WO2007135906A1 - Method for dry-etching interlayer insulating film - Google Patents

Method for dry-etching interlayer insulating film Download PDF

Info

Publication number
WO2007135906A1
WO2007135906A1 PCT/JP2007/060010 JP2007060010W WO2007135906A1 WO 2007135906 A1 WO2007135906 A1 WO 2007135906A1 JP 2007060010 W JP2007060010 W JP 2007060010W WO 2007135906 A1 WO2007135906 A1 WO 2007135906A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
etching
interlayer insulating
insulating film
dry etching
Prior art date
Application number
PCT/JP2007/060010
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Morikawa
Koukou Suu
Original Assignee
Ulvac, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac, Inc. filed Critical Ulvac, Inc.
Priority to CN2007800189986A priority Critical patent/CN101454878B/en
Priority to KR1020087028192A priority patent/KR101190137B1/en
Priority to JP2008516618A priority patent/JP4950188B2/en
Priority to US12/301,786 priority patent/US20100219158A1/en
Priority to DE112007001243.9T priority patent/DE112007001243B4/en
Publication of WO2007135906A1 publication Critical patent/WO2007135906A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics

Definitions

  • the present invention relates to a method for dry etching an interlayer insulating film.
  • the material of the interlayer insulation film that solves the problem of wiring delay is SiO to low dielectric constant material (low
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-72518 (Description of paragraph (0005), etc.)
  • ArF resist materials generally have poor plasma resistance, and therefore are easily damaged and deformed during plasma etching as the exposure pattern becomes finer. This deformation is directly transferred to the low dielectric constant film under the resist by etching, so that it is easy for roughness such as striations to occur at the edges of the grooves microfabricated in the low dielectric constant film. Problems arise.
  • an object of the present invention is to solve the above-mentioned problems of the prior art and provide a dry etching method for an interlayer insulating film without causing resist damage.
  • the dry etching method for an interlayer insulating film of the present invention is an interlayer insulating film that finely processes an interlayer insulating film while forming a polymer film on an ArF resist or KrF resist provided on the interlayer insulating film by an etching gas.
  • a dry etching method for film wherein the etching gas is introduced at a pressure of less 0. 5 Pa, the peak of C-F bond in the vicinity of 1200 cm _1, 160 OCM near to the C-N bond _1 peaks and 3300cm around _1 C—H bond peak (Furi Etching while forming a polymer film having a spectrum measured by a conversion infrared spectrophotometer.
  • the etching gas is preferably an etching gas obtained by mixing a CF-based gas, an N-containing gas, and a lower hydrocarbon gas.
  • etching gases it is possible to form a polymer film having a C—F bond peak, a CN bond peak, and a CH bond peak, reducing resist damage, and having a low dielectric constant. It is possible to etch the film without etching stop.
  • the etching gas is preferably an etching gas in which CFHF gas and N-containing gas are mixed. Even if these etching gases are used, it is possible to form a polymer film having a C—F bond peak, a CN bond peak, and a CH bond peak, reducing resist damage, and reducing the dielectric constant film. It is possible to etch without etching stop.
  • the CF gas is a small amount selected from CF, C F, C F, C F, C F and C F I gas.
  • the lower hydrocarbon is preferably CH, C H, C H, C H, or C H.
  • the C F H gas is preferably CHF gas! /.
  • the N-containing gas is selected from nitrogen gas, NO, NH, methylamine, and dimethylamine.
  • At least one gas Preferably at least one gas.
  • the CFI gas is preferably CFI gas or CFI gas.
  • the interlayer is preferably CFI gas or CFI gas.
  • the insulating film also has a SiOCH material strength.
  • resist damage is reduced by etching under low pressure, As a result, when the etching becomes possible with a small amount of striation, an excellent effect is obtained.
  • resist damage can be reduced by the polymer film, so that etching with a high selectivity can be achieved.
  • FIG. 1 shows an etching apparatus 1 used in the dry etching method for an interlayer insulating film of the present invention.
  • 1 includes a vacuum chamber 11 that enables etching with low-temperature, high-density plasma.
  • the vacuum chamber 11 is equipped with a vacuum exhaust means 12 such as a turbo molecular pump.
  • the vacuum chamber 11 is composed of a lower substrate processing chamber 13 and an upper plasma generation chamber 14.
  • a substrate placement unit 2 is provided in the center of the bottom of the substrate processing chamber 13.
  • the substrate platform 2 includes a substrate electrode 21 on which the processing substrate S is placed, an insulator 22, and a support base 23.
  • the substrate electrode 21 and the support base 23 are provided via the insulator 22. ing.
  • the substrate electrode 21 is connected to the first high-frequency power source 25 via the blocking capacitor 24, and becomes a floating electrode in terms of potential and has a negative noise potential.
  • the top plate 31 provided on the upper part of the plasma generation chamber 14 facing the substrate platform 2 is fixed to the side wall of the plasma generation chamber 14 and connected to the second high-frequency power source 33 via the variable capacitor 32.
  • the counter electrode is formed in a floating state in terms of potential.
  • a gas introduction path 41 of a gas introduction means 4 for introducing an etching gas into the vacuum chamber 11 is connected to the top plate 31.
  • This gas introduction path 41 is connected to a gas source 43 via a gas flow rate control means 42.
  • the number of gas sources 43 shown in only one gas introduction path is appropriately determined according to the number of gas types used for etching. In this case, the number of gas sources 43 is adjusted according to the number of gas sources 43.
  • the gas introduction path 41 may be branched into two or more.
  • the plasma generation chamber 14 includes a cylindrical dielectric side wall, and a magnetic field coil 51 as a magnetic field generation means may be provided outside the side wall.
  • An annular magnetic neutral line (not shown) is formed in the plasma generation chamber 14.
  • a high frequency antenna coil 52 for generating plasma is arranged between the magnetic field coil 51 and the outside of the side wall of the plasma generation chamber 14.
  • This high frequency antenna coil 52 is parallel It has an antenna structure, and is connected to a branch point 34 provided in the feeding path between the variable capacitor 32 and the second high-frequency power source 33 described above, so that a voltage can be applied from the second high-frequency power source 33. Yes.
  • a magnetic neutral line is formed by the magnetic field coil 51, an alternating electric field is applied along the formed magnetic neutral line to generate discharge plasma on the magnetic neutral line.
  • a voltage is applied to the antenna coil 52 from the second high-frequency power source 33.
  • a third high-frequency power source is prepared without providing a branch path, and this is connected to the antenna coil 52. Connection may be made to generate plasma. Also, a mechanism is provided so that the voltage applied to the antenna coil becomes a predetermined value.
  • the interlayer insulating film formed on the substrate S in the present invention is a film made of a low dielectric constant material (low-k material).
  • a SiOCH material such as H SQ or MSQ that can be formed by application such as spin coating is used.
  • This material may be a porous material.
  • SiOCH material examples include, for example, trade name LKD5109r5 (manufactured by JSR), trade name HSG-7000 (manufactured by Hitachi Chemical Co., Ltd.), trade name HOSP (manufactured by Honeywell Electric Materials), trade name Nan oglass (Honeywell Electric Materials), product name OCD T-12 (manufactured by Tokyo Ohka Co., Ltd.), product name OCD ⁇ -32 (manufactured by Tokyo Ohka Kogyo Co., Ltd.), product name IPS 2.4 (manufactured by Catalyst Kasei Kogyo Co., Ltd.), product name IPS 2.2 (catalyst) Kasei Kogyo Co., Ltd.), trade name ALCAP-S 5100 (Asahi Kasei Co., Ltd.), trade name ISM (ULVAC, Inc.) and the like can be used.
  • a predetermined pattern is formed by photolithography.
  • a known KrF resist material for example, KrFM78 Y: manufactured by JSR Corporation
  • a known ArF resist material for example, UV-II
  • SiOCH-based material is used as the interlayer insulating film
  • a BARC antireflection film
  • a resist material may be applied thereon!
  • the substrate S on which the film is formed in this way is placed on the substrate electrode 21 in the vacuum chamber 11, and an etching gas is introduced from the etching gas introducing means 4, and the second high frequency power source 33 is used.
  • the etching gas is introduced into the vacuum chamber 11 under an operating pressure of 0.5 Pa or less, more preferably 0.1 to 0.5 Pa, capable of suppressing radical reaction.
  • the etching gas used in the etching method of the present invention is a gas that can etch the interlayer insulating film without etching stop and can form a predetermined polymer film on the resist during the etching.
  • an etching gas there is an etching gas in which a CF-based gas, an N-containing gas, and a lower hydrocarbon gas are mixed.
  • CF-based gas contributes to SiO etching among the constituents of the interlayer insulating film
  • N-containing gas contributes to CH etching
  • lower hydrocarbon gas also contributes to CH etching.
  • These mixed gases contribute to suppression of resist damage.
  • CFI gas containing iodine may be used as CF-based gas.
  • CFI gas examples include CFI and CFI.
  • I is the gas phase
  • the lower hydrocarbon is preferably a straight chain, such as CH, CH, CH, CH, or CH.
  • N-containing gases include nitrogen gas, NO, NH, methylamine, dimethylamine, etc.
  • etching gas there is an etching gas in which a CFHF gas and an N-containing gas are mixed.
  • the action of each gas is the same as that of the above three mixed gases.
  • An example of C F H gas is CHF.
  • N-containing gas includes nitrogen gas, NO
  • etching gas is not supplemented with a rare gas selected from helium, neon, argon, krypton, and xenon force as a diluent gas for reducing resist damage.
  • the predetermined polymer film is a nitrogen-containing CF-based polymer in which the constituent components F, N, and H in the etching gas are bonded to C in the etching gas.
  • CF-based gas containing iodine When CF-based gas containing iodine is used, a CF-based polymer film further containing iodine is formed.
  • the CF-based gas is preferably introduced at about 20 to 40%, more preferably about 20 to 30%, based on the total flow rate of the etching gas.
  • C F H gas is preferably introduced at about 20 to 40%, more preferably about 30 to 40%, based on the total etching gas flow rate.
  • CF gas flow rate of 60sccm (flow rate) was set at a pressure of 3mTorr, antenna power of 2200W, bias power of OW, Tc (substrate set temperature) of 10 ° C.
  • a polymer film was deposited on top, and the FT-IR ⁇ vector of this polymer film was measured with a Fourier transform infrared spectrophotometer.
  • N gas flow rate 90 sccm
  • CH gas flow rate 70 sccm
  • the etching gas used in the present invention is compared.
  • the polymer film has a C—N bond peak (1600 cm
  • the polymer film formed by the etching gas used in the etching of the present invention has a C—N bond, a C—F bond, and a C—H bond.
  • an SiOCH film was formed by plasma CVD as an interlayer insulating film on a substrate S made of silicon, and then an organic film was formed by spin coating as BARC.
  • UV-II was applied as an ArF resist to a film thickness of 430 nm, and a predetermined pattern was formed by photolithography.
  • the substrate on which these films are formed is placed on the substrate electrode 21 of the etching apparatus 1 shown in FIG. 1. First, from the CF gas (flow rate 25 sccm) and the CHF gas (flow rate 25 sccm) to which the BARC should be etched.
  • Etching apparatus 1 is set to the conditions of high frequency power supply on antenna side: 2200W, high frequency power supply on substrate side: 100W, substrate set temperature: 10 ° C, pressure lOmTorr, plasma is generated, and BARC is etched. did. Next, CF gas (flow rate 60sccm), N gas (
  • the ring device 1 the antenna-side RF power: 2200W, the substrate-side high-frequency power supply: 100W, substrate set temperature: 10 ° C, and set the conditions of pressure 3MTo rr, to generate a plasma, was etched in the interlayer insulating film.
  • Figures 3 (a) and 3 (b) show the top surface SEM photograph of the etched substrate and the cross-sectional SEM photograph of the hole surrounded by dotted line A in this SEM photograph, respectively.
  • the flow ratio of the etching gas is changed to select the selectivity (interlayer insulating film etch).
  • the etching rate of the Ngrate Z resist was investigated.
  • Etching was performed under the same conditions as in Example 2 except that the antenna-side high-frequency power source was set to 2000 W and the flow rate ratio of the etching gas was changed.
  • the etching gas is constant only at 70sccm for CH, and the flow rates of CF and N are respectively
  • the mixing ratio of the etching gas was changed.
  • the etching gas conditions in (4) are the same as in Example 2. Under each etching gas condition, the etching rate of the interlayer insulating film and the resist was measured to obtain the selection ratio. The results are shown in Fig. 4.
  • the cross-sectional SEM photographs of the substrates in cases (1), (2), (3), and (5) are shown in FIGS. 5 (a), (b), (c), and (d), respectively.
  • the etching rate of the interlayer insulating film was 160 nm / min and the etching rate of the resist was 12 nmZmin, so the selection ratio was about 13.
  • CF 32sccm
  • N 48sccm (21% and 32%, respectively, based on the total etching gas flow rate)
  • the etching rate of the interlayer insulating film was 195 nm / min and the etching rate of the resist was 3 nm Zmin, so the selectivity increased to 65.
  • the etching rate of the interlayer insulating film was 200 nmZmin and the etching rate of the resist was 18 nmZmin, so the selectivity was about 11.
  • the CF-based gas is between 21 to 28% based on the total flow rate of the etching gas. In this case, it has been proved that the selectivity is good because the etching rate of the resist is low.
  • etching was performed by adding Ar gas to the etching gas.
  • an etching gas was supplied under the following conditions, and etching apparatus 1 was supplied with antenna-side high-frequency power supply: 2750 W, substrate-side high-frequency power supply: 450 W, and substrate setting temperature: 10 Etching was performed at a temperature of ° C and a pressure of 0.26 Pa.
  • Figure 6 shows cross-sectional SEM photographs of the substrate under each condition.
  • the etching rates of the interlayer insulating film and the resist under each condition were measured, and the selectivity under each condition was obtained from the results. The results are shown in FIG.
  • the present invention even a resist material having low plasma resistance can be etched with reduced resist damage, so that a low-k material having an ArF resist material as a resist in particular.
  • the present invention can be effectively applied to dry etching of an interlayer insulating film that has high power. Therefore, the present invention can be used in the field of semiconductor manufacturing equipment.
  • FIG. 1 is a configuration diagram schematically showing an example of a configuration of an etching apparatus for performing a dry etching method of the present invention.
  • FIG. 2 is a graph showing a spectrum by FT-IR measurement of a film obtained by the dry etching method of the present invention.
  • FIG. 3 is an SEM photograph showing the state of the substrate obtained by the etching method of the present invention, where (a) is a top view of the substrate and (b) is a cross-sectional view thereof.
  • FIG. 4 is a graph showing an etching rate (nmZmin) and a selection ratio when the mixing ratio of the etching gas is changed.
  • FIG. 5 (a) to (d) are cross-sectional SEM photographs of the substrate when the mixing ratio of the etching gas is changed.
  • FIG. 6 (a) to (e) are cross-sectional SEM photographs of a substrate etched by a conventional etching method, respectively.
  • FIG. 7 is a graph showing an etching rate (nmZmin) and a selection ratio of each substrate etched by a conventional etching method.

Abstract

In a method for dry-etching an interlayer insulating film, the interlayer insulating film is microfabricated while forming a polymer film on an ArF resist or a KrF resist arranged on the interlayer insulating film by an etching gas. The etching gas is introduced at a pressure of 0.5Pa or less, and etching is performed while forming the polymer film having a C-F bonding peak near 1,200cm-1, a C-N bonding peak near 1,600cm-1 and a C-H bonding peak (spectrum measured by a Fourier transform infrared spectrophotometer) near 3,300cm-1.

Description

明 細 書  Specification
層間絶縁膜のドライエッチング方法  Interlayer dielectric film dry etching method
技術分野  Technical field
[0001] 本発明は、層間絶縁膜のドライエッチング方法に関する。  The present invention relates to a method for dry etching an interlayer insulating film.
背景技術  Background art
[0002] 従来、層間絶縁膜の材料として SiOを用いることが多力つた力 90nmノード以降、  [0002] Conventionally, the use of SiO as the material for the interlayer insulating film has been a powerful effort since the 90nm node,
2  2
配線遅延の問題を解決すベぐ層間絶縁膜の材料は SiOから低誘電率材料 (low  The material of the interlayer insulation film that solves the problem of wiring delay is SiO to low dielectric constant material (low
2  2
-k)へ移行して 、る。このような低誘電率膜をエッチングして微細加工な溝や孔を形 成する場合、エッチングに用いられるレジスト材として、従来用いられてきた KrFレジ スト材よりも波長が短ぐ高精度な加工に適している ArFレジスト材が提案されている (例えば、特許文献 1参照)。  -k) When etching such low dielectric constant films to form micro-processed grooves and holes, high-precision processing with a shorter wavelength than the conventional KrF resist material used as the resist material for etching. An ArF resist material suitable for the above has been proposed (see, for example, Patent Document 1).
特許文献 1:特開 2005— 72518号公報 (段落 (0005)の記載等)  Patent Document 1: Japanese Patent Laid-Open No. 2005-72518 (Description of paragraph (0005), etc.)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかしながら、 ArFレジスト材は、一般的に耐プラズマ性に乏し 、ため、露光パター ンが微細になるにつれてプラズマエッチング中にダメージを受けて変形しやす 、。こ の変形がそのままレジスト下にある低誘電率膜にエッチングで転写されるので、低誘 電率膜に微細加工された溝ゃ孔のエッジに、ストリエーシヨンなどの荒れが発生しや すいという問題が生じる。  [0003] However, ArF resist materials generally have poor plasma resistance, and therefore are easily damaged and deformed during plasma etching as the exposure pattern becomes finer. This deformation is directly transferred to the low dielectric constant film under the resist by etching, so that it is easy for roughness such as striations to occur at the edges of the grooves microfabricated in the low dielectric constant film. Problems arise.
[0004] そこで、本発明の課題は、上記従来技術の問題点を解決して、レジストダメージが 生じな 、層間絶縁膜のドライエッチング方法を提供することにある。  [0004] Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and provide a dry etching method for an interlayer insulating film without causing resist damage.
課題を解決するための手段  Means for solving the problem
[0005] 本発明の層間絶縁膜のドライエッチング方法は、エッチングガスにより、層間絶縁 膜上に設けられた ArFレジスト又は KrFレジスト上にポリマー膜を形成しながら、層間 絶縁膜を微細加工する層間絶縁膜のドライエッチング方法であって、前記エッチング ガスを 0. 5Pa以下の圧力下で導入し、 1200cm_1付近に C— F結合のピーク、 160 Ocm_1付近に C—N結合のピーク及び 3300cm_1付近に C—H結合のピーク(フーリ ェ変換赤外分光光度計で測定したスペクトル)を有するポリマー膜を形成しながらェ ツチングすることを特徴とする。 The dry etching method for an interlayer insulating film of the present invention is an interlayer insulating film that finely processes an interlayer insulating film while forming a polymer film on an ArF resist or KrF resist provided on the interlayer insulating film by an etching gas. a dry etching method for film, wherein the etching gas is introduced at a pressure of less 0. 5 Pa, the peak of C-F bond in the vicinity of 1200 cm _1, 160 OCM near to the C-N bond _1 peaks and 3300cm around _1 C—H bond peak (Furi Etching while forming a polymer film having a spectrum measured by a conversion infrared spectrophotometer.
[0006] エッチングガスを 0. 5Pa以下の低圧下で導入することで、エッチングガスによる反 応種ができに《なり、レジストのダメージを低減できる。また、ポリマー膜を形成しな 力 Sらエッチングすることで、レジストのダメージを低減するとともに高い選択比 (層間絶 縁膜のエッチングレート Zレジストのエッチングレート)を実現するエッチングを行なう ことができる。  [0006] By introducing an etching gas under a low pressure of 0.5 Pa or less, reactive species by the etching gas can be generated, and damage to the resist can be reduced. Further, by etching with the force S without forming a polymer film, it is possible to perform etching that reduces resist damage and achieves a high selectivity (interlayer insulating film etching rate Z resist etching rate).
[0007] 前記エッチングガスは、 CF系ガスと、 N含有ガスと、低級炭化水素ガスとを混合した エッチングガスであることが好ましい。これらのエッチングガスを用いることで、 C— F 結合のピーク、 C N結合のピーク及び C H結合のピークを有するポリマー膜を形 成することが可能となり、レジストのダメージを低減でき、また、低誘電率膜をエツチン グストップなくエッチングすることが可能である。  [0007] The etching gas is preferably an etching gas obtained by mixing a CF-based gas, an N-containing gas, and a lower hydrocarbon gas. By using these etching gases, it is possible to form a polymer film having a C—F bond peak, a CN bond peak, and a CH bond peak, reducing resist damage, and having a low dielectric constant. It is possible to etch the film without etching stop.
[0008] また、前記エッチングガスは、 C F Hガスと、 N含有ガスとを混合したエッチングガ スであることが好ましい。これらのエッチングガスを用いても、 C— F結合のピーク、 C N結合のピーク及び C H結合のピークを有するポリマー膜を形成することが可能 となり、レジストのダメージを低減でき、また、低誘電率膜をエッチングストップなくエツ チングすることが可能である。  [0008] Further, the etching gas is preferably an etching gas in which CFHF gas and N-containing gas are mixed. Even if these etching gases are used, it is possible to form a polymer film having a C—F bond peak, a CN bond peak, and a CH bond peak, reducing resist damage, and reducing the dielectric constant film. It is possible to etch without etching stop.
[0009] 前記 CF系ガスは、 CF、C F、C F、C F、C F及び C F Iガスから選ばれた少 [0009] The CF gas is a small amount selected from CF, C F, C F, C F, C F and C F I gas.
4 3 8 2 6 4 8 5 8 x y  4 3 8 2 6 4 8 5 8 x y
なくとも一種のガスであることが好ま 、。  I prefer at least a kind of gas.
[0010] 前記低級炭化水素は、 CH、 C H、 C H、 C H 、または C Hであることが好ま [0010] The lower hydrocarbon is preferably CH, C H, C H, C H, or C H.
4 2 6 3 8 4 10 2 2  4 2 6 3 8 4 10 2 2
しい。  That's right.
[0011] 前記 C F Hガスは、 CHFガスであることが好まし!/、。  [0011] The C F H gas is preferably CHF gas! /.
3  Three
[0012] 前記 N含有ガスは、窒素ガス、 NO、 NH、メチルァミン、ジメチルァミンから選ばれ  [0012] The N-containing gas is selected from nitrogen gas, NO, NH, methylamine, and dimethylamine.
3  Three
た少なくとも 1種のガスであることが好ま 、。  Preferably at least one gas.
[0013] また、前記 C F Iガスは、 C F Iガス又は CF Iガスであることが好ましい。前記層間 [0013] The CFI gas is preferably CFI gas or CFI gas. The interlayer
3 7 3  3 7 3
絶縁膜が、 SiOCH系材料力もなることをが好ま 、。  It is preferable that the insulating film also has a SiOCH material strength.
発明の効果  The invention's effect
[0014] 本発明によれば、低圧下でエッチングすることで、レジストのダメージが少なくなり、 その結果、ストリエーシヨンの少な 、エッチングが可能となると!/、う優れた効果を奏す る。また、ポリマー膜により、レジストのダメージを低減できるので、選択比の高いエツ チングが可能となると!/、う効果を奏する。 [0014] According to the present invention, resist damage is reduced by etching under low pressure, As a result, when the etching becomes possible with a small amount of striation, an excellent effect is obtained. In addition, resist damage can be reduced by the polymer film, so that etching with a high selectivity can be achieved.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 図 1に本発明の層間絶縁膜のドライエッチング方法に用いるエッチング装置 1を示 す。 1は、低温、高密度プラズマによるエッチングを可能とする真空チャンバ一 11を 備える。この真空チャンバ一 11は、ターボ分子ポンプなどの真空排気手段 12を備え ている。  FIG. 1 shows an etching apparatus 1 used in the dry etching method for an interlayer insulating film of the present invention. 1 includes a vacuum chamber 11 that enables etching with low-temperature, high-density plasma. The vacuum chamber 11 is equipped with a vacuum exhaust means 12 such as a turbo molecular pump.
[0016] 真空チャンバ一 11は、下部の基板処理室 13と上部のプラズマ発生室 14とから構 成されている。基板処理室 13内の底部中央には、基板載置部 2が設けられている。 基板載置部 2は、処理基板 Sが載置される基板電極 21と、絶縁体 22と、支持台 23と から構成され、基板電極 21と支持台 23とは絶縁体 22を介して設けられている。そし て、基板電極 21は、ブロッキングコンデンサー 24を介して第 1高周波電源 25に接続 され、電位的に浮遊電極となって負のノィァス電位となる。  The vacuum chamber 11 is composed of a lower substrate processing chamber 13 and an upper plasma generation chamber 14. In the center of the bottom of the substrate processing chamber 13, a substrate placement unit 2 is provided. The substrate platform 2 includes a substrate electrode 21 on which the processing substrate S is placed, an insulator 22, and a support base 23. The substrate electrode 21 and the support base 23 are provided via the insulator 22. ing. The substrate electrode 21 is connected to the first high-frequency power source 25 via the blocking capacitor 24, and becomes a floating electrode in terms of potential and has a negative noise potential.
[0017] この基板載置部 2に対向してプラズマ発生室 14上部に設けられた天板 31は、ブラ ズマ発生室 14側壁に固定され、可変コンデンサー 32を介して第 2高周波電源 33に 接続されて、電位的に浮遊状態とされ対向電極を形成する。  [0017] The top plate 31 provided on the upper part of the plasma generation chamber 14 facing the substrate platform 2 is fixed to the side wall of the plasma generation chamber 14 and connected to the second high-frequency power source 33 via the variable capacitor 32. As a result, the counter electrode is formed in a floating state in terms of potential.
[0018] また、天板 31には、真空チャンバ一 11内にエッチングガスを導入するガス導入手 段 4のガス導入経路 41が接続されている。このガス導入経路 41は、ガス流量制御手 段 42を介してガス源 43に接続されている。なお、図 1中では 1つのガス導入経路の み示している力 ガス源 43の数は、エッチングに用いられるガス種の数に応じて適宜 決定され、この場合、ガス源 43の数にあわせてガス導入経路 41を 2以上に分岐させ てもよい。  In addition, a gas introduction path 41 of a gas introduction means 4 for introducing an etching gas into the vacuum chamber 11 is connected to the top plate 31. This gas introduction path 41 is connected to a gas source 43 via a gas flow rate control means 42. In FIG. 1, the number of gas sources 43 shown in only one gas introduction path is appropriately determined according to the number of gas types used for etching. In this case, the number of gas sources 43 is adjusted according to the number of gas sources 43. The gas introduction path 41 may be branched into two or more.
[0019] プラズマ発生室 14は円筒形の誘電体側壁を備え、この側壁の外側には、磁場発 生手段としての磁場コイル 51が設けられていてもよぐこの場合、磁場コイル 51によ つて、プラズマ発生室 14内に環状磁気中性線(図示せず)が形成される。  [0019] The plasma generation chamber 14 includes a cylindrical dielectric side wall, and a magnetic field coil 51 as a magnetic field generation means may be provided outside the side wall. An annular magnetic neutral line (not shown) is formed in the plasma generation chamber 14.
[0020] 磁場コイル 51とプラズマ発生室 14の側壁の外側との間には、プラズマ発生用の高 周波アンテナコイル 52が配置されている。この高周波アンテナコイル 52は、パラレル アンテナ構造のものであり、前述した可変コンデンサー 32と第 2高周波電源 33との 間の給電路に設けられた分岐点 34に接続され、第 2高周波電源 33から電圧を印加 できるように構成されている。そして、磁場コイル 51によって磁気中性線が形成される 場合には、形成された磁気中性線に沿って交番電場を加えてこの磁気中性線に放 電プラズマを発生させる。 A high frequency antenna coil 52 for generating plasma is arranged between the magnetic field coil 51 and the outside of the side wall of the plasma generation chamber 14. This high frequency antenna coil 52 is parallel It has an antenna structure, and is connected to a branch point 34 provided in the feeding path between the variable capacitor 32 and the second high-frequency power source 33 described above, so that a voltage can be applied from the second high-frequency power source 33. Yes. When a magnetic neutral line is formed by the magnetic field coil 51, an alternating electric field is applied along the formed magnetic neutral line to generate discharge plasma on the magnetic neutral line.
[0021] なお、本実施の形態ではアンテナコイル 52には第 2高周波電源 33から電圧を印加 したが、分岐路を設けずに第 3の高周波電源を用意して、これとアンテナコイル 52と を接続し、プラズマを発生させてもよい。また、アンテナコイルへの印加電圧値が所 定の値になるようにする機構が設けられて 、てもよ 、。  In the present embodiment, a voltage is applied to the antenna coil 52 from the second high-frequency power source 33. However, a third high-frequency power source is prepared without providing a branch path, and this is connected to the antenna coil 52. Connection may be made to generate plasma. Also, a mechanism is provided so that the voltage applied to the antenna coil becomes a predetermined value.
[0022] 以下、図 1に示した装置を用いて、本発明の層間絶縁膜のドライエッチング方法に ついて説明する。  Hereinafter, the dry etching method for an interlayer insulating film of the present invention will be described using the apparatus shown in FIG.
[0023] 本発明における基板 S上に形成された層間絶縁膜は、比誘電率の低!ヽ材料 (low —k材料)からなる膜である。例えば、スピンコートなどの塗布によって成膜され得る H SQや MSQ等の SiOCH系材料が用いられる。この材料は多孔質材料であってもよ い。  [0023] The interlayer insulating film formed on the substrate S in the present invention is a film made of a low dielectric constant material (low-k material). For example, a SiOCH material such as H SQ or MSQ that can be formed by application such as spin coating is used. This material may be a porous material.
[0024] 上記 SiOCH系材料としては、例えば、商品名 LKD5109r5(JSR社製)、商品名 HSG- 7000(日立化成社製)、商品名 HOSP(Honeywell Electric Materials社製)、商品名 Nan oglass(Honeywell Electric Materials社製)、商品名 OCD T- 12(東京応化社製)、商品 名 OCD Τ-32(東京応化社製)、商品名 IPS 2.4(触媒化成工業社製)、商品名 IPS 2.2( 触媒化成工業社製)、商品名 ALCAP- S 5100(旭化成社製)、商品名 ISM(ULVAC社製 )などを使用することができる。  [0024] Examples of the SiOCH material include, for example, trade name LKD5109r5 (manufactured by JSR), trade name HSG-7000 (manufactured by Hitachi Chemical Co., Ltd.), trade name HOSP (manufactured by Honeywell Electric Materials), trade name Nan oglass (Honeywell Electric Materials), product name OCD T-12 (manufactured by Tokyo Ohka Co., Ltd.), product name OCD Τ-32 (manufactured by Tokyo Ohka Kogyo Co., Ltd.), product name IPS 2.4 (manufactured by Catalyst Kasei Kogyo Co., Ltd.), product name IPS 2.2 (catalyst) Kasei Kogyo Co., Ltd.), trade name ALCAP-S 5100 (Asahi Kasei Co., Ltd.), trade name ISM (ULVAC, Inc.) and the like can be used.
[0025] 上記層間絶縁膜上にレジスト材を塗布した後、フォトリソグラフィ法により所定のパタ ーンを形成する。このレジスト材としては、公知の KrFレジスト材(例えば、 KrFM78 Y:JSR株式会社製)や、公知の ArFレジスト材 (例えば、 UV— II等)を使用すること ができる。なお、層間絶縁膜として SiOCH系材料を用いた場合に、層間絶縁膜上に BARC (反射防止膜)を形成し、この上にレジスト材を塗布してもよ!/、。  [0025] After applying a resist material on the interlayer insulating film, a predetermined pattern is formed by photolithography. As this resist material, a known KrF resist material (for example, KrFM78 Y: manufactured by JSR Corporation) or a known ArF resist material (for example, UV-II) can be used. If a SiOCH-based material is used as the interlayer insulating film, a BARC (antireflection film) may be formed on the interlayer insulating film, and a resist material may be applied thereon!
[0026] このようにして膜が形成された基板 Sを真空チャンバ一 11内の基板電極 21上に載 置し、エッチングガス導入手段 4からエッチングガスを導入し、第 2高周波電源 33から RFパワーを印加してプラズマ発生室 14内にプラズマを発生させながら、基板 S上に 形成された層間絶縁膜をストリエーシヨンなく高選択比でエッチングする。この場合、 エッチングガスを、ラジカル反応を抑制できる 0. 5Pa以下、より好ましくは 0. 1〜0. 5 Paの作動圧力下で真空チャンバ一 11内に導入する。 [0026] The substrate S on which the film is formed in this way is placed on the substrate electrode 21 in the vacuum chamber 11, and an etching gas is introduced from the etching gas introducing means 4, and the second high frequency power source 33 is used. While applying RF power to generate plasma in the plasma generation chamber 14, the interlayer insulating film formed on the substrate S is etched with high selectivity without streaking. In this case, the etching gas is introduced into the vacuum chamber 11 under an operating pressure of 0.5 Pa or less, more preferably 0.1 to 0.5 Pa, capable of suppressing radical reaction.
[0027] 本発明のエッチング方法に用いるエッチングガスは、エッチングストップなく層間絶 縁膜をエッチングすることができ、かつ、エッチング中に所定のポリマー膜をレジスト 上に形成することができるガスである。  [0027] The etching gas used in the etching method of the present invention is a gas that can etch the interlayer insulating film without etching stop and can form a predetermined polymer film on the resist during the etching.
[0028] このようなエッチングガスとしては、 CF系ガスと、 N含有ガスと、低級炭化水素ガスと を混合したエッチングガスがある。このエッチングガス中、 CF系ガスは層間絶縁膜の 構成成分のうち、 SiOのエッチングに寄与し、 N含有ガスは、 CHのエッチングに寄与 し、また、低級炭化水素ガスも CHのエッチングに寄与する。そして、これらの混合ガ スは、レジストのダメージの抑制に寄与する。  [0028] As such an etching gas, there is an etching gas in which a CF-based gas, an N-containing gas, and a lower hydrocarbon gas are mixed. Among these etching gases, CF-based gas contributes to SiO etching among the constituents of the interlayer insulating film, N-containing gas contributes to CH etching, and lower hydrocarbon gas also contributes to CH etching. . These mixed gases contribute to suppression of resist damage.
[0029] CF系ガスとしては、 CF  [0029] As CF gas, CF
4、 C F  4, C F
3 8、 C F  3 8, C F
2 6、 C F及び C Fから選ばれた少なくとも 4 8 5 8 一 種のガスがあげられる。また、 CF系ガスとしては、ヨウ素を含む C F Iガスを用いても よぐ C F Iガスとしては、例えば、 C F Iや CF Iが挙げられる。この場合、 Iは、気相  2 6, at least 4 8 5 8 selected from CF and CF. In addition, as CF-based gas, CFI gas containing iodine may be used. Examples of CFI gas include CFI and CFI. In this case, I is the gas phase
3 7 3  3 7 3
中に過剰に存在するフッ素原子の除去に寄与する。前記低級炭化水素としては、直 鎖のものが好ましぐ例えば、 CH、 C H、 C H、 C H 、または C Hがあげられる  This contributes to the removal of excess fluorine atoms. The lower hydrocarbon is preferably a straight chain, such as CH, CH, CH, CH, or CH.
4 2 6 3 8 4 10 2 2  4 2 6 3 8 4 10 2 2
。また、 N含有ガスとしては、窒素ガス、 NO、 NH、メチルァミン、ジメチルァミン等が  . N-containing gases include nitrogen gas, NO, NH, methylamine, dimethylamine, etc.
3  Three
あげられる。  can give.
[0030] また、別のエッチングガスとして、 C F Hガスと、 N含有ガスとを混合したエッチング ガスがある。この場合の各ガスの作用も上記 3種の混合ガスの場合と同一である。 C F Hガスとしては、例えば、 CHFがある。また、 N含有ガスとしては、窒素ガス、 NO  [0030] Further, as another etching gas, there is an etching gas in which a CFHF gas and an N-containing gas are mixed. In this case, the action of each gas is the same as that of the above three mixed gases. An example of C F H gas is CHF. N-containing gas includes nitrogen gas, NO
3  Three
、 NH、メチルァミン、ジメチルァミン等があげられる。  NH, methylamine, dimethylamine and the like.
3  Three
[0031] 上記したエッチングガスには、レジストダメージを軽減すベぐ希釈ガスとしての、へ リウム、ネオン、アルゴン、クリプトン、キセノン力も選ばれた希ガスを添カ卩しない。  [0031] The above-described etching gas is not supplemented with a rare gas selected from helium, neon, argon, krypton, and xenon force as a diluent gas for reducing resist damage.
[0032] 上記のようなエッチングガスを用いて低誘電率層間絶縁膜をエッチングすると、レジ スト上に所定のポリマー膜が形成されることによって、レジストダメージを抑制してエツ チングすることが可能になる。この所定のポリマー膜のスペクトルをフーリエ変換赤外 分光光度計で測定すれば、 C— F結合のピークを 1200cm_ 1付近、 C— N結合のピ ークを 1600cm_1付近、 C— H結合のピークを 3300cm_1付近で有することが確認 できる。なお、これらのスペクトルのピークは、測定方法などによって多少変動する。 従って、この所定のポリマー膜は、エッチングガス中の構成成分 F、 N、 Hがそれぞれ エッチングガス中の Cと結合した窒素含有の CF系のポリマーである。また、ヨウ素を 含んだ CF系ガスを用いた場合には、さらにヨウ素を含有する CF系のポリマー膜が形 成される。 [0032] When the low dielectric constant interlayer insulating film is etched using the etching gas as described above, a predetermined polymer film is formed on the resist, thereby enabling etching while suppressing resist damage. Become. The spectrum of this predetermined polymer film is Fourier transformed infrared Is measured by a spectrophotometer, C-F bond 1200 cm _ 1 near the peak of, C-N near 1600 cm _1 the peak of binding, the peak of C-H bonds can be confirmed to have near 3300 cm _1. Note that the peaks of these spectra vary somewhat depending on the measurement method and the like. Therefore, the predetermined polymer film is a nitrogen-containing CF-based polymer in which the constituent components F, N, and H in the etching gas are bonded to C in the etching gas. When CF-based gas containing iodine is used, a CF-based polymer film further containing iodine is formed.
[0033] 前記したいずれかのエッチングガスを真空チャンバ一 11内に導入し、レジスト上に 上記ポリマー膜を形成しながら、エッチングストップなくエッチングを行なうには、上記 3種の混合ガスの場合には、 CF系ガスを、エッチングガス総流量基準で好ましくは 2 0〜40%程度、より好ましくは、 20〜30%程度導入すればよい。上記 2種の混合ガ スの場合には、 C F Hガスを、エッチングガス総流量基準で好ましくは 20〜40%程 度、より好ましくは、 30〜40%程度導入すればよい。  In order to perform etching without an etching stop while introducing any of the etching gases described above into the vacuum chamber 11 and forming the polymer film on the resist, in the case of the above three mixed gases, The CF-based gas is preferably introduced at about 20 to 40%, more preferably about 20 to 30%, based on the total flow rate of the etching gas. In the case of the above-mentioned two kinds of mixed gases, C F H gas is preferably introduced at about 20 to 40%, more preferably about 30 to 40%, based on the total etching gas flow rate.
[0034] 以下、実施例および比較例により、本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples.
実施例 1  Example 1
[0035] 本実施例では、本発明のドライエッチング方法で用いるエッチングガスにより形成さ れたポリマー膜について FT— IR測定でそのスペクトルを調べた。  In this example, the spectrum of a polymer film formed by an etching gas used in the dry etching method of the present invention was examined by FT-IR measurement.
[0036] まず、図 1に示した装置において、圧力 3mTorr、アンテナパワー 2200W、バイァ スパワー OW、 Tc (基板設定温度) 10°Cとして、 CFガス(流量 60sccm ス(流  [0036] First, in the apparatus shown in Fig. 1, CF gas (flow rate of 60sccm (flow rate) was set at a pressure of 3mTorr, antenna power of 2200W, bias power of OW, Tc (substrate set temperature) of 10 ° C.
4 )、 Nガ  4), N
2 量 90sccm)及び CHガス(流量 70sccm)からなるエッチングガスを導入し、 Si基板  2 Etching gas consisting of 90sccm) and CH gas (flow rate 70sccm), Si substrate
4  Four
上にポリマー膜を堆積させ、このポリマー膜の FT— IR ^ベクトルをフーリエ変換赤外 分光光度計により測定した。  A polymer film was deposited on top, and the FT-IR ^ vector of this polymer film was measured with a Fourier transform infrared spectrophotometer.
[0037] また、比較のために、 Nガス(流量 90sccm)及び CHガス(流量 70sccm)からなる [0037] For comparison, N gas (flow rate 90 sccm) and CH gas (flow rate 70 sccm) are included.
2 4  twenty four
混合ガスを用いた以外は同条件で形成されたポリマー膜と、 C Fガス (流量 25sccm  A polymer film formed under the same conditions except that a mixed gas was used, and CF gas (flow rate 25 sccm
3 8  3 8
)及び Arガス (流量 200sccm)力もなる混合ガスを用いた以外は同条件で形成され たポリマー膜との FT— IR測定によるスペクトルを測定した。これらの結果を図 2に示 す。  ) And Ar gas (flow rate 200 sccm), except that a mixed gas was used, and the spectrum was measured by FT-IR measurement with a polymer film formed under the same conditions. Figure 2 shows these results.
[0038] 図 2から、これら 3つのスペクトルを比較すると、本発明で用いるエッチングガスによ るポリマー膜は、 N ZCH混合ガスの場合と同様に、 C—N結合のピーク(1600cm [0038] From FIG. 2, when these three spectra are compared, the etching gas used in the present invention is compared. The polymer film has a C—N bond peak (1600 cm
2 4  twenty four
_ 1付近)及び C H結合のピーク(3300cm_1付近)を有し、 C F ZAr混合ガスの場 Have _ 1 near) and CH bond peak (3300 cm around _1), field CF ZAR mixed gas
3 8  3 8
合と同様に、 C— F結合のピーク(1200cm_1付近)を有していた。これにより、本発 明のエッチングに用いるエッチングガスにより形成されたポリマー膜は、 C—N結合、 C—F結合、 C—H結合を有するものであることがわ力つた。 Like the case, it had a C—F bond peak (around 1200 cm _1 ). As a result, it was proved that the polymer film formed by the etching gas used in the etching of the present invention has a C—N bond, a C—F bond, and a C—H bond.
実施例 2  Example 2
[0039] 本実施例では、シリコンカゝらなる基板 S上に、層間絶縁膜として、プラズマ CVD法 により SiOCH膜を形成し、その後、 BARCとして回転塗布法により有機膜を形成した 。次いで、 ArFレジストとして UV— IIを膜厚 430nmとなるように塗布し、フォトリソダラ フィ法で所定のノターンを形成した。そして、これらの膜を形成した基板を図 1に示し たエッチング装置 1の基板電極 21上に載置し、初めに、 BARCをエッチングすべぐ CFガス(流量 25sccm)及び CHFガス(流量 25sccm)からなる BARCエッチング [0039] In this example, an SiOCH film was formed by plasma CVD as an interlayer insulating film on a substrate S made of silicon, and then an organic film was formed by spin coating as BARC. Next, UV-II was applied as an ArF resist to a film thickness of 430 nm, and a predetermined pattern was formed by photolithography. Then, the substrate on which these films are formed is placed on the substrate electrode 21 of the etching apparatus 1 shown in FIG. 1. First, from the CF gas (flow rate 25 sccm) and the CHF gas (flow rate 25 sccm) to which the BARC should be etched. BARC etching
4 3 4 3
用混合ガスを用い、エッチング装置 1を、アンテナ側高周波電源: 2200W、基板側 高周波電源: 100W、基板設定温度: 10°C、圧力 lOmTorrの条件に設定し、プラズ マを発生させ、 BARCをエッチングした。次いで、 CFガス(流量 60sccm)、 Nガス(  Etching apparatus 1 is set to the conditions of high frequency power supply on antenna side: 2200W, high frequency power supply on substrate side: 100W, substrate set temperature: 10 ° C, pressure lOmTorr, plasma is generated, and BARC is etched. did. Next, CF gas (flow rate 60sccm), N gas (
4 2 流量 90sccm)及び CHガス(流量 70sccm)からなるエッチングガスを用い、エッチ  4 2 Etching using an etching gas consisting of a flow rate of 90 sccm) and CH gas (flow rate of 70 sccm).
4  Four
ング装置 1を、アンテナ側高周波電源: 2200W、基板側高周波電源: 100W、基板 設定温度: 10°C、圧力 3mTorrの条件に設定し、プラズマを発生させ、層間絶縁膜 のエッチングを行なった。エッチングした基板の上面 SEM写真及びこの SEM写真 中の点線 Aで囲まれた孔の断面 SEM写真を、それぞれ図 3 (a)及び (b)に示す。 The ring device 1, the antenna-side RF power: 2200W, the substrate-side high-frequency power supply: 100W, substrate set temperature: 10 ° C, and set the conditions of pressure 3MTo rr, to generate a plasma, was etched in the interlayer insulating film. Figures 3 (a) and 3 (b) show the top surface SEM photograph of the etched substrate and the cross-sectional SEM photograph of the hole surrounded by dotted line A in this SEM photograph, respectively.
[0040] 図 3 (a)から、基板を上面力もみると、表面 (レジスト)の荒れ (凸凹)がな力つた。また 、図 3 (b)に示す断面 SEM写真から、エッチングストップが生じておらず、さらに、ポリ マー膜が、基板の上面部及び孔の入り口表面 (斜線部 B)に形成されており、これに よって層間絶縁膜がストリエーシヨンなくエッチングされていた。このことから、本発明 のエッチング方法によれば、レジストのダメージがないので、孔内のストリエーシヨンが 発生しないことがわ力つた。 [0040] From FIG. 3 (a), when the top surface force of the substrate was also observed, the surface (resist) was rough (uneven). In addition, from the cross-sectional SEM photograph shown in FIG. 3 (b), no etching stop occurred, and a polymer film was formed on the upper surface of the substrate and the entrance surface of the hole (shaded portion B). Therefore, the interlayer insulating film was etched without streaking. Therefore, according to the etching method of the present invention, it was proved that no streaking in the hole is generated because there is no damage to the resist.
実施例 3  Example 3
[0041] 本実施例では、エッチングガスの流量比を変化させて選択比 (層間絶縁膜のエッチ ングレート Zレジストのエッチングレート)を調べた。 In this example, the flow ratio of the etching gas is changed to select the selectivity (interlayer insulating film etch). The etching rate of the Ngrate Z resist was investigated.
[0042] 実施例 2とは、アンテナ側高周波電源を 2000Wとしたこと及びエッチングガスの流 量比を変化させたこと以外は同一の条件でエッチングを行なった。エッチングガスは 、 CHのみ 70sccmで一定とし、 CF及び Nの流量を、それぞれ、  [0042] Etching was performed under the same conditions as in Example 2 except that the antenna-side high-frequency power source was set to 2000 W and the flow rate ratio of the etching gas was changed. The etching gas is constant only at 70sccm for CH, and the flow rates of CF and N are respectively
(D CF = 20sccm、 N = 30sccm  (D CF = 20sccm, N = 30sccm
4 2  4 2
(2) CF = 32sccm、 N = 48sccm  (2) CF = 32sccm, N = 48sccm
4 2  4 2
(3) CF = 48sccm、 N = 72sccm  (3) CF = 48sccm, N = 72sccm
4 2  4 2
(4) CF = 60sccm、 N = 90sccm  (4) CF = 60sccm, N = 90sccm
4 2  4 2
(5) CF = 80sccm、 N = 120sccm  (5) CF = 80sccm, N = 120sccm
に設定して、エッチングガスの混合比を変化させた。なお、(4)のエッチングガス条件 は、実施例 2と同一である。各エッチングガス条件において、層間絶縁膜及びレジス トのエッチングレートを測定し、選択比を求めた。結果を図 4に示す。また、(1)、 (2) 、(3)、 (5)の各場合における基板の断面 SEM写真を、それぞれ図 5 (a)、(b)、 (c) 、 (d)に示す。  The mixing ratio of the etching gas was changed. The etching gas conditions in (4) are the same as in Example 2. Under each etching gas condition, the etching rate of the interlayer insulating film and the resist was measured to obtain the selection ratio. The results are shown in Fig. 4. The cross-sectional SEM photographs of the substrates in cases (1), (2), (3), and (5) are shown in FIGS. 5 (a), (b), (c), and (d), respectively.
[0043] 図 4力ら、(1) CF = 20sccm、N = 30sccm (エッチングガスの総流量基準でそれ  [0043] Fig. 4 Force et al. (1) CF = 20sccm, N = 30sccm (it is based on the total flow rate of etching gas
4 2  4 2
ぞれ 16%、 25%)の場合には、層間絶縁膜のエッチングレートは 160nm/min、レ ジストのエッチングレートは 12nmZminであったので、選択比は約 13であった。(2) CF = 32sccm、 N =48sccm (エッチングガスの総流量基準でそれぞれ 21%、 32 In the case of 16% and 25%, respectively, the etching rate of the interlayer insulating film was 160 nm / min and the etching rate of the resist was 12 nmZmin, so the selection ratio was about 13. (2) CF = 32sccm, N = 48sccm (21% and 32%, respectively, based on the total etching gas flow rate)
4 2 4 2
%)の場合には、層間絶縁膜のエッチングレートは 195nm/min、レジストのエッチ ングレートは 3nmZminであったので、選択比は 65と大きくなつた。そして、(3) CF  In the case of%), the etching rate of the interlayer insulating film was 195 nm / min and the etching rate of the resist was 3 nm Zmin, so the selectivity increased to 65. And (3) CF
4 Four
=48sccm、N = 72sccm ( (エッチングガスの総流量基準でそれぞれ 25%、 37%) = 48sccm, N = 72sccm ((25% and 37% respectively based on the total flow rate of etching gas)
2  2
の場合には、レジスト上にポリマーが堆積したので、レジストのエッチングレートの値 は 0となり、選択比が無限大となった。また、(5) CF = 80sccm、N = 120sccm (ェ  In this case, since the polymer was deposited on the resist, the value of the resist etching rate was 0, and the selectivity was infinite. (5) CF = 80sccm, N = 120sccm
4 2  4 2
ツチングガスの総流量基準でそれぞれ 29%、 44%)の場合、層間絶縁膜のエツチン グレートは 200nmZmin、レジストのエッチングレートは 18nmZminであったので、 選択比は約 11であった。  When the total flow rate of the etching gas was 29% and 44%, respectively, the etching rate of the interlayer insulating film was 200 nmZmin and the etching rate of the resist was 18 nmZmin, so the selectivity was about 11.
[0044] このことから、エッチングガスの混合比を変化させることで選択比の最適化を行なう ことができ、特に、エッチングガスの総流量基準で CF系ガスが 21〜28%の間にある 場合、レジストのエッチングレートが低くなつて、選択比がよいことがわ力つた。 [0044] From this, it is possible to optimize the selection ratio by changing the mixing ratio of the etching gas. In particular, the CF-based gas is between 21 to 28% based on the total flow rate of the etching gas. In this case, it has been proved that the selectivity is good because the etching rate of the resist is low.
[0045] 図 5 (a)〜(d)から、上記(1) (2) (5)の条件のエッチングガスを用いた場合には、レ ジストの表面荒れが発生したためにストリエーシヨンが生じていた。これらに対し、エツ チングガスの流量が最適化されて 、た上記(3)の場合には、表面の荒れが改善され 、ストリエーシヨンが生じていな力つた。このことから、エッチングガスの総流量基準で CF系ガスが 25〜27%の間にある場合には、選択比がよいだけでなぐレジストの表 面荒れもな 、のでストリエーシヨンも発生して ヽな 、ことがわかった。  [0045] From FIGS. 5 (a) to (d), when the etching gas having the above conditions (1), (2) and (5) is used, the surface of the resist is roughened, resulting in streaking. It was. On the other hand, the flow rate of the etching gas was optimized, and in the case of (3) above, the surface roughness was improved and the striation was not generated. For this reason, when the CF gas is between 25 and 27% based on the total etching gas flow rate, the resist surface is not only rough, but also the streaking occurs. I found out that it was cunning.
(比較例 1)  (Comparative Example 1)
[0046] 比較例として、エッチングガスに Arガスを添カ卩してエッチングを行なった。実施例 2 と同一の膜を形成した基板を用いて、エッチングガスを以下の条件で供給し、エッチ ング装置 1をアンテナ側高周波電源: 2750W、基板側高周波電源: 450W、基板設 定温度: 10°C、圧力 0. 26Paとし、エッチングを行なった。  As a comparative example, etching was performed by adding Ar gas to the etching gas. Using a substrate on which the same film as in Example 2 was formed, an etching gas was supplied under the following conditions, and etching apparatus 1 was supplied with antenna-side high-frequency power supply: 2750 W, substrate-side high-frequency power supply: 450 W, and substrate setting temperature: 10 Etching was performed at a temperature of ° C and a pressure of 0.26 Pa.
(a) C F /Ar/N /CH = 16/50/20/26  (a) C F / Ar / N / CH = 16/50/20/26
3 8 2 4  3 8 2 4
(b) C F /Ar/N /CH = 30/50/20/26  (b) C F / Ar / N / CH = 30/50/20/26
3 8 2 4  3 8 2 4
(c) C F /Ar/N /CH = 16/100/20/26  (c) C F / Ar / N / CH = 16/100/20/26
3 8 2 4  3 8 2 4
(d) C F /Ar/N /CH = 16/50/20/40  (d) C F / Ar / N / CH = 16/50/20/40
3 8 2 4  3 8 2 4
(e) C F /Ar/N /CH = 16/50/50/26  (e) C F / Ar / N / CH = 16/50/50/26
3 8 2 4  3 8 2 4
各条件における基板の断面 SEM写真を図 6に示す。また、各条件における層間絶 縁膜及びレジストのエッチングレートを測定し、この結果から、各条件における選択比 を求めた。結果を図 7に示す。  Figure 6 shows cross-sectional SEM photographs of the substrate under each condition. In addition, the etching rates of the interlayer insulating film and the resist under each condition were measured, and the selectivity under each condition was obtained from the results. The results are shown in FIG.
[0047] 図 6 (a)〜(e)から、各場合において、レジスト表面が平坦ではなぐ凹凸となった結 果、孔の側面にストリエーシヨンが発生しており、また、エッチストップも発生したため、 実用的ではないことが分力つた。また、エッチングガスとして上記 (a)〜(e)を用いた 各場合には、レジスト表面がダメージを受けてエッチングされていたことから、図 7に 示すように選択比が低く、実用的ではな!/、ことが分力 た。 [0047] From FIGS. 6 (a) to (e), in each case, the resist surface was uneven, resulting in striations on the side surfaces of the holes and etch stop. As a result, it was not practical. In each case where the above (a) to (e) were used as the etching gas, the resist surface was damaged and etched, so that the selectivity was low as shown in FIG. ! /
産業上の利用可能性  Industrial applicability
[0048] 本発明によれば、耐プラズマ性が低いレジスト材であってもレジストダメージを低減 してエッチングできることから、特に ArFレジスト材をレジストとして有する Low— k材 料力もなる層間絶縁膜のドライエッチングに有効に適用できる。従って、本発明は半 導体製造装分野において利用可能である。 [0048] According to the present invention, even a resist material having low plasma resistance can be etched with reduced resist damage, so that a low-k material having an ArF resist material as a resist in particular. The present invention can be effectively applied to dry etching of an interlayer insulating film that has high power. Therefore, the present invention can be used in the field of semiconductor manufacturing equipment.
図面の簡単な説明  Brief Description of Drawings
[0049] [図 1]本発明のドライエッチング方法を実施するエッチング装置の構成の一例を概略 的に示す構成図である。  FIG. 1 is a configuration diagram schematically showing an example of a configuration of an etching apparatus for performing a dry etching method of the present invention.
[図 2]本発明のドライエッチング方法で得られた膜の FT— IR測定によるスペクトルを 示すグラフである。  FIG. 2 is a graph showing a spectrum by FT-IR measurement of a film obtained by the dry etching method of the present invention.
[図 3]本発明のエッチング方法で得られた基板の状態を示す SEM写真であって、 (a )は基板の上面図、(b)はその断面図である。  FIG. 3 is an SEM photograph showing the state of the substrate obtained by the etching method of the present invention, where (a) is a top view of the substrate and (b) is a cross-sectional view thereof.
[図 4]エッチングガスの混合比を変化させた場合の、エッチングレート (nmZmin)と選 択比とを示すグラフである。  FIG. 4 is a graph showing an etching rate (nmZmin) and a selection ratio when the mixing ratio of the etching gas is changed.
[図 5] (a)〜 (d)は、それぞれエッチングガスの混合比を変化させた場合の基板の断 面 SEM写真である。  [FIG. 5] (a) to (d) are cross-sectional SEM photographs of the substrate when the mixing ratio of the etching gas is changed.
[図 6] (a)〜(e)は、それぞれ従来のエッチング方法によりエッチングした基板の断面 SEM写真である。  [FIG. 6] (a) to (e) are cross-sectional SEM photographs of a substrate etched by a conventional etching method, respectively.
[図 7]従来のエッチング方法によりエッチングした各基板のエッチングレート (nmZmi n)と選択比とを示すグラフである。  FIG. 7 is a graph showing an etching rate (nmZmin) and a selection ratio of each substrate etched by a conventional etching method.
符号の説明  Explanation of symbols
[0050] 1エッチング装置 2基板載置部 [0050] 1 Etching device 2 Substrate placing part
4ガス導入手段 11真空チャンバ一  4 Gas introduction means 11 Vacuum chamber
12真空排気手段 13基板処理室  12 Vacuum exhaust means 13 Substrate processing chamber
14プラズマ発生室 21基板電極  14 Plasma generation chamber 21 Substrate electrode
22絶縁体 23支持台  22 Insulator 23 Support base
24ブロッキングコンデンサー 25高周波電源  24 blocking capacitor 25 high frequency power supply
31天板 32可変コンデンサー  31 Top plate 32 Variable condenser
33高周波電源 34分岐点  33 High frequency power supply 34 Branch point
41ガス導入経路 42ガス流量制御手段  41 Gas introduction path 42 Gas flow rate control means
43ガス源 51磁場コイル アンテナコイル 43 gas source 51 magnetic field coil Antenna coil

Claims

請求の範囲 The scope of the claims
[1] エッチングガスにより、層間絶縁膜上に設けられた ArFレジスト又は KrFレジスト上 にポリマー膜を形成しながら、層間絶縁膜を微細加工する層間絶縁膜のドライエッチ ング方法であって、前記エッチングガスを 0. 5Pa以下の圧力下で導入し、 1200cm" 1付近に C— F結合のピーク、 1600cm_1付近に C— N結合のピーク及び 3300cm_1 付近に C H結合のピーク (フーリエ変換赤外分光光度計で測定したスペクトル)を 有するポリマー膜を形成しながらエッチングすることを特徴とする層間絶縁膜のドライ エッチング方法。 [1] A dry etching method for an interlayer insulating film, in which a polymer film is formed on an ArF resist or KrF resist provided on the interlayer insulating film with an etching gas, and the interlayer insulating film is microfabricated. was introduced under a pressure of a gas 0. 5 Pa or less, 1200 cm "C-F bond peak at about 1, in the vicinity of 1600 cm _1 C-N bond peak and 3300 cm _1 near the CH bond peak (Fourier transform infrared spectroscopy Etching while forming a polymer film having a spectrum measured by a photometer. A method for dry etching an interlayer insulating film.
[2] 前記エッチングガス力 CF系ガスと、 N含有ガスと、低級炭化水素ガスとからなるェ ツチングガスであることを特徴とする請求項 1記載の層間絶縁膜のドライエッチング方 法。  2. The dry etching method for an interlayer insulating film according to claim 1, wherein the etching gas force is an etching gas comprising a CF-based gas, an N-containing gas, and a lower hydrocarbon gas.
[3] 前記エッチングガス力 C F Hガスと、 N含有ガスと力もなるエッチングガスである ことを特徴とする請求項 1記載の層間絶縁膜のドライエッチング方法。  [3] The method of dry etching an interlayer insulating film according to [1], wherein the etching gas force is C F H gas and N gas.
[4] 前記 CF系ガスが、 CF、C F、C F、C F、C F及び C F Iから選ばれた少なくと  [4] The CF gas is at least selected from CF, C F, C F, C F, C F and C F I
4 3 8 2 6 4 8 5 8 x y  4 3 8 2 6 4 8 5 8 x y
も一種のガスであることを特徴とする請求項 2に記載の層間絶縁膜のドライエツチン グ方法。  3. The method of dry etching an interlayer insulating film according to claim 2, wherein the gas is also a kind of gas.
[5] 前記低級炭化水素が CH、 C H、 C H、 C H 、または C Hであることを特徴と  [5] The lower hydrocarbon is CH, C H, C H, C H, or C H
4 2 6 3 8 4 10 2 2  4 2 6 3 8 4 10 2 2
する請求項 2〜4の 、ずれかに記載の層間絶縁膜のドライエッチング方法。  The method for dry etching an interlayer insulating film according to any one of claims 2 to 4.
[6] 前記 C F Hガスが、 CHFガスであることを特徴とする請求項 3に記載の層間絶縁 6. The interlayer insulation according to claim 3, wherein the C F H gas is CHF gas.
3  Three
膜のドライエッチング方法。  A dry etching method for a film.
[7] 前記 N含有ガス力 窒素ガス、 NO、 NH、メチルァミン、ジメチルァミン力も選ばれ [7] N-containing gas power Nitrogen gas, NO, NH, methylamine, dimethylamine power are also selected.
3  Three
た少なくとも 1種のガスであることを特徴とする請求項 2又は 3のいずれかに記載の層 間絶縁膜のドライエッチング方法。  4. The method for dry etching an interlayer insulating film according to claim 2, wherein the gas is at least one kind of gas.
[8] 前記 C F Iガスが、 C F Iガス又は CF Iガスであることを特徴とする請求項 4に記載 y 3 7 3 [8] The y 3 7 3 according to claim 4, wherein the CFI gas is CFI gas or CF I gas.
の層間絶縁膜のドライエッチング方法。  Dry etching method for interlayer insulating film.
[9] 前記層間絶縁膜が、 SiOCH系材料力 なることを特徴とする請求項 1〜8のいず れかに記載の層間絶縁膜のドライエッチング方法。 [9] The method for dry etching an interlayer insulating film according to any one of [1] to [8], wherein the interlayer insulating film is made of SiOCH-based material.
PCT/JP2007/060010 2006-05-24 2007-05-16 Method for dry-etching interlayer insulating film WO2007135906A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2007800189986A CN101454878B (en) 2006-05-24 2007-05-16 Method for dry-etching interlayer insulating film
KR1020087028192A KR101190137B1 (en) 2006-05-24 2007-05-16 Method for dry-etching interlayer insulating film
JP2008516618A JP4950188B2 (en) 2006-05-24 2007-05-16 Interlayer dielectric film dry etching method
US12/301,786 US20100219158A1 (en) 2006-05-24 2007-05-16 Method for dry etching interlayer insulating film
DE112007001243.9T DE112007001243B4 (en) 2006-05-24 2007-05-16 Process for dry etching an intermediate insulating layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-143868 2006-05-24
JP2006143868 2006-05-24

Publications (1)

Publication Number Publication Date
WO2007135906A1 true WO2007135906A1 (en) 2007-11-29

Family

ID=38723220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060010 WO2007135906A1 (en) 2006-05-24 2007-05-16 Method for dry-etching interlayer insulating film

Country Status (7)

Country Link
US (1) US20100219158A1 (en)
JP (1) JP4950188B2 (en)
KR (1) KR101190137B1 (en)
CN (1) CN101454878B (en)
DE (1) DE112007001243B4 (en)
TW (1) TWI437633B (en)
WO (1) WO2007135906A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193988A (en) * 2008-02-12 2009-08-27 Tokyo Electron Ltd Plasma-etching method and computer storage medium
JP2012096823A (en) * 2010-11-01 2012-05-24 Takagi Seiko Corp Liquid storage container
WO2021161368A1 (en) * 2020-02-10 2021-08-19 株式会社日立ハイテク Plasma processing method
JP7445150B2 (en) 2019-03-22 2024-03-07 セントラル硝子株式会社 Dry etching method and semiconductor device manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7637269B1 (en) * 2009-07-29 2009-12-29 Tokyo Electron Limited Low damage method for ashing a substrate using CO2/CO-based process
KR101102495B1 (en) * 2011-08-11 2012-01-05 주식회사 미로 Street lamp
US11798811B2 (en) * 2020-06-26 2023-10-24 American Air Liquide, Inc. Iodine-containing fluorocarbon and hydrofluorocarbon compounds for etching semiconductor structures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071731A (en) * 2002-08-05 2004-03-04 Ulvac Japan Ltd Etching method
JP2005251814A (en) * 2004-03-02 2005-09-15 Ulvac Japan Ltd Dry etching method and apparatus of interlayer insulation film
JP2006100628A (en) * 2004-09-30 2006-04-13 Hitachi High-Technologies Corp Method of plasma processing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635185B2 (en) * 1997-12-31 2003-10-21 Alliedsignal Inc. Method of etching and cleaning using fluorinated carbonyl compounds
JP4538209B2 (en) * 2003-08-28 2010-09-08 株式会社日立ハイテクノロジーズ Manufacturing method of semiconductor device
KR20070009729A (en) * 2004-05-11 2007-01-18 어플라이드 머티어리얼스, 인코포레이티드 Carbon-doped-si oxide etch using h2 additive in fluorocarbon etch chemistry
US20060051965A1 (en) * 2004-09-07 2006-03-09 Lam Research Corporation Methods of etching photoresist on substrates
US7794880B2 (en) * 2005-11-16 2010-09-14 California Institute Of Technology Fluorination of multi-layered carbon nanomaterials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071731A (en) * 2002-08-05 2004-03-04 Ulvac Japan Ltd Etching method
JP2005251814A (en) * 2004-03-02 2005-09-15 Ulvac Japan Ltd Dry etching method and apparatus of interlayer insulation film
JP2006100628A (en) * 2004-09-30 2006-04-13 Hitachi High-Technologies Corp Method of plasma processing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193988A (en) * 2008-02-12 2009-08-27 Tokyo Electron Ltd Plasma-etching method and computer storage medium
CN102254813A (en) * 2008-02-12 2011-11-23 东京毅力科创株式会社 Plasma etching method
JP2012096823A (en) * 2010-11-01 2012-05-24 Takagi Seiko Corp Liquid storage container
JP7445150B2 (en) 2019-03-22 2024-03-07 セントラル硝子株式会社 Dry etching method and semiconductor device manufacturing method
WO2021161368A1 (en) * 2020-02-10 2021-08-19 株式会社日立ハイテク Plasma processing method
JPWO2021161368A1 (en) * 2020-02-10 2021-08-19
JP7075537B2 (en) 2020-02-10 2022-05-25 株式会社日立ハイテク Plasma processing method
TWI783362B (en) * 2020-02-10 2022-11-11 日商日立全球先端科技股份有限公司 Plasma treatment method
US11887814B2 (en) 2020-02-10 2024-01-30 Hitachi High-Tech Corporation Plasma processing method

Also Published As

Publication number Publication date
DE112007001243B4 (en) 2015-01-22
KR101190137B1 (en) 2012-10-12
US20100219158A1 (en) 2010-09-02
TWI437633B (en) 2014-05-11
TW200809961A (en) 2008-02-16
KR20090012329A (en) 2009-02-03
JP4950188B2 (en) 2012-06-13
JPWO2007135906A1 (en) 2009-10-01
DE112007001243T5 (en) 2009-05-28
CN101454878B (en) 2011-03-23
CN101454878A (en) 2009-06-10

Similar Documents

Publication Publication Date Title
CN111316405B (en) Hydrofluorocarbons containing-NH 2 functional groups for 3D NAND and DRAM applications
CN100419972C (en) Post-etch photoresist strip with O2 and NH3 for organosilicate glass low-K dielectric etch applications
KR101029947B1 (en) A method for plasma etching performance enhancement
KR101683405B1 (en) Sidewall protection of low-k material during etching and ashing
US7309448B2 (en) Selective etch process of a sacrificial light absorbing material (SLAM) over a dielectric material
CN1524287B (en) Unique process chemistry for etching organic low-K materials
JP5349066B2 (en) Method for etching silicon-containing antireflection coating layer with reduced CD bias
WO2007135906A1 (en) Method for dry-etching interlayer insulating film
KR20070009729A (en) Carbon-doped-si oxide etch using h2 additive in fluorocarbon etch chemistry
KR101889107B1 (en) FORMATION OF SiOCl-CONTAINING LAYER ON EXPOSED LOW-K SURFACES TO REDUCE LOW-K DAMAGE
US8252192B2 (en) Method of pattern etching a dielectric film while removing a mask layer
JP2005050908A (en) Method and apparatus for etching lsi device
JP2002510878A (en) Method for etching a low-k dielectric
KR20060063714A (en) Dielectric etch method with high source and low bombardment plasma providing high etch rates
WO2018126202A1 (en) Methods for minimizing sidewall damage during low k etch processes
KR101075045B1 (en) A method for plasma etching performance enhancement
US6647994B1 (en) Method of resist stripping over low-k dielectric material
US20090246713A1 (en) Oxygen-containing plasma flash process for reduced micro-loading effect and cd bias
JP2003188155A (en) Via etching method for organic silica glass
CN100356548C (en) Via reactive ion etching process
JP2004071731A (en) Etching method
KR100395663B1 (en) SiLK dual damascene process
JP2005033027A (en) Method of dry etching low-dielectric constant interlayer insulating film
JP2004289024A (en) Method and apparatus for surface treatment
CN117242547A (en) Cyclic plasma etching of carbonaceous materials

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018998.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743445

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008516618

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087028192

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12301786

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112007001243

Country of ref document: DE

Date of ref document: 20090528

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07743445

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607