JP4170991B2 - Surface light source element for liquid crystal display device and liquid crystal display device using the same - Google Patents

Surface light source element for liquid crystal display device and liquid crystal display device using the same Download PDF

Info

Publication number
JP4170991B2
JP4170991B2 JP2005008922A JP2005008922A JP4170991B2 JP 4170991 B2 JP4170991 B2 JP 4170991B2 JP 2005008922 A JP2005008922 A JP 2005008922A JP 2005008922 A JP2005008922 A JP 2005008922A JP 4170991 B2 JP4170991 B2 JP 4170991B2
Authority
JP
Japan
Prior art keywords
light
light guide
light source
liquid crystal
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005008922A
Other languages
Japanese (ja)
Other versions
JP2005129547A (en
Inventor
雅春 小田
一清 千葉
泰子 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2005008922A priority Critical patent/JP4170991B2/en
Publication of JP2005129547A publication Critical patent/JP2005129547A/en
Application granted granted Critical
Publication of JP4170991B2 publication Critical patent/JP4170991B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

本発明は、ノートパソコン、液晶テレビ等に使用される液晶表示装置に使用される面光源素子およびそれを用いた液晶表示装置に関するものであり、さらに詳しくは、高い輝度を有するとともに、斑点パターン等の均一化処理を施すことなく光出射面内での均一な輝度分布が得られる面光源素子に関するものである。   The present invention relates to a surface light source element used in a liquid crystal display device used for a notebook computer, a liquid crystal television, and the like, and a liquid crystal display device using the same, and more specifically, has high brightness, a spot pattern, etc. The present invention relates to a surface light source element that can obtain a uniform luminance distribution in a light emitting surface without performing the uniformizing process.

近年、カラー液晶表示装置は、ノートパソコンや、液晶テレビあるいはビデオ一体型液晶テレビ等として種々の分野で広く使用されてきている。この液晶表示装置は、基本的にバックライト部と液晶表示素子部とから構成されている。バックライト部としては、液晶表示素子の直下に光源を設けた直下方式や導光体の側面に光源を設けたエッジライト方式があり、液晶表示装置のコンパクト化からエッジライト方式が多用されてきている。このエッジライト方式は、板状の導光体の側面部に光源を配置して、導光体の表面全体を発光させる方式のバックライトであり、いわゆる面光源素子と呼ばれるものである。   In recent years, color liquid crystal display devices have been widely used in various fields such as notebook personal computers, liquid crystal televisions, and video integrated liquid crystal televisions. This liquid crystal display device basically includes a backlight section and a liquid crystal display element section. As the backlight unit, there are a direct light method in which a light source is provided directly under a liquid crystal display element and an edge light method in which a light source is provided on a side surface of a light guide body. Yes. This edge light system is a backlight of a system in which a light source is disposed on a side surface portion of a plate-shaped light guide to emit light over the entire surface of the light guide, and is called a so-called surface light source element.

このような面光源素子では、アクリル樹脂板等の板状透明材料を導光体とし、その一端に配置された光源からの光を光入射面から導光体中に入射させ、入射した光を導光体の表面(光出射面)あるいは裏面に形成した光散乱部等の光出射機能を設けることにより、光出射面から面状に出射させるものである。しかし、導光体の表面あるいは裏面に光出射機能を均一に形成したものでは、光源から離れるに従って出射光の輝度が低下して、光出射面内における輝度が不均一となり、良好な表示画面が得られないものであった。このような傾向は、液晶表示素子の大型化に伴って顕著となり、10インチ以上の大型液晶表示装置においては実用に耐えうるものではなかった。特に、最近の液晶画面の大型化に伴い、ノートパソコンや液晶テレビ等に使用される液晶表示装置においては、その画面内での輝度分布は非常に高い均一性が要求されるものである。   In such a surface light source element, a plate-shaped transparent material such as an acrylic resin plate is used as a light guide, and light from a light source disposed at one end is incident on the light guide from the light incident surface. By providing a light emitting function such as a light scattering portion formed on the front surface (light emitting surface) or the back surface of the light guide, the light is emitted from the light emitting surface in a planar shape. However, in the case where the light emitting function is uniformly formed on the front surface or the back surface of the light guide, the luminance of the emitted light decreases as the distance from the light source decreases, and the luminance in the light emitting surface becomes uneven, resulting in a good display screen. It was not obtained. Such a tendency becomes conspicuous with an increase in the size of the liquid crystal display element, and it cannot be put into practical use in a large-sized liquid crystal display device of 10 inches or more. In particular, with the recent increase in the size of liquid crystal screens, in liquid crystal display devices used for notebook personal computers, liquid crystal televisions, and the like, the luminance distribution within the screen is required to have very high uniformity.

このような面光源素子の輝度の不均一という課題を解決するために、種々の提案がなされている。例えば、特開平1−24522号公報(特許文献1)には、導光体の光出射面に対向する裏面に光入射面から離れるに従って光拡散物質を密に塗布または付着させた光出射機能を設けた面光源素子が提案されている。また、特開平1−107406号公報(特許文献2)には、表面に光散乱物質からなる細かい斑点を種々のパターンで形成した複数の透明板を積層して導光体としたのもが提案されている。このような面光源素子においては、光散乱物質として酸化チタンや硫酸バリウム等の白色顔料を使用しているため、光散乱物質に当たった光が散乱する際に光吸収等の光のロスが生じ、出射光の輝度の低下を招くため好ましくないものであった。   Various proposals have been made to solve the problem of non-uniform luminance of such surface light source elements. For example, Japanese Patent Application Laid-Open No. 1-24522 (Patent Document 1) has a light emitting function in which a light diffusing substance is densely applied or adhered to a back surface facing a light emitting surface of a light guide as the distance from the light incident surface increases. Provided surface light source elements have been proposed. Japanese Laid-Open Patent Publication No. 1-107406 (Patent Document 2) proposes that a light guide is formed by laminating a plurality of transparent plates formed with various patterns of fine spots made of a light scattering material on the surface. Has been. In such a surface light source element, since a white pigment such as titanium oxide or barium sulfate is used as a light scattering material, a light loss such as light absorption occurs when light hitting the light scattering material is scattered. This is not preferable because the brightness of the emitted light is lowered.

また、特開平1−244490号公報(特許文献3)や特開平1−252933号公報(特許文献4)には、導光体の光出射面上に出射光分布の逆数に見合う光反射パターンを有する出射光調整部材や光拡散板を配置した面光源素子が提案されている。しかし、このような面光源素子においても、出射光調整部材や光拡散板で反射した光の再利用ができないために光のロスが生じ、出射光の輝度の低下を招くものであった。   In Japanese Patent Laid-Open No. 1-244490 (Patent Document 3) and Japanese Patent Laid-Open No. 1-252933 (Patent Document 4), a light reflection pattern corresponding to the reciprocal of the light distribution is provided on the light output surface of the light guide. A surface light source element in which an outgoing light adjusting member and a light diffusing plate are arranged has been proposed. However, even in such a surface light source element, the light reflected by the outgoing light adjusting member or the light diffusing plate cannot be reused, so that a light loss occurs and the luminance of the outgoing light is lowered.

さらに、特開平2−84618号公報(特許文献5)には、導光体の光出射面およびその裏面の少なくとも一方の面を梨地面とし、光出射面上にプリズムシートを載置した面光源素子が提案されている。しかし、このような面光源素子は、非常に高い輝度が得られるものの、光出射面における均一性の点で未だ満足できるものではなかった。   Further, Japanese Patent Laid-Open No. 2-84618 (Patent Document 5) discloses a surface light source in which at least one of the light exit surface and the back surface of the light guide is a satin surface, and a prism sheet is placed on the light exit surface. Devices have been proposed. However, although such a surface light source element can provide very high luminance, it has not been satisfactory in terms of uniformity on the light exit surface.

一方、出射光の輝度の均一化とともに光のロスを低減して輝度を高める面光源素子については、特開平3−345893号公報(特許文献6)に提案されているように、導光体の光出射面を梨地面とし、その裏面に粗面部分と平滑部分を粗面部分の割合が光源から離れるに従って増加するように形成するとともに、光出射面上にプリズムシートを載置した面光源素子が提案されている。しかしながら、このような面光源素子では、出射光の輝度の均一化と光のロスの低減を図れるものの、液晶表示装置として使用する場合に、液晶表示素子を通して導光体の裏面に形成した粗面部分と平滑部分とで形成されるパターンが観察され、画像の観察に支障をきたすものであった。また、導光体の表面に均一光出射機能を施すことは、導光体の生産性の観点からも好ましいものではない。
特開平1−24522号公報 特開平1−107406号公報 特開平1−244490号公報 特開平1−252933号公報 特開平2−84618号公報 特開平3−345893号公報
On the other hand, as to a surface light source element that makes the luminance of emitted light uniform and reduces the loss of light to increase the luminance, as proposed in JP-A-3-345893 (Patent Document 6), A surface light source element in which a light emitting surface is a satin surface, and a rough surface portion and a smooth portion are formed on the back surface so that the ratio of the rough surface portion increases as the distance from the light source increases, and a prism sheet is placed on the light emitting surface. Has been proposed. However, in such a surface light source element, the brightness of the emitted light can be made uniform and the loss of light can be reduced, but when used as a liquid crystal display device, a rough surface formed on the back surface of the light guide through the liquid crystal display element. A pattern formed by the portion and the smooth portion was observed, which hindered image observation. In addition, it is not preferable to apply a uniform light emitting function to the surface of the light guide from the viewpoint of productivity of the light guide.
Japanese Unexamined Patent Publication No. 1-24522 JP-A-1-107406 JP-A-1-244490 JP-A-1-252933 Japanese Patent Laid-Open No. 2-84618 JP-A-3-345893

そこで、本発明は、高い輝度を有するとともに、斑点パターン等の均一化処理を施すことなく光出射面内での輝度の高い均一性が得られる面光源素子を提供することを目的とする。   Therefore, an object of the present invention is to provide a surface light source element that has high luminance and can obtain high uniformity in luminance within a light emitting surface without performing a uniform process such as a spot pattern.

すなわち、本発明の面光源素子は、光源と、該光源に対向する少なくとも一つの光入射面およびこれと略直交する光出射面を有する導光体と、該導光体の光出射面側に配設された少なくとも一方も面に多数のプリズム形状のレンズ単位が平行に形成されたプリズム面を有するプリズムシートとを有し、導光体の光出射面が、微粒子を吹き付けて粗面化された金型が転写されることによって形成された平均傾斜角(θa)0.5〜4.5゜の凹凸を有する粗面から構成されており、導光体の光出射面における輝度のバラツキ度(R%)が20%以下であり、プリズムシートのプリズム面が導光体の光出射面側となるように配設されており、前記導光体が、光入射端部からそれに対向する端部までの長さ(L)と厚さ(t)との比(L/t)が120以下であることを特徴とするものである。また、本発明の液晶表示装置は、上記のような面光源素子をバックライトとして用いたことを特徴とするものである。 That is, the surface light source element of the present invention includes a light source, a light guide having at least one light incident surface facing the light source, and a light output surface substantially orthogonal thereto, and a light output surface side of the light guide. And at least one of the arranged prism sheets having a prism surface in which a large number of prism-shaped lens units are formed in parallel, and the light emitting surface of the light guide is roughened by spraying fine particles. The roughness of the light exit surface of the light guide is a variation in brightness, which is formed by a rough surface having irregularities with an average inclination angle (θa) of 0.5 to 4.5 ° formed by transferring the mold. (R%) is 20% or less, and the prism sheet is disposed such that the prism surface is on the light exit surface side of the light guide, and the light guide is located at the end facing the light incident end. The ratio (L / t) between the length (L) to the thickness and the thickness (t) is 1 And this is less than or equal to 0 it is an features. The liquid crystal display device of the present invention is characterized by using the above surface light source element as a backlight.

本発明は、導光体の光出射面およびそれと対向する裏面の少なくとも一方の面を、平均傾斜角(θa)が0.5〜7.5゜の凹凸を有する粗面とすることによって、高い輝度を有するとともに、斑点パターン等の均一化処理を施すことなく光出射面内での均一な輝度分布が得られ、ノートパソコン、液晶テレビ等に使用される液晶表示装置用として適した面光源素子を提供できるものである。   According to the present invention, at least one of the light exit surface of the light guide and the back surface facing the light exit surface is a rough surface having irregularities with an average inclination angle (θa) of 0.5 to 7.5 °. A surface light source element that has brightness and a uniform brightness distribution in the light exit surface without applying a uniform pattern such as a speckle pattern, and is suitable for liquid crystal display devices used in notebook computers, liquid crystal televisions, etc. Can be provided.

本発明の面光源素子は、光源と、この光源に対向する少なくとも一つの光入射面およびこれと略直交する光出射面を有する導光体から構成される。このような面光源素子において、導光体中に入射した光は、臨界角以内の分布の光が導光体の面で反射を繰り返して導光体中を伝搬する。導光体の表面に粗面部分を形成した場合には、粗面部分に到達した光のうち粗面に対して臨界角を超える光は屈折して導光体の外へ出射し、臨界角以内の光は反射して導光体を伝搬する。これは、光の進行方向が、スネルの法則に従って媒体の屈折率と入射した面の法線に対する光の入射角によって決定されることによる。   The surface light source element of the present invention includes a light source, a light guide having at least one light incident surface facing the light source, and a light emitting surface substantially orthogonal thereto. In such a surface light source element, the light incident on the light guide is propagated through the light guide while light having a distribution within a critical angle is repeatedly reflected on the surface of the light guide. When the rough surface portion is formed on the surface of the light guide, light exceeding the critical angle with respect to the rough surface among the light reaching the rough surface portion is refracted and emitted to the outside of the light guide. The light within is reflected and propagates through the light guide. This is because the traveling direction of light is determined by the refractive index of the medium and the incident angle of the light with respect to the normal of the incident surface according to Snell's law.

図1に、凹凸を有する粗面での光の屈折および反射を模式的に示した。臨界角を超える入射角iで凹凸部の斜面に入射した光Aは、スネルの法則によりnsini=sini’(nは導光体の屈折率)の関係を満足する出射角i’で導光体外に出射する。一方、臨界角内である入射角kで入射した光Bは、角度k’(k’=k)で反射して導光体内を伝搬する。一旦、粗面部分に入射して反射した光は、次に粗面部分に入射する際に入射角が鋭くなるため、臨界角を超えやすくなり導光体外へ出射しやすくなる。   FIG. 1 schematically shows light refraction and reflection on a rough surface having irregularities. The light A incident on the slope of the concavo-convex portion with an incident angle i exceeding the critical angle is outside the light guide at an exit angle i ′ satisfying the relationship of nsini = sini ′ (n is the refractive index of the light guide) according to Snell's law. To exit. On the other hand, the light B incident at an incident angle k that is within the critical angle is reflected at an angle k ′ (k ′ = k) and propagates through the light guide. The light that has been incident and reflected once on the rough surface portion has a sharp incident angle when it next enters the rough surface portion, so that it easily exceeds the critical angle and easily exits the light guide.

本発明者等は、面光源素子において、ある点での光の出射強度(I)と光入射面端での出射光強度(I)との関係は、出射率(α)、光出射面端からの距離(L’)および導光体の厚さ(t)によって、実験的に次の(1)式で表されることを見出した。

Figure 0004170991
In the surface light source element, the present inventors have found that the relationship between the light emission intensity (I) at a certain point and the light emission intensity (I 0 ) at the light incident surface end is as follows. It has been found experimentally by the following formula (1) depending on the distance (L ′) from the end and the thickness (t) of the light guide.
Figure 0004170991

(1)式から、導光体の長さ(L)と厚さ(t)が決定すれば、出射率(α)によって光出射面内での輝度の均一性が決定されることがわかる。なお、厚さtmmの導光体の出射率(α)は、導光体の光入射面端から20mm間隔で輝度の測定を行い、光入射面端からの距離(l)と輝度の対数のグラフから、その勾配(K(mm−1))を求めて、次の(2)式によって求められる。

Figure 0004170991
From equation (1), it can be seen that if the length (L) and thickness (t) of the light guide are determined, the uniformity of luminance within the light exit surface is determined by the output rate (α). The emission rate (α) of the light guide having a thickness of tmm is measured by measuring the luminance at intervals of 20 mm from the light incident surface end of the light guide, and the logarithm of the distance (l) from the light incident surface end and the luminance. The gradient (K (mm −1 )) is obtained from the graph, and is obtained by the following equation (2).
Figure 0004170991

本発明においては、輝度の均一性の尺度として、次の(3)式で示されるバラツキ度(R%)を用いて、面光源素子における輝度の均一性についての評価および検討を行った。バラツキ度(R%)は、導光体のほぼ中央部において光入射面端から20mm離れた点から対向する端部までの範囲内を20mm間隔で輝度測定を行い、測定輝度の最大値(Imax )、測定輝度の最小値(Imin )、測定輝度の平均値(Iav)を求め、次の(3)式によって求める。

Figure 0004170991
In the present invention, the luminance uniformity in the surface light source element was evaluated and examined using the degree of variation (R%) expressed by the following equation (3) as a measure of luminance uniformity. The degree of variation (R%) is measured at 20 mm intervals within a range from a point 20 mm away from the light incident surface end to the opposite end in the substantially central part of the light guide, and the maximum value (I max ), the minimum value (I min ) of the measured luminance, and the average value (I av ) of the measured luminance are obtained by the following equation (3).
Figure 0004170991

その結果、出射率(α)とバラツキ度(R%)とは、導光体の長さ(L)と厚さ(t)に依存して特定の関係にあることが見出され、出射率(α)が大きくなるとバラツキ度(R%)はそれに伴って増加し、出射率(α)が一定であれば導光体の長さ(L)と厚さ(t)の比(L/t)が大きくなるに従ってバラツキ度(R%)も大きくなる。すなわち、一定の大きさの導光体においては、導光体の光出射面内での輝度の均一性(バラツキ度)は、導光体からの出射率(α)に依存するものであり、出射率(α)を制御することによって輝度の均一性を図ることができることがわかる。   As a result, it is found that the emission rate (α) and the degree of variation (R%) have a specific relationship depending on the length (L) and the thickness (t) of the light guide. As (α) increases, the degree of variation (R%) increases accordingly. If the output rate (α) is constant, the ratio (L / t) of the length (L) to the thickness (t) of the light guide ) Increases, the degree of variation (R%) also increases. That is, in a light guide of a certain size, the uniformity of brightness (the degree of variation) within the light exit surface of the light guide depends on the output rate (α) from the light guide, It can be seen that brightness uniformity can be achieved by controlling the emission rate (α).

一方、本発明者等は、導光体の表面に形成した凹凸形状を有する粗面において、凹凸形状を近似的に1つの勾配を有する斜面であると考えると、粗面を構成する凹凸の勾配に依存して、導光体から出射する光の出射方向や出射率が変化することを見出した。ここで、この勾配としてISO4287/1−1987で規定される平均傾斜角(θa)を用いることができる。すなわち、平均傾斜角(θa)が大きくなると、導光体からの出射光は出射角が小さくなり法線方向に近づいた出射光となる。また、平均傾斜角(θa)が大きくなると、それに伴って導光体からの出射率も高くなる。このことから、面光源素子の光出射面内での輝度の均一性は、導光体からの出射率を低くすることによって高めることができ、平均傾斜角(θa)を小さくすれば均一化が図れることがわかった。ノートパソコンや液晶テレビ等の液晶表示装置において使用される面光源素子としては、そのバラツキ度(R%)が20%以下であることが必要であれば、要求される輝度の均一性を満足することを見出し、このためには粗面を構成する凹凸の平均傾斜角(θa)を7.5゜以下とすることが必要であることがわかった。また、ノートパソコンや液晶テレビ等の液晶表示装置に使用する面光源素子としては、そのバラツキ度(R%)は好ましくは15%以下であり、さらに好ましくは10%以下である。   On the other hand, when the present inventors consider that the rough surface having an uneven shape formed on the surface of the light guide is an inclined surface having approximately one slope, the slope of the unevenness constituting the rough surface. It has been found that the emission direction and the emission rate of the light emitted from the light guide change depending on. Here, an average inclination angle (θa) defined by ISO4287 / 1-1987 can be used as this gradient. That is, when the average inclination angle (θa) is increased, the emitted light from the light guide becomes an emitted light having a smaller outgoing angle and approaching the normal direction. Further, when the average inclination angle (θa) increases, the emission rate from the light guide increases accordingly. Therefore, the uniformity of the luminance within the light emitting surface of the surface light source element can be increased by lowering the emission rate from the light guide, and the uniformity can be achieved by reducing the average inclination angle (θa). I understood that I could plan. As a surface light source element used in a liquid crystal display device such as a notebook personal computer or a liquid crystal television, if the variation degree (R%) is required to be 20% or less, the required luminance uniformity is satisfied. As a result, it was found that the average inclination angle (θa) of the unevenness constituting the rough surface must be 7.5 ° or less. Moreover, as a surface light source element used for liquid crystal display devices, such as a notebook personal computer and a liquid crystal television, the variation degree (R%) becomes like this. Preferably it is 15% or less, More preferably, it is 10% or less.

従って、面光源素子の光出射面内における輝度の均一化を図るためには、導光体の光出射面およびその裏面の少なくとも一方の面が平均傾斜角(θa)0.5〜7.5゜の凹凸を有する粗面から構成するが必要である。これは、粗面を構成する凹凸の平均傾斜角(θa)が0.5゜未満であると、光出射面からの出射光の出射角が大きくなり、プリズムシート等の変角部材を使用しても十分に法線方向へ出射光を向けることができなくなるためである。逆に、粗面を構成する凹凸の平均傾斜角(θa)が7.5゜を超えると、液晶表示装置の面光源素子として輝度の均一性が損なわれるためである。好ましくは、粗面を構成する凹凸の平均傾斜角(θa)が1〜5゜の範囲であり、さらに好ましくは2〜4゜の範囲である。   Therefore, in order to make the luminance uniform in the light emitting surface of the surface light source element, at least one of the light emitting surface of the light guide and the back surface thereof has an average inclination angle (θa) of 0.5 to 7.5. It is necessary to make it from a rough surface with irregularities of °. This is because when the average inclination angle (θa) of the unevenness constituting the rough surface is less than 0.5 °, the outgoing angle of the outgoing light from the light outgoing surface becomes larger, and a variable angle member such as a prism sheet is used. This is because the emitted light cannot be sufficiently directed in the normal direction. On the contrary, if the average inclination angle (θa) of the unevenness constituting the rough surface exceeds 7.5 °, the uniformity of luminance as a surface light source element of the liquid crystal display device is impaired. Preferably, the average inclination angle (θa) of the unevenness constituting the rough surface is in the range of 1 to 5 °, and more preferably in the range of 2 to 4 °.

本発明の面光源素子に使用される導光体としては、その大きさは特に限定されるものではないが、本発明の効果をより顕著に発揮させるためには導光体の長さ(L)と厚さ(t)との比(L/t)が120以下の導光体として使用することが好ましい。L/tが120を超えると、導光体の粗面を構成する凹凸の平均傾斜角(θa)を小さくしても、光出射面内での輝度の均一性が十分に図れない傾向にあるためであり、さらに好ましくは100以下、より好ましくは80以下の範囲である。   The size of the light guide used in the surface light source device of the present invention is not particularly limited, but the length of the light guide (L ) And the thickness (t) is preferably used as a light guide having a ratio (L / t) of 120 or less. When L / t exceeds 120, even if the average inclination angle (θa) of the unevenness constituting the rough surface of the light guide is reduced, the luminance uniformity in the light exit surface tends not to be sufficiently achieved. Therefore, it is more preferably 100 or less, more preferably 80 or less.

本発明において、導光体としては、ガラスや合成樹脂等の透明板状体を使用することができる。合成樹脂としては、例えば、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂等の高透明性の種々の合成樹脂を用いることができ、この樹脂を押出成形、射出成形等の通常の成形方法で板状体に成形することによって導光体を製造することができる。特に、メタクリル樹脂が、その光線透過率の高さ、耐熱性、力学的特性、成形加工性にも優れており、導光体用材料として最適である。このようなメタクリル樹脂とは、メタクリル酸メチルを主成分とする樹脂であり、メタクリル酸メチルが80重量%以上であることが好ましい。また、導光体中には、光拡散剤や微粒子等を混入してもよい。   In the present invention, as the light guide, a transparent plate-like body such as glass or synthetic resin can be used. As the synthetic resin, for example, various highly transparent synthetic resins such as acrylic resin, polycarbonate resin, and vinyl chloride resin can be used, and this resin is subjected to a normal molding method such as extrusion molding or injection molding. A light guide can be manufactured by forming into a plate-like body. In particular, a methacrylic resin is excellent as a light transmittance, heat resistance, mechanical properties, and molding processability, and is optimal as a light guide material. Such a methacrylic resin is a resin mainly composed of methyl methacrylate, and the methyl methacrylate is preferably 80% by weight or more. In addition, a light diffusing agent or fine particles may be mixed in the light guide.

導光体に特定の平均傾斜角(θa)の凹凸を有する粗面を形成する加工方法としては、平均傾斜角(θa)が特定の範囲となれば特に限定されるものではないが、例えば、化学エッチングによって粗面を形成した金型、ガラスビーズ等の微粒子を吹き付けて粗面化した金型等を用いて、加熱プレス等によって粗面を転写する方法、印刷法等によって凹凸物質を塗布あるいは付着する方法、導光体をサンドブラスト法やエッチング法等によって直接加工する方法等が挙げられる。   The processing method for forming a rough surface having irregularities with a specific average inclination angle (θa) on the light guide is not particularly limited as long as the average inclination angle (θa) falls within a specific range. Using a mold that has been roughened by chemical etching, a mold that has been roughened by spraying fine particles such as glass beads, etc. Examples include a method of attaching, a method of directly processing the light guide by a sandblasting method, an etching method, and the like.

本発明の面光源素子は、上記のような導光体の一方の端部に蛍光灯等の光源を配置し、光出射面と対向する裏面には、反射フィルム等によって反射層が形成される。光源から導光体へ有効に光を導入するために、光源および導光体の光入射面を内側に反射剤を塗布したケースやフィルムで覆うように構成される。また、導光体としては、板状、くさび状、船型状等の種々の形状のものが使用できる。   In the surface light source element of the present invention, a light source such as a fluorescent lamp is disposed at one end of the light guide as described above, and a reflective layer is formed on the back surface facing the light emitting surface by a reflective film or the like. . In order to effectively introduce light from the light source to the light guide, the light incident surface of the light source and the light guide is configured to be covered with a case or film coated with a reflective agent on the inside. Moreover, as a light guide, the thing of various shapes, such as plate shape, wedge shape, and ship shape, can be used.

本発明の面光源素子においては、通常、導光体からの出射光の出射方向は、法線方向からずれた方向となるため、法線方向から観察を行うような用途に使用する場合には、導光体の上にレンズシートを載置する等の手段を講じて、出射光を法線方向に変角することが好ましい。この場合、使用されるレンズシートとしては、少なくとも一方の面に多数のレンズ単位が平行に形成されたレンズ面を有するものである。形成されるレンズ形状は、目的に応じて種々の形状のものが使用され、例えば、プリズム形状、レンチキュラーレンズ形状、波型形状等が挙げられる。レンズシートのレンズ単位のピッチは30μm〜0.5mm程度とすることが好ましく、プリズムシートを使用する場合には、そのプリズム頂角は導光体からの出射光の出射角によって適宜選定されるが、一般的には50〜120゜の範囲とすることが好ましい。また、プリズムシートの向きについても、導光体からの出射光の出射角によって適宜選定され、レンズ面が導光体側となるように載置してもよいし、逆向きに載置してもよい。   In the surface light source element of the present invention, since the emission direction of the light emitted from the light guide is usually shifted from the normal direction, when used for applications such as observation from the normal direction It is preferable to take a means such as placing a lens sheet on the light guide to change the outgoing light in the normal direction. In this case, the lens sheet used has a lens surface in which a large number of lens units are formed in parallel on at least one surface. Various lens shapes are used according to the purpose, and examples thereof include a prism shape, a lenticular lens shape, and a wave shape. The lens unit pitch of the lens sheet is preferably about 30 μm to 0.5 mm, and when a prism sheet is used, the prism apex angle is appropriately selected depending on the emission angle of light emitted from the light guide. In general, the range is preferably from 50 to 120 °. Also, the orientation of the prism sheet is appropriately selected according to the emission angle of the light emitted from the light guide, and may be placed so that the lens surface is on the light guide side or placed in the opposite direction. Good.

本発明のレンズシートは、可視光透過率が高く、屈折率の比較的高い材料を用いて製造することが好ましく、例えば、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂、活性エネルギー線硬化型樹脂等が挙げられる。中でも、レンズシートの耐擦傷性、取扱い性、生産性等の観点から活性エネルギー線硬化型樹脂が好ましい。また、レンズシートには、必要に応じて、酸化防止剤、紫外線吸収剤、黄変防止剤、ブルーイング剤、顔料、拡散剤等の添加剤を添加することもできる。レンズシートを製造する方法としては、押出成形、射出成形等の通常の成形方法が使用できる。活性エネルギー線硬化型樹脂を用いてレンズシートを製造する場合には、ポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂、ポリメタクリルイミド系樹脂、ポリオレフィン系樹脂等の透明樹脂からなる透明フィルムあるいはシート等の透明基材上に、活性エネルギー線硬化型樹脂によってレンズ部を形成する。まず、所定のレンズパターンを形成したレンズ型に活性エネルギー線硬化型樹脂液を注入し、透明基材を重ね合わせる。次いで、透明基材を通して紫外線、電子線等の活性エネルギー線を照射し、活性エネルギー線硬化型樹脂液を重合硬化して、レンズ型から剥離してレンズシートを得る。   The lens sheet of the present invention is preferably manufactured using a material having a high visible light transmittance and a relatively high refractive index. For example, an acrylic resin, a polycarbonate resin, a vinyl chloride resin, an active energy ray curable type Examples thereof include resins. Among these, active energy ray-curable resins are preferable from the viewpoint of scratch resistance, handleability, and productivity of the lens sheet. Moreover, additives such as an antioxidant, an ultraviolet absorber, a yellowing inhibitor, a bluing agent, a pigment, and a diffusing agent can be added to the lens sheet as necessary. As a method for producing the lens sheet, a normal molding method such as extrusion molding or injection molding can be used. When manufacturing a lens sheet using an active energy ray curable resin, it is made of a transparent resin such as a polyester resin, an acrylic resin, a polycarbonate resin, a vinyl chloride resin, a polymethacrylimide resin, or a polyolefin resin. A lens part is formed of an active energy ray-curable resin on a transparent substrate such as a transparent film or sheet. First, an active energy ray-curable resin liquid is injected into a lens mold on which a predetermined lens pattern is formed, and a transparent substrate is overlaid. Next, active energy rays such as ultraviolet rays and electron beams are irradiated through the transparent substrate, the active energy ray-curable resin liquid is polymerized and cured, and peeled from the lens mold to obtain a lens sheet.

本発明の面光源素子においては、上記したようなレンズシートの他に、拡散シート、カラーフィルター、偏光膜等、光学的に光を変角、集束、拡散させたり、その光学特性を変化させる種々の光学素子を使用することができる。   In the surface light source element of the present invention, in addition to the lens sheet as described above, various kinds of optically deflecting, converging, diffusing light, and changing optical characteristics thereof, such as a diffusion sheet, a color filter, and a polarizing film. These optical elements can be used.

以下、実施例により本発明を具体的に説明する。
平均傾斜角(θa)
ISO4287/1−1984に従って求めた。触針として010−2528(1μmR、55゜円錐、ダイヤモンド)を用いた触針式表面粗さ計(東京精器社製サーフコム570A)にて、粗面の表面粗さを駆動速度0.03mm/秒で測定した。この測定した平均線より、その平均線を差し引いて傾斜を補正し、下記(4)〜(5)式によって計算して求めた。

Figure 0004170991
Figure 0004170991
Hereinafter, the present invention will be described specifically by way of examples.
Average tilt angle (θa)
It calculated | required according to ISO4287 / 1-1984. With a stylus type surface roughness meter (Surfcom 570A manufactured by Tokyo Seiki Co., Ltd.) using 010-2528 (1 μmR, 55 ° cone, diamond) as a stylus, the surface roughness of the rough surface was driven at a driving speed of 0.03 mm / Measured in seconds. From the measured average line, the average line was subtracted to correct the inclination, and the calculation was made by the following formulas (4) to (5).
Figure 0004170991
Figure 0004170991

実施例1〜3、比較例1
ガラス板の表面をサンドブラスト処置を行った後にフッ素処理を行うことにより化学エッチングした後、電鋳によりレプリカ型を取って得た電鋳型を用いて、厚さ4mm、一辺が90mm、他辺が64mm、210mm、248mm、488mmの4種類の透明アクリル樹脂板の一方の表面に熱転写によって粗面を転写し導光体とした。得られた導光体の平均傾斜角度(θa)は2.0゜であった。
Examples 1-3, Comparative Example 1
After the surface of the glass plate was sandblasted and then chemically etched by performing fluorine treatment, the thickness was 4 mm, one side was 90 mm, and the other side was 64 mm. , 210 mm, 248 mm, and 488 mm, a rough surface was transferred to one surface of a transparent acrylic resin plate by thermal transfer to obtain a light guide. The average inclination angle (θa) of the obtained light guide was 2.0 °.

得られた導光体の90mmの二つの端面および他の一方の端面に銀蒸着したPETフィルムを粘着加工して貼り付け、粗面化した光出射面と対向する裏面に銀蒸着したPETフィルムをテープ止めして反射面を形成した。導光体の残りの一つの端面に銀蒸着したPETフィルムで冷陰極管(松下電器社製KC130T4E72、4mmφ×130mm)を巻き付けて光源ランプとして設置し、導光体の光出射面上にPETフィルムに屈折率1.53のアクリル系紫外線硬化樹脂で、頂角63゜、ピッチ50μmのプリズム列を平行に多数形成したプリズムシートを、プリズム面が導光体の光出射面側に向くように載置して面光源素子とした。得られた面光源素子のバラツキ度(R%)を求めて表1に示した。   Adhering and pasting silver-deposited PET film on two 90mm end faces and the other end face of the obtained light guide, and then depositing silver-deposited PET film on the back surface facing the roughened light exit surface A reflective surface was formed by tape fastening. A cold-cathode tube (KC130T4E72, 4 mmφ × 130 mm, manufactured by Matsushita Electric Industrial Co., Ltd.) is wrapped with a silver-deposited PET film on the remaining one end face of the light guide, installed as a light source lamp, and the PET film is placed on the light output surface of the light guide A prism sheet, in which a large number of prism rows having an apex angle of 63 ° and a pitch of 50 μm are formed in parallel with an acrylic ultraviolet curable resin having a refractive index of 1.53, is mounted so that the prism surface faces the light exit surface side of the light guide. The surface light source element was placed. The degree of variation (R%) of the obtained surface light source elements was determined and shown in Table 1.

一方、90mm×300mmで、厚さが2mm、4mm、10mmの3種類の透明アクリル樹脂板を用いて、同様の手順で導光体1を作製した。得られた導光体1の90mmの二つの端面に銀蒸着したPETフィルムを粘着加工して貼り付けた点以外は、上記と同様の方法で面光源素子を作製し、得られた面光源素子の出射率を求めて表2に示した。   On the other hand, the light guide 1 was produced in the same procedure using three types of transparent acrylic resin plates of 90 mm × 300 mm and thicknesses of 2 mm, 4 mm, and 10 mm. A surface light source element was prepared in the same manner as described above except that a PET film deposited with silver was adhered to two 90 mm end faces of the obtained light guide 1 and adhered, and the surface light source element was obtained. The emission rate was determined and shown in Table 2.

実施例4〜5、比較例2
サンドブラスト処理およびフッ素処理の条件を変更した以外は、実施例1と同様にして厚さ4mm、一辺が90mm、他辺が64mm、210mm、248mmの3種類の透明アクリル樹脂板の一方の表面に熱転写によって粗面を転写し導光体とした。得られた導光体の平均傾斜角度(θa)は2.9゜であった。実施例1と同様にして面光源素子を組み立て、得られた面光源素子のバラツキ度(R%)を求めて表1に示した。
Examples 4-5, Comparative Example 2
Except for changing the conditions for sandblasting and fluorine treatment, thermal transfer was performed on one surface of three types of transparent acrylic resin plates having a thickness of 4 mm, one side of 90 mm, and the other side of 64 mm, 210 mm, and 248 mm in the same manner as in Example 1. The rough surface was transferred to obtain a light guide. The average inclination angle (θa) of the obtained light guide was 2.9 °. Surface light source elements were assembled in the same manner as in Example 1, and the degree of variation (R%) of the obtained surface light source elements was determined and shown in Table 1.

一方、90mm×300mmで、厚さが2mm、4mm、10mmの3種類の透明アクリル樹脂板を用いて、同様の手順で導光体2を作製した。得られた導光体2を実施例1と同様の方法で面光源素子を作製し、得られた面光源素子の出射率を求めて表2に示した。   On the other hand, the light guide 2 was produced in the same procedure using three types of transparent acrylic resin plates of 90 mm × 300 mm and thicknesses of 2 mm, 4 mm, and 10 mm. A surface light source element was produced from the obtained light guide 2 in the same manner as in Example 1, and the emission rate of the obtained surface light source element was determined and shown in Table 2.

実施例6、比較例3
真鍮板にガラスビーズを用いたサンドブラスト処理を行うことにより粗面を形成した金型を用いて、厚さ4mm、一辺が90mm、他辺が64mm、210mmの2種類の透明アクリル樹脂板の一方の表面に熱転写によって粗面を転写し導光体とした。得られた導光体の平均傾斜角度(θa)は4.5゜であった。実施例1と同様にして面光源素子を組み立て、得られた面光源素子のバラツキ度(R%)を求めて表1に示した。
Example 6 and Comparative Example 3
One of two types of transparent acrylic resin plates with a thickness of 4 mm, one side of 90 mm, the other side of 64 mm, and 210 mm using a die having a rough surface formed by sandblasting using glass beads on a brass plate The rough surface was transferred to the surface by thermal transfer to obtain a light guide. The average inclination angle (θa) of the obtained light guide was 4.5 °. Surface light source elements were assembled in the same manner as in Example 1, and the degree of variation (R%) of the obtained surface light source elements was determined and shown in Table 1.

一方、90mm×300mmで、厚さが2mm、4mm、10mmの3種類の透明アクリル樹脂板を用いて、同様の手順で導光体3を作製した。得られた導光体3を実施例1と同様の方法で面光源素子を作製し、得られた面光源素子の出射率を求めて表2に示した。   On the other hand, the light guide 3 was produced in the same procedure using three types of transparent acrylic resin plates of 90 mm × 300 mm and thicknesses of 2 mm, 4 mm, and 10 mm. A surface light source element was produced from the obtained light guide 3 in the same manner as in Example 1, and the emission rate of the obtained surface light source element was determined and shown in Table 2.

比較例4
サンドブラスト処理の条件を変更した以外は、実施例6と同様にして厚さ4mm、一辺が90mm、他辺が64mmの透明アクリル樹脂板の一方の表面に熱転写によって粗面を転写し導光体を得た。得られた導光体の平均傾斜角度(θa)は7.9゜であった。実施例1と同様にして面光源素子を組み立て、得られた面光源素子のバラツキ度(R%)を求めて表1に示した。
Comparative Example 4
Except for changing the conditions for sandblasting, the rough surface was transferred to one surface of a transparent acrylic resin plate having a thickness of 4 mm, one side of 90 mm, and the other side of 64 mm in the same manner as in Example 6, and the light guide was Obtained. The average inclination angle (θa) of the obtained light guide was 7.9 °. Surface light source elements were assembled in the same manner as in Example 1, and the degree of variation (R%) of the obtained surface light source elements was determined and shown in Table 1.

一方、90mm×300mmで、厚さが2mm、4mm、10mmの3種類の透明アクリル樹脂板を用いて、同様の手順で導光体4を作製した。得られた導光体4を実施例1と同様の方法で面光源素子を作製し、得られた面光源素子の出射率を求めて表2に示した。   On the other hand, the light guide 4 was produced in the same procedure using three types of transparent acrylic resin plates of 90 mm × 300 mm and thicknesses of 2 mm, 4 mm, and 10 mm. A surface light source element was produced from the obtained light guide 4 in the same manner as in Example 1, and the emission rate of the obtained surface light source element was determined and shown in Table 2.

比較例5
真鍮板に電気放電処理を行うことにより粗面を形成した金型を用いて、厚さ4mm、一辺が90mm、他辺が64mmの透明アクリル樹脂板の一方の表面に熱転写によって粗面を転写し導光体とした。得られた導光体の平均傾斜角度(θa)は15.5゜であった。実施例1と同様にして面光源素子を組み立て、得られた面光源素子のバラツキ度(R%)を求めて表1に示した。
Comparative Example 5
Using a die having a rough surface formed by performing electrical discharge treatment on a brass plate, the rough surface was transferred by thermal transfer to one surface of a transparent acrylic resin plate having a thickness of 4 mm, one side of 90 mm, and the other side of 64 mm. A light guide was formed. The average inclination angle (θa) of the obtained light guide was 15.5 °. Surface light source elements were assembled in the same manner as in Example 1, and the degree of variation (R%) of the obtained surface light source elements was determined and shown in Table 1.

一方、90mm×300mmで、厚さが2mm、4mm、10mmの3種類の透明アクリル樹脂板を用いて、同様の手順で導光体5を作製した。得られた導光体5を実施例1と同様の方法で面光源素子を作製し、得られた面光源素子の出射率を求めて表2に示した。   On the other hand, the light guide 5 was produced in the same procedure using three types of transparent acrylic resin plates of 90 mm × 300 mm and thicknesses of 2 mm, 4 mm, and 10 mm. A surface light source element was produced from the obtained light guide 5 in the same manner as in Example 1, and the emission rate of the obtained surface light source element was determined and shown in Table 2.

比較例6
電気放電処理の条件を変更した以外は、比較例5と同様にして導光体を得た。得られた導光体の平均傾斜角度(θa)は24.0゜であった。実施例1と同様にして面光源素子を組み立て、得られた面光源素子のバラツキ度(R%)を求めて表1に示した。
Comparative Example 6
A light guide was obtained in the same manner as in Comparative Example 5 except that the conditions for the electric discharge treatment were changed. The average inclination angle (θa) of the obtained light guide was 24.0 °. Surface light source elements were assembled in the same manner as in Example 1, and the degree of variation (R%) of the obtained surface light source elements was determined and shown in Table 1.

一方、90mm×300mmで、厚さが2mm、4mm、10mmの3種類の透明アクリル樹脂板を用いて、同様の手順で導光体6を作製した。得られた導光体6を実施例1と同様の方法で面光源素子を作製し、得られた面光源素子の出射率を求めて表2に示した。

Figure 0004170991
Figure 0004170991

On the other hand, the light guide 6 was produced in the same procedure using three types of transparent acrylic resin plates of 90 mm × 300 mm and thicknesses of 2 mm, 4 mm, and 10 mm. A surface light source element was produced from the obtained light guide 6 in the same manner as in Example 1, and the emission rate of the obtained surface light source element was determined and shown in Table 2.
Figure 0004170991
Figure 0004170991

実施例7
実施例5で得た4mm×90mm×120mmの導光体を用いた面光源素子の冷陰極管にインバーター(TDK社製CXA−M10L)を介して直流電源に接続し、DC12Vを印加して点灯させ、輝度計(ミノルタ社製nt−1゜)を用いて、その正面輝度を測定した。その結果、正面輝度は2715Ca/mであった。
Example 7
A cold cathode tube of a surface light source element using the light guide of 4 mm × 90 mm × 120 mm obtained in Example 5 is connected to a DC power source via an inverter (CXA-M10L manufactured by TDK), and turned on by applying DC 12V. The front luminance was measured using a luminance meter (nt-1 ° manufactured by Minolta). As a result, the front luminance was 2715 Ca / m 2 .

比較例7
4mm×90mm×120mmのアクリル樹脂製導光体の裏面に、酸化チタン粒子を含んだ白色塗料を用いて、光入射面から離れるに従って密度が高くなるように斑点パターンをスクリーン印刷によって形成した。得られた導光体の90mmの二つの端面および他の一方の端面に銀蒸着したPETフィルムを粘着加工して貼り付け、粗面化した光出射面と対向する裏面に銀蒸着したPETフィルムをテープ止めして反射面を形成した。導光体の残りの一つの端面に銀蒸着したPETフィルムで冷陰極管(松下電器社製KC130T4E72、4mmφ×130mm)を巻き付けて光源ランプとして設置した。次いで、導光体の光出射面上に拡散フィルムを載置した。さらに、PETフィルムに屈折率1.53のアクリル系紫外線硬化樹脂で、頂角90゜、ピッチ50μmのプリズム列を平行に多数形成した2枚のプリズムシートを、両方のプリズム列が直交するように重ね、プリズム面が光出射方向側に向くように載置して面光源素子とした。得られた面光源素子のバラツキ度(R%)は17.0%であった。
Comparative Example 7
A spot pattern was formed by screen printing on the back surface of a 4 mm × 90 mm × 120 mm acrylic resin light guide using a white paint containing titanium oxide particles so that the density increased as the distance from the light incident surface increased. Adhering and pasting silver-deposited PET film on two 90mm end faces and the other end face of the obtained light guide, and then depositing silver-deposited PET film on the back surface facing the roughened light exit surface A reflective surface was formed by tape fastening. A cold-cathode tube (KC130T4E72, 4 mmφ × 130 mm manufactured by Matsushita Electric Industrial Co., Ltd.) was wound around the remaining one end face of the light guide with a PET film on which silver was vapor-deposited and installed as a light source lamp. Next, a diffusion film was placed on the light exit surface of the light guide. Furthermore, two prism sheets are formed on a PET film with an acrylic UV curable resin having a refractive index of 1.53 and a large number of prism rows having an apex angle of 90 ° and a pitch of 50 μm formed in parallel so that both prism rows are orthogonal to each other. The surface light source elements were stacked and placed so that the prism surface faces the light emitting direction. The degree of variation (R%) of the obtained surface light source element was 17.0%.

得られた面光源素子の冷陰極管にインバーター(TDK社製CXA−M10L)を介して直流電源に接続し、DC12Vを印加して点灯させ、輝度計(ミノルタ社製nt−1゜)を用いて、その正面輝度を測定した。その結果、正面輝度は2148Ca/mであった。 The cold cathode tube of the obtained surface light source element was connected to a direct current power source via an inverter (CXA-M10L manufactured by TDK), turned on by applying DC12V, and a luminance meter (nt-1 ° manufactured by Minolta) was used. The front brightness was measured. As a result, the front luminance was 2148 Ca / m 2 .

表1から明らかなように、本発明の実施例1〜6の面光源素子では、光出射面内での輝度のバラツキ度(R%)が10%以下と均一性に優れており、液晶表示装置用の面光源素子として十分に実用可能なものであった。一方、比較例1〜6の面光源素子では、光出射面内での輝度のバラツキ度(R%)が20%を超えるものであり、輝度の均一性が十分に得られているものではなかった。また、実施例7と比較例7から明らかなように、本発明の実施例7の面光源では、正面輝度を損なうことなく光出射面内での均一な輝度分布が得られるものであった。   As is apparent from Table 1, the surface light source elements of Examples 1 to 6 of the present invention have excellent uniformity in luminance variation (R%) of 10% or less within the light exit surface, and are liquid crystal displays. It was sufficiently practical as a surface light source element for an apparatus. On the other hand, in the surface light source elements of Comparative Examples 1 to 6, the luminance variation degree (R%) in the light emitting surface exceeds 20%, and the luminance uniformity is not sufficiently obtained. It was. Further, as is clear from Example 7 and Comparative Example 7, the surface light source of Example 7 of the present invention was able to obtain a uniform luminance distribution in the light exit surface without impairing the front luminance.

本発明の導光体の粗面における光の光路を示す概略図である。It is the schematic which shows the optical path of the light in the rough surface of the light guide of this invention.

Claims (2)

光源と、該光源に対向する少なくとも一つの光入射面およびこれと略直交する光出射面を有する導光体と、該導光体の光出射面側に配設された少なくとも一方の面に多数のプリズム形状のレンズ単位が平行に形成されたプリズム面を有するプリズムシートとを有し、前記導光体の前記光出射面が、微粒子を吹き付けて粗面化された金型が転写されることによって形成された平均傾斜角(θa)0.5〜4.5゜の凹凸を有する粗面から構成されており、前記導光体の前記光出射面における輝度のバラツキ度(R%)が20%以下であり、プリズムシートのプリズム面が前記導光体の光出射面側となるように配設されており、前記導光体が、光入射端部からそれに対向する端部までの長さ(L)と厚さ(t)との比(L/t)が120以下であることを特徴とする面光源素子。 A light source, a light guide having at least one light incident surface facing the light source and a light emitting surface substantially orthogonal to the light source, and a plurality of light guides on at least one surface disposed on the light emitting surface side of the light guide A prism sheet having a prism surface in which the prism-shaped lens units are formed in parallel, and the light emitting surface of the light guide is transferred with a roughened mold by spraying fine particles. Is formed of a rough surface having irregularities with an average inclination angle (θa) of 0.5 to 4.5 °, and a luminance variation degree (R%) on the light emitting surface of the light guide is 20 %, And the prism surface of the prism sheet is disposed so as to be on the light exit surface side of the light guide, and the length of the light guide from the light incident end to the opposite end The ratio (L / t) between (L) and thickness (t) is 120 or less A surface light source device characterized and this. 請求項1に記載の面光源素子をバックライトとして用いたことを特徴とする液晶表示装置。 The liquid crystal display device characterized by using the surface light source device according as a backlight in claim 1.
JP2005008922A 2005-01-17 2005-01-17 Surface light source element for liquid crystal display device and liquid crystal display device using the same Expired - Lifetime JP4170991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005008922A JP4170991B2 (en) 2005-01-17 2005-01-17 Surface light source element for liquid crystal display device and liquid crystal display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005008922A JP4170991B2 (en) 2005-01-17 2005-01-17 Surface light source element for liquid crystal display device and liquid crystal display device using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28855295A Division JP3656967B2 (en) 1995-11-07 1995-11-07 Surface light source element for liquid crystal display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008177194A Division JP4632378B2 (en) 2008-07-07 2008-07-07 Surface light source element and liquid crystal display device using the same

Publications (2)

Publication Number Publication Date
JP2005129547A JP2005129547A (en) 2005-05-19
JP4170991B2 true JP4170991B2 (en) 2008-10-22

Family

ID=34651116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005008922A Expired - Lifetime JP4170991B2 (en) 2005-01-17 2005-01-17 Surface light source element for liquid crystal display device and liquid crystal display device using the same

Country Status (1)

Country Link
JP (1) JP4170991B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632378B2 (en) * 2008-07-07 2011-02-16 三菱レイヨン株式会社 Surface light source element and liquid crystal display device using the same

Also Published As

Publication number Publication date
JP2005129547A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
EP0882930A1 (en) Surface light source element and liquid crystal display device, sign device and traffic control sign device using same
WO2002048781A1 (en) Light source device
JP2000056107A (en) Prism sheet and surface light source element
JP2019536227A (en) Light guide plate having fine structure and device including the same
JP2001343507A (en) Lens sheet, planar light source element using the same and liquid crystal display
JP2000231103A (en) Lens sheet and back light and liquid crystal display device using the same
JP2001176315A (en) Surface type luminescence and desktop lighting system using the same
JP5614128B2 (en) Optical sheet, backlight unit and display device
WO2004016985A1 (en) Surface light source and light guide used therefor
JP2006309248A (en) Lens sheet, surface light source element using the same and liquid crystal display device
JP3442247B2 (en) Light guide for surface light source element and surface light source element
JP2008134631A (en) Lens sheet, surface light source device and liquid crystal display device
JP4400845B2 (en) Light diffusing sheet, video display element using the same, and surface light source device
JP2008304501A (en) Diffusion plate
JP4170991B2 (en) Surface light source element for liquid crystal display device and liquid crystal display device using the same
JP3773129B2 (en) Light guide for surface light source element and surface light source element
JP3656967B2 (en) Surface light source element for liquid crystal display device
JP4446460B2 (en) Surface light source device, light guide for surface light source device, and manufacturing method thereof
JP4632378B2 (en) Surface light source element and liquid crystal display device using the same
JP3929599B2 (en) Prism sheet and surface light source element
JP3560273B2 (en) Double-sided surface light source element and double-sided marking device using the same
JP2000056106A (en) Prism sheet and surface light source element
JP3953801B2 (en) Diffusion film and manufacturing method thereof, surface light source device and liquid crystal display device
JP3682124B2 (en) Surface light source element
JP2001133605A (en) Lens sheet, backlight utilizing the same and liquid crystal display device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term