WO2007131401A1 - Dispositif et procédé de détection de dispersion, et système de transmission de signaux optiques - Google Patents

Dispositif et procédé de détection de dispersion, et système de transmission de signaux optiques Download PDF

Info

Publication number
WO2007131401A1
WO2007131401A1 PCT/CN2007/000257 CN2007000257W WO2007131401A1 WO 2007131401 A1 WO2007131401 A1 WO 2007131401A1 CN 2007000257 W CN2007000257 W CN 2007000257W WO 2007131401 A1 WO2007131401 A1 WO 2007131401A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
module
power
electrical signal
predetermined bandwidth
Prior art date
Application number
PCT/CN2007/000257
Other languages
English (en)
French (fr)
Inventor
Yue Liu
Lijun Li
Zhihui Tao
Wei Fu
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to DE602007013204T priority Critical patent/DE602007013204D1/de
Priority to JP2009510259A priority patent/JP4734452B2/ja
Priority to EP07702186A priority patent/EP2019499B1/en
Priority to AT07702186T priority patent/ATE502452T1/de
Publication of WO2007131401A1 publication Critical patent/WO2007131401A1/zh
Priority to US12/269,502 priority patent/US8229298B2/en
Priority to US13/253,744 priority patent/US8229299B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07951Monitoring or measuring chromatic dispersion or PMD

Definitions

  • Dispersion detecting method, device and optical signal transmission system The present application claims to be submitted to the Chinese Patent Office on May 13, 2006, the application number is 200610080030.3, and the invention name is "a dispersion detection method and device” Chinese patent Priority of the application, the entire contents of which are incorporated herein by reference.
  • the present invention relates to the field of optical transmission, and in particular to a method and apparatus for detecting dispersion in an adaptive dispersion compensation system.
  • the different frequency components of the signals transmitted in the optical fiber or the transmission speeds of the various mode components of the signal are different.
  • the phenomenon that causes the signal waveform to be distorted is called dispersion. .
  • the effect of dispersion on optical transmission causes inter-symbol interference between data pulses. Therefore, dispersion compensation is needed to ensure the transmission performance of the system.
  • adaptively tunable dispersion compensation solutions are essential. In order to implement an adaptive dispersion compensation system, a dispersion detection and feedback control mechanism is necessary.
  • dispersion compensation based on tunable Bragg fiber grating
  • predistortion at the transmitting end
  • equalization at the receiving end
  • Solution 1 Determine the amount of dispersion by comparing the phase differences of the clocks.
  • chromatic dispersion monitoring technique using sideband optical filtering and clock phase-shift detection discloses a dispersion detecting method.
  • the method is to filter a signal spectrum through the optical filter 101 before photoelectric conversion at the receiving end.
  • the clock signal is extracted by the clock recovery unit 103, and the phase information of the sideband signal is sharpened. Then, the phase difference between the sideband signal and the baseband signal is compared by the phase detector 104 to determine the magnitude of the dispersion amount.
  • Solution 2 Superimpose a harmonic detection signal on the transmission signal. After photoelectric conversion at the receiving end, the detection signal is extracted, and the intensity of the system is determined by the intensity of the signal detected by the receiving end.
  • the OFC2001 document WH4 gives a dispersion monitoring and compensation scheme based on in-band pilots.
  • the scheme is to superimpose a harmonic detection signal through a modulator on a signal transmitted to a transmission line, and perform photoelectric conversion on the optical signal after receiving the optical signal at the receiving end.
  • the detector separates the spectrum power of the detection signal, and determines the amount of dispersion of the system according to the amount of power reduction.
  • Solution 3 Convert the optical signal into an electrical signal and determine the amount of dispersion of the system by detecting the change in the first minimum point of the power spectrum dispersion.
  • U.S. Patent No. 6,487,752 discloses a dispersion detection scheme.
  • the basic implementation process of the detection scheme is to photoelectrically convert the optical signal through several RF narrow-band filters, and then obtain the value of the system dispersion amount by analyzing a plurality of narrow-band spectral components.
  • This scheme utilizes the correspondence between the degree of cosine shape expansion of the power spectrum of the square-law receiver and the amount of signal dispersion.
  • the labels in Fig. 3 are respectively: 300: incident light signal.
  • 301 Photoelectric converter.
  • 302 Adjustable amplifier.
  • 303 Bandpass filter.
  • 304 Adjustable amplifier.
  • 305 Bandpass filter.
  • 306 Square detector.
  • 307 Low pass filter.
  • 308 Analog to digital converter.
  • 309 Digital signal processor. 310: Dispersion control signal.
  • the patent searches for the valley position of the power spectrum by high-density sampling of the power spectrum, and determines the amount of signal dispersion by the offset direction and offset of the valley position.
  • high-density sampling is indispensable, which complicates the structure of the detection system and increases system cost.
  • small changes in signal dispersion are also required to be detected and compensated, and changes in trough position are insensitive to small dispersion fluctuations, which limits the technical solution in high-speed systems.
  • Applications In addition, in this scheme, the electrical power at the output of each filter needs to be amplified, which increases the power consumption of the system.
  • the complex and insensitive to the small dispersion provides a simple detection method, device and an optical signal transmission system for the adaptive dispersion compensation system.
  • the dispersion detection method provided by the present invention includes:
  • the dispersion detecting device comprises a photoelectric filtering arithmetic unit and a processing unit, wherein:
  • the photoelectric filtering operation unit is configured to obtain an electrical signal in a predetermined bandwidth range from the received optical signal; and perform an arithmetic processing on the electrical signal in the predetermined bandwidth to obtain a power calculated value;
  • the processing unit is configured to obtain a system dispersion amount by a correspondence between the power operation value and a system dispersion amount.
  • the optical signal transmission system comprises a tonable dispersion compensation module and a beam splitting module serially connected in the fiber channel, and a dispersion detecting module for acquiring the probe light from the light splitting module for detecting the amount of dispersion of the system and the serial connection a control module between the tonable dispersion compensation module and the dispersion detection module, the dispersion detection module includes a photoelectric filter operation unit and a processing unit, wherein: the photoelectric filter operation unit is configured to receive from The optical signal acquires an electrical signal within a predetermined bandwidth; and performs an arithmetic processing on the electrical signal within the predetermined bandwidth to obtain a power calculated value;
  • the processing unit is configured to obtain a system dispersion amount by a correspondence between the power operation value and a system dispersion amount.
  • the dispersion detecting and compensating system of the present invention eliminates the complicated and costly clock recovery device as compared with the prior art 1;
  • the present invention does not need to add additional probe light at the transmitting end, which not only saves bandwidth resources, but also avoids the influence of the probe light on the signal light;
  • the monitoring amount required by the present invention is total power or average power, and is obtained.
  • the method is simple and simple, and is more feasible in practical system applications.
  • the present invention is applicable not only to the case where the link is unchanged, but also to the occasion where the link changes.
  • the present invention obtains average power or total power for a certain bandwidth, it is sensitive to minute dispersion.
  • FIG. 1 is a schematic structural view of an apparatus for performing dispersion detection by comparing phase differences of clocks in the prior art
  • FIG. 2 is a schematic view showing the structure of an apparatus for performing dispersion detection by a harmonic detecting signal in the prior art
  • FIG. 3 is a schematic structural view of an apparatus for performing dispersion detection by detecting a change in a first extreme point of power spectrum dispersion in the prior art
  • FIG. 4 is a schematic diagram showing the normalization of the spectral intensity of the amplitude-frequency characteristic curve of the electrical signal after the squared detection of the optical signal pulse transmitted on the optical fiber;
  • FIG. 5 is a flow chart of an embodiment of a dispersion detecting method according to the present invention.
  • Figure 6 is a structural view showing an embodiment of a dispersion detecting device according to the present invention.
  • FIG. 7a is a structural diagram of an arithmetic unit using an integrator in the dispersion detecting device of the present invention
  • FIG. 7b is a structural diagram of an arithmetic module using an average power in the dispersion detecting device according to the present invention
  • 7c is a structural diagram of a power module ratio obtaining module of an arithmetic module in the dispersion detecting device according to the present invention.
  • Figure 8 is a structural view showing another embodiment of the dispersion detecting device of the present invention.
  • FIG. 9 is a structural diagram of a photoelectric filter operation unit according to the present invention.
  • Figure 10 is a structural diagram of an embodiment of an adaptive compensation system applicable to a transmitting end and a line using the dispersion detecting device of the present invention
  • Figure 11 is a structural diagram of an embodiment of an adaptive compensation system for a receiving end using the dispersion detecting device of the present invention.
  • Figure 12 is a simulation result of power spectral density.
  • the dispersion first extreme point refers to the first zero point of the dispersion system impulse response spectrum
  • the dispersion second extreme point refers to the second zero point of the dispersion system impulse response spectrum
  • the amplitude-frequency characteristic curve of the electrical signal outputted by the squared detection of the optical signal pulse transmitted on the optical fiber is normalized to the intensity diagram.
  • the first minimum value of spectral intensity dispersion is located at F (the second minimum value of dispersion and other minimum values are not shown in the figure). Due to the influence of dispersion, the amplitude-frequency characteristic is compared with the ideal amplitude-frequency characteristic without dispersion. Variety.
  • the position of F is fixed. The position of F changes with the dispersion of the system.
  • the signal dispersion becomes larger the first minimum value of dispersion is shifted from the frequency point F to the low frequency direction, as shown by the frequency point F' in Fig.
  • the first minimum value F of the dispersion is shifted toward the high frequency direction, as shown by the frequency point F" in Fig. 4.
  • the change of the intensity word causes the arc MN to change toward the ⁇ ' or M'5V" direction, thereby enclosing the letter MNPQ.
  • the total power in the area changes. That is, when the system dispersion A. increases, the total power in the area surrounded by the letter MNPQ decreases; when the system dispersion is less salty, the total power in the area surrounded by the letter MNPQ becomes larger.
  • an expression between the average power in the bandwidth and the dispersion of the system can be obtained from the expression of the spectral intensity.
  • the average power and the dispersion of the system As the dispersion of the system increases, the average power decreases, and when it is salty, the average power increases.
  • the local dispersion and dispersion of the system cannot be zero, otherwise the first minimum point of dispersion does not exist, or the first minimum point of dispersion is located at infinity.
  • Taking the standard dispersion of the system to ⁇ 0 ensures that there is a standard dispersion first minimum point in the actual system.
  • the first minimum point of the dispersion varies with the dispersion of the system in the vicinity of the first minimum point of the standard dispersion.
  • the corresponding normalized intensity curve is shown by the dotted line in FIG.
  • the corresponding normalized intensity curve is shown by the dotted line in FIG.
  • the corresponding normalized intensity curve is shown by the dotted line in Fig. 4; when the dispersion is , the corresponding normalized intensity curve is shown by the solid line in Fig. 4.
  • the present invention measures the magnitude of the system dispersion by measuring the power value of the signal at a frequency point P and a frequency point Q as the upper and lower boundaries of the ⁇ /7 bandwidth.
  • the system chromatic dispersion is obtained by the relationship between the total power or average power and the system chromatic dispersion in the range of i ⁇ 4, and then the difference between the system chromatic dispersion and the standard chromatic dispersion is obtained to obtain the system dispersion compensation amount, and then according to the system specific dispersion compensation.
  • the implementation scheme obtains the dispersion compensation control amount of the system, and performs dispersion compensation on the system.
  • Step 201 The optical signal is photoelectrically converted to obtain an electrical signal.
  • the power spectrum output after square detection in the photoelectric conversion process is: /f ,
  • D r is the dispersion of the transmission system
  • c is the speed of the light wave in the vacuum.
  • the optical modulation method is intensity modulation, and other modulation methods such as phase modulation, frequency modulation, and polarization modulation may be employed.
  • Step 202 Select a bandwidth range ⁇ /, and select the upper and lower frequency boundaries as follows:
  • the upper frequency value P is smaller than the frequency value corresponding to the first minimum value point of the power spectral density dispersion of the electrical signal, and the lower frequency value Q is selected.
  • a guard band of 4/2 can be set. Make the frequency difference between point P and point F larger than the guard band.
  • the selection principle of 4 2 is as small as possible while ensuring that the frequency point P does not flip to the high frequency side of F.
  • Step 203 Filter the obtained power signal to set the upper and lower frequency boundaries to The power spectrum of the 4/bandwidth range is separated to obtain a bandpass or lowpass signal.
  • step 201 can be performed after step 203, that is, the optical signal is band-pass filtered by the optical band pass filter to obtain an optical signal with a bandwidth range of 4, and then the optical signal is converted into an electric signal by the optical signal.
  • Signal in this embodiment, the electrical signal is a power signal.
  • Step 204 Calculate the bandpass or low-pass signal obtained by filtering and separating, and obtain the upper and lower frequency boundaries of 0 and ? The total power of the signal with a bandwidth of ⁇ /.
  • Step 205 Obtain a system dispersion amount according to the correspondence between the total power and the system dispersion amount. Since the obtained total power is in a fixed correspondence with the magnitude of the system dispersion amount, the fixed correspondence is passed through the corpse ⁇ ! ⁇ / ⁇ can be obtained, so by detecting the total power, the dispersion amount of the system can be obtained, and the total power obtained can be converted into the dispersion compensation amount and the control amount, and the dispersion can be compensated as the control amount of the dispersion compensation system.
  • the relationship between the total power and the amount of dispersion, the amount of dispersion compensation, and the amount of control of the dispersion compensation can be stored in a memory device such as a RAM as a lookup table.
  • the look-up table is called in real time to obtain the dispersion compensation control amount, which is input to the control module to control the dispersion compensation module to generate the corresponding dispersion compensation amount.
  • the total power analog signal can be converted into a digital signal, and the digital signal is used as an index to find a corresponding dispersion compensation control amount in the lookup table. See Table 1 for an example of a lookup table.
  • Fig. 12 there is shown a simulation result of the power spectral density based on the above data.
  • curve 1 is the power spectral density of the source signal.
  • Curve 2 is the signal power spectral density at a dispersion of 55 ps/nm.
  • Curve 3 is the signal power spectral density at a dispersion of 41.6 ps/nm.
  • the dispersion compensation control amount is determined by a specific dispersion compensation technique.
  • the above data is generated by DCF (Dispersion Compensation Fiber).
  • step 205 the power analog signal may not be converted into a digital signal before the lookup table is called, but directly into the lookup table for searching. Referring to Table 2, the lookup table is changed from the one-to-one lookup mode of Table 1 to the many-to-one lookup mode.
  • the signal is measured by the frequency point ⁇ and the frequency point Q as the upper and lower boundaries.
  • the total power in the A/1 bandwidth is used to measure the amount of chromatic dispersion of the system.
  • the amount of chromatic dispersion can be measured by the change of the average power.
  • the other steps are basically the same as those in the above embodiment. .
  • the above embodiment is applicable to the case where the nonlinear effect of the system is negligible.
  • the total power in the selected bandwidth range can be obtained according to the above embodiment ( Or average power), then find the total power (or average power) in the nonlinear sensitive area, where the nonlinear sensitive area is the lower frequency boundary where the upper frequency boundary is smaller than the selected bandwidth range, because the nonlinear sensitive area is at the low frequency Area, so the lower frequency point is at 0.
  • the ratio of the total power or the average power in the two regions is obtained. Since the ratio and the amount of system dispersion are also in a corresponding relationship, the dispersion amount of the system can also be obtained by the ratio and used as the control amount of the dispersion compensation system. The subsequent steps and steps 205 are not repeated here.
  • the optical signal of the predetermined bandwidth range may also be selected first, and the upper boundary point of the bandwidth range is smaller than the frequency value corresponding to the first minimum value point of the power spectral density dispersion, and then The optical signal in the bandwidth range is photoelectrically converted to obtain an electrical signal.
  • the invention also provides a color
  • An embodiment of the scatter detecting device is shown in FIG. 6, the device includes a photoelectric filter arithmetic unit 61, an analog to digital converter 62 and a processing unit 63;
  • the photoelectric filter operation unit 61 is configured to separate the electrical signals of the selected bandwidth range; perform operation processing on the signals in the bandwidth range to obtain power calculation values, and convert the optical signals into electrical signals;
  • the analog to digital converter 62 is configured to convert an analog signal into a digital signal
  • the processing unit 63 is configured to obtain a system dispersion amount by using a correspondence relationship between the power operation value and the system dispersion amount, and further obtain a system dispersion compensation amount and a system dispersion compensation control amount; and outputting the output end of the photoelectric filter operation unit 61
  • An electrical signal 64 is input to the input of the analog to digital converter 62, and a digital signal 65 output from the output of the analog to digital converter 62 is input to the input of the processing unit 63.
  • the photoelectric filter operation unit includes a photoelectric conversion module 71, a filter 72, and an operation module.
  • the operation module is a frequency integrator 73.
  • the processing unit is the total power lookup module 74 in this embodiment.
  • the optical signal with the optical carrier frequency of / £ is input to the photoelectric conversion module 71 to obtain the electrical signal 81, and the power spectrum of the upper and lower frequency boundaries of 0 and the bandwidth of Afl is separated by the filter 72 to obtain a band pass or a fourth band.
  • the signal 82 is then input to the frequency integrator 73, and the frequency integrator 73 outputs a total power analog signal 83, which is the total power of the signals having the upper and lower frequency boundaries Q and P and the bandwidth A 7 .
  • the total power analog signal 83 is converted into a total power digital signal 84 by an analog-to-digital converter 62, and the total power digital signal 84 is indexed, and the corresponding system chromatic dispersion amount is searched in the total power search module 74, and the system dispersion compensation amount is further obtained. And the system dispersion compensation control amount 66.
  • An example of a lookup table is shown in Table 1.
  • the photoelectric conversion module 71 can be implemented by an HN tube or other photodetector device. Since the detected energy amount has a fixed correspondence with the magnitude of the signal dispersion amount, the search module is a storage device that stores the relationship between the detected power and the system dispersion amount, for example, in RAM, in real time, the real-time call is made.
  • the search module can also store the correspondence between the power and the dispersion amount, the dispersion compensation amount, and the dispersion compensation control amount, so that the dispersion compensation control amount 66 can be directly obtained by the total power search module 74.
  • the frequency integrator 73 in the arithmetic module can be replaced by an average power finding module 75, which can be replaced by an average power lookup module 76.
  • the band pass or low pass signal 82 output from the filter 72 enters the average power obtaining module 75 to obtain an average power 85 of the selected bandwidth range electrical signal, and the average power analog signal 85 is passed through
  • the analog to digital converter 62 converts to an average power digital signal 86, with the average power digital signal 86 as an index, finds the corresponding system dispersion amount in the average power lookup module 76, and further obtains a system dispersion compensation amount and a system dispersion compensation control amount 66.
  • Other signal relationships are the same as those of the above embodiment, and therefore will not be described again.
  • the frequency integrator 73 in the processing unit can also be replaced by a power ratio finding module 77, which can be replaced by a power ratio lookup module 78.
  • the band pass or low pass signal 82 output from the filter 72 enters the power ratio obtaining module 77 to obtain the average power or total power of the selected bandwidth range electrical signal and the average power or total power of the nonlinear sensitive area electrical signal.
  • the ratio 87 is used to convert the power ratio analog signal 87 to the power digital signal 88 via the analog-to-digital converter 62.
  • the power ratio value digital signal 88 is used as an index, and the corresponding system dispersion amount is searched in the power ratio search module 78 to further obtain system dispersion.
  • Other signal relationships are the same as those of the above embodiment, and therefore will not be described again.
  • the apparatus includes a photoelectric filter arithmetic unit 61 and a processing unit 63; an output of the photoelectric filter arithmetic unit 61 is connected to an input terminal of the processing unit 63.
  • the analog signal 64 outputted by the photoelectric filter operation unit 61 directly enters the lookup module in the processing unit for searching, and accordingly, the lookup table in the lookup module is a many-to-one search mode.
  • the photoelectric conversion module 71 in the photoelectric filter operation unit is located at the front end of the filter 72.
  • the filter 72 may also be located at the front end of the photoelectric conversion module 71, and the output end of the filter 72 is The input terminals of the photoelectric conversion module 71 are connected, and the filter at this time is an optical band pass filter.
  • the chromatic dispersion compensation system can be constructed by using the dispersion detecting device of the present invention.
  • Figure 10 which is a system embodiment suitable for applying a tonable dispersion compensation module on the transmitting end and the line
  • Figure 11 is a system embodiment suitable for applying a tonable dispersion compensation module at the receiving end.
  • the system described in FIG. 10 and FIG. 11 includes a tonable dispersion compensation module and a light splitting module (ie, a light splitting device) serially connected in the fiber channel, and a scatter dispersion obtained by detecting light from the light splitting module for detecting a system dispersion amount.
  • a light splitting module ie, a light splitting device
  • the dispersion detection module includes a photoelectric filter operation unit and a processing unit, and the photoelectric filter operation unit is configured to Acquiring an electrical signal within a predetermined bandwidth range from the received optical signal; And performing an operation process on the electrical signal in the bandwidth range to obtain a power calculation value; and the processing unit is configured to obtain a system dispersion amount by the correspondence between the power operation value and the system dispersion amount.
  • the optical signal is transmitted on the line, it is input to the tunable dispersion compensation module 4a1, and the output light after dispersion compensation is branched by the spectroscopic device 4a2 to input part of the detection light input to the dispersion detecting module 4a3, and the control module 4a4
  • a control signal is fed back to the tunable dispersion compensation module, and the dispersion compensation amount is adjusted to achieve the optimal performance of the system.
  • the control module 4a4 feeds back a control signal to the adjustable according to the dispersion amount detecting result of the dispersion detecting module.
  • the dispersion compensation module 4al adjusts the amount of dispersion compensation to achieve optimal performance of the system.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

一种色散检测方法、 装置及一种光信号传输系统 本申请要求于 2006 年 5 月 13 日提交中国专利局、 申请号 '为 200610080030.3 ,发明名称为 "一种色散检测方法及装置"的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。
技术械
本发明涉及光传输领域, 特别涉及一种自适应色散补偿系统中的色散 检测方法及装置。
背景技术
光纤中所传信号的不同频率分量或信号的各种模式分量传输速度不同, 引起信号波形失真的现象称为色散? 。 色散对光传输带来的影响使数据脉冲 间产生码间千扰。因此需要进行色散补偿来保证系统的传输性能。对于 40Gb/s 以上的高速率光传输系统或期望实现可动态配制的光传输网絡, 可自适应调 节的色散补偿解决方案是必不可少的。 为了实现自适应色散补偿系统, 一个 色散检测和反馈控制机制是必须的。
可调色散补偿方案目前主要有三种: 基于可调啁啾布拉格光纤光栅的色 散补偿、 发送端预畸变、 接收端均衡。
在上述色散补偿系统中, 其色散检测方案主要有以下三种:
方案 1. 通过比较时钟的相差来确定色散量的大小。
参见图 1,在 JTL (光波技术杂志 -Journal of Lightwave Technology ) 第 20 卷, 第 12期, 题目为 "基于边带光滤波器和时钟相移检测的色度色散监控技 术,,的文南 中 [JTL,Vol20,No.12. chromatic dispersion monitoring technique using sideband optical filtering and clock phase-shift detection]公开了一种色散检测 方法。 该方法是在接收端光电转换前通过光滤波器 101滤取信号光谱的上边 带( VSB-U: Vestigial side band-Upper )或者下边带 ( VSB-L: Vestigial side band-Low ) 的信号, 然后分别对上边带或下边带信号通过光电转换器 102进 行光电转换后, 通过时钟恢复器 103提取时钟信号, 并使边带信号的相位信 息清晰化, 然后通过相位检测器 104比较边带信号和基带信号两路时钟信号 的相位差来判断色散量的大小。
该方案需要两套高速光电转换和处理结构, 结构复杂。 另外, 因为时钟 相差会出现周期性的重复, 所以只能测量一个时钟周期范围对应的色散量, 其可测色散量的范围有限。
方案 2. 在传输信号上叠加一个谐波探测信号, 在接收端进行光电转换 以后, 把探测信号提取出来, 通过接收端探测信号的强度来确定系统色散量 的大小。
参见图 2, OFC2001文献 WH4给出基于带内导频的色散监控和补偿方案。
[Dispersion monitoring and compensation using a single ίη-band sub-carrier tone] 该方案是在发射到传输线路上的信号上通过调制器叠加一个谐波探测信号, 在接收端对光信号进行光电转换后通过电滤波器分离出探测信号谱功率, 根 据功率的减少量来判断系统色散量的大小。
这种方法需要在发射端增加额外的调谐装置, 这样做就增加了系统的复 杂度。
方案 3. 将光信号转化为电信号, 通过检测功率谱色散第一极小值点的 改变来确定系统色散量的大小。
申请号为 US6487352的美国专利公开了一种色散检测方案。 参见图 3, 该检测方案的基本实现过程是将光信号经光电转换后经若干 RF窄带滤波器 滤波, 然后通过对若干窄带谱分量的分析得出系统色散量的值。 该方案利用 了平方律接收机功率谱的余弦形伸缩程度同信号色散量的对应关系。 其中, 图 3中标号分别为: 300:入射光信号。 301 :光电转换器。 302:可调放大器。 303: 带通滤波器。 304:可调放大器。 305:带通滤波器。 306:平方检测器。 307:低通 滤波器。 308:模数转换器。 309:数字信号处理器。 310:色散控制信号。
该专利是通过对功率谱的高密度采样来搜索功率谱的波谷位置, 以波谷 位置的偏移方向和偏移量来确定信号色散量。 为了准确定位波谷位置, 高密 度采样是必不可少的, 这就使得检测系统的结构变得很复杂, 增加了系统成 本。 另夕卜,在高速系统中,信号色散量的微小变化也是需要被检测和补偿的, 而波谷位置的变化对微小的色散量起伏是不敏感的, 这就限制了该技术方案 在高速系统中的应用。 除此之外, 在该方案中, 各个滤波器输出端的电功率 都需要被放大, 这增大了系统的功耗。
发明内容 复杂、对微小色散不敏感的不足,提供了一种实现简单的用于自适应色散 补偿系统的检测方法、 装置及一种光信号传输系统。
本发明提供的色散检测方法, 包括:
从接收到的光信号中获取预定带宽范围内的电信号;
对所述预定带宽范围内的电信号进行运算处理得到功率运算值; 通过所述功率运算值和系统色散量的对应关系得到系统色散量。 本发明提供的色散检测装置, 包括光电滤波运算单元和处理单元, 其 中:
所述光电滤波运算单元,用于从接收到的光信号中获取预定带宽范围 内的电信号; 以及, 对所述预定带宽范围内的电信号进行运算处理得到功 率运算值;
所述处理单元,用于通过所述功率运算值和系统色散量的对应关系得 到系统色散量。
本发明提供的光信号传输系统, 包括串接在光纤通道中的可调色散补偿 模块和分光模块, 以及从所述分光模块获取探测光用于检测系统色散量的色 散检测模块和串接在所述可调色散补偿模块和所述色散检测模块之间的控 制模块, 所述色散检测模块, 包括光电滤波运算单元和处理单元, 其中: 所述光电滤波运算单元 ,用于从接收到的光信号获取预定带宽范围内 的电信号; 以及,对所述预定带宽范围内的电信号进行运算处理得到功率 运算值;
所述处理单元,用于通过所述功率运算值和系统色散量的对应关系得 到系统色散量。
本发明的有益效果是:
1、 与现有技术 1相比, 本发明的色散检测和补偿系统省去了复杂的、 造 价高昂的时钟恢复装置;
2、 与现有技术 2相比, 本发明不需要在发送端增加额外的探测光, 既节 省了带宽资源, 也避免了探测光对信号光的影响;
3、 与现有技术 3相比, 本发明所需的监测量为总功率或平均功率, 获取 方法简洁单一, 在实际系统应用上更可行。
4、 本发明不仅适用于链路不变的场合, 而且适合于链路变化的场合。
5、 由于本发明对于某一带宽范围内求取平均功率或总功率, 对微小色 散比较敏感。
附图说明
图 1为现有技术中通过比较时钟的相位差进行色散检测的装置的结构 示意图;
图 2 为现有技术中通过谐波探测信号进行色散检测的装置的结构示 意图;
图 3 为现有技术中通过检测功率谱色散第一极值点的改变进行色散检 测的装置的结构示意图;
图 4为光纤上传输的光信号脉冲经平方检测后的电信号的幅频特性曲线 谱强度归一化示意图;
图 5为本发明所述色散检测方法的实施例流程图;
图 6为本发明所述色散检测装置的实施例结构图;
图 7a为本发明所述色散检测装置中运算模块采用积分器的结构图; 图 7b 为本发明所述色散检测装置中运算模块采用平均功率求取模块的 结构图;
图 7c 为本发明所述色散检测装置中运算模块采用功率比值求取模块的 结构图;
图 8为本发明所述色散检测装置的另一种实施例结构图;
图 9为本发明所述光电滤波运算单元的一种结构图;
图 10 为采用本发明所述色散检测装置的适用于发送端和线路上自适应 补偿系统的实施例结构图;
图 11 为采用本发明所述色散检测装置的适用于接收端自适应补偿系统 的实施例结构图;
图 12为功率谱密度的仿真结果图。
具体实施方式
下面将参照相应的附图来描述本发明优选的实施方案。 首先以单频升余弦信号为例, 叙述本发明的原理。
信号: / = J。(l + cos(2 )) , m « l , 其中/。为信号平均功率, m为调制深 度。 经平方探测后输出的功率谱密度为: /广 /。 ;0^121),./2/^ , 其中 为载 波波长, A为传输系统的色散, c为光波在真空中的速度。
· 色散第一极值点指的是色散系统冲激响应频谱的第一零点, 色散第二极 值点指的是色散系统冲激响应频谱的第二零点, 依此类推。 通过计算, 得到 色散第一极值点对应的频率点 F为: F = {f/2DrA2 "f2。 由色散第一极值点 F和系 统色散 β,.的对应关系可知, 当系统色散 增加时, 色散第一极小值点 F对应 的频率值减小, 当系统色散 A.减小时, 色散第一极值点 F对应的频率值增大。
对谱强度 /广/。;^^ (; TA2A/2 /C)( , 在一个选定的带宽范围内求和, 根据上 述谱强度的表达式可以得到该带宽范围内的总功率和系统的色散 之间的 关系。该总功率和系统的色散 A存在一个一一对应的关系。 当系统的色散 增加时, 总功率减小, 当 I 咸小时, 总功率增加。
参见图 4, 为在光纤上传输的光信号脉冲经平方检测后输出的电信号的 幅频特性曲线归一化讲强度示意图。 谱强度色散第一极小值位于 F (色散第 二极小值及其它极小值未在图中画出) , 由于色散的影响, 幅频特性与没有 色散的理想的幅频特性比较会发生变化。 当系统色散恒定时, F的位置是固 定的。 F的位置随系统色散的变化而改变, 当信号色散变大时, 色散第一极 小值从频率点 F向低频方向偏移,如图 4中频率点 F'所示;当信号色散变小时, 色散第一极小值 F向高频方向偏移, 如图 4中频率点 F"所示。 强度语的变化导 致弧线 MN向 ΜΉ'或者 M'5V"方向变化, 进而使得字母 MNPQ包围的区域内的 总功率发生变化。 即当系统色散 A.增加时, 字母 MNPQ包围的区域内的总功 率减少; 当系统色散 咸少时, 字母 MNPQ包围的区域内的总功率变大。
对谱强度 /广
Figure imgf000007_0001
, 如果在一个选定的带宽范围内求取平均 值,根据谱强度的表达式可以得到该带宽范围内的平均功率和系统的色散 之间的关系。 该平均功率和系统的色散 也存在一个——对应的关系。 当系 统的色散 增加时, 平均功率减小, 当 咸小时, 平均功率增加。
为了防止非线性, 系统的本地色散及色散都不能为零, 否则色散第一极 小值点是不存在的, 或者说色散第一极小值点位于无穷远处。 取系统的标 准色散为 0 , 保证了实际的系统中存在一个标准色散第一极小值点, 实 际色散第一极小值点随系统色散的变动在标准色散第一极小值点附近变动。 当标准色散为 时, 对应的归一化强度曲线如图 4中点划线所示。 取系 统的实际色散为 ,. , i 满足: ·¾≤Α.≤Α.Λ。 色散为 时, 对应的归一化强 度曲线如图 4中虚线所示; 色散为 时,对应的归一化强度曲线如图 4中实线 所示。
本发明通过测量信号以频率点 P和频率点 Q为上下边界的 Δ/7带宽范围内 的功率值来衡量系统色散量大小。通 i±4 带宽范围内总功率或平均功率与系 统色散量的对应关系得到系统色散量, 然后求取系统色散量与标准色散量的 差值得到系统色散补偿量 , 再根据系统具体的色散补偿实现方案得到系统的 色散补偿控制量, 对系统进行色散补偿。
参见图 5 , 本发明所述色散的检测方法的一个具体实施例如下: 步驟 201 : 将光信号经过光电转换得到电信号。 在本实施例中, 以强度 调制的升余弦脉沖为例, 光脉冲强度为/ = /。(1 + (^(2 )), m « U 其中 /。为 脉冲平均功率, w为调制深度。 在光电转换过程中经平方探测后输出的功率 谱为: /f ,
Figure imgf000008_0001
其中 为载波波长, Dr为传输系统的色散, c为 光波在真空中的速度。
在本实施例中, 光调制方式为强度调制, 也可以采用其它调制方式, 如 相位调制、 频率调制和偏振调制等。
步骤 202: 选择一个带宽范围 Δ/ , 其上、 下频率边界的选取原则为: 上 频率值 P小于电信号的功率谱密度色散第一极小值点所对应的频率值, 下频 率值 Q选取使功率对色散的变化最敏感的频率值, 其最优点的频率值为 0。
在实际应用中, 可以设定一个保护频带 4/2。 使 P点与 F点的频率差大于 保护频带。 4 2的选取原则是在保证频率点 P不翻转到 F的高频率一侧的前提 下尽可能地小。
步骤 203 : 将得到的功率信号经过滤波将上下频率边界为
Figure imgf000008_0002
4/带 宽范围的功率谱分离出来, 得到带通或者低通信号。
上述步骤 201可以在步骤 203之后执行, 即先用光带通滤波器对光信号进 行带通滤波,得到带宽范围为 4 的光信号,然后对滤波后的光信号进行光.电 转换, 得到电信号, 在本实施例中, 电信号为功率信号。
步骤 204 : 将经过滤波分离得到的带通或者低通信号求取和, 得到上下 频率边界为 0和?、 频带宽度为 Δ/的信号的总功率。 步驟 205:根据所述总功率与系统色散量的对应关系得到系统色散量。 由于所得到的总功率的大小和系统色散量的大小成固定的对应关系, 该 固定对应关系通过/尸 ^^^^!^ /^可以得出 , 因而通过检测总功率就可 以得出系统的色散量, 并可以将得到的总功率转换成色散补偿量和控制量, 作为色散补偿系统的控制量对色散进行补偿。
在实施过程中, 可以将总功率和色散量、 色散补偿量、 以及色散补偿的 控制量的关系做成查找表存储在存储器件, 比如 RAM中。 在实际应用时, 实 时调用该查找表得到色散补偿控制量, 输入到控制模块, 以控制色散补偿模 块产生相应色散补偿量。
在调用查找表之前, 可以将该总功率模拟信号变换为数字信号, 以数字信 号为索引, 在查找表中查找对应的色散补偿控制量。 参见表 1 , 为查找表的示 例。
Figure imgf000009_0001
表 1
上表所得数据的实验条件:
40Gbit/s的高斯脉冲序列, 脉冲半高全宽 (FWHM)6.25ps, 输入信号峰值 功率 lOdBm; 取系统标准色散为 42ps/nm, 色散第一极小值点位于 36.8GHz 处, 取 P=36GHz, Q=0GHz。 A/D变换器输出功率为所述带宽内的总功率。
参见图 12,为以上述数据为实验条件的功率谱密度的仿真结果图。其中, 曲线 1是源信号的功率谱密度。 曲线 2是色散为 55ps/nm时的信号功率谱密 度。 曲线 3是色散为 41.6ps/nm时的信号功率谱密度。 色散补偿控制量由具体的色散补偿技术决定。 上述数据是采用 DCF (光 纤色散补偿 -Dispersion Compensation Fiber )所产生的 ^:据。
对链路不变的场合, 其标准色散只有一个。 步骤 205中在调用查找表之 前也可以不将功率模拟信号变换为数字信号, 而是直接进入查找表进行查 找。 参见表 2, 此时查找表由表 1的一对一查找方式变为多对一的查找方式。
Figure imgf000010_0001
表 2
上述实施例中, 是通过测量信号以频率点 Ρ和频率点 Q为上下边界的
A/1 带宽范围内的总功率的变化来衡量系统色散量的大小, 也可以通过求取 平均功率的变化来衡量系统色散量的大小, 其它步骤与上述实施例基本相 同, 在此不再赘述。
上述实施例适用于系统的非线性效应可以忽略时的情况, 当系统的非线 性效应较明显时, 为了降低非线性效应的影响, 可以按照上述实施例先求出 选定带宽范围内总功率(或平均功率), 再求出非线性敏感区域内的总功率 (或平均功率), 其中非线性敏感区为上频率边界小于所属选定的带宽范围 的下频率边界, 因为非线性敏感区位于低频区域, 所以下频率点位于 0。 得 到两个区域内总功率的比值或平均功率的比值。 由于该比值和系统色散量也 成——对应关系, 因此也可以通过该比值得到系统的色散量并作为色散补偿 系统的控制量。 后面的步骤和步骤 205—样, 在此不再赘述。
在本发明所述方发的另外实施例中, 也可以首先选取预定带宽范围的光 信号, 所述带宽范围的上边界点小于功率谱密度色散第一极小值点所对应的 频率值, 然后将所述带宽范围内的光信号进行光电转换后得到电信号。 而对 所述电信号的进一步处理可以参考图 5所示实施例。 本发明还提供了一种色 散检测装置的实施例参见图 6, 所述装置包括光电滤波运算单元 61 , 模数 转换器 62和处理单元 63;
所述光电滤波运算单元 61 用于将选取的带宽范围的电信号分离出 来; 对所述带宽范围内的信号进行运算处理得到功率运算值, 并将光信号 转换为电信号;
所述模数转换器 62用于将模拟信号转换为数字信号;
所述处理单元 63用于通过所述功率运算值和系统色散量的对应关系 得到系统色散量, 进一步得到系统色散补偿量和系统色散补偿控制量; 所述光电滤波运算单元 61的输出端输出的电信号 64输入到所述模数 转换器 62的输入端, 所述模数转换器 62的输出端输出的数字信号 65输 入到所述处理单元 63的输入端。
参见图 7a, 光电滤波运算单元包括光电转换模块 71、 滤波器 72和运算 模块, 在本实施例中, 运算模块为频率积分器 73。 处理单元在本实施例中为 总功率查找模块 74。
光载波频率为 /£的光信号输入到光电转换模块 71 , 得到电信号 81 , 再 通过滤波器 72将上下频率边界为 0和卩、 Afl带宽范围的功率谱分离出来, 得到带通或者 4氏通信号 82, 然后将该信号 82输入到频率积分器 73中, 频率 积分器 73输出总功率模拟信号 83 , 该信号是上下频率边界为 Q和 P、 频带 宽度为 A 7的信号的总功率, 将该总功率模拟信号 83经模数转换器 62变换 为总功率数字信号 84, 以总功率数字信号 84为索引, 在总功率查找模块 74 中查找对应的系统色散量, 进一步得到系统色散补偿量和系统色散补偿控 制量 66。 查找表的示例如表 1。 光电转换模块 71可以通过 HN管或其他光 电探测器件实现。 由于所检测的能量大小与信号色散量的大小成固定的对应 关系, 所以查找模块是存有所检测的功率和系统色散量的关系的存储器件, 比如 RAM中, 在实际应用时, 实时调用该查找模块中的查找表。 此外, 查 找模块还可以存储功率和色散量、 色散补偿量、 色散补偿控制量的对应关系, 这样, 通过总功率查找模块 74可以直接得到色散补偿控制量 66。
参见图 7b,运算模块中频率积分器 73可以由平均功率求取模块 75代替, 处理单元中总功率查找模块 74可以由平均功率查找模块 76代替。
从滤波器 72输出的带通或者低通信号 82进入平均功率求取模块 75得 到所述选定带宽范围电信号的平均功率 85 , 将该平均功率模拟信号 85经 模数转换器 62变换为平均功率数字信号 86,以平均功率数字信号 86为索引, 在平均功率查找模块 76中查找对应的系统色散量, 进一步得到系统色散补 偿量和系统色散补偿控制量 66。 其它信号关系和上述实施例相同, 因此 不再赘述。
参见图 7c, 处理单元中频率积分器 73还可以由功率比值求取模块 77 代替, 处理单元中总功率查找模块 74可以有功率比值查找模块 78代替。■ 从滤波器 72输出的带通或者低通信号 82进入功率比值求取模块 77得 到所述选定带宽范围电信号的平均功率或总功率与非线性敏感区域电信 号的平均功率或总功率的比值 87,将该功率比值模拟信号 87经模数转换器 62变换为功率数字信号 88, 以功率比值数字信号 88为索引, 在功率比值查 找模块 78中查找对应的系统色散量,进一步得到系統色散补偿量和系统色 散补偿控制量 66。 。 其它信号关系和上述实施例相同, 因此不再赘述。
对链路不变的场合, 本装置中不需要包含模数转换器 62。 参见图 8, 所 述装置包括光电滤波运算单元 61和处理单元 63; 光电滤波运算单元 61 的输出端与处理单元 63的输入端相连。 光电滤波运算单元 61输出的模拟 信号 64 直接进入处理单元中的查找模块进行查找, 相应地, 查找模块中的 查找表为多对一的查找方式。 这种情况适用于运算模块采用积分器、 平均功 率求取模块和功率比值求取模块的结构, 即也可以不包含模数转换器, 由于 其结构类似, 在此不再赘述。
上述实施例中, 光电滤波运算单元中光电转换模块 71位于滤波器 72的 前端,参见图 9,在实施过程中,滤波器 72也可以位于光电转换模块 71的前端, 滤波器 72的输出端与光电转换模块 71的输入端相连, 这时的滤波器为光带 通滤波器。
采用本发明所述的色散检测装置可以构成可调色散补偿系统。
参见图 10,为适合于在发送端和线路上应用可调色散补偿模块的系统实 施例, 图 11为适合于在接收端应用可调色散补偿模块的系统实施例。 图 10 和图 11 所述的系统, 包括串接在光纤通道中的可调色散补偿模块和分光模 块(即分光器件), 以及从所述分光模块获取探测光用于检测系统色散量的色 散检测模块和串接在所述可调色散补偿模块和所述色散检测模块之间的控 制模块; 所述色散检测模块, 包括光电滤波运算单元和处理单元, 所述光 电滤波运算单元, 用于从接收到的光信号获取预定带宽范围内的电信号; 以及, 对所述带宽范围内的电信号进行运算处理得到功率运算值; 所述处 理单元,用于通过所述功率运算值和系统色散量的对应关系得到系统色散 量。
图 10 所示的系统中, 光信号在线路上传输以后输入到可调色散补偿模 块 4al, 进行色散补偿后的输出光由分光器件 4a2分出部分探测光输入到色散 检测模块 4a3 , 控制模块 4a4根据色散检测模块的色散量检测结果反馈一个控 制信号到可调色散补偿模块, 调节色散补偿量, 使系统达到最佳性能。 其中 4al与 4a2之间可以有传输段, 也可以没有传输段。
图 11所示的系统中,光信号在线路上传输以后首先由分光器件 4a2分出部 分探测光输入到色散检测模块 4a3 , 控制模块 4a4根据色散检测模块的色散量 检测结果反馈一个控制信号到可调色散补偿模块 4al,调节色散补偿量,使系 统达到最佳性能。
以上只是对本发明的优选实施方式进行了描述,本领域的技术人员在 本发明技术的方案范围内进行的通常变化和替换,都应包含在本发明的保 护范围内。

Claims

权 利 要 求
1、 一种色散检测方法, 其特征在于包括:
从接收到的光信号中获取预定带宽范围内的电信号;
对所述预定带宽范围内的电信号进行运算处理得到功率运算值; 通过所述功率运算值和系统色散量的对应关系得到系统色散量。
2、 如权利要求 1所述的色散检测方法, 其特征在于, 按照下述步骤 获取所述预定带宽范围内的电信号:
将接收到的光信号进行光电转换后得到电信号;
选取预定带宽范围的电信号, 所述带宽范围的上边界点小于功率谱密 度色散第一极小值点所对应的频率值。
3、 如权利要求 1所述的色散检测方法, 其特征在于, 按照下述步骤 获取所述预定带宽范围内的电信号:
选取预定带宽范围的光信号, 所述带宽范围的上边界点小于功率谱密 度色散第一极小值点所对应的频率值;
将所述预定带宽范围内的光信号进行光电转换后得到电信号。
4、 如权利要求 2或 3所述的色散检测方法, 其特征在于, 对所述预 定带宽范围内的电信号进行求和运算处理得到所述预定带宽范围内电信 号的总功率; 以及,
根据所述总功率与系统色散量的对应关系得到系统色散量。
5、 如权利要求 2或 3所述的色散检测方法, 其特征在于, 对所述预 定带宽范围内的电信号进行均值运算处理得到的平均功率; 以及,
根据所述平均功率与系统色散量的对应关系得到系统色散量。
6、 如权利要求 2或 3所述的色散检测方法, 其特征在于, 对所述预 定带宽范围内的电信号进行求和运算处理得到所述预定带宽范围内电信 号的总功率;再对所述预定带宽范围内电信号的总功率与非线性敏感区域 内电信号的总功率进行除法运算得到所述预定带宽范围内电信号总功率 与非线性敏感区域内电信号总功率的比值; 以及,
根据所述总功率的比值与系统色散量的对应关系得到系统色散量。 7、 如权利要求 2或 3所述的色散检测方法, 其特征在于, 对所述预 定带宽范围内的电信号进行均值运算处理得到所述预定带宽范围内电信 号的平均功率;再对所述预定带宽范围内电信号的平均功率与非线性敏感 区域内电信号的平均功率进行除法运算得到所述预定带宽范围内电信号 总功率与非线性敏感区域内电信号总功率的比值; 以及,
根据所述平均功率的比值与系统色散量的对应关系得到系统色散量。
8、 一种色散检测装置, 其特征在于, 包括光电滤波运算单元和处理 单元, 其中:
所述光电滤波运算单元,用于从接收到的光信号中获取预定带宽范围 内的电信号; 以及, 对所述预定带宽范围内的电信号进行运算处理得到功 率运算值;
所述处理单元,用于通过所述功率运算值和系统色散量的对应关系得 到系统色散量。
9、 如权利要求 8所述的色散检测装置, 其特征在于, 所述光电滤波 运算单元具体包括光电转换模块、 滤波器和运算模块, 其中:
所述光电转换模块, 用于将光信号转换为电信号;
所述滤波器,用于将所述光电转换模块输出的预定带宽范围内的电信 号分离出来,所述带宽范围的上边界点小于功率谱密度色散第一极小值点所 对应的频率值;
所述运算模块,用于对所述预定带宽范围内的电信号进行运算处理得 到功率运算值。
10、 如权利要求 8所述的色散检测装置, 其特征在于, 所述光电滤波 运算单元具体包括光电转换模块、 滤波器和运算模块;
所述光电转换模块, 用于将所述滤波器输出的光信号转换为电信号; 所述滤波器, 用于将预定带宽范围的光信号分离出来, 所述带宽范围 的上边界点小于功率谱密度色散第一极小值点所对应的频率值;
所述运算模块,用于对所述预定带宽范围内的信号进行运算处理得到 功率运算值。 11如权利要求 9或 10所述的色散检测装置, 其特征在于, 所述运算 模块为积分器; 所述处理单元为总功率查找模块。
12、 如权利要求 9或 10所述的色散检测装置, 其特征在于, 所述运 算模块为平均功率求取模块; 所述处理单元为平均功率查找模块。
13、 如权利要求 9或 10所述的色散检测装置, 其特征在于, 所述运 算模块为功率比值求取模块; 所述处理单元为功率比值查找模块。
14、 如权利要求 13所述的色散检测装置, 其特征在于, 所述装置还 包括模数转换器, 用于将模拟信号转换为数字信号, 所述模数转换器的输 入端与所述光电滤波运算单元的输出端相连,所述模数转换器的输出端与 所述处理模块的输入端相连。
15、 一种光信号传输系统, 包括串接在光纤通道中的可调色散补偿模块 和分光模块, 以及从所述分光模块获取探测光用于检测系统色散量的色散检 测模块和串接在所述可调色散补偿模块和所述色散检测模块之间的控制模 块, 其特征在于: 所述色散检测模块, 包括光电滤波运算单元和处理单元, 其中:
所述光电滤波运算单元,用于从接收到的光信号获取预定带宽范围内 的电信号; 以及, 对所述预定带宽范围内的电信号进行运算处理得到功率 运算值;
所述处理单元,用于通过所述功率运算值和系统色散量的对应关系得 到系统色散量。
PCT/CN2007/000257 2006-05-13 2007-01-24 Dispositif et procédé de détection de dispersion, et système de transmission de signaux optiques WO2007131401A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE602007013204T DE602007013204D1 (de) 2006-05-13 2007-01-24 Dispersionsdetektionsverfahren, einrichtung und optisches signalübertragungssystem
JP2009510259A JP4734452B2 (ja) 2006-05-13 2007-01-24 分散を検出するための方法およびデバイス、ならびに光信号伝送システム
EP07702186A EP2019499B1 (en) 2006-05-13 2007-01-24 A dispersion detecting method,device and an optical signal transmission system
AT07702186T ATE502452T1 (de) 2006-05-13 2007-01-24 Dispersionsdetektionsverfahren, einrichtung und optisches signalübertragungssystem
US12/269,502 US8229298B2 (en) 2006-05-13 2008-11-12 Method and device for detecting dispersion, optical signal transmission system
US13/253,744 US8229299B2 (en) 2006-05-13 2011-10-05 Method and device for detecting dispersion, optical signal transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2006100800303A CN100461653C (zh) 2006-05-13 2006-05-13 一种色散检测方法及装置
CN200610080030.3 2006-05-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/269,502 Continuation US8229298B2 (en) 2006-05-13 2008-11-12 Method and device for detecting dispersion, optical signal transmission system

Publications (1)

Publication Number Publication Date
WO2007131401A1 true WO2007131401A1 (fr) 2007-11-22

Family

ID=38076635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/000257 WO2007131401A1 (fr) 2006-05-13 2007-01-24 Dispositif et procédé de détection de dispersion, et système de transmission de signaux optiques

Country Status (8)

Country Link
US (2) US8229298B2 (zh)
EP (1) EP2019499B1 (zh)
JP (1) JP4734452B2 (zh)
CN (2) CN100461653C (zh)
AT (1) ATE502452T1 (zh)
DE (1) DE602007013204D1 (zh)
ES (1) ES2363039T3 (zh)
WO (1) WO2007131401A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8229298B2 (en) 2006-05-13 2012-07-24 Huawei Technologies Co., Ltd. Method and device for detecting dispersion, optical signal transmission system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090142070A1 (en) * 2007-11-29 2009-06-04 Tellabs Operations, Inc. Methods and apparatus for supporting fiber span loss and dispersion measurements in the presence and absence of dispersion compensation elements
CN102075241B (zh) * 2009-11-19 2014-01-01 华为技术有限公司 动态色散检测方法及装置
CN102045109B (zh) * 2011-01-19 2014-06-18 武汉虹拓新技术有限责任公司 一种光纤链路在线色散测量装置
WO2013071734A1 (zh) * 2011-11-14 2013-05-23 中兴通讯股份有限公司 色散补偿方法及装置
JP6661263B2 (ja) * 2014-09-03 2020-03-11 富士通株式会社 光伝送装置、非線形歪み補償方法及び非線形歪み予等化方法
EP3002893B1 (en) * 2014-09-30 2018-01-31 Alcatel Lucent A method for producing a quality of transmission estimator for optical transmissions
CN106656314B (zh) * 2015-10-31 2019-05-24 华为技术有限公司 一种监测光通信网络色散的方法及装置
CN114650096A (zh) * 2022-03-24 2022-06-21 中国电信股份有限公司 光路自适应色散补偿方法、光模块和波分复用系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1215265A (zh) * 1997-10-20 1999-04-28 富士通株式会社 对色散引起的波形变化的检测和补偿
EP1081881A2 (en) * 1999-08-30 2001-03-07 Nortel Networks Limited Chromatic dispersion compensation
EP1251647A1 (en) * 2001-03-13 2002-10-23 Nortel Networks Limited Optical communications system with adjustable dispersion compensation
US6487352B1 (en) 2000-02-18 2002-11-26 Corning Incorporated Electrical detector for adaptive control of chromatic dispersion in optical systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040156038A1 (en) * 2003-02-12 2004-08-12 Xiang-Dong Cao Method and apparatus for providing real-time chromatic dispersion measurement
CN100461653C (zh) 2006-05-13 2009-02-11 华为技术有限公司 一种色散检测方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1215265A (zh) * 1997-10-20 1999-04-28 富士通株式会社 对色散引起的波形变化的检测和补偿
EP1081881A2 (en) * 1999-08-30 2001-03-07 Nortel Networks Limited Chromatic dispersion compensation
US6487352B1 (en) 2000-02-18 2002-11-26 Corning Incorporated Electrical detector for adaptive control of chromatic dispersion in optical systems
EP1251647A1 (en) * 2001-03-13 2002-10-23 Nortel Networks Limited Optical communications system with adjustable dispersion compensation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Chromatic Dispersion Monitoring Technique Using Sideband Optical Filtering and Clock Phase-shift Detection", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 20, no. 12

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8229298B2 (en) 2006-05-13 2012-07-24 Huawei Technologies Co., Ltd. Method and device for detecting dispersion, optical signal transmission system
US8229299B2 (en) 2006-05-13 2012-07-24 Huawei Technologies Co., Ltd. Method and device for detecting dispersion, optical signal transmission system

Also Published As

Publication number Publication date
ATE502452T1 (de) 2011-04-15
CN1968055A (zh) 2007-05-23
CN100461653C (zh) 2009-02-11
JP2009537100A (ja) 2009-10-22
US8229298B2 (en) 2012-07-24
US8229299B2 (en) 2012-07-24
EP2019499A4 (en) 2009-09-23
US20120027406A1 (en) 2012-02-02
US20090127443A1 (en) 2009-05-21
ES2363039T3 (es) 2011-07-19
CN101317351A (zh) 2008-12-03
EP2019499A1 (en) 2009-01-28
JP4734452B2 (ja) 2011-07-27
DE602007013204D1 (de) 2011-04-28
EP2019499B1 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
WO2007131401A1 (fr) Dispositif et procédé de détection de dispersion, et système de transmission de signaux optiques
US9088370B2 (en) Coherent optical receiver, apparatus and method for detecting inter-channel skew in coherent optical receiver
JP6405833B2 (ja) 信号処理装置及び信号処理方法
JP2001211120A (ja) 光ファイバの偏光モード分散を補償する補償器
JP2004356742A (ja) 信号波形劣化補償器
US8918444B2 (en) Method and device for filterling an input signal
US9002215B2 (en) Spectral analysis for coherent optical receivers
CN108631882B (zh) 用于相干光学传输中相邻信道代价的监测和校正的方法
US9871596B2 (en) Optical receiver and signal processing method
CN109387833A (zh) 基于微波光子正交差频复用的mimo雷达探测方法及装置
CN109906568A (zh) 数字相干接收器及其偏斜调整方法
CN103430003A (zh) 用于估计接收到的光信号的色散的方法
US20020176129A1 (en) Performance monitoring in an optical communication system
CN105871456B (zh) 基于延迟采样的信号质量监测
KR101821970B1 (ko) 편광 분할 다중화 광신호의 직접 검출 방법 및 장치
TWI696355B (zh) 光纖色散監控裝置
US20230146826A1 (en) Digital tone-based apparatus and method for measuring the frequency response of coherent optical transmitters
NO841334L (no) Fremgangsmaate ved signalbehandling av et mottatt pulstog og mottager for utfoerelse av behandlingen
CN114019234B (zh) 一种发射机iq两路时延差和频率响应的测量方法和系统
KR101559520B1 (ko) 광신호의 색분산 감시 방법 및 장치
Bo et al. A simple time-domain CSPR measurement method for optical single sideband signal
Benlachtar et al. Chromatic dispersion monitoring using synchronous sampling
CN110875772A (zh) 光纤色散监控装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000306.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07702186

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009510259

Country of ref document: JP

Ref document number: 2007702186

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE