WO2007135957A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2007135957A1
WO2007135957A1 PCT/JP2007/060151 JP2007060151W WO2007135957A1 WO 2007135957 A1 WO2007135957 A1 WO 2007135957A1 JP 2007060151 W JP2007060151 W JP 2007060151W WO 2007135957 A1 WO2007135957 A1 WO 2007135957A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
temperature
heat
refrigerant
refrigeration
Prior art date
Application number
PCT/JP2007/060151
Other languages
French (fr)
Japanese (ja)
Inventor
Satoru Sakae
Toshiaki Mukaidani
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP07743586A priority Critical patent/EP2019273A1/en
Priority to US12/301,214 priority patent/US20090188276A1/en
Priority to AU2007252631A priority patent/AU2007252631A1/en
Publication of WO2007135957A1 publication Critical patent/WO2007135957A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices

Definitions

  • the present invention relates to a refrigeration apparatus including a refrigerant circuit that performs a vapor compression refrigeration cycle, and particularly relates to a suction pressure sensor mounting structure for measuring a suction pressure of a compression mechanism.
  • Patent Document 1 a refrigeration apparatus that includes a refrigerant circuit that performs a refrigeration cycle and that performs refrigeration or freezing in a warehouse is known (for example, Patent Document 1).
  • a refrigeration cooling heat exchanger In the refrigeration apparatus of Patent Document 1, a refrigeration cooling heat exchanger, a low-stage compressor, a high-stage compressor, an outdoor heat exchanger, and a refrigeration expansion valve are sequentially connected.
  • the refrigerant compressed in two stages by the low-stage compressor and the high-stage compressor dissipates heat in the outdoor heat exchanger to be condensed.
  • the liquefied refrigerant is expanded by the refrigeration expansion valve and flows through the refrigeration cooling heat exchanger, absorbs heat from the internal air, evaporates at ⁇ 30 ° C., and cools the internal temperature to ⁇ 20 ° C. . Then, the evaporated refrigerant is again sucked into the low-stage compressor, and thereafter this circulation is repeated.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-353996
  • suction pressure sensors for measuring the suction pressure of the compressors are provided in the suction pipes of the low-stage and high-stage compressors.
  • a narrow tube (c) is connected to the suction pipe (a) of the compressor, and a pressure sensor (b) is connected to the end of the thin pipe (c).
  • a male screw for connection is formed on the outer peripheral surface.
  • the pressure sensor (b) includes a connection portion (d) having a female screw formed on the inner peripheral surface, and the female screw of the connection portion (d) is screwed into the male screw of the thin tube (c). Connected to the suction pipe (a).
  • the present invention has been made in view of the strong point, and in a refrigeration apparatus having a suction pressure sensor for measuring the suction pressure of the compression mechanism, improves workability when the pressure sensor is attached and replaced. It is an object to improve the reliability of the pressure sensor.
  • a first invention includes a refrigerant circuit (10) in which an evaporator (16, 17), a compression mechanism (11), a condenser (13), and an expansion mechanism (15a, 15b) are sequentially connected.
  • the refrigeration apparatus includes a suction pressure sensor (25) for measuring the suction pressure of the compression mechanism (11), the suction pressure sensor (25) being a suction device of the compression mechanism (11).
  • the pipe (61) is connected via an endothermic pipe (90) for making the temperature of the connection part (25b) of the suction pressure sensor (25) higher than the temperature of the suction pipe (61).
  • the set temperature of the evaporator (16, 17) is low (0 ° C or lower), a low-temperature refrigerant of 0 ° C or lower also flows through the suction pipe (61) of the compressor mechanism (11). Therefore, according to the first aspect of the present invention, by attaching the pressure sensor (25) via the heat absorption pipe (90), the cold heat of the refrigerant flowing through the suction pipe (61) is converted to the connection part ( 25b) and the heat absorption pipe (90) absorbs heat from ambient air, etc.
  • the connection (25b) of the sensor (25) is set to a temperature higher than 0 ° C to prevent freezing of the connection (25b).
  • a second invention is the heat absorption pipe (90) according to the first invention, wherein the temperature of the connection part (25b) of the suction pressure sensor (25) depends on the ambient temperature. ) It is formed in a length that raises the temperature further.
  • the heat absorption pipe (90) absorbs heat from the surrounding air, and gradually rises from the suction pipe (61) to the connection portion (25b) of the suction pressure sensor (25). Warm the connection part (25b) of the suction pressure sensor (25) to a temperature higher than 0 ° C.
  • the minimum length of the endothermic pipe (90) is a predetermined set length that increases as the evaporation temperature of the evaporator (16, 17) decreases. Is set.
  • the temperature of the refrigerant flowing through the suction pipe (61) decreases. Therefore, by increasing the minimum length of the heat absorption pipe (90) as the evaporation temperature of the evaporator (16, 17) decreases, as the temperature of the refrigerant flowing through the suction pipe (61) decreases, This cold heat of the refrigerant is made difficult to be transmitted to the connection part (25b) of the suction pressure sensor (25). On the other hand, by increasing the area of the endothermic pipe (90), the endothermic amount of heat absorbed by the endothermic pipe (90) is increased.
  • the heat absorption pipe (90) is connected to the high pressure side pipe (64) of the refrigerant circuit (10) by a heat transfer member (91). ) Is attached through.
  • the heat of the high-pressure side pipe (64) is transferred through the heat transfer member (91), thereby increasing the heat absorption amount of the heat-absorbing pipe (90).
  • the connection (25b) of the pressure sensor (25) is higher than 0 ° C and the temperature.
  • the high-pressure side pipe (64) in the fourth aspect of the invention is a pipe through which the refrigerant flowing through the suction pipe (61) flows at a pressure higher than 0 ° C and flows through the refrigerant! Uh.
  • the high-pressure side pipe (64) is the discharge pipe (64) of the compression mechanism (11).
  • the heat absorption amount received by the heat absorption pipe (90) from the high pressure side pipe (64) via the heat transfer member (91) increases as the temperature of the high pressure side pipe (64) increases. Therefore, in the fifth aspect of the present invention, the heat absorption pipe (90) is disposed via the discharge pipe (64) and the heat transfer member (91) of the high-temperature compression mechanism (11). By connecting, the endothermic amount of the endothermic pipe (90) is surely increased.
  • the heat absorption pipe (90) makes it difficult for cold heat of the refrigerant flowing through the suction pipe (61) to be transmitted to the connection part (25b) of the suction pressure sensor (25).
  • the heat absorption pipe (90) can absorb heat from the surrounding air.
  • the connection part (25b) of the suction pressure sensor (25) is The temperature can be higher than 0 ° C.
  • freezing damage to the connection portion (25b) of the suction pressure sensor (25) can be prevented, and the reliability of the suction pressure sensor (25) is improved.
  • the endothermic pipe (90) is connected to the inlet pipe (61) from the inlet pipe (61) depending on the temperature of the connecting portion (25b) of the inlet pressure sensor (25).
  • the heat absorption pipe (90) absorbs the surrounding aerodynamic force because it is formed to rise in temperature, and the heat absorption pipe (90) is connected from the suction pipe (61) to the connection part of the suction pressure sensor (25) ( The temperature can be gradually raised over 25b).
  • the connection part (25b) of the suction pressure sensor (25) can be set to a temperature higher than 0 ° C.
  • the minimum length of the endothermic pipe (90) is set to the evaporator.
  • connection part (25b) of the suction pressure sensor (25) can be surely set to a temperature higher than 0 ° C.
  • the heat absorption pipe (90) absorbs the heat of the high pressure side pipe (64) of the refrigerant circuit (10) via the heat transfer member (91). Therefore, the endothermic amount of the endothermic pipe (90) can be increased. As a result, the suction pressure sensor (25) The connection (25b) can be brought to a temperature higher than 0 ° C.
  • the heat absorption pipe (90) can absorb the heat of the discharge pipe (64) of the compression mechanism (11) via the heat transfer member (91). Therefore, since the discharge pipe (64) of the compression mechanism (11) is at a high temperature, the heat absorption amount of the heat absorption pipe (90) can be reliably increased. As a result, the connection part (25b) of the suction pressure sensor (25) can be surely brought to a temperature higher than 0 ° C.
  • FIG. 1 is a piping system diagram showing a refrigerant circuit of a refrigeration apparatus according to an embodiment.
  • FIG. 2 is a schematic perspective view showing a suction pressure sensor mounting structure according to the embodiment.
  • FIG. 3 is a relationship diagram showing a relationship between the evaporation temperature of the refrigeration heat exchanger according to the embodiment and the length of the endothermic pipe.
  • Fig. 4 is a piping system diagram showing a refrigerant circulation direction during the cooling operation of the refrigeration apparatus according to the embodiment.
  • FIG. 5 is a schematic configuration diagram showing a conventional suction pressure sensor mounting structure. Explanation of symbols
  • the embodiment of the present invention is a refrigeration apparatus (1) for cooling a cooling chamber, comprising an outdoor unit (2), a refrigeration unit (3), and a controller (100). ing.
  • the outdoor unit (2) is installed outdoors, while the refrigeration unit (3) is installed in a cooling room.
  • the refrigeration apparatus (1) is provided with an outdoor circuit (20) in the outdoor unit (2), and a refrigerator internal circuit (30) in the refrigeration unit (3). ing.
  • the gas end side of the outdoor circuit (20) and the gas end side of the refrigerator internal circuit (30) are connected by a gas side communication pipe (22), while the outdoor circuit ( The liquid end side of 20) and the liquid end side of the refrigerator internal circuit (30) are connected by a liquid side connecting pipe (21) to constitute a refrigerant circuit (10) of a vapor compression refrigeration cycle.
  • the outdoor circuit (20) of the outdoor unit (2) includes a compressor (11), an outdoor heat exchanger (13), a receiver (14), an outdoor expansion valve (45), a refrigerant heat exchanger ⁇ (50)
  • a branch expansion valve (46) is provided.
  • the outdoor circuit (20) is provided with a four-way switching valve (12), a liquid side closing valve (53), and a gas side closing valve (54).
  • one end of the liquid side connecting pipe (21) is connected to the liquid side closing valve (53), and one end of the gas side connecting pipe (22) is connected to the gas side closing valve (54).
  • One end is connected to each other!
  • the compressor (11) is a scroll compressor, and is configured such that the operation capacity is variable by inverter control.
  • One end of the suction pipe (61) is connected to the suction side of the compressor (11), and the other end of the suction pipe (61) is connected to the four-way switching valve (12).
  • One end of a discharge pipe (64) is connected to the discharge side of the compressor (11), and the other end of the discharge pipe (64) is connected to the four-way switching valve (12).
  • the outdoor heat exchange (13) is a cross fin type fin 'and' tube type heat exchange.
  • the first liquid pipe (81) is provided with a check valve (CV-1) that allows only the refrigerant to flow from the outdoor heat exchanger (13) to the receiver (14). At the bottom of the receiver (14) One end of the second liquid pipe (82) is connected.
  • the refrigerant heat exchanger (50) is a plate heat exchanger that exchanges heat between the refrigerant and the refrigerant.
  • the other end of the second liquid pipe (82) is connected to the inlet side of the first flow path (50a) of the refrigerant heat exchanger (50), and the outlet side of the first flow path (50a) is connected to the first flow path (50a).
  • One end of the three-liquid pipe (83) is connected.
  • the other end of the third liquid pipe (83) is connected to one end of the liquid side connecting pipe (21) via the liquid side closing valve (53).
  • the third liquid pipe (83) is provided with a check valve (CV-2) that allows only the flow of directional refrigerant to the first flow path (50a) force liquid side shut-off valve (53),
  • the third liquid pipe (83) is provided with a check valve (CV-2) that allows only the flow of directional refrigerant to the first flow path (50
  • branch liquid pipe (84) One end of the branch liquid pipe (84) is connected to the third liquid pipe (83) upstream of the check valve (CV-2), and the other end of the branch liquid pipe (84) is connected to the third liquid pipe (83).
  • the refrigerant heat exchanger (50) is connected to the inlet side of the second flow path (50b).
  • the branch liquid pipe (84) is provided with a branch expansion valve (46).
  • the branch expansion valve (46) is an electronic expansion valve whose opening degree is adjustable.
  • the outlet side of the second flow path (50b) of the refrigerant heat exchanger (50) is connected to one end of an injection pipe (85).
  • the other end of the injection pipe (85) is connected between the four-way switching valve (12) and the compressor (11) in the suction pipe (61).
  • a fourth liquid pipe (88) is connected between the check valve (CV-2) and the liquid side stop valve (53).
  • the other end of the fourth liquid pipe (88) is connected between the check valve (CV-1) and the receiver (14) in the first liquid pipe (81).
  • the fourth liquid pipe (88) is provided with a check valve (CV-3) that allows only the flow of the refrigerant directed from the third liquid pipe (83) to the receiver (14).
  • One end of a fifth liquid pipe (89) is connected to the branch liquid pipe (84) between the third liquid pipe (83) and the branch expansion valve (46).
  • the other end of the pipe (89) is connected between the other end of the outdoor heat exchanger (13) in the first liquid pipe (81) and the check valve (CV-1).
  • the fifth liquid pipe (89) is provided with an outdoor expansion valve (45).
  • the first port is at the discharge pipe (64), the second port is at the suction pipe (61), and the third port is at one end of the outdoor heat exchange (13),
  • the 4th port is connected to each gas side shutoff valve (54).
  • the four-way selector valve (12) is in a first state (actually shown in FIG. 1) in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other. Switch between the first port and the fourth port and the second port and the third port (shown in broken lines in Fig. 1). It is configured to be possible.
  • the outdoor circuit (20) includes an oil separator (70) and an oil return pipe (71).
  • the oil separator (70) is provided in the discharge pipe (64) and separates the discharge gas power refrigerating machine oil of the compressor (11).
  • One end of the first oil return pipe (71) is connected to the oil separator (70), and the other end of the first oil return pipe (71) is connected to the injection pipe (85) of the suction pipe (61). It is connected between the connection part and the compressor (11).
  • the oil return pipe (71) is provided with a capillary tube (72) for adjusting the flow rate of the refrigerating machine oil.
  • the suction pipe (61) of the compressor (11) has a suction temperature sensor (24) and a connection between the connection of the injection pipe (85) and the connection of the oil return pipe (71).
  • a suction pressure sensor (25) is provided in order.
  • the suction pressure sensor (25) is connected to the suction pipe (61) via a heat absorption pipe (90) as a feature of the present invention.
  • a discharge pressure sensor (23) and a discharge temperature sensor (19) are provided on the discharge side of the compressor (11).
  • a temperature sensor (51) is provided on the outlet side of the first flow path (50a) of the refrigerant heat exchanger (50).
  • the outdoor unit (2) is provided with an outdoor air temperature sensor (13a) and an outdoor fan (13f). Outdoor air is sent to the outdoor heat exchanger (13) by this outdoor fan (13f).
  • the refrigerator internal circuit (30) of the refrigeration unit (3) is provided with two refrigeration heat exchangers (16, 17) and two drain pan heaters (26, 27).
  • Each of the refrigerated heat exchanges ⁇ (16, 17) is the same cross fin type fin 'and' tube type heat exchange ⁇ , and heat exchange is performed between the refrigerant and the air in the cooling chamber. It is configured in the evaporator.
  • One end of each refrigeration heat exchanger (16, 17) is connected to each refrigeration expansion valve (15a, 15b) via a pipe.
  • one end of each gas side branch pipe (22a, 22b) is connected to the other end of each of the refrigeration heat exchangers (16, 17).
  • the other ends of (22a, 22b) join together and are connected to the other end of the gas side connecting pipe (22).
  • Each of the refrigeration expansion valves (15a, 15b) is an electronic expansion valve configured to be adjustable in opening, and is configured as an expansion mechanism.
  • Each refrigeration heat exchanger (16, 17) is provided with a first refrigerant temperature sensor (16b, 17b), and the other refrigeration heat exchanger (16, 17) has a second refrigerant at the other end.
  • Temperature sensors (18a, 18b) are respectively provided.
  • the first refrigerant temperature sensors (16b, 17b) measure the evaporation temperature of the refrigerant in the refrigeration heat exchanger (16, 17).
  • the refrigeration expansion valve (15a, 15b) has a refrigerant evaporating temperature at which the measured temperature of the second refrigerant temperature sensor (18a, 18b) is measured by the first refrigerant temperature sensor (16b, 17b).
  • the opening degree is adjusted so as to be higher than a predetermined temperature (for example, 5 ° C.).
  • the drain pan heaters (26, 27) are not shown in the figure, and are disposed in the drain pan, and prevent the drain pan from forming frost and generating ice by flowing a high-temperature and high-pressure refrigerant and heating the drain pan. It is.
  • One end of each drain pan heater (26, 27) is connected to one end of each liquid side branch pipe (21a, 21b), and the other end of each liquid side branch pipe (21a, 21b) joins each other. It is connected to the other end of the liquid side communication pipe (21).
  • the other end of the drain pan heater (26, 27) is connected to one end of the refrigeration expansion valve (15a, 15b).
  • the refrigeration unit (3) is provided with cooling room temperature sensors (16a, 16b) and cooling room fans (16f, 17f). Air in the cooling chamber is sent to the refrigeration heat exchangers (16, 17) by the fans (16f, 17f) in the cooling chamber.
  • the controller (100) performs switching and opening adjustment of various valves provided in the refrigerant circuit (10) to control a cooling operation operation for maintaining the cooling chamber at a set temperature, and for controlling the cooling chamber.
  • the defrosting operation is controlled.
  • the suction pressure sensor (25) is connected to the suction pipe (61) of the compressor (11) via the heat absorption pipe (90) as shown in FIGS. Furthermore, the heat absorption pipe (90) is connected to the discharge pipe (64) of the compressor (11) by a heat transfer member (91).
  • the heat absorption pipe (90) is for making the temperature of the connection part (25b) of the suction pressure sensor (25) higher than the temperature of the suction pipe (61).
  • one end of the endothermic pipe (90) is connected to the middle of the suction pipe (61) of the compressor (11).
  • the heat-absorbing pipe (90) is formed with a pipe diameter thinner than that of the suction pipe (61) and a length of 20 cm, and is bent four times to be compact. Further, a male screw (not shown) is formed on the outer periphery of the other end of the heat absorption pipe (90).
  • the suction pressure sensor (25) includes a sensor body (25a) and a connection portion (25b), and a female screw (not shown) is formed on the inner peripheral surface of the connection portion (25b).
  • the suction pressure sensor (25) is attached to the heat absorbing pipe (90) by screwing the female screw of the connecting portion (25b) with the male screw at the other end of the heat absorbing pipe (90). ing.
  • an L-shaped port tube (90a) having a gauge port (26) is connected to the other end of the heat absorption pipe (90).
  • the heat transfer member (91) is formed in a plate shape having an L-shaped cross section.
  • the heat transfer member (91) in the lateral direction is fixed to the downstream side of the oil separator (70) in the discharge pipe (64), while the other end is on the other end side of the heat absorption pipe (90) ( It is fixed to the connection part (25b) of the suction pressure sensor (25).
  • the lower end side of the heat transfer member (91) is fixed to the port thin tube (90a).
  • the heat transfer member (91) also has a function as a support member that supports the heat absorption pipe (90).
  • Fig. 3 shows the evaporating temperature of the refrigerated heat exchanger (16, 17) and the length of the endothermic pipe (90) at which the connection part (25b) of the suction pressure sensor (25) is 10 ° C. It is a figure which shows a relationship.
  • pipe structure A is a structure in which the heat absorption pipe (90) is not connected by the discharge pipe (64) of the compressor (11) and the heat transfer member (91).
  • Heat transfer pipe (90) and discharge pipe (64) Show the structure connected by member (91)!
  • the length of the endothermic pipe (90) at which the temperature of the connection part (25b) of the suction pressure sensor (25) is 10 ° C is the evaporation of the refrigeration heat exchange (16, 17).
  • the temperature was 20cm at -10 ° C, 48cm at -30 ° C, and 57cm at -40 ° C. This is because the temperature of the refrigerant flowing through the suction pipe (61) decreases as the evaporation temperature of the refrigerated heat exchanger (16, 17) decreases, so the cold heat is used to connect the connection part (25b) of the suction pressure sensor (25). This is because it is necessary to increase the area of the heat absorption pipe (90) and increase the amount of heat absorbed by the heat absorption pipe (90) from the surrounding air.
  • the length of the endothermic pipe (90) at which the temperature of the connection part (25b) of the suction pressure sensor (25) is 10 ° C is refrigerated heat exchange (16, 17 ) Is 10cm at 10 ° C, 25cm at 30 ° C, and 32cm at 40 ° C.
  • the length needs to be increased as the evaporation temperature decreases.
  • the length can be shortened compared to A. This is because the heat absorption pipe (90) can absorb heat from the discharge pipe (64) of the high-temperature compressor (11) via the heat transfer member (91), and therefore absorbs heat only from the surrounding air. This is because the endothermic amount of the endothermic pipe (90) can be increased with certainty.
  • the temperature of the connection part (25b) of the suction pressure sensor (25) may be higher than at least 0 degrees so as not to freeze the connection part (25b).
  • the length to be considered was examined. This is because if the length of the endothermic pipe (90) is set to a length where the temperature of the connection (25b) is higher than 0 ° C, the evaporation temperature of the refrigeration heat exchanger (16, 17) will be This is because the temperature of the connecting part (25b) can be surely raised above 0 ° C even if it temporarily falls due to fluctuations in the cooling load.
  • the minimum length of the heat absorption pipe (90) was set to the length shown in FIG.
  • the evaporation temperature of the refrigeration heat exchanger (16, 17) is
  • the endothermic pipe (90) needs to be 10cm or more in piping structure B. Therefore, the endothermic pipe (90) is formed to a length of 20 cm, which is an arbitrary length of 10 cm or more.
  • the four-way selector valve (12) of the outdoor circuit (20) is set to the first state by the control of the controller (100).
  • the outdoor expansion valve (45) is fully closed.
  • the compressor (11) is operated, the refrigeration expansion valves (15a, 15b) and the branch expansion valve (46) are appropriately controlled in opening degree, and the refrigerant circulates in the direction indicated by the solid line arrow in FIG. .
  • the set temperature of the cooling chamber in this cooling operation is, for example, 2 ° C.
  • the refrigerant discharged from the compressor (11) is sent from the discharge pipe (64) to the outdoor heat exchanger (13) through the four-way switching valve (12).
  • the outdoor heat exchanger (13) the refrigerant dissipates heat to the outdoor air and condenses.
  • the refrigerant condensed in the outdoor heat exchanger (13) flows through the first liquid pipe (81), passes through the receiver (14), flows into the second liquid pipe (82), and enters the refrigerant heat exchanger (50 ) In the first flow path (50a). .
  • the liquid refrigerant that has flowed through the first flow path (50a) flows through the third liquid pipe (83), and a part of the refrigerant is used as a branching refrigerant as shown by the broken line arrow in FIG. , Is decompressed by the branch expansion valve (46), and flows into the second flow path (50b) of the refrigerant heat exchanger (50).
  • the liquid refrigerant flowing through the first flow path (50a) exchanges heat with the branched refrigerant flowing through the second flow path (50b) .
  • the third liquid pipe ( 83) flows through the liquid side connecting pipe (21) via the liquid side shut-off valve (53) and flows into the refrigerator circuit (30).
  • the branched liquid refrigerant in the second flow path (50b) evaporates and is indicated to the suction pipe (61) of the compressor (11) through the instruction pipe (85).
  • the liquid refrigerant power at 15 ° C is diverted to the liquid side branch pipes (21a, 21b), flows through the drain pan heaters (26, 27), and the drain pans (56, 57) Prevent frost formation.
  • the liquid refrigerant that has also drained the drain pan heater (26, 27) is decompressed and expanded when passing through each refrigeration expansion valve (15a, 15b) and introduced into each refrigeration heat exchanger (16, 17). Is done.
  • the refrigerant absorbs heat from the air in the cooling chamber and evaporates at an evaporation temperature of, for example, 10 ° C.
  • the air cooled by the refrigeration heat exchanger (16, 17) is supplied into the cooling chamber, and the temperature in the cooling chamber is maintained at the set temperature of 2 ° C.
  • each of the refrigeration heat exchangers (16, 17) flows through the gas side branch pipes (22a, 22b), and then joins in the gas side communication pipe (22). Thereafter, the gas refrigerant flows through the gas side connecting pipe (22), flows through the suction pipe (61) through the four-way switching valve (12), and is sucked into the compressor (11) and compressed.
  • the suction pressure sensor (25) is endothermic. It is connected to the suction pipe (61) via the pipe for piping (90), and further connected to the heat absorption pipe (90), the discharge pipe (64) of the compressor (11) and the heat transfer member (91). Therefore, the connection part (25b) of the suction pressure sensor (25) is not frozen and damaged. Furthermore, as shown in Fig. 3, if the evaporation temperature of the refrigerated heat exchanger (16, 17) is 23 ° C or higher, the temperature of the connection part (25b) of the suction pressure sensor (25) is reliably 10 ° C. As described above, even when the cooling load fluctuates during the cooling operation, the connecting portion (25b) can be surely brought to a temperature higher than 0 ° C.
  • the refrigeration apparatus (1) is configured to perform the defrosting operation by temporarily stopping the cooling operation.
  • the operation during the defrosting operation is not shown, but the four-way selector valve (12) is set to the second state, the refrigeration expansion valves (15a, 15b) are fully open, and the branch expansion valve (46) is fully closed.
  • the outdoor expansion valve (45) is appropriately controlled, and reverse cycle defrost is performed in which the refrigerant circulates in the reverse direction to that during the cooling operation.
  • the discharged gas refrigerant of the compressor (11) flows through each refrigeration heat exchanger (16, 17) and each drain pan heater (26, 27), and each refrigeration heat exchange (16, 17)
  • the frost adhering to the drain pan dissipates heat and condensates and flows through the fourth liquid pipe (88) of the outdoor circuit (20).
  • the refrigerant flows through the liquid side communication pipe (21) and is introduced into the outdoor circuit (20), and then flows through the fourth liquid pipe (88), and the refrigerant heat exchange (50) between the receiver (14) and the refrigerant (50). It flows through one channel (50a).
  • the refrigerant flows through the fifth liquid pipe (89)
  • the refrigerant is expanded by the outdoor expansion valve (45), condensed by the outdoor heat exchanger (13), and sucked into the compressor (11).
  • the heat absorption pipe (90) can make it difficult to transmit the cold heat of the refrigerant flowing through the suction pipe (61) to the connection part (25b) of the suction pressure sensor (25).
  • the heat absorption pipe (90) can absorb the surrounding air and discharge pipe (64) force. This
  • the connection part (25b) of the suction pressure sensor (25) is higher than 0 ° C. Temperature.
  • freezing damage to the connection portion (25b) of the suction pressure sensor (25) can be prevented, and the reliability of the suction pressure sensor (25) is improved.
  • damage can be prevented without filling with silicon or brazing, workability at the time of installing and replacing the suction pressure sensor (25) is improved as compared with the conventional damage prevention measures.
  • the heat absorption pipe (90) absorbs heat from the discharge pipe (64) of the refrigerant circuit (10) via the heat transfer member (91), the heat absorption pipe (90) absorbs heat. The amount of heat can be increased. Thereby, the connection part (25b) of the suction pressure sensor (25) can be set to a temperature higher than 0 ° C.
  • the heat absorption pipe (90) can absorb the heat of the discharge pipe (64) of the compression mechanism (11) via the heat transfer member (91), the compression mechanism (11) Since the discharge pipe (64) has a high temperature, the heat absorption amount of the heat absorption pipe (90) can be reliably increased. As a result, the connection part (25b) of the suction pressure sensor (25) can be surely brought to a temperature higher than 0 ° C.
  • the heat absorption pipe (90) is formed to a length of 20 cm and is further connected by the discharge pipe (64) and the heat transfer member (91). 91) It is possible to prevent freezing only by forming the endothermic pipe (90) to a predetermined length. That is, as shown in Fig. 3, even in the piping structure A where the endothermic pipe (90) is not connected to the discharge pipe (64), the length of the endothermic pipe (90) is If the set length is set to be longer as the evaporation temperature is lower, such as 20 cm or more and 48 cm or more at -30 ° C, the connection part (25b) of the suction pressure sensor (25) should be 10 ° C or more. can do . Therefore, if the length of the endothermic pipe (90) is set to be longer than this length, the connecting part (25b) that connects the endothermic pipe (90) to the discharge pipe (64) can be reliably Freezing damage can be prevented by raising the temperature.
  • the endothermic pipe (90) is connected to the temperature of the connection (25b) of the suction pressure sensor (25).
  • the degree may be such that the temperature rises from the suction pipe (61) according to the ambient temperature.
  • the minimum length of the endothermic pipe (90) may be set to a predetermined set length that becomes longer as the evaporation temperature of the evaporator (16, 17) becomes lower.
  • the endothermic pipe (90) may be installed at any position! /,
  • the endothermic pipe (90) is located near the discharge pipe (64). If installed in this manner, the heat of the high-temperature discharge pipe (64) is transmitted through the air, and the amount of heat absorption can be further increased.
  • the length of the endothermic pipe (90) shown in Fig. 3 is merely an example, and the length of the endothermic pipe (90) is the same as that of the endothermic pipe (90). It is preferable to set the temperature appropriately depending on the ambient temperature conditions, the heat conductivity of the heat transfer member (91), the temperature of the discharge pipe (64) of the compressor (11), and the like. If the evaporation temperature of the evaporator (16, 17), where the cooling load fluctuation of the refrigeration system (1) is small, the length of the heat absorption pipe (90) is connected to the suction pressure sensor (25). The temperature of the part (25b) may be set to a length that becomes, for example, 1 ° C.
  • the refrigeration apparatus (1) of the above embodiment has performed a refrigeration cycle in which the refrigerant is compressed by one stage. It is also possible to perform a refrigeration cycle that compresses the two stages. In that case, since the temperature of the refrigerant flowing through the suction pipe of the low-stage compressor becomes very low, even if a pressure sensor for measuring the pressure of this low-temperature refrigerant is attached to the suction pipe via the heat absorption pipe. Good. Further, the heat absorption pipe may be connected to the high pressure side pipe of the refrigerant circuit or the discharge pipe through which the refrigerant discharged from the low stage compressor flows through a heat transfer member.
  • the endothermic pipe (90) is connected to the discharge pipe (64) of the compressor, but is connected to the other high-pressure side pipe of the refrigerant circuit (10). May be.
  • the first to third liquid pipes (81, 82, 83) are exemplified.
  • the compression mechanism (11) is composed of one compressor (11).
  • the compression mechanism (11) may be composed of a plurality of compressors connected in parallel.
  • the present invention is useful for a refrigeration apparatus including a suction pressure sensor that measures the suction pressure of a compression mechanism.

Abstract

A refrigeration device where a refrigeration expansion valve, a refrigeration heat exchanger, a compressor (11), and an outdoor heat exchanger are interconnected in sequence and that has a refrigerant circuit for performing a vapor compression refrigeration cycle. A suction pressure sensor (25) is attached to a suction tube (61) of the compressor (11) via heat absorption piping (90). The heat absorption piping (90) is connected to a discharge tube (64) of the compressor (11) via a heat transmission member (91). The length of the heat absorption piping (90) is set not less than a predetermined minimum length that is longer as the temperature of vapor in the refrigeration heat exchanger is lower.

Description

明 細 書  Specification
冷凍装置  Refrigeration equipment
技術分野  Technical field
[0001] 本発明は、蒸気圧縮式冷凍サイクルを行う冷媒回路を備えた冷凍装置に関し、特 に、圧縮機構の吸入圧力を測定する吸入圧力センサの取付け構造に係るものである 背景技術  TECHNICAL FIELD [0001] The present invention relates to a refrigeration apparatus including a refrigerant circuit that performs a vapor compression refrigeration cycle, and particularly relates to a suction pressure sensor mounting structure for measuring a suction pressure of a compression mechanism.
[0002] 従来より、冷凍サイクルを行う冷媒回路を備え、庫内の冷蔵又は冷凍を行う冷凍 装置が知られている(例えば、特許文献 1)。  Conventionally, a refrigeration apparatus that includes a refrigerant circuit that performs a refrigeration cycle and that performs refrigeration or freezing in a warehouse is known (for example, Patent Document 1).
[0003] 特許文献 1の冷凍装置は、冷凍用の冷却熱交換器、低段側圧縮機、高段側圧縮 機、室外熱交換器、冷凍膨張弁が順に接続されている。冷媒回路では、低段側圧縮 機及び高段側圧縮機で 2段圧縮された冷媒が、室外熱交換器で放熱して凝縮液ィ匕 する。液化した冷媒は、上記冷凍膨張弁で膨張して冷凍用の冷却熱交換器を流れ、 庫内空気から吸熱し、例えば、— 30°Cで蒸発し、庫内を— 20°Cに冷却する。そして 、蒸発した冷媒は、再び低段側圧縮機に吸入され、以後この循環を繰り返す。  [0003] In the refrigeration apparatus of Patent Document 1, a refrigeration cooling heat exchanger, a low-stage compressor, a high-stage compressor, an outdoor heat exchanger, and a refrigeration expansion valve are sequentially connected. In the refrigerant circuit, the refrigerant compressed in two stages by the low-stage compressor and the high-stage compressor dissipates heat in the outdoor heat exchanger to be condensed. The liquefied refrigerant is expanded by the refrigeration expansion valve and flows through the refrigeration cooling heat exchanger, absorbs heat from the internal air, evaporates at −30 ° C., and cools the internal temperature to −20 ° C. . Then, the evaporated refrigerant is again sucked into the low-stage compressor, and thereafter this circulation is repeated.
特許文献 1:特開 2004— 353996号公報  Patent Document 1: Japanese Patent Laid-Open No. 2004-353996
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、上記特許文献 1の冷凍装置では、低段側及び高段側の圧縮機の吸入 管に該圧縮機の吸入圧力を測定するための吸入圧力センサが設けられている。  [0004] Incidentally, in the refrigeration apparatus of Patent Document 1, suction pressure sensors for measuring the suction pressure of the compressors are provided in the suction pipes of the low-stage and high-stage compressors.
[0005] 具体的に、図 5に示すように、圧縮機の吸入管 (a)には、細管 (c)が接続され、該 細管 (c)の端部には、圧力センサ (b)を接続するための雄螺子が外周面に形成され ている。一方、圧力センサ (b)は、内周面に雌螺子が形成された接続部 (d)を備え、 この接続部 (d)の雌螺子を細管 (c)の雄螺子に螺合させることにより、吸入管 (a)に接 続されている。  Specifically, as shown in FIG. 5, a narrow tube (c) is connected to the suction pipe (a) of the compressor, and a pressure sensor (b) is connected to the end of the thin pipe (c). A male screw for connection is formed on the outer peripheral surface. On the other hand, the pressure sensor (b) includes a connection portion (d) having a female screw formed on the inner peripheral surface, and the female screw of the connection portion (d) is screwed into the male screw of the thin tube (c). Connected to the suction pipe (a).
[0006] そのため、上記冷凍装置において、冷却熱交換器における蒸発温度が 0°C以下 であって、この 0°C以下の冷媒が吸入管(a)を流れると、圧力センサ (b)と細管(c)と の螺子同士の隙間に侵入した水分が凍結し、該センサ (b)の接続部 (d)が凍結破壊 する虞ががあった。 [0006] Therefore, in the refrigeration apparatus, when the evaporation temperature in the cooling heat exchanger is 0 ° C or lower and the refrigerant having the temperature of 0 ° C or lower flows through the suction pipe (a), the pressure sensor (b) (C) and There was a risk that the water that entered the gaps between the screws of the screw would freeze and the connection part (d) of the sensor (b) could freeze and break.
[0007] そこで、従来は、この螺子間の隙間にシリコンを充填して水分の侵入を防止すると いう対策がとられていた。し力しながら、シリコンの乾燥のために長時間を要するため 取り付け時の作業性が低下すると共に、シリコンの充填状態などにバラツキが生じる ため信頼性が低下するという問題点があった。  [0007] Thus, conventionally, a measure has been taken to prevent moisture from entering by filling the gaps between the screws with silicon. However, since it takes a long time to dry the silicon, workability at the time of attachment is lowered, and there is a problem that reliability is lowered because of variations in the filling state of the silicon.
[0008] また、圧力センサ (b)を細管 (c)に螺合させる代わりに、ロウ付けによって取り付け る方法もある。し力しながら、この方法では、センサ (b)の交換時に冷媒を回収する必 要があるため、メンテナンス性が低下するという問題点があった。  [0008] There is also a method in which the pressure sensor (b) is attached by brazing instead of screwing into the thin tube (c). However, this method has a problem in that maintainability deteriorates because it is necessary to recover the refrigerant when replacing the sensor (b).
[0009] このように、従来の凍結破壊の防止対策は、作業性や信頼性の点で十分ではな いという問題点があった。  [0009] As described above, there has been a problem that conventional freeze-fracture prevention measures are not sufficient in terms of workability and reliability.
[0010] 本発明は、力かる点に鑑みてなされたものであり、圧縮機構の吸入圧力を測定す る吸入圧力センサを備える冷凍装置において、圧力センサの取付時及び交換時に おける作業性を向上させると共に該圧力センサの信頼性を向上させることを目的とす る。  [0010] The present invention has been made in view of the strong point, and in a refrigeration apparatus having a suction pressure sensor for measuring the suction pressure of the compression mechanism, improves workability when the pressure sensor is attached and replaced. It is an object to improve the reliability of the pressure sensor.
課題を解決するための手段  Means for solving the problem
[0011] 第 1の発明は、蒸発器 (16, 17)と圧縮機構 (11)と凝縮器 (13)と膨張機構 (15a, 15 b)とが順に接続された冷媒回路 (10)を備えると共に、上記圧縮機構 (11)の吸入圧 力を測定するための吸入圧力センサ (25)を備えた冷凍装置であって、上記吸入圧 力センサ (25)は、上記圧縮機構 (11)の吸入管 (61)に、該吸入圧力センサ (25)の接 続部 (25b)の温度を吸入管 (61)の温度より高くするための吸熱用配管 (90)を介して 接続されている。 [0011] A first invention includes a refrigerant circuit (10) in which an evaporator (16, 17), a compression mechanism (11), a condenser (13), and an expansion mechanism (15a, 15b) are sequentially connected. In addition, the refrigeration apparatus includes a suction pressure sensor (25) for measuring the suction pressure of the compression mechanism (11), the suction pressure sensor (25) being a suction device of the compression mechanism (11). The pipe (61) is connected via an endothermic pipe (90) for making the temperature of the connection part (25b) of the suction pressure sensor (25) higher than the temperature of the suction pipe (61).
[0012] この第 1の発明において、上記吸入管 (61)には、上記蒸発器(16, 17)を流れた 冷媒が流れるので、蒸発器(16, 17)の設定温度が低い (0°C以下である)と、圧縮機 構(11)の吸入管(61)にも 0°C以下の低温の冷媒が流れる。そこで、この第 1の発明 では、圧力センサ (25)を吸熱用配管 (90)を介して取り付けることによって、吸入管 (6 1)を流れる冷媒の冷熱を吸入圧力センサ(25)の接続部(25b)に伝わりにくくすると共 に、上記吸熱用配管 (90)が周囲の空気などから吸熱することにより、上記吸入圧力 センサ(25)の接続部(25b)を 0°Cより高 、温度とし、接続部(25b)の凍結を防止する。 [0012] In the first aspect of the invention, since the refrigerant flowing through the evaporator (16, 17) flows through the suction pipe (61), the set temperature of the evaporator (16, 17) is low (0 ° C or lower), a low-temperature refrigerant of 0 ° C or lower also flows through the suction pipe (61) of the compressor mechanism (11). Therefore, according to the first aspect of the present invention, by attaching the pressure sensor (25) via the heat absorption pipe (90), the cold heat of the refrigerant flowing through the suction pipe (61) is converted to the connection part ( 25b) and the heat absorption pipe (90) absorbs heat from ambient air, etc. The connection (25b) of the sensor (25) is set to a temperature higher than 0 ° C to prevent freezing of the connection (25b).
[0013] 第 2の発明は、第 1の発明において、上記吸熱用配管 (90)は、上記吸入圧力セ ンサ (25)の接続部(25b)の温度が、周囲温度によって上記吸入管(61)より昇温する 長さに形成されている。 [0013] A second invention is the heat absorption pipe (90) according to the first invention, wherein the temperature of the connection part (25b) of the suction pressure sensor (25) depends on the ambient temperature. ) It is formed in a length that raises the temperature further.
[0014] この第 2の発明では、吸熱用配管(90)が、周囲の空気から吸熱することにより、吸 入管(61)から上記吸入圧力センサ (25)の接続部(25b)にかけて徐々に昇温し、該 吸入圧力センサ(25)の接続部(25b)を 0°Cより高 、温度とする。  [0014] In the second aspect of the invention, the heat absorption pipe (90) absorbs heat from the surrounding air, and gradually rises from the suction pipe (61) to the connection portion (25b) of the suction pressure sensor (25). Warm the connection part (25b) of the suction pressure sensor (25) to a temperature higher than 0 ° C.
[0015] 第 3の発明は、第 2の発明において、上記吸熱用配管 (90)の最小長さは、上記蒸 発器 (16, 17)の蒸発温度が低くなるに従って長くなる所定の設定長さに設定されて いる。  [0015] In a third aspect based on the second aspect, the minimum length of the endothermic pipe (90) is a predetermined set length that increases as the evaporation temperature of the evaporator (16, 17) decreases. Is set.
[0016] この第 3の発明において、上記蒸発器(16, 17)の蒸発温度が低くなるに従って、 吸入管 (61)を流れる冷媒の温度が低くなる。そこで、上記吸熱用配管 (90)の最小長 さを、上記蒸発器(16, 17)の蒸発温度が低くなるに従って長くすることにより、吸入管 (61)を流れる冷媒の温度が低くなるに従って、この冷媒の冷熱を吸入圧力センサ (2 5)の接続部 (25b)に伝わりにくくさせる。一方、上記吸熱用配管 (90)の面積を大きく して該吸熱用配管 (90)が周囲の空気など力 吸熱する吸熱量を増大させる。  [0016] In the third aspect of the invention, as the evaporation temperature of the evaporator (16, 17) decreases, the temperature of the refrigerant flowing through the suction pipe (61) decreases. Therefore, by increasing the minimum length of the heat absorption pipe (90) as the evaporation temperature of the evaporator (16, 17) decreases, as the temperature of the refrigerant flowing through the suction pipe (61) decreases, This cold heat of the refrigerant is made difficult to be transmitted to the connection part (25b) of the suction pressure sensor (25). On the other hand, by increasing the area of the endothermic pipe (90), the endothermic amount of heat absorbed by the endothermic pipe (90) is increased.
[0017] 第 4の発明は、第 1〜第 3の何れかの発明において、上記吸熱用配管(90)は、上 記冷媒回路(10)の高圧側配管 (64)に伝熱部材 (91)を介して取り付けられて 、る。  [0017] In a fourth aspect based on any one of the first to third aspects, the heat absorption pipe (90) is connected to the high pressure side pipe (64) of the refrigerant circuit (10) by a heat transfer member (91). ) Is attached through.
[0018] この第 4の発明では、高圧側配管(64)の熱が伝熱部材 (91)を介して伝熱すること により、上記吸熱用配管 (90)の吸熱量を大きくし、上記吸入圧力センサ (25)の接続 部(25b)を 0°Cより高!、温度とする。  [0018] In the fourth invention, the heat of the high-pressure side pipe (64) is transferred through the heat transfer member (91), thereby increasing the heat absorption amount of the heat-absorbing pipe (90). The connection (25b) of the pressure sensor (25) is higher than 0 ° C and the temperature.
[0019] なお、この第 4の発明における高圧側配管 (64)とは、吸入管 (61)を流れる冷媒ょ りも高圧の冷媒が流れ且つ 0°Cより高!、冷媒が流れる配管を!、う。  [0019] The high-pressure side pipe (64) in the fourth aspect of the invention is a pipe through which the refrigerant flowing through the suction pipe (61) flows at a pressure higher than 0 ° C and flows through the refrigerant! Uh.
[0020] 第 5の発明は、第 4の発明において、上記高圧側配管 (64)は、上記圧縮機構(11 )の吐出管(64)である。  In a fifth aspect based on the fourth aspect, the high-pressure side pipe (64) is the discharge pipe (64) of the compression mechanism (11).
[0021] 上記吸熱用配管 (90)が高圧側配管 (64)から伝熱部材 (91)を介して受け取る吸 熱量は、該高圧側配管 (64)の温度が高い程大きくなる。そこで、第 5の発明では、上 記吸熱用配管 (90)を高温の圧縮機構(11)の吐出管 (64)と伝熱部材 (91)を介して 接続することにより、該吸熱用配管 (90)の吸熱量を確実に大きくする。 [0021] The heat absorption amount received by the heat absorption pipe (90) from the high pressure side pipe (64) via the heat transfer member (91) increases as the temperature of the high pressure side pipe (64) increases. Therefore, in the fifth aspect of the present invention, the heat absorption pipe (90) is disposed via the discharge pipe (64) and the heat transfer member (91) of the high-temperature compression mechanism (11). By connecting, the endothermic amount of the endothermic pipe (90) is surely increased.
発明の効果  The invention's effect
[0022] 上記第 1の発明によれば、吸熱用配管 (90)によって、上記吸入管 (61)を流れる 冷媒の冷熱を吸入圧力センサ(25)の接続部(25b)に伝わりにくくさせることができると 共に、上記吸熱用配管 (90)が周囲の空気などから吸熱することができる。この結果、 蒸発器(16, 17)の設定温度が低く吸入管 (61)に 0°C以下の低温冷媒が流れる場合 であっても、上記吸入圧力センサ(25)の接続部(25b)を 0°Cより高い温度とすることが できる。これにより、上記吸入圧力センサ (25)の接続部(25b)の凍結破損を防止する ことができるので、吸入圧力センサ (25)の信頼性が向上する。  [0022] According to the first aspect of the present invention, the heat absorption pipe (90) makes it difficult for cold heat of the refrigerant flowing through the suction pipe (61) to be transmitted to the connection part (25b) of the suction pressure sensor (25). At the same time, the heat absorption pipe (90) can absorb heat from the surrounding air. As a result, even when the set temperature of the evaporator (16, 17) is low and a low-temperature refrigerant of 0 ° C or less flows through the suction pipe (61), the connection part (25b) of the suction pressure sensor (25) is The temperature can be higher than 0 ° C. As a result, freezing damage to the connection portion (25b) of the suction pressure sensor (25) can be prevented, and the reliability of the suction pressure sensor (25) is improved.
[0023] また、シリコン充填やろう付けを行うことなぐ破損防止を行うことができるので、従 来の破損防止対策に比べて、吸入圧力センサ (25)の取り付け時及び交換時の作業 性が向上する。  [0023] In addition, since it is possible to prevent damage without filling with silicon or brazing, workability when installing and replacing the suction pressure sensor (25) is improved compared to conventional measures to prevent damage. To do.
[0024] また、上記第 2の発明によれば、上記吸熱用配管 (90)を、上記吸入圧力センサ (2 5)の接続部 (25b)の温度が周囲温度によって上記吸入管 (61)より昇温する長さに形 成したために、上記吸熱用配管 (90)は周囲の空気力 吸熱し、該吸熱用配管 (90) を吸入管(61)から吸入圧力センサ(25)の接続部(25b)にかけて徐々に昇温させるこ とができる。この結果、上記吸入圧力センサ (25)の接続部(25b)を 0°Cより高い温度と することができる。  [0024] Further, according to the second aspect of the invention, the endothermic pipe (90) is connected to the inlet pipe (61) from the inlet pipe (61) depending on the temperature of the connecting portion (25b) of the inlet pressure sensor (25). The heat absorption pipe (90) absorbs the surrounding aerodynamic force because it is formed to rise in temperature, and the heat absorption pipe (90) is connected from the suction pipe (61) to the connection part of the suction pressure sensor (25) ( The temperature can be gradually raised over 25b). As a result, the connection part (25b) of the suction pressure sensor (25) can be set to a temperature higher than 0 ° C.
[0025] また、上記第 3の発明によれば、上記吸熱用配管 (90)の最小長さを、上記蒸発器  [0025] According to the third invention, the minimum length of the endothermic pipe (90) is set to the evaporator.
(16, 17)の蒸発温度が低くなるに従って長くなる所定の設定長さに設定したために、 吸入管 (61)を流れる冷媒の温度が低くなるに従って、この冷媒の冷熱を吸入圧力セ ンサ (25)の接続部 (25b)に伝わりに《させることができる。同時に、上記吸熱用配管 (90)の面積を大きくして該吸熱用配管 (90)が周囲の空気など力 吸熱する吸熱量を 増大させることができる。これにより、蒸発器(16, 17)の設定温度に応じて、上記吸入 圧力センサ(25)の接続部(25b)を確実に 0°Cより高 、温度とすることができる。  (16, 17) is set to a predetermined set length that becomes longer as the evaporation temperature becomes lower.As the temperature of the refrigerant flowing through the intake pipe (61) becomes lower, the cold heat of this refrigerant is reduced to the suction pressure sensor (25 ) Can be transmitted to the connection part (25b). At the same time, by increasing the area of the endothermic pipe (90), it is possible to increase the amount of heat absorbed by the endothermic pipe (90) by absorbing heat such as ambient air. As a result, according to the set temperature of the evaporator (16, 17), the connection part (25b) of the suction pressure sensor (25) can be surely set to a temperature higher than 0 ° C.
[0026] また、上記第 4の発明によれば、上記吸熱用配管 (90)は、冷媒回路(10)の高圧 側配管 (64)の熱を伝熱部材 (91)を介して吸熱することができるので、上記吸熱用配 管(90)の吸熱量を大きくすることができる。これにより、上記吸入圧力センサ (25)の 接続部(25b)を 0°Cより高い温度とすることができる。 [0026] According to the fourth aspect of the invention, the heat absorption pipe (90) absorbs the heat of the high pressure side pipe (64) of the refrigerant circuit (10) via the heat transfer member (91). Therefore, the endothermic amount of the endothermic pipe (90) can be increased. As a result, the suction pressure sensor (25) The connection (25b) can be brought to a temperature higher than 0 ° C.
[0027] また、上記第 5の発明によれば、上記吸熱用配管 (90)は、圧縮機構(11)の吐出 管 (64)の熱を伝熱部材 (91)を介して吸熱することができるので、上記圧縮機構(11) の吐出管 (64)が高温であることから、上記吸熱用配管 (90)の吸熱量を確実に大きく することができる。これにより、上記吸入圧力センサ(25)の接続部(25b)を確実に 0°C より高い温度とすることができる。 [0027] According to the fifth aspect of the invention, the heat absorption pipe (90) can absorb the heat of the discharge pipe (64) of the compression mechanism (11) via the heat transfer member (91). Therefore, since the discharge pipe (64) of the compression mechanism (11) is at a high temperature, the heat absorption amount of the heat absorption pipe (90) can be reliably increased. As a result, the connection part (25b) of the suction pressure sensor (25) can be surely brought to a temperature higher than 0 ° C.
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]図 1は、実施形態に係る冷凍装置の冷媒回路を示す配管系統図である。 FIG. 1 is a piping system diagram showing a refrigerant circuit of a refrigeration apparatus according to an embodiment.
[図 2]図 2は、実施形態に係る吸入圧力センサの取り付け構造を示す概略斜視図で ある。  FIG. 2 is a schematic perspective view showing a suction pressure sensor mounting structure according to the embodiment.
[図 3]図 3は、実施形態に係る冷蔵熱交換器の蒸発温度と吸熱用配管の長さとの関 係を示す関係図である。  FIG. 3 is a relationship diagram showing a relationship between the evaporation temperature of the refrigeration heat exchanger according to the embodiment and the length of the endothermic pipe.
[図 4]図 4は、実施形態に係る冷凍装置の冷却運転中における冷媒の循環方向を示 す配管系統図である。  [Fig. 4] Fig. 4 is a piping system diagram showing a refrigerant circulation direction during the cooling operation of the refrigeration apparatus according to the embodiment.
[図 5]図 5は、従来の吸入圧力センサの取り付け構造を示す概略構成図である。 符号の説明  FIG. 5 is a schematic configuration diagram showing a conventional suction pressure sensor mounting structure. Explanation of symbols
1 冷凍装置  1 Refrigeration equipment
10 冷媒回路  10 Refrigerant circuit
11 圧縮機 (圧縮機構)  11 Compressor (compression mechanism)
13 室外熱交 (凝縮器)  13 Outdoor heat exchange (condenser)
25 吸入圧力センサ  25 Suction pressure sensor
25a 接続部  25a connection
61 吸入管  61 Suction tube
64 吐出管 (高圧側配管)  64 Discharge pipe (high-pressure side pipe)
90 吸熱用配管  90 Endothermic piping
91 伝熱部材  91 Heat transfer member
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施形態を図面に基づいて詳細に説明する。 [0031] 本発明の実施形態は、図 1に示すように、冷却室を冷却する冷凍装置(1)であつ て、室外ユニット(2)と冷蔵ユニット (3)とコントローラ(100)とを備えている。上記室外 ユニット (2)は、屋外に設置される一方、上記冷蔵ユニット(3)は、冷却室内に設置さ れている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the embodiment of the present invention is a refrigeration apparatus (1) for cooling a cooling chamber, comprising an outdoor unit (2), a refrigeration unit (3), and a controller (100). ing. The outdoor unit (2) is installed outdoors, while the refrigeration unit (3) is installed in a cooling room.
[0032] 上記冷凍装置(1)にお!/、ては、上記室外ユニット (2)に室外回路 (20)が、上記冷 蔵ユニット (3)に冷蔵庫内回路 (30)が、それぞれ設けられている。冷凍装置(1)では 、上記室外回路 (20)のガス端側と上記冷蔵庫内回路 (30)のガス端側とが、ガス側連 絡配管 (22)で接続される一方、上記室外回路 (20)の液端側と上記冷蔵庫内回路 (3 0)の液端側とは液側連絡配管 (21)で接続されて蒸気圧縮式冷凍サイクルの冷媒回 路(10)が構成されている。  [0032] The refrigeration apparatus (1) is provided with an outdoor circuit (20) in the outdoor unit (2), and a refrigerator internal circuit (30) in the refrigeration unit (3). ing. In the refrigeration apparatus (1), the gas end side of the outdoor circuit (20) and the gas end side of the refrigerator internal circuit (30) are connected by a gas side communication pipe (22), while the outdoor circuit ( The liquid end side of 20) and the liquid end side of the refrigerator internal circuit (30) are connected by a liquid side connecting pipe (21) to constitute a refrigerant circuit (10) of a vapor compression refrigeration cycle.
[0033] 〈室外ユニット〉  [0033] <Outdoor unit>
上記室外ユニット (2)の室外回路 (20)には、圧縮機(11)と室外熱交 (13)とレ シーバー(14)と室外膨張弁 (45)と冷媒熱交^^ (50)と分岐膨張弁 (46)とが設けら れている。さらに、室外回路 (20)には、四路切換弁(12)と液側閉鎖弁 (53)とガス側 閉鎖弁 (54)とが設けられて 、る。この室外回路 (20)にお 、て、液側閉鎖弁 (53)には 上記液側連絡配管 (21)の一端が、ガス側閉鎖弁 (54)には上記ガス側連絡配管 (22 )の一端がそれぞれ接続されて!ヽる。  The outdoor circuit (20) of the outdoor unit (2) includes a compressor (11), an outdoor heat exchanger (13), a receiver (14), an outdoor expansion valve (45), a refrigerant heat exchanger ^^ (50) A branch expansion valve (46) is provided. Further, the outdoor circuit (20) is provided with a four-way switching valve (12), a liquid side closing valve (53), and a gas side closing valve (54). In this outdoor circuit (20), one end of the liquid side connecting pipe (21) is connected to the liquid side closing valve (53), and one end of the gas side connecting pipe (22) is connected to the gas side closing valve (54). One end is connected to each other!
[0034] 上記圧縮機(11)は、スクロール圧縮機であって、インバータ制御により、運転容 量が可変に構成されている。上記圧縮機(11)の吸入側には、吸入管 (61)の一端が 接続され、該吸入管 (61)の他端は、四路切換弁(12)に接続されている。圧縮機(11 )の吐出側には、吐出管 (64)の一端が接続され、該吐出管 (64)の他端は、四路切換 弁(12)に接続されている。  [0034] The compressor (11) is a scroll compressor, and is configured such that the operation capacity is variable by inverter control. One end of the suction pipe (61) is connected to the suction side of the compressor (11), and the other end of the suction pipe (61) is connected to the four-way switching valve (12). One end of a discharge pipe (64) is connected to the discharge side of the compressor (11), and the other end of the discharge pipe (64) is connected to the four-way switching valve (12).
[0035] 上記室外熱交翻(13)は、クロスフィン式のフィン 'アンド'チューブ型熱交翻  [0035] The outdoor heat exchange (13) is a cross fin type fin 'and' tube type heat exchange.
であって、冷媒と室外空気との間で熱交換を行うものであり、凝縮器に構成されてい る。室外熱交翻(13)の一端は四路切換弁(12)に接続されている。一方、室外熱 交 (13)の他端は、第 1液管 (81)を介してレシーバー(14)の頂部に接続されて!、 る。この第 1液管 (81)には、室外熱交翻(13)からレシーバー(14)へ向かう冷媒の 流通だけを許容する逆止弁 (CV-1)が設けられている。レシーバー(14)の底部には 第 2液管 (82)の一端が接続されて 、る。 In this case, heat exchange is performed between the refrigerant and the outdoor air, and the condenser is configured. One end of the outdoor heat exchange (13) is connected to the four-way switching valve (12). On the other hand, the other end of the outdoor heat exchanger (13) is connected to the top of the receiver (14) via the first liquid pipe (81). The first liquid pipe (81) is provided with a check valve (CV-1) that allows only the refrigerant to flow from the outdoor heat exchanger (13) to the receiver (14). At the bottom of the receiver (14) One end of the second liquid pipe (82) is connected.
[0036] 上記冷媒熱交換器 (50)は、プレート式熱交換器であって、冷媒と冷媒との間で熱 交換を行うものであり、第 1流路 (50a)と第 2流路 (50b)とを備えている。上記冷媒熱 交換器 (50)の第 1流路 (50a)の入口側には、上記第 2液管 (82)の他端が接続され、 第 1流路 (50a)の出口側は、第 3液管 (83)の一端が接続されている。第 3液管 (83)の 他端は、液側閉鎖弁 (53)を介して液側連絡配管 (21)の一端に接続されている。上 記第 3液管 (83)には、第 1流路 (50a)力 液側閉鎖弁 (53)へ向力 冷媒の流通だけ を許容する逆止弁 (CV-2)が設けられて 、る。  [0036] The refrigerant heat exchanger (50) is a plate heat exchanger that exchanges heat between the refrigerant and the refrigerant. The first flow path (50a) and the second flow path ( 50b). The other end of the second liquid pipe (82) is connected to the inlet side of the first flow path (50a) of the refrigerant heat exchanger (50), and the outlet side of the first flow path (50a) is connected to the first flow path (50a). One end of the three-liquid pipe (83) is connected. The other end of the third liquid pipe (83) is connected to one end of the liquid side connecting pipe (21) via the liquid side closing valve (53). The third liquid pipe (83) is provided with a check valve (CV-2) that allows only the flow of directional refrigerant to the first flow path (50a) force liquid side shut-off valve (53), The
[0037] 上記第 3液管 (83)には、上記逆止弁 (CV-2)の上流側に分岐液管 (84)の一端が 接続され、該分岐液管 (84)の他端は、上記冷媒熱交換器 (50)の第 2流路 (50b)の 入口側に接続されている。また、上記分岐液管 (84)には、分岐膨張弁 (46)が設けら れている。該分岐膨張弁 (46)は、開度調整自在な電子膨張弁である。  [0037] One end of the branch liquid pipe (84) is connected to the third liquid pipe (83) upstream of the check valve (CV-2), and the other end of the branch liquid pipe (84) is connected to the third liquid pipe (83). The refrigerant heat exchanger (50) is connected to the inlet side of the second flow path (50b). The branch liquid pipe (84) is provided with a branch expansion valve (46). The branch expansion valve (46) is an electronic expansion valve whose opening degree is adjustable.
[0038] 上記冷媒熱交換器 (50)の第 2流路 (50b)の出口側は、インジェクション管(85)の 一端に接続されている。該インジェクション管 (85)の他端は、吸入管 (61)における四 路切換弁 (12)と圧縮機 (11)との間に接続されている。  [0038] The outlet side of the second flow path (50b) of the refrigerant heat exchanger (50) is connected to one end of an injection pipe (85). The other end of the injection pipe (85) is connected between the four-way switching valve (12) and the compressor (11) in the suction pipe (61).
[0039] 上記第 3液管 (83)において、逆止弁 (CV-2)と液側閉鎖弁 (53)の間には、第 4液 管 (88)の一端が接続されている。第 4液管 (88)の他端は、第 1液管 (81)において、 逆止弁 (CV-1)とレシーバー(14)との間に接続されている。また、第 4液管(88)には 、第 3液管 (83)からレシーバー(14)へ向力う冷媒の流通だけを許容する逆止弁 (CV -3)が設けられている。  [0039] In the third liquid pipe (83), one end of a fourth liquid pipe (88) is connected between the check valve (CV-2) and the liquid side stop valve (53). The other end of the fourth liquid pipe (88) is connected between the check valve (CV-1) and the receiver (14) in the first liquid pipe (81). The fourth liquid pipe (88) is provided with a check valve (CV-3) that allows only the flow of the refrigerant directed from the third liquid pipe (83) to the receiver (14).
[0040] 上記分岐液管 (84)には、上記第 3液管 (83)と分岐膨張弁 (46)との間に、第 5液 管 (89)の一端が接続され、該第 5液管 (89)の他端は、第 1液管 (81)における室外熱 交 (13)の他端と逆止弁 (CV-1)の間に接続されている。また、第 5液管 (89)には 、室外膨張弁 (45)が設けられている。  [0040] One end of a fifth liquid pipe (89) is connected to the branch liquid pipe (84) between the third liquid pipe (83) and the branch expansion valve (46). The other end of the pipe (89) is connected between the other end of the outdoor heat exchanger (13) in the first liquid pipe (81) and the check valve (CV-1). The fifth liquid pipe (89) is provided with an outdoor expansion valve (45).
[0041] 上記四路切換弁(12)は、第 1ポートが吐出管 (64)に、第 2ポートが吸入管 (61)に 、第 3ポートが室外熱交翻 (13)の一端に、第 4ポートがガス側閉鎖弁 (54)に、それ ぞれ接続されている。そして、上記四路切換弁(12)は、第 1のポートと第 3のポートと が互いに連通して第 2のポートと第 4のポートとが互いに連通する第 1状態(図 1に実 線で示す状態)と、第 1のポートと第 4のポートとが互いに連通して第 2のポートと第 3 ポートとが互いに連通する第 2状態(図 1に破線で示す状態)とに切り換え可能に構 成されている。 [0041] In the four-way switching valve (12), the first port is at the discharge pipe (64), the second port is at the suction pipe (61), and the third port is at one end of the outdoor heat exchange (13), The 4th port is connected to each gas side shutoff valve (54). The four-way selector valve (12) is in a first state (actually shown in FIG. 1) in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other. Switch between the first port and the fourth port and the second port and the third port (shown in broken lines in Fig. 1). It is configured to be possible.
[0042] 上記室外回路 (20)には、油分離器 (70)、油戻し管(71)が設けられて 、る。  [0042] The outdoor circuit (20) includes an oil separator (70) and an oil return pipe (71).
[0043] 上記油分離器 (70)は、吐出管 (64)に設けられ、圧縮機(11)の吐出ガス力 冷凍 機油を分離するためのものである。油分離器 (70)には、第 1油戻し管(71)の一端が 接続され、該第 1油戻し管 (71)の他端は、吸入管 (61)におけるインジェクション管 (8 5)の接続部と圧縮機(11)との間に接続されている。また、上記油戻し管(71)には、 冷凍機油の流量調整を行うためのキヤビラリ一チューブ (72)が設けられている。  [0043] The oil separator (70) is provided in the discharge pipe (64) and separates the discharge gas power refrigerating machine oil of the compressor (11). One end of the first oil return pipe (71) is connected to the oil separator (70), and the other end of the first oil return pipe (71) is connected to the injection pipe (85) of the suction pipe (61). It is connected between the connection part and the compressor (11). The oil return pipe (71) is provided with a capillary tube (72) for adjusting the flow rate of the refrigerating machine oil.
[0044] 上記室外回路(20)には、各種のセンサ(19, 23, 24, 25, 51)及び圧力スィッチ(9 5a, 95b)が取り付けられている。具体的に、圧縮機(11)の吸入管(61)には、インジェ クシヨン管(85)の接続部と油戻し管 (71)の接続部との間には、吸入温度センサ(24) と吸入圧力センサ(25)が順に設けられている。該吸入圧力センサ(25)は、後により 詳細に説明するが、本発明の特徴として、吸入管 (61)に吸熱用配管 (90)を介して接 続されている。また、圧縮機(11)の吐出側には、吐出圧力センサ(23)と吐出温度セ ンサ(19)とが設けられている。また、冷媒熱交 (50)の第 1流路 (50a)の出口側に は、温度センサ(51)が設けられている。  [0044] Various sensors (19, 23, 24, 25, 51) and pressure switches (95a, 95b) are attached to the outdoor circuit (20). Specifically, the suction pipe (61) of the compressor (11) has a suction temperature sensor (24) and a connection between the connection of the injection pipe (85) and the connection of the oil return pipe (71). A suction pressure sensor (25) is provided in order. As will be described in detail later, the suction pressure sensor (25) is connected to the suction pipe (61) via a heat absorption pipe (90) as a feature of the present invention. A discharge pressure sensor (23) and a discharge temperature sensor (19) are provided on the discharge side of the compressor (11). A temperature sensor (51) is provided on the outlet side of the first flow path (50a) of the refrigerant heat exchanger (50).
[0045] また、上記室外ユニット (2)には、外気温センサ(13a)と室外ファン(13f)とが設けら れている。室外熱交^^ (13)へは、この室外ファン(13f)によって室外空気が送られ る。  [0045] The outdoor unit (2) is provided with an outdoor air temperature sensor (13a) and an outdoor fan (13f). Outdoor air is sent to the outdoor heat exchanger (13) by this outdoor fan (13f).
[0046] 〈冷蔵ユニット〉  [0046] <Refrigerated unit>
上記冷蔵ユニット(3)の冷蔵庫内回路 (30)には、冷蔵熱交換器(16, 17)及びドレ ンパンヒータ(26, 27)が、それぞれ 2つずつ設けられている。  The refrigerator internal circuit (30) of the refrigeration unit (3) is provided with two refrigeration heat exchangers (16, 17) and two drain pan heaters (26, 27).
[0047] 上記各冷蔵熱交^^ (16, 17)は、共に同じクロスフィン式のフィン 'アンド'チュー ブ型熱交^^であって、冷媒と冷却室内の空気との間で熱交換を行うものであり、蒸 発器に構成されている。上記各冷蔵熱交 (16, 17)の一端は、配管を介して各冷 蔵膨張弁(15a, 15b)に接続されている。一方、上記各冷蔵熱交 (16, 17)の他端 には、各ガス側分岐配管 (22a, 22b)の一端がそれぞれ接続され、該ガス側分岐配管 (22a, 22b)の他端は互いに合流して上記ガス側連絡配管(22)の他端に接続されて いる。 [0047] Each of the refrigerated heat exchanges ^^ (16, 17) is the same cross fin type fin 'and' tube type heat exchange ^^, and heat exchange is performed between the refrigerant and the air in the cooling chamber. It is configured in the evaporator. One end of each refrigeration heat exchanger (16, 17) is connected to each refrigeration expansion valve (15a, 15b) via a pipe. On the other hand, one end of each gas side branch pipe (22a, 22b) is connected to the other end of each of the refrigeration heat exchangers (16, 17). The other ends of (22a, 22b) join together and are connected to the other end of the gas side connecting pipe (22).
[0048] 上記各冷蔵膨張弁(15a, 15b)は、開度調整自在に構成された電子膨張弁であり 、膨張機構に構成されている。上記各冷蔵熱交換器 (16, 17)には、第 1冷媒温度セ ンサ(16b, 17b)がそれぞれ設けられ、各冷蔵熱交換器(16, 17)の他端には、第 2冷 媒温度センサ(18a, 18b)がそれぞれ設けられている。上記第 1冷媒温度センサ(16b , 17b)は、冷蔵熱交換器(16, 17)における冷媒の蒸発温度を測定するものである。 上記冷蔵膨張弁(15a, 15b)は、冷却運転中に、第 2冷媒温度センサ(18a, 18b)の測 定温度が、第 1冷媒温度センサ(16b, 17b)で測定される冷媒の蒸発温度よりも所定 温度 (例えば 5°C)高くなるように開度調整がなされるように構成されて 、る。  [0048] Each of the refrigeration expansion valves (15a, 15b) is an electronic expansion valve configured to be adjustable in opening, and is configured as an expansion mechanism. Each refrigeration heat exchanger (16, 17) is provided with a first refrigerant temperature sensor (16b, 17b), and the other refrigeration heat exchanger (16, 17) has a second refrigerant at the other end. Temperature sensors (18a, 18b) are respectively provided. The first refrigerant temperature sensors (16b, 17b) measure the evaporation temperature of the refrigerant in the refrigeration heat exchanger (16, 17). During the cooling operation, the refrigeration expansion valve (15a, 15b) has a refrigerant evaporating temperature at which the measured temperature of the second refrigerant temperature sensor (18a, 18b) is measured by the first refrigerant temperature sensor (16b, 17b). The opening degree is adjusted so as to be higher than a predetermined temperature (for example, 5 ° C.).
[0049] 上記ドレンパンヒータ(26, 27)は、図示しな!、ドレンパンに配置され、高温高圧の 冷媒が流れて該ドレンパンを加温することによりドレンパンの着霜や氷の生成を防止 するものである。上記各ドレンパンヒータ(26, 27)の一端には、各液側分岐配管(21a , 21b)の一端がそれぞれ接続され、該各液側分岐配管 (21a, 21b)の他端は互いに 合流して上記液側連絡配管(21)の他端に接続されている。一方、上記ドレンパンヒ ータ(26, 27)の他端は、上記冷蔵膨張弁(15a, 15b)の一端に接続されている。  [0049] The drain pan heaters (26, 27) are not shown in the figure, and are disposed in the drain pan, and prevent the drain pan from forming frost and generating ice by flowing a high-temperature and high-pressure refrigerant and heating the drain pan. It is. One end of each drain pan heater (26, 27) is connected to one end of each liquid side branch pipe (21a, 21b), and the other end of each liquid side branch pipe (21a, 21b) joins each other. It is connected to the other end of the liquid side communication pipe (21). On the other hand, the other end of the drain pan heater (26, 27) is connected to one end of the refrigeration expansion valve (15a, 15b).
[0050] また、上記冷蔵ユニット (3)には、冷却室内温度センサ(16a, 16b)と、冷却室内フ アン(16f, 17f)とが設けられている。上記各冷蔵熱交 (16, 17)へは、この冷却室 内ファン(16f, 17f)によって、冷却室内の空気が送られる。  [0050] The refrigeration unit (3) is provided with cooling room temperature sensors (16a, 16b) and cooling room fans (16f, 17f). Air in the cooling chamber is sent to the refrigeration heat exchangers (16, 17) by the fans (16f, 17f) in the cooling chamber.
[0051] 〈コントローラ〉  [0051] <Controller>
上記コントローラ(100)は、上記冷媒回路(10)に設けられた各種の弁の切換や開 度調整等を行って、冷却室を設定温度に保つ冷却運転動作を制御すると共に、冷 却室の除霜運転動作を制御するものである。  The controller (100) performs switching and opening adjustment of various valves provided in the refrigerant circuit (10) to control a cooling operation operation for maintaining the cooling chamber at a set temperature, and for controlling the cooling chamber. The defrosting operation is controlled.
[0052] 〈吸入圧力センサの取り付け構造〉  <Suction pressure sensor mounting structure>
次に、本発明の特徴とする吸入圧力センサ(25)の取り付け構造について、図 1〜 図 3に基づいて、より詳細に説明する。  Next, the attachment structure of the suction pressure sensor (25), which is a feature of the present invention, will be described in more detail based on FIGS.
[0053] 冷凍装置(1)の冷却運転時には、冷蔵熱交換器(16, 17)で蒸発した冷媒が吸入 管 (61)を流れるので、冷蔵熱交換器(16, 17)における冷媒の蒸発温度が低ぐ吸入 管(61)を流れる冷媒の温度が 0°C以下であると吸入圧力センサ (25)の接続部(25b) を凍結破損する虞がある。そこで、本発明の特徴として、上記吸入圧力センサ (25)は 、図 1及び図 2に示すように、吸熱用配管 (90)を介して圧縮機(11)の吸入管 (61)に 接続され、さらに、上記吸熱用配管 (90)は、伝熱部材 (91)によって圧縮機(11)の吐 出管 (64)と接続されている。 [0053] During the cooling operation of the refrigeration system (1), since the refrigerant evaporated in the refrigeration heat exchanger (16, 17) flows through the suction pipe (61), the refrigerant evaporation temperature in the refrigeration heat exchanger (16, 17) Low inhalation If the temperature of the refrigerant flowing through the pipe (61) is 0 ° C or lower, the connection part (25b) of the suction pressure sensor (25) may be frozen and damaged. Therefore, as a feature of the present invention, the suction pressure sensor (25) is connected to the suction pipe (61) of the compressor (11) via the heat absorption pipe (90) as shown in FIGS. Furthermore, the heat absorption pipe (90) is connected to the discharge pipe (64) of the compressor (11) by a heat transfer member (91).
[0054] つまり、上記吸熱用配管(90)は、吸入圧力センサ (25)の接続部(25b)の温度を 吸入管(61)の温度より高くするためのものである。  That is, the heat absorption pipe (90) is for making the temperature of the connection part (25b) of the suction pressure sensor (25) higher than the temperature of the suction pipe (61).
[0055] 具体的に、図 2に示すように、圧縮機(11)の吸入管(61)の途中には、吸熱用配 管 (90)の一端が接続されている。該吸熱用配管 (90)は、吸入管 (61)より細い管径で 20cmの長さに形成され、 4回折り曲げられてコンパクトに形成されている。また上記 吸熱用配管 (90)の他端には、外周部に図示しない雄螺子が形成されている。上記 吸入圧力センサ(25)は、センサ本体 (25a)と接続部(25b)とからなり、接続部(25b)の 内周面には図示しない雌螺子が形成されている。そして、上記吸入圧力センサ(25) は、接続部 (25b)の雌螺子を吸熱用配管 (90)の他端の雄螺子に螺合させることによ り、吸熱用配管 (90)に取り付けられている。また、上記吸熱用配管 (90)の他端側に は、ゲージポート (26)を備えた L字型のポート用細管(90a)が接続されている。  Specifically, as shown in FIG. 2, one end of the endothermic pipe (90) is connected to the middle of the suction pipe (61) of the compressor (11). The heat-absorbing pipe (90) is formed with a pipe diameter thinner than that of the suction pipe (61) and a length of 20 cm, and is bent four times to be compact. Further, a male screw (not shown) is formed on the outer periphery of the other end of the heat absorption pipe (90). The suction pressure sensor (25) includes a sensor body (25a) and a connection portion (25b), and a female screw (not shown) is formed on the inner peripheral surface of the connection portion (25b). The suction pressure sensor (25) is attached to the heat absorbing pipe (90) by screwing the female screw of the connecting portion (25b) with the male screw at the other end of the heat absorbing pipe (90). ing. In addition, an L-shaped port tube (90a) having a gauge port (26) is connected to the other end of the heat absorption pipe (90).
[0056] 上記伝熱部材 (91)は、図 2に示すように、断面 L字型の板状に形成されている。  [0056] As shown in Fig. 2, the heat transfer member (91) is formed in a plate shape having an L-shaped cross section.
そして、上記伝熱部材 (91)の横方向の一端が吐出管 (64)における油分離器 (70)の 下流側に固定される一方、他端が吸熱用配管 (90)の他端側(吸入圧力センサ (25) の接続部(25b)近傍)に固定されている。また、上記伝熱部材 (91)の下端側は、ポー ト用細管(90a)に固定されている。なお、この伝熱部材 (91)は、吸熱用配管(90)の支 持する支持部材としての機能をも有して 、る。  One end of the heat transfer member (91) in the lateral direction is fixed to the downstream side of the oil separator (70) in the discharge pipe (64), while the other end is on the other end side of the heat absorption pipe (90) ( It is fixed to the connection part (25b) of the suction pressure sensor (25). The lower end side of the heat transfer member (91) is fixed to the port thin tube (90a). The heat transfer member (91) also has a function as a support member that supports the heat absorption pipe (90).
[0057] 次に、上記吸熱用配管(90)の長さについて実験した結果を、図 3に基づいて説 明する。  [0057] Next, the results of experiments on the length of the endothermic pipe (90) will be described with reference to FIG.
[0058] 図 3は、冷蔵熱交換器(16, 17)の蒸発温度と、吸入圧力センサ(25)の接続部(25 b)が 10°Cとなる吸熱用配管(90)の長さとの関係を示す図である。図 3において、配 管構造 Aは、吸熱用配管 (90)を圧縮機 (11)の吐出管 (64)と伝熱部材 (91)で接続し ない構造、配管構造 Bは、本実施形態のように吸熱用配管 (90)を吐出管 (64)と伝熱 部材 (91)で接続した構造を示して!/、る。 [0058] Fig. 3 shows the evaporating temperature of the refrigerated heat exchanger (16, 17) and the length of the endothermic pipe (90) at which the connection part (25b) of the suction pressure sensor (25) is 10 ° C. It is a figure which shows a relationship. In FIG. 3, pipe structure A is a structure in which the heat absorption pipe (90) is not connected by the discharge pipe (64) of the compressor (11) and the heat transfer member (91). Heat transfer pipe (90) and discharge pipe (64) Show the structure connected by member (91)!
[0059] 配管構造 Aでは、吸入圧力センサ(25)の接続部(25b)の温度が 10°Cとなる吸熱 用配管 (90)の長さは、冷蔵熱交翻(16, 17)の蒸発温度が— 10°Cでは 20cm、 - 30°Cでは 48cm、—40°Cでは 57cmというように、蒸発温度が低くなるに従って長く する必要があることがわ力つた。これは、冷蔵熱交 (16, 17)の蒸発温度が低くな るに従って、吸入管 (61)を流れる冷媒の温度が低くなるので、その冷熱を吸入圧力 センサ (25)の接続部 (25b)により伝わりにくくする必要がある一方、上記吸熱用配管 (90)の面積を大きくして該吸熱用配管 (90)が周囲の空気から吸熱する吸熱量を増 大させる必要があるからである。  [0059] In pipe structure A, the length of the endothermic pipe (90) at which the temperature of the connection part (25b) of the suction pressure sensor (25) is 10 ° C is the evaporation of the refrigeration heat exchange (16, 17). The temperature was 20cm at -10 ° C, 48cm at -30 ° C, and 57cm at -40 ° C. This is because the temperature of the refrigerant flowing through the suction pipe (61) decreases as the evaporation temperature of the refrigerated heat exchanger (16, 17) decreases, so the cold heat is used to connect the connection part (25b) of the suction pressure sensor (25). This is because it is necessary to increase the area of the heat absorption pipe (90) and increase the amount of heat absorbed by the heat absorption pipe (90) from the surrounding air.
[0060] 一方、配管構造 Bでは、吸入圧力センサ(25)の接続部(25b)の温度が 10°Cとな る吸熱用配管 (90)の長さは、冷蔵熱交翻(16, 17)の蒸発温度が— 10°Cでは 10c m、 一 30°Cでは 25cm、 一 40°Cでは 32cmというように、 Aと同様に、蒸発温度が低く なるに従って長さを長くする必要がある一方、同じ蒸発温度では、 Aに比べて長さを 短くすることができることがわ力つた。これは、上記吸熱用配管(90)が、高温の圧縮 機(11)の吐出管(64)から伝熱部材 (91)を介して吸熱することができるので、周囲の 空気からのみ吸熱する場合と比べて、上記吸熱用配管 (90)の吸熱量を確実に大きく することができるためである。  [0060] On the other hand, in the piping structure B, the length of the endothermic pipe (90) at which the temperature of the connection part (25b) of the suction pressure sensor (25) is 10 ° C is refrigerated heat exchange (16, 17 ) Is 10cm at 10 ° C, 25cm at 30 ° C, and 32cm at 40 ° C. Like A, the length needs to be increased as the evaporation temperature decreases. At the same evaporation temperature, the length can be shortened compared to A. This is because the heat absorption pipe (90) can absorb heat from the discharge pipe (64) of the high-temperature compressor (11) via the heat transfer member (91), and therefore absorbs heat only from the surrounding air. This is because the endothermic amount of the endothermic pipe (90) can be increased with certainty.
[0061] なお、吸入圧力センサ (25)の接続部(25b)の温度は、該接続部(25b)を凍結させ ないためには少なくとも 0度より高ければよいが、本実験では、 10°Cとなる長さについ て検討した。これは、吸熱用配管 (90)の長さを接続部 (25b)の温度が 0°Cより高い所 定温度となる長さに設定すれば、冷蔵熱交 (16, 17)の蒸発温度が冷却負荷の 変動などにより一時的に下がった場合であっても、接続部(25b)の温度を確実に 0°C より高くすることができるためである。このように、冷凍装置(1)の負荷変動をも考慮し 、吸熱用配管 (90)の最小長さを図 3に示す長さに設定した。  [0061] The temperature of the connection part (25b) of the suction pressure sensor (25) may be higher than at least 0 degrees so as not to freeze the connection part (25b). The length to be considered was examined. This is because if the length of the endothermic pipe (90) is set to a length where the temperature of the connection (25b) is higher than 0 ° C, the evaporation temperature of the refrigeration heat exchanger (16, 17) will be This is because the temperature of the connecting part (25b) can be surely raised above 0 ° C even if it temporarily falls due to fluctuations in the cooling load. Thus, considering the load fluctuation of the refrigeration system (1), the minimum length of the heat absorption pipe (90) was set to the length shown in FIG.
[0062] そして、本実施形態では、後述するように、冷蔵熱交換器(16, 17)の蒸発温度が  [0062] In this embodiment, as will be described later, the evaporation temperature of the refrigeration heat exchanger (16, 17) is
- 10°Cであるので、配管構造 Bでは吸熱用配管(90)を 10cm以上とする必要がある 。そこで、吸熱用配管(90)を、 10cm以上の任意の長さである 20cmの長さに形成し [0063] 運転動作 -Since it is 10 ° C, the endothermic pipe (90) needs to be 10cm or more in piping structure B. Therefore, the endothermic pipe (90) is formed to a length of 20 cm, which is an arbitrary length of 10 cm or more. [0063] Driving operation
次に、本実施形態の冷凍装置(1)の冷却運転中の動作について、図 4に基づい て説明する。  Next, the operation during the cooling operation of the refrigeration apparatus (1) of the present embodiment will be described based on FIG.
[0064] 上記冷凍装置(1)の冷却運転中は、図 4に示すように、コントローラ(100)の制御 により、室外回路 (20)の四路切換弁(12)が第 1状態に設定され、室外膨張弁 (45)が 全閉される。そして、この状態において、圧縮機(11)が運転され、冷蔵膨張弁(15a, 15b)及び分岐膨張弁 (46)が適宜開度制御され、冷媒が図 4の実線矢印で示す方向 に循環する。なお、この冷却運転における冷却室の設定温度を、例えば、 2°Cとする  [0064] During the cooling operation of the refrigeration system (1), as shown in Fig. 4, the four-way selector valve (12) of the outdoor circuit (20) is set to the first state by the control of the controller (100). The outdoor expansion valve (45) is fully closed. In this state, the compressor (11) is operated, the refrigeration expansion valves (15a, 15b) and the branch expansion valve (46) are appropriately controlled in opening degree, and the refrigerant circulates in the direction indicated by the solid line arrow in FIG. . The set temperature of the cooling chamber in this cooling operation is, for example, 2 ° C.
[0065] 上記圧縮機(11)力 吐出された冷媒は、吐出管 (64)から四路切換弁(12)を通つ て室外熱交換器 (13)へ送られる。室外熱交換器 (13)では、冷媒が室外空気へ放熱 して凝縮する。室外熱交換器 (13)で凝縮した冷媒は、第 1液管 (81)を流れ、レシ一 バー(14)を通過して第 2液管 (82)へ流入し、冷媒熱交換器 (50)の第 1流路 (50a)を 流れる。。第 1流路 (50a)を流れた液冷媒は、第 3液管 (83)を流れ、その一部が、分 岐冷媒として、図 4の破線矢印に示すように、分岐液管 (84)を流れ、分岐膨張弁 (46 )で減圧されて上記冷媒熱交換器 (50)の第 2流路 (50b)に流入する。これにより、第 1 流路 (50a)を流れる液冷媒は、第 2流路 (50b)を流れる分岐冷媒と熱交換して、例え ば、 15°Cに冷却された後、第 3液管 (83)から液側閉鎖弁 (53)を介して液側連絡配 管 (21)を流れ、冷蔵庫内回路 (30)に流入する。また、第 2流路 (50b)の分岐液冷媒 は蒸発し、インジヱクシヨン管 (85)を介して圧縮機(11)の吸入管 (61)にインジヱクショ ンされる。 The refrigerant discharged from the compressor (11) is sent from the discharge pipe (64) to the outdoor heat exchanger (13) through the four-way switching valve (12). In the outdoor heat exchanger (13), the refrigerant dissipates heat to the outdoor air and condenses. The refrigerant condensed in the outdoor heat exchanger (13) flows through the first liquid pipe (81), passes through the receiver (14), flows into the second liquid pipe (82), and enters the refrigerant heat exchanger (50 ) In the first flow path (50a). . The liquid refrigerant that has flowed through the first flow path (50a) flows through the third liquid pipe (83), and a part of the refrigerant is used as a branching refrigerant as shown by the broken line arrow in FIG. , Is decompressed by the branch expansion valve (46), and flows into the second flow path (50b) of the refrigerant heat exchanger (50). As a result, the liquid refrigerant flowing through the first flow path (50a) exchanges heat with the branched refrigerant flowing through the second flow path (50b) .For example, after being cooled to 15 ° C, the third liquid pipe ( 83) flows through the liquid side connecting pipe (21) via the liquid side shut-off valve (53) and flows into the refrigerator circuit (30). Further, the branched liquid refrigerant in the second flow path (50b) evaporates and is indicated to the suction pipe (61) of the compressor (11) through the instruction pipe (85).
[0066] 冷蔵庫内回路 (30)では、 15°Cの液冷媒力 各液側分岐配管(21a, 21b)に分流 して各ドレンパンヒータ(26, 27)を流れ、ドレンパン(56, 57)の着霜を防止する。  [0066] In the refrigerator internal circuit (30), the liquid refrigerant power at 15 ° C is diverted to the liquid side branch pipes (21a, 21b), flows through the drain pan heaters (26, 27), and the drain pans (56, 57) Prevent frost formation.
[0067] ドレンパンヒータ (26, 27)力も流出した液冷媒は、各冷蔵膨張弁(15a, 15b)を通 過する際に減圧されて膨張し、各冷蔵熱交換器 (16, 17)へ導入される。該各冷蔵熱 交換器(16, 17)では、冷媒が冷却室内の空気から吸熱して、例えば 10°Cの蒸発 温度で蒸発する。冷蔵ユニット (3)においては、冷蔵熱交換器(16, 17)で冷却された 空気が冷却室内へ供給され、冷却室内の温度が設定温度の 2°Cに維持される。 [0068] 上記各冷蔵熱交換器 (16, 17)を流れた冷媒は、各ガス側分岐配管 (22a, 22b)を 流れた後、ガス側連絡配管 (22)で合流する。その後、上記ガス冷媒は、ガス側連絡 配管 (22)を流れて四路切換弁(12)を介して吸入管 (61)を流れ、圧縮機(11)に吸入 されて圧縮される。 [0067] The liquid refrigerant that has also drained the drain pan heater (26, 27) is decompressed and expanded when passing through each refrigeration expansion valve (15a, 15b) and introduced into each refrigeration heat exchanger (16, 17). Is done. In each of the refrigeration heat exchangers (16, 17), the refrigerant absorbs heat from the air in the cooling chamber and evaporates at an evaporation temperature of, for example, 10 ° C. In the refrigeration unit (3), the air cooled by the refrigeration heat exchanger (16, 17) is supplied into the cooling chamber, and the temperature in the cooling chamber is maintained at the set temperature of 2 ° C. [0068] The refrigerant that has flowed through each of the refrigeration heat exchangers (16, 17) flows through the gas side branch pipes (22a, 22b), and then joins in the gas side communication pipe (22). Thereafter, the gas refrigerant flows through the gas side connecting pipe (22), flows through the suction pipe (61) through the four-way switching valve (12), and is sucked into the compressor (11) and compressed.
[0069] ここで、吸入管(61)には、上記冷蔵熱交換器(16, 17)で蒸発した約 10°Cの冷 媒が流れるが、本発明では、吸入圧力センサ (25)を吸熱用配管 (90)を介して吸入 管 (61)に接続し、さらに吸熱用配管 (90)と圧縮機 (11)の吐出管 (64)と伝熱部材 (91 )を介して接続して ヽるので、吸入圧力センサ(25)の接続部(25b)が凍結破損するこ とがない。さらに、図 3で示したように、冷蔵熱交 (16, 17)の蒸発温度が 23°C 以上であれば、吸入圧力センサ (25)の接続部(25b)の温度は確実に 10°C以上とな るので、冷却運転中に冷却負荷の変動が生じても、接続部 (25b)を確実に 0°Cより高 い温度にすることができる。  [0069] Here, the refrigerant of about 10 ° C evaporated in the refrigeration heat exchanger (16, 17) flows through the suction pipe (61). In the present invention, the suction pressure sensor (25) is endothermic. It is connected to the suction pipe (61) via the pipe for piping (90), and further connected to the heat absorption pipe (90), the discharge pipe (64) of the compressor (11) and the heat transfer member (91). Therefore, the connection part (25b) of the suction pressure sensor (25) is not frozen and damaged. Furthermore, as shown in Fig. 3, if the evaporation temperature of the refrigerated heat exchanger (16, 17) is 23 ° C or higher, the temperature of the connection part (25b) of the suction pressure sensor (25) is reliably 10 ° C. As described above, even when the cooling load fluctuates during the cooling operation, the connecting portion (25b) can be surely brought to a temperature higher than 0 ° C.
[0070] なお、上記冷凍装置(1)は、上記冷却運転を一時的に停止して、除霜運転を行う ように構成されている。該除霜運転中の動作は、図示しないが、四路切換弁(12)が 第 2状態に設定され、冷蔵膨張弁 (15a, 15b)が全開状態、分岐膨張弁 (46)が全閉 状態となり、室外膨張弁 (45)が適宜制御され、冷媒が冷却運転時と逆方向に循環す る逆サイクルデフロストが行われる。  [0070] The refrigeration apparatus (1) is configured to perform the defrosting operation by temporarily stopping the cooling operation. The operation during the defrosting operation is not shown, but the four-way selector valve (12) is set to the second state, the refrigeration expansion valves (15a, 15b) are fully open, and the branch expansion valve (46) is fully closed. Thus, the outdoor expansion valve (45) is appropriately controlled, and reverse cycle defrost is performed in which the refrigerant circulates in the reverse direction to that during the cooling operation.
[0071] 具体的に、圧縮機(11)の吐出ガス冷媒が、各冷蔵熱交換器 (16, 17)及び各ドレ ンパンヒータ(26, 27)を流れ、各冷蔵熱交 (16, 17)ゃドレンパンに付着した霜に 放熱して凝縮液化し、室外回路 (20)の第 4液管 (88)を流れる。その後、冷媒は、液 側連絡配管 (21)を流れて室外回路 (20)に導入されて、第 4液管 (88)を流れ、レシ一 バー(14)と冷媒熱交 (50)の第 1流路 (50a)とを流れる。そして、冷媒は、第 5液 管 (89)を流れる際に室外膨張弁 (45)で膨張して室外熱交換器 (13)で凝縮し、圧縮 機(11)に吸入される。  [0071] Specifically, the discharged gas refrigerant of the compressor (11) flows through each refrigeration heat exchanger (16, 17) and each drain pan heater (26, 27), and each refrigeration heat exchange (16, 17) The frost adhering to the drain pan dissipates heat and condensates and flows through the fourth liquid pipe (88) of the outdoor circuit (20). Thereafter, the refrigerant flows through the liquid side communication pipe (21) and is introduced into the outdoor circuit (20), and then flows through the fourth liquid pipe (88), and the refrigerant heat exchange (50) between the receiver (14) and the refrigerant (50). It flows through one channel (50a). Then, when the refrigerant flows through the fifth liquid pipe (89), the refrigerant is expanded by the outdoor expansion valve (45), condensed by the outdoor heat exchanger (13), and sucked into the compressor (11).
[0072] 一実施形態の効果  [0072] Effects of one embodiment
上記冷凍装置(1)は、吸熱用配管 (90)によって、上記吸入管 (61)を流れる冷媒 の冷熱を吸入圧力センサ(25)の接続部(25b)に伝わりにくくさせることができると共に 、上記吸熱用配管 (90)が周囲の空気や吐出管 (64)力 吸熱することができる。この 結果、冷蔵熱交翻 (16, 17)で蒸発した— 10°Cの冷媒が、吸入管 (61)を流れても、 吸入圧力センサ(25)の接続部(25b)を 0°Cより高 、温度とすることができる。これによ り、吸入圧力センサ(25)の接続部(25b)の凍結破損を防止することができるので、吸 入圧力センサ (25)の信頼性が向上する。また、シリコン充填やろう付けを行うことなく 、破損防止を行うことができるので、従来の破損防止対策に比べて、吸入圧力センサ (25)の取り付け時及び交換時の作業性が向上する。 In the refrigeration apparatus (1), the heat absorption pipe (90) can make it difficult to transmit the cold heat of the refrigerant flowing through the suction pipe (61) to the connection part (25b) of the suction pressure sensor (25). The heat absorption pipe (90) can absorb the surrounding air and discharge pipe (64) force. this As a result, when the refrigerant at 10 ° C evaporated by refrigeration heat exchange (16, 17) flows through the suction pipe (61), the connection part (25b) of the suction pressure sensor (25) is higher than 0 ° C. Temperature. As a result, freezing damage to the connection portion (25b) of the suction pressure sensor (25) can be prevented, and the reliability of the suction pressure sensor (25) is improved. Further, since damage can be prevented without filling with silicon or brazing, workability at the time of installing and replacing the suction pressure sensor (25) is improved as compared with the conventional damage prevention measures.
[0073] また、上記吸熱用配管 (90)は、冷媒回路(10)の吐出管 (64)の熱を伝熱部材 (91 )を介して吸熱するので、上記吸熱用配管 (90)の吸熱量を大きくすることができる。こ れにより、上記吸入圧力センサ(25)の接続部(25b)を 0°Cより高い温度とすることがで きる。 [0073] Further, since the heat absorption pipe (90) absorbs heat from the discharge pipe (64) of the refrigerant circuit (10) via the heat transfer member (91), the heat absorption pipe (90) absorbs heat. The amount of heat can be increased. Thereby, the connection part (25b) of the suction pressure sensor (25) can be set to a temperature higher than 0 ° C.
[0074] また、上記吸熱用配管 (90)は、圧縮機構(11)の吐出管 (64)の熱を伝熱部材 (91 )を介して吸熱することができるので、上記圧縮機構(11)の吐出管 (64)が高温である ことから、上記吸熱用配管 (90)の吸熱量を確実に大きくすることができる。これにより 、上記吸入圧力センサ(25)の接続部(25b)を確実に 0°Cより高い温度とすることがで きる。  [0074] Further, since the heat absorption pipe (90) can absorb the heat of the discharge pipe (64) of the compression mechanism (11) via the heat transfer member (91), the compression mechanism (11) Since the discharge pipe (64) has a high temperature, the heat absorption amount of the heat absorption pipe (90) can be reliably increased. As a result, the connection part (25b) of the suction pressure sensor (25) can be surely brought to a temperature higher than 0 ° C.
[0075] 《その他の実施形態》  [0075] << Other Embodiments >>
上記実施形態にっ ヽては、以下のような構成としてもょ ヽ。  For the above embodiment, the following configuration may be used.
[0076] 上記実施形態の冷凍装置(1)は、吸熱用配管 (90)を長さ 20cmに形成し、さらに 吐出管 (64)と伝熱部材 (91)で接続したが、伝熱部材 (91)を設けることなぐ吸熱用 配管(90)を所定長さに形成することのみによって、凍結防止を図るようにしてもよ!、。 つまり、図 3で示したように、吸熱用配管 (90)を吐出管 (64)と接続しない配管構造 A においても、吸熱用配管(90)の長さを、蒸発温度が— 10°Cでは 20cm以上、—30 °Cでは 48cm以上というように、蒸発温度が低くなるに従って長くなる所定の設定長さ に設定すれば、吸入圧力センサ(25)の接続部(25b)を 10°C以上とすることができる 。よって、吸熱用配管 (90)の長さをこの長さ以上に設定すれば、吸熱用配管 (90)を 吐出管(64)と接続することなぐ接続部(25b)を確実に 0°Cより高い温度にして凍結 破損を防止することができる。  In the refrigeration apparatus (1) of the above embodiment, the heat absorption pipe (90) is formed to a length of 20 cm and is further connected by the discharge pipe (64) and the heat transfer member (91). 91) It is possible to prevent freezing only by forming the endothermic pipe (90) to a predetermined length. That is, as shown in Fig. 3, even in the piping structure A where the endothermic pipe (90) is not connected to the discharge pipe (64), the length of the endothermic pipe (90) is If the set length is set to be longer as the evaporation temperature is lower, such as 20 cm or more and 48 cm or more at -30 ° C, the connection part (25b) of the suction pressure sensor (25) should be 10 ° C or more. can do . Therefore, if the length of the endothermic pipe (90) is set to be longer than this length, the connecting part (25b) that connects the endothermic pipe (90) to the discharge pipe (64) can be reliably Freezing damage can be prevented by raising the temperature.
[0077] つまり、上記吸熱用配管(90)は、上記吸入圧力センサ (25)の接続部(25b)の温 度が、周囲温度によって上記吸入管 (61)より昇温する長さに形成すればよい。そし て、上記吸熱用配管 (90)の最小長さは、上記蒸発器(16, 17)の蒸発温度が低くなる に従って長くなる所定の設定長さに設定すればよい。 [0077] That is, the endothermic pipe (90) is connected to the temperature of the connection (25b) of the suction pressure sensor (25). The degree may be such that the temperature rises from the suction pipe (61) according to the ambient temperature. The minimum length of the endothermic pipe (90) may be set to a predetermined set length that becomes longer as the evaporation temperature of the evaporator (16, 17) becomes lower.
[0078] また、この場合、吸熱用配管(90)は、どの位置に設置してもよ!/、が、例えば、該吸 熱用配管 (90)を吐出管 (64)の近くに位置するように設置すれば、高温の吐出管 (64 )の熱が空気を介して伝達され、吸熱量をより大きくすることができる。  In this case, the endothermic pipe (90) may be installed at any position! /, For example, the endothermic pipe (90) is located near the discharge pipe (64). If installed in this manner, the heat of the high-temperature discharge pipe (64) is transmitted through the air, and the amount of heat absorption can be further increased.
[0079] また、上記実施形態において、図 3で示した吸熱用配管 (90)の長さは、単なる例 示であり、吸熱用配管 (90)の長さは、吸熱用配管 (90)が設置される周囲の温度条件 や、伝熱部材 (91)の熱伝導率や、圧縮機(11)の吐出管 (64)の温度などによって適 宜設定することが好ましい。また、冷凍装置(1)の冷却負荷変動が少なぐ蒸発器 (16 , 17)の蒸発温度が一定である場合は、吸熱用配管 (90)の長さを、吸入圧力センサ( 25)の接続部(25b)の温度が、例えば 1°Cとなる長さに設定してもよい。  [0079] In the above embodiment, the length of the endothermic pipe (90) shown in Fig. 3 is merely an example, and the length of the endothermic pipe (90) is the same as that of the endothermic pipe (90). It is preferable to set the temperature appropriately depending on the ambient temperature conditions, the heat conductivity of the heat transfer member (91), the temperature of the discharge pipe (64) of the compressor (11), and the like. If the evaporation temperature of the evaporator (16, 17), where the cooling load fluctuation of the refrigeration system (1) is small, the length of the heat absorption pipe (90) is connected to the suction pressure sensor (25). The temperature of the part (25b) may be set to a length that becomes, for example, 1 ° C.
[0080] また、上記実施形態の冷凍装置(1)は、冷媒を 1段圧縮する冷凍サイクルを行つ たが、冷凍装置は、冷却室を冷凍する冷凍用の熱交換器を有し、冷媒を 2段圧縮す る冷凍サイクルを行うものであってもよい。その場合、低段側の圧縮機の吸入管を流 れる冷媒の温度が非常に低くなるので、この低温の冷媒の圧力を測定する圧力セン サを吸熱用配管を介して吸入管に取り付けてもよい。さらに、該吸熱用配管を上記冷 媒回路の高圧側配管や低段側圧縮機の吐出冷媒が流れる吐出管と伝熱部材を介し て接続するようにしてもよ ヽ。  [0080] In addition, the refrigeration apparatus (1) of the above embodiment has performed a refrigeration cycle in which the refrigerant is compressed by one stage. It is also possible to perform a refrigeration cycle that compresses the two stages. In that case, since the temperature of the refrigerant flowing through the suction pipe of the low-stage compressor becomes very low, even if a pressure sensor for measuring the pressure of this low-temperature refrigerant is attached to the suction pipe via the heat absorption pipe. Good. Further, the heat absorption pipe may be connected to the high pressure side pipe of the refrigerant circuit or the discharge pipe through which the refrigerant discharged from the low stage compressor flows through a heat transfer member.
[0081] また、高段側圧縮機を有する室外回路に対し、冷凍用の熱交換器と低段側の圧 縮機とが接続された冷凍回路と、冷蔵用の熱交換器を有する冷蔵回路とが並列接続 され、高段側の圧縮機と低段側の圧縮機が共に 0°C以下の冷媒を吸入する場合は、 各圧縮機の吸入管の吸入圧力センサを吸熱用配管を介して接続するようにしてもよ い。  [0081] A refrigeration circuit in which a refrigeration heat exchanger and a low-stage compressor are connected to an outdoor circuit having a high-stage compressor, and a refrigeration circuit having a refrigeration heat exchanger Are connected in parallel, and both the high-stage compressor and the low-stage compressor suck in refrigerant at 0 ° C or less, the suction pressure sensor of the suction pipe of each compressor is connected via the heat absorption pipe. It may be connected.
[0082] また、上記実施形態の冷凍装置(1)は、吸熱用配管 (90)を圧縮機の吐出管 (64) と接続したが、冷媒回路(10)のその他の高圧側配管と接続してもよい。具体的には、 第 1〜第 3の液管 (81, 82, 83)が例示される。  In the refrigeration apparatus (1) of the above embodiment, the endothermic pipe (90) is connected to the discharge pipe (64) of the compressor, but is connected to the other high-pressure side pipe of the refrigerant circuit (10). May be. Specifically, the first to third liquid pipes (81, 82, 83) are exemplified.
[0083] また、上記実施形態の冷凍装置 (1)は、圧縮機構 (11)を 1台の圧縮機 (11)で構 成したが、圧縮機構 (11)は、複数の並列接続された圧縮機で構成してもよい。 In the refrigeration apparatus (1) of the above embodiment, the compression mechanism (11) is composed of one compressor (11). However, the compression mechanism (11) may be composed of a plurality of compressors connected in parallel.
[0084] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物 、あるいは、その用途の範囲を制限することを意図するものではない。 [0084] The above embodiment is essentially a preferable example, and is not intended to limit the scope of the present invention, its application, or its use.
産業上の利用可能性  Industrial applicability
[0085] 以上説明したように、本発明は、圧縮機構の吸入圧力を測定する吸入圧力セン サを備えた冷凍装置について有用である。 [0085] As described above, the present invention is useful for a refrigeration apparatus including a suction pressure sensor that measures the suction pressure of a compression mechanism.

Claims

請求の範囲 The scope of the claims
[1] 蒸発器 (16, 17)と圧縮機構 (11)と凝縮器 (13)と膨張機構 (15a, 15b)とが順に接 続された冷媒回路(10)を備えると共に、上記圧縮機構 (11)の吸入圧力を測定する ための吸入圧力センサ (25)を備えた冷凍装置であって、  [1] A refrigerant circuit (10) in which an evaporator (16, 17), a compression mechanism (11), a condenser (13), and an expansion mechanism (15a, 15b) are sequentially connected is provided. A refrigeration apparatus equipped with a suction pressure sensor (25) for measuring the suction pressure of 11),
上記吸入圧力センサ (25)は、上記圧縮機構 (11)の吸入管 (61)に、上記吸入圧 力センサ(25)の接続部(25b)の温度を吸入管(61)の温度より高くするための吸熱用 配管 (90)を介して接続されて!ヽる  The suction pressure sensor (25) makes the temperature of the connection (25b) of the suction pressure sensor (25) higher than the temperature of the suction pipe (61) in the suction pipe (61) of the compression mechanism (11). Connected via the endothermic pipe (90) for!
ことを特徴とする冷凍装置。  A refrigeration apparatus characterized by that.
[2] 請求項 1において、 [2] In claim 1,
上記吸熱用配管(90)は、上記吸入圧力センサ(25)の接続部(25b)の温度が、周 囲温度によって上記吸入管(61)より昇温する長さに形成されている  The heat absorption pipe (90) is formed in such a length that the temperature of the connection part (25b) of the suction pressure sensor (25) rises from the suction pipe (61) due to the ambient temperature.
ことを特徴とする冷凍装置。  A refrigeration apparatus characterized by that.
[3] 請求項 2において、 [3] In claim 2,
上記吸熱用配管 (90)の最小長さは、上記蒸発器(16, 17)の蒸発温度が低くなる に従って長くなる所定の設定長さに設定されて 、る  The minimum length of the endothermic pipe (90) is set to a predetermined set length that increases as the evaporation temperature of the evaporator (16, 17) decreases.
ことを特徴とする冷凍装置。  A refrigeration apparatus characterized by that.
[4] 請求項 1において、 [4] In claim 1,
上記吸熱用配管 (90)は、上記冷媒回路(10)の高圧側配管 (64)に伝熱部材 (91) を介して取り付けられている  The heat absorption pipe (90) is attached to the high pressure side pipe (64) of the refrigerant circuit (10) via a heat transfer member (91).
ことを特徴とする冷凍装置。  A refrigeration apparatus characterized by that.
[5] 請求項 4において、 [5] In claim 4,
上記高圧側配管 (64)は、上記圧縮機構 (11)の吐出管 (64)である  The high-pressure side pipe (64) is a discharge pipe (64) of the compression mechanism (11).
ことを特徴とする冷凍装置。  A refrigeration apparatus characterized by that.
PCT/JP2007/060151 2006-05-18 2007-05-17 Refrigeration device WO2007135957A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07743586A EP2019273A1 (en) 2006-05-18 2007-05-17 Refrigeration device
US12/301,214 US20090188276A1 (en) 2006-05-18 2007-05-17 Refrigeration system
AU2007252631A AU2007252631A1 (en) 2006-05-18 2007-05-17 Refrigeration system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-139040 2006-05-18
JP2006139040A JP4082434B2 (en) 2006-05-18 2006-05-18 Refrigeration equipment

Publications (1)

Publication Number Publication Date
WO2007135957A1 true WO2007135957A1 (en) 2007-11-29

Family

ID=38723269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060151 WO2007135957A1 (en) 2006-05-18 2007-05-17 Refrigeration device

Country Status (7)

Country Link
US (1) US20090188276A1 (en)
EP (1) EP2019273A1 (en)
JP (1) JP4082434B2 (en)
KR (1) KR20090013222A (en)
CN (1) CN101449118A (en)
AU (1) AU2007252631A1 (en)
WO (1) WO2007135957A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585189B2 (en) * 2010-04-30 2014-09-10 ダイキン工業株式会社 Air conditioner
JP5821384B2 (en) * 2011-08-08 2015-11-24 ダイキン工業株式会社 Sensor mounting structure
JP2014163548A (en) * 2013-02-22 2014-09-08 Fujitsu General Ltd Air conditioning apparatus
CN103759477B (en) * 2014-01-07 2016-06-29 广东美芝制冷设备有限公司 Refrigerating circulatory device
JP6431776B2 (en) * 2015-01-19 2018-11-28 出光興産株式会社 Lubricating oil composition
CN111855735B (en) * 2020-08-06 2021-06-22 兰州理工大学 Efficient and accurate measuring device for salt expansion and frost heaving of salt solution

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148Y1 (en) * 1970-08-12 1975-01-06
JPS5116317Y1 (en) * 1970-08-13 1976-04-28
JPH09329517A (en) * 1996-06-10 1997-12-22 Fuji Koki:Kk Pressure detecting device
JP2002048665A (en) * 2000-07-31 2002-02-15 Yamatake Corp Steam jacket structure of pressure-measuring apparatus
JP2004353996A (en) 2003-05-30 2004-12-16 Daikin Ind Ltd Refrigerating equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431689A (en) * 1990-05-24 1992-02-03 Hitachi Ltd Scroll compressor and freezing cycle with scroll compressor
JP2004301456A (en) * 2003-03-31 2004-10-28 Toyota Industries Corp Refrigerating cycle apparatus and equipment for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148Y1 (en) * 1970-08-12 1975-01-06
JPS5116317Y1 (en) * 1970-08-13 1976-04-28
JPH09329517A (en) * 1996-06-10 1997-12-22 Fuji Koki:Kk Pressure detecting device
JP2002048665A (en) * 2000-07-31 2002-02-15 Yamatake Corp Steam jacket structure of pressure-measuring apparatus
JP2004353996A (en) 2003-05-30 2004-12-16 Daikin Ind Ltd Refrigerating equipment

Also Published As

Publication number Publication date
JP2007309586A (en) 2007-11-29
US20090188276A1 (en) 2009-07-30
EP2019273A1 (en) 2009-01-28
AU2007252631A1 (en) 2007-11-29
CN101449118A (en) 2009-06-03
JP4082434B2 (en) 2008-04-30
KR20090013222A (en) 2009-02-04

Similar Documents

Publication Publication Date Title
KR101598624B1 (en) Air conditioning system
WO2012128229A1 (en) Binary refrigeration cycle device
KR100821728B1 (en) Air conditioning system
JP4978777B2 (en) Refrigeration cycle equipment
JP4946948B2 (en) Heat pump air conditioner
WO2007139010A1 (en) Freezing device
EP2257749B1 (en) Refrigerating system and method for operating the same
CN108151350B (en) Three-control multi-split system and control method thereof
WO2007135957A1 (en) Refrigeration device
US20150007598A1 (en) Cooling system and control method thereof
WO2016174822A1 (en) Refrigeration apparatus
JP4665560B2 (en) Refrigeration equipment
WO2009103469A2 (en) Refrigerating system and method for operating the same
KR100956550B1 (en) Heat pump system for cooling and heating with defrosting function
JP2007232265A (en) Refrigeration unit
JP2007309585A (en) Refrigerating device
JP2010002112A (en) Refrigerating device
JP2008032337A (en) Refrigerating apparatus
KR101079230B1 (en) Heat pump system having dew-fall prevention device and method for control thereof
GB2542971A (en) Air conditioning apparatus
KR100821729B1 (en) Air conditioning system
JP2007127302A (en) Refrigeration unit
JP4735401B2 (en) Refrigeration equipment
KR101766466B1 (en) Non-frost high performance air source heatpump system
KR101539498B1 (en) Hybrid refrigerants system for preventing performance degradation of Heating/Cooling by defrosting process and Heating/Cooling system including the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018084.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743586

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12301214

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007743586

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007252631

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020087029682

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2007252631

Country of ref document: AU

Date of ref document: 20070517

Kind code of ref document: A