WO2007131453A1 - Dispositif et procédé de séparation de minerai, procédé de préparation mécanique de minerai au moyen du procédé de séparation et appareil de tri par dimension - Google Patents

Dispositif et procédé de séparation de minerai, procédé de préparation mécanique de minerai au moyen du procédé de séparation et appareil de tri par dimension Download PDF

Info

Publication number
WO2007131453A1
WO2007131453A1 PCT/CN2007/001601 CN2007001601W WO2007131453A1 WO 2007131453 A1 WO2007131453 A1 WO 2007131453A1 CN 2007001601 W CN2007001601 W CN 2007001601W WO 2007131453 A1 WO2007131453 A1 WO 2007131453A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation
tank
particle size
separation tank
ore
Prior art date
Application number
PCT/CN2007/001601
Other languages
English (en)
French (fr)
Inventor
Xuguang Wang
Chengzho Yang
Original Assignee
Xuguang Wang
Chengzho Yang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 200620079023 external-priority patent/CN2910359Y/zh
Priority claimed from CN 200620079022 external-priority patent/CN2902461Y/zh
Priority claimed from CN 200610042845 external-priority patent/CN101073789A/zh
Application filed by Xuguang Wang, Chengzho Yang filed Critical Xuguang Wang
Publication of WO2007131453A1 publication Critical patent/WO2007131453A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/62Washing granular, powdered or lumpy materials; Wet separating by hydraulic classifiers, e.g. of launder, tank, spiral or helical chute concentrator type
    • B03B5/623Upward current classifiers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/02Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/28Washing granular, powdered or lumpy materials; Wet separating by sink-float separation
    • B03B5/30Washing granular, powdered or lumpy materials; Wet separating by sink-float separation using heavy liquids or suspensions
    • B03B5/36Devices therefor, other than using centrifugal force

Definitions

  • the present invention relates to beneficiation technology, and more particularly to a method for separating ore without using a chemical, a beneficiation method using the method for separating the ore, a mineral separation device, and a particle size classification device.
  • the ore beneficiation is mostly carried out by using a flotation machine, using a certain formula of the agent, reacting with the minerals, causing the minerals to foam and float on the surface of the water to achieve the purpose of separation from the ore.
  • This method is due to the use of pharmaceuticals, the cost is increased, and the second is that the wastewater produced is relatively polluting.
  • Most of the domestic lead-zinc oxides have complex structures, unstable ore components, and contain a large amount of clay and other ores with little value and low content.
  • flotation methods for lead oxide zinc ore at home and abroad namely, sulfur flotation, anion collector direct flotation, integrator-neutral oil flotation, and leaching-flotation.
  • these methods are ultimately inseparable from the use of pharmaceuticals.
  • the difference is the update of the flotation method and the improvement of the technical level.
  • the large use of pharmaceuticals causes environmental pollution and increases production costs.
  • a jig is a device for classifying a particle size, which is a pulsating water flow caused by a piston, compressed air or a diaphragm, passing through a sieve plate of a jig, so that the material on the sieve plate is alternately raised. Or falling, in each pulsation of the water flow, the material is subjected to a certain sorting function, and the material is classified according to the particle size after repeated particle size stratification (grading).
  • grading repeated particle size stratification
  • sorting machine there are some sorting devices such as a jig and a shaker. Although it is possible to sort certain minerals, there are certain limitations. On this basis, a flotation machine has been developed, which uses a chemical to react to minerals, so that different substances produce large density differences and achieve separation. Its disadvantage is the high cost of using the agent and polluting the environment.
  • Another object of the present invention is to provide a mineral separation apparatus and a particle size classification apparatus which are relatively simple in structure and which use vibration and water flushing without using a chemical.
  • Water having a predetermined pressure is injected into the separation tank from the water injection port, so that components having different specific gravity or particle size in the mineral material are respectively floated or sunk, so that components having a small specific gravity or a small particle size are discharged from the first
  • the discharge port is discharged, and the component having a larger specific gravity or larger particle size is discharged from the second discharge port;
  • the vibrator is driven to vibrate the separation tank while injecting water having a predetermined pressure from the water injection port.
  • the method of separating ore further includes a plurality of separate separation steps of re-separating the mineral material flowing from the first discharge port by using a plurality of downstream separation tanks.
  • three of the separation grooves may be provided.
  • the method of separating ore is used to separate soil in a mineral material, and the separation tank is used as a dewatering tank.
  • the method of separating ore is used to classify a mineral material by a particle size, and the separation tank is used as a particle size classifying device.
  • the method of separating minerals is used for selective separation of mineral materials, and the separation tank is used as a selective tank.
  • the method of separating ore is used to separate tailings, and the separation tank is used as a tailings tank.
  • a mineral separation apparatus comprising a separation tank, the separation tank comprising: a feed port disposed at an upper portion of the separation tank for injecting a mineral material therethrough; a water injection port at the bottom of the separation tank, wherein the water injection port injects water having a predetermined pressure into the separation tank to respectively float or sink the components having different specific gravity or particle size in the mineral material; and is disposed at the top of the separation tank a first discharge port, a component having a smaller specific gravity or a smaller particle size floating up to the top of the separation tank is discharged from the first discharge port; a second discharge port disposed at the bottom of the separation groove, sinking to the separation a component having a larger specific gravity or a larger particle size at the bottom of the groove is discharged from the second discharge port; and a vibrator disposed on the separation groove, the vibrator being injected while injecting water having a predetermined pressure from the water injection port drive, In order to cause the separation tank to vibrate.
  • a plurality of the separation tanks may be provided, and the separation tanks are sequentially disposed along the flow direction of the mineral material, wherein the first discharge port of the upstream separation tank is connected to the feed port of the downstream separation tank adjacent thereto.
  • three of said separation grooves are provided.
  • the groove wall of the separation groove on the side of the first discharge port is inclined, and the separation groove has a large upper opening and a small lower bottom.
  • the separation groove includes a cylindrical body at an upper portion and a cone integrally formed at a lower portion of the cylindrical body, one side of the upper edge of the cylindrical body forms a feed port, and the other side forms a first
  • the discharge port forms a second discharge port at the bottom of the cone.
  • one side of the separation groove includes a cylindrical body at an upper portion and a cone integrally formed at a lower portion of the cylindrical body, a bottom portion of the cone forming the second discharge opening;
  • the side surface is connected with an open groove whose bottom surface is a sloped surface, and the bottom surface of the open groove is integrally connected with the side surface of the cone;
  • the side of the upper edge of the cylinder opposite to the opening groove is provided with a first discharge opening, and the groove of the opening a feeding port is provided on an opposite side of the upper edge from the cylinder;
  • the cylinder is provided with a mouth;
  • the bottom surface of the opening groove and the periphery of the cone are provided with a forming chamber
  • the water supply pipe of the nozzle is described.
  • one side of the separation groove is an open groove whose bottom surface is a sloped surface, and the other side is a cone or a quadrangular pyramid, and the bottom surface of the open groove is integrally formed with the side surface of the cone or the quadrangular pyramid, and the open groove Connecting with the upper portion of the cone or the quadrangular pyramid, the bottom of the cone or the quadrangular pyramid is the second discharge opening; the first discharge port is provided on the side of the upper edge of the cone or the quadrangular pyramid opposite to the open groove, A feed port is provided at an upper edge of the open groove opposite to the cone or the quadrangular pyramid.
  • the separation tank is used as a dewatering tank for separating soil in the mineral material.
  • the separation tank is used as a particle size classifying device for classifying the ore material by particle size.
  • the separation tank is used as a selection tank for selective separation of minerals.
  • a beneficiation method comprising the steps of:
  • Preliminary deliming step preliminary deliming of the ore by vibrating screen deaer
  • Crushing step crushing the primary demineralized ore material with a crusher
  • Ball milling step ball milling the crushed mineral material with a ball mill
  • Secondary de-sludge step the ball-milled ore material is introduced into the de-sludge tank for secondary de-sludge;
  • Particle size fractionation step the secondary delimed ore material is introduced into the particle size classification device for particle size classification
  • Selected separation steps Different sizes of minerals from the particle size classification device enter different selection tanks for selective separation.
  • the secondary deliming step, the particle size fractionation step, and the selective separation step all use the method for separating the ore according to the first aspect of the present invention
  • the desiccant tank, the particle size classifying device and the selection tank are all used according to A mineral separation apparatus according to a second aspect of the invention.
  • the ball milled out of the ball mill is placed in a de-sludge tank.
  • the mechanical vibration frequency of the vibrator is 130-250 times/min, and the exciting force is 150-300 kg.
  • the water is injected from the bottom of the tank.
  • the flow rate is 8 10 m 3 /hour, the pressure is 3-5 kg, the mineral material flows out from the bottom of the de-sludge tank, and the silt and other slag are discharged from the top of the de-sludge tank.
  • a plurality of separation tanks are used to perform multi-stage separation of the ore materials, the plurality of separation tanks are sequentially arranged along the flow direction of the mineral materials, and the first discharge ports of the respective upstream separation tanks are connected to a feed port of each of the adjacent downstream separation tanks, and each of the separation grooves forms a stepped structure, wherein the secondary demineralized ore is placed in the most upstream separation tank, and the first separation from each upstream separation tank The separated product discharged from the feed port flows into the downstream separation tank adjacent thereto for further separation.
  • the mechanical vibration frequency of each separation tank is 130-250 times/min, and the exciting force is 150-300 kg, from each tank.
  • the bottom is pressurized with water, the flow rate is 3-1 m 3 /hr, and the pressure is 1-3 kg.
  • the mineral material flows out from the second discharge port at the bottom of each tank according to the particle size, and the mud sand and other slag are separated from the most downstream. The top of the discharge.
  • three separation tanks are used for the three-stage particle size classification in the particle size classification step.
  • the mechanical vibration frequency of the vibrator is 130-250 beats/min, and the exciting force is 150-300 kg; when processing the ore fines of 50 mesh or more in the ore, the flow rate of water is 4- 6m 3 / h, the pressure of water is 1-3 kg; batch processing of ores during a 50 mesh 150 mesh particle size of slag, the flow rate of water is 3- 5m 3 / h, the pressure of water is 0. 5-2 5 ⁇ The kilogram; and the water flow of the water is 3-5 m 3 / hour, the water pressure is 0. 5 - 2 kg.
  • a particle size classification device comprising a plurality of separation tanks, each separation tank comprising: a feed port disposed at an upper portion of the separation tank for injecting a mineral material therethrough;
  • a water injection port disposed at a bottom of the separation tank, the water injection port injecting water having a predetermined pressure into the separation tank, so that components having different specific gravity or particle size in the mineral material are respectively floated or sunk; a first discharge port at the top of the separation tank, a component having a smaller specific gravity or a smaller particle size floating up to the top of the separation tank is discharged from the first discharge port; and a second discharge port disposed at the bottom of the separation tank a component having a larger specific gravity or a larger particle size that sinks to the bottom of the separation tank Discharged from the second discharge port;
  • the particle size classifying device further includes a vibrator that is driven while injecting water having a predetermined pressure from the water injection port to vibrate the separation groove; the plurality of separation grooves along the mineral material
  • the flow direction is sequentially arranged, the first discharge port of each upstream separation groove is connected to the feed port of each downstream separation groove adjacent thereto, and each separation groove is formed into a stepped structure, wherein the most upstream separation groove
  • the feed port is used for injecting mineral material which needs to be classified by particle size, and the separated product discharged from the first discharge port of each upstream separation tank enters the feed port of the adjacent downstream separation tank to be carried out in the downstream separation tank. Further separating, the ore material flows out from the second discharge port at the bottom of each step of each separation tank according to the particle size, and the mud sand and other slag are discharged from the first discharge port at the top of the most downstream separation tank.
  • the particle size classification device comprises three separation tanks.
  • the groove walls of the respective separation grooves on the side of the first discharge port are inclined, and each of the separation grooves has a large upper opening and a small lower bottom.
  • the advantages of the invention are as follows: 1. The flotation agent is not used, and the production cost is reduced; 2. Since the medicament is not used, and the water is recycled, the whole flotation process does not pollute the environment; 3. Due to the use of the particle size The grading device classifies the particle size, greatly improves the ore recovery rate, and the recovery rate reaches more than 85%, making full use of resources and improving economic benefits. 4. Granular grading device and special equipment for selecting the entire separation process. These dedicated devices are simple in structure, simple in separation, simple in operation, and easy to grasp. DRAWINGS
  • FIG. 1 is a schematic flow chart of a beneficiation method of the present invention.
  • FIG. 2 is a schematic structural view of a particle size classification device according to an embodiment of the present invention.
  • Figure 3 is a left side view of Figure 2.
  • Figure 4 is a schematic view showing the structure of an embodiment of the selection tank of the present invention.
  • Figure 5 is a schematic view showing the structure of another embodiment of the selective tank of the present invention. as well as
  • FIG. 6 is a schematic view showing the structure of another embodiment of the selective tank of the present invention. detailed description
  • the beneficiation method according to the present invention comprises the following steps: preliminary deliming step of preliminary deliming of the ore by vibrating screen deaerator A; crushing of ore with particle size greater than 2 after deliming
  • the crushing step of the machine B is carried out; the ball milling step of ball milling using the ball mill C for the mineral material having the particle size less than 2 from the crusher B and the vibrating screen mud machine A;
  • Machine C and crusher B have a particle size of less than 1 mm and a secondary de-sludge step of secondary de-sludge using de-sludge tank D; a particle size grading step, in which the particle size of the de-sludge tank D is greater than 0.
  • the 5mra ore is sent to the ball mill C for re-ball milling, so that the slag and the soil are discharged from the de-sludge tank D, the particle size is less than or equal to 0.5.
  • the mineral material entering the particle size classification device E, the particle size classification device E is the size of the mineral material according to the particle size. Graded into 50 mesh or more, 50 mesh - 150 mesh, less than 150 mesh minerals; Select separation step, in which the slag is discharged, so that more than 50 mesh minerals enter the selection tank Fl, 50 mesh - 150
  • the purpose ore material enters the selected tank F2, and the ore material below 150 mesh enters the selected tank F3 for selection.
  • the selected concentrate is placed in the storage tank G, and the tailings discharged from the selected tanks Fl, F2 and F3 enter.
  • the structure of the tailings trough H and the tailing trough H is consistent with the selected trough.
  • the tailings enter the sedimentation tank J, and the concentrate is placed in the storage tank G.
  • a first-stage selective tank that is, a lead-zinc separation tank, may be added after the storage tank G, so that lead and zinc may be separated.
  • the de-sludge tank can be used as the separation tank of the present invention, and the slag such as minerals and mud sand can be separated using the method of separating the ore according to the present invention.
  • the de-slipping tank has a feed port and a first discharge port disposed at an upper portion thereof, and a water injection port and a second discharge port disposed at the bottom portion, and is further provided for the de-sludge tank A vibrator that vibrates.
  • the ore material ball-milled from the ball mill is injected into the de-sludge tank from the feed port at the top of the de-sludge tank; the flow rate from the water injection port to the de-sludge tank is 8-10 m 3 /hour, The water having a pressure of 3-5 kg; while the water is injected from the water injection port, the vibrator is driven to vibrate the desilting tank, so that the mechanical vibration frequency of the vibrator is 130-250 times/min, and the vibration is excited.
  • the force is 150-300 kg, so that the components with different specific gravity or particle size in the mineral material are respectively floated or sunk, and the slag such as mud sand with smaller specific gravity or smaller particle size is discharged from the first discharge port, and the ore with larger specific gravity or larger grain size The portion is discharged from the second discharge port.
  • the mineral material is subjected to multistage separation using a particle size classifying apparatus having three separation tanks as shown in Fig. 2.
  • each of the separation tanks has a structure similar to that of the above-described desilting tank, and includes a feed port disposed at an upper portion of the separation tank, a water injection port disposed at a bottom of the separation tank, and disposed at an upper portion of the separation tank a first discharge port and a second discharge port disposed at the bottom of the separation tank.
  • the plurality of separation tanks are sequentially disposed along the flow direction of the mineral material, the first discharge ports of the respective upstream separation grooves are connected to the feed ports of the adjacent downstream separation grooves, and the separation grooves are stepped. structure.
  • the particle size classifying device further includes a vibrator that is driven while injecting water having a predetermined pressure from the water injection port to vibrate the separation groove.
  • the mineral material having a particle size of less than 0.5 mm after secondary deliming from the desilting tank is injected into the feed port 12 of the most upstream separation tank of the step type classification tank, and the water injection port from the bottom of each separation tank Injecting water with a flow rate of 3 6 m 3 /hour and a pressure of 1-3 kg, and simultaneously driving the vibrator to make the mechanical vibration frequency 130-250 beats / min,
  • the exciting force is 150-300 kg.
  • the feed port of the tank 8 is further separated in the second separation tank 8, and the component having a larger particle size is discharged from the second discharge port 9 of the first separation tank 2.
  • the smaller particle size component of the mineral material entering the second separation tank 8 flows from the first discharge port of the second separation tank 8 into the feed port of the third separation tank 5 to Further separation is carried out in the third separation tank 9, and the component having a larger particle size is discharged from the second discharge port 10 of the second separation tank 8.
  • the components having a smaller particle size (for example, mud sand and other slag) in the ore material entering the third separation tank 5 are discharged from the first discharge port 4 of the third separation tank 5, and the particle size is larger.
  • the components are discharged from the second discharge port 11 of the third separation tank 5.
  • the mineral material flows out from the second discharge port at the bottom of each step of the separation tank according to the particle size, and the mud sand and other slag are discharged from the first discharge port at the top of the most downstream separation tank. Therefore, the mineral material having the largest particle size flows out from the second discharge port 9, the mineral material having the second largest particle size is discharged from the second discharge port 10, and the mineral with the smallest particle size is discharged from the second discharge port 11. material.
  • the ore material entering the particle size classifying device is classified by particle size so as to be selectively separated in the subsequent selective separation step according to the particle size level.
  • the mineral material is divided into 50 mesh or more, 50 mesh to 150 mesh, and 150 mesh or less by particle size, and flows out from the second discharge ports 9, 10, and 11, respectively.
  • the number of separation grooves of the particle size classifying device is not limited to three, but may be set to one, two or three or more as needed.
  • the ore material from the particle size classifying device is sent to different sorting tanks for selective separation by using the method for separating minerals according to the present invention.
  • the picking tank has a feed port and a first discharge port disposed at the upper portion, and a water injection port and a second discharge port disposed at the bottom, and is further provided for A vibrator that vibrates in the desilting tank.
  • the ore material from the particle size classifying device is injected from the inlet of the top of the selection tank, the mechanical vibration frequency of the vibrator is 130-250 times/min, and the excitation force is 150-300 kg.
  • the bottom of the tank is filled with water.
  • the minerals flow out from the second discharge port at the bottom of the selective tank.
  • the silt and other slag are from the mechanical vibration tank.
  • the first discharge port at the top is discharged.
  • different water injection flows and pressures are used for the mineral materials of different sizes classified by the particle size classifying device. Specifically, in the processing of minerals with more than 50 mesh minerals, the flow rate of water is 4-6 m 3 /hr, the pressure of water is 1-3. kg; the processing of 50 mesh-150 mesh minerals in the mineral processing, water flow is 3-5m 3 / hr, a pressure of 0.
  • the selective tank can also be arranged in the form of a multi-stage separation tank as in the case of a particle size classifying device for multiple selective separation.
  • the de-sludge tank can also be provided in the form of a multi-stage separation tank as in the case of a particle size classifying device to perform multiple separations to remove mud.
  • the method of separating minerals of the present invention can also be used in other steps requiring separation operations, for example, in a preliminary de-sludge step to initially separate the mud and minerals; for further separation of the tailings. Used in lead and zinc separation steps to separate lead and zinc.
  • a preliminary de-sludge step to initially separate the mud and minerals
  • tailings Used in lead and zinc separation steps to separate lead and zinc.
  • the following are several examples of the beneficiation process.
  • the lead and zinc content of lead oxide zinc ore is about 20%.
  • the lead-zinc ore is placed in a vibrating screen mud machine for deliming, supplemented by artificially draining large pieces of waste rock, and about 40% of the waste rock in the original ore is removed. After the demineralized ore is crushed, it is ball milled by a ball mill. The ball milled ball mill enters the de-sludge tank to remove mud.
  • the demineralized ore material enters the particle size classification device for particle size classification, and the ore material with a particle size of 50 mesh or more enters.
  • the first selection tank the mechanical vibration frequency of the selected tank is 130 beats / min, the exciting force is 150 kg, the pressure is 1 kg from the bottom of the tank, the flow rate is 4 m 3 / hour of water;
  • the particle size is 50 mesh - 150 target minerals enter the second selection tank, the mechanical vibration frequency of the selected tank is 130 beats / min, the excitation force is 150 kg, the pressure is injected from the bottom of the tank 0. 5 kg, the flow rate is 3 mV of water; the particle size is 150 mesh
  • the following minerals enter the third selection tank, the mechanical vibration frequency of the selected tank is 130 beats/min, the exciting force is 150 kg, and the pressure is injected from the bottom of the tank to 0. 5 kg, the flow rate is 3 m 2 /hour of water, fine
  • the mineral material flows from the bottom of the tank to the storage tank, the silt and its Its slag is discharged from the top of the selection tank.
  • the lead-zinc content of lead oxide zinc ore is about 18%.
  • the lead-zinc ore is placed in a vibrating screen for deliming, supplemented by artificially draining large pieces of waste rock, and about 50% of the waste rock in the original ore is removed.
  • the ore after the mud treatment is crushed or milled by a ball mill.
  • the ore after grinding by the ball mill enters the de-sludge tank for de-sludge.
  • the demineralized ore material enters the particle size classification device for particle size classification, and the ore material with particle size above 50 mesh enters the first stage.
  • a selected tank, the mechanical vibration frequency of the selected tank is 190 beats / min, the exciting force is 225 kg, the pressure from the bottom of the tank is 1.
  • the -150 mesh minerals enter the second selection tank, the mechanical vibration frequency of the selected tank is 190 beats / min, the excitation force is 225 kg, the injection pressure from the bottom of the tank is 1. 2 kg, the flow rate is 1 ⁇ 2 2 / hour Water; the mineral material with a particle size below 150 mesh enters the third selected tank, and the mechanical vibration frequency of the selected tank is 190 beats/min.
  • the force is 225 kg, and the pressure is 1.2 kg from the bottom of the tank, and the flow rate is 4 m 2 /hr.
  • the concentrate flows from the bottom of the tank to the tank, and the silt and other slag are discharged from the top of the tank. .
  • the lead-zinc content of lead oxide zinc ore is about 12%.
  • the lead-zinc ore is placed in a vibrating screen for de-sludge, supplemented by artificially draining large pieces of waste rock, and about 55% of the waste rock in the original ore is removed.
  • the ore after the mud treatment is crushed or milled by a ball mill.
  • the ore after grinding by the ball mill enters the de-sludge tank for de-sludge.
  • the demineralized ore material enters the particle size classification device for particle size classification, and the ore material with particle size above 50 mesh enters the first stage.
  • a selected tank the mechanical vibration frequency of the selected tank is 250 beats / min, the exciting force is 300 kg, the pressure is 3 kg from the bottom of the tank, the flow is 6 m 3 / hour of water; the particle size is 50 mesh - 150
  • the purpose of the mineral material enters the second selection tank.
  • the mechanical vibration frequency of the selected tank is 250 times/min, the exciting force is 300 kg, and the pressure is 2 kg from the bottom of the tank, and the flow rate is 5 m 2 /hour of water;
  • the mechanical vibration frequency of the selected tank is 250 beats / min, the exciting force is 300 kg, the injection pressure is 2 kg from the bottom of the tank, and the flow rate is 5 m7 hours. Water, concentrate flows from the bottom of the tank to the tank, muddy sand And other slag is discharged from the top of the selection tank.
  • the concentrate material is taken out from the storage tanks of the above three embodiments, and is placed in a lead-zinc separation tank for separation of lead and zinc.
  • the mechanical vibration frequency is 150-250 times/min, and the exciting force is 150-300 kg.
  • Water is injected into the bottom, the flow rate of water is 6-8 m 3 /hr, and the pressure is 1-3 kg.
  • the lead ore powder flows out from the bottom of the lead-zinc separation tank, and the zinc powder flows out from the top of the lead-zinc separation tank. After drying, the lead powder grade is 70-75%, and the zinc powder grade is 50-55%.
  • the content of the original gold ore is about 2g - 12g / ton.
  • the ore is crushed, it is ground by a ball mill.
  • the ore after grinding by the ball mill enters the de-sludge tank to remove mud.
  • the demineralized ore material enters the particle size classification device for particle size classification.
  • the mineral material with a particle size of more than 50 mesh enters the first selection tank.
  • the mechanical vibration frequency of the selected tank is 130-250 times/min, the exciting force is 150-300 kg, and the injection pressure from the bottom of the tank is 1-3 kg.
  • the flow is 3 - 5m7 hours of water
  • the concentrate flows from the bottom of the tank to the tank
  • mud and other slag are discharged from the top of the selection tank.
  • the recovery rate is 95%-97%
  • the refined gold powder grade can reach 75°/. -77%.
  • FIG. 2 is a schematic structural view of a particle size classification device according to an embodiment of the present invention.
  • Figure 3 is a left side view of Figure 2.
  • the particle size classification device according to one embodiment of the present invention has at least three step slots. 2, 8, 5, the upper edge of each trough is connected as one body, and the bottom of each trough is in the form of a step.
  • the bottom of each trough is provided with water supply pipes 1, 7, and 6, respectively, and is provided with a plurality of mineral materials for discharging different sizes.
  • the two discharge ports 9, 10, 11 are connected with a vibrator 3, the upper edge of the groove is a feed port 12, and the other end is a first discharge port 4 for making a slag hole.
  • the stepped grooves 2, 8, and 5 are inclined at one side of the slag opening 4, and the groove is large in the upper opening and small in the lower bottom.
  • the vibrator 3 may be in the form of an eccentric weight on the rotating shaft of the motor.
  • the mineral material enters from the feed port 12 and reaches the stepped groove 2, and the entire groove vibrates up and down under the action of the vibrator 3, that is, the rotating shaft of the motor drives the eccentric weight to rotate, so that the groove body vibrates up and down.
  • Water supply pipes 1, 7, and 6 are respectively provided at the bottoms of the stepped tanks, and the outlets of the water supply pipes are opened, and a certain pressure of water is injected upward from the bottom of each of the sample tanks. It should be noted that the pressure is determined according to the size of the ore to be separated.
  • the specific gravity or particle size of the material is determined to stratify the mineral material according to the specific gravity and the particle size by the vibration of the vibrator and the impact force of the water, so that the mineral material having a specific gravity or a particle size exceeding a predetermined value is aggregated at the bottom layer, and the specific gravity and the particle size are smaller than a predetermined one.
  • the value of the mineral material aggregates in the upper layer because the flow of water drives the upper layer of the mineral material to pass over the groove wall between the stepped grooves 2 and 8, and reaches the stepped groove 8, the same reason, the specific gravity and the larger particle size are gathered at the bottom layer, the specific gravity and The smaller particle size gathers in the upper layer, and the flow of water drives the upper layer of mineral material to pass over the groove wall between the stepped grooves 8, 5 to reach the stepped groove 5.
  • the specific gravity and the larger particle size are gathered at the bottom layer, the specific gravity and The smaller particle size is collected in the upper layer, and the slag is discharged from the slag discharge port 4.
  • FIG. 4 is a schematic view of the structure of one embodiment of a sizing tank. As shown in FIG. 4, one side of the selected trough body is a cylinder 17 with a cone 17 attached thereto, the top end of the cone 17 is a discharge port 19, and the other side of the trough body is an open groove of a bevel.
  • FIG. 5 shows another configuration of the picking tank. As shown in Fig. 5, the upper surface of the tank body is a cylinder 16, and the cylinder body 16 is connected to the cone 17 below, and the bottom of the cone body is a discharge port 19.
  • a water supply pipe outlet 31 is provided on the periphery of the cone 17, and a vibrator 40 is connected to the tank.
  • One end of the upper edge of the tank is the feed port 13 and the other end is the tap hole 14.
  • Figure 6 shows another structure of the picking tank. As shown in Fig. 6, one side of the tank body is an open groove 20 whose bottom surface is a sloped surface, the other side is a cone or a quadrangular pyramid 17, and the bottom of the cone or the quadrangular pyramid 17 is a discharge port 19, a cone or a quadrangular pyramid.
  • the upper edge of the body 17 is connected to the lower surface of the open groove 20 at a lower slope.
  • the vibrator 40 is connected to the tank body.
  • the upper surface of the opening groove 20 has a higher slope at the inlet opening 13 and the upper edge of the cone or quadrangular pyramid 17 is the slag outlet 14.
  • a water supply pipe outlet 21 is provided on the bottom surface of the open groove 20 and on the periphery of the cone or the quadrangular pyramid 17.
  • the mineral material enters from the feed inlet, and the entire selection tank vibrates up and down under the action of the vibrator.
  • the water of a certain pressure is injected from the outlet of the water supply pipe, and the mineral material is divided according to specific gravity and particle size by vibration and water surge.
  • the layer, the specific gravity and the larger particle size are aggregated at the bottom layer, the specific gravity and the smaller particle size are gathered in the upper layer, and the slag with a lighter specific gravity of the mineral material is discharged from the upper slag outlet.
  • the concentrate with a heavier specific gravity is discharged from the discharge port. This achieves the purpose of selective separation of minerals.
  • the structure of the sorting groove is not limited to the various forms described above, and may have other forms.
  • the open groove 20 may not be provided, or a combination of a cylinder and a cone may be used instead of a simple single cylinder or a single cone. It is preferable to provide an open groove 20 whose bottom surface is a bevel, as shown in Figs. 4 and 6, for better separation of minerals.
  • the upper edge of the tank of the selection tank is a feed port at one end, and the slag outlet is at the other end.
  • the water supply pipe outlet is provided at the bottom of the tank body, and a discharge port is provided, and the tank body is provided with a discharge port. Vibrator.
  • the selection slots can also be set to multiple consecutive ones for multi-level selection.
  • the sizing tank may be provided in the form of a three-stage step size grading tank as shown in Figs.
  • the selection tank of the invention has simple structure, high separation efficiency, no use of chemicals during separation, good environmental protection and simple operation.
  • the particle size classifying device may take the form of various sorting tanks as described above.
  • the particle size classifying apparatus and the selective tank disclosed above can also be used as a desiccant tank to demineralize the mineral material.

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Description

分离矿料的方法及采用该方法的选矿方法、 矿料分离设备及粒度分级装置
技术领域
本发明涉及选矿技术, 尤其涉及一种不使用药剂的分离矿料的方法及釆用该分离 矿料的方法的选矿方法、 一种矿料分离设备及一种粒度分级装置。
背景技术
矿石的选矿, 大多是釆用浮选机, 使用一定配方的药剂, 与矿物发生反应, 使矿 物发泡变轻浮在水面上, 达到与矿碴分离的目的。 这种方法因为要使用药剂, 一是成 本加大, 二是产生的废水对环境污染比较大。 国内大部分氧化铅锌矿结构复杂, 原矿 组份不稳定, 含有大量粘土和利用价值不大、 含量较小的其它矿石。 目前, 国内外对 氧化铅锌矿的浮选方法归纳起来有四种, 即硫化浮选法、 阴离子捕收剂直接浮选法、 整合剂一中性油浮选法、 浸出一浮选法。 但是这些方法最终离不开药剂的使用, 所不 同的是浮选方法的更新与技术层面的提升, 使用药剂的更改与变化, 并没有本质的改 变。 药剂的大量使用造成了环境污染, 生产成本增大。
在重力选矿机械中, 跳汰机是对粒度分级的一种设备, 它由活塞、压缩空气或隔 膜造成的脉动水流, 穿过跳汰机的筛板, 使位于筛板上的物料交替地上升或下降, 在 水流的每一次脉动中, 物料都受到一定的分选作用, 经过多次重复粒度分层 (分级), 将物料按粒度分级。这种装置虽然能够粒度分层(分级), 但分级不够明显, 而且设备 复杂。
并且, 在分选机械中, 有跳汰机、摇床等一些分选设备。 虽然能够达到对某些矿 物的分选, 但是都存在一定的局限性。 在此基础上又发展了浮选机, 它是使用药剂对 矿物产生反应, 使不同的物质产生较大的密度差异, 达到分离的目的。 它的缺点是使 用药剂的成本高, 污染环境。
发明内容
本发明的一个目的是提供一种不使用药剂,对矿料进行分离的方法及采用该分离 方法的选矿方法。
本发明的另一个目的是提供一种不使用药剂, 结构相对简单, 使用振动与水冲相 结合的矿料分离设备及粒度分级装置。
根据本发明的第一方面, 提供一种利用分离槽分离矿料的方法, 所述分离槽具有 设置在上部的进料口和第一出料口、以及设置在底部的注水口和第二出料口,所述分离 槽还设有用于使所述分离槽发生振动的振动器,所述方法包括如下步骤:
将矿料从所述进料口注入分离槽;
从所述注水口向所述分离槽内注入具有预定压力的水,以使矿料中比重或粒度不 同的组份分别上浮或下沉, 从而, 比重或粒度较小的组份从第一出料口排出, 比重或 粒度较大的组份从第二出料口排出; 以及
在从所述注水口注入具有预定压力的水的同时, 驱动所述振动器使所述分离槽发 生振动。
所述分离矿料的方法进一步包括对从所述第一出料口流出的矿料利用多个下游分 离槽进行再次分离的多个再次分离步骤。
根据本发明的一个实施例, 可以设置 3个所述分离槽。
根据本发明的一个实施例, 所述的分离矿料的方法用于分离矿料中的泥土, 所述 的分离槽用作脱泥槽。
根据本发明的一个实施例, 所述的分离矿料的方法用于对矿料按粒度进行分级, 所述的分离槽用作粒度分级装置。
根据本发明的一个实施例, 所述的分离矿料的方法用于对矿料进行精选分离, 所 述的分离槽用作精选槽。
根据本发明的一个实施例, 所述的分离矿料的方法用于对尾矿进行分离, 所述的 分离槽用作尾矿选槽。
根据本发明的第二方面, 提供一种矿料分离设备, 包括分离槽,所述分离槽包括: 设置在所述分离槽上部的进料口, 用于经此注入矿料; 设置在所述分离槽底部的注水 口,所述注水口向所述分离槽内注入具有预定压力的水,以使矿料中比重或粒度不同的 组份分别上浮或下沉; 设置在所述分离槽顶部的第一出料口, 上浮到所述分离槽顶部 的比重或粒度较小的组份从第一出料口排出; 设置在所述分离槽底部的第二出料口, 下沉到所述分离槽底部的比重或粒度较大的组份从第二出料口排出; 以及设置在所述 分离槽上的振动器,所述振动器在从所述注水口注入具有预定压力的水的同时被驱动, 以使所述分离槽发生振动。
可以设置多个所述分离槽, 各个分离槽沿着矿料的流动方向顺序设置, 其中, 上 游分离槽的第一出料口连接到与之相邻的下游分离槽的进料口。
根据本发明的一个实施例, 设置 3个所述分离槽。
根据本发明的一个实施例, 所说的分离槽在第一出料口一侧的槽壁是倾斜的, 并 且分离槽是上口大, 下底小。
根据本发明的一个实施例, 所述分离槽包括位于上部的圆柱体和一体地形成在所 述圆柱体下部的圆锥体, 圆柱体上边缘的一侧形成进料口,另一侧形成第一出料口,圆 锥体的底部形成第二出料口。
根据本发明的一个实施例, 分离槽的一侧包括位于上部的圆柱体和一体地形成在 所述圆柱体下部的圆锥体, 圆锥体的底部形成所述第二出料口; 圆柱体的一侧连接有 底面是斜面的开口槽,所述开口槽的底面和圆锥体的侧面一体式连接;圆柱体的上边缘 处与开口槽相对的一侧设有第一出料口,幵口槽的上边缘处与圆柱体相反的一侧设有 进料口;在圆柱体与开口槽的连接处, 圆柱体上设有幵口;所述开口槽的底面和圆锥体 的周边上设有形成所述注水口的供水管。
根据本发明的一个实施例, 分离槽的一侧是底面是斜面的开口槽, 另一侧是圆锥 体或四棱锥体,开口槽的底面与圆锥体或四棱锥体的侧面形成一体,开口槽与圆锥体或 四棱锥体的上部连通,圆锥体或四棱锥体底部是第二出料口; 圆锥体或四棱锥体的上 边缘处与开口槽相对的一侧设有第一出料口,开口槽的上边缘处与圆锥体或四棱锥体 相反的一侧设有进料口。
根据本发明的一个实施例, 所述的分离槽用作脱泥槽, 用于分离矿料中的泥土。 根据本发明的一个实施例, 所述的分离槽用作粒度分级装置, 用于对矿料按粒度 进行分级。
根据本发明的一个实施例,所述的分离槽用作精选槽, 用于对矿料进行精选分离。 根据本发明的第三方面, 提供一种选矿方法, 包括以下步骤:
初步脱泥步骤: 用振动筛网脱泥机对原矿进行初步脱泥;
破碎步骤: 用破碎机对初步脱泥后的矿料进行破碎;
球磨步骤: 用球磨机对破碎后的矿料进行球磨;
二次脱泥步骤: 使球磨后的矿料进入脱泥槽进行二次脱泥;
粒度分级步骤: 使二次脱泥后的矿料进入粒度分级装置进行粒度分级, 以及 精选分离步骤: 从粒度分级装置出来的不同粒度的矿料进入不同的精选槽进行精 选分离,
其中, 所述的二次脱泥步骤、 粒度分级步骤以及精选分离步骤均使用根据本发明 第一方面的分离矿料的方法, 所述脱泥槽、 粒度分级装置以及精选槽均使用根据本发 明第二方面的矿料分离设备。
在二次脱泥步骤中, 将球磨机球磨出来的矿料放入脱泥槽, 振动器的机械振动频 率为 130-250次 /分, 激振力为 150-300公斤, 从槽的底部注入水, 流量为 8 10 m3/ 小时, 压力为 3- 5公斤, 矿料从脱泥槽的底部流出, 泥砂及其它渣质从脱泥槽的顶部 排出。
在粒度分级步骤中, 使用多个分离槽, 以对矿料进行多级分离, 所述多个分离槽 沿着矿料的流动方向顺序设置, 各上游分离槽的第一出料口连接到与之相邻的各下游 分离槽的进料口, 并且, 各分离槽形成台阶式构造, 其中, 将二次脱泥后的矿料放入 最上游分离槽, 从各上游分离槽的第一出料口排出的分离产物流入与之相邻的下游分 离槽中以进行进一步被分离, 各个分离槽的机械振动频率为 130— 250次 /分, 激振力 为 150— 300公斤, 从各个槽的底部加压注水, 流量为 3- 6m3/小时, 压力为 1-3公斤, 矿料根据粒度大小分别从各个槽的底部的第二出料口流出, 泥砂及其它渣质从最下游 分离槽的顶部排出。
根据本发明的一个实施例, 在所说的粒度分级步骤中使用 3个分离槽进行三级粒 度分级。
在精选分离步骤中, 振动器的机械振动频率为 130-250次 /分, 激振力为 150-300 公斤; 在处理矿料中 50 目以上粒度的矿粉时, 水的流量是 4- 6m3/小时, 水的压力是 1-3公斤; 在处理矿料中 50目一 150目粒度的矿粉时, 水的流量是 3- 5m3/小时, 水的 压力是 0. 5-2公斤; 以及在处理矿料中 150目以下粒度的矿粉时, 水的流量是 3- 5m3/ 小时, 水的压力是 0. 5- 2公斤。
根据本发明的第四方面, 提供一种粒度分级装置, 包括多个分离槽, 每个分离槽 包括: 设置在所述分离槽上部的进料口, 用于经此注入矿料;
设置在所述分离槽底部的注水口, 所述注水口向所述分离槽内注入具有预定压力 的水,以使矿料中比重或粒度不同的组份分别上浮或下沉;设置在所述分离槽顶部的第 一出料口, 上浮到所述分离槽顶部的比重或粒度较小的组份从第一出料口排出; 和设 置在所述分离槽底部的第二出料口, 下沉到所述分离槽底部的比重或粒度较大的组份 从第二出料口排出; 以及
所述粒度分级装置还包括振动器, 所述振动器在从所述注水口注入具有预定压力 的水的同时被驱动, 以使所述分离槽发生振动; 所述多个分离槽沿着矿料的流动方向 顺序设置, 各上游分离槽的第一出料口连接到与之相邻的各下游分离槽的进料口, 并 且, 各分离槽的形成台阶式构造, 其中, 最上游分离槽的进料口用于注入需要按粒度 分级的矿料, 从各上游分离槽的第一出料口排出的分离产物进入与之相邻的下游分离 槽的进料口以在该下游分离槽中进行进一步分离, 矿料根据粒度大小分别从各个分离 槽的台阶底部的第二出料口流出, 泥砂及其它渣质从最下游分离槽顶部的第一出料口 排出。
根据一个实施例, 所述粒度分级装置包括 3个分离槽。 根据一个实施例, 所述各 个分离槽在第一出料口一侧的槽壁是倾斜的, 各个分离槽是上口大, 下底小。
本发明的优点是: 1、 不使用浮选药剂, 降低了生产成本; 2、 由于无药剂, 再加 上水的循环使用, 使得整个浮选过程对环境不构成污染; 3、 由于采用了粒度分级装置 对粒度分级, 大大提高了矿石回收率, 回收率达到 85%以上, 充分利用了资源, 提高 了经济效益; 4、 整个选矿分离方法所用粒度分级装置、 精选槽专用设备。 这些专用设 备结构简单, 分离方法简单, 操作简单, 易于掌握。 附图说明
图 1是本发明的选矿方法的流程示意图。
图 2是本发明一个实施例的粒度分级装置的结构示意图。
图 3是图 2的左视图。
图 4是本发明精选槽的一个实施例的结构示意图。
图 5是本发明精选槽的另一个实施例的结构示意图。 以及
图 6是本发明精选槽的另一个实施例的结构示意图。 具体实施方式
图 1是本发明的选矿方法的流程示意图。 如图 1所示, 根据本发明所述的选矿方 法包括如下步骤: 用震动筛网脱泥机 A对原矿进行初步脱泥的初步脱泥步骤; 对脱泥 后粒度大于 2隨的矿石利用破碎机 B进行破碎的破碎步骤; 对来自于破碎机 B和震动 筛网泥机 A的粒度小于 2應的矿料利用球磨机 C进行球磨的球磨步骤; 对来自于球磨 机 C和破碎机 B的粒度小于 1mm的矿料利用脱泥槽 D进行二次脱泥的二次脱泥步骤; 粒度分级步骤, 在该步骤中, 将脱泥槽 D出来的粒度大于 0. 5mra的矿料送入球磨机 C 进行再次球磨, 以使矿渣和泥土从脱泥槽 D排出, 粒度小于等于 0. 5画的矿料进入粒 度分级装置 E,粒度分级装置 E将矿料按粒度大小分级成 50目以上, 50目- 150目, 150 目以下的矿料; 精选分离步骤, 在该步骤中, 将矿渣排出, 使 50目以上的矿料进入精 选槽 Fl, 50目- 150目的矿料进入精选槽 F2, 150目以下的矿料进入精选槽 F3, 进行 精选, 精选后的精矿放入储槽 G, 精选槽 Fl、 F2、 F3排出的尾矿进入尾矿选槽 H, 尾 矿选槽 H的结构与精选槽一致, 进一步分选后尾矿进入沉淀池 J, 精矿放入储槽 G。
在一种实施例中, 如果上述选矿方法处理的矿石是铅锌矿, 可在储槽 G后再加一 级精选槽即铅锌分离槽, 这样就可以将铅和锌分离幵来。
例如, 在二次脱泥步骤中, 可将脱泥槽作为本发明的分离槽, 并使用根据本发明 的分离矿料的方法分离矿份和泥砂等渣质。 在该实施例中, 脱泥槽具有设置在其上部 的进料口和第一出料口、 以及设置在底部的注水口和第二出料口, 另外还设有用于使 所述脱泥槽发生振动的振动器。 在该脱泥步骤中, 将从球磨机球磨出来的矿料从脱泥 槽顶部的进料口注入脱泥槽; 从所述注水口向脱泥槽内注入流量为 8-10 m3/小时、 压 力为 3-5公斤的水; 在从所述注水口注水的同时, 驱动所述振动器使所述脱泥槽发生 振动, 使振动器的机械振动频率为 130- 250次 /分, 激振力为 150- 300公斤, 从而, 矿 料中比重或粒度不同的组份分别上浮或下沉, 比重或粒度较小的泥砂等渣质从第一出 料口排出, 比重或粒度较大的矿份从第二出料口排出。
在粒度分级步骤中, 使用如图 2所示的具有 3个分离槽的粒度分级装置对矿料进 行多级分离。
如图 2所示, 每个分离槽的结构类似于上述脱泥槽的结构, 包括设置在分离槽上 部的进料口, 设置在所述分离槽底部的注水口, 设置在所述分离槽上部的第一出料口, 以及设置在所述分离槽底部的第二出料口。 所述多个分离槽沿着矿料的流动方向顺序 设置, 各上游分离槽的第一出料口连接到与之相邻的各下游分离槽的进料口, 并且, 各分离槽形成台阶式构造。 所述粒度分级装置还包括振动器, 所述振动器在从所述注 水口注入具有预定压力的水的同时被驱动, 以使所述分离槽发生振动。
在粒度分级步骤中, 将从脱泥槽二次脱泥后的粒度小于 0. 5 mm的矿料注入台阶式 分级槽的最上游分离槽的进料口 12, 从各分离槽的底部注水口注入流量为 3 6 m3/小 时、 压力为 1-3公斤的水, 同时, 驱动振动器, 使机械振动频率为 130— 250次 /分, 激振力为 150— 300公斤。这样, 在水压和振动的双重作用下, 矿料首先在第一分离槽 2中进行分离,矿料中粒度较小的组份从第一分离槽 2的第一出料口流入第二分离槽 8 的进料口以在第二分离槽 8中进行进一步分离, 粒度较大的组份从第一分离槽 2的第 二出料口 9排出。 类似地, 在第二分离槽 8中, 进入第二分离槽 8的矿料中粒度较小 的组份从第二分离槽 8的第一出料口流入第三分离槽 5的进料口以在第三分离槽 9中 进行进一步分离, 粒度较大的组份从第二分离槽 8的第二出料口 10排出。在第三分离 槽 5中, 进入第三分离槽 5的矿料中粒度较小的组份 (例如泥砂及其它渣质) 从第三 分离槽 5的第一出料口 4排出,粒度较大的组份从第三分离槽 5的第二出料口 11排出。 这样, 矿料根据粒度大小分别从各个分离槽的台阶底部的第二出料口流出, 泥砂及其 它渣质从最下游分离槽顶部的第一出料口排出。 从而, 从第二出料口 9流出的是粒度 最大的矿料, 从第二出料口 10流出的是粒度次大的矿料, 而从第二出料口 11流出的 是粒度最小的矿料。 从而, 进入粒度分级装置的矿料被按粒度分级, 以便按粒度等级 在后续的精选分离步骤中分别进行精选分离。 根据本发明的一个实施例, 将矿料按粒 度分成 50目以上,50目- 150目, 150目以下三种, 分别从第二出料口 9、 10、 11流出。 当然, 粒度分级装置的分离槽的个数不限于三个, 而是可以根据需要设置为一个、 两 个或三个以上。 当设置一个分离槽时, 粒度较大的矿份从分离槽的第二出料口流出, 粒度较小的矿份从分离槽的第一出料口流出, 然后分别进入不同的精选槽进行精选分 离。
在精选槽精选步骤中, 使用本发明的分离矿料的方法, 将粒度分级装置出来的矿 料按粒度送入不同的精选槽进行精选分离。 类似于上述的脱泥槽的结构, 精选槽具有 设置在上部的进料口和第一出料口、以及设置在底部的注水口和第二出料口,另外还设 有用于使所述脱泥槽发生振动的振动器。 在精选分离步骤中, 将从粒度分级装置出来 的矿料从精选槽顶部的进料口注入,振动器机械振动频率 130— 250次 /分,激振力 150 —300 公斤, 从精选槽的底部注入水, 根据密度 (比重) 大的下沉, 密度 (比重) 小 的上浮的原理, 矿份从精选槽底部的第二出料口流出, 泥砂及其它渣质从机械振动槽 顶部的第一出料口排出。 其中, 对由粒度分级装置分级的不同粒度的矿料, 采用不同 的注水流量和压力。具体而言,处理矿料中大于 50目的矿料,水的流量是 4- 6m3/小时, 水的压力是 1-3.公斤; 处理矿料中 50目 -150目的矿料, 水的流量是 3-5m3/小时, 水 的压力是 0. 5-2公斤; 处理矿料中 150目以下的矿料, 水的流量是 3-5m3/小时, 水的 压力是 0. 5 2公斤。 精选槽精选的选矿过程中, 水的流量、 压力调节的标准是精选槽顶部的泥砂及其 它渣质的出口处以没有矿物质细粒浮出为准。 同时用化验每道工序排出的废渣及水来 监控。 排出的水经沉淀后循环使用。
当然, 精选槽也可以如粒度分级装置一样设置成多级分离槽的形式, 以进行多次 精选分离。
同样, 脱泥槽也可以如粒度分级装置一样设置成多级分离槽的形式, 以进行多次 分离去泥。
当然, 本发明的分离矿料的方法也可以用于其它需要进行分离操作的步骤中, 例 如, 用于初步脱泥步骤中, 以初步分离泥砂和矿份; 用于对尾矿进一步分离。 用于铅 锌分离步骤中, 以分离铅和锌。 以下是选矿过程的若干实施例。
实施例 1
氧化铅锌矿的铅锌含量 20%左右, 将氧化铅锌矿石放入振动筛网泥机进行脱泥, 辅以人工排捡大块废石, 除去原矿石中 40%左右的泥土废石, 将脱泥处理后的矿石进 行破碎后用球磨机球磨, 球磨机球磨后的矿料进入脱泥槽脱泥, 脱泥后的矿料进入粒 度分级装置进行粒度分级, 粒度在 50目以上的矿料进入第一精选槽, 精选槽的机械振 动频率为 130次 /分, 激振力为 150公斤, 从槽的底部注入压力为 1公斤, 流量为 4m3/ 小时的水; 粒度在 50 目- 150 目的矿料进入第二精选槽, 精选槽的机械振动频率 130 次 /分, 激振力 150公斤, 从槽的底部注入压力 0. 5公斤, 流量 3mV小时的水;粒度在 150目以下的矿料, 进入第三精选槽, 精选槽的机械振动频率 130次 /分, 激振力 150 公斤, 从槽的底部注入压力 0. 5公斤, 流量 3m2/小时的水, 精矿料从槽的底部流到储 槽, 泥砂及其它渣质从精选槽的顶部排出。
实施例 2
氧化铅锌矿的铅锌含量 18%左右, 将氧化铅锌矿石放入振动筛网进行脱泥, 辅以 人工排捡大块废石, 除去原矿石中 50%左右的泥土废石, 将脱泥处理后的矿石进行破 碎或后用球磨机磨, 球磨机磨后的矿料进入脱泥槽脱泥, 脱泥后的矿料进入粒度分级 装置进行粒度分级, 粒度在 50目以上的矿料进入第一精选槽, 精选槽的机械振动频率 为 190次 /分, 激振力为 225公斤, 从槽的底部注入压力为 1. 2公斤, 流量为 5m3/小时 的水; 粒度在 50目 -150目的矿料进入第二精选槽, 精选槽的机械振动频率为 190次 / 分, 激振力为 225公斤, 从槽的底部注入压力为 1. 2公斤, 流量为 ½2/小时的水; 粒 度在 150目以下的矿料, 进入第三精选槽, 精选槽的机械振动频率为 190次 /分, 激振 力为 225公斤, 从槽的底部注入压力为 1. 2公斤, 流量为 4m2/小时的水, 精矿料从槽 的底部流到储槽, 泥砂及其它渣质从精选槽的顶部排出。
实施例 3
氧化铅锌矿的铅锌含量 12%左右, 将氧化铅锌矿石放入振动筛网进行脱泥, 辅以 人工排捡大块废石, 除去原矿石中 55%左右的泥土废石, 将脱泥处理后的矿石进行破 碎或后用球磨机磨, 球磨机磨后的矿料进入脱泥槽脱泥, 脱泥后的矿料进入粒度分级 装置进行粒度分级, 粒度在 50目以上的矿料进入第一精选槽, 精选槽的机械振动频率 为 250次 /分, 激振力为 300公斤, 从槽的底部注入压力为 3公斤, 流量为 6m3/小时的 水;粒度在 50目- 150目的矿料进入第二精选槽,精选槽的机械振动频率为 250次 /分, 激振力为 300公斤, 从槽的底部注入压力为 2公斤, 流量为 5m2/小时的水; 粒度在为 150目以下的矿料, 进入第三精选槽, 精选槽的机械振动频率为 250次 /分, 激振力为 300公斤, 从槽的底部注入压力为 2公斤, 流量为 5m7小时的水, 精矿料从槽的底部 流到储槽, 泥砂及其它渣质从精选槽的顶部排出。
从上述三个实施例的储槽中取出精矿料, 放入铅锌分离槽进行铅、 锌分离, 机械 振动频率为 150— 250次 /分, 激振力为 150— 300公斤, 从槽的底部注入水, 水的流量 是 6-8 m3/小时, 压力为 1-3公斤, 铅矿粉从铅锌分离槽的底部流出, 锌粉从铅锌分离 槽的顶部流出。 经干燥后可得到铅粉品位 70- 75%, 锌粉品位 50-55%。
实施例 4
原生金矿的含量 2克- 12克 /吨左右, 将矿石进行破碎后用球磨机磨, 球磨机磨后 的矿料进入脱泥槽脱泥, 脱泥后的矿料进入粒度分级装置进行粒度分级, 粒度在 50目 以上的矿料进入第一精选槽, 精选槽的机械振动频率为 130-250 次 /分, 激振力为 150- 300公斤, 从槽的底部注入压力为 1-3公斤, 流量为 4_6m3/小时的水; 粒度在 50 目- 150 目的矿料进入第二精选槽, 精选槽的机械振动频率为 130- 250次 /分, 激振力 为 150- 300公斤, 从槽的底部注入压力为 0. 5- 2公斤, 流量为 3- 5m2/小时的水; 粒度 在为 150目以下的矿料, 进入第三精选槽, 精选槽的机械振动频率为 130-250次 /分, 激振力为 150-300公斤, 从槽的底部注入压力为 0. 5-2公斤, 流量为 3- 5m7小时的水, 精矿料从槽的底部流到储槽, 泥砂及其它渣质从精选槽的顶部排出。 回收率达到 95%-97%, 得到的精金粉品位可达到 75°/。-77%。
图 2是根据本发明的一个实施例的粒度分级装置的结构示意图。 图 3是图 2的左 视图。 如图 2和 3所示, 根据本发明的一个实施例的粒度分级装置至少有三个阶梯槽 2、 8、 5, 各槽的上边缘连通为一体, 各槽的底部呈台阶形式, 各槽底部分别设有供水 管 1、 7、 6, 并分别设有用于排出不同粒度的矿料的第二出料口 9、 10、 11 , 槽上连有 振动器 3, 槽的上边缘一头是进料口 12, 另一头是用作出渣口的第一出料口 4。 阶梯 槽 2、 8、 5在出渣口 4的一侧槽壁是倾斜的, 槽是上口大, 下底小。 振动器 3可以是 电机的转动轴上设有偏心重块的形式。
工作时, 矿料从进料口 12进入, 到达阶梯槽 2中, 整个槽在振动器 3的作用下上 下振动, 即, 电机转动轴带动偏心重块转动, 使得槽体上下振动。 各阶梯槽底部分别 设有供水管 1、 7、 6, 打开各供水管的出口, 从各阶样槽的底部向上注入一定压力的 水, 需要说明的是, 该压力的大小根据需要分离的矿料的比重或粒度大小确定, 以通 过振动器的振动和水的冲击力, 使矿料根据比重和粒度分层, 使比重或粒度超过预定 值的矿料在底层聚集, 而比重和粒度小于预定值的矿料在上层聚集, 由于水的流动带 动上层的矿料越过阶梯槽 2、 8之间的槽壁到达阶梯槽 8中, 同样的道理, 比重和粒度 较大的在底层聚集, 比重和粒度较小的在上层聚集, 由于水的流动带动上层的矿料越 过阶梯槽 8、 5之间的槽壁到达阶梯槽 5中, 同样的道理, 比重和粒度较大的在底层聚 集, 比重和粒度较小的在上层聚集, 矿渣从出渣口 4排出, 这时, 阶梯槽 2内聚集的 是较大的颗粒,从出料口 9排出;阶梯槽 8内聚集的是次大的颗粒,从出料口 10排出; 阶梯槽 5内聚集的是较小的颗粒, 从出料口 11排出。 这样就可以连续工作, 分出三种 粒度的矿料, 当然根据阶梯槽的级数的不同, 可分出多种粒度的矿料。
本发明的上述粒度分级装置, 结构简单, 不同等级的粒度有不同的出口, 分级明 确, 同时还可以分离排出废矿渣。 并且, 分离时不使用药剂, 环保性好, 操作简单。 图 4是精选槽的一个实施例的结构示意图。 如图 4所示, 精选槽槽体的一侧是上面是 圆柱体 16下面连有圆锥体 17, 圆锥体 17的顶端是出料口 19, 槽体的另一侧底面是斜 面的开口槽 20, 在开口槽 20的底面上和圆锥体 17的周边上设有供水管出口 21 , 在圆 柱体 16与开口槽 20的底面斜面较低处的连接处, 圆柱体 16上设有开口 30, 由于圆 柱体 16在开口 30上方的壁产生一个挡板的作用, 挡住比重较轻的矿渣, 使比重较重 的矿料从开口 30进入圆锥体 17, 进行进一步精选分离。 圆柱体 16的上边缘设有出渣 口 14, 槽体上连有振动器 40。 图 5示出了精选槽的另外一种结构。 如图 5所示, 槽体 上面是圆柱体 16, 圆柱体 16下面连接圆锥体 17, 圆锥体的底部是出料口 19。 圆锥体 17的周边上设有供水管出口 31, 槽体上连有振动器 40。槽体上边缘一头是进料口 13, 另一头是出渣口 14。 图 6示出了精选槽的另外一种结构。 如图 6所示, 槽体一侧是底面是斜面的开口 槽 20, 另一侧是圆锥体或四棱锥体 17, 圆锥体或四棱锥体 17底部是出料口 19 , 圆锥 体或四棱锥体 17的上边缘与开口槽 20的底面斜面较低处连接。 槽体上连接有振动器 40, 开口槽 20的底面斜面较高处是进料口 13, 圆锥体或四棱锥体 17这一侧的上边缘 是出渣口 14。 在开口槽 20的底面上和圆锥体或四棱锥体 17的周边上设有供水管出口 21。
工作时, 矿料从进料口进入, 整个精选槽在振动器的作用下上下振动, 从供水管 出口注入一定压力的水, 通过振动和水的涌动, 使矿料根据比重和粒度分层, 比重和 粒度较大的在底层聚集, 比重和粒度较小的在上层聚集, 矿料比重较轻的矿渣从上面 的出渣口排出。 比重较重的精矿料从出料口排出。 这样就达到了对矿物进行精选分离 的目的。
当然, 精选槽的结构不限于上述的各种形式, 也可以具有其它的形式。 例如, 可 以不设置开口槽 20, 也可以不釆用圆柱体和圆锥体的组合, 而使用简单的单一圆柱体 或单一圆锥体的形式。 优选设置底面是斜面的开口槽 20, 如图 4和 6所示, 以更好地 分离矿物。 不论采用何种形式, 精选槽的槽体的上边缘一头是进料口, 另一头是出渣 口, 槽体的底部设有供水管出口, 并设有出料口, 槽体上设有振动器。
' 类似于粒度分级装置, 精选槽也可以设置为连续的多个, 以进行多级精选。例如, 精选槽可以设置成如图 2和 3所示的 3级台阶式粒度分级槽的形式。
本发明的精选槽结构简单, 分离效率高, 分离时不使用药剂, 环保性好, 操作简 单。
同样, 粒度分级装置也可以采用如上所述的各种精选槽的形式。 以上公开的粒度 分级装置、 精选槽也可以用作脱泥槽, 以对矿料进行脱泥。
尽管为了示例的目的已描述了本发明的若干实施例, 但是本发明不局限于特定的 实施例。 在不偏离本发明的构思和实质的情况下本领域的技术人员可以对上述实施例 进行多种修改和改变。 这些修改、 变更及其等同物也包括在本发明的范围内。

Claims

权 利 要 求
1、一种使用分离槽分离矿料的方法, 所述分离槽具有设置在上部的进料口和第一 出料口、以及设置在底部的注水口和第二出料口,所述分离槽还设有用于使所述分离槽 发生振动的振动器,所述方法包括如下步骤:
将矿料从所述进料口注入分离槽;
从所述注水口向所述分离槽内注入具有预定压力的水,以使矿料中比重或粒度不 同的组份分别上浮或下沉, 从而, 比重或粒度较小的组份从第一出料口排出, 比重或 粒度较大的组份从第二出料口排出; 以及
在从所述注水口注入具有预定压力的水的同时, 驱动所述振动器使所述分离槽发 生振动。
2. 根据权利要求 1所述的分离矿料的方法, 其特征在于, 进一步包括对从所述第 一出料口流出的矿料利用多个下游分离槽进行再次分离的多个再次分离步骤。
3. 根据权利要求 2所述的分离矿料的方法, 其特征在于, 设置 3个所述分离槽。
4. 根据权利要求 1-3中任一项所述的分离矿料的方法, 其特征在于, 所述的分离 方法用于分离矿料中的泥土, 所述的分离槽用作脱泥槽。
5. 根据权利要求 1-3中任一项所述的分离矿料的方法, 其特征在于, 所述的分离 方法用于对矿料按粒度进行分级, 所述的分离槽用作粒度分级装置。
6. 根据权利要求 1-3中任一项所述的分离矿料的方法, 其特征在于, 所述的分离 方法用于对矿料进行精选分离, 所述的分离槽用作精选槽。
7. 根据权利要求 1-3中任一项所述的分离矿料的方法, 其特征在于, 所述的分离 方法用于对尾矿进行分离, 所述的分离槽用作尾矿选槽。
8. 一种矿料分离设备, 包括分离槽, 所述分离槽包括:
设置在所述分离槽上部的进料口, 用于经此注入矿料;
设置在所述分离槽底部的注水口, 所述注水口向所述分离槽内注入具有预定压力 的水,以使矿料中比重或粒度不同的组份分别上浮或下沉;
设置在所述分离槽顶部的第一出料口, 上浮到所述分离槽顶部的比重或粒度较小 的组份从第一出料口排出;
设置在所述分离槽底部的第二出料口, 下沉到所述分离槽底部的比重或粒度较大 的组份从第二出料口排出; 以及
设置在所述分离槽上的振动器, 所述振动器在从所述注水口注入具有预定压力的 水的同时被驱动, 以使所述分离槽发生振动。
9. 根据权利要求 8所述的矿料分离设备, 包括多个所述分离槽, 各个分离槽沿着 矿料的流动方向顺序设置, 其中, 上游分离槽的第一出料口连接到与之相邻的下游分 离槽的进料口。
10. 根据权利要求 9所述的矿料分离设备, 其特征在于, 设置 3个所述分离槽。
11. 根据权利要求 8所说的矿料分离设备, 其特征是, 所说的分离槽在第一出料 口一侧的槽壁是倾斜的, 并且分离槽是上口大, 下底小。
12. 根据权利要求 8所述的矿料分离设备, 其特征是, 所述分离槽包括位于上部 的圆柱体和一体地形成在所述圆柱体下部的圆锥体,圆柱体上边缘的一侧形成进料口, 另一侧形成第一出料口,圆锥体的底部形成第二出料口。
13. 根据权利要求 8所述矿料分离设备, 其特征是分离槽的一侧包括位于上部的 圆柱体和一体地形成在所述圆柱体下部的圆锥体,圆锥体的底部形成所述第二出料口; 圆柱体的一侧连接有底面是斜面的开口槽, 所述开口槽的底面和圆锥体的侧面一体式 连接;圆柱体的上边缘处与开口槽相对的一侧设有第一出料口,开口槽的上边缘处与圆 柱体相反的一侧设有进料口;在圆柱体与开口槽的连接处, 圆柱体上设有开口;所述开 口槽的底面和圆锥体的周边上设有形成所述注水口的供水管。
14.根据权利要求 8所述的矿料分离设备, 其特征是, 分离槽的一侧为底面是斜面 的开口槽, 另一侧是圆锥体或四棱锥体, 开口槽的底面与圆锥体或四棱锥体的侧面形 成一体,开口槽与圆锥体或四棱锥体的上部连通,圆锥体或四棱锥体底部是第二出料口; 圆锥体或四棱锥体的上边缘处与开口槽相对的一侧设有第一出料口,开口槽的上边缘 处与圆锥体或四棱锥体相反的一侧设有进料口。
15. 根据权利要求 8— 14中的任一项所述的矿料分离设备, 其特征在于, 所述的 分离槽用作脱泥槽, 用于分离矿料中的泥土。
16. 根据权利要求 8— 14中的任一项所述的矿料分离设备, 其特征在于, 所述的 分离槽用作粒度分级装置, 用于对矿料按粒度进行分级。
17. 根据权利要求 8— 14中的任一项所述的矿料分离设备, 其特征在于, 所述的 分离槽用作精选槽, 用于对矿料进行精选分离。
18. —种选矿方法, 包括步骤: 初步脱泥步骤: 用振动筛网脱泥机对原矿进行初步脱泥;
破碎步骤: 用破碎机对初步脱泥后的矿料进行破碎;
球磨步骤: 用球磨机对破碎后的矿料进行球磨;
二次脱泥步骤: 使球磨后的矿料进入脱泥槽进行二次脱泥;
粒度分级步骤: 使二次脱泥后的矿料进入粒度分级装置进行粒度分级, 以及 精选分离步骤: 从粒度分级装置出来的不同粒度的矿料进入不同的精选槽进行精 选分离,
其中, 所述的二次脱泥步骤、 粒度分级步骤以及精选分离步骤均使用如权利要求
1所述的分离矿料的方法, 所述脱泥槽、粒度分级装置以及精选槽均使用如权利要求 8 中所述的矿料分离设备。
19、 根据权利要求 18所说的选矿方法, 其中, 在二次脱泥步骤中, 将球磨机球磨 出来的矿料放入脱泥槽, 振动器的机械振动频率为 130- 250次 /分, 激振力为 150-300 公斤, 从槽的底部注入水, 流量为 8-10 m3/小时, 压力为 3-5公斤, 矿料从脱泥槽的 底部流出, 泥砂及其它渣质从脱泥槽的顶部排出。
20、 根据权利要求 18所说的选矿方法, 其中, 在粒度分级步骤中, 使用多个分离 槽, 以对矿料进行多级分离, 所述多个分离槽沿着矿料的流动方向顺序设置, 各上游 分离槽的第一出料口连接到与之相邻的各下游分离槽的进料口, 并且, 各分离槽形成 台阶式构造, 其中, 将二次脱泥后的矿料放入最上游分离槽, 从各上游分离槽的第一 出料口排出的分离产物流入与之相邻的下游分离槽中以进行进一步被分离, 各个分离 槽的机械振动频率为 130— 250次 /分, 激振力为 150— 300公斤, 从各个槽的底部加压 注水, 流量为 3-6m3/小时, 压力为 1-3公斤, 矿料根据粒度大小分别从各个槽的底部 的第二出料口流出, 泥砂及其它渣质从最下游分离槽的顶部排出。
21、 根据权利要求 18所说的选矿方法, 其中, 所说的粒度分级步骤使用 3个分离 槽进行三级粒度分级。
22、 根据权利要求 18所说的选矿方法, 其中, 在精选分离步骤中, 振动器的机械 振动频率为 130- 250次 /分, 激振力为 150- 300公斤; 其中
在处理矿浆中大于 50目以上粒度的矿粉时, 水的流量是 4- 6mV小时, 水的压力是 1-3公斤;
在处理矿浆中 50目一 150目粒度的矿粉时, 水的流量是 3- 5mV小时, 水的压力是 0. 5-2公斤; 以及 在处理矿浆中 150 目以下粒度的矿粉时, 水的流量是 3- 5m 小时, 水的压力是 0. 5- 2公斤。
23、 一种粒度分级装置, 包括多个分离槽, 每个分离槽包括- 设置在所述分离槽上部的进料口, 用于经此注入矿料;
设置在所述分离槽底部的注水口, 所述注水口向所述分离槽内注入具有预定压力 的水,以使矿料中比重或粒度不同的组份分别上浮或下沉;
设置在所述分离槽顶部的第一出料口, 上浮到所述分离槽顶部的比重或粒度较小 的组份从第一出料口排出; 和
设置在所述分离槽底部的第二出料口, 下沉到所述分离槽底部的比重或粒度较大 的组份从第二出料口排出; 以及
所述粒度分级装置还包括振动器, 所述振动器在从所述注水口注入具有预定压力 的水的同时被驱动, 以使所述分离槽发生振动; 其中
所述多个分离槽沿着矿料的流动方向顺序设置, 各上游分离槽的第一出料口连接 到与之相邻的各下游分离槽的进料口, 并且, 各分离槽形成台阶式构造, 其中, 最上 游分离槽的进料口用于注入需要按粒度分级的矿料, 从各上游分离槽的第一出料口排 出的分离产物进入与之相邻的下游分离槽的进料口以在该下游分离槽中进行进一步分 离, 矿料根据粒度大小分别从各个分离槽的台阶底部的第二出料口流出, 泥砂及其它 渣质从最下游分离槽顶部的第一出料口排出。
24、 根据权利要求 23所说的粒度分级装置, 其特征是所说的粒度分级装置包括 3 个分离槽。
25. 根据权利要求 23所说的粒度分级装置, 其特征是所述各个分离槽在第一出 料口一侧的槽壁是倾斜的, 各个分离槽是上口大, 下底小。
PCT/CN2007/001601 2006-05-17 2007-05-17 Dispositif et procédé de séparation de minerai, procédé de préparation mécanique de minerai au moyen du procédé de séparation et appareil de tri par dimension WO2007131453A1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN200620079023.7 2006-05-17
CN 200620079023 CN2910359Y (zh) 2006-05-17 2006-05-17 一种分选槽
CN200610042845.2 2006-05-17
CN 200620079022 CN2902461Y (zh) 2006-05-17 2006-05-17 一种粒度分级槽
CN 200610042845 CN101073789A (zh) 2006-05-17 2006-05-17 一种无药剂选矿分离方法及其专用设备
CN200620079022.2 2006-05-17

Publications (1)

Publication Number Publication Date
WO2007131453A1 true WO2007131453A1 (fr) 2007-11-22

Family

ID=38693552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001601 WO2007131453A1 (fr) 2006-05-17 2007-05-17 Dispositif et procédé de séparation de minerai, procédé de préparation mécanique de minerai au moyen du procédé de séparation et appareil de tri par dimension

Country Status (1)

Country Link
WO (1) WO2007131453A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111632823A (zh) * 2020-06-10 2020-09-08 成都普崔克机电有限公司 一种海底矿粒的原位分级装置及方法
CN112101744A (zh) * 2020-08-27 2020-12-18 崇义章源钨业股份有限公司 矿料分配方法与装置、计算机可读存储介质
CN114345541A (zh) * 2022-01-12 2022-04-15 中国地质科学院 一种金矿的选矿方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB597871A (en) * 1942-08-22 1948-02-05 Victor Rakowsky Improvements in gravity separation of materials
GB874755A (en) * 1957-09-19 1961-08-10 Mineral Proc Corp Gravity separation of solids
DE2133802A1 (de) * 1971-07-07 1973-01-18 Kloeckner Humboldt Deutz Ag Verfahren zur aufbereitung von mineralischen korngemengen nach der dichte und vorrichtung zur durchfuehrung des verfahrens
CN2293384Y (zh) * 1997-05-22 1998-10-07 刘朝玺 台阶式断续选矿槽
CN2745652Y (zh) * 2004-11-12 2005-12-14 张宗胜 比重分选机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB597871A (en) * 1942-08-22 1948-02-05 Victor Rakowsky Improvements in gravity separation of materials
GB874755A (en) * 1957-09-19 1961-08-10 Mineral Proc Corp Gravity separation of solids
DE2133802A1 (de) * 1971-07-07 1973-01-18 Kloeckner Humboldt Deutz Ag Verfahren zur aufbereitung von mineralischen korngemengen nach der dichte und vorrichtung zur durchfuehrung des verfahrens
CN2293384Y (zh) * 1997-05-22 1998-10-07 刘朝玺 台阶式断续选矿槽
CN2745652Y (zh) * 2004-11-12 2005-12-14 张宗胜 比重分选机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111632823A (zh) * 2020-06-10 2020-09-08 成都普崔克机电有限公司 一种海底矿粒的原位分级装置及方法
CN112101744A (zh) * 2020-08-27 2020-12-18 崇义章源钨业股份有限公司 矿料分配方法与装置、计算机可读存储介质
CN114345541A (zh) * 2022-01-12 2022-04-15 中国地质科学院 一种金矿的选矿方法

Similar Documents

Publication Publication Date Title
Noble et al. A review of state-of-the-art processing operations in coal preparation
US11198134B2 (en) System and method for separating materials using stirring motion, stratification, and vertical motion
CN203678523U (zh) 铜冶炼废渣回收处理系统
JP2022509901A (ja) 粒状物質を洗浄および等級付けするシステムおよび方法
CN109290045B (zh) 一种使用黄金尾矿废渣制浆的装置及方法
CN107694743A (zh) 一种从尾矿中分离重晶石的加工系统及其方法
US6666335B1 (en) Multi-mineral/ash benefication process and apparatus
CN202700631U (zh) 立式离心跳汰机
CN105170306A (zh) 一种针对高灰高泥高矸石煤的洗选工艺
CN110882851B (zh) 一种硫化矿的选矿系统及选矿方法
CN109772576B (zh) 一种充分利用黄金尾矿的方法
CN220879243U (zh) 旋转式可调尾砂分级设备
US4347130A (en) Placer mineral concentrator and process
WO2007131453A1 (fr) Dispositif et procédé de séparation de minerai, procédé de préparation mécanique de minerai au moyen du procédé de séparation et appareil de tri par dimension
CN212237720U (zh) 一种煤矸石资源化处理中的泥化矸石水浆料排沙系统
CN211799324U (zh) 一种硅铁粉回收再利用循环处理系统
CN107213981A (zh) 一种超低伴生钨金矿金、钨综合选别方法
CN115445741A (zh) 一种利用岩石废料高收率制备机制砂的方法
CN105903549A (zh) 一种新型高频振动分叉螺旋溜槽
RU80359U1 (ru) Передвижная установка для обогащения золотосодержащих россыпей
JP2012130877A (ja) 混合処理物の選別処理システム及び混合処理物の選別方法
CN204194145U (zh) 高灰细粒煤泥柱式二次浮选设备
CN113578515A (zh) 一种大鳞片石墨保护性分选设备及方法
RU2495722C2 (ru) Способ обогащения угольных шламов илонакопителей и концентрационный стол для реализации способа
CN205673070U (zh) 大型砂金洗选精选机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07721174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07721174

Country of ref document: EP

Kind code of ref document: A1