KR20090013222A - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
KR20090013222A
KR20090013222A KR1020087029682A KR20087029682A KR20090013222A KR 20090013222 A KR20090013222 A KR 20090013222A KR 1020087029682 A KR1020087029682 A KR 1020087029682A KR 20087029682 A KR20087029682 A KR 20087029682A KR 20090013222 A KR20090013222 A KR 20090013222A
Authority
KR
South Korea
Prior art keywords
pipe
heat
temperature
pressure sensor
refrigerant
Prior art date
Application number
KR1020087029682A
Other languages
Korean (ko)
Inventor
사토루 사카에
도시아키 무카이다니
Original Assignee
다이킨 고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다이킨 고교 가부시키가이샤 filed Critical 다이킨 고교 가부시키가이샤
Publication of KR20090013222A publication Critical patent/KR20090013222A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A refrigeration device where a refrigeration expansion valve, a refrigeration heat exchanger, a compressor (11), and an outdoor heat exchanger are interconnected in sequence and that has a refrigerant circuit for performing a vapor compression refrigeration cycle. A suction pressure sensor (25) is attached to a suction tube (61) of the compressor (11) via heat absorption piping (90). The heat absorption piping (90) is connected to a discharge tube (64) of the compressor (11) via a heat transmission member (91).The length of the heat absorption piping (90) is set not less than a predetermined minimum length that is longer as the temperature of vapor in the refrigeration heat exchanger is lower.

Description

냉동장치{REFRIGERATION DEVICE}Freezer {REFRIGERATION DEVICE}

본 발명은, 증기압축식 냉동주기를 행하는 냉매회로를 구비하는 냉동장치에 관한 것으로, 특히 압축기구의 흡입압력을 측정하는 흡입압력 센서의 장착구조에 관한 것이다.The present invention relates to a refrigerating device having a refrigerant circuit for performing a vapor compression refrigeration cycle, and more particularly, to a mounting structure of a suction pressure sensor for measuring the suction pressure of a compression mechanism.

종래, 냉동주기를 행하는 냉매회로를 구비하며, 저장고 내의 냉장 또는 냉동을 실행하는 냉동장치가 알려져 있다(예를 들어 특허문헌 1(일본 특허공개 2004-353996호 공보)).DESCRIPTION OF RELATED ART Conventionally, the refrigerating apparatus provided with the refrigerant circuit which performs a refrigerating cycle, and performs refrigeration or freezing in a reservoir is known (for example, patent document 1 (Unexamined-Japanese-Patent No. 2004-353996)).

특허문헌 1의 냉동장치는, 냉동용 냉각열교환기, 저단측 압축기, 고단측 압축기, 실외열교환기, 냉동팽창밸브가 차례로 접속된다. 냉매회로에서는, 저단측 압축기 및 고단측 압축기에서 2단압축된 냉매가 실외열교환기에서 방열하여 응축 액화된다. 액화된 냉매는 상기 냉동팽창밸브에서 팽창되어 냉동용 냉각열교환기를 흐르고, 저장고내 공기로부터 흡열하며, 예를 들어 -30℃에서 증발되어, 저장고 내를 -20℃로 냉각시킨다. 그리고 증발된 냉매는, 다시 저단측 압축기로 흡입되며, 이후 이 순환을 반복한다.As for the refrigeration apparatus of patent document 1, a refrigeration heat exchanger for refrigeration, a low stage compressor, a high stage compressor, an outdoor heat exchanger, and a refrigeration expansion valve are connected in order. In the refrigerant circuit, the refrigerant compressed in two stages in the low stage compressor and the high stage compressor is radiated in the outdoor heat exchanger to condense and liquefy. The liquefied refrigerant expands in the refrigeration expansion valve, flows through the refrigeration cooling heat exchanger, endotherms from the air in the reservoir, and evaporates, for example, at -30 ° C to cool the inside of the reservoir to -20 ° C. The evaporated refrigerant is again sucked into the low stage compressor, and then the circulation is repeated.

[발명의 개시][Initiation of invention]

[발명이 해결하고자 하는 과제][Problem to Solve Invention]

그런데, 상기 특허문헌 1의 냉동장치에서는, 저단측 및 고단측 압축기의 흡입관에 이 압축기의 흡입압력을 측정하기 위한 흡입압력 센서가 장착된다.By the way, in the refrigeration apparatus of the said patent document 1, the suction pressure sensor for measuring the suction pressure of this compressor is attached to the suction pipe of a low stage side and a high stage side compressor.

구체적으로, 도 5에 나타내는 바와 같이, 압축기 흡입관(a)에는 세관(細管)이 접속되며, 이 세관(c) 단부에는, 압력센서(b)를 접속하기 위한 숫나사가 외주면에 형성된다. 한편, 압력센서(b)는, 내주면에 암나사가 형성된 접속부(d)를 구비하며, 이 접속부(d)의 암나사를 세관(c)의 숫나사에 결합시킴으로써 흡입관(a)에 접속된다.Specifically, as shown in FIG. 5, a tubular pipe is connected to the compressor suction pipe a, and a male screw for connecting the pressure sensor b is formed on the outer peripheral surface at the end of the tubular pipe c. On the other hand, the pressure sensor b is provided with the connection part d in which the internal thread was formed in the inner peripheral surface, and is connected to the suction pipe a by coupling the female thread of this connection part d to the male screw of the capillary c.

따라서 상기 냉동장치에서, 냉각열교환기에서의 증발온도가 0℃ 이하이며, 이 0℃ 이하의 냉매가 흡입관(a)을 흐르면, 압력센서(b)와 세관(c)의 나사들 사이 틈새로 침입한 수분이 동결되어, 이 센서(b)의 접속부(d)가 동결파괴될 우려가 있다.Therefore, in the refrigerating device, when the evaporation temperature in the cooling heat exchanger is 0 ° C. or less, and the refrigerant below 0 ° C. flows through the suction pipe (a), it enters into a gap between the screws of the pressure sensor (b) and the custom pipe (c). One minute of freezing may cause the connection part d of the sensor b to freeze-break.

그래서 종래에는 이 나사간 틈새에 실리콘을 충전시켜 수분 침입을 방지한다는 대책이 취해졌다. 그러나 실리콘을 건조시키기 위하여 장시간을 요하므로, 장착 시 작업성이 저하됨과 더불어, 실리콘의 충전상태가 불균일하므로, 신뢰성이 저하된다는 문제점이 있다.Therefore, conventionally, measures have been taken to fill the gaps between the screws with silicon to prevent moisture intrusion. However, since it takes a long time to dry the silicon, there is a problem that the workability at the time of mounting and the charge state of the silicon is non-uniform, the reliability is lowered.

또, 압력센서(b)를 세관(c)에 결합시키는 대신, 납땜으로 장착하는 방법도 있다. 그러나 이 방법으로는, 센서(b)의 교환 시에 냉매를 회수할 필요가 있으므로, 보수점검이 번거롭다는 문제점이 있다.In addition, instead of coupling the pressure sensor (b) to the capillary (c), there is also a method of mounting by soldering. In this method, however, it is necessary to recover the coolant at the time of replacement of the sensor b, and thus there is a problem that maintenance inspection is cumbersome.

이와 같이 종래의 동결파괴 방지대책은 작업성이나 신뢰성 점에서 충분하지 않다는 문제점이 있다.As described above, the conventional freeze destruction prevention measures are not sufficient in terms of workability and reliability.

본 발명은 이러한 점에 감안하여 이루어진 것으로, 압축기구의 흡입압력을 측정하는 흡입압력 센서를 구비하는 냉동장치에 있어서, 압력센서의 장착 시 및 교환 시에 있어서 작업성을 향상시킴과 더불어, 이 압력센서의 신뢰성을 향상시키는 것을 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made in view of this point, and in the refrigerating device having a suction pressure sensor for measuring the suction pressure of the compression mechanism, the workability is improved when the pressure sensor is attached and replaced, It aims at improving the reliability of a sensor.

[과제를 해결하기 위한 수단][Means for solving the problem]

제 1 발명은, 증발기(16, 17), 압축기구(11), 응축기(13) 및 팽창기구(15a, 15b)가 차례로 접속된 냉매회로(10)를 구비함과 더불어, 상기 압축기구(11)의 흡입압력을 측정하기 위한 흡입압력 센서(25)를 구비하는 냉동장치로서, 상기 흡입압력 센서(25)는, 상기 압축기구(11)의 흡입관(61)에, 흡입압력 센서(25) 접속부(25b)의 온도를 흡입관(61) 온도보다 높이기 위한 흡열용 배관(90)을 통하여 접속된다.The first invention includes a refrigerant circuit (10) in which evaporators (16, 17), a compression mechanism (11), a condenser (13), and expansion mechanisms (15a, 15b) are sequentially connected. A refrigeration apparatus having a suction pressure sensor 25 for measuring a suction pressure of), wherein the suction pressure sensor 25 is connected to a suction pressure sensor 25 at a suction pipe 61 of the compression mechanism 11. It connects through the heat absorption piping 90 for raising the temperature of 25b more than the temperature of the suction pipe 61.

이 제 1 발명에 있어서 상기 흡입관(61)에는 상기 증발기(16, 17)를 흐른 냉매가 유통하므로, 증발기(16, 17)의 설정온도가 낮으면(0℃ 이하이면), 압축기구(11)의 흡입관(61)에도 0℃ 이하의 저온 냉매가 흐른다. 그래서 이 제 1 발명에서는, 압력센서(25)를 흡열용 배관(90)을 통하여 설치함으로써, 흡입관(61)을 흐르는 냉매의 냉열을 흡입압력 센서(25) 접속부(25b)에 전달되기 어렵게 함과 더불어, 상기 흡열용 배관(90)이 주위 공기로부터 흡열함으로써, 상기 흡입압력 센서(25)의 접속부(25b)를 0℃보다 높은 온도로 하여, 접속부(25b)의 동결을 방지한다.In the first invention, since the refrigerant flowing through the evaporators 16 and 17 flows through the suction pipe 61, when the set temperature of the evaporators 16 and 17 is low (0 ° C. or less), the compression mechanism 11 The low temperature refrigerant of 0 degrees C or less also flows into the suction pipe 61 of this. Therefore, in this first invention, by providing the pressure sensor 25 through the heat absorbing pipe 90, it is difficult to transmit cool heat of the refrigerant flowing through the suction pipe 61 to the suction pressure sensor 25 connecting portion 25b. In addition, the endothermic pipe 90 absorbs heat from the ambient air, thereby making the connection portion 25b of the suction pressure sensor 25 at a temperature higher than 0 ° C, thereby preventing freezing of the connection portion 25b.

제 2 발명은, 제 1 발명에 있어서 상기 흡열용 배관(90)은, 상기 흡입압력 센서(25) 접속부(25b)의 온도가, 주위온도에 의하여 상기 흡입관(61)보다 온도가 승온되는 길이로 형성된다.According to a second aspect of the present invention, in the heat absorbing pipe (90), the temperature of the suction pressure sensor (25) connection portion (25b) is such that the temperature is higher than the suction pipe (61) by the ambient temperature. Is formed.

이 제 2 발명에서는, 흡열용 배관(90)이 주위공기로부터 흡열함으로써, 흡입관(61)에서 상기 흡입압력 센서(25) 접속부(25b)에 걸쳐 서서히 승온되어, 이 흡입압력 센서(25)의 접속부(25b)를 0℃보다 높은 온도로 한다.In the second invention, the heat absorbing pipe 90 absorbs heat from the surrounding air, whereby the suction pipe 61 is gradually heated up over the suction pressure sensor 25 connecting portion 25b, and the connecting portion of the suction pressure sensor 25 is heated. Let (25b) be temperature higher than 0 degreeC.

제 3 발명은, 제 2 발명에 있어서 상기 흡열용 배관(90)의 최소 길이는, 상기 증발기(16, 17)의 증발온도가 낮아짐에 따라 길어지는 소정의 설정 길이로 설정된다.In the second invention, in the second invention, the minimum length of the heat absorbing pipe 90 is set to a predetermined set length that becomes longer as the evaporator temperatures of the evaporators 16 and 17 decrease.

이 제 3 발명에서, 상기 증발기(16, 17)의 증발온도가 낮아짐에 따라 흡입관(61)을 흐르는 냉매의 온도가 낮아진다. 그래서 상기 흡열용 배관(90)의 최소 길이를, 상기 증발기(16, 17)의 증발온도가 낮아짐에 따라 길어지도록 함으로써, 흡입관(61)을 흐르는 냉매의 온도가 낮아짐에 따라, 이 냉매의 냉열이 흡입압력 센서(25)의 접속부(25b)에 전달되기 어렵게 한다. 한편, 상기 흡열용 배관(90)의 면적을 크게 하여 이 흡열용 배관(90)이 주위 공기 등으로부터 흡열하는 흡열량을 증대시킨다.In this third invention, as the evaporation temperature of the evaporators 16 and 17 is lowered, the temperature of the refrigerant flowing through the suction pipe 61 is lowered. Therefore, the minimum length of the heat absorbing pipe 90 is increased as the evaporator 16 and 17 are lowered, so that the temperature of the refrigerant flowing through the suction pipe 61 is lowered, thereby cooling the refrigerant. This makes it difficult to transmit to the connection portion 25b of the suction pressure sensor 25. On the other hand, the area of the heat absorbing pipe 90 is increased to increase the amount of heat absorbed by the heat absorbing pipe 90 from the ambient air.

제 4 발명은, 제 1 내지 제 3 발명 중 어느 하나에 있어서 상기 흡열용 배관(90)은, 상기 냉매회로(10)의 고압측 배관(64)에 전열부재(91)를 통하여 설치된다.In the fourth invention, in any one of the first to third inventions, the heat absorbing pipe 90 is provided to the high pressure side pipe 64 of the refrigerant circuit 10 through the heat transfer member 91.

이 제 4 발명에서는, 고압측 배관(64)의 열이 전열부재(91)를 통해 전열됨으로써, 상기 흡열용 배관(90)의 흡열량을 크게 하여, 상기 흡입압력 센서(25)의 접속부(25b)를 0℃보다 높은 온도로 한다.In this fourth invention, the heat of the high pressure side pipe 64 is transferred through the heat transfer member 91, thereby increasing the endothermic amount of the heat absorbing pipe 90 and connecting the connection portion 25b of the suction pressure sensor 25. ) Is set to a temperature higher than 0 ° C.

여기서 이 제 4 발명의 고압측 배관(64)이란, 흡입관(61)을 흐르는 냉매보다 고압인 냉매가 흐르며 또 0℃보다 높은 냉매가 흐르는 배관을 말한다.Here, the high pressure side piping 64 of this 4th invention means the piping through which the refrigerant | coolant which is higher than the refrigerant | coolant which flows through the suction pipe 61 flows, and the refrigerant | coolant higher than 0 degreeC flows.

제 5 발명은, 제 4 발명에서 상기 고압측 배관(64)은 상기 압축기구(11)의 토출관(64)이다.In the fifth invention, in the fourth invention, the high-pressure side pipe 64 is the discharge pipe 64 of the compression mechanism 11.

상기 흡열용 배관(90)이 고압측 배관(64)부터 전열부재를 통해 수취하는 흡열량은, 이 고압측 배관(64)의 온도가 높아질수록 커진다. 그래서 제 5 발명에서는 상기 흡열용 배관(90)을, 고온인 압축기구(11)의 토출관(64)과 전열부재(91)를 통하여 접속함으로써, 이 흡열용 배관(90)의 흡열량을 확실하게 크게 한다.The heat absorbing amount which the heat absorbing pipe 90 receives from the high pressure side pipe 64 through the heat transfer member increases as the temperature of the high pressure side pipe 64 increases. Thus, in the fifth invention, the endothermic amount of the heat absorbing pipe 90 is reliably connected by connecting the heat absorbing pipe 90 through the discharge pipe 64 and the heat transfer member 91 of the high temperature compression mechanism 11. Enlarge it.

[발명의 효과][Effects of the Invention]

상기 제 1 발명에 의하면, 흡열용 배관(90)에 의하여, 상기 흡입관(61)을 흐르는 냉매의 냉열을 흡입압력 센서(25)의 접속부(25b)에 전달되기 어렵게 할 수 있음과 더불어, 상기 흡열용 배관(90)이 주위 공기 등으로부터 흡열할 수 있다. 그 결과, 증발기(16, 17)의 설정온도가 낮아 흡입관(61)에 0℃ 이하의 저온냉매가 흐르는 경우라도, 상기 흡입압력 센서(25)의 접속부(25b)를 0℃보다 높은 온도로 할 수 있다. 이로써, 상기 흡입압력 센서(25) 접속부(25b)의 동결파손을 방지할 수 있으므로, 흡입압력 센서(25)의 신뢰성이 향상된다.According to the first invention, the heat absorbing pipe (90) can make it difficult to transmit the cold heat of the refrigerant flowing through the suction pipe (61) to the connection portion (25b) of the suction pressure sensor (25). The piping 90 may endotherm from ambient air or the like. As a result, even when the set temperature of the evaporators 16 and 17 is low and a low temperature refrigerant of 0 degrees C or less flows in the suction pipe 61, the connection part 25b of the said suction pressure sensor 25 will be made into temperature higher than 0 degreeC. Can be. As a result, freezing damage of the suction pressure sensor 25 connecting portion 25b can be prevented, thereby improving the reliability of the suction pressure sensor 25.

또, 실리콘 충전이나 납땜을 행하는 일없이 파손을 방지할 수 있으므로, 종래의 파손방지 대책에 비해, 흡입압력 센서(25)의 장착 시 및 교환 시 작업성이 향상된다.Moreover, since damage can be prevented without performing silicon filling or soldering, compared with the conventional damage prevention measures, workability | operativity at the time of attachment and replacement of the suction pressure sensor 25 improves.

또한, 상기 제 2 발명에 의하면, 상기 흡열용 배관(90)을, 상기 흡입압력 센서(25) 접속부(25b)의 온도가 주위온도에 의해 상기 흡입관(61)보다 승온하는 길이로 형성하므로, 상기 흡열용 배관(90)은 주위공기로부터 흡열하며, 이 흡열용 배관(90)을 흡입관(61)에서 흡입압력 센서(25) 접속부(25b)에 걸쳐 서서히 승온시킬 수 있다. 그 결과, 상기 흡입압력 센서(25)의 접속부(25b)를 0℃보다 높은 온도로 할 수 있다.Further, according to the second invention, the heat absorbing pipe 90 is formed to have a length at which the temperature of the suction pressure sensor 25 connection portion 25b is raised to a temperature higher than the suction pipe 61 due to the ambient temperature. The heat absorbing pipe 90 absorbs heat from the surrounding air, and the heat absorbing pipe 90 can be gradually heated up from the suction pipe 61 over the suction pressure sensor 25 connecting portion 25b. As a result, the connection part 25b of the said suction pressure sensor 25 can be made into temperature higher than 0 degreeC.

또, 상기 제 3 발명에 의하면, 상기 흡열용 배관(90)의 최소 길이를, 상기 증발기(16, 17)의 증발온도가 낮아짐에 따라 길어지는 소정의 설정 길이로 설정하므로, 흡입관(61)을 흐르는 냉매의 온도가 낮아짐에 따라, 이 냉매의 냉열을 흡입압력 센서(25)의 접속부(25b)에 전달되기 어렵게 할 수 있다. 이와 동시에, 상기 흡열용 배관(90)의 면적을 크게 하여 이 흡열용 배관(90)이 주위공기 등으로부터 흡열하는 흡열량을 증대시킬 수 있다. 이로써, 증발기(16, 17)의 설정온도에 따라, 상기 흡입압력 센서(25)의 접속부(25b)를 확실하게 0℃보다 높은 온도로 할 수 있다.Further, according to the third invention, since the minimum length of the heat absorbing pipe 90 is set to a predetermined set length which is lengthened as the evaporator 16 and 17 are lowered, the suction pipe 61 is set. As the temperature of the flowing coolant is lowered, it is possible to make it difficult to transmit cooling heat of the coolant to the connection portion 25b of the suction pressure sensor 25. At the same time, the area of the heat absorbing pipe 90 can be increased to increase the amount of heat absorbed by the heat absorbing pipe 90 from the ambient air. Thereby, the connection part 25b of the said suction pressure sensor 25 can be made to temperature higher than 0 degreeC reliably according to the set temperature of the evaporator 16,17.

또한, 상기 제 4 발명에 의하면, 상기 흡열용 배관(90)은, 냉매회로(10) 고압측 배관(64)의 열을 전열부재(91)를 통해 흡열할 수 있으므로, 상기 흡열용 배관(90)의 흡열량을 크게 할 수 있다. 이로써, 상기 흡입압력 센서(25)의 접속부(25b)를 0℃보다 높은 온도로 할 수 있다.Further, according to the fourth invention, the heat absorbing pipe 90 can absorb heat of the refrigerant circuit 10, the high pressure side pipe 64 through the heat transfer member 91, and thus the heat absorbing pipe 90 The endothermic amount of) can be increased. Thereby, the connection part 25b of the said suction pressure sensor 25 can be made into temperature higher than 0 degreeC.

또, 상기 제 5 발명에 의하면, 상기 흡열용 배관(90)은, 압축기구(11) 토출관(64)의 열을 전열부재(91)를 통해 흡열할 수 있으므로, 상기 압축기구(11)의 토출관(64)이 고온인 점에서, 상기 흡열용 배관(90)의 흡열량을 확실하게 크게 할 수 있다. 이로써, 상기 흡입압력 센서(25)의 접속부(25b)를 0℃보다 높은 온도로 할 수 있다.Further, according to the fifth invention, the heat absorbing pipe 90 can absorb heat of the compression mechanism 11 and the discharge pipe 64 through the heat transfer member 91, so that the Since the discharge tube 64 has a high temperature, the endothermic amount of the heat absorbing pipe 90 can be reliably increased. Thereby, the connection part 25b of the said suction pressure sensor 25 can be made into temperature higher than 0 degreeC.

도 1은, 실시형태에 관한 냉동장치의 냉매회로를 나타내는 배관계통도이다.1 is a piping system diagram showing a refrigerant circuit of the refrigerating device according to the embodiment.

도 2는, 실시형태에 관한 흡입압력 센서의 설치구조를 나타내는 개략사시도이다.2 is a schematic perspective view showing a mounting structure of a suction pressure sensor according to the embodiment.

도 3은, 실시형태에 관한 냉장열교환기의 증발온도와 흡열용배관 길이와의 관계를 나타내는 관계도이다.3 is a relationship diagram showing a relationship between an evaporation temperature and a heat absorbing pipe length of the refrigerating heat exchanger according to the embodiment.

도 4는, 실시형태에 관한 냉동장치의 냉각운전 중에 있어서 냉매의 순환방향을 나타내는 배관계통도이다.4 is a piping system diagram showing a circulation direction of the refrigerant during the cooling operation of the refrigerating device according to the embodiment.

도 5는 종래의 흡입압력 센서 설치구조를 나타내는 개략구성도이다.5 is a schematic configuration diagram showing a conventional suction pressure sensor mounting structure.

[부호의 설명][Description of the code]

1 : 냉동장치 10 : 냉매회로1: Refrigerating device 10: Refrigerant circuit

11 : 압축기(압축기구) 13 : 실외열교환기(응축기)11 compressor (compression mechanism) 13 outdoor heat exchanger (condenser)

25 : 흡입압력 센서 25a : 접속부25: suction pressure sensor 25a: connection

61 : 흡입관 64 : 토출관(고압측 배관)61: suction pipe 64: discharge pipe (high pressure side piping)

90 : 흡열용 배관 91 : 전열부재90: heat absorbing pipe 91: heat transfer member

이하, 본 발명의 실시형태를 도면에 기초하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described based on drawing.

본 발명의 실시형태는, 도 1에 나타내는 바와 같이 냉각실을 냉각하는 냉동 장치(1)이며, 실외유닛(2), 냉장유닛(3) 및 제어기(100)를 구비한다. 상기 실외유닛(2)은 옥외에 설치되는 한편, 상기 냉장유닛(3)은 냉각실 내에 설치된다.Embodiment of this invention is the refrigerating apparatus 1 which cools a cooling chamber as shown in FIG. 1, and is provided with the outdoor unit 2, the refrigerating unit 3, and the controller 100. As shown in FIG. The outdoor unit 2 is installed outdoors, while the refrigerating unit 3 is installed in a cooling chamber.

상기 냉동장치(1)에서는, 상기 실외유닛(2)에 실외회로(20)가, 상기 냉장유닛(3)에 냉장고내 회로(30)가 각각 형성된다. 냉동장치(1)에서는, 상기 실외회로(20) 가스단측과 상기 냉장고내 회로(30) 가스단측이 가스측 연결배관(22)으로 접속되는 한편, 상기 실외회로(20) 액단측과 상기 냉장고내 회로(30) 액단측이 액측 연결배관(21)으로 접속되어 증기압축식 냉동주기의 냉매회로(10)가 구성된다.In the refrigerating device 1, the outdoor circuit 20 is formed in the outdoor unit 2, and the internal circuit 30 in the refrigerator is formed in the refrigerating unit 3, respectively. In the refrigerating device 1, the gas circuit side of the outdoor circuit 20 and the gas circuit side of the internal circuit 30 of the refrigerator are connected to the gas side connection pipe 22, while the liquid circuit side of the outdoor circuit 20 and the gas terminal side of the refrigerator 20 are connected to each other. The liquid end side of the circuit 30 is connected to the liquid side connection pipe 21 to form the refrigerant circuit 10 of the vapor compression refrigeration cycle.

<실외유닛><Outdoor unit>

상기 실외유닛(2)의 실외회로(20)에는, 압축기(11), 실외열교환기(13), 수액기(14), 실외팽창밸브(45), 냉매열교환기(50), 및 분기팽창밸브(46)가 배치된다. 또 실외회로(20)에는 사방밸브(12)와, 액측 폐쇄밸브(53), 및 가스측 폐쇄밸브(54)가 배치된다. 이 실외회로(20)에서 액측 폐쇄밸브(53)에는 상기 액측 연결배관(21) 일단이, 가스측 폐쇄밸브(54)에는 상기 가스측 연결배관(22) 일단이 각각 접속된다.The outdoor circuit 20 of the outdoor unit 2 includes a compressor 11, an outdoor heat exchanger 13, a receiver 14, an outdoor expansion valve 45, a refrigerant heat exchanger 50, and a branch expansion valve. 46 is disposed. In addition, the four-way valve 12, the liquid side closing valve 53, and the gas side closing valve 54 are disposed in the outdoor circuit 20. One end of the liquid side connecting pipe 21 is connected to the liquid side closing valve 53 and one end of the gas side connecting pipe 22 is connected to the gas side closing valve 54 in the outdoor circuit 20.

상기 압축기(11)는 스크롤압축기이며, 인버터제어에 의하여 운전용량 가변으로 구성된다. 상기 압축기(11)의 흡입측에는 흡입관(61) 일단이 접속되며, 이 흡입관(61) 타단은 사방밸브(12)에 접속된다. 압축기(11) 토출측에는 토출관(64) 일단이 접속되며, 이 토출관(64) 타단은 사방밸브(12)에 접속된다.The compressor 11 is a scroll compressor, and is configured with a variable driving capacity by inverter control. One end of the suction pipe 61 is connected to the suction side of the compressor 11, and the other end of the suction pipe 61 is connected to the four-way valve 12. One end of the discharge tube 64 is connected to the discharge side of the compressor 11, and the other end of the discharge tube 64 is connected to the four-way valve 12.

상기 실외열교환기(13)는 크로스핀식의 핀튜브형 열교환기이며, 냉매와 실외공기 사이에서 열교환을 하는 것으로, 응축기로서 구성된다. 실외열교환기(13) 일 단은 사방밸브(12)에 접속된다. 한편, 실외열교환기(13) 타단은 제 1 액관(81)을 통하여 수액기(14) 정상부에 접속된다. 이 제 1 액관(81)에는 실외열교환기(13)에서 수액기(14)를 향하는 냉매의 유통만을 허용하는 체크밸브(CV-1)가 배치된다. 수액기(14) 바닥부에는 제 2 액관(82) 일단이 접속된다.The outdoor heat exchanger (13) is a cross fin fin tube type heat exchanger, and performs heat exchange between a refrigerant and outdoor air, and is configured as a condenser. One end of the outdoor heat exchanger 13 is connected to the four-way valve 12. On the other hand, the other end of the outdoor heat exchanger 13 is connected to the top of the receiver 14 via the first liquid pipe 81. The first liquid pipe 81 is provided with a check valve CV-1 that permits only the flow of refrigerant from the outdoor heat exchanger 13 to the receiver 14. One end of the second liquid pipe 82 is connected to the bottom of the receiver 14.

상기 냉매열교환기(50)는 플레이트식 열교환기로서, 냉매와 냉매 사이에서 열교환하며, 제 1 유로(50a)와 제 2 유로(50b)를 구비한다. 상기 냉매열교환기(50)의 제 1 유로(50a) 입구측에는 상기 제 2 액관(82) 타단이 접속되며, 제 1 유로(50a) 출구측에는 제 3 액관(83) 일단이 접속된다. 제 3 액관(83) 타단은, 액측 폐쇄밸브(53)를 통하여 액측 연결배관(21) 일단에 접속된다. 상기 제 3 액관(83)에는, 제 1 유로(50a)에서 액측 폐쇄밸브(53)를 향하는 냉매의 유통만을 허용하는 체크밸브(CV-2)가 설치된다.The refrigerant heat exchanger (50) is a plate heat exchanger, and exchanges heat between the refrigerant and the refrigerant, and includes a first flow path (50a) and a second flow path (50b). The other end of the second liquid pipe 82 is connected to the inlet side of the first flow path 50a of the refrigerant heat exchanger 50, and one end of the third liquid pipe 83 is connected to the outlet side of the first flow path 50a. The other end of the third liquid pipe 83 is connected to one end of the liquid side connecting pipe 21 via the liquid side closing valve 53. The third liquid pipe 83 is provided with a check valve CV-2 that allows only the flow of the refrigerant from the first flow path 50a toward the liquid side closing valve 53.

상기 제 3 액관(83)에는 상기 체크밸브(CV-2) 상류측에 분기액관(84) 일단이 접속되며, 이 분기액관(84) 타단은 상기 냉매열교환기(50)의 제 2 유로(50b) 입구측에 접속된다. 또 상기 분기액관(84)에는 분기팽창밸브(46)가 설치된다. 이 분기팽창밸브(46)는 개방도 조정이 자유로운 전자팽창밸브이다.One end of the branch liquid pipe 84 is connected to the third liquid pipe 83 upstream of the check valve CV-2, and the other end of the branch liquid pipe 84 is connected to the second flow path 50b of the refrigerant heat exchanger 50. ) Is connected to the inlet side. In addition, a branch expansion valve 46 is provided in the branch liquid pipe 84. The branch expansion valve 46 is an electromagnetic expansion valve in which the opening degree can be freely adjusted.

상기 냉매열교환기(50)의 제 2 유로(50b) 출구측은 주입관(85) 일단에 접속된다. 이 주입관(85) 타단은 흡입관(61)에서의 사방밸브(12)와 압축기(11) 사이에 접속된다.The outlet side of the second flow path 50b of the refrigerant heat exchanger 50 is connected to one end of the injection tube 85. The other end of the injection pipe 85 is connected between the four-way valve 12 and the compressor 11 in the suction pipe 61.

상기 제 3 액관(83)에서 체크밸브(CV-2)와 액측폐쇄밸브(53) 사이에는 제 4 액관(88) 일단이 접속된다. 제 4 액관(88) 타단은 제 1 액관(81)에서 체크밸 브(CV-1)와 수액기(14) 사이에 접속된다. 또 제 4 액관(88)에는 제 3 액관(83)에서 수액기(14)를 향하는 냉매의 유통만을 허용하는 체크밸브(CV-3)가 설치된다.One end of the fourth liquid pipe 88 is connected between the check valve CV-2 and the liquid side closing valve 53 in the third liquid pipe 83. The other end of the fourth liquid pipe 88 is connected between the check valve CV-1 and the receiver 14 in the first liquid pipe 81. The fourth liquid pipe 88 is provided with a check valve CV-3 that allows only the flow of the refrigerant from the third liquid pipe 83 toward the receiver 14.

상기 분기액관(84)에는 상기 제 3 액관(83)과 분기팽창밸브(46) 사이에 제 5 액관(89) 일단이 접속되며, 이 제 5 액관(89) 타단은 제 1 액관(81)에서의 실외열교환기(13) 타단과 체크밸브(CV-1) 사이에 접속된다. 또 제 5 액관(89)에는 실외팽창밸브(45)가 설치된다.One end of the fifth liquid pipe 89 is connected to the branch liquid pipe 84 between the third liquid pipe 83 and the branch expansion valve 46, and the other end of the fifth liquid pipe 89 is connected to the first liquid pipe 81. Is connected between the other end of the outdoor heat exchanger 13 and the check valve CV-1. In addition, the fifth liquid pipe 89 is provided with an outdoor expansion valve 45.

상기 사방밸브(12)는, 제 1 포트가 토출관(64)에, 제 2 포트가 흡입관(61)에, 제 3 포트가 실외열교환기(13) 일단에, 제 4 포트가 가스측 폐쇄밸브(54)에 각각 접속된다. 그리고 상기 사방밸브(12)는, 제 1 포트와 제 3 포트가 서로 연통하며 제 2 포트와 제 4 포트가 서로 연통하는 제 1 상태(도 1에 실선으로 나타내는 상태)와, 제 1 포트와 제 4 포트가 서로 연통하며 제 2 포트와 제 3 포트가 서로 연통하는 제 2 상태(도 1에 점선으로 나타내는 상태)로 전환 가능하게 구성된다.The four-way valve 12 has a first port at the discharge pipe 64, a second port at the suction pipe 61, a third port at one end of the outdoor heat exchanger 13, and a fourth port at the gas side closing valve. And 54 respectively. The four-way valve 12 includes a first state (a state indicated by a solid line in FIG. 1) in which a first port and a third port communicate with each other, and a second port and a fourth port communicate with each other, and the first port and the first port. Four ports communicate with each other, and the second port and the third port communicate with each other, and are configured to be switchable to a second state (state indicated by a dotted line in FIG. 1).

상기 실외회로(20)에는 오일분리기(70)와 오일회송관(71)이 설치된다.An oil separator 70 and an oil return pipe 71 are installed in the outdoor circuit 20.

상기 오일분리기(70)는 토출관(64)에 설치되며, 압축기(11)의 토출가스로부터 냉동기유를 분리하기 위한 것이다. 오일분리기(70)에는 제 1 오일회송관(71) 일단이 접속되며, 이 제 1 오일회송관(71) 타단은 흡입관(61)에서의 주입관(85) 접속부와 압축기(11) 사이에 접속된다. 또 상기 오일회송관(71)에는 냉동기유의 유량(流量)을 조정하기 위한 모세관(72)이 설치된다.The oil separator 70 is installed in the discharge pipe 64 to separate the refrigeration oil from the discharge gas of the compressor 11. One end of the first oil return pipe 71 is connected to the oil separator 70, and the other end of the first oil return pipe 71 is connected between the connection portion of the injection pipe 85 in the suction pipe 61 and the compressor 11. do. In addition, the oil return pipe 71 is provided with a capillary tube 72 for adjusting the flow rate of the refrigeration oil.

상기 실외회로(20)에는 각종 센서(19, 23, 24, 25, 51) 및 압력스위치(95a, 95b)가 설치된다. 구체적으로, 압축기(11) 흡입관(61)에는 주입관(85) 접속부와 오일회송관(71) 접속부 사이에 흡입온도센서(24)와 흡입압력 센서(25)가 차례로 배치된다. 이 흡입압력 센서(25)는 나중에 상세히 설명하지만, 본 발명의 특징으로서, 흡입관(61)에 흡열용배관(90)을 통하여 접속된다. 또, 압축기(11) 토출측에는 토출압력센서(23)와 토출온도센서(19)가 배치된다. 또한, 냉매열교환기(50)의 제 1 유로(50a) 출구측에는 온도센서(51)가 배치된다.The outdoor circuit 20 is provided with various sensors 19, 23, 24, 25, 51 and pressure switches 95a, 95b. Specifically, the suction temperature sensor 24 and the suction pressure sensor 25 are sequentially arranged in the compressor 11 suction pipe 61 between the injection pipe 85 connection part and the oil return pipe 71 connection part. Although this suction pressure sensor 25 is demonstrated in detail later, as a characteristic of this invention, it is connected to the suction pipe 61 through the heat absorption piping 90. Further, a discharge pressure sensor 23 and a discharge temperature sensor 19 are arranged on the discharge side of the compressor 11. In addition, a temperature sensor 51 is disposed at the outlet side of the first flow path 50a of the refrigerant heat exchanger 50.

또, 상기 실외유닛(2)에는 실외공기 온도센서(13a)와 실외 팬(13f)이 설치된다. 실외열교환기(13)에는 이 실외 팬(13f)에 의하여 실외공기가 공급된다.In addition, the outdoor unit 2 is provided with an outdoor air temperature sensor 13a and an outdoor fan 13f. Outdoor air is supplied to the outdoor heat exchanger 13 by this outdoor fan 13f.

<냉장유닛>Refrigeration unit

상기 냉장유닛(3)의 냉장고내 회로(30)에는 냉장열교환기(16, 17) 및 드레인팬 히터(26, 27)가 각각 2개씩 설치된다.The refrigerator internal circuit 30 of the refrigerating unit 3 is provided with two refrigerating heat exchangers 16 and 17 and two drain pan heaters 26 and 27, respectively.

상기 각 냉장열교환기(16, 17)는 모두 같은 크로스핀식 핀튜브형 열교환기이며, 냉매와 냉각실내 공기 사이에서 열교환하는 것으로, 증발기로 구성된다. 상기 각 냉장열교환기(16, 17) 일단은, 배관을 통하여 각 냉장팽창밸브(15a, 15b)에 접속된다. 한편, 상기 각 냉장열교환기(16, 17) 타단은, 각 가스측 분기배관(22a, 22b) 일단이 각각 접속되며, 이 가스측 분기배관(22a, 22b) 타단은 서로 합류하여 상기 가스측 연결배관(22) 타단에 접속된다.Each of the refrigerating heat exchangers (16, 17) is the same cross fin-type fin tube type heat exchanger, the heat exchange between the refrigerant and the air in the cooling chamber, it is composed of an evaporator. One end of each of the refrigerating heat exchangers 16 and 17 is connected to each of the refrigerating expansion valves 15a and 15b through a pipe. On the other hand, one end of each of the gas side branch pipes 22a and 22b is connected to the other end of each of the refrigerating heat exchangers 16 and 17, and the other ends of the gas side branch pipes 22a and 22b are joined to each other to connect the gas side. It is connected to the other end of the pipe 22.

상기 각 냉장팽창밸브(15a, 15b)는 개방도 조정이 자유롭게 구성된 전자팽창밸브이며, 팽창기구로 구성된다. 상기 각 냉장열교환기(16, 17)에는 제 1 냉매온도센서(16b, 17b)가 각각 배치되며, 각 냉장열교환기(16, 17) 타단에는 제 2 냉매온도센서(18a, 18b)가 각각 배치된다. 상기 제 1 냉매온도센서(16b, 17b)는 냉장 열교환기(16, 17)에서의 냉매 증발온도를 측정하는 것이다. 상기 냉장팽창밸브(15a, 15b)는, 냉각운전 중에 제 2 냉매온도센서(18a, 18b)의 측정온도가 제 1 냉매온도센서(16b, 17b)에서 측정되는 냉매의 증발온도보다 소정온도(예를 들어 5℃) 높아지도록 개방도 조정이 이루어지도록 구성된다.Each of the refrigerating expansion valves 15a and 15b is an electromagnetic expansion valve configured to freely adjust the opening degree, and is constituted by an expansion mechanism. The first refrigerant temperature sensors 16b and 17b are disposed in the refrigerator heat exchangers 16 and 17, respectively, and the second refrigerant temperature sensors 18a and 18b are disposed in the other ends of the refrigerator heat exchangers 16 and 17, respectively. do. The first refrigerant temperature sensors 16b and 17b measure the refrigerant evaporation temperature in the refrigerated heat exchangers 16 and 17. The refrigeration expansion valves 15a and 15b have a predetermined temperature (for example, a temperature higher than the evaporation temperature of the refrigerant measured by the first refrigerant temperature sensors 16b and 17b during the cooling operation). For example, 5 ° C.) so that the opening degree adjustment is made.

상기 드레인팬 히터(26, 27)는, 도시하지 않는 드레인팬에 배치되며, 고온고압의 냉매가 흘러 이 드레인팬을 덥힘으로써, 드레인팬의 착상이나 얼음의 생성을 방지한다. 상기 각 드레인팬 히터(26, 27) 일단에는 각 액측 분기배관(21a, 21b) 일단이 각각 접속되며, 이 각 액측 분기배관(21a, 21b) 타단은 서로 합류하여 상기 액측 연결배관(21) 타단에 접속된다. 한편, 상기 드레인팬 히터(26, 27) 타단은 상기 냉장팽창밸브(15a, 15b) 일단에 접속된다.The drain pan heaters 26 and 27 are disposed in a drain pan (not shown), and a refrigerant having a high temperature and high pressure flows to heat the drain pan, thereby preventing the drain pan from being implanted or generating ice. One end of each of the liquid side branch pipes 21a and 21b is connected to one end of each of the drain pan heaters 26 and 27, and the other end of each of the liquid side branch pipes 21a and 21b is joined to each other and the other end of the liquid side connecting pipe 21. Is connected to. On the other hand, the other end of the drain pan heaters 26 and 27 is connected to one end of the refrigeration expansion valves 15a and 15b.

또, 상기 냉장유닛(3)에는 냉각실내 온도센서(16a, 16b)와 냉각실내 팬(16f, 17f)이 설치된다. 상기 각 냉장열교환기(16, 17)에는, 이 냉각실내 팬(16f, 17f)에 의하여 냉각실 내 공기가 공급된다.In addition, the refrigerating unit 3 is provided with cooling chamber temperature sensors 16a and 16b and cooling chamber fans 16f and 17f. Air in a cooling chamber is supplied to each said refrigeration heat exchanger 16 and 17 by these cooling chamber fans 16f and 17f.

<제어기><Controller>

상기 제어기(100)는 상기 냉매회로(10)에 배치된 각종 밸브의 전환이나 개방도 조정 등을 행하여, 냉각실을 설정온도로 유지하는 냉각운전동작을 제어함과 더불어, 냉각실의 제상(除霜)운전동작을 제어한다.The controller 100 controls the cooling operation operation to maintain the cooling chamber at the set temperature by switching various valves and adjusting the opening degree of the valves arranged in the refrigerant circuit 10 and defrosting the cooling chamber. I) Control operation operation.

<흡입압력 센서의 장착구조><Mounting structure of suction pressure sensor>

다음으로, 본 발명의 특징인 흡입압력 센서(25)의 장착구조에 대하여 도 1∼도 3에 기초하여 보다 상세하게 설명한다.Next, the mounting structure of the suction pressure sensor 25 which is the characteristic of this invention is demonstrated in detail based on FIGS.

냉동장치(1)의 냉각운전 시에는 냉장열교환기(16, 17)에서 증발된 냉매가 흡입관(61)을 흐르므로, 냉장열교환기(16, 17)에서의 냉매 증발운도가 낮아, 흡입관(61)을 흐르는 냉매의 온도가 0℃이하이면 흡입압력 센서(25)의 접속부(25b)가 동결 파손될 우려가 있다. 그래서 본 발명의 특징으로서, 상기 흡입압력 센서(25)는, 도 1 및 도 2에 나타내는 바와 같이, 흡열용배관(90)을 통하여 압축기(11) 흡입관(61)에 접속되며, 또 상기 흡열용배관(90)은 전열부재(91)에 의하여 압축기(11) 토출관(64)과 접속된다.During the cooling operation of the refrigerating device 1, since the refrigerant evaporated in the refrigerating heat exchangers 16 and 17 flows through the suction pipe 61, the refrigerant evaporation cloud in the refrigerating heat exchangers 16 and 17 is low, and the suction pipe 61 If the temperature of the coolant flowing in the &lt; RTI ID = 0.0 &gt; Thus, as a feature of the present invention, the suction pressure sensor 25 is connected to the compressor 11 suction pipe 61 through the heat absorbing pipe 90, as shown in Figs. The pipe 90 is connected to the discharge pipe 64 of the compressor 11 by the heat transfer member 91.

즉, 상기 흡열용배관(90)은, 흡입압력 센서(25) 접속부(25b)의 온도를 흡입관(61) 온도보다 높이기 위한 것이다.That is, the endothermic pipe 90 is for raising the temperature of the suction pressure sensor 25 connection portion 25b to the temperature of the suction pipe 61.

구체적으로, 도 2에 나타내는 바와 같이 압축기(11)의 흡입관(61) 도중에는 흡열용 배관(90) 일단이 접속된다. 이 흡열용 배관(90)은 흡입관(61)보다 가는 관 지름이며 20㎝ 길이로 형성되고, 4회 구부러져 소형으로 형성된다. 또 상기 흡열용배관(90) 타단에는 외주부에 도시하지 않는 숫나사가 형성된다. 상기 흡입압력 센서(25)는 센서본체(25a)와 접속부(25b)로 이루어지며, 접속부(25b) 내주면에는 도시하지 않는 암나사가 형성된다. 그리고 상기 흡입압력 센서(25)는, 접속부(25b)의 숫나사를 흡열용배관(90) 타단의 숫나사에 결합시킴으로써, 흡열용배관(90)에 장착된다. 또, 상기 흡열용배관(90) 타단측에는, 게이지포트(gauge port)(26)를 구비하는 L자형의 포트용 세관(90a)이 접속된다.Specifically, as shown in FIG. 2, one end of the heat absorbing pipe 90 is connected in the middle of the suction pipe 61 of the compressor 11. The heat absorbing pipe 90 is a tube diameter thinner than the suction pipe 61 and is formed to have a length of 20 cm, and is bent four times to form a compact body. The other end of the heat absorbing pipe 90 is provided with a male screw not shown in the outer peripheral portion. The suction pressure sensor 25 is composed of a sensor body 25a and a connecting portion 25b, and a female screw (not shown) is formed on the inner circumferential surface of the connecting portion 25b. The suction pressure sensor 25 is attached to the heat absorbing pipe 90 by coupling the male screw of the connecting portion 25b to the male screw of the other end of the heat absorbing pipe 90. In addition, an L-shaped port tubular pipe 90a having a gauge port 26 is connected to the other end side of the heat absorbing pipe 90.

상기 전열부재(91)는, 도 2에 나타내는 바와 같이, 단면 L자형의 판형상으로 형성된다. 그리고 상기 전열부재(91)의 횡방향 일단이 토출관(64)에 있어서 오일 분리기(70) 하류측에 고정되는 한편, 타단이 흡열용배관(90) 타단측(흡입압력 센서(25)의 접속부(25b) 근방)에 고정된다. 또 상기 전열부재(91) 하단측은 포트용 세관(90a)에 고정된다. 여기서 이 전열부재(91)는 흡열용배관(90)을 지지하는 지지부재로서의 기능도 갖는다.As shown in FIG. 2, the heat transfer member 91 is formed in a plate shape having an L cross section. The one end in the lateral direction of the heat transfer member 91 is fixed to the downstream side of the oil separator 70 in the discharge pipe 64, while the other end is connected to the other end of the heat absorbing pipe 90 (suction part of the suction pressure sensor 25). It is fixed to (25b) vicinity. In addition, the lower end side of the heat transfer member 91 is fixed to the tubular pipe (90a). Here, the heat transfer member 91 also has a function as a support member for supporting the heat absorbing pipe 90.

다음에, 상기 흡열용배관(90)의 길이에 대하여 실험한 결과를 도 3에 기초하여 설명한다.Next, the results of the experiment on the length of the endothermic pipe 90 will be described with reference to FIG. 3.

도 3은, 냉장열교환기(16, 17)의 증발온도와, 흡입압력 센서(25) 접속부(25b)가 10℃가 되는 흡열용배관(90) 길이의 관계를 나타내는 도이다. 도 3에서 배관구조(A)는, 흡열용배관(90)을 압축기(11) 토출관(64)과 전열부재(91)에 의해 접속하지 않는 구조, 배관구조(B)는 본 실시형태와 같이 흡열용 배관(90)을 토출관(64)과 전열부재(91)로 접속한 구조를 나타낸다.3 is a diagram showing the relationship between the evaporation temperature of the refrigerating heat exchangers 16 and 17 and the length of the endothermic pipe 90 at which the suction pressure sensor 25 connection portion 25b is 10 ° C. In FIG. 3, the piping structure A is a structure in which the heat absorbing pipe 90 is not connected by the compressor 11, the discharge pipe 64, and the heat transfer member 91, and the piping structure B is the same as in the present embodiment. The structure which connected the heat absorbing piping 90 to the discharge pipe 64 and the heat transfer member 91 is shown.

배관구조(A)에서는, 흡입압력 센서(25) 접속부(25b)의 온도가 10℃로 되는 흡열용배관(90) 길이는, 냉장열교환기(16, 17)의 증발온도가 -10℃에서 20㎝, -30℃에서 48㎝, -40℃에서 57㎝란 식으로, 증발온도가 낮아짐에 따라 길게 할 필요가 있음을 알았다. 이는, 냉장열교환기(16, 17)의 증발온도가 낮아짐에 따라, 흡입관(61)을 흐르는 냉매의 온도가 낮아지므로, 그 냉매를 흡입압력 센서(25)의 접속부(25b)에 의해 전달되기 어렵게 할 필요가 있는 한편, 상기 흡열용배관(90)의 면적을 크게 하여 이 흡열용배관(90)이 주위 공기로부터 흡열하는 흡열량을 증대시킬 필요가 있기 때문이다.In the piping structure (A), the endothermic piping 90 length at which the temperature of the suction pressure sensor 25 connection portion 25b becomes 10 占 폚 has an evaporation temperature of the refrigeration heat exchangers 16 and 17 at -10 占 폚. It was found that it was necessary to lengthen the evaporation temperature as the formula was cm, 48 cm at -30 ° C, and 57 cm at -40 ° C. This is because as the evaporation temperature of the refrigerating heat exchanger (16, 17) is lowered, the temperature of the refrigerant flowing through the suction pipe (61) is lowered, so that the refrigerant is less likely to be delivered by the connection (25b) of the suction pressure sensor (25). On the other hand, it is necessary to increase the area of the endothermic pipe 90 so as to increase the endothermic amount of the endothermic pipe 90 endothermic from the surrounding air.

한편, 배관구조(B)에서는, 흡입압력 센서(25) 접속부(25b)의 온도가 10℃가 되는 흡열용배관(90) 길이는, 냉장열교환기(16, 17)의 증발온도가 -10℃에서 10㎝, -30℃에서 25㎝, -40℃에서 32㎝란 식으로, 배관구조(A)와 마찬가지로, 증발온도가 낮아짐에 따라 길이를 길게 할 필요가 있는 한편, 같은 증발온도에서는, 배관구조(A)에 비해 길이를 짧게 할 수 있음을 알았다. 이는, 상기 흡열용배관(90)이, 고온의 압축기(11) 토출관(64)으로부터 전열부재(91)를 통해 흡열할 수 있으므로, 주위공기로부터만 흡열하는 경우에 비해, 상기 흡열용배관(90)의 흡열량을 확실하게 크게 할 수 있기 때문이다.On the other hand, in the piping structure B, the length of the endothermic pipe 90 in which the temperature of the suction pressure sensor 25 connection portion 25b is 10 ° C, the evaporation temperature of the refrigerating heat exchanger 16, 17 is -10 ° C. 10 cm, -30 ° C. to 25 cm, and -40 ° C. to 32 cm, as in piping structure A, it is necessary to lengthen the length as the evaporation temperature decreases, while at the same evaporation temperature, It was found that the length can be shorter than that of the structure (A). This is because the endothermic pipe 90 can absorb heat from the high temperature compressor 11 discharge pipe 64 through the heat transfer member 91, so that the heat absorbing pipe 90 absorbs only the ambient air. This is because the endothermic amount of 90) can be reliably increased.

여기서, 흡입압력 센서(25) 접속부(25b)의 온도는, 이 접속부(25b)를 동결시키지 않기 위해, 적어도 0℃보다 높으면 되지만, 본 실험에서는 10℃가 되는 길이에 대해서 검토했다. 이는, 흡열용배관(90) 길이를, 접속부(25b) 온도가 0℃보다 높은 소정온도로 되는 길이로 설정하면, 냉장열교환기(16, 17)의 증발온도가 냉각부하의 변동 등에 의해 일시적으로 저하되는 경우라도, 접속부(25b)의 온도를 확실하게 0℃보다 높일 수 있기 때문이다. 이와 같이 냉동장치(1)의 부하변동도 고려하여, 흡열용배관(90)의 최소 길이를 도 3에 나타내는 길이로 설정한다.Here, although the temperature of the suction pressure sensor 25 connection part 25b should just be higher than 0 degreeC at least in order not to freeze this connection part 25b, in this experiment, the length which becomes 10 degreeC was examined. This means that when the endothermic pipe 90 is set to a length such that the temperature of the connection portion 25b becomes a predetermined temperature higher than 0 ° C, the evaporation temperatures of the refrigerating heat exchangers 16 and 17 are temporarily changed due to fluctuations in the cooling load. It is because even if it falls, the temperature of the connection part 25b can be raised reliably above 0 degreeC. Thus, considering the load fluctuation of the refrigerating device 1, the minimum length of the endothermic pipe 90 is set to the length shown in FIG.

그리고 본 실시형태에서는, 후술하는 바와 같이 냉장열교환기(16, 17)의 증발온도가 -10℃이므로, 배관구조(B)에서는 흡열용배관(90)을 10㎝ 이상으로 할 필요가 있다. 그래서 흡열용배관(90)을 10㎝ 이상의 임의의 길이인 20㎝ 길이로 형성한다.In this embodiment, since the evaporation temperature of the refrigerating heat exchangers 16 and 17 is -10 degreeC as mentioned later, in the piping structure B, it is necessary to make the endothermic piping 90 into 10 cm or more. Thus, the heat absorbing pipe 90 is formed to a length of 20 cm, which is an arbitrary length of 10 cm or more.

-운전동작-Operation operation

다음으로, 본 실시형태 냉동장치(1)의 냉각운전 중 동작에 대하여 도 4에 기 초하여 설명한다.Next, the operation | movement during the cooling operation of the refrigeration apparatus 1 of this embodiment is demonstrated based on FIG.

상기 냉동장치(1)의 냉각운전 중은, 도 4에 나타내는 바와 같이, 제어기(100)의 제어에 의하여, 실외회로(20)의 사방밸브(12)가 제 1 상태로 설정되며, 실외팽창밸브(45)가 전폐된다. 그리고 이 상태에서 압축기(11)에 운전되어, 냉장팽창밸브(15a, 15b) 및 분기팽창밸브(46)가 적절하게 개방도 제어되며, 냉매가 도 4의 실선 화살표로 나타내는 방향으로 순환된다. 여기서 이 냉각운전에서의 냉각실 설정온도를, 예를 들어 2℃로 한다.During the cooling operation of the refrigerating device 1, as shown in FIG. 4, the four-way valve 12 of the outdoor circuit 20 is set to the first state by the control of the controller 100, and the outdoor expansion valve (45) is to be closed. In this state, the compressor 11 is operated to control the opening of the refrigerating expansion valves 15a and 15b and the branch expansion valve 46 as appropriate, and the refrigerant is circulated in the direction indicated by the solid arrows in FIG. Here, the cooling chamber set temperature in this cooling operation is set to 2 degreeC, for example.

상기 압축기(11)에서 토출된 냉매는 토출관(64)으로부터 사방밸브(12)를 지나 실외열교환기(13)로 보내진다. 실외열교환기(13)에서는 냉매가 실외공기에 방열하여 응축된다. 실외열교환기(13)에서 응축된 냉매는 제 1 액관(81)을 흐르고 수액기(14)를 통과하여 제 2 액관(82)으로 유입되며, 냉매열교환기(50)의 제 1 유로(50a)를 흐른다. 제 1 유로(50a)를 흐른 액냉매는 제 3 액관(83)을 흐르며, 그 일부가 분기냉매로서, 도 4의 점선 화살표로 나타내는 바와 같이 분기액관(84)을 흐르고, 분기팽창밸브(46)에서 감압되어 상기 냉매열교환기(50)의 제 2 유로(50b)로 유입한다. 이에 따라, 제 1 유로(50a)를 흐르는 액냉매는 제 2 유로(50b)를 흐르는 분기냉매와 열교환되어, 예를 들어 15℃로 냉각된 후, 제 3 액관(83)으로부터 액측 폐쇄밸브(53)를 통하여 액측 연결배관(21)을 흐르며, 냉장고내 회로(30)로 유입한다. 또 제 2 유로(50b)의 분기액냉매는 증발되며, 주입관(85)을 통하여 압축기(11) 흡입관(61)으로 주입된다.The refrigerant discharged from the compressor (11) is sent from the discharge pipe (64) to the outdoor heat exchanger (13) through the four-way valve (12). In the outdoor heat exchanger (13), the refrigerant radiates heat to the outdoor air to condense. The refrigerant condensed in the outdoor heat exchanger (13) flows through the first liquid pipe (81), passes through the receiver (14), and flows into the second liquid pipe (82), and the first flow path (50a) of the refrigerant heat exchanger (50). Flows. The liquid refrigerant flowing through the first flow path 50a flows through the third liquid pipe 83, and part of the liquid refrigerant flows through the branch liquid pipe 84, as indicated by the dotted arrow in Fig. 4, as a branch refrigerant. The pressure is reduced in the flow in the second flow path (50b) of the refrigerant heat exchanger (50). Accordingly, the liquid refrigerant flowing through the first flow path 50a is heat-exchanged with the branch refrigerant flowing through the second flow path 50b, and is cooled to, for example, 15 ° C., and then the liquid side closing valve 53 from the third liquid pipe 83. Through the liquid-side connection pipe 21 flows into the circuit 30 in the refrigerator. In addition, the branch liquid refrigerant of the second flow path 50b is evaporated and injected into the compressor 11 and the suction pipe 61 through the injection pipe 85.

냉장고내 회로(30)에서는, 15℃의 액냉매가 각 액측 분기배관(21a, 21b)으로 분류되어 각 드레인팬 히터(26, 27)를 흐르며, 드레인팬(26, 27)의 착상을 방지한다.In the refrigerator circuit 30, a 15 ° C liquid refrigerant is classified into each of the liquid side branch pipes 21a and 21b and flows through each of the drain pan heaters 26 and 27, thereby preventing the drain pans 26 and 27 from being implanted. .

드레인팬 히터(26, 27)로부터 유출된 액냉매는 각 냉장팽창밸브(15a, 15b)를 통과할 때 감압되어 팽창되며, 각 냉장열교환기(16, 17)로 도입된다. 이 각 냉장열교환기(16, 17)에서는, 냉매가 냉각실 내 공기로부터 흡열하여, 예를 들어 -10℃의 증발온도로 증발한다. 냉장유닛(3)에서는, 냉장열교환기(16, 17)에서 냉각된 공기가 냉각실 내로 공급되며, 냉각실 내 온도가 설정온도인 2℃로 유지된다.The liquid refrigerant flowing out of the drain pan heaters 26 and 27 is decompressed and expanded when passing through each of the refrigerating expansion valves 15a and 15b and is introduced into the refrigerating heat exchangers 16 and 17. In each of the refrigerating heat exchangers (16, 17), the refrigerant absorbs heat from the air in the cooling chamber and evaporates to an evaporation temperature of, for example, -10 占 폚. In the refrigerating unit (3), air cooled in the refrigerating heat exchangers (16, 17) is supplied into the cooling chamber, and the temperature in the cooling chamber is maintained at 2 deg.

상기 각 냉장열교환기(16, 17)를 흐른 냉매는, 각 가스측 분기배관(22a, 22b)을 흐른 후 가스측 연결배관(22)에서 합류한다. 그 후, 상기 가스냉매는 가스측 연결배관(22)을 흐르고 사방밸브(12)를 통해 흡입관을 흐르며, 압축기(11)로 흡입되어 압축된다.The refrigerant flowing through each of the refrigeration heat exchangers (16, 17) flows through each of the gas side branch pipes (22a, 22b) and then merges in the gas side connection pipe (22). Thereafter, the gas refrigerant flows through the gas side connection pipe 22 and flows through the intake pipe through the four-way valve 12, and is sucked into the compressor 11 and compressed.

여기서, 흡입관(61)에는 상기 냉장열교환기(16, 17)에서 증발한 약 -10℃의 냉매가 흐르지만, 본 발명에서는 흡입압력 센서(25)를, 흡열용배관(90)을 통하여 흡입관(61)에 접속하며, 또 흡열용배관(90)과 압축기(11) 토출관(64)과 전열부재(64)를 통하여 접속되므로, 흡입압력 센서(25)의 접속부(25b)가 동결 파손되는 일이 없다. 또한 도 3에 나타낸 바와 같이 냉장열교환기(16, 17)의 증발온도가 -23℃ 이상이면, 흡입압력 센서(25) 접속부(25b)의 온도는 확실하게 10℃ 이상이 되므로, 냉각운전 중에 냉각부하의 변동이 발생해도, 접속부(25b)를 확실하게 0℃보다 높은 온도로 할 수 있다.Here, although the refrigerant of about −10 ° C. evaporated from the refrigerating heat exchanger (16, 17) flows into the suction pipe (61), in the present invention, the suction pressure sensor (25) passes through the suction pipe (90) for the suction pipe ( 61 is connected to the heat absorbing pipe 90, the compressor 11, the discharge pipe 64, and the heat transfer member 64, so that the connection portion 25b of the suction pressure sensor 25 freezes and breaks. There is no In addition, as shown in FIG. 3, when the evaporation temperature of the refrigerating heat exchangers 16 and 17 is -23 degreeC or more, the temperature of the suction pressure sensor 25 connection part 25b will become 10 degreeC or more certainly, and it cools during cooling operation. Even if the load fluctuates, the connection part 25b can be made temperature higher than 0 degreeC reliably.

여기서, 상기 냉동장치(1)는 상기 냉각운전을 일시적으로 정지시켜 제상(除 霜)운전을 하도록 구성된다. 이 제상운전 중 동작은 도시하지 않으나, 사방밸브(12)가 제 2 상태로 설정되며, 냉장팽창밸브(15a, 15b)가 전개상태, 분기팽창밸브(46)가 전폐상태로 되어 실외팽창밸브(45)가 적절하게 제어되고, 냉매가 냉각운전 시와 역방향으로 순환하는 역 주기의 제상운전이 이루어진다.Here, the refrigerating device 1 is configured to temporarily stop the cooling operation to perform a defrosting operation. Although the operation during the defrosting operation is not shown, the four-way valve 12 is set to the second state, the refrigerating expansion valves 15a and 15b are in the expanded state, and the branch expansion valve 46 is in the fully closed state. 45) is properly controlled, and a defrosting operation in reverse cycle is performed in which the refrigerant circulates in the reverse direction as in the cooling operation.

구체적으로, 압축기(11)의 토출가스냉매가 각 냉장열교환기(16, 17) 및 각 드레인팬 히터(26, 27)를 흐르고, 각 냉장열교환기(16, 17)나 드레인팬에 부착한 성에에 방열하여 응축 액화되며, 실외회로(20)의 제 4 액관(88)을 흐른다. 그 후 냉매는 액측 연결배관(21)을 흐르고 실외회로(20)로 도입되어 제 4 액관(88)을 흐르며, 수액기(14)와 냉매열교환기(50) 제 1 유로(50a)를 흐른다. 그리고 냉매는 제 5 액관(89)을 흐를 때 실외팽창밸브(45)에서 팽창되어 실외열교환기(13)에서 응축되며, 압축기(11)로 흡입된다.Specifically, the discharge gas refrigerant of the compressor 11 flows through each of the refrigerating heat exchangers 16 and 17 and each of the drain fan heaters 26 and 27, and is attached to each of the refrigerating heat exchangers 16 and 17 or the drain pan. It condenses and liquefies by dissipating to the fourth liquid pipe (88) of the outdoor circuit (20). Thereafter, the refrigerant flows through the liquid side connection pipe 21 and is introduced into the outdoor circuit 20 to flow through the fourth liquid pipe 88, and flows through the receiver 14 and the first flow path 50a of the refrigerant heat exchanger 50. In addition, when the fifth liquid pipe 89 flows, the refrigerant expands in the outdoor expansion valve 45 to condense in the outdoor heat exchanger 13 and is sucked into the compressor 11.

-실시형태의 효과-Effect of Embodiments

상기 냉동장치(1)는, 흡열용배관(90)에 의하여, 상기 흡입관(61)을 흐르는 냉매의 냉열이 흡입압력 센서(25) 접속부(25b)에 전달되기 어렵게 할 수 있음과 더불어, 상기 흡열용배관(90)이 주위공기나 토출관(64)으로부터 흡열할 수 있다. 그 결과, 냉장열교환기(16, 17)에서 증발된 -10℃의 냉매가 흡입관(61)을 흘러도, 흡입압력 센서(25) 접속부(25b)를 -0℃보다 높은 온도로 할 수 있다. 이로써, 흡입압력 센서(25) 접속부(25b)의 동결파손을 방지할 수 있으므로, 흡입압력 센서(25)의 신뢰성이 향상된다. 또 실리콘 충전이나 납땜처리를 하는 일없이 파손을 방지할 수 있으므로, 종래의 파손방지대책에 비해, 흡입압력 센서(25)의 장착 시 및 교 환 시의 작업성이 향상된다.The refrigeration apparatus (1), by the endothermic pipe 90, the cooling heat of the refrigerant flowing through the suction pipe 61 can be difficult to be transmitted to the suction pressure sensor (25) connection portion 25b, the endothermic The molten pipe 90 can absorb heat from the surrounding air or the discharge pipe 64. As a result, even if the −10 ° C. refrigerant evaporated in the refrigerating heat exchangers 16 and 17 flows through the suction pipe 61, the suction pressure sensor 25 connection portion 25 b can be set to a temperature higher than −0 ° C. As a result, freezing damage of the suction pressure sensor 25 connection portion 25b can be prevented, thereby improving the reliability of the suction pressure sensor 25. In addition, since damage can be prevented without performing silicon filling or soldering, workability at the time of mounting and replacing the suction pressure sensor 25 is improved as compared with the conventional damage prevention measures.

또 상기 흡열용배관(90)은, 냉매회로(10) 토출관(64)의 열을 전열부재(91)를 통해 흡열하므로, 상기 흡열용배관(90)의 흡열량을 크게 할 수 있다. 이로써, 상기 흡입압력 센서(25) 접속부(25b)를 0℃보다 높은 온도로 할 수 있다.In addition, since the heat absorbing pipe 90 absorbs heat from the discharge pipe 64 of the refrigerant circuit 10 through the heat transfer member 91, the endothermic amount of the heat absorbing pipe 90 can be increased. Thereby, the said suction pressure sensor 25 connection part 25b can be made into temperature higher than 0 degreeC.

또한 상기 흡열용배관(90)은, 압축기구(11) 토출관(64)의 열을 전열부재(91)를 통해 흡열할 수 있으므로, 상기 압축기구(11) 토출관(64)이 고온인 점에서, 상기 흡열용배관(90)의 흡열량을 확실하게 크게 할 수 있다. 이로써, 상기 흡입압력 센서(25) 접속부(25b)를 확실하게 0℃보다 높은 온도로 할 수 있다.In addition, the heat absorbing pipe (90) can absorb the heat of the discharge pipe (64) of the compression mechanism (11) through the heat transfer member (91), so that the discharge pipe (64) of the compression mechanism (11) is hot. In this case, the endothermic amount of the endothermic pipe 90 can be reliably increased. Thereby, the said suction pressure sensor 25 connection part 25b can be made to temperature higher than 0 degreeC reliably.

<<그 밖의 실시형태>><< other embodiment >>

상기 실시형태에 대해서는, 이하와 같은 구성으로 해도 된다.About the said embodiment, you may be set as the following structures.

상기 실시형태의 냉동장치(1)는, 흡열용 배관(90)을 길이 20㎝로 형성하며, 또 토출관(64)과 전열부재(91)로 접속하나, 전열부재(91)를 설치하는 일없이 흡열용 배관(90)을 소정 길이로 형성하는 것만으로 동결을 방지하도록 해도 된다. 즉, 도 3에 나타낸 바와 같이 흡열용 배관(90)을 토출관(64)과 접속하지 않는 배관구조(A)에서도, 흡열용 배관(90)의 길이를, 증발온도 -10℃에서 20㎝ 이상, -30℃에서 48㎝ 이상이란 식으로, 증발온도가 낮아짐에 따라 길어지는 소정의 설정 길이로 설정하면, 흡입압력 센서(25)의 접속부(25b)를 10℃ 이상으로 할 수 있다. 따라서 흡열용 배관(90)의 길이를 그 길이 이상으로 설정하면, 흡열용 배관(90)을 토출관(64)과 접속하는 일없이, 접속부(25b)를 확실하게 0℃보다 높은 온도로 하여 동결파손을 방지할 수 있다.The refrigeration apparatus 1 of the said embodiment forms the heat absorption piping 90 to 20 cm in length, and connects the discharge pipe 64 and the heat transfer member 91, but installs the heat transfer member 91. Without forming the heat absorbing pipe 90 to a predetermined length, the freezing may be prevented. That is, even in the piping structure A which does not connect the heat absorbing piping 90 with the discharge pipe 64, as shown in FIG. 3, the length of the heat absorbing piping 90 is 20 cm or more at the evaporation temperature -10 degreeC. When the evaporation temperature is set to a predetermined set length which is longer as the evaporation temperature is lowered in the formula of -30 ° C and 48 cm or more, the connection portion 25b of the suction pressure sensor 25 can be made 10 ° C or more. Therefore, if the length of the heat absorbing pipe 90 is set to the length or more, the connection part 25b is reliably set to a temperature higher than 0 ° C. and is frozen without connecting the heat absorbing pipe 90 with the discharge pipe 64. Breakage can be prevented.

즉, 상기 흡열용 배관(90)은, 상기 흡입압력 센서(25) 접속부(25b)의 온도가, 주위온도에 의해 상기 흡입관(61)보다 승온되는 길이로 형성하면 된다. 그리고 상기 흡열용 배관(90)의 최소 길이는, 상기 증발기(16, 17)의 증발온도가 낮아짐에 따라 길어지는 소정의 설정 길이로 설정하면 된다.That is, the heat absorbing pipe 90 may be formed so that the temperature of the suction pressure sensor 25 connection portion 25b is longer than the suction pipe 61 due to the ambient temperature. The minimum length of the heat absorbing pipe 90 may be set to a predetermined set length which is increased as the evaporator temperatures of the evaporators 16 and 17 are lowered.

또, 이 경우 흡열용 배관(90)은 어느 위치에 설치해도 되나, 예를 들어 이 흡열용 배관(90)을 토출관(64) 가까이에 위치하도록 설치하면, 고온인 토출관(64)의 열이 공기를 통해 전달되어, 흡열량을 더 크게 할 수 있다.In this case, the heat absorbing pipe 90 may be provided at any position. For example, if the heat absorbing pipe 90 is provided to be located near the discharge pipe 64, the heat of the heat discharge pipe 64 is high. It is transmitted through the air, so that the endothermic amount can be increased.

또한, 상기 실시형태에서 도 3에 나타낸 흡열용 배관(90)의 길이는, 오로지 예시일 뿐이며, 흡열용 배관(90) 길이나, 흡열용 배관(90)이 설치되는 주위의 온도조건이나, 전열부재(91)의 열전도율이나, 압축기(11)의 토출관(64) 온도 등에 따라 적절하게 설정하는 것이 바람직하다. 또, 냉동장치(1)의 냉각부하 변동이 적으며 증발기(16, 17)의 증발온도가 일정한 경우는, 흡열용 배관(90) 길이를 흡입압력 센서(25) 접속부(25b)의 온도가, 예를 들어 1℃가 되는 길이로 설정해도 된다.In addition, in the said embodiment, the length of the heat absorbing piping 90 shown in FIG. 3 is only an example, The length of the heat absorbing piping 90, the temperature condition of the surroundings in which the heat absorbing piping 90 is provided, and heat transfer are shown. It is preferable to set suitably according to the thermal conductivity of the member 91, the temperature of the discharge tube 64 of the compressor 11, etc. In addition, when the cooling load fluctuation of the refrigerating device 1 is small and the evaporator 16 and 17 have a constant evaporation temperature, the length of the heat absorbing pipe 90 is determined by the temperature of the suction pressure sensor 25 connection portion 25b, For example, you may set to the length used as 1 degreeC.

또, 상기 실시형태의 냉동장치(1)는, 냉매를 1단압축 하는 냉동주기를 실행하나, 냉동장치는 냉각실을 냉동하는 냉동용 열교환기를 가지며, 냉매를 2단압축 하는 냉동주기를 행하는 것이라도 된다. 이 경우, 저단측 압축기의 흡입관을 흐르는 냉매의 온도가 매우 낮아지므로, 이 저온 냉매의 압력을 측정하는 압력센서를 흡열용 배관을 통하여 흡입관에 장착해도 된다. 또한, 이 흡열용 배관을 상기 냉매회로의 고압측 배관이나 저단측 압축기의 토출냉매가 흐르는 토출관과 전열부재를 통하여 접속하도록 해도 된다.In addition, the refrigerating device 1 of the above embodiment performs a refrigerating cycle for compressing the refrigerant in one stage, but the refrigerating apparatus has a refrigeration heat exchanger for refrigerating the cooling chamber and performs a refrigerating cycle for compressing the refrigerant in two stages. You may also In this case, since the temperature of the refrigerant flowing through the suction pipe of the low stage compressor becomes very low, a pressure sensor for measuring the pressure of the low temperature refrigerant may be attached to the suction pipe through the heat absorption pipe. The heat absorbing pipe may be connected to the high pressure side pipe of the refrigerant circuit or the discharge pipe through which the discharge refrigerant of the low stage compressor flows and the heat transfer member.

또한, 고단측 압축기를 갖는 실외회로에 대하여, 냉동용 열교환기와 저단측 압축기가 접속된 냉동회로와, 냉장용 열교환기를 갖는 냉장회로가 병렬 접속되며, 고단측 압축기와 저단측 압축기가 모두 0℃ 이하의 냉매를 흡입할 경우, 각 압축기 흡입관의 흡입압력 센서를 흡열용 배관을 통하여 접속하도록 해도 된다.In the outdoor circuit having a high stage compressor, a refrigerating circuit in which a refrigeration heat exchanger and a low stage compressor are connected, and a refrigerating circuit having a refrigeration heat exchanger are connected in parallel, and both the high stage compressor and the low stage compressor are 0 ° C. or less. May be connected to the suction pressure sensor of each compressor suction pipe via the heat absorbing pipe.

또, 상기 실시형태의 냉동장치(1)는, 흡열용 배관(90)을 압축기의 토출관(64)과 접속하나, 냉매회로(10)의 그 밖의 고압측 배관과 접속해도 된다. 구체적으로는, 제 1∼제 3 액관(81, 82, 83)이 예시된다.In addition, although the refrigeration apparatus 1 of the said embodiment connects the heat absorption piping 90 with the discharge pipe 64 of a compressor, you may connect with the other high pressure side piping of the refrigerant | coolant circuit 10. FIG. Specifically, the first to third liquid pipes 81, 82, 83 are illustrated.

또한, 상기 실시형태의 냉동장치는, 압축기구(11)를 1대의 압축기(11)로 구성하나, 압축기구(11)는 복수의 병렬 접속된 압축기로 구성해도 된다.In addition, although the refrigeration apparatus of the said embodiment comprises the compression mechanism 11 with one compressor 11, the compression mechanism 11 may be comprised with the compressor connected in parallel.

그리고 이상의 실시형태는 본질적으로 바람직한 예시이며, 본 발명, 그 적용물, 또는 그 용도범위의 제한을 의도하는 것은 아니다.And the above embodiments are essentially preferred examples and are not intended to limit the invention, its applications, or its scope of use.

이상 설명한 바와 같이, 본 발명은 압축기구의 흡입압력을 측정하는 흡입압력 센서를 구비하는 냉동장치에 대하여 유용하다.As described above, the present invention is useful for a refrigerating device having a suction pressure sensor for measuring the suction pressure of a compression mechanism.

Claims (5)

증발기(16, 17)와 압축기구(11)와 응축기(13)와 팽창기구(15a, 15b)가 차례로 접속된 냉매회로(10)를 구비함과 더불어, 상기 압축기구(11)의 흡입압력을 측정하기 위한 흡입압력 센서(25)를 구비하는 냉동장치에 있어서,The refrigerant circuit 10 is connected to the evaporator 16, 17, the compression mechanism 11, the condenser 13, and the expansion mechanisms 15a, 15b in turn, and the suction pressure of the compression mechanism 11 is increased. In the refrigerating device having a suction pressure sensor 25 for measuring, 상기 흡입압력 센서(25)는, 상기 압축기구(11)의 흡입관(61)에, 상기 흡입압력 센서(25)의 접속부(25b)의 온도를 흡입관(61) 온도보다 높이기 위한 흡열용 배관(90)을 통하여 접속되는 것을 특징으로 하는 냉동장치.The suction pressure sensor 25 is a heat absorption pipe 90 for raising the temperature of the connection portion 25b of the suction pressure sensor 25 to the suction pipe 61 of the compression mechanism 11 higher than the suction pipe 61 temperature. Refrigeration apparatus characterized in that connected through). 청구항 1에 있어서,The method according to claim 1, 상기 흡열용 배관(90)은, 상기 흡입압력 센서(25)의 접속부(25b)의 온도가, 주위온도에 따라 상기 흡입관(61)보다 온도가 승온되는 길이로 형성되는 것을 특징으로 하는 냉동장치.The endothermic pipe (90) is a refrigeration apparatus, characterized in that the temperature of the connection portion (25b) of the suction pressure sensor (25) is formed in a length such that the temperature is higher than the suction pipe (61) according to the ambient temperature. 청구항 2에 있어서,The method according to claim 2, 상기 흡열용 배관(90)의 최소 길이는, 상기 증발기(16, 17)의 증발온도가 낮아짐에 따라 길어지는 소정의 설정 길이로 설정되는 것을 특징으로 하는 냉동장치.The minimum length of the heat absorbing pipe (90) is set to a predetermined set length that is lengthened as the evaporator (16, 17) evaporation temperature is lowered. 청구항 1에 있어서,The method according to claim 1, 상기 흡열용 배관(90)은, 상기 냉매회로(10)의 고압측 배관(64)에 전열부 재(91)를 통하여 설치되는 것을 특징으로 하는 냉동장치.The heat absorbing pipe (90) is installed in the high pressure side pipe (64) of the refrigerant circuit (10) via a heat transfer member (91). 청구항 4에 있어서,The method according to claim 4, 상기 고압측 배관(64)은 상기 압축기구(11)의 토출관(64)인 것을 특징으로 하는 냉동장치.The high pressure side pipe (64) is a refrigeration apparatus, characterized in that the discharge pipe (64) of the compression mechanism (11).
KR1020087029682A 2006-05-18 2007-05-17 Refrigeration device KR20090013222A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006139040A JP4082434B2 (en) 2006-05-18 2006-05-18 Refrigeration equipment
JPJP-P-2006-139040 2006-05-18

Publications (1)

Publication Number Publication Date
KR20090013222A true KR20090013222A (en) 2009-02-04

Family

ID=38723269

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087029682A KR20090013222A (en) 2006-05-18 2007-05-17 Refrigeration device

Country Status (7)

Country Link
US (1) US20090188276A1 (en)
EP (1) EP2019273A1 (en)
JP (1) JP4082434B2 (en)
KR (1) KR20090013222A (en)
CN (1) CN101449118A (en)
AU (1) AU2007252631A1 (en)
WO (1) WO2007135957A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585189B2 (en) * 2010-04-30 2014-09-10 ダイキン工業株式会社 Air conditioner
JP5821384B2 (en) * 2011-08-08 2015-11-24 ダイキン工業株式会社 Sensor mounting structure
JP2014163548A (en) * 2013-02-22 2014-09-08 Fujitsu General Ltd Air conditioning apparatus
CN103759477B (en) * 2014-01-07 2016-06-29 广东美芝制冷设备有限公司 Refrigerating circulatory device
JP6431776B2 (en) * 2015-01-19 2018-11-28 出光興産株式会社 Lubricating oil composition
CN111855735B (en) * 2020-08-06 2021-06-22 兰州理工大学 Efficient and accurate measuring device for salt expansion and frost heaving of salt solution

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148Y1 (en) * 1970-08-12 1975-01-06
JPS5116317Y1 (en) * 1970-08-13 1976-04-28
JPH0431689A (en) * 1990-05-24 1992-02-03 Hitachi Ltd Scroll compressor and freezing cycle with scroll compressor
JPH09329517A (en) * 1996-06-10 1997-12-22 Fuji Koki:Kk Pressure detecting device
JP2002048665A (en) * 2000-07-31 2002-02-15 Yamatake Corp Steam jacket structure of pressure-measuring apparatus
JP2004301456A (en) * 2003-03-31 2004-10-28 Toyota Industries Corp Refrigerating cycle apparatus and equipment for the same
JP2004353996A (en) 2003-05-30 2004-12-16 Daikin Ind Ltd Refrigerating equipment

Also Published As

Publication number Publication date
US20090188276A1 (en) 2009-07-30
JP4082434B2 (en) 2008-04-30
AU2007252631A1 (en) 2007-11-29
EP2019273A1 (en) 2009-01-28
JP2007309586A (en) 2007-11-29
WO2007135957A1 (en) 2007-11-29
CN101449118A (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP5944057B2 (en) Refrigeration system defrost system and cooling unit
JP5595245B2 (en) Refrigeration equipment
JP5357418B2 (en) Heat pump air conditioner
JPWO2018047416A1 (en) Air conditioner
ES2879920T3 (en) Refrigeration appliance
KR20090013222A (en) Refrigeration device
JP2016156557A (en) Refrigeration cycle device
JP2010164295A (en) Refrigerating device
JP4665560B2 (en) Refrigeration equipment
KR20060029490A (en) A refrigeration cycle system and an air conditioner
JP2007309585A (en) Refrigerating device
JP2003269809A (en) Cooling device and thermostatic device
WO2015037057A1 (en) Refrigerating device
JP2009293887A (en) Refrigerating device
JP2008032337A (en) Refrigerating apparatus
KR100505236B1 (en) Air-conditioner
CN113631876B (en) Defrosting system
KR100775067B1 (en) Refrigerating/freezing equipment and controlling method thereof
KR101766466B1 (en) Non-frost high performance air source heatpump system
JP4735401B2 (en) Refrigeration equipment
JP2011169558A (en) Refrigerating machine for transportation
JP6564658B2 (en) Refrigeration equipment
JP5821384B2 (en) Sensor mounting structure
JP4699176B2 (en) Refrigeration circuit and refrigeration apparatus equipped with the same
KR20150141006A (en) Refrigerant system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application