JP3773129B2 - Light guide for surface light source element and surface light source element - Google Patents

Light guide for surface light source element and surface light source element Download PDF

Info

Publication number
JP3773129B2
JP3773129B2 JP18639096A JP18639096A JP3773129B2 JP 3773129 B2 JP3773129 B2 JP 3773129B2 JP 18639096 A JP18639096 A JP 18639096A JP 18639096 A JP18639096 A JP 18639096A JP 3773129 B2 JP3773129 B2 JP 3773129B2
Authority
JP
Japan
Prior art keywords
light
light guide
light source
source element
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18639096A
Other languages
Japanese (ja)
Other versions
JPH1031114A (en
Inventor
雅春 小田
一清 千葉
泰子 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP18639096A priority Critical patent/JP3773129B2/en
Priority to MYPI97000354A priority patent/MY123812A/en
Publication of JPH1031114A publication Critical patent/JPH1031114A/en
Application granted granted Critical
Publication of JP3773129B2 publication Critical patent/JP3773129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ノートパソコン、液晶テレビ等に使用される液晶表示装置を構成する面光源素子、および面光源素子に使用される導光体に関するものであり、さらに詳しくは、高い輝度を有するとともに、斑点パターン等の均一化処理を施すことなく光出射面内での均一な輝度分布が得られる面光源素子用導光体および面光源素子に関するものである。
【0002】
【従来の技術】
近年、カラー液晶表示装置は、ノートパソコンや、液晶テレビあるいはビデオ一体型液晶テレビ等として種々の分野で広く使用されてきている。この液晶表示装置は、基本的にバックライト部と液晶表示素子部とから構成されている。バックライト部としては、液晶表示素子の直下に光源を設けた直下方式や導光体の側面に光源を設けたエッジライト方式があり、液晶表示装置のコンパクト化からエッジライト方式が多用されてきている。このエッジライト方式は、板状の導光体の側面部に光源を配置して、導光体の表面全体を発光させる方式のバックライトであり、いわゆる面光源素子と呼ばれるものである。
【0003】
このような面光源素子では、アクリル樹脂板等の板状透明材料を導光体とし、その一端に配置された光源からの光を光入射面から導光体中に入射させ、入射した光を導光体の表面(光出射面)あるいは裏面に形成した光散乱部等の光出射機能を設けることにより、光出射面から面状に出射させるものである。しかし、導光体の表面あるいは裏面に光出射機能を均一に形成したものでは、光源から離れるに従って出射光の輝度が低下して、光出射面内における輝度が不均一となり、良好な表示画面が得られないものであった。このような傾向は、液晶表示素子の大型化に伴って顕著となり、10インチ以上の大型液晶表示装置においては実用に耐えうるものではなかった。特に、最近の液晶画面の大型化に伴い、ノートパソコンや液晶テレビ等に使用される液晶表示装置においては、その画面内での輝度分布は非常に高い均一性が要求されるものである。
【0004】
このような面光源素子の輝度の不均一性という課題を解決するために、種々の提案がなされている。例えば、特開平1−24522号公報には、導光体の光出射面に対向する裏面に光入射面から離れるに従って光拡散物質を密に塗布または付着させた光出射機能を設けた面光源素子が提案されている。また、特開平1−107406号公報には、表面に光散乱物質からなる細かい斑点を種々のパターンで形成した複数の透明板を積層して導光体としたのもが提案されている。このような面光源素子においては、光散乱物質として酸化チタンや硫酸バリウム等の白色顔料を使用しているため、光散乱物質に当たった光が散乱する際に光吸収等の光のロスが生じ、出射光の輝度の低下を招くため好ましくないものであった。
【0005】
また、特開平1−244490号公報や特開平1−252933号公報には、導光体の光出射面上に出射光分布の逆数に見合う光反射パターンを有する出射光調整部材や光拡散板を配置した面光源素子が提案されている。しかし、このような面光源素子においても、出射光調整部材や光拡散板で反射した光の再利用ができないために光のロスが生じ、出射光の輝度の低下を招くものであった。
さらに、特開平2−17号公報や特開平2−84618号公報には、導光体の光出射面およびその裏面の少なくとも一方の面に多数のレンズ単位を形成したり、梨地面とするとともに、光出射面上にプリズムシートを載置した面光源素子が提案されている。しかし、このような面光源素子は、非常に高い輝度が得られるものの、光出射面における均一性の点では未だ満足できるものではなかった。
【0006】
【発明が解決しようとする課題】
一方、出射光の輝度の均一化とともに光のロスを低減して輝度を高める面光源素子については、特開平6−18879号公報に提案されているように、導光体の光出射面に多数のレンズ単位を形成したり、梨地面とするとともに、その裏面に粗面部分と平滑部分を粗面部分の割合が光源から離れるに従って増加するように形成するとともに、光出射面上にプリズムシートを載置した面光源素子が提案されている。しかしながら、このような面光源素子では、出射光の輝度の均一化と光のロスの低減を図れるものの、液晶表示装置等の表示装置として使用する場合に、液晶表示素子や表示板を通して導光体の裏面に形成した粗面部分と平滑部分とで形成されるパターンが観察され、画像の観察に支障をきたすものであった。また、導光体の表面に均一光出射機能を施すことは、導光体の生産性の観点からも好ましいものではない。
そこで、本発明は、高い輝度を有するとともに、斑点パターン等の均一化処理を施すことなく光出射面内での輝度の均一性に優れた面光源素子用導光体および面光源素子を提供することを目的とする。
【0007】
【課題を解決するための手段】
すなわち、本発明の面光源素子用導光体は、透明基板の1つの側端面を光入射面とし、この光入射面と略直交する1つの面を光出射面とする導光体において、光出射面およびその裏面の少なくとも一方の面が、光出射面での光の出射率が1.5〜3.5%であるような微細凹凸を全面に有する粗面から構成され、導光体のヘイズ値が20〜40%であることを特徴とするものである。
このような本発明の面光源素子およびその導光体は、導光体の光出射面からの光の出射率を特定の範囲とすることにより、面光源素子の光出射面内での輝度の均一化を図るとともに、粗面化した導光体表面のヘイズ値を特定の範囲とすることにより、面光源素子の輝度を高めるとともに、面光源素子の光出射面内での輝度の一層の均一化を図ることができるものである。
【0008】
【発明の実施の形態】
本発明の面光源素子用導光体は、少なくとも1つの側端面を光入射面とし、この光入射面と略直交する1つの面を光出射面とする透明基板から構成される。このような導光体において、導光体中に入射した光は、臨界角以内の分布の光が導光体の面で反射を繰り返して導光体中を伝搬する。導光体の表面に粗面部分を形成した場合には、粗面部分に到達した光のうち粗面に対して臨界角を超える光は屈折して導光体の外へ出射し、臨界角以内の光は反射して導光体を伝搬する。これは、光の進行方向が、スネルの法則に従って媒体の屈折率と入射した面の法線に対する光の入射角によって決定されることによる。
【0009】
図1に、凹凸形状を有する導光体表面での光の屈折および反射を模式的に示した。臨界角を超える入射角iで凹凸部の斜面に入射した光Aは、スネルの法則によりnsini=sini’(nは導光体の屈折率)の関係を満足する出射角i’で導光体外に出射する。一方、臨界角内である入射角kで入射した光Bは、角度k’(k’=k)で反射して導光体内を伝搬する。一旦、凹凸部分に入射して反射した光は、次に凹凸部分に入射する際に入射角が鋭くなるため、臨界角を超えやすくなり導光体外へ出射しやすくなる。
【0010】
本発明者等は、面光源素子用導光体において、ある点での光の出射強度(I)と光入射面端での出射光強度(I0 )との関係は、出射率(α)、光出射面端からの距離(L’)および導光体の厚さ(t)によって、実験的に次の(1)式で表されることを見出した。
【0011】
【数1】
I=I0(1−α)L'/20t ・・・ (1)
(1)式から、導光体の長さ(L)と厚さ(t)が決定すれば、出射率(α)によって光出射面内での輝度の均一性が決定されることがわかる。なお、厚さtmmの導光体の出射率(α)は、導光体の光入射面端から20mm間隔で輝度の測定を行い、光入射面端からの距離(l)と輝度の対数のグラフから、その勾配(K(mm-1))を求めて、次の(2)式によって求められる。
【0012】
【数2】
α=(1−1020K)×100 ・・・ (2)
本発明においては、輝度の均一性の尺度として、次の(3)式で示されるバラツキ度(R%)を用いて、面光源素子用導光体における輝度の均一性についての評価および検討を行った。バラツキ度(R%)は、導光体のほぼ中央部において光入射面端から5mm離れた点から対向する端部までの範囲内を20mm間隔で輝度測定を行い、測定輝度の最大値(Imax )、測定輝度の最小値(Imin )、測定輝度の平均値(Iav)を求め、次の(3)式によって求める。
【0013】
【数3】
R%={(Imax−Imin)/Iav}×100 ・・・ (3)
その結果、出射率(α)とバラツキ度(R%)とは、導光体の長さ(L)と厚さ(t)に依存して特定の関係にあることが見出され、出射率(α)が大きくなるとバラツキ度(R%)はそれに伴って増加し、出射率(α)が一定であれば導光体の長さ(L)と厚さ(t)の比(L/t)が大きくなるに従ってバラツキ度(R%)も大きくなる。すなわち、一定の大きさの導光体においては、導光体の光出射面内での輝度の均一性(バラツキ度)は、導光体からの出射率(α)に依存するものであり、出射率(α)を制御することによって輝度の均一性を図れることがわかる。そこで、本発明においては、導光体の光出射面からの光の出射率(α)を1.5〜3.5%の範囲とすることによって、液晶表示装置用の面光源素子として、その光出射面における輝度のバラツキ度(R%)が小さく、十分な均一性を図ることができることを見出したものである。
【0014】
これは、導光体の光出射面からの光の出射率(α)が1.5%未満であると、導光体から出射する光量自体が極端に低下し面光源素子としての輝度が低下するためであり、逆に、出射率(α)が3.5%を超えると、液晶表示装置等の面光源素子として輝度の均一性が損なわれるためである。好ましくは、出射率(α)が1.6〜3%の範囲であり、さらに好ましくは1.7〜2.7%の範囲である。導光体における輝度の均一性は、その用途によって異なるが、ノートパソコンや液晶テレビ等の液晶表示装置において使用される面光源素子としては、非常に高い均一性が要求され、そのバラツキ度(R%)が25%以下、好ましくは20%以下である。
【0015】
さらに、本発明においては、表面を粗面化した導光体は、そのヘイズ値が20〜40%の範囲であることが必要である。これは、導光体の光出射面からの光の出射率を上記の範囲内とすることによって、輝度のバラツキ度(R%)の小さい、均一性に優れた面光源素子が得られるものの、このように出射率が比較的小さい場合には、導光体中を反射しながら往復する光の割合が高くなり、導光体から出射する光量自体が低下する傾向にあるために、面光源素子としての輝度を高めることが必要となる。そこで、本発明においては、導光体のヘイズ値が20〜40%の範囲となるような粗面処理を施すことによって、面光源素子としての輝度を高めるものである。導光体のヘイズ値が20%未満であると、粗面を構成する凹凸状態が小さくなり面光源素子としての輝度を十分に高めることができず、逆に、ヘイズ値が40%を超えると粗面を構成する凹凸状態が激しくなり、出射光に斑を生じたり、輝度の均一性が低下するためであり、好ましくは30〜40%の範囲である。
【0016】
本発明の面光源素子用導光体としては、その大きさは特に限定されるものではないが、本発明の効果をより顕著に発揮させるためには導光体の長さ(L)と厚さ(t)との比(L/t)が150以下の導光体として使用することが好ましい。L/tが150を超えると、導光体の出射率を制御しても光出射面内での輝度の均一性が十分に図れない傾向にあるためであり、さらに好ましくは130以下、より好ましくは80以下の範囲である。
【0017】
本発明において、導光体としては、ガラスや合成樹脂等の透明板状体を使用することができる。合成樹脂としては、例えば、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂等の高透明性の種々の合成樹脂を用いることができ、この樹脂を押出成形、射出成形等の通常の成形方法で板状体に成形することによって導光体を製造することができる。特に、メタクリル樹脂が、その光線透過率の高さ、耐熱性、力学的特性、成形加工性にも優れており、導光体用材料として最適である。このようなメタクリル樹脂とは、メタクリル酸メチルを主成分とする樹脂であり、メタクリル酸メチルが80重量%以上であることが好ましい。また、導光体中には、必要に応じて光拡散剤や微粒子等を混入してもよい。
【0018】
導光体の表面を粗面化する加工方法としては、出射率(α)およびヘイズ値が特定の範囲となれば特に限定されるものではないが、例えば、化学エッチング、バイド切削、レーザー加工等によってレンズパターンを形成した金型等を用いて、透明基板を加熱プレスしたり、射出成形によって形成する方法、導光体をエッチング、バイト切削、レーザー加工等によって直接加工する方法等が挙げられる。
【0019】
本発明の面光源素子は、図2に示したように、上記のような導光体1の一方の端部に蛍光灯等の光源2を配置し、光出射面と対向する裏面には、反射フィルム等によって反射層4が形成される。光源2から導光体1へ有効に光を導入するために、光源2および導光体1の光入射面を内側に反射剤を塗布したケースやフィルムで覆うように構成される。また、導光体1としては、板状、くさび状、船型状等の種々の形状のものが使用できるが、特に、光源から離れるに従って厚さが薄くなるくさび状等の導光体が輝度の均一性の観点から好ましい。
【0020】
本発明の面光源素子においては、通常、導光体1からの出射光の出射方向は、法線方向からずれた方向となるため、法線方向から観察を行うような用途に使用する場合には、導光体1の上にレンズシート3を載置する等の手段を講じて、出射光を法線方向に変角することが好ましい。この場合、使用されるレンズシート3としては、少なくとも一方の面に多数のレンズ単位が平行に形成されたレンズ面を有するものである。形成されるレンズ形状は、目的に応じて種々の形状のものが使用され、例えば、プリズム形状、レンチキュラーレンズ形状、波型形状等が挙げられる。レンズシート3のレンズ単位のピッチは20μm〜5mm程度とすることが好ましく、プリズムシートを使用する場合には、そのプリズム頂角は導光体からの出射光の出射角によって適宜選定されるが、一般的には50〜120゜の範囲とすることが好ましい。また、プリズムシートの向きについても、導光体からの出射光の出射角によって適宜選定され、レンズ面が導光体側となるように載置してもよいし、逆向きに載置してもよい。特に、導光体の光出射面からの光の出射率(α)が1.5〜3.5%程度である場合には、光出射面からの出射光が法線に対して比較的大きな角度で出射するため、面光源素子からの出射光を略法線方向とするためには、プリズム頂角が55〜70゜程度のプリズム列を形成したプリズムシートを、プリズム面が導光体の光出射面側となるように載置することが好ましい。
【0021】
本発明のレンズシート3は、可視光透過率が高く、屈折率の比較的高い材料を用いて製造することが好ましく、例えば、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂、活性エネルギー線硬化型樹脂等が挙げられる。中でも、レンズシートの耐擦傷性、取扱い性、生産性等の観点から活性エネルギー線硬化型樹脂が好ましい。また、レンズシートには、必要に応じて、酸化防止剤、紫外線吸収剤、黄変防止剤、ブルーイング剤、顔料、拡散剤等の添加剤を添加することもできる。レンズシートを製造する方法としては、押出成形、射出成形等の通常の成形方法が使用できる。活性エネルギー線硬化型樹脂を用いてレンズシートを製造する場合には、ポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂、ポリメタクリルイミド系樹脂、ポリオレフィン系樹脂等の透明樹脂からなる透明フィルムあるいはシート等の透明基材上に、活性エネルギー線硬化型樹脂によってレンズ部を形成する。まず、所定のレンズパターンを形成したレンズ型に活性エネルギー線硬化型樹脂液を注入し、透明基材を重ね合わせる。次いで、透明基材を通して紫外線、電子線等の活性エネルギー線を照射し、活性エネルギー線硬化型樹脂液を重合硬化して、レンズ型から剥離してレンズシートを得る。
【0022】
本発明の面光源素子においては、上記したようなレンズシートの他に、拡散シート、カラーフィルター、偏光膜等、光学的に光を変角、集束、拡散させたり、その光学特性を変化させる種々の光学素子を使用することができる。
【0023】
【実施例】
以下、実施例により本発明を具体的に説明する。
輝度の測定
導光体の冷陰極管にインバーター(TDK社製CXA−M10L)を介して直流電源に接続し、DC12Vを印加して点灯させた。面光源素子を測定台に載置し、輝度計(ミノルタ社製nt−1゜)の中心線に対して面光源素子が垂直となり、測定円が直径8〜9mmとなるように測定距離を調整した。次いで、冷陰極管のエイジングを30分間以上行った後、輝度の測定を行った。測定は、光源近傍の5mmを除いた部分を20mm×20mmの領域に区分し、輝度計の測定円の中心を各領域の中心と一致させて各領域の輝度を測定し、これらの平均値を法線方向の輝度とした。
【0024】
バラツキ度(R%)
面光源素子の中央部の光源側から他端面に至る各領域での輝度の測定値から、前記式(3)に基づいて算出した。
出射率(α)
面光源素子の中央部の光源側から他端面に至る各領域での輝度の測定値から、前記式(2)に基づいて算出した。
ヘイズ値
導光体を、反射・透過率計(村上色彩技術研究所社製HR−100)を用いて、光出射面または裏面に平行光線を入射させ、全光線透過率(Tt)と拡散光線透過率(Td)を測定して、次の式(4)によってヘイズ値(H)を求めた。
【0025】
【数4】
H(%)=(Td/Tt)×100 ・・・ (4)
実施例1
鏡面仕上げをしたステンレス板の表面を、粒径125〜149μmのガラスビーズ(不二製作所社製FGB−120)を用いて、ステンレス板から吹付けノズルまでの距離を10cmとして、吹付け圧力4Kg/cm2 でブラスト処理を行った。このステンレス板を型として、厚さ3mm、180mm×240mmの透明アクリル樹脂板の一方の表面に熱転写によって粗面を転写し導光体とした。得られた導光体のヘイズ値を測定して、その結果を表1に示した。
【0026】
得られた導光体の240mmの一つの端面および180mmの二方の端面に銀蒸着したPETフィルムを粘着加工して貼り付け、粗面化した光出射面と対向する裏面に銀蒸着したPETフィルムをテープ止めして反射面を形成した。導光体の残りの240mmの一つの端面に直管型の蛍光灯(松下電器産業社製KC130T4E、4mmφ×130mm)を設置し、導光体の光出射面上にPETフィルムに屈折率1.53のアクリル系紫外線硬化樹脂で、頂角63゜、ピッチ50μmのプリズム列を平行に多数形成したプリズムシートを、プリズム面が導光体の光出射面側に向くように載置して面光源素子とした。得られた面光源素子の出射率(α)、法線輝度、バラツキ度(R%)を求めて表1に示した。
【0027】
実施例2
透明アクリル樹脂板として、240mmの一端の厚さが3mmで、他端の厚さが1mmのくさび状のものを用いた以外は、実施例1と同様にして導光体を得た。得られた導光体のヘイズ値を測定して、その結果を表1に示した。得られた導光体の厚さ3mmの端面側に直管型の蛍光灯を設置した以外は、実施例1と同様にして面光源素子を組み立てた。得られた面光源素子の出射率(α)、法線輝度、バラツキ度(R%)を求めて表1に示した。
【0028】
比較例1
ブラスト処理の吹付け圧力を2Kg/cm2 とした以外は、実施例1と同様にして導光体を得た。得られた導光体のヘイズ値を測定して、その結果を表1に示した。また、得られた導光体を用いて、実施例1と同様にして面光源素子を組み立てた。得られた面光源素子の出射率(α)、法線輝度、バラツキ度(R%)を求めて表1に示した。
【0029】
比較例2
ブラスト処理のガラスビーズとして粒径74〜88μm(不二製作所社製FGB−200)を用いた以外は、実施例1と同様にして導光体を得た。得られた導光体のヘイズ値を測定して、その結果を表1に示した。また、得られた導光体を用いて、実施例1と同様にして面光源素子を組み立てた。得られた面光源素子の出射率(α)、法線輝度、バラツキ度(R%)を求めて表1に示した。
【0030】
比較例3
ブラスト処理のガラスビーズとして粒径53〜62μm(不二製作所社製FGB−300)を用い、吹付け圧力を5Kg/cm2 とした以外は、実施例1と同様にして導光体を得た。得られた導光体のヘイズ値を測定して、その結果を表1に示した。また、得られた導光体を用いて、実施例1と同様にして面光源素子を組み立てた。得られた面光源素子の出射率(α)、法線輝度、バラツキ度(R%)を求めて表1に示した。
【0031】
比較例4
吹付け時間を約半分とした急速ブラスト処理を行った以外は、実施例1と同様にして導光体を得た。得られた導光体のヘイズ値を測定して、その結果を表1に示した。また、得られた導光体を用いて、実施例1と同様にして面光源素子を組み立てた。得られた面光源素子の出射率(α)、法線輝度、バラツキ度(R%)を求めて表1に示した。
【0032】
【表1】

Figure 0003773129
【0033】
表1から明らかなように、本発明の実施例1〜2の面光源素子では、光出射面内での輝度のバラツキ度(R%)が20%以下と均一性に優れており、法線輝度も高く、液晶表示装置の面光源素子として十分に実用可能なものであった。一方、導光体のヘイズ値が小さい比較例1の面光源素子では、法線輝度が低いものであった。また、導光体のヘイズ値が大きい比較例2の面光源素子では、光出射面内での輝度のバラツキ度(R%)が大きく、液晶表示装置の面光源素子として輝度の均一性が十分なものではなかった。導光体のヘイズ値および出射率(α)の大きい比較例3の面光源素子では、光出射面内での輝度のバラツキ度(R%)が非常に大きく、液晶表示装置の面光源素子として輝度の均一性が十分なものではなかった。さらに、出射率(α)の大きい比較例4の面光源素子では、法線輝度が低いものであった。
【0034】
【発明の効果】
本発明は、導光体の光出射面およびそれと対向する裏面の少なくとも一方の面を、出射率が1.5〜3.5%である粗面で構成するとともに、導光体のヘイズ値を20〜40%とすることによって、高い輝度を有するとともに、斑点パターン等の均一化処理を施すことなく光出射面内での均一な輝度分布が得られ、ノートパソコン、液晶テレビ等に使用される液晶表示装置として適した面光源素子を提供できるものである。
【図面の簡単な説明】
【図1】本発明の導光体の粗面における光の光路を示す概略図である。
【図2】本発明の面光源素子を示す部分斜視図である。
【符号の説明】
1 導光体
2 光源
3 レンズシート
4 反射層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface light source element constituting a liquid crystal display device used in a notebook computer, a liquid crystal television, and the like, and a light guide used in the surface light source element, and more specifically, has high luminance, The present invention relates to a light source for a surface light source element and a surface light source element that can obtain a uniform luminance distribution in a light exit surface without performing a uniform process such as a spot pattern.
[0002]
[Prior art]
In recent years, color liquid crystal display devices have been widely used in various fields such as notebook personal computers, liquid crystal televisions, and video integrated liquid crystal televisions. This liquid crystal display device basically includes a backlight section and a liquid crystal display element section. As the backlight unit, there are a direct light method in which a light source is provided directly under a liquid crystal display element and an edge light method in which a light source is provided on a side surface of a light guide body. Yes. This edge light system is a backlight of a system in which a light source is disposed on a side surface portion of a plate-shaped light guide to emit light over the entire surface of the light guide, and is called a so-called surface light source element.
[0003]
In such a surface light source element, a plate-shaped transparent material such as an acrylic resin plate is used as a light guide, and light from a light source arranged at one end is incident on the light guide from the light incident surface. By providing a light emitting function such as a light scattering portion formed on the front surface (light emitting surface) or the back surface of the light guide, the light is emitted from the light emitting surface in a planar shape. However, in the case where the light emitting function is uniformly formed on the front surface or the back surface of the light guide, the luminance of the emitted light decreases with increasing distance from the light source, the luminance in the light emitting surface becomes uneven, and a good display screen is obtained. It was not obtained. Such a tendency becomes conspicuous with an increase in the size of the liquid crystal display element, and it cannot be put into practical use in a large-sized liquid crystal display device of 10 inches or more. In particular, with the recent increase in the size of liquid crystal screens, in liquid crystal display devices used for notebook personal computers, liquid crystal televisions, and the like, the luminance distribution within the screen is required to have very high uniformity.
[0004]
Various proposals have been made in order to solve the problem of non-uniform luminance of such surface light source elements. For example, Japanese Laid-Open Patent Publication No. 1-24522 discloses a surface light source element provided with a light emitting function in which a light diffusing substance is densely applied or adhered to a back surface facing a light emitting surface of a light guide as the distance from the light incident surface increases. Has been proposed. Japanese Laid-Open Patent Publication No. 1-107406 proposes that a light guide is formed by laminating a plurality of transparent plates on the surface of which fine spots made of a light scattering material are formed in various patterns. In such a surface light source element, since a white pigment such as titanium oxide or barium sulfate is used as a light scattering material, a light loss such as light absorption occurs when light hitting the light scattering material is scattered. This is not preferable because the brightness of the emitted light is lowered.
[0005]
JP-A-1-244490 and JP-A-1-252933 disclose an output light adjusting member or a light diffusion plate having a light reflection pattern corresponding to the reciprocal of the output light distribution on the light output surface of the light guide. Arranged surface light source elements have been proposed. However, even in such a surface light source element, the light reflected by the outgoing light adjusting member or the light diffusing plate cannot be reused, so that a light loss occurs and the luminance of the outgoing light is lowered.
Further, in Japanese Patent Laid-Open No. 2-17 and Japanese Patent Laid-Open No. 2-84618, a plurality of lens units are formed on at least one of the light exit surface and the back surface of the light guide, There has been proposed a surface light source element in which a prism sheet is placed on a light emitting surface. However, although such a surface light source element can obtain extremely high luminance, it has not been satisfactory in terms of uniformity on the light exit surface.
[0006]
[Problems to be solved by the invention]
On the other hand, there are many surface light source elements for increasing the luminance by making the luminance of the emitted light uniform and reducing the light loss, as proposed in Japanese Patent Laid-Open No. 6-18879. In addition to forming a lens unit or a matte surface, a rough surface portion and a smooth portion are formed on the back surface so that the ratio of the rough surface portion increases as the distance from the light source increases, and a prism sheet is formed on the light exit surface. A mounted surface light source element has been proposed. However, in such a surface light source element, the luminance of the emitted light can be made uniform and the loss of light can be reduced, but when used as a display device such as a liquid crystal display device, the light guide is passed through the liquid crystal display device or the display plate. A pattern formed by a rough surface portion and a smooth portion formed on the back surface of the film was observed, which hindered image observation. In addition, it is not preferable to apply a uniform light emitting function to the surface of the light guide from the viewpoint of productivity of the light guide.
Therefore, the present invention provides a light source for a surface light source element and a surface light source element that have high brightness and are excellent in uniformity of brightness in a light exit surface without performing a uniform process such as a spot pattern. For the purpose.
[0007]
[Means for Solving the Problems]
That is, for the surface light source element light guide of the present invention, the one side end surface of the transparent substrate and the light incident surface, the one surface of the light incident surface and substantially orthogonal in the light guide to the light emitting surface, light At least one of the emission surface and the back surface thereof is composed of a rough surface having fine irregularities on the entire surface such that the light emission rate at the light emission surface is 1.5 to 3.5%. The haze value is 20 to 40% .
Such a surface light source element of the present invention and its light guide have a luminance within the light emission surface of the surface light source element by setting the light emission rate from the light emission surface of the light guide to a specific range. By making the haze value of the surface of the roughened light guide to a specific range, the luminance of the surface light source element is increased, and the luminance of the surface light source element is further uniform within the light emitting surface. Can be realized.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The light guide for a surface light source element of the present invention is composed of a transparent substrate having at least one side end surface as a light incident surface and one surface substantially orthogonal to the light incident surface as a light emitting surface. In such a light guide, the light incident on the light guide is propagated through the light guide with light having a distribution within a critical angle repeatedly reflected on the surface of the light guide. When the rough surface portion is formed on the surface of the light guide, light exceeding the critical angle with respect to the rough surface among the light reaching the rough surface portion is refracted and emitted to the outside of the light guide. The light within is reflected and propagates through the light guide. This is because the traveling direction of light is determined by the refractive index of the medium and the incident angle of the light with respect to the normal of the incident surface according to Snell's law.
[0009]
FIG. 1 schematically shows light refraction and reflection on the surface of a light guide having an uneven shape. The light A incident on the slope of the concavo-convex portion with an incident angle i exceeding the critical angle is outside the light guide at an exit angle i ′ satisfying the relationship of nsini = sini ′ (n is the refractive index of the light guide) according to Snell's law. To exit. On the other hand, the light B incident at an incident angle k that is within the critical angle is reflected at an angle k ′ (k ′ = k) and propagates through the light guide. The light that has entered the uneven portion and reflected once has a sharp incident angle when it enters the uneven portion next time, so that it easily exceeds the critical angle and easily exits the light guide.
[0010]
In the light guide for a surface light source element, the present inventors have found that the relationship between the light emission intensity (I) at a certain point and the light emission intensity (I 0 ) at the light incident surface end is an emission rate (α). It was found that the following expression (1) is experimentally expressed by the distance (L ′) from the light emitting surface end and the thickness (t) of the light guide.
[0011]
[Expression 1]
I = I 0 (1−α) L ′ / 20t (1)
From equation (1), it can be seen that if the length (L) and thickness (t) of the light guide are determined, the uniformity of luminance within the light exit surface is determined by the output rate (α). The emission rate (α) of the light guide having a thickness of tmm is measured by measuring the luminance at intervals of 20 mm from the light incident surface end of the light guide, and the logarithm of the distance (l) from the light incident surface end and the luminance. The gradient (K (mm −1 )) is obtained from the graph, and is obtained by the following equation (2).
[0012]
[Expression 2]
α = (1-10 20 K ) × 100 (2)
In the present invention, as a measure of luminance uniformity, the variation degree (R%) expressed by the following equation (3) is used to evaluate and study the luminance uniformity in the light source for the surface light source element. went. The degree of variation (R%) is measured at 20 mm intervals within a range from a point 5 mm away from the light incident surface end to the opposite end in the substantially central portion of the light guide, and the maximum value (I max ), the minimum value of measurement luminance (I min ), and the average value (I av ) of measurement luminance are obtained by the following equation (3).
[0013]
[Equation 3]
R% = {(I max −I min ) / I av } × 100 (3)
As a result, it is found that the emission rate (α) and the degree of variation (R%) have a specific relationship depending on the length (L) and the thickness (t) of the light guide. As (α) increases, the degree of variation (R%) increases accordingly. If the output rate (α) is constant, the ratio (L / t) of the length (L) to the thickness (t) of the light guide ) Increases, the degree of variation (R%) also increases. That is, in a light guide of a certain size, the uniformity of brightness (the degree of variation) within the light exit surface of the light guide depends on the output rate (α) from the light guide, It can be seen that brightness uniformity can be achieved by controlling the emission rate (α). Therefore, in the present invention, by setting the light emission rate (α) from the light emission surface of the light guide to a range of 1.5 to 3.5%, as a surface light source element for a liquid crystal display device, It has been found that the degree of luminance variation (R%) on the light exit surface is small and sufficient uniformity can be achieved.
[0014]
This is because, when the light emission rate (α) from the light exit surface of the light guide is less than 1.5%, the amount of light emitted from the light guide itself is extremely reduced and the brightness as a surface light source element is reduced. On the contrary, if the emission rate (α) exceeds 3.5%, the uniformity of luminance is impaired as a surface light source element such as a liquid crystal display device. Preferably, the emission rate (α) is in the range of 1.6 to 3%, and more preferably in the range of 1.7 to 2.7%. The uniformity of brightness in the light guide varies depending on the application, but a surface light source element used in a liquid crystal display device such as a notebook personal computer or a liquid crystal television is required to have very high uniformity, and the degree of variation (R %) Is 25% or less, preferably 20% or less.
[0015]
Furthermore, in the present invention, the light guide having a roughened surface needs to have a haze value in the range of 20 to 40%. This is because, by setting the light emission rate from the light exit surface of the light guide within the above range, a surface light source element with small brightness variation (R%) and excellent uniformity can be obtained. When the emission rate is relatively small in this way, the ratio of the light reciprocating while reflecting in the light guide increases, and the amount of light emitted from the light guide tends to decrease. Therefore, it is necessary to increase the brightness. Therefore, in the present invention, the luminance as the surface light source element is increased by performing a rough surface treatment so that the haze value of the light guide is in the range of 20 to 40%. When the haze value of the light guide is less than 20%, the uneven state constituting the rough surface becomes small, and the luminance as the surface light source element cannot be sufficiently increased. Conversely, when the haze value exceeds 40% This is because the uneven state constituting the rough surface becomes intense, causing spots in the emitted light, and lowering the uniformity of brightness, and is preferably in the range of 30 to 40%.
[0016]
The size of the light guide for the surface light source element of the present invention is not particularly limited, but the length (L) and thickness of the light guide are more effective in order to exert the effects of the present invention more remarkably. It is preferable to use it as a light guide having a ratio (L / t) to 150 (t) or less. This is because when L / t exceeds 150, even if the emission rate of the light guide is controlled, there is a tendency that the luminance uniformity in the light exit surface cannot be sufficiently achieved, more preferably 130 or less, and more preferably. Is in the range of 80 or less.
[0017]
In the present invention, as the light guide, a transparent plate-like body such as glass or synthetic resin can be used. As the synthetic resin, for example, various highly transparent synthetic resins such as acrylic resin, polycarbonate resin, and vinyl chloride resin can be used, and this resin is subjected to a normal molding method such as extrusion molding or injection molding. A light guide can be manufactured by forming into a plate-like body. In particular, a methacrylic resin is excellent as a light transmittance, heat resistance, mechanical properties, and molding processability, and is optimal as a light guide material. Such a methacrylic resin is a resin mainly composed of methyl methacrylate, and the methyl methacrylate is preferably 80% by weight or more. Moreover, you may mix a light-diffusion agent, microparticles | fine-particles, etc. in a light guide as needed.
[0018]
The processing method for roughening the surface of the light guide is not particularly limited as long as the emission rate (α) and the haze value are within a specific range. For example, chemical etching, bid cutting, laser processing, etc. Examples include a method in which a transparent substrate is heated and pressed using a mold or the like on which a lens pattern is formed by injection molding, a method in which a light guide is directly processed by etching, cutting, laser processing, or the like.
[0019]
In the surface light source element of the present invention, as shown in FIG. 2, the light source 2 such as a fluorescent lamp is disposed at one end of the light guide 1 as described above, and on the back surface facing the light emitting surface, The reflective layer 4 is formed by a reflective film or the like. In order to effectively introduce light from the light source 2 to the light guide 1, the light incident surfaces of the light source 2 and the light guide 1 are configured to be covered with a case or film coated with a reflective agent on the inside. Moreover, as the light guide 1, various shapes such as a plate shape, a wedge shape, and a ship shape can be used. In particular, a wedge-shaped light guide whose thickness decreases as the distance from the light source increases. It is preferable from the viewpoint of uniformity.
[0020]
In the surface light source element of the present invention, since the emission direction of the emitted light from the light guide 1 is usually shifted from the normal direction, it is used for applications such as observation from the normal direction. It is preferable to take measures such as placing the lens sheet 3 on the light guide 1 to change the outgoing light in the normal direction. In this case, the lens sheet 3 to be used has a lens surface in which a large number of lens units are formed in parallel on at least one surface. Various lens shapes are used according to the purpose, and examples thereof include a prism shape, a lenticular lens shape, and a wave shape. The pitch of the lens unit of the lens sheet 3 is preferably about 20 μm to 5 mm, and when a prism sheet is used, the prism apex angle is appropriately selected according to the emission angle of the emitted light from the light guide, In general, the range is preferably from 50 to 120 °. Also, the orientation of the prism sheet is appropriately selected according to the emission angle of the light emitted from the light guide, and may be placed so that the lens surface is on the light guide side or placed in the opposite direction. Good. In particular, when the light output rate (α) from the light output surface of the light guide is about 1.5 to 3.5%, the output light from the light output surface is relatively large with respect to the normal line. In order to emit light from the surface light source element in a substantially normal direction in order to emit light at an angle, a prism sheet in which a prism row with a prism apex angle of about 55 to 70 ° is formed, and the prism surface of the light guide is used. It is preferable to mount so that it may become the light-projection surface side.
[0021]
The lens sheet 3 of the present invention is preferably manufactured using a material having a high visible light transmittance and a relatively high refractive index. For example, acrylic resin, polycarbonate resin, vinyl chloride resin, active energy ray curing Mold resin and the like. Among these, active energy ray-curable resins are preferable from the viewpoint of scratch resistance, handleability, and productivity of the lens sheet. Moreover, additives such as an antioxidant, an ultraviolet absorber, a yellowing inhibitor, a bluing agent, a pigment, and a diffusing agent can be added to the lens sheet as necessary. As a method for producing the lens sheet, a normal molding method such as extrusion molding or injection molding can be used. When manufacturing a lens sheet using an active energy ray curable resin, it is made of a transparent resin such as a polyester resin, an acrylic resin, a polycarbonate resin, a vinyl chloride resin, a polymethacrylimide resin, or a polyolefin resin. A lens part is formed of an active energy ray-curable resin on a transparent substrate such as a transparent film or sheet. First, an active energy ray-curable resin liquid is injected into a lens mold on which a predetermined lens pattern is formed, and a transparent substrate is overlaid. Next, active energy rays such as ultraviolet rays and electron beams are irradiated through the transparent substrate, the active energy ray-curable resin liquid is polymerized and cured, and peeled from the lens mold to obtain a lens sheet.
[0022]
In the surface light source element of the present invention, in addition to the lens sheet as described above, various kinds of optically deflecting, converging, diffusing light, and changing optical characteristics thereof, such as a diffusion sheet, a color filter, and a polarizing film. These optical elements can be used.
[0023]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
Measurement of luminance The cold cathode tube of the light guide was connected to a DC power source via an inverter (CXA-M10L manufactured by TDK), and lit by applying DC12V. Place the surface light source element on the measurement table and adjust the measurement distance so that the surface light source element is perpendicular to the center line of the luminance meter (Minolta nt-1 °) and the measurement circle is 8-9mm in diameter. did. Next, the cold cathode tube was aged for 30 minutes or more, and then the luminance was measured. The measurement is performed by dividing the portion excluding 5 mm in the vicinity of the light source into a 20 mm × 20 mm region, measuring the luminance of each region by making the center of the measurement circle of the luminance meter coincide with the center of each region, and calculating the average of these values. The luminance was in the normal direction.
[0024]
Variation degree (R%)
It calculated based on the said Formula (3) from the measured value of the brightness | luminance in each area | region from the light source side of the center part of a surface light source element to an other end surface.
Output rate (α)
It calculated based on the said Formula (2) from the measured value of the brightness | luminance in each area | region from the light source side of the center part of a surface light source element to an other end surface.
Haze value Using a reflection / transmittance meter (HR-100, manufactured by Murakami Color Research Laboratory Co., Ltd.), a parallel light beam is incident on the light exit surface or the back surface of the light guide to obtain a total light transmittance (Tt). ) And diffused light transmittance (Td) were measured, and the haze value (H) was determined by the following equation (4).
[0025]
[Expression 4]
H (%) = (Td / Tt) × 100 (4)
Example 1
Using a glass bead (FGB-120 manufactured by Fuji Seisakusho Co., Ltd.) with a particle size of 125 to 149 μm, the distance from the stainless steel plate to the spray nozzle is 10 cm, and the spray pressure is 4 kg / Blasting was performed at cm 2 . Using this stainless steel plate as a mold, a rough surface was transferred to one surface of a transparent acrylic resin plate having a thickness of 3 mm and 180 mm × 240 mm by thermal transfer to obtain a light guide. The haze value of the obtained light guide was measured, and the results are shown in Table 1.
[0026]
A PET film deposited with silver on one 240 mm end face and 180 mm two end faces of the obtained light guide was adhered and pasted, and a silver deposited PET film was deposited on the back surface facing the roughened light exit surface. Was taped to form a reflective surface. A straight tube type fluorescent lamp (KC130T4E, 4 mmφ × 130 mm, manufactured by Matsushita Electric Industrial Co., Ltd.) is installed on one end face of the remaining 240 mm of the light guide, and a refractive index of 1. is applied to the PET film on the light output surface of the light guide. A surface light source is formed by placing a prism sheet made of a large number of 53 parallel prism rows with an acrylic UV curable resin of 53 and an apex angle of 63 ° and a pitch of 50 μm so that the prism surface faces the light exit surface side of the light guide. It was set as the element. The emission rate (α), normal luminance, and variation degree (R%) of the obtained surface light source element were determined and shown in Table 1.
[0027]
Example 2
A light guide was obtained in the same manner as in Example 1 except that a transparent acrylic resin plate having a wedge shape of 240 mm with one end having a thickness of 3 mm and the other end having a thickness of 1 mm was used. The haze value of the obtained light guide was measured, and the results are shown in Table 1. A surface light source element was assembled in the same manner as in Example 1 except that a straight tube fluorescent lamp was installed on the end face side of the obtained light guide having a thickness of 3 mm. The emission rate (α), normal luminance, and variation degree (R%) of the obtained surface light source element were determined and shown in Table 1.
[0028]
Comparative Example 1
A light guide was obtained in the same manner as in Example 1 except that the blasting spray pressure was 2 kg / cm 2 . The haze value of the obtained light guide was measured, and the results are shown in Table 1. Moreover, the surface light source element was assembled like Example 1 using the obtained light guide. The emission rate (α), normal luminance, and variation degree (R%) of the obtained surface light source element were determined and shown in Table 1.
[0029]
Comparative Example 2
A light guide was obtained in the same manner as in Example 1, except that a particle size of 74 to 88 μm (FGB-200 manufactured by Fuji Seisakusho Co., Ltd.) was used as the glass beads for blasting. The haze value of the obtained light guide was measured, and the results are shown in Table 1. Moreover, the surface light source element was assembled like Example 1 using the obtained light guide. The emission rate (α), normal luminance, and variation degree (R%) of the obtained surface light source element were determined and shown in Table 1.
[0030]
Comparative Example 3
A light guide was obtained in the same manner as in Example 1 except that a particle size of 53 to 62 μm (FGB-300 manufactured by Fuji Seisakusho Co., Ltd.) was used as the glass beads for blasting and the spraying pressure was set to 5 Kg / cm 2 . . The haze value of the obtained light guide was measured, and the results are shown in Table 1. Moreover, the surface light source element was assembled like Example 1 using the obtained light guide. The emission rate (α), normal luminance, and variation degree (R%) of the obtained surface light source element were determined and shown in Table 1.
[0031]
Comparative Example 4
A light guide was obtained in the same manner as in Example 1 except that the rapid blasting process with the spraying time being about half was performed. The haze value of the obtained light guide was measured, and the results are shown in Table 1. Moreover, the surface light source element was assembled like Example 1 using the obtained light guide. The emission rate (α), normal luminance, and variation degree (R%) of the obtained surface light source element were determined and shown in Table 1.
[0032]
[Table 1]
Figure 0003773129
[0033]
As is apparent from Table 1, the surface light source elements of Examples 1 and 2 of the present invention have excellent uniformity in brightness variation (R%) of 20% or less in the light exit surface, and are normal. The luminance was high and it was sufficiently practical as a surface light source element for a liquid crystal display device. On the other hand, in the surface light source element of Comparative Example 1 in which the haze value of the light guide was small, the normal luminance was low. Further, the surface light source element of Comparative Example 2 having a large haze value of the light guide has a large luminance variation (R%) in the light exit surface, and the luminance uniformity is sufficient as the surface light source element of the liquid crystal display device. It was not something. The surface light source element of Comparative Example 3 having a large light guide haze value and output ratio (α) has a very large luminance variation (R%) in the light output surface, and is used as a surface light source element of a liquid crystal display device. The uniformity of brightness was not sufficient. Furthermore, the surface light source element of Comparative Example 4 having a high emission rate (α) had a low normal luminance.
[0034]
【The invention's effect】
In the present invention, at least one of the light exit surface of the light guide and the back surface opposite to the light exit surface is constituted by a rough surface having an emission rate of 1.5 to 3.5%, and the haze value of the light guide is set. By setting it to 20 to 40%, it has a high luminance, and a uniform luminance distribution within the light emitting surface can be obtained without applying a uniform process such as a speckle pattern, which is used for notebook computers, liquid crystal televisions and the like. A surface light source element suitable as a liquid crystal display device can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an optical path of light on a rough surface of a light guide according to the present invention.
FIG. 2 is a partial perspective view showing a surface light source element of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light guide 2 Light source 3 Lens sheet 4 Reflective layer

Claims (2)

透明基板の1つの側端面を光入射面とし、この光入射面と略直交する1つの面を光出射面とする導光体において、光出射面およびその裏面の少なくとも一方の面が、光出射面での光の出射率が1.5〜3.5%であるような微細凹凸を全面に有する粗面から構成され、導光体のヘイズ値が20〜40%であることを特徴とする面光源素子用導光体。 One side end face of the transparent substrate and the light incident surface, the light incident surface and one plane substantially perpendicular to the light guide to the light exit surface, at least one surface of the light emitting surface and the back surface, the light emitted It is composed of a rough surface having fine irregularities on the entire surface such that the light emission rate at the surface is 1.5 to 3.5%, and the haze value of the light guide is 20 to 40%. Light guide for surface light source element. 前記導光体の長さ(L)と厚さ(t)の比(L/t)が150以下であることを特徴とする請求項1記載の面光源素子用導光体。 The light guide for a surface light source element according to claim 1, wherein a ratio (L / t) of the length (L) to the thickness (t) of the light guide is 150 or less .
JP18639096A 1996-02-01 1996-07-16 Light guide for surface light source element and surface light source element Expired - Lifetime JP3773129B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18639096A JP3773129B2 (en) 1996-07-16 1996-07-16 Light guide for surface light source element and surface light source element
MYPI97000354A MY123812A (en) 1996-02-01 1997-01-30 Surface light source device, and liquid crystal display device, sign display apparatus and traffic sign display apparatus using the surface light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18639096A JP3773129B2 (en) 1996-07-16 1996-07-16 Light guide for surface light source element and surface light source element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003026179A Division JP4046621B2 (en) 2003-02-03 2003-02-03 Surface light source element

Publications (2)

Publication Number Publication Date
JPH1031114A JPH1031114A (en) 1998-02-03
JP3773129B2 true JP3773129B2 (en) 2006-05-10

Family

ID=16187565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18639096A Expired - Lifetime JP3773129B2 (en) 1996-02-01 1996-07-16 Light guide for surface light source element and surface light source element

Country Status (1)

Country Link
JP (1) JP3773129B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106022A (en) * 1998-07-29 2000-04-11 Mitsubishi Rayon Co Ltd Surface light source device and liquid crystal display device
IT1307920B1 (en) * 1999-01-22 2001-11-29 Atochem Elf Sa LIGHT DIFFUSING COMPOSITES.
KR101749480B1 (en) * 2009-03-31 2017-06-20 주식회사 쿠라레 Illuminant
JP5356301B2 (en) * 2010-03-30 2013-12-04 株式会社クラレ Surface light emitter and front light device

Also Published As

Publication number Publication date
JPH1031114A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
WO1997028403A1 (en) Surface light source element and liquid crystal display device, sign device and traffic control sign device using same
JP2001194534A (en) Light transmission plate and its manufacturing method
WO2004019082A1 (en) Light source device and light polarizing element
WO2003098100A1 (en) Planar light source and light guide for use therein
JP2000056107A (en) Prism sheet and surface light source element
JP2019536227A (en) Light guide plate having fine structure and device including the same
JP2001343507A (en) Lens sheet, planar light source element using the same and liquid crystal display
JP2001176315A (en) Surface type luminescence and desktop lighting system using the same
JP5614128B2 (en) Optical sheet, backlight unit and display device
WO2004016985A1 (en) Surface light source and light guide used therefor
JP2010192246A (en) Light diffusion plate, optical sheet, backlight unit, and display device
JP3773129B2 (en) Light guide for surface light source element and surface light source element
JP3442247B2 (en) Light guide for surface light source element and surface light source element
JP4400845B2 (en) Light diffusing sheet, video display element using the same, and surface light source device
JP3429388B2 (en) Surface light source device and liquid crystal display
JP4446460B2 (en) Surface light source device, light guide for surface light source device, and manufacturing method thereof
JP4046621B2 (en) Surface light source element
JP3929599B2 (en) Prism sheet and surface light source element
JP2000056106A (en) Prism sheet and surface light source element
JP4170991B2 (en) Surface light source element for liquid crystal display device and liquid crystal display device using the same
JP3656967B2 (en) Surface light source element for liquid crystal display device
JP2001133605A (en) Lens sheet, backlight utilizing the same and liquid crystal display device
JP3560273B2 (en) Double-sided surface light source element and double-sided marking device using the same
JP3682124B2 (en) Surface light source element
JP4632378B2 (en) Surface light source element and liquid crystal display device using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term