WO2007129609A1 - Liquid crystal display element having prism sheet, and liquid crystal display device using the liquid crystal display element - Google Patents

Liquid crystal display element having prism sheet, and liquid crystal display device using the liquid crystal display element Download PDF

Info

Publication number
WO2007129609A1
WO2007129609A1 PCT/JP2007/059180 JP2007059180W WO2007129609A1 WO 2007129609 A1 WO2007129609 A1 WO 2007129609A1 JP 2007059180 W JP2007059180 W JP 2007059180W WO 2007129609 A1 WO2007129609 A1 WO 2007129609A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
light
liquid crystal
crystal display
prism sheet
Prior art date
Application number
PCT/JP2007/059180
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoyoshi Yamashita
Yuji Nishinaka
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to JP2007524116A priority Critical patent/JPWO2007129609A1/en
Publication of WO2007129609A1 publication Critical patent/WO2007129609A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • G02F1/133507Films for enhancing the luminance
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133567Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the back side

Definitions

  • the present invention relates to a liquid crystal display element used in combination with a backlight (surface light source device). Furthermore, this invention relates to the liquid crystal display device which combines a liquid crystal display element and a backlight.
  • a liquid crystal display device is basically composed of a backlight and a liquid crystal display element.
  • an edge light type is often used from the viewpoint of making the liquid crystal display device compact.
  • an edge light type backlight at least one end surface of a rectangular plate-shaped light guide is used as a light incident end surface, and a linear shape such as a straight tube fluorescent lamp is formed along the light incident end surface.
  • a rod-shaped primary light source is disposed, and light emitted from the primary light source is introduced into the light guide from the light incident end surface of the light guide, and is one of the two main surfaces of the light guide. What is emitted from the light exit surface is widely used.
  • a backlight In such a backlight, light emitted in an oblique direction from the light exit surface of the light guide is guided by light from the light guide in a plane orthogonal to both the light incident end surface and the light exit surface of the light guide.
  • An optical deflecting element is used to deflect toward the exit surface normal.
  • the light deflection element is typically a prism sheet. In this prism sheet, one surface is a flat surface and the other surface is a prism row forming surface.
  • the prism array forming surface is formed by arranging a large number of prism arrays in parallel with each other at a predetermined pitch.
  • the characteristics required for a surface light source device for a liquid crystal display device include a high light intensity and a light guide for exhibiting a required optical function.
  • the surface structure such as the mat structure and the lens array arrangement structure formed mainly on the light emitting surface of the body or on the back surface on the opposite side may be difficult to see.
  • the prism row forming surface of the prism sheet of the surface light source device is disposed so as to face the light guide (that is, the prism row forming surface is disposed on the light guide light emitting surface).
  • the light incident surface on which light from the light enters.
  • a prism sheet opposite to the light entrance surface
  • the surface structural force S of the light guide may be visually recognized. Therefore, as described in Japanese Patent Laid-Open No. 6-324205 (Patent Document 1) and Japanese Patent Laid-Open No. 7-151909 (Patent Document 2), the prism sheet has a surface opposite to the prism array forming surface. It is conceivable to apply a technique for providing a fine uneven shape to make it difficult to visually recognize the surface structure of the light guide while maintaining high luminance.
  • Patent Document 1 JP-A-6-324205
  • Patent Document 2 JP-A-7-151909
  • the surface light source device there is a problem that uneven luminance due to the prism sheet is easily recognized as a high-intensity light source is used as a primary light source.
  • a defect due to a defect in the die for manufacturing the prism sheet brightness unevenness may be visually recognized due to a defective form of the prism sheet based on the defect.
  • an adhesive protective sheet is affixed to protect the prism array forming surface after the prism sheet is manufactured. After the adhesive protective sheet is peeled off when manufacturing the surface light source device, the adhesive of the protective sheet adheres to the top of the prism array. When it remains, brightness unevenness may be visually recognized due to this adhesive residue adhesive.
  • the present invention provides a liquid crystal display device capable of concealing optical defects while suppressing a decrease in luminance with almost no increase in cost, and a liquid crystal display element used therefor The purpose is to provide.
  • a liquid crystal display element used in combination with a surface light source device
  • a first surface of a prism sheet is bonded to a side of the liquid crystal display element on which light emitted from the surface light source device is incident, and a second surface opposite to the first surface of the prism sheet is a prism array.
  • the prism array forming surface has a plurality of prism arrays substantially parallel to each other. It is formed by arranging so as to extend to
  • the prism row forming surface has a roughened portion extending along the prism row between the prism rows adjacent to each other, and a surface of the roughened portion is formed by a prism surface of the prism row.
  • the roughening section has an arrangement pitch of 0.
  • the first surface of the prism sheet is bonded to the liquid crystal display element on the side on which light generated by the surface light source device is incident by a bonding material.
  • the bonding material is an adhesive or a self-adsorbing resin.
  • the prism rows are arranged concentrically.
  • a primary light source Comprising: a primary light source; a light guide that is guided and guided by light emitted from the primary light source; and the liquid crystal display element with the prism sheet,
  • the light guide includes a light incident end surface on which light emitted from the primary light source enters and a light exit surface from which the guided light exits, and the primary light source includes a light incident end surface of the light guide.
  • the liquid crystal display element with a prism sheet is disposed such that the prism row forming surface of the prism sheet faces the light emitting surface of the light guide.
  • the prism row forming surface of the prism sheet is a rough surface extending along the prism row between adjacent prism rows. Since the liquid crystal display device is configured by using the liquid crystal display element to which the prism sheet is bonded, based on the light diffusion in the roughened surface portion, it is based on the defects of the prism sheet manufacturing mold.
  • Luminance unevenness caused by defective form of prism sheet, prism array after peeling of the adhesive protective sheet based on the adhesion of the adhesive protective sheet The effect of improving the luminance unevenness caused by the residual adhesion of the protective sheet pressure sensitive adhesive, that is, the effect of concealing optical defects, is obtained, and the decrease in luminance is small.
  • FIG. 1 A schematic partially cutaway perspective view showing one embodiment of a liquid crystal display device using a liquid crystal display element with a prism sheet according to the present invention.
  • FIG. 5 A schematic cross-sectional view for explaining the production of a mold member for manufacturing a prism sheet.
  • FIG. 7 is a schematic perspective view showing a roll mold used in the manufacture of a prism sheet.
  • FIG. 8 is a schematic exploded perspective view showing a roll mold used in the manufacture of a prism sheet.
  • FIG. 9 is a diagram showing the luminance distribution of the surface light source.
  • FIG. 10 is a diagram showing the luminance distribution of the surface light source.
  • FIG. 11 A schematic partial enlarged cross-sectional view of one embodiment of a prism sheet constituting a liquid crystal display element with a prism sheet according to the present invention.
  • FIG. 12 is a schematic partial enlarged bottom view of the prism sheet of FIG.
  • FIG. 13 is a schematic diagram showing a cross-sectional shape of a valley portion of the prism sheet of FIG.
  • FIG. 14 A schematic partially cutaway perspective view showing one embodiment of a liquid crystal display device using a liquid crystal display element with a prism sheet according to the present invention.
  • FIG. 17 is a cross-sectional enlarged view of the transfer surface portion of the prism row and the valley portion of the mold member obtained in the example. Is true.
  • FIG. 1 is a schematic partially cutaway perspective view showing one embodiment of a liquid crystal display device using a liquid crystal display element with a prism sheet according to the present invention
  • FIG. 2 is a schematic partial sectional view thereof.
  • the liquid crystal display device of this embodiment includes an edge light type surface light source device and a liquid crystal display element with a prism sheet.
  • the edge light type surface light source device includes at least one side end face as a light incident end face 31 and one light guide face 3 having a light exit face 33 as one surface substantially orthogonal thereto.
  • the linear primary light source 1 disposed opposite to the light incident end surface 31 of the light guide 3 and covered with the light source reflector 2 and the back surface 34 of the light guide 3 opposite to the light exit surface 33
  • the light reflecting element 5 is disposed to face each other.
  • the light guide 3 is disposed in parallel with the XY plane and has a rectangular plate shape as a whole.
  • the light guide 3 has four side end faces, of which a small number of the pair of side end faces parallel to the YZ plane. At least one side end face is a light incident end face 31.
  • the light incident end face 31 is arranged to face the primary light source 1, and light emitted from the primary light source 1 enters the light incident end face 31 and is introduced into the light guide 3.
  • the light source may be disposed opposite to another side end face such as the side end face 32 opposite to the light incident end face 31.
  • the two main surfaces that are substantially orthogonal to the light incident end surface 31 of the light guide 3 are respectively positioned substantially parallel to the XY plane, and one of the surfaces (the upper surface in the figure) is the light emitting surface 33.
  • the light emitting surface 33 With a directional light emitting mechanism including a rough surface, the light incident from the light incident surface 31 is guided through the light guide 3 while the light incident from the light incident surface 31 is guided through the light incident surface 31.
  • light having directivity is emitted in a plane (XZ plane) orthogonal to the light exit surface 33.
  • the peak direction (peak light) of the emitted light intensity distribution in this XZ in-plane distribution is the angle formed by the light emitting surface 33.
  • the angle is, for example, 10 to 40 degrees, and the full width at half maximum of the emitted light luminous intensity distribution is, for example, 10 to 40 degrees.
  • the rough surface or lens array formed on the surface of the light guide 3 should have an average inclination angle ⁇ a in the range of 0.5 to 15 degrees according to IS04287 / 1-1984. It is preferable from the viewpoint of improving the uniformity of the luminance in the interior.
  • the average inclination angle ⁇ a is more preferably in the range of 1 to 12 degrees, and more preferably in the range of 1.5 to 11 degrees.
  • the average inclination angle ⁇ a is preferably set to an optimum range by the ratio (L / d) of the thickness (d) of the light guide 3 and the length (L) in the direction in which the incident light propagates. .
  • the average inclination angle ⁇ a when using a light guide 3 having an L / d of about 20 to 200, it is preferable to set the average inclination angle ⁇ a to 0.5 to 7.5 degrees, and more preferably: Is in the range of -5 degrees, more preferably in the range of 1.5-4 degrees.
  • the average inclination angle ⁇ a when a light guide 3 having L / d of about 20 or less is used, it is preferable to set the average inclination angle ⁇ a to 7 to 12 degrees S, more preferably 8 to 11 degrees. Range.
  • the average inclination angle ⁇ a of the rough surface formed on the light guide 3 is measured according to IS04287Z1-1984 using a stylus type surface roughness meter, and the coordinate in the measurement direction is X From the obtained gradient function f (X), the following equations (1) and (2)
  • the light guide 3 preferably has a light emission rate in the range of 0.5 to 5%, more preferably in the range of 1 to 3%.
  • the light emission rate By setting the light emission rate to 0.5% or more, the amount of light emitted from the light guide 3 is increased and sufficient luminance tends to be obtained.
  • the light emission rate By setting the light emission rate to 5% or less, emission of a large amount of light in the vicinity of the primary light source 1 is prevented, and attenuation of the emitted light in the X direction within the light emission surface 33 is reduced. The luminance uniformity on surface 33 tends to improve.
  • the angle of the peak light in the emission light intensity distribution (in the XZ plane) of the light emitted from the light emission surface becomes the light emission.
  • the full width at half maximum of the emitted light intensity distribution (in the XZ plane) in the XZ plane that is in the range of 50 to 80 degrees with respect to the normal of the surface and is perpendicular to both the light incident end face and the light emitting face is 10 to 40 degrees.
  • Light with such highly directional emission characteristics can be emitted from the light guide 3, and the emission direction can be efficiently deflected by the prism sheet 4 bonded to the liquid crystal display element 8.
  • a surface light source having high power and brightness can be provided.
  • the light emission rate from the light guide 3 is defined as follows. From the light intensity (I) of the emitted light at the edge on the light incident end surface 31 side of the light emitting surface 33 and the edge on the light incident end surface 31 side
  • the constant ⁇ is the light output rate
  • the light guide 3 per unit length (length corresponding to the light guide thickness d) in the X direction orthogonal to the light incident end surface 31 on the light output surface 33 It is a ratio (percentage:%) at which light is emitted from the light source.
  • This light emission rate ⁇ is obtained from the gradient by plotting the relationship between the logarithm of the light intensity of the light emitted from the light exit surface 23 on the vertical axis and (L / d) on the horizontal axis. be able to.
  • the light diffusing fine particles are mixed and dispersed inside the light guide.
  • a neutral light emitting mechanism may be provided.
  • the back surface 34 which is the main surface to which no directional light emitting mechanism is provided, controls the directivity on a surface (YZ surface) parallel to the primary light source 1 of the light emitted from the light guide 3.
  • a prism array forming surface is formed by arranging a number of prism arrays 1J extending in a direction crossing the surface 31, more specifically in a direction substantially perpendicular to the light incident end surface 31 (X direction).
  • the prism row on the rear surface 34 of the light guide 3 can have an arrangement pitch in the range of 10 to 100 ⁇ m, preferably 30 to 60 111, for example.
  • the prism array on the back surface 34 of the light guide 3 can have an apex angle in the range of 85 to 110 degrees, for example. This is because by setting the apex angle within this range, the light emitted from the light guide 3 can be condensed appropriately, and the luminance as a surface light source device can be improved.
  • the angle is more preferably in the range of 90 to 100 degrees.
  • the light guide 3 is not limited to the shape shown in FIG. 1, but can have various shapes such as a light incident end face having a thick shape and a wedge shape.
  • the light guide 3 can be made of a synthetic resin having a high light transmittance.
  • synthetic resin include methacrylic resin, acrylic resin, polycarbonate resin, polyester resin, and chlorinated resin.
  • methacrylic resins are optimal because of their high light transmittance, heat resistance, mechanical properties, and moldability.
  • a methacrylic resin is a resin mainly composed of methyl methacrylate, and preferably has a methyl methacrylate content of 80% by weight or more.
  • the structural surface can also be formed using heat or a photo-curable resin.
  • an active energy line curable resin is applied on the surface of a transparent substrate such as a polyester film, an acrylic resin, a polycarbonate resin, a vinyl chloride resin, a polymethacrylimide resin, or a transparent substrate.
  • a rough surface structure or a lens array arrangement structure may be formed, and such a sheet may be bonded and integrated on a separate transparent substrate by a method such as adhesion or fusion.
  • the active energy ray-curable resin it is possible to use polyfunctional (meth) acrylic compounds, vinyl compounds, (meth) acrylic acid esters, aryl compounds, (meth) acrylic acid metal salts, and the like.
  • the primary light source 1 is a linear light source extending in the Y direction.
  • a light lamp or a cold cathode tube can be used.
  • the primary light source 1 may be further installed on the opposite side end surface as needed, not only when it is installed facing one side end surface of the light guide 3. You can also.
  • the light source reflector 2 guides the light from the primary light source 1 to the light guide 3 with little loss.
  • a plastic film having a metal-deposited reflective layer on the surface can be used as the material.
  • the light source reflector 2 is rubbed from the outer surface of the edge of the light reflecting element 5 to the edge of the light emitting surface of the light guide 3 through the outer surface of the primary light source 1.
  • a reflection member similar to the light source reflector 2 can be attached to the side end face other than the light incident end face 31 of the light guide 3.
  • the light reflecting element 5 for example, a plastic sheet having a metal-deposited reflecting layer on the surface can be used.
  • the liquid crystal display element 8 a well-known transmissive liquid crystal display element can be used without particular limitation.
  • this transmissive liquid crystal display element for example, a liquid crystal 83 is interposed between two translucent substrates 81, 82 made of a glass sheet or a synthetic resin sheet arranged in parallel with each other, and formed on the lower surface of the substrate 82.
  • An example of performing image display by applying a voltage according to an image signal between the transparent electrode 85 and a required one of the pixel electrodes 84 formed on the upper surface of the substrate 81 is exemplified.
  • it may include a color filter for color display, a pair of polarizing plates as a polarizer and an analyzer, and other known appropriate functional members.
  • the liquid crystal display element 8 is disposed above the light emitting surface 33 of the light guide 3.
  • the light exit surface (first surface) of the prism sheet 4 as a light deflecting element on the side (lower side in the figure) on which light emitted from the surface light source device of the liquid crystal display element 8 is incident 42 are joined.
  • This joining is performed by a joining material 86.
  • the bonding material 86 is not particularly limited as long as it has translucency.
  • an adhesive or a self-adsorbing resin is preferable.
  • Adhesives include UV curable adhesives and those commonly known as pressure sensitive adhesives, and it has excellent heat resistance, electrical insulation, and chemical resistance.
  • main component is polydimethylsiloxane
  • transparent acrylic adhesive with excellent weather resistance for example, main component is polybutyl acrylate, polyoctyl acrylate
  • resin with thermoplasticity at relatively low temperature Hot melt type adhesives (for example, those based on ethylene / vinyl acetate copolymer) are effective.
  • the light incident surface (second surface) 41 opposite to the light exit surface 42 of the prism sheet 4 is a prism row forming surface formed by arranging a plurality of prism rows so as to extend substantially parallel to each other. ing. Thereby, the liquid crystal display element 8 with the prism sheet 4 is formed.
  • the prism sheet 4 constitutes a surface light source that emits light along the direction of the normal direction of the light guide surface of the light guide, together with the primary light source 1 and the light guide 3, in terms of optical function.
  • the prism sheet 4 is joined and integrated with the liquid crystal display element 8 to form a liquid crystal display element with a prism sheet. Therefore, in this specification, for the sake of convenience, the members constituting the surface light source as described above are used.
  • a surface light source device is referred to as a surface light source device excluding the prism sheet.
  • the prism sheet 4 is disposed above the light emitting surface 33 of the light guide 3.
  • the two principal surfaces 41 and 42 of the prism sheet 4 are arranged in parallel with each other as a whole, and are located parallel to the XY plane as a whole.
  • One of the main surfaces 41, 42 (the main surface located on the light emitting surface 33 side of the light guide 3) is a light incident surface 41, and the other is a light emitting surface 42.
  • the light exit surface 42 is a flat surface parallel to the light exit surface 33 of the light guide 3.
  • the light incident surface 41 is a prism row forming surface in which a large number of prisms IJ411 extending in the Y direction are arranged in parallel to each other.
  • FIG. 3 shows a schematic partial enlarged cross-sectional view of the prism sheet 4.
  • the prism sheet 4 can be composed of a transparent base material 43 and a prism portion 44.
  • the upper surface of the transparent substrate 43 forms the light exit surface 42
  • the lower surface of the prism portion 44 forms the light incident surface 41.
  • the transparent substrate 43 is preferably made of a material that transmits active energy rays such as ultraviolet rays and electron beams.
  • a flexible glass plate or the like can be used.
  • a transparent resin sheet or film such as a resin, an acrylic resin, a polycarbonate resin, a salt vinyl resin, or a polymetalinoleimide resin is preferable.
  • polymethylmetatalylate having a refractive index lower than the refractive index of the prism portion 44 and low surface reflectance a mixture of polymethyl acrylate and polyvinylidene fluoride resin, polycarbonate resin, polyethylene terephthalate, etc. What consists of a polyester-type resin is preferable.
  • the thickness of the transparent substrate 43 is, for example, about 50 ⁇ m to 500 ⁇ m.
  • the transparent base material 43 has its surface subjected to an adhesion improvement treatment such as an anchor coat treatment in order to improve the adhesion between the prism portion 44 made of an active energy line curable resin and the transparent base material 43. Is preferred.
  • the upper surface of the prism portion 44 is a flat surface, and is joined to the lower surface of the transparent base material 43.
  • the lower surface of the prism portion 44, that is, the light incident surface 41 is a prism row forming surface, and a plurality of prisms 1J41 1 extending in the Y direction are arranged in parallel with each other and between adjacent prism rows. And a roughened surface 412 extending in the Y direction along the prism row.
  • the thickness of the prism portion 44 is, for example, 10 to 500 ⁇ .
  • the arrangement pitch P of the prism array 41 1 is, for example, 10 ⁇ m to 500 ⁇ m.
  • the prism row 41 1 has two prism surfaces 41 la and 41 lb force. These prism surfaces may be optically sufficiently smooth surfaces (mirror surfaces), or may be rough surfaces having a roughening degree smaller than the surface of the roughening portion 412.
  • the prism surface is preferably a mirror surface from the viewpoint of maintaining desired optical characteristics by the prism sheet.
  • the region near the roughened portion of the prism surface may be roughened.
  • the degree of roughening indicates the degree of roughening, and can be expressed by, for example, centerline average roughness Ra or ten-point average roughness.
  • the apex angle ⁇ of the prism array 41 1 is preferably in the range of 40 to 150 °.
  • the apex angle ⁇ of the prism array is in the range of about 80 to 100 °. Yes, preferably in the range of 85-95 °.
  • the prism sheet 4 is arranged so that the prism row forming surface is on the light guide 3 side as in the above embodiment, the apex angle ⁇ of the prism row 41 1 is in the range of about 40 to 75 °. Preferably in the range of 45-70 ° .
  • a surface having an irregular cross-sectional shape is also referred to as a rough surface.
  • the width W of the roughened portion 412 is 0.04 times to 0.5 times the arrangement pitch P of the prism row 411. It is 0.08 times to 0.3 times. Is more preferably 0.1 times to 0.2 times. This is because if the width W of the roughened portion 412 is within the range of 0.04 to 0.5 times the arrangement pitch P, the desired observation direction range based on the light diffusion in the roughened portion 412 This is because the effect of concentrating the light amount and the effect of improving the brightness unevenness can be obtained, and the reduction of the light deflection effect toward the normal light exit surface of the light guide by the prism IJ411 can be reduced.
  • the surface roughness of the roughened portion 412 is preferably 0.3 to 2 xm in terms of the center line average roughness Ra, more preferably 0.4 to 1.7 m.
  • the average roughness Rz is preferably 1 to 3 ⁇ m, and more preferably 1.3 to 2.7 zm.
  • the two prism surfaces 41 la and 41 lb of the prism array 411 may be rough surfaces having a roughening degree smaller than the surface of the roughening part 412.
  • the roughness of the prism surfaces 41 la and 41 lb is preferably less than 0 ⁇ 3 ⁇ at the centerline average roughness Ra, more preferably 0 ⁇ 1 / im or less, and a 10-point average
  • the roughness Rz is preferably less than 1 ⁇ m, more preferably 0.5 / im or less.
  • the surface shape of the roughened portion 412 or the prism surface 41 la, 41 lb of the prism array 411 is measured using, for example, an ultra-deep shape measuring microscope (for example, VK-8500 manufactured by Keyence Corporation) ]).
  • the entire shape of the XZ cross section excluding the shape based on the fine structure of the roughened portion 412 (or the shape based on the fine structure is averaged and connected by a smooth line) is as shown in FIG. A concave curve is formed downward.
  • the overall shape of the XZ cross section of the roughened portion 412 may be a planar shape parallel to the XY plane.
  • the roughened portion and the prism surface are distinguished from each other by the degree of roughening, and the portion having a large degree of roughening is called a roughened portion, which is a mirror surface or roughened surface. The small part of the degree is the prism surface.
  • the prism portion 44 is made of, for example, an active energy ray-curable resin and preferably has a high refractive index from the viewpoint of improving the luminance of the surface light source device. 1. 55 or more, more preferably 1.6 or more.
  • the active energy ray curable resin for forming the prism portion 44 is not particularly limited as long as it is cured with active energy rays such as ultraviolet rays and electron beams.
  • active energy rays such as ultraviolet rays and electron beams.
  • (meth) acrylate resins such as polyester (meth) acrylate, epoxy (meth) acrylate and urethane (meth) acrylate.
  • (meth) acrylate resins are particularly preferable from the viewpoint of optical properties and the like.
  • the active energy ray-curable composition used for such a cured resin includes a polyfunctional acrylate and / or a polyfunctional metatalylate (hereinafter referred to as a polyvalent (meta)) in terms of handling property, properties and curability. It is preferable to use as a main component a monoacrylate and / or monomethacrylate (hereinafter referred to as mono (meth) acrylate) and a photopolymerization initiator by active energy rays.
  • Typical polyfunctional (meth) acrylates include polyol poly (meth) acrylate, polyester poly (meth) acrylate, epoxy poly (meth) acrylate, urethane poly (meth) acrylate. These are used alone or as a mixture of two or more. Examples of mono (meth) acrylate include mono (meth) acrylates of monoalcohol, mono (meth) acrylates of polyol, and the like.
  • the prism sheet 4 is described as including the transparent base material 43 and the prism portion 44.
  • the prism sheet 4 may be composed of a single material.
  • the prism sheet 4 can be made of a synthetic resin having a high light transmittance.
  • a synthetic resin include methacrylic resin, acrylic resin, polycarbonate resin, polyester resin, and salt resin resin.
  • methacrylic resin is optimal because of its high light transmittance, heat resistance, mechanical properties, and molding cacheability.
  • methacrylic resin is a resin containing methyl methacrylate as a main component, and methyl methacrylate is preferably 80% by weight or more.
  • FIG. 4 schematically shows how the prism sheet 4 deflects light in the XZ plane.
  • This figure shows an example of the traveling direction of peak light (light corresponding to the peak of the outgoing light distribution) from the light guide 3 in the XZ plane.
  • Most of the peak light obliquely emitted at an angle ⁇ from the light emitting surface 33 of the light guide 3 is incident on the first prism surface 41 la of the prism ⁇ Ij411 and is almost entirely in the inner surface by the second prism surface 411b.
  • the light is reflected and emitted in the direction of the normal of the light exit surface 42.
  • a part of the peak light is incident on the first prism surface 41 la of the prism IJ411, diffused by the roughening unit 412 and emitted from the light exit surface 42.
  • This light diffusion is also done in the YZ plane.
  • part of the light other than the peak light is directly incident on the roughened portion 412 and diffused. Based on such light diffusion in the roughened portion 412, an effect of concentrating the amount of light in a desired observation direction range and an excellent effect of improving luminance unevenness can be obtained.
  • the YZ plane there is the action of the prism row on the back surface 34 of the light guide as described above, so that the luminance in the normal direction of the light exit surface 42 can be sufficiently improved in a wide range.
  • the shape of the prism surfaces 41 la and 41 lb of the prism row 411 of the prism sheet 4 is not limited to a single flat surface, and can be, for example, a convex polygonal shape or a convex curved surface shape. Further, it is possible to further increase the brightness and narrow the visual field.
  • the desired prism array shape is accurately manufactured to obtain stable optical performance, and the purpose of suppressing wear and deformation of the top of the prism array during assembly work and use of the light source device
  • a top flat portion or a top curved surface portion may be formed at the top of the prism row.
  • the width of the top flat portion or the top curved surface portion should be 3 / m or less. It is preferable from the viewpoint of suppressing the occurrence of uneven brightness patterns due to sticking phenomenon as the brightness of the liquid crystal display device is reduced. More preferably, the width of the top flat portion or the top curved surface portion is 2 ⁇ m or less, and more preferably 1 ⁇ m or less.
  • the prism sheet 4 as described above is synthesized using a mold member having a shape transfer surface that transfers and forms a light incident surface 41 including a prism row forming surface having a prism row 411 and a roughened portion 412. Manufacturing power S can be achieved by shaping the surface of the resin sheet. The production of this mold part will be described with reference to FIG.
  • the first regions 411a ", 411b” having a shape corresponding to the prism surfaces 41la, 411b of the prism row 411 and the roughened portion 412 are substantially the same.
  • Corresponding shape A mold member 41 ′ having a shape transfer surface composed of the second region 412 ′′ is produced.
  • the shape of the second region 412 ′′ substantially corresponds to the roughened portion 412 ” will be described later.
  • the shape corresponding to the roughened portion 412 can be obtained by blasting.
  • the shape of the second region 412 can be a shape formed by extending the shape (for example, a plane) of the first region 41la", 41lb "as it is.
  • blasting is performed on the shape transfer surface of the mold member 41 ′, so that the second region 4 12 ′′ is roughened and has a shape corresponding to the roughened portion 412.
  • Such a blasting process is performed such that the blast particles are not substantially sprayed to the first regions 41 la ′′ and 411b ′′ of the mold member 41 ′ and are sprayed only to the second regions 412 ′′.
  • blasting is performed using blast particles having a size (particle size) that does not enter the depth of the recess of the mold member 41 ′.
  • blast particles BP within an appropriate particle size range should be used.
  • the prism apex angle ⁇ force is 3 ⁇ 40 to 75 degrees, it is preferable to use a particle having a particle diameter of 0.3 times pitch P or more.
  • the particle size of the blast particle BP is preferably about 5 times the pitch P at the maximum.
  • the particle size of the blast particle BP is more preferably 1 to 4 times the pitch P, and still more preferably 2 to 3 times the pitch P.
  • the blast pressure can be set as appropriate according to the material and particle size of the blast particles to be used, the material of the mold member 41 ′, etc. By performing the blasting process as described above for an appropriate time, it corresponds to the first regions 41 la ′ and 411b ′ having a shape corresponding to the prism row and the roughened portion as shown in FIG. A mold member 41 ′ having a shape transfer surface composed of the shape second region 412 ′ is obtained.
  • the direction of spraying of the blast particles BP can be made oblique.
  • blast particles having a small particle size in which the blast pressure is easily controlled, as compared with the case of FIG. 5 (b).
  • the width of the second region 412 ′ having a shape corresponding to the roughened portion can be appropriately set.
  • the prism surfaces 411a and 41 lb of the prism ⁇ Ij411 are optically sufficiently flat.
  • a smooth surface is shown, and the first region 41 la ", 41 lb" of the mold member 41 'has already been formed into a shape corresponding to the prism surfaces 411a, 41 lb before blasting. This area is almost unaffected by blasting.
  • the blast particles may include those having a flat shape, and the influence of the blast treatment may reach the first region 41 la ", 411b".
  • the first regions 411a "and 41 lb” are slightly roughened by blasting to form the first regions 41 la 'and 41 lb. That is, the prism surfaces 411a and 41 lb of the prism row 411 are slightly roughened to a roughening degree smaller than the surface of the roughened portion 412.
  • the prism surfaces 41 la and 411b of the prism array 411 may be intentionally roughened to a roughening degree smaller than the surface of the roughened portion 412.
  • the first regions 41 la "and 41 lb" of the mold member 41 ' are formed in a shape substantially corresponding to the prism surfaces 41 la and 41 lb before blasting.
  • the shape "corresponds substantially to the prism surfaces 41 la, 411b” means that the shape corresponding to the prism surfaces 41 la, 41 lb is obtained by blasting. It refers to such a shape.
  • the second blasting process for spraying blasting particles having a smaller particle size is performed.
  • the first region 41 la “, 411b” is roughened, and the shape corresponding to the prism surfaces 41 la, 41 lb of the prism array 411 is formed, and the second region 412 "is roughened by the roughened portion 412. It becomes the shape corresponding to.
  • the particle size of the blast particles used for the second blasting process can be, for example, 0.1 to 0.5 times the arrangement pitch P of the prism rows.
  • a prism sheet can be obtained by performing synthetic resin molding using the mold member produced as described above and the mold member having a planar shape transfer surface. That is, by using the mold member produced as described above and shaping the surface of the synthetic resin sheet, a prism sheet having a required prism array forming surface can be obtained.
  • the surface of the synthetic resin sheet can be shaped by hot pressing, extrusion molding, injection molding or the like.
  • FIG. 6 is a schematic view showing another embodiment of shaping a synthetic resin sheet.
  • reference numeral 7 denotes a mold member (roll mold) in which a shape transfer surface equivalent to the mold member 41 ′ is formed on a cylindrical outer peripheral surface.
  • This roll type 7 is made of metal such as anorium, brass, steel, etc. It can be powerful.
  • FIG. 7 is a schematic perspective view of the roll mold 7.
  • a shape transfer surface 18 is formed on the outer peripheral surface of the cylindrical tool 16. The blasting process as described above for forming the shape transfer surface 18 can be performed with high accuracy and good productivity while rotating the roll mold.
  • FIG. 8 is a schematic exploded perspective view showing a modified example of the roll mold 7. In this modification, a thin plate-shaped mold member 15 is wound around and fixed to the outer peripheral surface of the cylindrical roll 16.
  • the thin plate-shaped mold member 15 is equivalent to the mold member 41 ′, and a shape transfer surface is formed on the outer surface.
  • the blasting process as described above for forming the shape transfer surface can be performed on the flat thin plate-shaped mold member 15, but the mold member 15 is wound around and fixed to the outer peripheral surface of the cylindrical roll 16. It can be performed with high accuracy by rotating the roll mold after forming the roll mold.
  • a transparent substrate 9 is supplied along the outer peripheral surface, that is, the shape transfer surface, to the Ronole mold 7, and the mold 7 and the transparent substrate 9
  • the active energy ray-curable composition 10 is continuously supplied from the resin tank 12 through the nozzle 13.
  • an ep roll 28 for making the thickness of the supplied active energy ray-curable composition 10 uniform is installed on the outside of the transparent substrate 9.
  • a metal roll, a rubber roll or the like is used.
  • the nip roll 28 is required to accurately adjust the thickness of the active energy ray-curable composition 10 and is operated by the pressure mechanism 11.
  • a hydraulic cylinder, a pneumatic cylinder, various screw mechanisms, and the like can be used, but a pneumatic cylinder is preferable from the viewpoint of simplicity of the mechanism.
  • the air pressure is controlled by a pressure regulating valve.
  • the active energy ray-curable composition 10 supplied between the roll mold 7 and the transparent substrate 9 is preferably maintained at a constant viscosity in order to keep the thickness of the obtained prism portion constant. Ms.
  • the viscosity range is preferably in the range of 20 to 3000 mPa ′ S, and more preferably in the range of 100 to 1000 mPa ′ S.
  • the viscosity of the active energy ray-curable composition 10 to 20 mPa 'S or more.
  • the pressure mechanism 11 tends to be unable to operate stably, and the thickness of the prism portion becomes unstable. Further, when the molding speed is extremely increased, the irradiation amount of the active energy line is insufficient, and the active energy ray-curable composition tends to be insufficiently cured.
  • the curable composition 10 can be sufficiently distributed to the details of the roll-shaped shape transfer surface structure, and the lens shape can be accurately determined. Transfer is difficult, defects due to air bubbles are likely to occur, and productivity is not deteriorated due to an extremely low molding speed.
  • a sheathed heater, a hot water jacket, etc. are provided outside or inside the resin tank 12 so that the temperature of the curable composition 10 can be controlled. It is preferable to install a heat source facility.
  • the active energy ray-curable composition 10 After supplying the active energy ray-curable composition 10 between the roll mold 7 and the transparent substrate 9, the active energy ray-curable composition 10 is formed between the mouth mold 7 and the transparent substrate 9.
  • the active energy ray irradiating device 14 irradiates the active energy ray through the transparent base material 9 to polymerize and cure the active energy ray curable composition 10, and the shape transfer formed on the roll mold 7 Transfer the surface.
  • a chemical reaction chemical lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, a visible light halogen lamp, or the like is used as the active energy ray irradiation device 14.
  • the irradiation amount of the active energy ray is preferably such that the integrated energy of the wavelength of 200 to 600 nm is 0.:! To 50 j / cm 2 .
  • the irradiation atmosphere of active energy rays may be air or an inert gas atmosphere such as nitrogen or argon.
  • the present invention includes the surface light source device including the primary light source 1, the light source reflector 2, the light guide 3, and the light reflecting element 5 as described above, and the transmissive liquid crystal display element 8 with the prism sheet 4.
  • a liquid crystal display device is constructed.
  • the liquid crystal display device is observed by an upward force observer in FIG. 1 or FIG. [0064]
  • the prism sheet 4 since the prism sheet 4 has the above-described characteristics, the luminance unevenness in the liquid crystal display device is improved, and the force is less reduced in luminance.
  • the prism sheet 4 has a mirror surface or a rough surface with a small degree of roughening formed at the top and the vicinity of the prism row 411 that greatly contributes to the light deflection function.
  • the rough surface 412 having a large surface roughness is formed in the portion between adjacent prism rows that contributes little to the The concealment function can also be exhibited well.
  • FIG. 11 is a schematic partial enlarged cross-sectional view of one embodiment of a prism sheet constituting the liquid crystal display element with a prism sheet according to the present invention
  • FIG. 12 is a schematic partial enlarged bottom view thereof.
  • members or portions having the same functions as in FIGS. 1 to 8 are given the same reference numerals.
  • the light incident surface 41 which is the prism row forming surface, extends the plurality of prisms IJ411 in parallel to each other in the Y direction. In the point formed by arranging, it is the same as that of the said embodiment.
  • the prism row forming surface 41 has a trough portion 412A extending in the Y direction between adjacent prisms 1J411.
  • the width WA of the valley 412A is preferably 0.04 times to 0.5 times the arrangement pitch P of the prism rows 411, similarly to the width W of the roughened portion 412 of the above embodiment. It is more preferable that the ratio is 08 times to 0.3 times. It is particularly preferable that the ratio is 0.1 times to 0.2 times.
  • the ridge line of the prism row 411 is indicated by reference numeral 413.
  • the trough portion 412A has an irregular cross-sectional shape.
  • the irregularity is taken for each prism array arrangement pitch P in both the extending direction (Y direction) and the array direction (X direction) of the prism array 411 within an area (domain) of a predetermined size.
  • the predetermined size of the region may be 500 zm for each of the Y direction and the X direction. If the arrangement pitch P of the prism array 411 is 100 zm, as shown in FIG. 12, the valley 412A existing in each of the X-direction coordinates xl to x5 has a prism array array pin in the X direction. It is arranged continuously for every P.
  • valleys 412A For each of these five continuously arranged valleys 412A, on each surface of the Y-direction coordinates yl to y5 separated by the prism array arrangement pitch P. Take 5 cut sections. That is, in total, 25 cross-sectional shapes with XY coordinates from (xl, yl) to (x5, y5) are taken.
  • the valley cross-sectional shape is irregular. That is.
  • the fact that the cross-sectional shapes of the valleys are different means that the differences in the optical functions for reflecting or refracting the incoming light from the light guide 3 as described with reference to FIG. 4 are significant.
  • the cross-sectional shapes of the valleys are different means that the shape and optical function are not identical.
  • Figure 13 shows the XZ cross-sectional shape of the valley 412A. In FIG. 13, (a) and (b) show different valley cross-sectional shapes.
  • the trough 412A having an irregular cross-sectional shape as described above is blasted with blast particles having an average particle diameter of 0.3 to 5 times the prism row arrangement pitch as described in the above embodiment.
  • a forming member can be formed by shaping the surface of the synthetic resin sheet using a mold member having a shaped transfer surface. 11 to 13 do not mention the fine structure of the valley 412A, but the valley 412A is as described in the above embodiment. It has a fine structure of surface roughness.
  • the prism array forming surface 41 of the prism sheet is used.
  • the valley 412A having an irregular cross-sectional shape
  • the incoming light of the light guide force is irregularly diffused or reflected, so that it is difficult to visually recognize the surface structure of the light guide.
  • the prism sheet 4 has a mirror surface or a rough surface with a small degree of roughness formed on the top and the vicinity of the prism row 411 that greatly contributes to the light deflection function.
  • the trough 412A having an irregular cross-sectional shape is formed in the portion between adjacent prism rows that has a small contribution to the surface, so that the surface structure of the light guide can be visually confirmed while performing the required light deflection function satisfactorily.
  • the function of concealing optical defects can also be exhibited well.
  • a simple means of making only the cross-sectional shape of the valley portion irregular while maintaining the cross-sectional shape of the prism row, that is, adding blasting to the mold member on the manufacturing surface By simple means, it is possible to conceal optical defects that cause luminance unevenness due to the structure of a light guide or the like that does not cause a decrease in luminance and causes speckles at low cost.
  • FIG. 14 is a schematic partially cutaway perspective view showing one embodiment of a liquid crystal display device using a liquid crystal display element with a prism sheet according to the present invention.
  • members or portions having the same functions as those in FIGS. 1 to 8 and 11 to 13 are denoted by the same reference numerals.
  • a point light source such as a light emitting diode (LED) is used as the primary light source 1.
  • LED light emitting diode
  • One corner of the rectangular plate-shaped light guide 3 is cut out, and a light incident end face 31 is formed here.
  • the primary light source 1 is disposed so as to face the light incident end face.
  • a light emitting mechanism is formed as in the above embodiment.
  • the prism rows 411 formed on the light incident surface 41 of the prism sheet 4 are arranged in parallel concentrically around the corner where the light incident end surface 31 of the light guide 3 is formed. ing. In this specification, the arrangement of such a plurality of prism rows is also substantially parallel to each other.
  • the light emitted from the primary light source 1 is a divergent light beam in the plane parallel to the light emitting surface 33 and is incident on the light incident end surface 31 and introduced into the light guide 3. The emitted light travels substantially radially about the primary light source 1 and is also emitted substantially radially when exiting from the light exit surface 33.
  • the prism rows 411 on the light incident surface of the prism sheet 4 are concentrically arranged as described above, the light incident on the light incident surface 41 and introduced into the prism sheet 4 is described in the above embodiment. Similarly, the light is deflected in a substantially normal direction of the light guide light emitting surface 33 and emitted from the light emitting surface 42. Also in the present embodiment, irregularly shaped valleys 412A are formed between adjacent ones of the plurality of prisms IJ411 formed on the light incident surface 41 of the prism sheet 4.
  • the behavior of light when viewed in a cross-section (cross-section passing through the primary light source) orthogonal to the extending direction of the prism ridge 11 (direction of tangent at each position of the arc) is the above-described embodiment.
  • This is similar to the behavior of light when viewed in a cross section (XZ cross section) perpendicular to the extending direction of the prism row 411. Accordingly, the dimensional relationship between the prism IJ411 and the valley 412A is the same as that of the above embodiment when viewed from these cross sections.
  • the bonding of the prism sheet 4 and the liquid crystal display element 8 by the bonding material 86 is performed over the entire facing surface.
  • This bonding may be performed on a part of the opposing surface of the prism sheet 4 and the liquid crystal display element 8.
  • a method other than bonding using a bonding material may be used for bonding the prism sheet 4 and the liquid crystal display element 8.
  • An example of such a method is holding the pressure at the peripheral portion by the mechanical pressure means.
  • a shape transfer surface with a shape almost corresponding to the shape of the prism array formation surface as described with reference to Fig. 5 (a) is formed on the surface of three types of thin plates with a thickness of 1 Omm, 400 mm X 690 mm. It was.
  • the shape of the second region 412 "of the shape transfer surface of the mold member shown in Fig. 5 (a) corresponds to an extension of the planar shape of the first regions 411a" and 41 lb ". It is.
  • blasting is performed by spraying with blast particles made of glass beads having a center particle diameter of 45 to 75 xm at a nozzle discharge pressure of 0.07 MPa.
  • the shape of the second region 412 ′ as described with respect to (b) was formed.
  • the roughness of the second region was a center line average roughness Ra of 0.5 111 and a 10-point average roughness of 1 ⁇ of 1.5 ⁇ m. Further, the roughness of the first region was such that the center line average roughness Ra was 0 .: m and the 10-point average roughness Rz was 0.
  • the shape transfer surface of the mold member obtained as described above was subjected to electroless nickel plating.
  • a stainless steel cylindrical roll having a diameter of 220 mm and a length of 450 mm as shown in FIG. 8 is prepared, and the mold member 15 is wound around the outer peripheral surface thereof with a screw. Fixed to obtain a roll type.
  • an NBR rubber roll 28 having a rubber hardness of 80 ° was disposed so as to be close to the roll mold 7.
  • the polyester film 9 was nipped between the rubber roll 28 and the roll mold 7 by the pneumatic cylinder 11.
  • the operating pressure of the pneumatic cylinder 11 at this time was 0. IMP a.
  • an SMC air cylinder with an air tube diameter of 32 mm was used.
  • an ultraviolet irradiation device 14 was installed below the roll mold 7.
  • the ultraviolet irradiation device 14 has an ultraviolet intensity of 120 W / cm, a capacity of 9.6 kW, a UV irradiation lamp manufactured by Western Quart, a cold mirror type parallel light reflector and a power source.
  • the ultraviolet curable composition 10 was mixed with a refractive index adjusting component, a catalyst, and the like in advance, and charged into the resin tank 12.
  • the resin tank 12 was made of SUS304 at all the portions in contact with the ultraviolet curable composition 10.
  • it has a hot water jacket layer for controlling the liquid temperature of the ultraviolet curable composition 10, and hot water adjusted to 40 ° C by a temperature controller is supplied to the hot water jacket layer, and the resin tank 12
  • the liquid temperature of the UV curable composition 10 is 40. C ⁇ 1. C was held.
  • the resin tank 12 is evacuated by a vacuum pump. Thus, bubbles generated at the time of charging were removed.
  • the ultraviolet curable composition 10 was as follows, and the viscosity was adjusted to 300 mPa'S / 25 ° C.
  • Bisphenol A-diepoxy monoacrylate (Epoxy Cisternol 3000A manufactured by Kyoeisha Yushi Chemical Co., Ltd.): 50 parts by weight
  • the UV curable composition 10 becomes the roll mold 7 and the polyester film 9
  • the ultraviolet ray irradiation device 14 was irradiated with ultraviolet rays to polymerize and cure the ultraviolet curable composition 10 to transfer the prism row pattern on the shape transfer surface of the roll mold 7. Thereafter, it was released from the roll mold 7 to obtain a prism sheet.
  • the prism row forming surface is directed downward on the light emission surface of the acrylic resin light guide having the cold cathode tube arranged on the side surface.
  • the other side surface and back surface were covered with a reflection sheet, and a surface light source for a 14.1-inch liquid crystal display device was obtained.
  • this surface light source the cold cathode tube was turned on and the light emitting surface (light emitting surface of the prism sheet) was observed. As a result, the brightness unevenness is not visually recognized, and it is optically concealed. It was excellent.
  • the cold-cathode tube was turned on to measure the luminance distribution (distribution in the XZ plane and distribution in the YZ plane) of the light emitting surface.
  • the results are shown in Figs.
  • the peak luminance value was 2534 cd / m 2
  • the peak angle was -3.7 degrees
  • the half width was 21 degrees.
  • the peak luminance value was 2377 cd / m 2
  • the peak angle was ⁇ 3.0 degrees
  • the half-value width was 41 degrees.
  • the above prism is formed using a soft silicon resin (rubber) as a bonding material.
  • the light-emitting surface of the sheet was joined.
  • a liquid crystal display element with a prism sheet was formed, and a liquid crystal display device was obtained.
  • the cold cathode tube was turned on and the liquid crystal display element was driven, and the white screen displayed on the liquid crystal display element was observed.
  • the luminance unevenness was not visually recognized and was excellent in optical concealment.
  • a prism sheet was obtained by performing the same process as in Example 1 except that the nozzle discharge pressure was set to 0 ⁇ 15 MPa in the blasting process on the shape transfer surface of the mold member.
  • the center line average roughness Ra was 0.8 ⁇ and the ten-point average roughness Rz was 2.6 ⁇ .
  • the roughness of the first region was such that the center line average roughness Ra was 0.1111 and the ten-point average roughness 13 ⁇ 4 was 0.5 / im.
  • the width of the roughened portion was 30 ⁇ . Using this prism sheet, a surface light source was obtained in the same manner as in Example 1.
  • the cold cathode tube was turned on in the same manner as in Example 1 to observe the light emitting surface. As a result, the luminance unevenness was not visually recognized, and the optical concealment was excellent.
  • the cold cathode tube was turned on and the luminance distribution (distribution in the XZ plane and distribution in the YZ plane) of the light emitting surface was measured. The results are shown in Figs.
  • the peak luminance value was 2207 cd / m 2
  • the peak angle was 9.1 degrees
  • the half-value width was 20.5 degrees.
  • the peak luminance value was 1466 cd / m 2
  • the peak angle was -4 degrees
  • the half width was 42 degrees.
  • Example 2 the light emitting surface of the prism sheet was bonded to the light incident side surface of the liquid crystal display element.
  • a liquid crystal display element with a prism sheet was formed, and a liquid crystal display device was obtained.
  • the cold cathode tube is turned on and the liquid crystal display element is driven, thereby the liquid crystal display element
  • the white screen displayed on the screen was observed. As a result, the luminance unevenness was not visually recognized and was excellent in optical concealment.
  • a prism sheet was obtained by carrying out the same steps as in Example 1 except that the blast treatment was performed as follows. That is, in the blasting process for the shape transfer surface of the mold member, after performing the first blasting process using a blast particle made of glass beads having a central particle diameter of 45 to 75 ⁇ m and spraying at a nozzle discharge pressure of 0.07 MPa, A second blasting process was performed using blast particles made of glass beads with a central particle size of 10 ⁇ m and sprayed at a nozzle discharge pressure of 0. IMPa. The roughness of the second region of the die member after blasting was 0.6111 for the center line average roughness Ra and 1 for the 10-point average roughness 1 ⁇ .
  • the center line average roughness Ra was 0.3111 and the ten-point average roughness 13 ⁇ 4 was 0.
  • the width of the roughened portion was 23 ⁇ m.
  • Example 2 the light emitting surface of the prism sheet was bonded to the light incident side surface of the liquid crystal display element.
  • a liquid crystal display element with a prism sheet was formed, and a liquid crystal display device was obtained.
  • the cold cathode tube was turned on and the liquid crystal display element was driven, and the white screen displayed on the liquid crystal display element was observed.
  • the luminance unevenness was not visually recognized and was excellent in optical concealment.
  • a liquid crystal display device with a prism sheet was formed in the same manner as in Example 1 except that the light exit surface of the prism sheet was bonded using silicon resin (rubber) to obtain a liquid crystal display device.
  • a white LED is turned on and a liquid crystal display element is driven, and the liquid crystal display element The white screen displayed on the screen was observed. As a result, the luminance unevenness was not visually recognized and was excellent in optical concealment.
  • a prism sheet was obtained by performing the same process as in Example 1 except that the blasting treatment for the shape transfer surface of the mold member was not performed.
  • the center line average roughness Ra and the ten-point average roughness Rz of the prism row of the obtained prism sheet are the center line average roughness Ra of 0.16 zm and the ten-point average roughness Rz at the top of the prism row.
  • the center line average roughness Ra on the prism surface was 0.05 05 111 and the 10-point average roughness 1 ⁇ was 0.
  • the width of the roughened portion was 0 zm, that is, there was no roughened portion.
  • a surface light source was obtained in the same manner as in Example 1.
  • the cold cathode tube was turned on in the same manner as in Example 1 and the light emitting surface was observed.
  • uneven brightness due to defective form of the prism sheet based on defects in the mold for manufacturing the prism sheet and adhesion residue of the protective sheet adhesive on the prism row after the adhesive protective sheet is peeled off due to the application of the adhesive protective sheet.
  • the cold cathode tube was turned on and the luminance distribution (distribution in the XZ plane and distribution in the YZ plane) was measured. The results are shown in FIG. 9 and FIG.
  • the peak luminance value was 2631 cd / m 2
  • the peak angle was ⁇ 2.5 degrees
  • the half-value width was 20 degrees.
  • the peak luminance value was 2436 cd / m 2
  • the peak angle was ⁇ 2 degrees
  • the half-value width was 40 degrees.
  • Example 2 the light emitting surface of the prism sheet was bonded to the light incident side surface of the liquid crystal display element.
  • a liquid crystal display element with a prism sheet was formed, and a liquid crystal display device was obtained.
  • the cold cathode tube was turned on and the liquid crystal display element was driven, and the white screen displayed on the liquid crystal display element was observed. As a result, uneven brightness was visually recognized and the optical concealment was not sufficient.
  • a mold member was produced by an apparatus as shown in FIG.
  • a surface of a cylindrical metal roll having a diameter F "of 230 mm and a length B of 500 mm is subjected to a copper plating (not shown) having a thickness of 0.5 mm, and then the copper plating surface is smoothed.
  • Processing and copper plating part A prism shape C with an apex angle of 68 degrees and an array pitch of 50 ⁇ m was continuously formed by cutting with a cutting tool.
  • an electroless nickel plating film (not shown) was formed with a thickness of 1 ⁇ m, and a mold member blank A in which the prism shape was continuously formed was produced.
  • FIG. 16 shows an enlarged cross-sectional photograph of the prism row of this mold member blank A and the transfer surface portion of the trough. The shapes of the transfer surfaces of the prism rows and the valleys were substantially the same for adjacent repeating units.
  • the mold member blank A was subjected to a blasting treatment as follows. That is, the mold member blank A was mounted on a device (not shown) that can rotate the mold member blank A installed in the blast box continuously or discontinuously in the circumferential direction.
  • the air blasting device AMD-10 type manufactured by Niche Yu Co., Ltd. was used as the blasting device, and glass beads [trade name J-120] manufactured by Potters Valorutini Co., Ltd. were used as the polishing material.
  • Nozzle D with a tip diameter of 2 mm was used, the discharge pressure was 0. IMPa, and the distance E between the tip of Nozno D and the surface of the die blank A was 450 mm.
  • the movement of the nozzle D during blasting is done by setting the distances F and F 'to 100 mm each in order to suppress the occurrence of spraying irregularities at the start and end of discharge in addition to the effective area B of the mold blank A.
  • the total travel distance was 700 mm.
  • Blasting is performed while moving the nozzle D at a constant speed of 5m / min to D 'in the direction perpendicular to the cutting direction of the prism row transfer surface formed on the mold blank A (K-K' direction). Carried out.
  • the mold part blank A was rotated in the circumferential direction of the mold part blank A by a circumference of 20 mm (angle of about 10 degrees), and blasting was performed in the K—K ′ direction by the same operation as described above.
  • blasting was performed on all parts, that is, the entire outer peripheral surface of the mold member blank A.
  • FIG. 17 shows an enlarged cross-sectional photograph of the prism row and the trough transfer surface portion of the mold member obtained as described above.
  • the shape of the trough transfer surface (bottom edge in the figure) was substantially different for all adjacent repeat units.
  • a prism sheet was obtained in the same manner as in Example 1.
  • a surface light source was obtained in the same manner as in Example 1 using the obtained prism sheet.
  • the surface structure of the light guide and prism sheet is visible. Further, luminance unevenness was not visually recognized, and it was excellent in concealing optical defects.
  • Example 2 the light emitting surface of the prism sheet was bonded to the light incident side surface of the liquid crystal display element.
  • a liquid crystal display element with a prism sheet was formed, and a liquid crystal display device was obtained.
  • the cold cathode tube was turned on and the liquid crystal display element was driven, and the white screen displayed on the liquid crystal display element was observed.
  • the luminance unevenness was not visually recognized and was excellent in optical concealment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A light outputting surface (42) of a prism sheet (4) is bonded on a light inputting side of a liquid crystal display element (8) by a bonding material (86). A light inputting surface (41) of the prism sheet (4) is used as a prism row forming surface. The prism row forming surface (41) is formed by arranging a plurality of prism rows to extend substantially parallel to each other. The prism row forming surface (41) has a roughened section which extends along the prism rows between the adjacent prism rows. The surface of the roughened section is rougher than the prism surface of the prism row. Light emitted from a primary light source (1) is introduced into a light guiding body (3) through a light inputting end surface (31). Light guided in the light guiding body (3) is outputted from a light outputting surface (33) and is permitted to enter the light inputting surface (41) of the prism sheet (4).

Description

明 細 書  Specification
プリズムシート付き液晶表示素子及びそれを用いた液晶表示装置 技術分野  Liquid crystal display element with prism sheet and liquid crystal display device using the same
[0001] 本発明は、バックライト(面光源装置)と組み合わせて使用される液晶表示素子に関 するものである。更に、本発明は、液晶表示素子とバックライトとを組み合わせてなる 液晶表示装置に関するものである。  [0001] The present invention relates to a liquid crystal display element used in combination with a backlight (surface light source device). Furthermore, this invention relates to the liquid crystal display device which combines a liquid crystal display element and a backlight.
背景技術  Background art
[0002] 液晶表示装置は、基本的にバックライトと液晶表示素子とから構成されている。バッ クライトとしては、液晶表示装置のコンパクト化の観点からエッジライト方式のものが多 用されている。従来、エッジライト方式のバックライトとしては、矩形板状の導光体の少 なくとも 1つの端面を光入射端面として用いて、該光入射端面に沿って直管型蛍光ラ ンプなどの線状または棒状の一次光源を配置し、該一次光源から発せられた光を導 光体の光入射端面から導光体内部へと導入し、該導光体の 2つの主面のうちの一方 である光出射面から出射させるものが広く利用されている。  A liquid crystal display device is basically composed of a backlight and a liquid crystal display element. As the backlight, an edge light type is often used from the viewpoint of making the liquid crystal display device compact. Conventionally, as an edge light type backlight, at least one end surface of a rectangular plate-shaped light guide is used as a light incident end surface, and a linear shape such as a straight tube fluorescent lamp is formed along the light incident end surface. Alternatively, a rod-shaped primary light source is disposed, and light emitted from the primary light source is introduced into the light guide from the light incident end surface of the light guide, and is one of the two main surfaces of the light guide. What is emitted from the light exit surface is widely used.
[0003] このようなバックライトでは、導光体の光出射面から斜め方向に出射する光を、導光 体の光入射端面及び光出射面の双方と直交する面内において、導光体光出射面法 線の方へと偏向させるために、光偏向素子が使用される。光偏向素子は、典型的に はプリズムシートである。このプリズムシートは、一方の面が平面とされ、他方の面が プリズム列形成面とされている。プリズム列形成面は、多数のプリズム列を所定ピッチ で互いに平行に配列してなるものである。  [0003] In such a backlight, light emitted in an oblique direction from the light exit surface of the light guide is guided by light from the light guide in a plane orthogonal to both the light incident end surface and the light exit surface of the light guide. An optical deflecting element is used to deflect toward the exit surface normal. The light deflection element is typically a prism sheet. In this prism sheet, one surface is a flat surface and the other surface is a prism row forming surface. The prism array forming surface is formed by arranging a large number of prism arrays in parallel with each other at a predetermined pitch.
[0004] 近年の高精細画像表示の要請に応えるための液晶表示装置のための面光源装置 に要求される特性としては、輝度が高いことに加えて、所要の光学機能を発揮すべく 導光体の主として光出射面またはその反対側の裏面に形成したマット構造やレンズ 列配列構造等の表面構造が視認されにくいことが挙げられる。  [0004] In order to meet the recent demand for high-definition image display, the characteristics required for a surface light source device for a liquid crystal display device include a high light intensity and a light guide for exhibiting a required optical function. The surface structure such as the mat structure and the lens array arrangement structure formed mainly on the light emitting surface of the body or on the back surface on the opposite side may be difficult to see.
[0005] 高輝度化のために、面光源装置のプリズムシートのプリズム列形成面を導光体に対 向するようにして配置すること(即ち、プリズム列形成面を、導光体光出射面からの光 が入射する入光面とすること)ができる。しかし、プリズムシートとして、入光面と反対 側の出光面が平滑平面である一般的なものを使用すると、導光体の上記表面構造 力 S視認されることがある。そこで、特開平 6— 324205号公報 (特許文献 1)及び特開 平 7— 151909号公報(特許文献 2)に記載されているように、プリズムシートのプリズ ム列形成面と反対側の面に、微細な凹凸形状を付与する技術を適用して、高輝度を 維持しつつ導光体の表面構造を視認しにくくすることが考えられる。 [0005] In order to increase the brightness, the prism row forming surface of the prism sheet of the surface light source device is disposed so as to face the light guide (that is, the prism row forming surface is disposed on the light guide light emitting surface). The light incident surface on which light from the light enters. However, as a prism sheet, opposite to the light entrance surface When a general light emitting surface on the side is a smooth plane, the surface structural force S of the light guide may be visually recognized. Therefore, as described in Japanese Patent Laid-Open No. 6-324205 (Patent Document 1) and Japanese Patent Laid-Open No. 7-151909 (Patent Document 2), the prism sheet has a surface opposite to the prism array forming surface. It is conceivable to apply a technique for providing a fine uneven shape to make it difficult to visually recognize the surface structure of the light guide while maintaining high luminance.
特許文献 1 :特開平 6— 324205号公報  Patent Document 1: JP-A-6-324205
特許文献 2 :特開平 7— 151909号公報  Patent Document 2: JP-A-7-151909
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] また、面光源装置においては、一次光源として高輝度の光源が使用されるにつれ て、プリズムシートに起因する輝度むらが視認されやすいという問題がある。即ち、プ リズムシート製造のための金型に切削すじゃメツキ不良などによる欠陥があると、それ に基づくプリズムシートの形態不良に起因して輝度むらが視認されることがある。また 、プリズムシート製造後にプリズム列形成面の保護のために粘着保護シートが貼付さ れるが、面光源装置作製に際してこの粘着保護シートを剥離した後にプリズム列頂 部などに保護シートの粘着剤が付着残留すると、この付着残留粘着剤に起因して輝 度むらが視認されたりする。  [0006] Further, in the surface light source device, there is a problem that uneven luminance due to the prism sheet is easily recognized as a high-intensity light source is used as a primary light source. In other words, if there is a defect due to a defect in the die for manufacturing the prism sheet, brightness unevenness may be visually recognized due to a defective form of the prism sheet based on the defect. In addition, an adhesive protective sheet is affixed to protect the prism array forming surface after the prism sheet is manufactured. After the adhesive protective sheet is peeled off when manufacturing the surface light source device, the adhesive of the protective sheet adheres to the top of the prism array. When it remains, brightness unevenness may be visually recognized due to this adhesive residue adhesive.
[0007] 以上のような導光体の表面構造の視認ゃプリズムシートに起因する輝度むらの視 認などの光学的な欠陥を、光拡散シートを使用することなく隠蔽することが望ましい。  [0007] It is desirable to conceal the optical defects such as the luminance unevenness caused by the prism sheet without using the light diffusion sheet, if the surface structure of the light guide is as described above.
[0008] そこで、本発明は、以上のような技術的課題に鑑み、コスト増加を殆ど招くことなく 輝度低下を抑制しながら光学的欠陥隠蔽を実現し得る液晶表示装置及びそれに用 いる液晶表示素子を提供することを目的とする。  [0008] In view of the above technical problems, the present invention provides a liquid crystal display device capable of concealing optical defects while suppressing a decrease in luminance with almost no increase in cost, and a liquid crystal display element used therefor The purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0009] 本発明によれば、上記の課題を解決するものとして、 [0009] According to the present invention, as a solution to the above problems,
面光源装置と組み合わせて使用される液晶表示素子であって、  A liquid crystal display element used in combination with a surface light source device,
該液晶表示素子の前記面光源装置から発せられる光が入射する側にプリズムシー トの第 1面が接合されており、該プリズムシートの前記第 1面と反対側の第 2面がプリ ズム列形成面とされており、該プリズム列形成面は複数のプリズム列を互いに略平行 に延在するように配列することで形成されており、 A first surface of a prism sheet is bonded to a side of the liquid crystal display element on which light emitted from the surface light source device is incident, and a second surface opposite to the first surface of the prism sheet is a prism array. The prism array forming surface has a plurality of prism arrays substantially parallel to each other. It is formed by arranging so as to extend to
前記プリズム列形成面は、互いに隣接する前記プリズム列の間に該プリズム列に沿 つて延在する粗面化部を有しており、該粗面化部の表面は前記プリズム列のプリズム 面より粗面化度が大きい、ことを特徴とするプリズムシート付き液晶表示素子、 が提供される。  The prism row forming surface has a roughened portion extending along the prism row between the prism rows adjacent to each other, and a surface of the roughened portion is formed by a prism surface of the prism row. There is provided a liquid crystal display element with a prism sheet, characterized in that the degree of roughening is large.
[0010] 本発明の一態様においては、前記粗面化部は、前記プリズム列の配列ピッチの 0.  [0010] In one aspect of the present invention, the roughening section has an arrangement pitch of 0.
04倍〜 0. 5倍の幅をもつ。  It has a width of 04 times to 0.5 times.
[0011] 以上のような本発明の一態様においては、前記液晶表示素子の前記面光源装置 力 発せられる光が入射する側に接合材により前記プリズムシートの第 1面が接合さ れている。本発明の一態様においては、前記接合材は接着剤または自己吸着性樹 脂である。本発明の一態様においては、前記プリズム列は同心円状に配列されてい る。  In one aspect of the present invention as described above, the first surface of the prism sheet is bonded to the liquid crystal display element on the side on which light generated by the surface light source device is incident by a bonding material. In one embodiment of the present invention, the bonding material is an adhesive or a self-adsorbing resin. In one aspect of the present invention, the prism rows are arranged concentrically.
[0012] 更に、本発明によれば、上記の課題を解決するものとして、  [0012] Furthermore, according to the present invention, as a solution to the above problems,
一次光源と、該一次光源から発せられる光が導入され導光され出射する導光体と、 上記のプリズムシート付き液晶表示素子とを含んでなり、  Comprising: a primary light source; a light guide that is guided and guided by light emitted from the primary light source; and the liquid crystal display element with the prism sheet,
前記導光体は前記一次光源から発せられる光が入射する光入射端面と前記導光 された光が出射する光出射面とを備えており、前記一次光源は前記導光体の光入 射端面に隣接して配置されており、前記プリズムシート付き液晶表示素子は前記プリ ズムシートのプリズム列形成面が前記導光体の光出射面に対向するようにして配置さ れてレ、ることを特徴とする液晶表示装置、  The light guide includes a light incident end surface on which light emitted from the primary light source enters and a light exit surface from which the guided light exits, and the primary light source includes a light incident end surface of the light guide. The liquid crystal display element with a prism sheet is disposed such that the prism row forming surface of the prism sheet faces the light emitting surface of the light guide. A liquid crystal display device,
が提供される。  Is provided.
発明の効果  The invention's effect
[0013] 以上のような本発明のプリズムシート付き液晶表示素子及び液晶表示装置によれ ば、プリズムシートのプリズム列形成面は互いに隣接するプリズム列の間に該プリズム 列に沿って延在する粗面化部を有するので、このプリズムシートを接合した液晶表示 素子を用いて構成される液晶表示装置において、この粗化面部での光拡散に基づ き、プリズムシート製造用金型の欠陥に基づくプリズムシートの形態不良に起因する 輝度むらや、粘着保護シートの貼付に基づく該粘着保護シート剥離後のプリズム列 における保護シート粘着剤の付着残留に起因する輝度むらを改善する作用即ち光 学的欠陥隠蔽の作用が得られ、しかも輝度低下は少ない。 [0013] According to the liquid crystal display element with a prism sheet and the liquid crystal display device of the present invention as described above, the prism row forming surface of the prism sheet is a rough surface extending along the prism row between adjacent prism rows. Since the liquid crystal display device is configured by using the liquid crystal display element to which the prism sheet is bonded, based on the light diffusion in the roughened surface portion, it is based on the defects of the prism sheet manufacturing mold. Luminance unevenness caused by defective form of prism sheet, prism array after peeling of the adhesive protective sheet based on the adhesion of the adhesive protective sheet The effect of improving the luminance unevenness caused by the residual adhesion of the protective sheet pressure sensitive adhesive, that is, the effect of concealing optical defects, is obtained, and the decrease in luminance is small.
図面の簡単な説明 Brief Description of Drawings
園 1]本発明によるプリズムシート付き液晶表示素子を用いた液晶表示装置の一つの 実施形態を示す模式的一部切欠斜視図である。 1] A schematic partially cutaway perspective view showing one embodiment of a liquid crystal display device using a liquid crystal display element with a prism sheet according to the present invention.
園 2]図 1の液晶表示装置の模式的部分断面図である。 2] A schematic partial cross-sectional view of the liquid crystal display device of FIG.
園 3]図 1の液晶表示装置のプリズムシートの模式的部分拡大断面図である。 3] A schematic partial enlarged sectional view of the prism sheet of the liquid crystal display device of FIG.
園 4]プリズムシートによる光偏向の様子を模式的に示す図である。 4] It is a diagram schematically showing the state of light deflection by the prism sheet.
園 5]プリズムシートの製造のための型部材の作製を説明するための模式的断面図 である。 FIG. 5] A schematic cross-sectional view for explaining the production of a mold member for manufacturing a prism sheet.
園 6]プリズムシートの製造における合成樹脂シートの賦形を説明するための模式図 である。 6] It is a schematic diagram for explaining shaping of the synthetic resin sheet in the manufacture of the prism sheet.
園 7]プリズムシートの製造において使用されるロール型を示す模式的斜視図である 園 8]プリズムシートの製造において使用されるロール型を示す模式的分解斜視図で ある。 FIG. 7 is a schematic perspective view showing a roll mold used in the manufacture of a prism sheet. FIG. 8 is a schematic exploded perspective view showing a roll mold used in the manufacture of a prism sheet.
園 9]面光源の輝度分布を示す図である。 FIG. 9 is a diagram showing the luminance distribution of the surface light source.
園 10]面光源の輝度分布を示す図である。 FIG. 10 is a diagram showing the luminance distribution of the surface light source.
園 11]本発明によるプリズムシート付き液晶表示素子を構成するプリズムシートの一 つの実施形態の模式的部分拡大断面図である。 11] A schematic partial enlarged cross-sectional view of one embodiment of a prism sheet constituting a liquid crystal display element with a prism sheet according to the present invention.
園 12]図 11のプリズムシートの模式的部分拡大底面図である。 12] FIG. 12 is a schematic partial enlarged bottom view of the prism sheet of FIG.
園 13]図 11のプリズムシートの谷部の断面形状を示す模式図である。 [13] FIG. 13 is a schematic diagram showing a cross-sectional shape of a valley portion of the prism sheet of FIG.
園 14]本発明によるプリズムシート付き液晶表示素子を用いた液晶表示装置の一つ の実施形態を示す模式的一部切欠斜視図である。 14] A schematic partially cutaway perspective view showing one embodiment of a liquid crystal display device using a liquid crystal display element with a prism sheet according to the present invention.
園 15]実施例で使用した型部材作製装置の模式図である。 15] It is a schematic diagram of a mold member manufacturing apparatus used in Examples.
園 16]実施例で得られた型部材ブランクのプリズム列及び谷部の転写面部分の断面 拡大写真である。 16] This is a magnified photograph of the cross section of the transfer surface portion of the prism row and valley portion of the mold member blank obtained in the example.
[図 17]実施例で得られた型部材のプリズム列及び谷部の転写面部分の断面拡大写 真である。 FIG. 17 is a cross-sectional enlarged view of the transfer surface portion of the prism row and the valley portion of the mold member obtained in the example. Is true.
符号の説明 Explanation of symbols
1 一次光源 1 Primary light source
2 光?原リフレクタ  2 Hikarihara reflector
3 導光体  3 Light guide
31 光入射端面  31 Light incident end face
32 側端面  32 Side end face
33 光出射面  33 Light exit surface
34 裏面  34 Back side
4 プリズムシート  4 Prism sheet
41 入光面  41 Incident surface
411 プリズム列  411 prism row
411a, 411b プリズム面 411a, 411b Prism surface
412 粗面化部412 Roughening part
2 出光面 2 Light emitting surface
3 透明基材 3 Transparent substrate
4 プリズム部  4 Prism section
5 光反射素子  5 Light reflecting element
8 液晶表示素子  8 Liquid crystal display elements
81, 82 透光性基板 81, 82 Translucent substrate
3 液晶 3 LCD
4 画素電極 4 pixel electrode
5 透明電極 5 Transparent electrode
6 接合材 6 Bonding material
1' 型部材 1 'type material
11a', 411b' 第 1の領域 11a", 411b" 第 1の領域 12' 第 2の領域 412" 第 2の領域 11a ', 411b' first region 11a ", 411b" first region 12 'second region 412 "second area
BP ブラスト粒子  BP blast particles
7 型部材(ロール型)  7 type material (roll type)
9 透明基材  9 Transparent substrate
10 活性エネルギー線硬化性組成物  10 Active energy ray-curable composition
11 圧力機構  11 Pressure mechanism
12 樹脂タンク  12 Resin tank
13 ノズル  13 nozzles
14 活性エネルギー線照射装置  14 Active energy ray irradiation equipment
15 薄板状型部材  15 Thin plate member
16 円筒状ロール  16 Cylindrical roll
18 形状転写面  18 Shape transfer surface
28 ニップロ一ノレ  28 Niplo
412A 谷部  412A Tanibe
413 プリズム列の稜線  413 Prism row edge
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、図面を参照しながら、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017] 図 1は本発明によるプリズムシート付き液晶表示素子を用いた液晶表示装置の一 つの実施形態を示す模式的一部切欠斜視図であり、図 2はその模式的部分断面図 である。本実施形態の液晶表示装置は、エッジライト型面光源装置及びプリズムシー ト付き液晶表示素子を含んでなる。 FIG. 1 is a schematic partially cutaway perspective view showing one embodiment of a liquid crystal display device using a liquid crystal display element with a prism sheet according to the present invention, and FIG. 2 is a schematic partial sectional view thereof. The liquid crystal display device of this embodiment includes an edge light type surface light source device and a liquid crystal display element with a prism sheet.
[0018] エッジライト型面光源装置は、図示されているように、少なくとも一つの側端面を光 入射端面 31とし、これと略直交する一つの表面を光出射面 33とする導光体 3と、この 導光体 3の光入射端面 31に対向して配置され光源リフレクタ 2で覆われた線状の一 次光源 1と、導光体 3の光出射面 33とは反対側の裏面 34に対向して配置された光反 射素子 5とを含んで構成されている。 As shown in the drawing, the edge light type surface light source device includes at least one side end face as a light incident end face 31 and one light guide face 3 having a light exit face 33 as one surface substantially orthogonal thereto. The linear primary light source 1 disposed opposite to the light incident end surface 31 of the light guide 3 and covered with the light source reflector 2 and the back surface 34 of the light guide 3 opposite to the light exit surface 33 The light reflecting element 5 is disposed to face each other.
[0019] 導光体 3は、 XY面と平行に配置されており、全体として矩形板状をなしている。導 光体 3は 4つの側端面を有しており、そのうち YZ面と平行な 1対の側端面のうちの少 なくとも一つの側端面を光入射端面 31とする。光入射端面 31は一次光源 1と対向し て配置されており、一次光源 1から発せられた光は光入射端面 31に入射し導光体 3 内へと導入される。本発明においては、例えば、光入射端面 31とは反対側の側端面 32等の他の側端面にも光源を対向配置してもよい。 The light guide 3 is disposed in parallel with the XY plane and has a rectangular plate shape as a whole. The light guide 3 has four side end faces, of which a small number of the pair of side end faces parallel to the YZ plane. At least one side end face is a light incident end face 31. The light incident end face 31 is arranged to face the primary light source 1, and light emitted from the primary light source 1 enters the light incident end face 31 and is introduced into the light guide 3. In the present invention, for example, the light source may be disposed opposite to another side end face such as the side end face 32 opposite to the light incident end face 31.
[0020] 導光体 3の光入射端面 31に略直交した 2つの主面は、それぞれ XY面と略平行に 位置しており、いずれか一方の面(図では上面)が光出射面 33となる。この光出射面 33に粗面からなる指向性光出射機構を付与することによって、光入射端面 31から入 射した光を導光体 3中を導光させながら光出射面 33から光入射端面 31および光出 射面 33に直交する面 (XZ面)内において指向性のある光を出射させる。この XZ面内 分布における出射光光度分布のピークの方向(ピーク光)が光出射面 33となす角度 をひとする。角度ひは例えば 10〜40度であり、出射光光度分布の半値全幅は例え ば 10〜40度である。 [0020] The two main surfaces that are substantially orthogonal to the light incident end surface 31 of the light guide 3 are respectively positioned substantially parallel to the XY plane, and one of the surfaces (the upper surface in the figure) is the light emitting surface 33. Become. By providing the light emitting surface 33 with a directional light emitting mechanism including a rough surface, the light incident from the light incident surface 31 is guided through the light guide 3 while the light incident from the light incident surface 31 is guided through the light incident surface 31. In addition, light having directivity is emitted in a plane (XZ plane) orthogonal to the light exit surface 33. The peak direction (peak light) of the emitted light intensity distribution in this XZ in-plane distribution is the angle formed by the light emitting surface 33. The angle is, for example, 10 to 40 degrees, and the full width at half maximum of the emitted light luminous intensity distribution is, for example, 10 to 40 degrees.
[0021] 導光体 3の表面に形成する粗面やレンズ列は、 IS04287/1— 1984による平均 傾斜角 Θ aが 0. 5〜: 15度の範囲のものとすること力 光出射面 33内での輝度の均斉 度の向上を図る点から好ましい。平均傾斜角 Θ aは、さらに好ましくは 1〜: 12度の範 囲であり、より好ましくは 1. 5〜: 11度の範囲である。この平均傾斜角 Θ aは、導光体 3 の厚さ(d)と入射光が伝搬する方向の長さ(L)との比 (L/d)によって最適範囲が設 定されることが好ましい。すなわち、導光体 3として L/dが 20〜200程度のものを使 用する場合は、平均傾斜角 Θ aを 0. 5〜7. 5度とすることが好ましぐさらに好ましく は:!〜 5度の範囲であり、より好ましくは 1. 5〜4度の範囲である。また、導光体 3とし て L/dが 20以下程度のものを使用する場合は、平均傾斜角 Θ aを 7〜: 12度とするこ と力 S好ましく、さらに好ましくは 8〜: 11度の範囲である。  [0021] The rough surface or lens array formed on the surface of the light guide 3 should have an average inclination angle Θ a in the range of 0.5 to 15 degrees according to IS04287 / 1-1984. It is preferable from the viewpoint of improving the uniformity of the luminance in the interior. The average inclination angle Θa is more preferably in the range of 1 to 12 degrees, and more preferably in the range of 1.5 to 11 degrees. The average inclination angle Θa is preferably set to an optimum range by the ratio (L / d) of the thickness (d) of the light guide 3 and the length (L) in the direction in which the incident light propagates. . That is, when using a light guide 3 having an L / d of about 20 to 200, it is preferable to set the average inclination angle Θ a to 0.5 to 7.5 degrees, and more preferably: Is in the range of -5 degrees, more preferably in the range of 1.5-4 degrees. In addition, when a light guide 3 having L / d of about 20 or less is used, it is preferable to set the average inclination angle Θ a to 7 to 12 degrees S, more preferably 8 to 11 degrees. Range.
[0022] 導光体 3に形成される粗面の平均傾斜角 Θ aは、 IS04287Z1— 1984に従って、 触針式表面粗さ計を用いて粗面形状を測定し、測定方向の座標を Xとして、得られた 傾斜関数 f (X)から次の式(1)および式(2)  [0022] The average inclination angle Θ a of the rough surface formed on the light guide 3 is measured according to IS04287Z1-1984 using a stylus type surface roughness meter, and the coordinate in the measurement direction is X From the obtained gradient function f (X), the following equations (1) and (2)
A a= ( l/L) ί L A a = (l / L) ί L
o I (d/dx) f (x) I dx · · · (1)  o I (d / dx) f (x) I dx (1)
Θ a = tan_1 ( A a) . · · (2) Θ a = tan _1 (A a). (2)
を用いて求めることができる。ここで、 Lは測定長さであり、 Δ aは平均傾斜角 Θ aの正 接である。 Can be obtained using Where L is the measurement length and Δa is the positive value of the average tilt angle Θa It is close.
[0023] さらに、導光体 3としては、その光出射率が 0. 5〜5%の範囲にあるものが好ましぐ より好ましくは 1〜3%の範囲である。光出射率を 0. 5%以上とすることにより、導光体 3から出射する光量が多くなり十分な輝度が得られる傾向にある。また、光出射率を 5 %以下とすることにより、一次光源 1の近傍での多量の光の出射が防止され、光出射 面 33内での X方向における出射光の減衰が小さくなり、光出射面 33での輝度の均 斉度が向上する傾向にある。このように導光体 3の光出射率を 0. 5〜5%とすることに より、光出射面から出射する光の出射光光度分布 (XZ面内)におけるピーク光の角 度が光出射面の法線に対し 50〜80度の範囲にあり、光入射端面と光出射面との双 方に垂直な XZ面における出射光光度分布 (XZ面内)の半値全幅が 10〜40度であ るような指向性の高い出射特性の光を導光体 3から出射させることができ、その出射 方向を液晶表示素子 8に接合されたプリズムシート 4で効率的に偏向させることがで き、高レ、輝度を有する面光源を提供することができる。  [0023] Further, the light guide 3 preferably has a light emission rate in the range of 0.5 to 5%, more preferably in the range of 1 to 3%. By setting the light emission rate to 0.5% or more, the amount of light emitted from the light guide 3 is increased and sufficient luminance tends to be obtained. In addition, by setting the light emission rate to 5% or less, emission of a large amount of light in the vicinity of the primary light source 1 is prevented, and attenuation of the emitted light in the X direction within the light emission surface 33 is reduced. The luminance uniformity on surface 33 tends to improve. Thus, by setting the light emission rate of the light guide 3 to 0.5 to 5%, the angle of the peak light in the emission light intensity distribution (in the XZ plane) of the light emitted from the light emission surface becomes the light emission. The full width at half maximum of the emitted light intensity distribution (in the XZ plane) in the XZ plane that is in the range of 50 to 80 degrees with respect to the normal of the surface and is perpendicular to both the light incident end face and the light emitting face is 10 to 40 degrees. Light with such highly directional emission characteristics can be emitted from the light guide 3, and the emission direction can be efficiently deflected by the prism sheet 4 bonded to the liquid crystal display element 8. A surface light source having high power and brightness can be provided.
[0024] 本発明において、導光体 3からの光出射率は次のように定義される。光出射面 33 の光入射端面 31側の端縁での出射光の光強度(I )と光入射端面 31側の端縁から  In the present invention, the light emission rate from the light guide 3 is defined as follows. From the light intensity (I) of the emitted light at the edge on the light incident end surface 31 side of the light emitting surface 33 and the edge on the light incident end surface 31 side
0  0
距離 Lの位置での出射光強度 (I)との関係は、導光体 3の厚さ (Z方向寸法)を dとす ると、次の式(3)  The relationship with the emitted light intensity (I) at the distance L is given by the following equation (3), where d is the thickness of the light guide 3 (dimension in the Z direction):
1=1 /100) [l— /100) ]L/d … (3) 1 = 1/100) [l— / 100)] L / d … (3)
0  0
のような関係を満足する。ここで、定数 αが光出射率であり、光出射面 33における光 入射端面 31と直交する X方向での単位長さ(導光体厚さ dに相当する長さ)当たりの 導光体 3から光が出射する割合(百分率:%)である。この光出射率 αは、縦軸に光 出射面 23からの出射光の光強度の対数をとり、横軸に (L/d)をとり、これらの関係 をプロットすることで、その勾配から求めることができる。 Satisfying such a relationship. Here, the constant α is the light output rate, and the light guide 3 per unit length (length corresponding to the light guide thickness d) in the X direction orthogonal to the light incident end surface 31 on the light output surface 33 It is a ratio (percentage:%) at which light is emitted from the light source. This light emission rate α is obtained from the gradient by plotting the relationship between the logarithm of the light intensity of the light emitted from the light exit surface 23 on the vertical axis and (L / d) on the horizontal axis. be able to.
[0025] なお、本発明では、上記のようにして光出射面 33に光出射機構を形成する代わり に或いはこれと併用して、導光体内部に光拡散性微粒子を混入分散することで指向 性光出射機構を付与してもよい。  In the present invention, instead of forming the light emitting mechanism on the light emitting surface 33 as described above, or in combination with this, the light diffusing fine particles are mixed and dispersed inside the light guide. A neutral light emitting mechanism may be provided.
[0026] また、指向性光出射機構が付与されていない主面である裏面 34は、導光体 3から の出射光の一次光源 1と平行な面 (YZ面)での指向性を制御するために、光入射端 面 31を横切る方向に、より具体的には光入射端面 31に対して略垂直の方向(X方向 )に、延びる多数のプリズム列を配歹 1Jしたプリズム列形成面とされている。この導光体 3の裏面 34のプリズム列は、配列ピッチをたとえば 10〜100 μ mの範囲、好ましくは 30〜60 111の範囲とすることカできる。また、この導光体 3の裏面 34のプリズム列は 、頂角をたとえば 85〜110度の範囲とすることができる。これは、頂角をこの範囲とす ることによって導光体 3からの出射光を適度に集光させることができ、面光源装置とし ての輝度の向上を図ることができるためであり、頂角はより好ましくは 90〜: 100度の 範囲である。 [0026] In addition, the back surface 34, which is the main surface to which no directional light emitting mechanism is provided, controls the directivity on a surface (YZ surface) parallel to the primary light source 1 of the light emitted from the light guide 3. For the light incident end A prism array forming surface is formed by arranging a number of prism arrays 1J extending in a direction crossing the surface 31, more specifically in a direction substantially perpendicular to the light incident end surface 31 (X direction). The prism row on the rear surface 34 of the light guide 3 can have an arrangement pitch in the range of 10 to 100 μm, preferably 30 to 60 111, for example. Further, the prism array on the back surface 34 of the light guide 3 can have an apex angle in the range of 85 to 110 degrees, for example. This is because by setting the apex angle within this range, the light emitted from the light guide 3 can be condensed appropriately, and the luminance as a surface light source device can be improved. The angle is more preferably in the range of 90 to 100 degrees.
[0027] 導光体 3としては、図 1に示したような形状に限定されるものではなぐ光入射端面 の方が厚レ、くさび状等の種々の形状のものが使用できる。  The light guide 3 is not limited to the shape shown in FIG. 1, but can have various shapes such as a light incident end face having a thick shape and a wedge shape.
[0028] 導光体 3は、光透過率の高い合成樹脂から構成することができる。このような合成樹 脂としては、メタクリル樹脂、アクリル樹脂、ポリカーボネート系樹脂、ポリエステル系 樹脂、塩化ビュル系樹脂が例示できる。特に、メタクリル樹脂が、光透過率の高さ、耐 熱性、力学的特性、成形カ卩ェ性に優れており、最適である。このようなメタクリル樹脂 としては、メタクリル酸メチルを主成分とする樹脂であり、メタクリル酸メチルが 80重量 %以上であるものが好ましい。導光体 3の粗面等の表面構造やプリズム列又はレンチ キュラーレンズ列等の表面構造を形成するに際しては、透明合成樹脂板を所望の表 面構造を有する型部材を用いて熱プレスすることで形成してもよいし、スクリーン印刷 、押出成形や射出成形等によって成形と同時に形状付与してもよい。また、熱あるい は光硬化性樹脂等を用いて構造面を形成することもできる。更に、ポリエステル系樹 脂、アクリル系樹脂、ポリカーボネート系樹脂、塩ィ匕ビニル系樹脂、ポリメタクリルイミド 系樹脂等からなる透明フィルムあるいはシート等の透明基材の表面に、活性エネル ギ一線硬化型樹脂からなる粗面構造またレンズ列配列構造を形成してもよレ、し、この ようなシートを接着、融着等の方法によって別個の透明基材上に接合一体化させて もよレ、。活性エネルギー線硬化型樹脂としては、多官能 (メタ)アクリル化合物、ビニ ル化合物、(メタ)アクリル酸エステル類、ァリル化合物、 (メタ)アクリル酸の金属塩等 を使用すること力 Sできる。  [0028] The light guide 3 can be made of a synthetic resin having a high light transmittance. Examples of such synthetic resin include methacrylic resin, acrylic resin, polycarbonate resin, polyester resin, and chlorinated resin. In particular, methacrylic resins are optimal because of their high light transmittance, heat resistance, mechanical properties, and moldability. Such a methacrylic resin is a resin mainly composed of methyl methacrylate, and preferably has a methyl methacrylate content of 80% by weight or more. When forming a surface structure such as a rough surface of the light guide 3 and a surface structure such as a prism array or a lenticular lens array, the transparent synthetic resin plate is hot-pressed using a mold member having a desired surface structure. Or may be formed simultaneously with molding by screen printing, extrusion molding, injection molding, or the like. The structural surface can also be formed using heat or a photo-curable resin. Furthermore, an active energy line curable resin is applied on the surface of a transparent substrate such as a polyester film, an acrylic resin, a polycarbonate resin, a vinyl chloride resin, a polymethacrylimide resin, or a transparent substrate. A rough surface structure or a lens array arrangement structure may be formed, and such a sheet may be bonded and integrated on a separate transparent substrate by a method such as adhesion or fusion. As the active energy ray-curable resin, it is possible to use polyfunctional (meth) acrylic compounds, vinyl compounds, (meth) acrylic acid esters, aryl compounds, (meth) acrylic acid metal salts, and the like.
[0029] 一次光源 1は Y方向に延在する線状の光源であり、該一次光源 1としては例えば蛍 光ランプや冷陰極管を用いることができる。この場合、一次光源 1は、図 1に示したよ うに、導光体 3の一方の側端面に対向して設置する場合だけでなぐ必要に応じて反 対側の側端面にもさらに設置することもできる。 [0029] The primary light source 1 is a linear light source extending in the Y direction. A light lamp or a cold cathode tube can be used. In this case, as shown in FIG. 1, the primary light source 1 may be further installed on the opposite side end surface as needed, not only when it is installed facing one side end surface of the light guide 3. You can also.
[0030] 光源リフレクタ 2は一次光源 1の光をロスを少なく導光体 3へ導くものである。その材 質としては、例えば表面に金属蒸着反射層を有するプラスチックフィルムを用いること 力 Sできる。図示されているように、光源リフレクタ 2は、光反射素子 5の端縁部外面から 一次光源 1の外面を経て導光体 3の光出射面端縁部へと卷きつけられている。このよ うな光源リフレクタ 2と同様な反射部材を、導光体 3の光入射端面 31以外の側端面に 付することも可能である。  The light source reflector 2 guides the light from the primary light source 1 to the light guide 3 with little loss. For example, a plastic film having a metal-deposited reflective layer on the surface can be used as the material. As shown in the drawing, the light source reflector 2 is rubbed from the outer surface of the edge of the light reflecting element 5 to the edge of the light emitting surface of the light guide 3 through the outer surface of the primary light source 1. A reflection member similar to the light source reflector 2 can be attached to the side end face other than the light incident end face 31 of the light guide 3.
[0031] 光反射素子 5としては、例えば表面に金属蒸着反射層を有するプラスチックシート を用いることができる。本発明においては、光反射素子 5として反射シートに代えて、 導光体 3の裏面 34に金属蒸着等により形成された光反射層等を用いることも可能で ある。  [0031] As the light reflecting element 5, for example, a plastic sheet having a metal-deposited reflecting layer on the surface can be used. In the present invention, it is also possible to use a light reflecting layer or the like formed on the back surface 34 of the light guide 3 by metal vapor deposition or the like instead of the reflecting sheet as the light reflecting element 5.
[0032] 一方、液晶表示素子 8としては、特に限定されることはなぐ周知の透過型液晶表 示素子を使用することができる。この透過型液晶表示素子としては、例えば、互いに 平行に配列されたガラスシートや合成樹脂シートなどからなる 2つの透光性基板 81 , 82の間に液晶 83を介在させ、基板 82の下面に形成した透明電極 85と基板 81の上 面に形成した画素電極 84のうちの所要のものとの間に画像信号に応じて電圧を印 加することで、画像表示を行うものが例示される。更には、カラー表示のためのカラー フィルターや、偏光子及び検光子としての 1対の偏光板や、その他の公知の適宜の 機能部材を含んでレ、てもよレ、。  On the other hand, as the liquid crystal display element 8, a well-known transmissive liquid crystal display element can be used without particular limitation. As this transmissive liquid crystal display element, for example, a liquid crystal 83 is interposed between two translucent substrates 81, 82 made of a glass sheet or a synthetic resin sheet arranged in parallel with each other, and formed on the lower surface of the substrate 82. An example of performing image display by applying a voltage according to an image signal between the transparent electrode 85 and a required one of the pixel electrodes 84 formed on the upper surface of the substrate 81 is exemplified. Furthermore, it may include a color filter for color display, a pair of polarizing plates as a polarizer and an analyzer, and other known appropriate functional members.
[0033] 液晶表示素子 8は、導光体 3の光出射面 33の上方に配置されている。本実施形態 におレ、ては、液晶表示素子 8の面光源装置から発せられる光が入射する側(図では 下側)に光偏向素子としてのプリズムシート 4の出光面(第 1面) 42が接合されている 。この接合は、接合材 86によりなされている。接合材 86としては、透光性を有するも のであれば特に限定されないが、例えば接着剤または自己吸着性樹脂が好ましいも のとして例示される。接着剤としては、 UV硬化型の接着剤や、一般的に感圧接着剤 として知られているものが挙げられ、耐熱、電気絶縁性、耐ィヒ学薬品性に優れるシリ コーン粘着剤(主成分はポリジメチルシロキサン)、透明性ゃ耐候性に優れるアクリル 系粘着剤(例えば主成分がポリアクリル酸プチル、ポリアクリル酸ォクチル)、比較的 低温で熱可塑性を有する樹脂を用いたホットメルトタイプ接着剤(例えばエチレン/ 酢酸ビニル共重合体を主成分としたもの)等が有効である。また、 自己吸着性樹脂はThe liquid crystal display element 8 is disposed above the light emitting surface 33 of the light guide 3. In this embodiment, the light exit surface (first surface) of the prism sheet 4 as a light deflecting element on the side (lower side in the figure) on which light emitted from the surface light source device of the liquid crystal display element 8 is incident 42 Are joined. This joining is performed by a joining material 86. The bonding material 86 is not particularly limited as long as it has translucency. For example, an adhesive or a self-adsorbing resin is preferable. Adhesives include UV curable adhesives and those commonly known as pressure sensitive adhesives, and it has excellent heat resistance, electrical insulation, and chemical resistance. Use corn adhesive (main component is polydimethylsiloxane), transparent acrylic adhesive with excellent weather resistance (for example, main component is polybutyl acrylate, polyoctyl acrylate), resin with thermoplasticity at relatively low temperature Hot melt type adhesives (for example, those based on ethylene / vinyl acetate copolymer) are effective. Self-adsorbing resin
、脱着可能接合材であり、 自ら平滑面へ張り付く特性を有する軟質樹脂である。 自己 吸着性樹脂としては、例えばガラス転移温度の低い材料を用いた軟質シリコン樹脂( ゴム)、軟質アクリル架橋性樹脂、軟質ポリエチレン樹脂などが例示できる。接合材と して自己吸着性樹脂を用いた場合、脱着が可能であり組み立て時における貼付け修 正が容易である。プリズムシート 4の出光面 42と反対側の入光面(第 2面) 41は、複 数のプリズム列を互いに略平行に延在するように配列することで形成されたプリズム 列形成面とされている。これにより、プリズムシート 4付の液晶表示素子 8が形成され ている。 It is a detachable bonding material and is a soft resin that has the property of sticking to a smooth surface. Examples of the self-adsorbing resin include a soft silicon resin (rubber) using a material having a low glass transition temperature, a soft acrylic crosslinkable resin, and a soft polyethylene resin. When a self-adsorbing resin is used as the bonding material, it can be detached and repaired easily during assembly. The light incident surface (second surface) 41 opposite to the light exit surface 42 of the prism sheet 4 is a prism row forming surface formed by arranging a plurality of prism rows so as to extend substantially parallel to each other. ing. Thereby, the liquid crystal display element 8 with the prism sheet 4 is formed.
[0034] 尚、プリズムシート 4は、光学機能的には、一次光源 1及び導光体 3と共に、導光体 光出射面法線の方向に沿って光を出光させる面光源を構成する。しかし、本発明で はプリズムシート 4が液晶表示素子 8に接合一体化されてプリズムシート付き液晶表 示素子を形成することから、本明細書では、便宜上、以上のような面光源を構成する 部材からプリズムシートを除外したものを面光源装置と称している。  In addition, the prism sheet 4 constitutes a surface light source that emits light along the direction of the normal direction of the light guide surface of the light guide, together with the primary light source 1 and the light guide 3, in terms of optical function. However, in the present invention, the prism sheet 4 is joined and integrated with the liquid crystal display element 8 to form a liquid crystal display element with a prism sheet. Therefore, in this specification, for the sake of convenience, the members constituting the surface light source as described above are used. A surface light source device is referred to as a surface light source device excluding the prism sheet.
[0035] 以下、プリズムシート 4に関し、詳細に説明する。  Hereinafter, the prism sheet 4 will be described in detail.
[0036] プリズムシート 4は、導光体 3の光出射面 33の上方に配置されている。プリズムシー ト 4の 2つの主面 41, 42は全体として互いに平行に配列されており、それぞれ全体と して XY面と平行に位置する。主面 41, 42のうちの一方(導光体 3の光出射面 33側 に位置する主面)は入光面 41とされており、他方が出光面 42とされている。出光面 4 2は、導光体 3の光出射面 33と平行な平坦面とされている。入光面 41は、多数の Y 方向に延在するプリズム歹 IJ411が互いに平行に配列されたプリズム列形成面とされ ている。  The prism sheet 4 is disposed above the light emitting surface 33 of the light guide 3. The two principal surfaces 41 and 42 of the prism sheet 4 are arranged in parallel with each other as a whole, and are located parallel to the XY plane as a whole. One of the main surfaces 41, 42 (the main surface located on the light emitting surface 33 side of the light guide 3) is a light incident surface 41, and the other is a light emitting surface 42. The light exit surface 42 is a flat surface parallel to the light exit surface 33 of the light guide 3. The light incident surface 41 is a prism row forming surface in which a large number of prisms IJ411 extending in the Y direction are arranged in parallel to each other.
[0037] 図 3に、プリズムシート 4の模式的部分拡大断面図を示す。プリズムシート 4は、透明 基材 43とプリズム部 44とからなるものとすることができる。この場合、透明基材 43の 上面が出光面 42を形成し、プリズム部 44の下面が入光面 41を形成する。 [0038] 透明基材 43の材料は、紫外線、電子線等の活性エネルギー線を透過するものが 好ましぐこのようなものとして、柔軟な硝子板等を使用することもできるが、ポリエステ ル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、塩ィヒビニル系樹脂、ポリメタタリ ノレイミド系樹脂等の透明樹脂シートやフィルムが好ましい。特に、プリズム部 44の屈 折率よりも屈折率が低ぐ表面反射率の低いポリメチルメタタリレート、ポリメチルアタリ レートとポリフッ化ビニリデン系樹脂との混合物、ポリカーボネート系樹脂、ポリエチレ ンテレフタレート等のポリエステル系樹脂からなるものが好ましい。透明基材 43の厚 さは、例えば 50 μ m〜500 μ m程度である。なお、透明基材 43には、活性エネルギ 一線硬化樹脂からなるプリズム部 44と透明基材 43との密着性を向上させるために、 その表面にアンカーコート処理等の密着性向上処理を施したものが好ましい。 FIG. 3 shows a schematic partial enlarged cross-sectional view of the prism sheet 4. The prism sheet 4 can be composed of a transparent base material 43 and a prism portion 44. In this case, the upper surface of the transparent substrate 43 forms the light exit surface 42, and the lower surface of the prism portion 44 forms the light incident surface 41. [0038] The transparent substrate 43 is preferably made of a material that transmits active energy rays such as ultraviolet rays and electron beams. As such, a flexible glass plate or the like can be used. A transparent resin sheet or film such as a resin, an acrylic resin, a polycarbonate resin, a salt vinyl resin, or a polymetalinoleimide resin is preferable. In particular, polymethylmetatalylate having a refractive index lower than the refractive index of the prism portion 44 and low surface reflectance, a mixture of polymethyl acrylate and polyvinylidene fluoride resin, polycarbonate resin, polyethylene terephthalate, etc. What consists of a polyester-type resin is preferable. The thickness of the transparent substrate 43 is, for example, about 50 μm to 500 μm. The transparent base material 43 has its surface subjected to an adhesion improvement treatment such as an anchor coat treatment in order to improve the adhesion between the prism portion 44 made of an active energy line curable resin and the transparent base material 43. Is preferred.
[0039] プリズム部 44の上面は、平坦面とされており、上記透明基材 43の下面と接合され ている。プリズム部 44の下面即ち入光面 41は、プリズム列形成面とされており、 Y方 向に延在する複数のプリズム歹 1J41 1が互いに平行に配列され、且つ互いに隣接する プリズム列同士の間に該プリズム列に沿って Y方向に延在する粗面化部 412が配列 されてなる。プリズム部 44の厚さは例えば 10〜500 μ ΐηである。プリズム列 41 1の配 列ピッチ Pは例えば 10 μ m〜500 μ mである。  The upper surface of the prism portion 44 is a flat surface, and is joined to the lower surface of the transparent base material 43. The lower surface of the prism portion 44, that is, the light incident surface 41 is a prism row forming surface, and a plurality of prisms 1J41 1 extending in the Y direction are arranged in parallel with each other and between adjacent prism rows. And a roughened surface 412 extending in the Y direction along the prism row. The thickness of the prism portion 44 is, for example, 10 to 500 μΐη. The arrangement pitch P of the prism array 41 1 is, for example, 10 μm to 500 μm.
[0040] プリズム列 41 1は、 2つのプリズム面 41 l a, 41 lb力らなる。これらのプリズム面は光 学的に十分に平滑な面 (鏡面)とされていてもよいし、或いは粗面化部 412の表面よ り小さな粗面化度の粗面とされていてもよい。本発明においては、プリズムシートによ る所望の光学特性を維持する点から、プリズム面は鏡面とすることが好ましい。この場 合、プリズム面の粗面化部近傍領域は粗面化されていてもよい。尚、粗面化度は、粗 面化の程度を示すものであり、たとえば中心線平均粗さ Raや十点平均粗さ により 表すことができる。プリズム列 41 1の頂角 Θは 40〜: 150°の範囲内とすることが好まし レ、。一般的に、液晶表示装置のバックライトでは、プリズムシートをプリズム列形成面 が液晶パネル側となるように配置する場合には、プリズム列の頂角 Θは 80〜: 100°程 度の範囲であり、好ましくは 85〜95°の範囲である。一方、上記実施形態のようにプ リズムシート 4をプリズム列形成面が導光体 3側となるように配置する場合には、プリズ ム列 41 1の頂角 Θは 40〜75°程度の範囲であり、好ましくは 45〜70°の範囲である 。本願においては、後述するように断面形状が不規則な面も粗面という。 [0040] The prism row 41 1 has two prism surfaces 41 la and 41 lb force. These prism surfaces may be optically sufficiently smooth surfaces (mirror surfaces), or may be rough surfaces having a roughening degree smaller than the surface of the roughening portion 412. In the present invention, the prism surface is preferably a mirror surface from the viewpoint of maintaining desired optical characteristics by the prism sheet. In this case, the region near the roughened portion of the prism surface may be roughened. The degree of roughening indicates the degree of roughening, and can be expressed by, for example, centerline average roughness Ra or ten-point average roughness. The apex angle Θ of the prism array 41 1 is preferably in the range of 40 to 150 °. In general, in the backlight of a liquid crystal display device, when the prism sheet is arranged so that the prism array forming surface is on the liquid crystal panel side, the apex angle Θ of the prism array is in the range of about 80 to 100 °. Yes, preferably in the range of 85-95 °. On the other hand, when the prism sheet 4 is arranged so that the prism row forming surface is on the light guide 3 side as in the above embodiment, the apex angle Θ of the prism row 41 1 is in the range of about 40 to 75 °. Preferably in the range of 45-70 ° . In the present application, as described later, a surface having an irregular cross-sectional shape is also referred to as a rough surface.
[0041] 粗面化部 412は、その幅 Wがプリズム列 411の配列ピッチ Pの 0. 04倍〜 0. 5倍で あるのが好ましぐ 0. 08倍〜 0. 3倍であるのが更に好ましぐ 0. 1倍〜 0· 2倍である のが特に好ましい。これは、粗面化部 412の幅 Wが配列ピッチ Pの 0. 04倍〜 0. 5倍 の範囲内であれば、粗面化部 412での光拡散に基づく所望の観察方向範囲への光 量集中作用及び良好な輝度むら改善作用が得られ、し力、もプリズム歹 IJ411による導 光体光出射面法線の方への光偏向作用の低下を少なくできるからである。粗面化部 412の表面の粗面化度は、中心線平均粗さ Raで 0. 3〜2 x mとするのが好ましぐ 0 . 4〜: 1. 7 x mとするのがより好ましぐ十点平均粗さ Rzで 1〜3 μ mとするのが好まし く、 1. 3〜2. 7 z mとすること力より好ましレ、。これらの粗さ値は、 JIS B0601— 199 4に従い、粗面化部 412の中央(即ち谷底部)において該粗面化部の延在方向に沿 う 100 μ mの表面形状に基づき測定して得たものである。  [0041] It is preferable that the width W of the roughened portion 412 is 0.04 times to 0.5 times the arrangement pitch P of the prism row 411. It is 0.08 times to 0.3 times. Is more preferably 0.1 times to 0.2 times. This is because if the width W of the roughened portion 412 is within the range of 0.04 to 0.5 times the arrangement pitch P, the desired observation direction range based on the light diffusion in the roughened portion 412 This is because the effect of concentrating the light amount and the effect of improving the brightness unevenness can be obtained, and the reduction of the light deflection effect toward the normal light exit surface of the light guide by the prism IJ411 can be reduced. The surface roughness of the roughened portion 412 is preferably 0.3 to 2 xm in terms of the center line average roughness Ra, more preferably 0.4 to 1.7 m. The average roughness Rz is preferably 1 to 3 μm, and more preferably 1.3 to 2.7 zm. These roughness values are measured according to JIS B0601-199 4 based on the surface shape of 100 μm along the extending direction of the roughened portion at the center of the roughened portion 412 (that is, the bottom of the valley). It is obtained.
[0042] プリズム列 411の 2つのプリズム面 41 la, 41 lbは、粗面化部 412の表面より小さな 粗面化度の粗面とされていてもよい。プリズム面 41 la, 41 lbの粗面化度は、中心線 平均粗さ Raで 0· 3 μ ΐη未満とするのが好ましぐ 0· 1 /i m以下とするのがより好ましく 、十点平均粗さ Rzで 1 μ m未満とするのが好ましぐ 0. 5 /i m以下とすることがより好 ましレ、。これらの粗さ値は、プリズム面 41 la, 41 lbの延在方向に沿う単位長さ(100 /i m)の表面形状に基づき得たものである。プリズム面 411a, 411bの粗面化度を粗 面化部 412の表面より小さなものとすることで、プリズム面 41 la, 41 lbでの光拡散を 少なくして、プリズム列 411による導光体光出射面法線の方への光偏向作用の低下 を少なくすることができる。  The two prism surfaces 41 la and 41 lb of the prism array 411 may be rough surfaces having a roughening degree smaller than the surface of the roughening part 412. The roughness of the prism surfaces 41 la and 41 lb is preferably less than 0 · 3 μΐη at the centerline average roughness Ra, more preferably 0 · 1 / im or less, and a 10-point average The roughness Rz is preferably less than 1 μm, more preferably 0.5 / im or less. These roughness values are obtained based on the surface shape of the unit length (100 / im) along the extending direction of the prism surfaces 41 la and 41 lb. By making the surface roughness of the prism surfaces 411a and 411b smaller than that of the surface of the rough surface portion 412, light diffusion on the prism surfaces 41 la and 41 lb is reduced, and light from the light guide by the prism array 411 is obtained. It is possible to reduce the deterioration of the light deflection action toward the exit surface normal.
[0043] 上記の粗面化部 412の表面またはプリズム列 411のプリズム面 41 la, 41 lbの表 面形状の測定は、たとえば超深度形状測定顕微鏡 (例えばキーエンス社製の VK— 8500 [商品名 ] )を用いて行うことができる。  [0043] The surface shape of the roughened portion 412 or the prism surface 41 la, 41 lb of the prism array 411 is measured using, for example, an ultra-deep shape measuring microscope (for example, VK-8500 manufactured by Keyence Corporation) ]).
[0044] 粗面化部 412の微細構造に基づく形状を除いた(または微細構造に基づく形状を 平均化して滑らかな線で結んだ) XZ断面の全体形状は、図示されるように外方即ち 下方に向かって凹の曲線状をなす。或いは、粗面化部 412の XZ断面の全体形状は 、 XY面と平行な平面状であってもよい。 [0045] 尚、本発明において、粗面化部とプリズム面とは粗面化度の程度によって区別され 、粗面化度の程度の大きい部分を粗面化部といい、鏡面または粗面化度の程度の 小さレ、部分をプリズム面とレ、う。 [0044] The entire shape of the XZ cross section excluding the shape based on the fine structure of the roughened portion 412 (or the shape based on the fine structure is averaged and connected by a smooth line) is as shown in FIG. A concave curve is formed downward. Alternatively, the overall shape of the XZ cross section of the roughened portion 412 may be a planar shape parallel to the XY plane. In the present invention, the roughened portion and the prism surface are distinguished from each other by the degree of roughening, and the portion having a large degree of roughening is called a roughened portion, which is a mirror surface or roughened surface. The small part of the degree is the prism surface.
[0046] プリズム部 44は、例えば活性エネルギー線硬化樹脂からなり、面光源装置の輝度 を向上させる等の点から、高い屈折率を有するものが好ましぐ具体的には、その屈 折率が 1. 55以上、さらに好ましくは 1. 6以上である。プリズム部 44を形成する活性 エネルギー線硬化樹脂としては、紫外線、電子線等の活性エネルギー線で硬化させ たものであれば特に限定されるものではなレ、が、例えば、ポリエステル類、エポキシ 系樹脂、ポリエステル (メタ)アタリレート、エポキシ (メタ)アタリレート、ウレタン (メタ)ァ タリレート等の(メタ)アタリレート系樹脂等が挙げられる。中でも、(メタ)アタリレート系 樹脂がその光学特性等の観点から特に好ましい。このような硬化樹脂に使用される 活性エネルギー線硬化性組成物としては、取扱レ、性や硬化性等の点で、多官能ァク リレートおよび/または多官能メタタリレート(以下、多価 (メタ)アタリレートと記載)、モ ノアクリレートおよび/またはモノメタタリレート(以下、モノ (メタ)アタリレートと記載)、 および活性エネルギー線による光重合開始剤を主成分とするものが好ましい。代表 的な多官能 (メタ)アタリレートとしては、ポリオールポリ(メタ)アタリレート、ポリエステ ルポリ(メタ)アタリレート、エポキシポリ(メタ)アタリレート、ウレタンポリ(メタ)アタリレー ト等が挙げられる。これらは、単独あるいは 2種以上の混合物として使用される。また 、モノ(メタ)アタリレートとしては、モノアルコールのモノ(メタ)アクリル酸エステル、ポリ オールのモノ(メタ)アクリル酸エステル等が挙げられる。  [0046] The prism portion 44 is made of, for example, an active energy ray-curable resin and preferably has a high refractive index from the viewpoint of improving the luminance of the surface light source device. 1. 55 or more, more preferably 1.6 or more. The active energy ray curable resin for forming the prism portion 44 is not particularly limited as long as it is cured with active energy rays such as ultraviolet rays and electron beams. For example, polyesters, epoxy resins, etc. And (meth) acrylate resins such as polyester (meth) acrylate, epoxy (meth) acrylate and urethane (meth) acrylate. Among these, (meth) acrylate resins are particularly preferable from the viewpoint of optical properties and the like. The active energy ray-curable composition used for such a cured resin includes a polyfunctional acrylate and / or a polyfunctional metatalylate (hereinafter referred to as a polyvalent (meta)) in terms of handling property, properties and curability. It is preferable to use as a main component a monoacrylate and / or monomethacrylate (hereinafter referred to as mono (meth) acrylate) and a photopolymerization initiator by active energy rays. Typical polyfunctional (meth) acrylates include polyol poly (meth) acrylate, polyester poly (meth) acrylate, epoxy poly (meth) acrylate, urethane poly (meth) acrylate. These are used alone or as a mixture of two or more. Examples of mono (meth) acrylate include mono (meth) acrylates of monoalcohol, mono (meth) acrylates of polyol, and the like.
[0047] 以上、プリズムシート 4が透明基材 43とプリズム部 44とからなるものとして説明した が、本発明においては、プリズムシート 4は単一の材料からなるものであってもよい。 この場合、プリズムシート 4は、光透過率の高い合成樹脂から構成することができる。 このような合成樹脂としては、メタクリル樹脂、アクリル樹脂、ポリカーボネート系樹脂、 ポリエステル系樹脂、塩ィ匕ビュル系樹脂が例示できる。特に、メタクリル樹脂が、光透 過率の高さ、耐熱性、力学的特性、成形カ卩ェ性に優れており、最適である。このよう なメタクリル樹脂としては、メタクリル酸メチルを主成分とする樹脂であり、メタクリル酸 メチルが 80重量%以上であるものが好ましい。 [0048] 図 4に、プリズムシート 4による XZ面内での光偏向の様子を模式的に示す。この図 は、 XZ面内での導光体 3からのピーク光(出射光分布のピークに対応する光)の進 行方向の一例を示すものである。導光体 3の光出射面 33から角度 αで斜めに出射さ れるピーク光の大部分は、プリズム歹 Ij411の第 1のプリズム面 41 laへ入射し第 2のプ リズム面 411bによりほぼ内面全反射されてほぼ出光面 42の法線の方向に出射する 。また、ピーク光の一部分は、プリズム歹 IJ41 1の第 1のプリズム面 41 laへ入射し粗面 化部 412により拡散されて出光面 42から出射する。この光拡散は YZ面内においても なされる。また、ピーク光以外の光の一部は、粗面化部 412に直接入射して拡散され る。このような粗面化部 412での光拡散に基づき、所望の観察方向範囲への光量集 中作用及び良好な輝度むら改善作用が得られる。また、 YZ面内では、上記のような 導光体裏面 34のプリズム列の作用もあって、広範囲の領域において出光面 42の法 線の方向の輝度の十分な向上を図ることができる。 As described above, the prism sheet 4 is described as including the transparent base material 43 and the prism portion 44. However, in the present invention, the prism sheet 4 may be composed of a single material. In this case, the prism sheet 4 can be made of a synthetic resin having a high light transmittance. Examples of such a synthetic resin include methacrylic resin, acrylic resin, polycarbonate resin, polyester resin, and salt resin resin. In particular, methacrylic resin is optimal because of its high light transmittance, heat resistance, mechanical properties, and molding cacheability. Such a methacrylic resin is a resin containing methyl methacrylate as a main component, and methyl methacrylate is preferably 80% by weight or more. FIG. 4 schematically shows how the prism sheet 4 deflects light in the XZ plane. This figure shows an example of the traveling direction of peak light (light corresponding to the peak of the outgoing light distribution) from the light guide 3 in the XZ plane. Most of the peak light obliquely emitted at an angle α from the light emitting surface 33 of the light guide 3 is incident on the first prism surface 41 la of the prism 歹 Ij411 and is almost entirely in the inner surface by the second prism surface 411b. The light is reflected and emitted in the direction of the normal of the light exit surface 42. A part of the peak light is incident on the first prism surface 41 la of the prism IJ411, diffused by the roughening unit 412 and emitted from the light exit surface 42. This light diffusion is also done in the YZ plane. Further, part of the light other than the peak light is directly incident on the roughened portion 412 and diffused. Based on such light diffusion in the roughened portion 412, an effect of concentrating the amount of light in a desired observation direction range and an excellent effect of improving luminance unevenness can be obtained. In addition, in the YZ plane, there is the action of the prism row on the back surface 34 of the light guide as described above, so that the luminance in the normal direction of the light exit surface 42 can be sufficiently improved in a wide range.
[0049] 尚、プリズムシート 4のプリズム列 411のプリズム面 41 la, 41 lbの形状は、単一平 面に限られず、例えば断面凸多角形状または凸曲面形状とすることができ、これによ り、一層の高輝度化や狭視野化を図ることができる。  Note that the shape of the prism surfaces 41 la and 41 lb of the prism row 411 of the prism sheet 4 is not limited to a single flat surface, and can be, for example, a convex polygonal shape or a convex curved surface shape. Further, it is possible to further increase the brightness and narrow the visual field.
[0050] プリズムシート 4においては、所望のプリズム列形状を精確に作製し、安定した光学 性能を得るとともに、組立作業時や光源装置の使用時におけるプリズム列頂部の摩 耗ゃ変形を抑止する目的で、プリズム列の頂部に頂部平坦部あるいは頂部曲面部を 形成してもよい。この場合、頂部平坦部あるいは頂部曲面部の幅は、 3 / m以下とす ること力 液晶表示装置としての輝度の低下ゃスティキング現象による輝度の不均一 パターンの発生を抑止する観点から好ましぐより好ましくは頂部平坦部あるいは頂 部曲面部の幅は 2 μ m以下であり、さらに好ましくは 1 μ m以下である。  [0050] In the prism sheet 4, the desired prism array shape is accurately manufactured to obtain stable optical performance, and the purpose of suppressing wear and deformation of the top of the prism array during assembly work and use of the light source device Thus, a top flat portion or a top curved surface portion may be formed at the top of the prism row. In this case, the width of the top flat portion or the top curved surface portion should be 3 / m or less. It is preferable from the viewpoint of suppressing the occurrence of uneven brightness patterns due to sticking phenomenon as the brightness of the liquid crystal display device is reduced. More preferably, the width of the top flat portion or the top curved surface portion is 2 μm or less, and more preferably 1 μm or less.
[0051] 以上のようなプリズムシート 4は、プリズム列 411及び粗面化部 412を有するプリズ ム列形成面からなる入光面 41を転写形成する形状転写面を有する型部材を用いて 、合成樹脂シートの表面に対する賦形を行うことで、製造すること力 Sできる。この型部 材の作製に関して、図 5を参照しながら説明する。  The prism sheet 4 as described above is synthesized using a mold member having a shape transfer surface that transfers and forms a light incident surface 41 including a prism row forming surface having a prism row 411 and a roughened portion 412. Manufacturing power S can be achieved by shaping the surface of the resin sheet. The production of this mold part will be described with reference to FIG.
[0052] 先ず、図 5 (a)に示されるようにして、上記プリズム列 411のプリズム面 41 la, 411b に対応する形状の第 1の領域 411a", 411b"と粗面化部 412にほぼ対応する形状の 第 2の領域 412"とからなる形状転写面を持つ型部材 41 'を作製する。ここで、第 2の 領域 412"の形状につき「粗面化部 412にほぼ対応する」形状とは、後述のブラスト 処理により粗面化部 412に対応する形状が得られるような形状のことを指す。たとえ ば、第 2の領域 412"の形状は、第 1の領域 41 la", 41 lb"の形状(たとえば平面)を そのまま延長することで形成される形状とすることができる。 [0052] First, as shown in FIG. 5 (a), the first regions 411a ", 411b" having a shape corresponding to the prism surfaces 41la, 411b of the prism row 411 and the roughened portion 412 are substantially the same. Corresponding shape A mold member 41 ′ having a shape transfer surface composed of the second region 412 ″ is produced. Here, the shape of the second region 412 ″ substantially corresponds to the roughened portion 412 ”will be described later. This means that the shape corresponding to the roughened portion 412 can be obtained by blasting. For example, the shape of the second region 412 "can be a shape formed by extending the shape (for example, a plane) of the first region 41la", 41lb "as it is.
[0053] 次いで、型部材 41 'の形状転写面に対してブラスト処理を行うことで、第 2の領域 4 12"を、粗面化すると共に粗面化部 412に対応する形状となす。このようなブラスト処 理は、ブラスト粒子が型部材 41 'の第 1の領域 41 la", 411b"には実質上吹き付けら れず且つ第 2の領域 412"にのみ吹き付けられるようにして行われる。具体的には、 たとえば、型部材 41 'の凹部の奥には入り込まないような大きさ(粒径)のブラスト粒 子を用いて、ブラスト処理を実施する。ブラスト粒子の吹き付けを図 5 (b)に示される 断面に関して上方から行う場合には、プリズム列の頂角 Θとピッチ Pとに応じて、適切 な粒径範囲内のブラスト粒子 BPを使用すればよレ、。例えば、プリズム頂角 Θ力 ¾0〜 75度の場合には、粒径がピッチ Pの 0. 3倍以上のものを使用することが好ましい。ブ ラスト粒子 BPの粒径が大きすぎると粗面化度が小さくなるので、粒径は最大でもピッ チ Pの 5倍程度であるのが好ましい。ブラスト粒子 BPの粒径は、より好ましくはピッチ P の 1倍〜 4倍であり、更に好ましくはピッチ Pの 2倍〜 3倍である。ブラスト圧力は、使用 するブラスト粒子の材質及び粒径や、型部材 41 'の材質などに応じて適宜設定する ことができる力 たとえば 0· 01〜: IMPaを挙げること力 Sできる。以上のようなブラスト 処理を適宜の時間行うことで、図 5 (b)に示されるような、プリズム列に対応する形状 の第 1の領域 41 la' , 411b'と粗面化部に対応する形状の第 2の領域 412'とからな る形状転写面を持つ型部材 41 'が得られる。  Next, blasting is performed on the shape transfer surface of the mold member 41 ′, so that the second region 4 12 ″ is roughened and has a shape corresponding to the roughened portion 412. Such a blasting process is performed such that the blast particles are not substantially sprayed to the first regions 41 la ″ and 411b ″ of the mold member 41 ′ and are sprayed only to the second regions 412 ″. Specifically, for example, blasting is performed using blast particles having a size (particle size) that does not enter the depth of the recess of the mold member 41 ′. When the blast particles are sprayed from above with respect to the cross section shown in Fig. 5 (b), depending on the apex angle Θ and pitch P of the prism row, blast particles BP within an appropriate particle size range should be used. Yo! For example, when the prism apex angle Θ force is ¾0 to 75 degrees, it is preferable to use a particle having a particle diameter of 0.3 times pitch P or more. When the particle size of the blast particle BP is too large, the degree of roughening becomes small. Therefore, the particle size is preferably about 5 times the pitch P at the maximum. The particle size of the blast particle BP is more preferably 1 to 4 times the pitch P, and still more preferably 2 to 3 times the pitch P. The blast pressure can be set as appropriate according to the material and particle size of the blast particles to be used, the material of the mold member 41 ′, etc. By performing the blasting process as described above for an appropriate time, it corresponds to the first regions 41 la ′ and 411b ′ having a shape corresponding to the prism row and the roughened portion as shown in FIG. A mold member 41 ′ having a shape transfer surface composed of the shape second region 412 ′ is obtained.
[0054] ブラスト処理においては、図 5 (c)に示されているように、ブラスト粒子 BPの吹き付け の向きを斜め方向にすることも可能である。この場合には、上記図 5 (b)の場合に比 ベて、ブラスト圧の制御の容易な、粒径の小さなブラスト粒子を使用することができる 。また、ブラスト粒子の吹き付けの角度を適宜設定することで、粗面化部に対応する 形状の第 2の領域 412'の幅を適宜設定することができる。  [0054] In the blasting process, as shown in Fig. 5 (c), the direction of spraying of the blast particles BP can be made oblique. In this case, it is possible to use blast particles having a small particle size, in which the blast pressure is easily controlled, as compared with the case of FIG. 5 (b). In addition, by appropriately setting the blast particle spraying angle, the width of the second region 412 ′ having a shape corresponding to the roughened portion can be appropriately set.
[0055] 以上の説明では、プリズム歹 Ij411のプリズム面 411a, 41 lbが光学的に十分に平 滑な面である場合が示されており、型部材 41 'の第 1の領域 41 la" , 41 lb"がブラス ト処理前において既にプリズム面 411 a, 41 lbに対応する形状に形成されており、こ の領域はブラスト処理の影響を殆ど受けなレ、。但し、ブラスト粒子には扁平な形状の ものが含まれることもあり、ブラスト処理の影響が第 1の領域 41 la", 411b"に及ぶこ ともある。そのような場合には、第 1の領域 411a", 41 lb"がブラスト処理により僅かに 粗面化されて第 1の領域 41 la' , 41 lb,とされる。即ち、プリズム列 411のプリズム面 411a, 41 lbは、粗面化部 412の表面より小さな粗面化度に僅かに粗面化されたも のとなる。 [0055] In the above description, the prism surfaces 411a and 41 lb of the prism 歹 Ij411 are optically sufficiently flat. A smooth surface is shown, and the first region 41 la ", 41 lb" of the mold member 41 'has already been formed into a shape corresponding to the prism surfaces 411a, 41 lb before blasting. This area is almost unaffected by blasting. However, the blast particles may include those having a flat shape, and the influence of the blast treatment may reach the first region 41 la ", 411b". In such a case, the first regions 411a "and 41 lb" are slightly roughened by blasting to form the first regions 41 la 'and 41 lb. That is, the prism surfaces 411a and 41 lb of the prism row 411 are slightly roughened to a roughening degree smaller than the surface of the roughened portion 412.
[0056] 一方、プリズム列 411のプリズム面 41 la, 411bを、意図的に粗面化部 412の表面 より小さな粗面化度に粗面化してもよい。この場合、型部材 41 'の第 1の領域 41 la" , 41 lb"はブラスト処理前においてプリズム面 41 la, 41 lbにほぼ対応する形状に形 成される。ここで、第 1の領域 411a", 41 lb"の形状につき「プリズム面 41 la, 411b にほぼ対応する」形状とは、ブラスト処理によりプリズム面 41 la, 41 lbに対応する形 状が得られるような形状のことを指す。そして、以上の説明のようなブラスト処理 (第 1 のブラスト処理)により第 2の領域 412"を粗面化することに加えて、粒径のより小さな ブラスト粒子を吹き付ける第 2のブラスト処理を行うことで、第 1の領域 41 la", 411b" を粗面化すると共にプリズム列 411のプリズム面 41 la, 41 lbに対応する形状となし 、且つ第 2の領域 412"を粗面化部 412に対応する形状となす。この第 2のブラスト処 理に使用されるブラスト粒子の粒径は、たとえばプリズム列の配列ピッチ Pの 0. 1倍 〜0. 5倍とすることができる。  On the other hand, the prism surfaces 41 la and 411b of the prism array 411 may be intentionally roughened to a roughening degree smaller than the surface of the roughened portion 412. In this case, the first regions 41 la "and 41 lb" of the mold member 41 'are formed in a shape substantially corresponding to the prism surfaces 41 la and 41 lb before blasting. Here, with respect to the shape of the first region 411a ", 41 lb", the shape "corresponds substantially to the prism surfaces 41 la, 411b" means that the shape corresponding to the prism surfaces 41 la, 41 lb is obtained by blasting. It refers to such a shape. Then, in addition to roughening the second region 412 "by the blasting process (first blasting process) as described above, the second blasting process for spraying blasting particles having a smaller particle size is performed. Thus, the first region 41 la ", 411b" is roughened, and the shape corresponding to the prism surfaces 41 la, 41 lb of the prism array 411 is formed, and the second region 412 "is roughened by the roughened portion 412. It becomes the shape corresponding to. The particle size of the blast particles used for the second blasting process can be, for example, 0.1 to 0.5 times the arrangement pitch P of the prism rows.
[0057] 以上のようにして作製される型部材と、平面状の形状転写面を持つ型部材とを用い て、合成樹脂成形を行うことで、プリズムシートを得ることができる。即ち、以上のよう にして作製される型部材を用レ、て合成樹脂シートの表面の賦形を行うことで、所要の プリズム列形成面を持つプリズムシートを得ることができる。この合成樹脂シートの表 面の賦形は、熱プレス、押出成形または射出成形等により行うことができる。  A prism sheet can be obtained by performing synthetic resin molding using the mold member produced as described above and the mold member having a planar shape transfer surface. That is, by using the mold member produced as described above and shaping the surface of the synthetic resin sheet, a prism sheet having a required prism array forming surface can be obtained. The surface of the synthetic resin sheet can be shaped by hot pressing, extrusion molding, injection molding or the like.
[0058] 図 6は、合成樹脂シートの賦形の他の実施形態を示す模式図である。  FIG. 6 is a schematic view showing another embodiment of shaping a synthetic resin sheet.
[0059] 図 6中、符号 7は、上記型部材 41 'と同等な形状転写面を円筒状外周面に形成し てなる型部材(ロール型)である。このロール型 7は、ァノレミニゥム、黄銅、鋼等の金属 力 なるものとすることができる。図 7は、ロール型 7の模式的斜視図である。円筒状口 ール 16の外周面には形状転写面 18が形成されている。この形状転写面 18の形成 のための上記のようなブラスト処理は、ロール型を回転させながら高い精度且つ良好 な生産性をもって行うことができる。図 8は、ロール型 7の変形例を示す模式的分解斜 視図である。この変形例においては、円筒状ロール 16の外周面に薄板状の型部材 1 5を巻き付けて固定している。この薄板状型部材 15は、上記型部材 41 'と同等なもの であり、外側の面に形状転写面が形成されている。この形状転写面の形成のための 上記のようなブラスト処理は、平面薄板状の型部材 15に対して行うこともできるが、円 筒状ロール 16の外周面に型部材 15を巻き付け固定してロール型とした後に該ロー ル型を回転させながら行うことで、高い精度をもって行うことができる。 In FIG. 6, reference numeral 7 denotes a mold member (roll mold) in which a shape transfer surface equivalent to the mold member 41 ′ is formed on a cylindrical outer peripheral surface. This roll type 7 is made of metal such as anorium, brass, steel, etc. It can be powerful. FIG. 7 is a schematic perspective view of the roll mold 7. A shape transfer surface 18 is formed on the outer peripheral surface of the cylindrical tool 16. The blasting process as described above for forming the shape transfer surface 18 can be performed with high accuracy and good productivity while rotating the roll mold. FIG. 8 is a schematic exploded perspective view showing a modified example of the roll mold 7. In this modification, a thin plate-shaped mold member 15 is wound around and fixed to the outer peripheral surface of the cylindrical roll 16. The thin plate-shaped mold member 15 is equivalent to the mold member 41 ′, and a shape transfer surface is formed on the outer surface. The blasting process as described above for forming the shape transfer surface can be performed on the flat thin plate-shaped mold member 15, but the mold member 15 is wound around and fixed to the outer peripheral surface of the cylindrical roll 16. It can be performed with high accuracy by rotating the roll mold after forming the roll mold.
[0060] 図 6に示されているように、ローノレ型 7には、その外周面即ち形状転写面に沿って 透明基材 9が供給されており、口ール型 7と透明基材 9との間に活性エネルギー線硬 化性組成物 10が樹脂タンク 12からノズル 13を経て連続的に供給される。透明基材 9 の外側には、供給された活性エネルギー線硬化性組成物 10の厚さを均一にさせる ためのエップロール 28が設置されている。ニップロール 28としては、金属製ロール、 ゴム製ロール等が使用される。また、活性エネルギー線硬化性組成物 10の厚さを均 一にさせるためには、エップロール 28の真円度、表面粗さ等について高い精度でカロ ェされたものが好ましぐゴム製ロールの場合にはゴム硬度が 60度以上の高い硬度 のものが好ましい。このニップロール 28は、活性エネルギー線硬化性組成物 10の厚 さを正確に調整することが必要であり、圧力機構 11によって操作されるようになって いる。この圧力機構 11としては、油圧シリンダー、空気圧シリンダー、各種ネジ機構 等が使用できるが、機構の簡便さ等の観点から空気圧シリンダーが好ましい。空気圧 は、圧力調整弁等によって制御される。  [0060] As shown in FIG. 6, a transparent substrate 9 is supplied along the outer peripheral surface, that is, the shape transfer surface, to the Ronole mold 7, and the mold 7 and the transparent substrate 9 In the meantime, the active energy ray-curable composition 10 is continuously supplied from the resin tank 12 through the nozzle 13. On the outside of the transparent substrate 9, an ep roll 28 for making the thickness of the supplied active energy ray-curable composition 10 uniform is installed. As the nip roll 28, a metal roll, a rubber roll or the like is used. Further, in order to make the thickness of the active energy ray-curable composition 10 uniform, it is preferable to use a rubber roll that is highly accurate with respect to the roundness, surface roughness, etc. of the ep roll 28. In this case, a rubber having a high hardness of 60 degrees or more is preferable. The nip roll 28 is required to accurately adjust the thickness of the active energy ray-curable composition 10 and is operated by the pressure mechanism 11. As the pressure mechanism 11, a hydraulic cylinder, a pneumatic cylinder, various screw mechanisms, and the like can be used, but a pneumatic cylinder is preferable from the viewpoint of simplicity of the mechanism. The air pressure is controlled by a pressure regulating valve.
[0061] ロール型 7と透明基材 9との間に供給される活性エネルギー線硬化性組成物 10は 、得られるプリズム部の厚さを一定にするために一定の粘度に保持することが好まし レ、。粘度範囲は、一般的には、 20〜3000mPa' Sの範囲の粘度とすることが好ましく 、さらに好ましくは 100〜1000mPa' Sの範囲である。活性エネルギー線硬化性組成 物 10の粘度を 20mPa' S以上とすることにより、プリズム部の厚さを一定にするため に二ップ圧を極めて低く設定したり成形スピードを極端に速くしたりする必要がなくな る。二ップ圧を極めて低くすると、圧力機構 11の安定作動ができなくなる傾向にあり、 プリズム部の厚さが一定しなくなる。また、成形スピードを極端に速くすると、活性エネ ルギ一線の照射量が不足し活性エネルギー線硬化性組成物の硬化が不十分となる 傾向にある。一方、活性エネルギー線硬化性組成物 10の粘度を 3000mPa ' S以下 とすることにより、ロール型の形状転写面構造の細部まで十分に硬化性組成物 10を 行き渡らせることができ、レンズ形状の精確な転写が困難となったり気泡の混入によ る欠陥が発生しやすくなつたり成形速度の極端な低下による生産性の悪化をもたらし たりすることがなくなる。このため、活性エネルギー線硬化性組成物 10の粘度を一定 に保持させるためには、硬化性組成物 10の温度制御が行えるように、樹脂タンク 12 の外部や内部にシーズヒーター、温水ジャケット等の熱源設備を設置しておくことが 好ましい。 [0061] The active energy ray-curable composition 10 supplied between the roll mold 7 and the transparent substrate 9 is preferably maintained at a constant viscosity in order to keep the thickness of the obtained prism portion constant. Ms. In general, the viscosity range is preferably in the range of 20 to 3000 mPa ′ S, and more preferably in the range of 100 to 1000 mPa ′ S. In order to make the thickness of the prism portion constant by setting the viscosity of the active energy ray-curable composition 10 to 20 mPa 'S or more. In addition, it is not necessary to set the dip pressure very low or to extremely increase the molding speed. If the dip pressure is extremely low, the pressure mechanism 11 tends to be unable to operate stably, and the thickness of the prism portion becomes unstable. Further, when the molding speed is extremely increased, the irradiation amount of the active energy line is insufficient, and the active energy ray-curable composition tends to be insufficiently cured. On the other hand, by setting the viscosity of the active energy ray-curable composition 10 to 3000 mPa'S or less, the curable composition 10 can be sufficiently distributed to the details of the roll-shaped shape transfer surface structure, and the lens shape can be accurately determined. Transfer is difficult, defects due to air bubbles are likely to occur, and productivity is not deteriorated due to an extremely low molding speed. Therefore, in order to keep the viscosity of the active energy ray curable composition 10 constant, a sheathed heater, a hot water jacket, etc. are provided outside or inside the resin tank 12 so that the temperature of the curable composition 10 can be controlled. It is preferable to install a heat source facility.
[0062] 活性エネルギー線硬化性組成物 10をロール型 7と透明基材 9との間に供給した後 、活性エネルギー線硬化性組成物 10が口ール型 7と透明基材 9との間に挟まれた状 態で、活性エネルギー線照射装置 14から活性エネルギー線を透明基材 9を通して 照射して、活性エネルギー線硬化性組成物 10を重合硬化し、ロール型 7に形成され た形状転写面の転写を行う。活性エネルギー線照射装置 14としては、化学反応用ケ ミカルランプ、低圧水銀ランプ、高圧水銀ランプ、メタルハライドランプ、可視光ハロゲ ンランプ等が使用される。活性エネルギー線の照射量としては、 200〜600nmの波 長の積算エネルギーが 0.:!〜 50j/cm2となる程度とすることが好ましい。また、活性 エネルギー線の照射雰囲気としては、空気中でもよいし、窒素やアルゴン等の不活 性ガス雰囲気下でもよい。次いで、透明基材 9 (上記透明基材 43)と活性エネルギー 線硬化樹脂で形成されたプリズム部(上記プリズム部 44)とからなるプリズムシートを ロール型 7から離型する。 [0062] After supplying the active energy ray-curable composition 10 between the roll mold 7 and the transparent substrate 9, the active energy ray-curable composition 10 is formed between the mouth mold 7 and the transparent substrate 9. The active energy ray irradiating device 14 irradiates the active energy ray through the transparent base material 9 to polymerize and cure the active energy ray curable composition 10, and the shape transfer formed on the roll mold 7 Transfer the surface. As the active energy ray irradiation device 14, a chemical reaction chemical lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, a visible light halogen lamp, or the like is used. The irradiation amount of the active energy ray is preferably such that the integrated energy of the wavelength of 200 to 600 nm is 0.:! To 50 j / cm 2 . The irradiation atmosphere of active energy rays may be air or an inert gas atmosphere such as nitrogen or argon. Next, the prism sheet composed of the transparent substrate 9 (the transparent substrate 43) and the prism portion (the prism portion 44) formed of an active energy ray-curable resin is released from the roll die 7.
[0063] 以上のような一次光源 1、光源リフレクタ 2、導光体 3及び光反射素子 5を含んでな る面光源装置と、プリズムシート 4付きの透過型液晶表示素子 8とにより、本発明の液 晶表示装置が構成される。液晶表示装置は、図 1または図 2における上方力 観察 者により観察される。 [0064] 本実施形態においては、プリズムシート 4が上記のような特徴を持つので、液晶表 示装置における輝度むらが改善され、し力も輝度低下は少ない。特に、本実施形態 では、プリズムシート 4において、光偏向機能への寄与の大きいプリズム列 411の頂 部及びその近傍は鏡面または粗面化度の小さな粗面が形成されており、光偏向機 能への寄与の小さい隣接プリズム列間部分に粗面化度の大きな粗面化部 412を形 成しているので、所要の光偏向機能を良好に発揮しながら、上記輝度むら等の光学 欠陥の隠蔽の機能をも良好に発揮することができる。 The present invention includes the surface light source device including the primary light source 1, the light source reflector 2, the light guide 3, and the light reflecting element 5 as described above, and the transmissive liquid crystal display element 8 with the prism sheet 4. A liquid crystal display device is constructed. The liquid crystal display device is observed by an upward force observer in FIG. 1 or FIG. [0064] In the present embodiment, since the prism sheet 4 has the above-described characteristics, the luminance unevenness in the liquid crystal display device is improved, and the force is less reduced in luminance. In particular, in this embodiment, the prism sheet 4 has a mirror surface or a rough surface with a small degree of roughening formed at the top and the vicinity of the prism row 411 that greatly contributes to the light deflection function. The rough surface 412 having a large surface roughness is formed in the portion between adjacent prism rows that contributes little to the The concealment function can also be exhibited well.
[0065] 図 11は本発明によるプリズムシート付き液晶表示素子を構成するプリズムシートの 一つの実施形態の模式的部分拡大断面図であり、図 12はその模式的部分拡大底 面図である。これらの図において、上記図 1〜8におけると同様の機能を有する部材 または部分には同一の符号が付されている。  FIG. 11 is a schematic partial enlarged cross-sectional view of one embodiment of a prism sheet constituting the liquid crystal display element with a prism sheet according to the present invention, and FIG. 12 is a schematic partial enlarged bottom view thereof. In these drawings, members or portions having the same functions as in FIGS. 1 to 8 are given the same reference numerals.
[0066] これらの図に示されているように、本実施形態のプリズムシートは、プリズム列形成 面である入光面 41が複数のプリズム歹 IJ411を互いに平行に Y方向に延在するように 配列することで形成されている点では、上記実施形態のものと同様である。また、プリ ズム列形成面 41は、互いに隣接するプリズム歹 1J411の間にて Y方向に延在する谷部 412Aを有している。谷部 412Aの幅 WAは、上記実施形態の粗面化部 412の幅 W と同様に、プリズム列 411の配列ピッチ Pの 0. 04倍〜 0. 5倍であるのが好ましぐ 0. 08倍〜 0. 3倍であるのが更に好ましぐ 0. 1倍〜 0. 2倍であるのが特に好ましい。 図 11及び 12におレ、て、プリズム列 411の稜線は符号 413で指示されてレ、る。  [0066] As shown in these drawings, in the prism sheet of the present embodiment, the light incident surface 41, which is the prism row forming surface, extends the plurality of prisms IJ411 in parallel to each other in the Y direction. In the point formed by arranging, it is the same as that of the said embodiment. The prism row forming surface 41 has a trough portion 412A extending in the Y direction between adjacent prisms 1J411. The width WA of the valley 412A is preferably 0.04 times to 0.5 times the arrangement pitch P of the prism rows 411, similarly to the width W of the roughened portion 412 of the above embodiment. It is more preferable that the ratio is 08 times to 0.3 times. It is particularly preferable that the ratio is 0.1 times to 0.2 times. 11 and 12, the ridge line of the prism row 411 is indicated by reference numeral 413.
[0067] 谷部 412Aは、その断面形状が不規則に形成されている。ここで、不規則とは、所 定の大きさの領域(ドメイン)内でプリズム列 411の延在方向(Y方向)及び配列方向( X方向)の双方に関してプリズム列配列ピッチ P程度ごとに採られる断面形状のパタ ーンが、任意の 2つの領域同士で異なることを意味する。上記領域の所定の大きさは 、 Y方向及び X方向のそれぞれに関して 500 z mとすることができる。プリズム列 411 の配列ピッチ Pが 100 z mの場合について説明すれば、図 12に示されているように、 X方向座標 xl〜x5のそれぞれに存在する谷部 412Aは、 X方向にプリズム列配列ピ ツチ Pごとに連続して配置される。これら 5個の連続配置の谷部 412Aのそれぞれに ついて、プリズム列配列ピッチ Pを隔てられた Y方向座標 yl〜y5のそれぞれの面で 切断した 5個の断面形状を採る。即ち、総計で、 XY座標が(xl , yl)から (x5, y5)ま でについての 25個の断面形状を採る。この 25個の断面形状の組からなるパターンを 持つ領域を 1ドメインとして、任意の 2つのドメインの 25個の断面形状の組からなるパ ターン同士が同一でないとき、谷部断面形状が不規則であるという。ここで、各ドメイ ンの 25個の断面形状同士に関しては、半数以上(すなわち 13個以上)が他のいず れの断面形状とも異なるのが好ましぐ更に好ましくは 25個の全ての断面形状が他 のレ、ずれの断面形状とも異なる。 [0067] The trough portion 412A has an irregular cross-sectional shape. Here, the irregularity is taken for each prism array arrangement pitch P in both the extending direction (Y direction) and the array direction (X direction) of the prism array 411 within an area (domain) of a predetermined size. This means that the pattern of the cross-sectional shape is different between any two regions. The predetermined size of the region may be 500 zm for each of the Y direction and the X direction. If the arrangement pitch P of the prism array 411 is 100 zm, as shown in FIG. 12, the valley 412A existing in each of the X-direction coordinates xl to x5 has a prism array array pin in the X direction. It is arranged continuously for every P. For each of these five continuously arranged valleys 412A, on each surface of the Y-direction coordinates yl to y5 separated by the prism array arrangement pitch P. Take 5 cut sections. That is, in total, 25 cross-sectional shapes with XY coordinates from (xl, yl) to (x5, y5) are taken. When the region having the pattern of 25 cross-sectional shapes is defined as one domain and the patterns of 25 cross-sectional shapes of any two domains are not the same, the valley cross-sectional shape is irregular. That is. Here, with respect to the 25 cross-sectional shapes of each domain, it is preferable that more than half (ie, 13 or more) are different from any other cross-sectional shape, and more preferably all 25 cross-sectional shapes. However, it is different from other cross sections.
[0068] ここで、谷部断面形状が異なるとは、上記図 4に関し説明したような導光体 3からの 到来光を反射または屈折させる光学機能において有意差が生ずる程度に異なること を意味する。たとえばバイトを用いて合成樹脂部材を機械的に切削したままの状態の プリズム列において、その延在方向に配列ピッチ Pだけ隔てた位置の 2つの断面形 状を採ったときには、該断面形状同士は実質上同一であり光学機能上の差異は実 質上ない。これに対して、谷部断面形状が異なるとは、そのような程度の形状及び光 学機能の同一性がない場合を指すものである。図 13に、谷部 412Aの XZ断面形状 を示す。図 13において、 (a) , (b)は互いに異なる谷部断面形状を示す。  Here, the fact that the cross-sectional shapes of the valleys are different means that the differences in the optical functions for reflecting or refracting the incoming light from the light guide 3 as described with reference to FIG. 4 are significant. . For example, in a prism row in which a synthetic resin member is mechanically cut using a cutting tool, when two cross-sectional shapes separated by an arrangement pitch P in the extending direction are taken, the cross-sectional shapes are There is virtually no difference in optical function. On the other hand, the fact that the cross-sectional shapes of the valleys are different means that the shape and optical function are not identical. Figure 13 shows the XZ cross-sectional shape of the valley 412A. In FIG. 13, (a) and (b) show different valley cross-sectional shapes.
[0069] 以上、プリズム歹 IJ411の配列ピッチ Pが 100 μ mの場合について説明した力 プリズ ム歹 IJ411の配列ピッチ Pが 50 /i mの場合には、総計で、 XY座標が(xl , yl)から(x 10, ylO)までについての 100個の断面形状を採る。この 100個の断面形状の組か らなるパターンを持つ領域を 1ドメインとして、任意の 2つのドメインの 100個の断面形 状の組からなるパターン同士が同一でないとき、谷部断面形状が不規則であるという 。ここで、各ドメインの 100個の断面形状同士に関しては、半数以上 (すなわち 50個 以上)の断面形状が他のいずれの断面形状とも異なるのが好ましぐ更に好ましくは 100個の全ての断面形状が他のいずれの断面形状とも異なる。  [0069] The force described above when the arrangement pitch P of the prism 歹 IJ411 is 100 μm. When the arrangement pitch P of the prism 歹 IJ411 is 50 / im, the total XY coordinates are (xl, yl) To 100 (x 10, ylO). If the region having a pattern of 100 cross-sectional shapes is defined as one domain and the patterns of 100 cross-sectional shapes of any two domains are not the same, the cross-sectional shape of the valley is irregular. It is said. Here, with respect to the 100 cross-sectional shapes of each domain, it is preferable that more than half (ie, 50 or more) cross-sectional shapes are different from any other cross-sectional shape, more preferably all 100 cross-sectional shapes. Is different from any other cross-sectional shape.
[0070] 以上のような不規則な断面形状の谷部 412Aは、上記実施形態で説明したようなプ リズム列配列ピッチの 0. 3倍〜 5倍の平均粒径を持つブラスト粒子でブラスト処理さ れた形状転写面を有する型部材を用いて、合成樹脂シートの表面に対する賦形を行 うことで、形成すること力できる。尚、図 11〜: 13に関する説明では、谷部 412Aの微 細構造については言及していなレ、が、谷部 412Aは上記実施形態で説明したような 表面粗さの微細構造を有してレ、てもよレ、。 [0070] The trough 412A having an irregular cross-sectional shape as described above is blasted with blast particles having an average particle diameter of 0.3 to 5 times the prism row arrangement pitch as described in the above embodiment. A forming member can be formed by shaping the surface of the synthetic resin sheet using a mold member having a shaped transfer surface. 11 to 13 do not mention the fine structure of the valley 412A, but the valley 412A is as described in the above embodiment. It has a fine structure of surface roughness.
[0071] 本実施形態のプリズムシートを用いて上記実施形態と同様にしてプリズムシート付 き液晶表示素子及びそれを用いた液晶表示装置を構成した場合には、プリズムシー トのプリズム列形成面 41が不規則な断面形状の谷部 412Aを有することで、導光体 力 の到来光を不規則に拡散または反射するので、導光体の表面構造を視認しにく くすることができる。特に、本実施形態では、プリズムシート 4において、光偏向機能 への寄与の大きいプリズム列 411の頂部及びその近傍は鏡面または粗面化度の小 さな粗面が形成されており、光偏向機能への寄与の小さい隣接プリズム列間部分に 不規則な断面形状の谷部 412Aを形成しているので、所要の光偏向機能を良好に 発揮しながら、上記導光体の表面構造の視認等による光学欠陥を隠蔽する機能をも 良好に発揮することができる。  When a prism sheet-attached liquid crystal display element and a liquid crystal display device using the same are configured using the prism sheet of this embodiment in the same manner as in the above-described embodiment, the prism array forming surface 41 of the prism sheet is used. By having the valley 412A having an irregular cross-sectional shape, the incoming light of the light guide force is irregularly diffused or reflected, so that it is difficult to visually recognize the surface structure of the light guide. In particular, in the present embodiment, the prism sheet 4 has a mirror surface or a rough surface with a small degree of roughness formed on the top and the vicinity of the prism row 411 that greatly contributes to the light deflection function. The trough 412A having an irregular cross-sectional shape is formed in the portion between adjacent prism rows that has a small contribution to the surface, so that the surface structure of the light guide can be visually confirmed while performing the required light deflection function satisfactorily. The function of concealing optical defects can also be exhibited well.
[0072] 本実施形態によれば、プリズム列の断面形状は維持しつつ谷部の断面形状のみ不 規則なものとするという簡便な手段で、即ち製造面においては型部材に対するブラス ト加工を追加するという簡便な手段にて、低コストで、輝度低下少なく且つスペックル を生じさせることなぐ導光体等の構造などに起因する輝度むら等の原因となる光学 欠陥を隠蔽することができる。  [0072] According to the present embodiment, a simple means of making only the cross-sectional shape of the valley portion irregular while maintaining the cross-sectional shape of the prism row, that is, adding blasting to the mold member on the manufacturing surface. By simple means, it is possible to conceal optical defects that cause luminance unevenness due to the structure of a light guide or the like that does not cause a decrease in luminance and causes speckles at low cost.
[0073] 図 14は、本発明によるプリズムシート付き液晶表示素子を用いた液晶表示装置の 一つの実施形態を示す模式的一部切欠斜視図である。これらの図において、上記 図 1〜8及び 11〜: 13におけると同様の機能を有する部材または部分には同一の符 号が付されている。  FIG. 14 is a schematic partially cutaway perspective view showing one embodiment of a liquid crystal display device using a liquid crystal display element with a prism sheet according to the present invention. In these drawings, members or portions having the same functions as those in FIGS. 1 to 8 and 11 to 13 are denoted by the same reference numerals.
[0074] 本実施形態では、一次光源 1として発光ダイオード (LED)などの点状光源を使用 している。矩形板状の導光体 3の 1つの隅部が切欠かれて、ここに光入射端面 31が 形成されている。一次光源 1は、光入射端面に対向するように配置されている。導光 体の光出射面 33には、上記実施形態と同様に光出射機構が形成されている。  In this embodiment, a point light source such as a light emitting diode (LED) is used as the primary light source 1. One corner of the rectangular plate-shaped light guide 3 is cut out, and a light incident end face 31 is formed here. The primary light source 1 is disposed so as to face the light incident end face. On the light emitting surface 33 of the light guide, a light emitting mechanism is formed as in the above embodiment.
[0075] 本実施形態では、プリズムシート 4の入光面 41に形成されたプリズム列 411は、導 光体 3の光入射端面 31の形成された隅部を中心とする同心円状に並列配置されて いる。このような複数のプリズム列の配列も、本明細書では、互いに略平行であるもの とする。 [0076] 本実施形態においては、光出射面 33と平行な面内に関しては、一次光源 1から発 せられる光は発散光束であり、光入射端面 31に入射して導光体 3内に導入された光 は、一次光源 1を略中心として略放射状に進行し、光出射面 33から出射する際も同 様に略放射状に出射する。上記のようにプリズムシート 4の入光面のプリズム列 411 が同心円状に配列されているので、入光面 41に入射しプリズムシート 4に導入された 光は、上記実施形態にて説明したと同様にして、導光体光出射面 33の略法線方向 に偏向されて出光面 42から出光する。本実施形態においても、プリズムシート 4の入 光面 41に形成された複数のプリズム歹 IJ411の隣接するもの同士の間には不規則な 形状の谷部 412Aが形成されている。 In the present embodiment, the prism rows 411 formed on the light incident surface 41 of the prism sheet 4 are arranged in parallel concentrically around the corner where the light incident end surface 31 of the light guide 3 is formed. ing. In this specification, the arrangement of such a plurality of prism rows is also substantially parallel to each other. In the present embodiment, the light emitted from the primary light source 1 is a divergent light beam in the plane parallel to the light emitting surface 33 and is incident on the light incident end surface 31 and introduced into the light guide 3. The emitted light travels substantially radially about the primary light source 1 and is also emitted substantially radially when exiting from the light exit surface 33. Since the prism rows 411 on the light incident surface of the prism sheet 4 are concentrically arranged as described above, the light incident on the light incident surface 41 and introduced into the prism sheet 4 is described in the above embodiment. Similarly, the light is deflected in a substantially normal direction of the light guide light emitting surface 33 and emitted from the light emitting surface 42. Also in the present embodiment, irregularly shaped valleys 412A are formed between adjacent ones of the plurality of prisms IJ411 formed on the light incident surface 41 of the prism sheet 4.
[0077] 本実施形態においてプリズム歹 ½11の延在方向(円弧の各位置での接線の方向) と直交する断面(一次光源を通る断面)で見たときの光の振る舞いは、上記の実施形 態でプリズム列 411の延在方向と直交する断面 (XZ断面)で見たときの光の振る舞い と同様である。従って、プリズム歹 IJ411と谷部 412Aとの寸法上の関係は、これらの断 面で見たときには、上記実施形態と同様である。  In this embodiment, the behavior of light when viewed in a cross-section (cross-section passing through the primary light source) orthogonal to the extending direction of the prism ridge 11 (direction of tangent at each position of the arc) is the above-described embodiment. This is similar to the behavior of light when viewed in a cross section (XZ cross section) perpendicular to the extending direction of the prism row 411. Accordingly, the dimensional relationship between the prism IJ411 and the valley 412A is the same as that of the above embodiment when viewed from these cross sections.
[0078] 以上の実施形態では、接合材 86によるプリズムシート 4と液晶表示素子 8との接合 が対向する面の全体にわたってなされてレ、るものとしてレ、るが、本発明におレ、ては、 この接合は、プリズムシート 4と液晶表示素子 8との対向する面の一部においてなされ ていてもよい。例えば、周縁部分においてのみ接合材による接着を行ってもよい。更 に、本発明においては、プリズムシート 4と液晶表示素子 8との接合には接合材による 接着以外の手法を用いてもよい。このような手法としては、機械的挟圧手段による周 縁部分の挟圧保持が例示される。  In the above embodiment, the bonding of the prism sheet 4 and the liquid crystal display element 8 by the bonding material 86 is performed over the entire facing surface. However, in the present invention, This bonding may be performed on a part of the opposing surface of the prism sheet 4 and the liquid crystal display element 8. For example, you may adhere | attach by a joining material only in a peripheral part. Furthermore, in the present invention, a method other than bonding using a bonding material may be used for bonding the prism sheet 4 and the liquid crystal display element 8. An example of such a method is holding the pressure at the peripheral portion by the mechanical pressure means.
実施例  Example
[0079] 以下、本発明を実施例により更に具体的に説明する。  [0079] Hereinafter, the present invention will be described more specifically with reference to Examples.
[0080] [実施例 1]  [0080] [Example 1]
厚さ 1 · Omm, 400mm X 690mmの JIS黄 ί同 3種の薄板の表面に、図 5 (a)に関し 説明したようなプリズム列形成面の形状にほぼ対応した形状の形状転写面を形成し た。ここで、 目的とするプリズム列形成面の形状は、図 3に示されるように、ピッチ P = 50 /i m、頂角 Θ = 65°のプリズム列 411が多数並列して配置されたものであって、粗 面化部 412の幅 W= 20 μ ΐηのものである。また、図 5 (a)に示される型部材の形状転 写面の第 2の領域 412"の形状は、第 1の領域 411a", 41 lb"の平面形状を延長し たものに対応する形状である。 A shape transfer surface with a shape almost corresponding to the shape of the prism array formation surface as described with reference to Fig. 5 (a) is formed on the surface of three types of thin plates with a thickness of 1 Omm, 400 mm X 690 mm. It was. Here, as shown in FIG. 3, the shape of the target prism array forming surface is that a large number of prism arrays 411 having a pitch P = 50 / im and an apex angle Θ = 65 ° are arranged in parallel. Rough The width of the chamfered portion 412 is W = 20 μΐη. In addition, the shape of the second region 412 "of the shape transfer surface of the mold member shown in Fig. 5 (a) corresponds to an extension of the planar shape of the first regions 411a" and 41 lb ". It is.
[0081] この型部材の形状転写面に対して、中心粒径 45〜75 x mのガラスビーズからなる ブラスト粒子を用いてノズル吐出圧力 0. 07MPaで吹き付けることでブラスト処理を行 レ、、図 5 (b)に関し説明したような第 2の領域 412'の形状を形成した。この第 2の領域 の粗面化度は、中心線平均粗さ Raが 0. 5 111で十点平均粗さ1^が1. 5 μ mであつ た。また、第 1の領域の粗面化度は、中心線平均粗さ Raが 0.: mで十点平均粗さ Rzが 0. であった。以上のようにして得られた型部材の形状転写面には無電解 ニッケルメツキを施した。  [0081] On the shape transfer surface of the mold member, blasting is performed by spraying with blast particles made of glass beads having a center particle diameter of 45 to 75 xm at a nozzle discharge pressure of 0.07 MPa. The shape of the second region 412 ′ as described with respect to (b) was formed. The roughness of the second region was a center line average roughness Ra of 0.5 111 and a 10-point average roughness of 1 ^ of 1.5 μm. Further, the roughness of the first region was such that the center line average roughness Ra was 0 .: m and the 10-point average roughness Rz was 0. The shape transfer surface of the mold member obtained as described above was subjected to electroless nickel plating.
[0082] 次いで、型部材を固定するため、図 8に示されるような直径 220mm、長さ 450mm のステンレス製の円筒状ロールを用意し、その外周面上に型部材 15を巻き付け、ネ ジで固定し、ロール型を得た。  Next, in order to fix the mold member, a stainless steel cylindrical roll having a diameter of 220 mm and a length of 450 mm as shown in FIG. 8 is prepared, and the mold member 15 is wound around the outer peripheral surface thereof with a screw. Fixed to obtain a roll type.
[0083] 図 6に示したように、ロール型 7に近接するようにゴム硬度 80° の NBR製ゴムロー ノレ 28を配置した。ロール型 7とゴムロール 28との間にロール型 7より若干幅の広い厚 さ 125 μ ΐηのポリエステルフィルム(透明基材) 9をロール型 7に沿って供給し、ゴム口 ール 28に接続した空気圧シリンダー 11により、ゴムロール 28とロール型 7との間でポ リエステルフィルム 9をニップした。この時の空気圧シリンダー 11の動作圧は 0. IMP aであった。空気圧シリンダー 11には、エアチューブ直径 32mmの SMC製エアシリ ンダーを使用した。さらに、ロール型 7の下方に紫外線照射装置 14を設置した。紫外 線照射装置 14は、 120W/ cmの紫外線強度を持ち、容量 9. 6kWのウェスタンクオ ーッ社製の紫外線照射ランプとコールドミラー型平行光リフレタター及び電源からな る。紫外線硬化性組成物 10は、屈折率調整用成分および触媒等を予め混合してお き、樹脂タンク 12に投入した。樹脂タンク 12は、紫外線硬化性組成物 10に接する部 分は全て SUS304からなるものとした。また、紫外線硬化性組成物 10の液温度を制 御するための温水ジャケット層を有しており、温調機により 40°Cに調整された温水を 温水ジャケット層に供給し、樹脂タンク 12内の紫外線硬化性組成物 10の液温を 40 。C ± 1。Cに保持にした。さらに、真空ポンプにより樹脂タンク 12内を真空状態にする ことにより、投入時に発生した泡を脱泡除去した。 As shown in FIG. 6, an NBR rubber roll 28 having a rubber hardness of 80 ° was disposed so as to be close to the roll mold 7. A polyester film (transparent substrate) 9 having a thickness of 125 μΐη, which is slightly wider than the roll mold 7, is supplied between the roll mold 7 and the rubber roll 28 along the roll mold 7 and connected to the rubber mold 28. The polyester film 9 was nipped between the rubber roll 28 and the roll mold 7 by the pneumatic cylinder 11. The operating pressure of the pneumatic cylinder 11 at this time was 0. IMP a. As the pneumatic cylinder 11, an SMC air cylinder with an air tube diameter of 32 mm was used. Further, an ultraviolet irradiation device 14 was installed below the roll mold 7. The ultraviolet irradiation device 14 has an ultraviolet intensity of 120 W / cm, a capacity of 9.6 kW, a UV irradiation lamp manufactured by Western Quart, a cold mirror type parallel light reflector and a power source. The ultraviolet curable composition 10 was mixed with a refractive index adjusting component, a catalyst, and the like in advance, and charged into the resin tank 12. The resin tank 12 was made of SUS304 at all the portions in contact with the ultraviolet curable composition 10. In addition, it has a hot water jacket layer for controlling the liquid temperature of the ultraviolet curable composition 10, and hot water adjusted to 40 ° C by a temperature controller is supplied to the hot water jacket layer, and the resin tank 12 The liquid temperature of the UV curable composition 10 is 40. C ± 1. C was held. Furthermore, the resin tank 12 is evacuated by a vacuum pump. Thus, bubbles generated at the time of charging were removed.
[0084] 紫外線硬化性組成物 10は以下の通りで、粘度は 300mPa ' S/25°Cに調整した。  [0084] The ultraviolet curable composition 10 was as follows, and the viscosity was adjusted to 300 mPa'S / 25 ° C.
[0085] フエノキシェチルアタリレート(大阪有機化学工業社製ビスコート # 192) : 50重 量部 [0085] Phenoxetyl Atylate (Biscoat # 192, Osaka Organic Chemical Industry Co., Ltd.): 50 parts by weight
ビスフエノール A—ジエポキシ一アタリレート(共栄社油脂化学工業社製ェポキ シエステノレ 3000A): 50重量部  Bisphenol A-diepoxy monoacrylate (Epoxy Cisternol 3000A manufactured by Kyoeisha Yushi Chemical Co., Ltd.): 50 parts by weight
2—ヒドロキシ _ 2—メチル一 1 _フエニル一プロパン一 1—オン(チバガイギー 社製ダロキュア 1 173) : 1 . 5重量部  2-Hydroxy_2-Methyl-1- 1-Phenyl-1-Propane-1-one (Ciba Geigy Darocur 1 173): 1.5 parts by weight
[0086] 樹脂タンク 12内を常圧に戻し、タンクを密閉した後、樹脂タンク 12内に 0. 02MPa の空気圧をかけ、樹脂タンク 12の下部にあるバルブを開くことにより、紫外線硬化性 組成物 10を温度制御された配管を通し、同じく温度制御された供給ノズル 13から、 ゴムロール 28によりロール型 7へとニップされているポリエステルフィルム 9上に供給 した。供給ノズル 13は、岩下エンジニアリング社製の MN— 18— G13ニードルを取り 付けた同社製の AV101バルブを使用した。三菱電機製 0 · 2kWギアドモーター(減 速比 1/200)で毎分 3. 5mの速度でロール型 7を回転させながら、紫外線硬化性組 成物 10がロール型 7とポリエステルフィルム 9との間に挟まれた状態で、紫外線照射 装置 14から紫外線を照射し、紫外線硬化性組成物 10を重合硬化させロール型 7の 形状転写面のプリズム列パターンを転写させた。その後、ロール型 7より離型し、プリ ズムシートを得た。 [0086] After the inside of the resin tank 12 is returned to normal pressure, the tank is sealed, an air pressure of 0.02 MPa is applied to the resin tank 12, and the valve at the lower part of the resin tank 12 is opened, whereby an ultraviolet curable composition is obtained. 10 was passed through a temperature-controlled pipe and supplied from a supply nozzle 13 which was also temperature-controlled onto a polyester film 9 which was nipped into a roll mold 7 by a rubber roll 28. The supply nozzle 13 used was an AV101 valve manufactured by Iwashita Engineering Co., Ltd., which was equipped with a MN-18-G13 needle. While the roll mold 7 is rotated at a speed of 3.5 m per minute with a 0 · 2kW geared motor (reduction ratio 1/200) manufactured by Mitsubishi Electric, the UV curable composition 10 becomes the roll mold 7 and the polyester film 9 In the state of being sandwiched between the two, the ultraviolet ray irradiation device 14 was irradiated with ultraviolet rays to polymerize and cure the ultraviolet curable composition 10 to transfer the prism row pattern on the shape transfer surface of the roll mold 7. Thereafter, it was released from the roll mold 7 to obtain a prism sheet.
[0087] 得られたプリズムシートの断面を走査型電子顕微鏡(日本電子社衡 SM— 840A、 2000倍)で確認したところ、粗面化部の幅 Wは 20 /i mであり、所望の構成を持つも のであることが分かった。このプリズムシートのプリズム列形成面に粘着保護シートを 貼付した。  [0087] When the cross section of the obtained prism sheet was confirmed with a scanning electron microscope (JEOL Ltd. SM-840A, 2000 times), the width W of the roughened portion was 20 / im, and the desired configuration was obtained. It turns out that it has. An adhesive protective sheet was attached to the prism row forming surface of this prism sheet.
[0088] さらに、得られたプリズムシートを、粘着保護シートを剥離した後に、冷陰極管を側 面に配置したアクリル樹脂製導光体の光出射面上に、プリズム列形成面が下向きと なるように載置し、他の側面および裏面を反射シートで覆レ、、 14. 1インチ液晶表示 素子用の面光源を得た。この面光源において、冷陰極管を点灯させて発光面(プリ ズムシートの出光面)を観察した。その結果、輝度むらは視認されず、光学的隠蔽に 優れたものであった。また、この面光源において、冷陰極管を点灯させて発光面の輝 度分布(XZ面内の分布及び YZ面内の分布)を測定した。その結果を図 9及び図 10 に示す。 XZ面内の分布では、ピーク輝度値が 2534cd/m2で、ピーク角度は— 3. 7 度で、半値幅は 21度であった。また、 YZ面内の分布では、ピーク輝度値が 2377cd /m2で、ピーク角度は—3. 0度で、半値幅は 41度であった。 [0088] Further, after removing the adhesive protective sheet from the obtained prism sheet, the prism row forming surface is directed downward on the light emission surface of the acrylic resin light guide having the cold cathode tube arranged on the side surface. The other side surface and back surface were covered with a reflection sheet, and a surface light source for a 14.1-inch liquid crystal display device was obtained. In this surface light source, the cold cathode tube was turned on and the light emitting surface (light emitting surface of the prism sheet) was observed. As a result, the brightness unevenness is not visually recognized, and it is optically concealed. It was excellent. In this surface light source, the cold-cathode tube was turned on to measure the luminance distribution (distribution in the XZ plane and distribution in the YZ plane) of the light emitting surface. The results are shown in Figs. In the distribution in the XZ plane, the peak luminance value was 2534 cd / m 2 , the peak angle was -3.7 degrees, and the half width was 21 degrees. In the distribution in the YZ plane, the peak luminance value was 2377 cd / m 2 , the peak angle was −3.0 degrees, and the half-value width was 41 degrees.
[0089] 更に、ノートパソコン用の 14. 1インチ液晶表示素子の光入射側の面に、図 1及び 図 2に示されるようにして、接合材として軟質シリコン樹脂 (ゴム)を用いて上記プリズ ムシートの出光面を接合した。これにより、プリズムシート付き液晶表示素子を形成し 、液晶表示装置を得た。冷陰極管を点灯させ且つ液晶表示素子を駆動させて、該液 晶表示素子に表示される白画面を観察した。その結果、輝度むらは視認されず、光 学的隠蔽に優れたものであった。  [0089] Further, on the light incident side surface of the 14.1 inch liquid crystal display element for notebook computers, as shown in FIGS. 1 and 2, the above prism is formed using a soft silicon resin (rubber) as a bonding material. The light-emitting surface of the sheet was joined. Thereby, a liquid crystal display element with a prism sheet was formed, and a liquid crystal display device was obtained. The cold cathode tube was turned on and the liquid crystal display element was driven, and the white screen displayed on the liquid crystal display element was observed. As a result, the luminance unevenness was not visually recognized and was excellent in optical concealment.
[0090] [実施例 2]  [Example 2]
型部材の形状転写面に対するブラスト処理においてノズル吐出圧力を 0· 15MPa としたことを除いて、実施例 1と同様の工程を実行してプリズムシートを得た。ブラスト 処理後の型部材の第 2の領域の粗面化度は、中心線平均粗さ Raが 0. 8 μ ΐηで十点 平均粗さ Rzが 2. 6 μ ΐηであった。また、第 1の領域の粗面化度は、中心線平均粗さ Raが 0. 1 111で十点平均粗さ1¾が0. 5 /i mであった。また、得られたプリズムシート では、粗面化部の幅は 30 μ ΐηであった。このプリズムシートを用いて、実施例 1と同 様にして面光源を得た。この面光源において、実施例 1と同様にして冷陰極管を点 灯させて発光面を観察した。その結果、輝度むらは視認されず、光学的隠蔽に優れ たものであった。また、この面光源において、冷陰極管を点灯させて発光面の輝度分 布(XZ面内の分布及び YZ面内の分布)を測定した。その結果を図 9及び図 10に示 す。 XZ面内の分布では、ピーク輝度値が 2207cd/m2で、ピーク角度は一 9. 1度で 、半値幅は 20. 5度であった。また、 YZ面内の分布では、ピーク輝度値が 1466cd/ m2で、ピーク角度は— 4度で、半値幅は 42度であった。 A prism sheet was obtained by performing the same process as in Example 1 except that the nozzle discharge pressure was set to 0 · 15 MPa in the blasting process on the shape transfer surface of the mold member. As for the roughness of the second region of the die member after the blast treatment, the center line average roughness Ra was 0.8 μΐη and the ten-point average roughness Rz was 2.6 μΐη. The roughness of the first region was such that the center line average roughness Ra was 0.1111 and the ten-point average roughness 1¾ was 0.5 / im. Further, in the obtained prism sheet, the width of the roughened portion was 30 μΐη. Using this prism sheet, a surface light source was obtained in the same manner as in Example 1. With this surface light source, the cold cathode tube was turned on in the same manner as in Example 1 to observe the light emitting surface. As a result, the luminance unevenness was not visually recognized, and the optical concealment was excellent. In this surface light source, the cold cathode tube was turned on and the luminance distribution (distribution in the XZ plane and distribution in the YZ plane) of the light emitting surface was measured. The results are shown in Figs. In the XZ plane distribution, the peak luminance value was 2207 cd / m 2 , the peak angle was 9.1 degrees, and the half-value width was 20.5 degrees. In the distribution in the YZ plane, the peak luminance value was 1466 cd / m 2 , the peak angle was -4 degrees, and the half width was 42 degrees.
[0091] 更に、実施例 1と同様にして、液晶表示素子の光入射側の面にプリズムシートの出 光面を接合した。これにより、プリズムシート付き液晶表示素子を形成し、液晶表示装 置を得た。冷陰極管を点灯させ且つ液晶表示素子を駆動させて、該液晶表示素子 に表示される白画面を観察した。その結果、輝度むらは視認されず、光学的隠蔽に 優れたものであった。 Further, in the same manner as in Example 1, the light emitting surface of the prism sheet was bonded to the light incident side surface of the liquid crystal display element. Thus, a liquid crystal display element with a prism sheet was formed, and a liquid crystal display device was obtained. The cold cathode tube is turned on and the liquid crystal display element is driven, thereby the liquid crystal display element The white screen displayed on the screen was observed. As a result, the luminance unevenness was not visually recognized and was excellent in optical concealment.
[0092] [実施例 3]  [0092] [Example 3]
ブラスト処理を次のようにしたことを除いて、実施例 1と同様の工程を実行してプリズ ムシートを得た。即ち、型部材の形状転写面に対するブラスト処理において、中心粒 径 45〜75 μ mのガラスビーズからなるブラスト粒子を用いてノズノレ吐出圧力 0. 07M Paで吹き付ける第 1のブラスト処理を行った後に、中心粒径 10 μ mのガラスビーズか らなるブラスト粒子を用いてノズル吐出圧力 0. IMPaで吹き付ける第 2のブラスト処 理を行った。ブラスト処理後の型部材の第 2の領域の粗面化度は、中心線平均粗さ R aが 0. 6 111で十点平均粗さ1^が1. であった。また、第 1の領域の粗面化度 は、中心線平均粗さ Raが 0. 3 111で十点平均粗さ1¾が0. であった。また、得 られたプリズムシートでは、粗面化部の幅は 23 x mであった。このプリズムシートを用 いて、実施例 1と同様にして面光源を得た。この面光源において、実施例 1と同様に して冷陰極管を点灯させて発光面を観察した。その結果、輝度むらは視認されず、 光学的隠蔽に優れたものであつた。  A prism sheet was obtained by carrying out the same steps as in Example 1 except that the blast treatment was performed as follows. That is, in the blasting process for the shape transfer surface of the mold member, after performing the first blasting process using a blast particle made of glass beads having a central particle diameter of 45 to 75 μm and spraying at a nozzle discharge pressure of 0.07 MPa, A second blasting process was performed using blast particles made of glass beads with a central particle size of 10 μm and sprayed at a nozzle discharge pressure of 0. IMPa. The roughness of the second region of the die member after blasting was 0.6111 for the center line average roughness Ra and 1 for the 10-point average roughness 1 ^. As for the roughness of the first region, the center line average roughness Ra was 0.3111 and the ten-point average roughness 1¾ was 0. In the obtained prism sheet, the width of the roughened portion was 23 × m. Using this prism sheet, a surface light source was obtained in the same manner as in Example 1. In this surface light source, the cold cathode tube was turned on in the same manner as in Example 1 to observe the light emitting surface. As a result, the luminance unevenness was not visually recognized and was excellent in optical concealment.
[0093] 更に、実施例 1と同様にして、液晶表示素子の光入射側の面にプリズムシートの出 光面を接合した。これにより、プリズムシート付き液晶表示素子を形成し、液晶表示装 置を得た。冷陰極管を点灯させ且つ液晶表示素子を駆動させて、該液晶表示素子 に表示される白画面を観察した。その結果、輝度むらは視認されず、光学的隠蔽に 優れたものであった。  Further, in the same manner as in Example 1, the light emitting surface of the prism sheet was bonded to the light incident side surface of the liquid crystal display element. Thus, a liquid crystal display element with a prism sheet was formed, and a liquid crystal display device was obtained. The cold cathode tube was turned on and the liquid crystal display element was driven, and the white screen displayed on the liquid crystal display element was observed. As a result, the luminance unevenness was not visually recognized and was excellent in optical concealment.
[0094] [実施例 4]  [0094] [Example 4]
プリズムシートを、 日亜化学製白色 LED4灯を側面に配置したアクリル樹脂製導光 体の光出射面上に、プリズム列形成面が下向きとなるように載置し、他の側面および 裏面を反射シートで覆って、 2. 4インチ液晶表示素子用の面光源を得、 2. 4インチ 液晶表示素子の光入射側の面に、図 1及び図 2に示されるようにして、接合材として 軟質シリコン樹脂 (ゴム)を用いて上記プリズムシートの出光面を接合したことを除い て、実施例 1と同様にして、プリズムシート付き液晶表示素子を形成し、液晶表示装 置を得た。 白色 LEDを点灯させ且つ液晶表示素子を駆動させて、該液晶表示素子 に表示される白画面を観察した。その結果、輝度むらは視認されず、光学的隠蔽に 優れたものであった。 Place the prism sheet on the light output surface of the acrylic resin light guide with 4 white LEDs made by Nichia on the side so that the prism array formation surface faces down, and reflect the other side and back surface. Cover with a sheet to obtain a surface light source for a 2.4 inch liquid crystal display element, and on the light incident side surface of the 2.4 inch liquid crystal display element, as shown in FIGS. A liquid crystal display device with a prism sheet was formed in the same manner as in Example 1 except that the light exit surface of the prism sheet was bonded using silicon resin (rubber) to obtain a liquid crystal display device. A white LED is turned on and a liquid crystal display element is driven, and the liquid crystal display element The white screen displayed on the screen was observed. As a result, the luminance unevenness was not visually recognized and was excellent in optical concealment.
[0095] [比較例 1]  [0095] [Comparative Example 1]
型部材の形状転写面に対するブラスト処理を行わなかったことを除いて、実施例 1 と同様の工程を実行してプリズムシートを得た。尚、得られたプリズムシートのプリズム 列の中心線平均粗さ Ra及び十点平均粗さ Rzは、プリズム列頂部において中心線平 均粗さ Raが 0. 16 z mで十点平均粗さ Rzが 0. 5 μ mであり、プリズム面において中 心線平均粗さ Raが 0. 05 111で十点平均粗さ1^が0. であった。このプリズム シートでは、粗面化部の幅は 0 z mであり、即ち粗面化部は存在しなかった。このプリ ズムシートを用いて、実施例 1と同様にして面光源を得た。この面光源において、実 施例 1と同様にして冷陰極管を点灯させて発光面を観察した。その結果、プリズムシ ート製造用金型の欠陥に基づくプリズムシートの形態不良や粘着保護シートの貼付 に基づく該粘着保護シート剥離後のプリズム列における保護シート粘着剤の付着残 留に起因する輝度むらが視認され、光学的隠蔽は十分ではなかった。また、この面 光源において、冷陰極管を点灯させて発光面の輝度分布 (XZ面内の分布及び YZ 面内の分布)を測定した。その結果を図 9及び図 10に示す。 XZ面内の分布では、ピ ーク輝度値が 2631cd/m2で、ピーク角度は— 2. 5度で、半値幅は 20度であった。 また、 YZ面内の分布では、ピーク輝度値が 2436cd/m2で、ピーク角度は— 2度で 、半値幅は 40度であった。 A prism sheet was obtained by performing the same process as in Example 1 except that the blasting treatment for the shape transfer surface of the mold member was not performed. The center line average roughness Ra and the ten-point average roughness Rz of the prism row of the obtained prism sheet are the center line average roughness Ra of 0.16 zm and the ten-point average roughness Rz at the top of the prism row. The center line average roughness Ra on the prism surface was 0.05 05 111 and the 10-point average roughness 1 ^ was 0. In this prism sheet, the width of the roughened portion was 0 zm, that is, there was no roughened portion. Using this prism sheet, a surface light source was obtained in the same manner as in Example 1. In this surface light source, the cold cathode tube was turned on in the same manner as in Example 1 and the light emitting surface was observed. As a result, uneven brightness due to defective form of the prism sheet based on defects in the mold for manufacturing the prism sheet and adhesion residue of the protective sheet adhesive on the prism row after the adhesive protective sheet is peeled off due to the application of the adhesive protective sheet. Was visible and the optical hiding was not sufficient. In this surface light source, the cold cathode tube was turned on and the luminance distribution (distribution in the XZ plane and distribution in the YZ plane) was measured. The results are shown in FIG. 9 and FIG. In the XZ plane distribution, the peak luminance value was 2631 cd / m 2 , the peak angle was −2.5 degrees, and the half-value width was 20 degrees. In the distribution in the YZ plane, the peak luminance value was 2436 cd / m 2 , the peak angle was −2 degrees, and the half-value width was 40 degrees.
[0096] 更に、実施例 1と同様にして、液晶表示素子の光入射側の面にプリズムシートの出 光面を接合した。これにより、プリズムシート付き液晶表示素子を形成し、液晶表示装 置を得た。冷陰極管を点灯させ且つ液晶表示素子を駆動させて、該液晶表示素子 に表示される白画面を観察した。その結果、輝度むらが視認され、光学的隠蔽は十 分ではなかった。  Further, in the same manner as in Example 1, the light emitting surface of the prism sheet was bonded to the light incident side surface of the liquid crystal display element. Thus, a liquid crystal display element with a prism sheet was formed, and a liquid crystal display device was obtained. The cold cathode tube was turned on and the liquid crystal display element was driven, and the white screen displayed on the liquid crystal display element was observed. As a result, uneven brightness was visually recognized and the optical concealment was not sufficient.
[0097] [実施例 5]  [0097] [Example 5]
図 15に示すような装置により、型部材を作製した。  A mold member was produced by an apparatus as shown in FIG.
[0098] 即ち、直径 F"が 230mm、長さ Bが 500mmの円筒状金属ロールの表層に、厚さ 0 . 5mmの銅メツキ(図示せず)を施した後、銅めつき表面を平滑化処理し、銅メツキ部 に頂角 68度、配列ピッチ 50 β mのプリズム形状 Cをバイトによる切削加工により連続 的に形成した。その後、型部材の耐食性向上を目的として、無電解ニッケルメツキ皮 膜(図示せず)を厚さ 1 μ mで形成し、プリズム形状が連続的に形成された型部材ブ ランク Aを作製した。図 16に、この型部材ブランク Aのプリズム列及び谷部の転写面 部分の断面拡大写真を示す。プリズム列及び谷部の転写面の形状は隣接する繰り 返し単位につき実質上同一であった。 [0098] That is, a surface of a cylindrical metal roll having a diameter F "of 230 mm and a length B of 500 mm is subjected to a copper plating (not shown) having a thickness of 0.5 mm, and then the copper plating surface is smoothed. Processing and copper plating part A prism shape C with an apex angle of 68 degrees and an array pitch of 50 β m was continuously formed by cutting with a cutting tool. Thereafter, for the purpose of improving the corrosion resistance of the mold member, an electroless nickel plating film (not shown) was formed with a thickness of 1 μm, and a mold member blank A in which the prism shape was continuously formed was produced. FIG. 16 shows an enlarged cross-sectional photograph of the prism row of this mold member blank A and the transfer surface portion of the trough. The shapes of the transfer surfaces of the prism rows and the valleys were substantially the same for adjacent repeating units.
[0099] この型部材ブランク Aに対して、次のようにしてブラスト加工処理を行った。即ち、ブ ラストボックス内に設置した型部材ブランク Aを円周方向に連続的また不連続にて回 転可能な装置(図示せず)に、型部材ブランク Aを装着した。ブラスト装置として株式 会社ニッチユー製エアーブラスト装置 AMD— 10型を使用し、研掃材として、ポッタ ーズバロティー二株式会社製ガラスビーズ [商品名 J—120]を使用した。先端直径 2 mmのノズノレ Dを使用し、吐出圧力を 0. IMPaとし、また、ノズノレ Dの先端と型部材ブ ランク Aの表面との距離 Eを 450mmとした。ブラスト加工時におけるノズル Dの移動 は、型部材ブランク Aの有効エリア Bに加え、吐出の開始時と終了時との吹き付けム ラの発生を抑制する為に、距離 F及び F'を各々 100mmずつ追加して、合計の移動 距離を 700mmとした。型部材ブランク Aに形成したプリズム列転写面の切削方向と 直交する方向(K— K'方向)に、ノズル Dを 5m/minの一定速度にて位置を D'まで 移動しながら、ブラスト処理を実施した。その後、型部材ブランク Aの周方向に該型部 材ブランク Aを周長 20mm (角度約 10度)回転させ、前述と同一の動作にて K—K' 方向にブラスト処理を実施した、この操作を繰り返し実施し、型部材ブランク Aの円周 方向に関しても全ての部分即ち型部材ブランク Aの全外周面にブラスト処理を実施し た。 [0099] The mold member blank A was subjected to a blasting treatment as follows. That is, the mold member blank A was mounted on a device (not shown) that can rotate the mold member blank A installed in the blast box continuously or discontinuously in the circumferential direction. The air blasting device AMD-10 type manufactured by Niche Yu Co., Ltd. was used as the blasting device, and glass beads [trade name J-120] manufactured by Potters Valorutini Co., Ltd. were used as the polishing material. Nozzle D with a tip diameter of 2 mm was used, the discharge pressure was 0. IMPa, and the distance E between the tip of Nozno D and the surface of the die blank A was 450 mm. The movement of the nozzle D during blasting is done by setting the distances F and F 'to 100 mm each in order to suppress the occurrence of spraying irregularities at the start and end of discharge in addition to the effective area B of the mold blank A. In addition, the total travel distance was 700 mm. Blasting is performed while moving the nozzle D at a constant speed of 5m / min to D 'in the direction perpendicular to the cutting direction of the prism row transfer surface formed on the mold blank A (K-K' direction). Carried out. After that, the mold part blank A was rotated in the circumferential direction of the mold part blank A by a circumference of 20 mm (angle of about 10 degrees), and blasting was performed in the K—K ′ direction by the same operation as described above. In the circumferential direction of the mold member blank A, blasting was performed on all parts, that is, the entire outer peripheral surface of the mold member blank A.
[0100] 図 17に、以上のようにして得られた型部材のプリズム列及び谷部の転写面部分の 断面拡大写真を示す。谷部の転写面(図における下端部)の形状は隣接する繰り返 し単位の全てにつき実質上異なるものであった。  FIG. 17 shows an enlarged cross-sectional photograph of the prism row and the trough transfer surface portion of the mold member obtained as described above. The shape of the trough transfer surface (bottom edge in the figure) was substantially different for all adjacent repeat units.
[0101] 以上のようにして得られた型部材を用いて、実施例 1と同様にしてプリズムシートを 得た。得られたプリズムシートを用いて実施例 1と同様にして面光源を得た。この面光 源を点灯させて発光面を観察した結果、導光体やプリズムシートの表面構造は視認 されず、更に輝度むらも視認されず、光学欠陥の隠蔽に優れたものであった。 [0101] Using the mold member obtained as described above, a prism sheet was obtained in the same manner as in Example 1. A surface light source was obtained in the same manner as in Example 1 using the obtained prism sheet. As a result of illuminating the surface light source and observing the light-emitting surface, the surface structure of the light guide and prism sheet is visible. Further, luminance unevenness was not visually recognized, and it was excellent in concealing optical defects.
更に、実施例 1と同様にして、液晶表示素子の光入射側の面にプリズムシートの出 光面を接合した。これにより、プリズムシート付き液晶表示素子を形成し、液晶表示装 置を得た。冷陰極管を点灯させ且つ液晶表示素子を駆動させて、該液晶表示素子 に表示される白画面を観察した。その結果、輝度むらは視認されず、光学的隠蔽に 優れたものであった。  Further, in the same manner as in Example 1, the light emitting surface of the prism sheet was bonded to the light incident side surface of the liquid crystal display element. Thus, a liquid crystal display element with a prism sheet was formed, and a liquid crystal display device was obtained. The cold cathode tube was turned on and the liquid crystal display element was driven, and the white screen displayed on the liquid crystal display element was observed. As a result, the luminance unevenness was not visually recognized and was excellent in optical concealment.

Claims

請求の範囲 The scope of the claims
[1] 面光源装置と組み合わせて使用される液晶表示素子であって、  [1] A liquid crystal display element used in combination with a surface light source device,
該液晶表示素子の前記面光源装置から発せられる光が入射する側にプリズムシー トの第 1面が接合されており、該プリズムシートの前記第 1面と反対側の第 2面がプリ ズム列形成面とされており、該プリズム列形成面は複数のプリズム列を互いに略平行 に延在するように配列することで形成されており、  A first surface of a prism sheet is bonded to a side of the liquid crystal display element on which light emitted from the surface light source device is incident, and a second surface opposite to the first surface of the prism sheet is a prism array. The prism row forming surface is formed by arranging a plurality of prism rows so as to extend substantially parallel to each other,
前記プリズム列形成面は、互いに隣接する前記プリズム列の間に該プリズム列に沿 つて延在する粗面化部を有しており、該粗面化部の表面は前記プリズム列のプリズム 面より粗面化度が大きい、ことを特徴とするプリズムシート付き液晶表示素子。  The prism row forming surface has a roughened portion extending along the prism row between the prism rows adjacent to each other, and a surface of the roughened portion is formed by a prism surface of the prism row. A liquid crystal display element with a prism sheet, characterized in that the degree of roughening is large.
[2] 前記粗面化部は、前記プリズム列の配列ピッチの 0. 04倍〜 0. 5倍の幅をもつことを 特徴とする、請求項 1に記載のプリズムシート付き液晶表示素子。 [2] The liquid crystal display element with a prism sheet according to [1], wherein the roughened portion has a width that is 0.04 times to 0.5 times the arrangement pitch of the prism rows.
[3] 前記液晶表示素子の前記面光源装置から発せられる光が入射する側に接合材によ り前記プリズムシートの第 1面が接合されていることを特徴とする、請求項 1に記載の プリズムシート付き液晶表示素子。 [3] The first surface of the prism sheet according to claim 1, wherein a first surface of the prism sheet is bonded to a side on which light emitted from the surface light source device of the liquid crystal display element is incident by a bonding material. Liquid crystal display element with prism sheet.
[4] 前記接合材は接着剤または自己吸着性樹脂であることを特徴とする、請求項 3に記 載のプリズムシート付き液晶表示素子。 [4] The liquid crystal display element with a prism sheet according to [3], wherein the bonding material is an adhesive or a self-adsorbing resin.
[5] 前記プリズム列は同心円状に配列されていることを特徴とする、請求項 1に記載のプ リズムシート付き液晶表示素子。 5. The liquid crystal display element with a prism sheet according to claim 1, wherein the prism rows are arranged concentrically.
[6] 一次光源と、該一次光源から発せられる光が導入され導光され出射する導光体と、 請求項 1に記載のプリズムシート付き液晶表示素子とを含んでなり、  [6] comprising a primary light source, a light guide that is guided by the light emitted from the primary light source, is guided and emitted, and the liquid crystal display element with a prism sheet according to claim 1.
前記導光体は前記一次光源から発せられる光が入射する光入射端面と前記導光 された光が出射する光出射面とを備えており、前記一次光源は前記導光体の光入 射端面に隣接して配置されており、前記プリズムシート付き液晶表示素子は前記プリ ズムシートのプリズム列形成面が前記導光体の光出射面に対向するようにして配置さ れてレ、ることを特徴とする液晶表示装置。  The light guide includes a light incident end surface on which light emitted from the primary light source enters and a light exit surface from which the guided light exits, and the primary light source includes a light incident end surface of the light guide. The liquid crystal display element with a prism sheet is disposed such that the prism row forming surface of the prism sheet faces the light emitting surface of the light guide. A liquid crystal display device.
PCT/JP2007/059180 2006-05-02 2007-04-27 Liquid crystal display element having prism sheet, and liquid crystal display device using the liquid crystal display element WO2007129609A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007524116A JPWO2007129609A1 (en) 2006-05-02 2007-04-27 Liquid crystal display element with prism sheet and liquid crystal display device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-128342 2006-05-02
JP2006128342 2006-05-02

Publications (1)

Publication Number Publication Date
WO2007129609A1 true WO2007129609A1 (en) 2007-11-15

Family

ID=38667717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059180 WO2007129609A1 (en) 2006-05-02 2007-04-27 Liquid crystal display element having prism sheet, and liquid crystal display device using the liquid crystal display element

Country Status (3)

Country Link
JP (1) JPWO2007129609A1 (en)
TW (1) TW200745682A (en)
WO (1) WO2007129609A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237398A (en) * 2009-03-31 2010-10-21 Kimoto & Co Ltd Prism sheet and backlight using the same
JP2011247947A (en) * 2010-05-24 2011-12-08 Dainippon Printing Co Ltd Optical sheet, surface light source device, and display device
TWI498602B (en) * 2008-07-29 2015-09-01 李大煥 Optical sheet and method of manufacturing the same
WO2016076426A1 (en) * 2014-11-14 2016-05-19 富士フイルム株式会社 Liquid crystal display device
WO2016076439A1 (en) * 2014-11-14 2016-05-19 富士フイルム株式会社 Liquid crystal display device
JP2019044183A (en) * 2017-09-04 2019-03-22 荒川化学工業株式会社 Ultraviolet-curable adhesive composition for protective film, adhesive layer, and protective sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798372B2 (en) * 2017-03-14 2020-12-09 オムロン株式会社 Light guide, display device and game machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148408A (en) * 1992-11-11 1994-05-27 Sekisui Chem Co Ltd Optical control sheet
JPH06250182A (en) * 1993-03-01 1994-09-09 Enplas Corp Prism sheet for surface light source device
JP2004200072A (en) * 2002-12-19 2004-07-15 Minebea Co Ltd Flat lighting device
JP2005142164A (en) * 2003-11-08 2005-06-02 Samsung Electronics Co Ltd Light guide plate and backlight assembly having the same
WO2007046337A1 (en) * 2005-10-17 2007-04-26 Mitsubishi Rayon Co., Ltd. Prism sheet and production method thereof and surface light source device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148408A (en) * 1992-11-11 1994-05-27 Sekisui Chem Co Ltd Optical control sheet
JPH06250182A (en) * 1993-03-01 1994-09-09 Enplas Corp Prism sheet for surface light source device
JP2004200072A (en) * 2002-12-19 2004-07-15 Minebea Co Ltd Flat lighting device
JP2005142164A (en) * 2003-11-08 2005-06-02 Samsung Electronics Co Ltd Light guide plate and backlight assembly having the same
WO2007046337A1 (en) * 2005-10-17 2007-04-26 Mitsubishi Rayon Co., Ltd. Prism sheet and production method thereof and surface light source device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI498602B (en) * 2008-07-29 2015-09-01 李大煥 Optical sheet and method of manufacturing the same
JP2010237398A (en) * 2009-03-31 2010-10-21 Kimoto & Co Ltd Prism sheet and backlight using the same
JP2011247947A (en) * 2010-05-24 2011-12-08 Dainippon Printing Co Ltd Optical sheet, surface light source device, and display device
WO2016076426A1 (en) * 2014-11-14 2016-05-19 富士フイルム株式会社 Liquid crystal display device
WO2016076439A1 (en) * 2014-11-14 2016-05-19 富士フイルム株式会社 Liquid crystal display device
JPWO2016076426A1 (en) * 2014-11-14 2017-07-20 富士フイルム株式会社 Liquid crystal display
JP2019044183A (en) * 2017-09-04 2019-03-22 荒川化学工業株式会社 Ultraviolet-curable adhesive composition for protective film, adhesive layer, and protective sheet

Also Published As

Publication number Publication date
JPWO2007129609A1 (en) 2009-09-17
TW200745682A (en) 2007-12-16

Similar Documents

Publication Publication Date Title
KR100937292B1 (en) Prism sheet and production method thereof and surface light source device
WO2008069324A1 (en) Light diffusing optical film, method for manufacturing the light diffusing optical film, prism sheet and surface light source device
WO2007129609A1 (en) Liquid crystal display element having prism sheet, and liquid crystal display device using the liquid crystal display element
JP5236291B2 (en) Lens sheet, surface light source device and liquid crystal display device
WO2008072581A1 (en) Antiglare film, display employing the same, light-diffusing film, and surface light source system employing the same
WO2000008494A1 (en) Lens sheet and method for producing the same
JP2008139819A (en) Liquid crystal display, surface light source device, prism sheet, and method of manufacturing them
KR20080003316A (en) Method and apparatus for producing optical multilayer body
JP2009037984A (en) Lens sheet, surface light source, and liquid crystal display device
JP2010085425A (en) Lens sheet, planar light source device, and liquid crystal display device
JP5603541B2 (en) Prism sheet
JP2013029804A (en) Optical film and optical device using the same
JP2010060889A (en) Lens sheet, planar light source apparatus and liquid crystal display
JP2006309248A (en) Lens sheet, surface light source element using the same and liquid crystal display device
WO2004016985A1 (en) Surface light source and light guide used therefor
JP5724527B2 (en) Light guide plate laminate and manufacturing method thereof
JP2008134631A (en) Lens sheet, surface light source device and liquid crystal display device
JP5603542B2 (en) Prism sheet
JP2007140543A (en) Lens sheet and its production method
JP4502296B2 (en) Lens sheet manufacturing method
JP4716876B2 (en) Light guide for surface light source device, method for manufacturing the same, and surface light source device
JP2011013430A (en) Prism sheet and surface light source device using the same
JPH11281805A (en) Lens sheet and its manufacture method
JP2010251246A (en) Light guide body, surface light source device using light guide body, and display device using surface light source device
JP4170991B2 (en) Surface light source element for liquid crystal display device and liquid crystal display device using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007524116

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07742615

Country of ref document: EP

Kind code of ref document: A1