tangent value of the second substrate is not the same as that of the second substrate, at least the loss tangent value of the substrate having the larger loss tangent value of the first substrate or the second substrate. It is preferable that the material force has the following loss tangent value.
[0081] これにより、損失正接の値が少なくとも第 1の基板または第 2の基板以下の材料をギ ヤップ保持部材として用いることになる。少なくとも第 1の基板および第 2の基板自体 には接着部材よりも大きい接着力はないので、第 1の基板および第 2の基板自体の 損失正接の値は少なくとも接着部材よりも小さくなる。つまり、上記構成によれば、ギ ヤップ保持部材は、接着部材の損失正接よりも値の小さな損失正接の値を有すること になる。従って、接着部材のみを用いた場合よりも、応答遅れ、ヒステリシス、および 経時変化を改善することができる。 Thus, a material having a loss tangent value of at least the first substrate or the second substrate or less is used as the gap holding member. Since at least the first substrate and the second substrate itself do not have a larger adhesive force than the adhesive member, the first substrate and the second substrate itself The value of the loss tangent is at least smaller than that of the adhesive member. That is, according to the above configuration, the gap holding member has a loss tangent value that is smaller than the loss tangent of the adhesive member. Accordingly, response delay, hysteresis, and change with time can be improved as compared with the case where only the adhesive member is used.
[0082] また、本発明の静電容量式センサでは、前記ギャップ保持部材は、粘性の影響を 示す指標としての貯蔵弾性率と損失弾性率との比の値である損失正接の値が、前記 第 1の基板および前記第 2の基板の損失正接の値よりも小さい材質力 なっているこ とが好ましい。  In the capacitance type sensor of the present invention, the gap holding member has a loss tangent value that is a value of a ratio between a storage elastic modulus and a loss elastic modulus as an index indicating the influence of viscosity. It is preferable that the material force is smaller than the loss tangent value of the first substrate and the second substrate.
[0083] これにより、損失正接の値が少なくとも第 1の基板または第 2の基板よりも小さい材 料をギャップ保持部材として用いることになる。つまり、上記構成によれば、ギャップ 保持部材は、接着部材の損失正接よりも値の小さな損失正接の値を有することにな る。従って、接着部材のみを用いた場合よりも、応答遅れ、ヒステリシス、および経時 変化を改善することができる。  Accordingly, a material whose loss tangent is at least smaller than that of the first substrate or the second substrate is used as the gap holding member. That is, according to the above configuration, the gap holding member has a loss tangent value smaller than the loss tangent of the adhesive member. Accordingly, response delay, hysteresis, and change with time can be improved as compared with the case where only the adhesive member is used.
[0084] なお、本発明は、上述した各実施形態に限定されるものではなぐ請求項に示した 範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手 段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれ る。  It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and the technical means disclosed in each of the different embodiments is appropriately used. Embodiments obtained by combining are also included in the technical scope of the present invention.
産業上の利用の可能性  Industrial applicability
[0085] 以上のように、本発明の静電容量式センサは、可撓性を有するとともに、応答性お よびヒステリシス特性により優れている。したがって、本発明は可撓性を有する静電容 量式センサに関連する産業分野に好適に用いることができる。 [0085] As described above, the capacitive sensor of the present invention has flexibility and is excellent in responsiveness and hysteresis characteristics. Therefore, the present invention can be suitably used in an industrial field related to a capacitive sensor having flexibility.

Claims

請求の範囲 The scope of the claims
[1] 第 1の電極が設けられている第 1の基板と第 2の電極が設けられている第 2の基板と を備え、上記第 1の電極と上記第 2の電極とが対向して配置されているとともに、上記 第 1の電極と上記第 2の電極との間にギャップをもたせるために、上記第 1の基板と上 記第 2の基板との間に少なくとも上記第 1の電極または上記第 2の電極のうちの一方 を挟むように、可撓性を有するスぺーサが設けられて!/ヽる可撓性を有する静電容量 式センサにおいて、  [1] A first substrate provided with a first electrode and a second substrate provided with a second electrode, wherein the first electrode and the second electrode are opposed to each other. And at least the first electrode or the second substrate between the first substrate and the second substrate in order to provide a gap between the first electrode and the second electrode. In a capacitive sensor that has a flexible spacer provided so as to sandwich one of the second electrodes!
上記スぺーサは、上記第 1の基板と上記第 2の基板とに対して接着されている接着 部材と、少なくとも上記第 1の基板または上記第 2の基板の一方に対して接着されて Vヽな 、ギャップ保持部材とカもなつており、  The spacer is bonded to at least one of the first substrate and the second substrate by bonding an adhesive member bonded to the first substrate and the second substrate. In addition, there are gap holding members and capacities,
上記スぺーサに挟まれている上記第 1の電極または上記第 2の電極に対して、少な くとも上記ギャップ保持部材よりも近 ヽ位置に上記接着部材が配置されて ヽな ヽこと を特徴とする静電容量式センサ。  The adhesive member is disposed at a position closer to the first electrode or the second electrode sandwiched between the spacers than the gap holding member. Capacitance type sensor.
[2] 第 1の電極が設けられて 、る第 1の基板と第 2の電極が設けられて 、る第 2の基板と を備え、上記第 1の電極と上記第 2の電極とが対向して配置されているとともに、上記 第 1の電極と上記第 2の電極との間にギャップをもたせるために、上記第 1の基板と上 記第 2の基板との間に少なくとも上記第 1の電極または上記第 2の電極のうちの一方 を挟むように、可撓性を有するスぺーサが設けられて!/ヽる可撓性を有する静電容量 式センサにおいて、 [2] The first electrode is provided, and the first substrate and the second electrode are provided, and the second substrate is provided, and the first electrode and the second electrode are opposed to each other. And at least the first substrate between the first substrate and the second substrate in order to provide a gap between the first electrode and the second electrode. In a capacitive sensor that has a flexible spacer so as to sandwich one of the electrode and the second electrode!
上記スぺーサは、上記第 1の基板と上記第 2の基板とに対して接着されている接着 部材と、少なくとも上記第 1の基板または上記第 2の基板の一方に対して、上記第 1 の基板および上記第 2の基板と接着部材との間の接着に働く接着力よりも弱い接着 力で接着されているギャップ保持部材とからなっており、  The spacer includes the adhesive member bonded to the first substrate and the second substrate, and the first substrate to at least one of the first substrate and the second substrate. And a gap holding member that is bonded with an adhesive force that is weaker than the adhesive force that acts on the adhesion between the second substrate and the adhesive member,
上記スぺーサに挟まれている上記第 1の電極または上記第 2の電極に対して、少な くとも上記ギャップ保持部材よりも近 ヽ位置に上記接着部材が配置されて ヽな ヽこと を特徴とする静電容量式センサ。  The adhesive member is disposed at a position closer to the first electrode or the second electrode sandwiched between the spacers than the gap holding member. Capacitance type sensor.
[3] 上記接着部材と上記ギャップ保持部材とは、第 1の基板と第 2の基板との積層方向 でお互 、が重なり合わな 、ように配置されて 、るとともに、上記接着部材と上記ギヤッ プ保持部材とが上 ra層方向に対して直交する方向でのみ接着されていることを特 徴とする請求項 1または 2に記載の静電容量式センサ。 [3] The adhesive member and the gap holding member are arranged so that they are not overlapped with each other in the stacking direction of the first substrate and the second substrate. Giat 3. The capacitance type sensor according to claim 1, wherein the holding member is bonded only in a direction orthogonal to the upper ra layer direction.
[4] 前記接着部材と giilSギヤップ保持 とは、 お互いの接する面がそれぞれ凹凸状に. なつて嵌合されていることを特徴とする請求項 1または 2に記載の静電容量式セン[4] The electrostatic capacitance type sensor according to claim 1 or 2, wherein the adhesive member and the giilS gear-up holding are fitted with each other in contact with each other in an uneven shape.
' サ。 'Sa.
[5] 前記ギヤップ保持部材は、 前記接着部材の前記積層方向以外の面を囲むように配置 されていることを特徴とする請求項 1または 2に記載の静¾¾量式センサ。  [5] The static amount sensor according to claim 1 or 2, wherein the gear-up holding member is disposed so as to surround a surface of the adhesive member other than the stacking direction.
[6] 前記ギャップ保持 は、 前記第 1の ¾Sと前記第 2の基板との、 粘性の影響を示 す指 としての貯蔵弾性率と損失弾性率との比の値である損失正接の値が同一で ある場合には、 上記第 1の基板および上記第 2の基板の損失正接の値以下の損失 ' 正接の値を有する材質からなり、 上記第 1の S¾と上記第 2の基板との損失正接の値 が同一でない には、 少なぐとも上記第 Iの基板または上記第 2の基板のうちの損 失正接の値の大きレ、方の基板の損失正接の値以下の損失正接の値を有する材質 からなつていることを特徴とす,る請求項 1または 2に記載の静^量式センサ。  [6] The gap retention has a loss tangent value that is a value of a ratio between a storage elastic modulus and a loss elastic modulus as a finger indicating the influence of viscosity between the first ¾S and the second substrate. If they are the same, the first substrate and the second substrate are made of a material having a loss tangent value equal to or less than the loss tangent value, and the loss between the first S¾ and the second substrate If the tangent values are not the same, at least the loss tangent value of the I-th substrate or the second substrate, or the loss tangent value less than or equal to the loss tangent value of the other substrate must be set. The static sensor according to claim 1 or 2, characterized by comprising a material having the same.
[7] 前記ギャップ保持部材は、 粘性の影響を示 «標としての貯蔵弾性率と損失弾性 率との比の艋である損失正接の値が、 前記第 1の基板および前記第 2の基板の損失 正接の値よりも小さレ、材質からなっていることを特徵とする請求項 1または 2に記載 の静電容量式センサ。 ' .  [7] The gap holding member has a loss tangent value, which is a power of a ratio between a storage elastic modulus and a loss elastic modulus, which indicates an influence of viscosity, as a sign of the first substrate and the second substrate. The capacitance type sensor according to claim 1 or 2, wherein the sensor is made of a material smaller than a loss tangent value. '.
訂正された用紙 Corrected paper
PCT/JP2007/059671 2006-05-25 2007-05-10 Capacitive sensor WO2007138829A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006145952A JP2007315921A (en) 2006-05-25 2006-05-25 Electrostatic capacitance sensor
JP2006-145952 2006-05-25

Publications (1)

Publication Number Publication Date
WO2007138829A1 true WO2007138829A1 (en) 2007-12-06

Family

ID=38778349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059671 WO2007138829A1 (en) 2006-05-25 2007-05-10 Capacitive sensor

Country Status (2)

Country Link
JP (1) JP2007315921A (en)
WO (1) WO2007138829A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390732A (en) * 2014-11-21 2015-03-04 陕西科技大学 Device and method for detecting outside force through liquid crystal box
CN114839398A (en) * 2022-04-27 2022-08-02 东南大学 Capacitive flexible acceleration sensor and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5634093B2 (en) * 2010-03-29 2014-12-03 株式会社ミツトヨ Capacitance sensor
JP6812953B2 (en) * 2017-11-15 2021-01-13 オムロン株式会社 Capacitive pressure sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0159838U (en) * 1987-10-13 1989-04-14
JP2003344195A (en) * 2002-05-31 2003-12-03 Sanyo Electric Co Ltd Pressure distribution sensor and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0159838U (en) * 1987-10-13 1989-04-14
JP2003344195A (en) * 2002-05-31 2003-12-03 Sanyo Electric Co Ltd Pressure distribution sensor and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390732A (en) * 2014-11-21 2015-03-04 陕西科技大学 Device and method for detecting outside force through liquid crystal box
CN114839398A (en) * 2022-04-27 2022-08-02 东南大学 Capacitive flexible acceleration sensor and preparation method thereof

Also Published As

Publication number Publication date
JP2007315921A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
US8406438B2 (en) Device and method for the excitation and/or damping and/or detection or structural oscillations of a plate-shaped device using a piezoelectric strip device
US7798010B2 (en) Sensor geometry for improved package stress isolation
JP5111071B2 (en) Piezoelectric sensor
CN108291796B (en) Piezoelectric deflection sensor and detection device
JP2007127607A (en) Sensor block
US20060049506A1 (en) Capacitance type semiconductor sensor
WO2007138829A1 (en) Capacitive sensor
JP2003021647A (en) Electronic device
WO2017082104A1 (en) Piezoelectric deflection sensor
WO2016185813A1 (en) Multi-axis tactile sensor and method for manufacturing multi-axis tactile sensor
JP2002350260A (en) Semiconductor pressure sensor
JP5845447B2 (en) Acceleration sensor
JP2009294019A (en) Acceleration sensor
KR101573367B1 (en) Piezoresistive typed ceramic pressure sensor
WO2017132968A1 (en) Pressure sensing device and electronic apparatus having same
WO2021053977A1 (en) Pressure sensor
CN115727979A (en) Capacitive pressure sensor device
JP4957414B2 (en) Capacitive semiconductor acceleration sensor
JP2007183147A (en) Vibrating element and angular velocity sensor using the same
JP4303706B2 (en) Piezoelectric acceleration sensor
JPH06291334A (en) Acceleration sensor
US20080257045A1 (en) Sensor device for detecting physical quantity
CN107340866B (en) Display panel, display device and acceleration detection method
JP2002267684A (en) Semiconductor-type dynamic quantity sensor
JP3239709B2 (en) Acceleration sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743106

Country of ref document: EP

Kind code of ref document: A1