WO2007125987A1 - Surface-area light source device using light mixing means - Google Patents

Surface-area light source device using light mixing means Download PDF

Info

Publication number
WO2007125987A1
WO2007125987A1 PCT/JP2007/059045 JP2007059045W WO2007125987A1 WO 2007125987 A1 WO2007125987 A1 WO 2007125987A1 JP 2007059045 W JP2007059045 W JP 2007059045W WO 2007125987 A1 WO2007125987 A1 WO 2007125987A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
degrees
angle
source device
Prior art date
Application number
PCT/JP2007/059045
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoyoshi Yamashita
Yoshiyuki Okamoto
Haruko Ootsuki
Masae Ono
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Publication of WO2007125987A1 publication Critical patent/WO2007125987A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0025Diffusing sheet or layer; Prismatic sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the present invention relates to a surface light source device that introduces light emitted from a primary light source into an optical member such as a light guide via a light mixing unit and emits the light from a light emitting surface of the optical member.
  • the surface light source device of the present invention can be used as a backlight of a liquid crystal display device, for example.
  • a white light emitting light source such as a white light emitting cold cathode tube is used as a primary light source.
  • a light guide having a light incident end surface on which light from the primary light source is incident and a light emitting surface located along a plane crossing the light incident end surface is used. It has been found that a liquid crystal display device using such a conventional edge light type backlight has a problem in the color reproducibility of the liquid crystal display for a color image signal. In particular, the reproducibility of the display color for the R (red) signal is insufficient.
  • a light-emitting diode with low power consumption and long life as a primary light source of a backlight of a liquid crystal display device.
  • the LED is a point-like light source, and has been used as a primary light source for a backlight with a small area.
  • RGB three primary color light emitting LEDs are arranged in an appropriate order and manner, and the three primary color lights emitted from these LEDs are introduced into the light guide and mixed to obtain white light.
  • a backlight having an effective light emitting area as large as possible with the smallest possible outer dimensions is required, and the liquid crystal display screen is arranged so as to approach the effective light emitting area of the knock light. It is required to be as large as possible.
  • the above-mentioned RGB three-primary-color LED is used as an edge-light type backlight using a primary light source.
  • an emission pattern of unmixed primary color light corresponding to the R GB three primary color light emitting LEDs can be observed.
  • the occurrence of such an unmixed primary color light emission pattern causes a significant decrease in color reproducibility in the peripheral region of the color liquid crystal display screen.
  • the light emission pattern corresponding to the LED is observed in the effective light emission region near the single color LED. Become.
  • the occurrence of such a light emission pattern causes a partial decrease in luminance, that is, a decrease in luminance uniformity in the peripheral area of the monochrome liquid crystal display screen.
  • Patent Document 1 discloses a surface light source in which light of a plurality of colors emitted from a plurality of point light sources is mixed by a color mixing means and introduced into a light guide.
  • An apparatus is disclosed.
  • color mixing means that is, light mixing means, light from a plurality of point primary light sources respectively emitting light of a plurality of different colors, for example, light of three primary colors of R (red), G (green), and B (blue) are mixed.
  • a desired mixed color such as white light can be obtained.
  • a light adjustment structure is installed between the light source and the end of the light guide plate, and a plurality of light incident surfaces and light exit surfaces of the light adjustment structure are provided.
  • a backlight module in which a plurality of diffusers are installed and the diffusers are configured by a polygonal pyramidal projecting structure.
  • An optical member that has light diffusibility or light convergence that can be obtained only by an edge light type surface light source device and that emits light incident on the light incident surface from a light emitting surface opposite to the light incident surface is used. Even in a direct-type surface light source device in which a primary light source is arranged opposite to the light incident surface of the optical member, the use of a plurality of point-like primary light sources as the primary light source, for example, three types of light emitting each of the three primary colors of RGB LED combinations are being used. Therefore, the light mixing means is useful even in a direct-type surface light source device that uses only an edge light type surface light source device.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-158336
  • Patent Document 2 Utility Model Registration No. 3114195 Disclosure of the invention
  • the color mixing means described in Patent Document 1 is a simple transparent plate-like body, and lights of different colors coming from each point-like primary light source are mixed during light guide inside the plate-like body. It is something to do. For this reason, a long distance is required for good light mixing, and the size of the color mixing means cannot be reduced, and the size of the surface light source device tends to be large.
  • Patent Document 2 does not describe the specific content of the polygonal pyramid-shaped protruding structure of the light adjustment structure.
  • An object of the present invention is to solve the above technical problems, and in particular, color reproduction using a light mixing means that can mix light emitted from a primary light source power well in a small size region. It is an object of the present invention to provide a surface light source device that enables a display image with good performance or brightness uniformity.
  • a light guide having a light incident end surface and a light exit surface, a primary light source disposed adjacent to the light incident end surface of the light guide, and a light emitted from the primary light source and incident on the light incident end surface of the light guide.
  • a surface light source device having a light mixing means having a mixing action on light, wherein the light mixing means includes a light control element arranged along the light incident end face.
  • the light control element has a first main surface facing the light incident end surface and a second main surface opposite to the first main surface.
  • the light control element causes only light traveling in a direction of an angle of 20 degrees or less to the normal direction of the second main surface of the light flux from the primary light source to be incident on the second main surface.
  • the amount of light emitted from the first main surface in a direction with an angle of 20 degrees or less with respect to the normal direction is 50% or less when all of the light flux from the primary light source is incident on the second main surface.
  • the light control element causes only light traveling in a direction of an angle of 20 degrees or less with respect to the normal direction to the second main surface among the light flux from the primary light source.
  • the amount of light emitted from the first main surface in an angle of 20 degrees or less with respect to the normal direction is 40% or less of the amount of light incident on the second main surface.
  • the light control element has only the light traveling from the primary light source traveling in a direction with an angle of 20 degrees or less with respect to the normal direction as the second main surface.
  • the amount of light emitted from the first main surface in the direction of an angle of 20 degrees or more and 80 degrees or less with respect to the normal direction is emitted from the first main surface in the direction of an angle of 20 degrees or less with respect to the normal direction. It will be more than 1 time.
  • the light control element causes only light that travels in a direction of an angle of 20 degrees or less with respect to the normal direction to the second main surface of the light flux from the primary light source.
  • the amount of light emitted from the first main surface in a direction with an angle of 20 degrees or more and 80 degrees or less with respect to the normal direction in a certain plane including the normal direction is the normal direction.
  • the amount of light emitted in a direction with an angle of 20 degrees or less is 1 or more times.
  • the light control element causes only light that travels in a direction with an angle of 20 degrees or less with respect to the normal direction to the second main surface of the light flux from the primary light source.
  • the peak in the luminous intensity distribution with respect to the outgoing angle of the outgoing light from the first main surface is an angle of 10 degrees or more with respect to the normal direction.
  • the light control element causes only light that travels in a direction with an angle of 20 degrees or less with respect to the normal direction to the second main surface of the light flux from the primary light source.
  • the amount of light emitted from the first main surface when incident is 40% or less of the amount of light incident on the second main surface.
  • the distance between the light guide and the primary light source is 2 to 15 mm. .
  • a light incident surface that is disposed on a light output surface of the light guide and receives light emitted from the light output surface of the light guide and a light output surface on the opposite side.
  • the light deflection element comprises a plurality of prism rows that extend along the light incident end surface of the light guide and are arranged in parallel to each other on the light incident surface, Each prism row has a first prism surface on which light coming from the light exit surface of the light guide is incident and a second prism surface on which the incident light is internally reflected.
  • an optical member having a light incident surface and a light emitting surface opposite to the light incident surface and having a light diffusing property or a light focusing property, A surface provided with a primary light source disposed adjacent to a light incident surface of the optical member, and a light mixing means having a mixing action on light emitted from the primary light source and incident on the light incident surface of the optical member.
  • the light mixing means includes a light control element disposed along the light incident surface, and the light control element includes a first main surface facing the light incident surface and a second main surface opposite to the first main surface.
  • the light control element causes only light traveling in a direction of an angle of 20 degrees or less to the normal direction of the second main surface of the light flux from the primary light source to be incident on the second main surface.
  • the amount of light emitted from the first main surface in a direction with an angle of 20 degrees or less with respect to the normal direction is 50% or less when all of the light flux from the primary light source is incident on the second main surface.
  • the light control element causes only light that travels in a direction of an angle of 20 degrees or less with respect to the normal direction to the second main surface of the light flux from the primary light source.
  • the amount of light emitted from the first main surface in an angle of 20 degrees or less with respect to the normal direction is 40% or less of the amount of light incident on the second main surface.
  • the light control element causes only light that travels in a direction of an angle of 20 degrees or less with respect to the normal direction to the second main surface among the light flux from the primary light source.
  • the amount of light emitted from the first main surface in the direction of an angle of 20 degrees or more and 80 degrees or less with respect to the normal direction is emitted from the first main surface in the direction of an angle of 20 degrees or less with respect to the normal direction. It will be more than 1 time.
  • the light control element causes only light that travels in a direction of an angle of 20 degrees or less with respect to the normal direction to the second main surface of the light flux from the primary light source.
  • the amount of light emitted from the first main surface in a direction with an angle of 20 degrees or more and 80 degrees or less with respect to the normal direction in a certain plane including the normal direction is the normal direction.
  • the amount of light emitted in a direction with an angle of 20 degrees or less is 1 or more times.
  • the light control element causes only light that travels in a direction with an angle of 20 degrees or less with respect to the normal direction to the second main surface of the light flux from the primary light source.
  • the peak in the luminous intensity distribution with respect to the outgoing angle of the outgoing light from the first main surface is an angle of 10 degrees or more with respect to the normal direction.
  • the light control element has only the light traveling from the primary light source traveling in a direction with an angle of 20 degrees or less with respect to the normal direction as the second main surface.
  • the amount of light emitted from the first main surface when incident is 40% or less of the amount of light incident on the second main surface.
  • a distance between the optical member and the primary light source is 5 to 6 Omm.
  • a light incident surface that is disposed on a light output surface of the optical member and receives light emitted from the light output surface of the optical member and a light output surface on the opposite side are provided.
  • the light deflection element includes a plurality of prism rows arranged in parallel to each other on the light incident surface or the light exit surface.
  • the light mixing means includes a reflective surface that reflects the return light emitted from the second main surface.
  • the light mixing means includes a light diffusing element arranged substantially parallel to the light control element.
  • At least one of the first main surface and the second main surface includes a fine uneven surface in which a large number of convex cells are arranged, and the convex cells are It consists of a substantially pyramidal surface or a substantially conical surface.
  • the convex cell has an average diameter at the bottom of 10 xm to 4 cm.
  • the convex cell has a height of 3 zm to 3 cm.
  • the convex cell includes a substantially triangular pyramid surface having a regular triangular bottom shape, a substantially hexagonal pyramid surface having a regular hexagonal bottom shape, or a substantially quadrangular pyramid having a square bottom shape.
  • the convex cell comprises a substantially triangular pyramidal surface having a side vertex angle of 40 to 110 °. In one embodiment of the present invention, the convex cell comprises a substantially quadrangular pyramid surface having a side surface apex angle of 30 to 80 °. In one embodiment of the present invention, the convex cell Nore consists of a substantially hexagonal pyramid surface with a side apex angle of 30 to 50 °. In one aspect of the present invention, the convex cell has a flat region at the top, and the flat region has an area ratio of 10% or less with respect to the bottom. In one aspect of the present invention, both the first main surface and the second main surface are made of the fine uneven surface. In one aspect of the present invention, the light control element includes a light diffusing agent in the convex cell.
  • the light control element includes a light diffusing agent.
  • the light mixing means includes a plurality of the light control elements.
  • the primary light source is a substantially Lambertian light source having a maximum luminous intensity in the normal direction.
  • the primary light source has a half-width of light intensity distribution of 40 degrees or more and 80 degrees or less.
  • the primary light source includes a point light source, and the surface light source device includes a plurality of the point primary light sources.
  • the plurality of point-like primary light sources are composed of a plurality of types having different emission colors.
  • the light mixing means including the specific light control element is arranged so that the light emitted from the primary light source can be satisfactorily obtained in a small size region. They can be mixed, and display such as a liquid crystal display with good color reproducibility or luminance uniformity is possible.
  • FIG. 1 is a schematic partial sectional view showing an edge light type surface light source device which is one embodiment of a light source device according to the present invention.
  • FIG. 2 is a schematic partial plan view of the surface light source device of the embodiment of FIG.
  • FIG. 3 is a schematic diagram showing an array of point-like primary light sources.
  • FIG. 4 is a schematic partial perspective view of a light control element.
  • FIG. 5 is an enlarged view of a second main surface of the light control element.
  • FIG. 6 is a schematic partial cross-sectional view of a light control element.
  • FIG. 7 is a schematic diagram of a convex cell of a light control element.
  • FIG. 8 is a schematic diagram of a convex cell of a light control element.
  • FIG. 9 is a schematic diagram of a convex cell of a light control element.
  • FIG. 10 is a schematic diagram showing a first light intensity distribution measuring method related to the light control element.
  • FIG. 11 is a schematic diagram showing a second light intensity distribution measuring method related to the light control element.
  • FIG. 12 is a schematic diagram for explaining optical characteristics of the light control element.
  • FIG. 13 is a schematic diagram for explaining optical characteristics of the light control element.
  • FIG. 14 is a schematic diagram for explaining optical characteristics of the light control element.
  • FIG. 15 is a schematic diagram for explaining optical characteristics of the light control element.
  • FIG. 16 is a schematic diagram for explaining a light amount calculation method.
  • FIG. 17 is a schematic diagram for explaining optical characteristics of the light control element.
  • FIG. 18 is a schematic diagram for explaining optical characteristics of the light control element.
  • FIG. 19 is a schematic cross-sectional view of a light guide.
  • FIG. 20 is a diagram showing a state of light deflection by the light deflection element.
  • FIG. 21 is a schematic partially cutaway exploded perspective view showing a direct type surface light source device which is one embodiment of a light source device according to the present invention.
  • FIG. 22 is a schematic partial exploded cross-sectional view of the surface light source device of the embodiment of FIG.
  • FIG. 1 is a schematic partial sectional view showing an edge light type surface light source device which is one embodiment of a light source device according to the present invention
  • FIG. 2 is a schematic partial plan view of the surface light source device of this embodiment.
  • FIG. As shown in these drawings, in the surface light source device of the present embodiment, one side end surface is a light incident end surface 31, and one main surface substantially orthogonal thereto is a light emitting surface 33.
  • Primary light source group 1 composed of primary light sources 1R, 1G, and 1B, light deflecting element 4 arranged on the most area of light emitting surface 33 of light guide 3, and light of light guide 3
  • the light reflecting element 5 disposed opposite to the back surface 34 opposite to the light exit surface 33, and the light reflection disposed on the light exit surface 33 of the light guide 3 on the region near the light incident end surface 31. It is configured to include the element 5 ′.
  • the point primary light source 1R is a red light emitting diode (R—LED), the point primary light source 1G is a green light emitting diode (G—LED), and the point primary light source 1B is a blue light emitting diode (B— LED) power.
  • the point primary light sources 1R, 1G, and IB emit divergent light, and are approximately Lambertian light sources that have the maximum luminous intensity in the direction of the normal to the light emitting surface.
  • the half-width at half maximum of the luminous intensity distribution is 40. More than 80 degrees and less than 80 degrees.
  • the dimensions of these point primary light sources in the YZ plane are, for example, 0.3 mm square.
  • point-like primary light sources are arranged in two rows on the support substrate 10 at appropriate intervals in the Y direction to constitute the point-like primary light source group 1. That is, as shown in Fig. 3, R_LED (1R) and B_LED (1B) are arranged in a line in the Y direction at pitch P1 so that they alternate, and these R-LED and B- G_LED (1G) is placed near the L ED with a distance P2 in the Z direction. That is, G-L ED (1G) is arranged in a line in the Y direction at a pitch PI.
  • a pair of R-LED (1 R) and G- LED (1G) and a pair of B- LED (1B) and G- LED (1G) are arranged in a line in the Y direction at pitch P1. It is in an arranged form.
  • the arrangement pitch of the point-like primary light sources 1R, 1G, and IB takes into account the target color reproducibility and the degree of luminance uniformity, the frame width described later, and the performance of the light mixing means using the light control element 2. And it can set suitably.
  • the arrangement pitch P1 is 2.8 mm, for example, and the distance P2 is 2 mm, for example. This arrangement compensates for the disadvantage of the G-LED (1G) having lower luminous intensity than the R-LED and B-LED by increasing the density of the G-LED (1G). In addition, color reproducibility in color display such as color liquid crystal display can be improved.
  • the point-like primary light sources 1R, 1G, 1B are sealed with a sealing resin 1A.
  • the sealing resin 1A has translucency and may contain a light diffusing agent.
  • the width of the sealing resin 1A that is, the dimension in the Z direction, is substantially the same as the dimension in the Z direction of the light incident end face 31 of the light guide, and is, for example, 5 mm.
  • the surface of the support substrate 10 on which the point-like primary light sources 1R, 1G, and 1B are attached functions as a reflecting surface.
  • the support substrate 10 is provided with heat radiating fins 11 for radiating heat generated when the point-like primary light sources 1R, 1G, and IB are turned on.
  • FIG. 4 is a schematic partial perspective view of the light control element 2.
  • the light control element 2 has a first main surface 21 facing the light incident end surface 31 of the light guide and a second main surface 22 on the opposite side.
  • the first main surface 21 is a flat surface parallel to the YZ surface.
  • the second main surface 22 is formed of a fine uneven surface in which a large number of convex cells 220 are arranged.
  • the convex cell 220 is formed from a substantially triangular pyramidal surface whose bottom shape parallel to the YZ plane is a triangle such as an equilateral triangle. Thus, a large number of convex cells 220 are arranged so that the bottoms of the respective convex cells 220 are closely packed.
  • FIG. 6 shows a schematic partial cross-sectional view of the light control element 2.
  • the convex cell 220 has a height (that is, a distance in the X direction from the bottom 221 parallel to the YZ plane) to H, and the average diameter of the bottom 221 is L.
  • the bottom average diameter L is the average value of the maximum diameter and the minimum diameter in a plane parallel to the bottom 221. That is, as shown in FIG. 7, the average value of the diameter Lmax in the direction along one side of the bottom 221 and the diameter Lmin in the direction perpendicular thereto can be used as the bottom average diameter L.
  • the side surface apex angle of the convex cell 220 (the apex angle of the triangular shape of the side surface in one side surface) is ⁇ .
  • the bottom average diameter L is preferably 10 to 200 ⁇ m.
  • the bottom average diameter L is more preferably 20 to: 100 ⁇ m, and particularly preferably 30 to 70 ⁇ . If the bottom average diameter L is smaller than 10 zm, the production of the convex cell 220 tends to be difficult, and if the bottom average diameter L is larger than 200 ⁇ m, the light mixing effect by the convex cell 220 tends to be reduced.
  • the side apex angle ⁇ is preferably 40 to 110 °, more preferably 60 to 110 °, and even more preferably 70 to 100 °.
  • the height H of the convex cell 220 is preferably 3 to 200 / im, more preferably 6 to 100 ⁇ m, and particularly preferably 15 to 70 ⁇ m.
  • the convex cell 220 may have a flat region (or curved region) 222 at the top. As a result, the top is damaged. However, in order to reduce the decrease in the effect of light mixing by the convex cell 220, it is preferable that the area ratio of the flat region (or curved region) 222 with respect to the bottom portion 221 is 10% or less.
  • the shape of the convex cell 220 does not have to be a substantially triangular pyramid surface as described above.
  • the shape of the convex cell 220 may be a substantially hexagonal pyramid surface whose bottom is a hexagon such as a regular hexagon as shown in the schematic diagram of FIG.
  • the bottom portion may be formed of a substantially quadrangular pyramid surface having a square shape such as a square.
  • a large number of convex cells 220 can be arranged so that the bottoms of the respective convex cells 220 are closely packed, and the light mixing effect by the convex cells 220 is high.
  • the side apex angle ⁇ is preferably 30 to 80 °, more preferably 50 to 80 °, and more preferably 60 to 70 °. More preferably.
  • the shape of the convex cell 220 is a substantially hexagonal pyramid surface, it is preferably 30 to 40 °, more preferably 30 to 50 °, with respect to the side apex angle ⁇ .
  • the shape of the convex cell 220 may be another substantially pyramidal surface or substantially conical surface.
  • Examples of the material of the light control element 2 include synthetic resin such as glass or acrylic resin.
  • the light control element 2 having a refractive index of about 1.4 to about 1.18 can be used.
  • the thickness of the base of the light control element 2 excluding the height of the convex cell 220 (the dimension in the X direction between the bottom 221 of the convex cell 220 and the first main surface 21) can obtain the required strength. From the viewpoint of reducing the size of the apparatus, for example, a force S within a range of 10 to 500 ⁇ m is preferable, a range of 30 to 300 mm 111 is preferable, and a range of 50 to 200 ⁇ is preferable. More preferably, it is within the range.
  • the light reflecting elements 5 and 5 ′ cover the light control element 2 and the point-like primary light sources 1R, 1G and 1B and the sealing resin 1A from below and above. It extends like so. Accordingly, the light reflecting elements 5 and 5 ′ and the primary light source support substrate 10 cooperate with the light incident end face 31 of the light guide as enclosing members that surround the point-like primary light sources 1R, 1G, IB and the light control element 2. Function.
  • the light reflecting elements positioned above and below the point-like primary light sources 1R, 1G, IB and the sealing resin 1A are referred to as the light reflecting elements 5, 5 ′ positioned on the light emitting surface and the back surface of the light guide. It may be formed separately.
  • the light reflecting elements 5, 5 ' for example, a plastic sheet having a metal-deposited reflective layer on the surface can be used, but the light emission luminance of the surface light source device in the vicinity of the light guide light incident end surface 31 is used.
  • a light diffusing and reflecting sheet made by dispersing and mixing light diffusing fine particles such as titanium oxide in a plastic sheet made of polyethylene terephthalate (PET) or the like is used as the light reflecting element 5 or 5 '. It is preferable.
  • the surface (inner surface) of the surrounding member including the light reflecting elements 5, 5 'and the support substrate 10 of the point-like primary light source functions as a reflecting surface.
  • the light mixing means is configured to include the reflecting surface and the light control element 2.
  • the light mixing means can also be configured including the light diffusing elements 2X arranged substantially in parallel with the light control elements 2.
  • the light diffusing property of the light diffusing element 2X is such that a light diffusing agent, for example, a homopolymer or copolymer such as silicone beads, polystyrene, polymethylol methacrylate, fluorinated metatalylate or the like is mixed in the light diffusing element 2X.
  • the force S can be applied by providing an uneven structure on at least one surface of the light diffusing element 2X. By arranging the light diffusing element 2X, the effect of light mixing can be further enhanced.
  • the distance between the point-like primary light sources 1R, 1G, 1B and the light incident end face 31 of the light guide is D1
  • the distance from the light incident end face 31 is D2.
  • the distance D1 is, for example, 2 to 15 mm, preferably 3 to: 10 mm, more preferably 4 to 6 mm
  • the distance D2 is, for example, 0.5 to: 14.5 mm, preferably:! To 10 mm, more preferably 2 to 6mm.
  • the light control element 2 has the following optical characteristics.
  • the light control element 2 and the primary light source are arranged so as to have the same positional relationship as in the above embodiment, and the primary light source 1B is turned on.
  • the luminous intensity distribution (first luminous intensity distribution) of the light emitted from the first main surface 21 of the light control element 2 is measured.
  • This luminous intensity distribution is a distribution with respect to the angle ⁇ with respect to the normal NL of the second main surface 22 of the light control element 2 and passing through the center of the primary light source 1B.
  • a photodiode PD as a light receiving element is arranged with respect to the light control element 2 at a distance sufficiently larger than the distance between the light control element 2 and the primary light source 1B.
  • the diode PD is moved so that the angle ⁇ with respect to the normal NL changes by 90 ° as well as 90 ° as shown.
  • the first luminous intensity distribution corresponding to the angle ⁇ in the plane (measurement plane) including the normal NL is obtained.
  • the distribution may vary depending on how the measurement surface is taken, at least two measurement surfaces (the first measurement surface and the second measurement surface) having different directions with respect to the convex senor 220 are measured. ).
  • the convex cell 220 has a substantially triangular pyramid surface, it is equivalent every time it is rotated 60 ° around the normal NL.
  • the measurement surface is obtained, for example, the first measurement surface is the XY plane (see Fig. 4), and the surface is obtained by rotating it by 30 ° or 90 ° around the normal NL in the X direction (for example, the XZ surface) (See Fig. 4) is preferably the second measurement surface.
  • the first measurement surface is along one side of the bottom of the convex cell 220
  • the second measurement surface is orthogonal to the one side of the bottom of the convex cell 220.
  • the convex cell 220 has a substantially quadrangular pyramid surface
  • an equivalent measurement surface can be obtained each time it is rotated 90 ° around the normal line NL, so that, for example, the first measurement surface is placed at the bottom of the convex cell.
  • the second measurement surface is a surface along one side and a surface obtained by rotating it 45 ° around the normal NL (a surface that forms 45 ° with one side of the bottom of the convex cell). Les,.
  • the convex cell 220 is formed of a substantially hexagonal pyramid surface
  • an equivalent measurement surface can be obtained each time it is rotated by 60 ° about the normal line NL. Therefore, for example, the first measurement surface is formed of the convex cell.
  • a surface along one side of the bottom and a surface obtained by rotating it by 30 ° or 90 ° about the normal NL (a surface perpendicular to one side of the bottom of the convex cell) is the second measurement surface. Is preferred.
  • a slit S having a circular opening centered on the normal NL is disposed between the light control element 2 and the primary light source 1B, so that the light from the primary light source 1B Only light (hereinafter referred to as IR) traveling in a direction with an angle of 20 degrees or less with respect to the normal NL of the luminous flux is transmitted to the light control element 2.
  • IR Only light
  • the luminous intensity distribution at that time is measured in the same manner as the measurement of the first luminous intensity distribution.
  • the luminous intensity distributions are measured for a plurality of measurement surfaces, averaged, and the average distribution for the absolute values of the angles ⁇ of 0 ° to 90 ° (second Average distribution).
  • FIG. 12 shows the first luminous intensity distribution P1 and the second luminous intensity distribution on the first measurement surface obtained as described above when the convex cell 220 has a substantially triangular pyramid surface having a side apex angle of 90 °.
  • FIG. 6 is a diagram showing an example of a first luminous intensity distribution P2 on the measurement surface, a second luminous intensity distribution Q1 on the first measurement surface, and a second luminous intensity distribution Q2 on the second measurement surface. This includes the second light intensity distribution measurement on the first measurement surface.
  • the light intensity distribution (incident light intensity distribution on the light control element 2: third light intensity distribution) R corresponding to the angle ⁇ measured in the same manner with the light control element 2 removed is also shown.
  • the third light intensity distribution measured in the same manner with the light control element 2 removed in the second light intensity distribution measurement on the second measurement surface is the same as the third light intensity distribution R.
  • FIG. 13 shows a light intensity distribution corresponding to the angle ⁇ measured in the same manner in a state where the light control element 2 is removed in the first light intensity distribution measurement on the first measurement surface (to the light control element 2).
  • FIG. 13 The fourth luminous intensity distribution measured in the same manner with the light control element 2 removed in the first luminous intensity distribution measurement on the second measurement surface is the same as the fourth luminous intensity distribution S.
  • the luminous intensity value scale in FIG. 13 is the same as that in FIG.
  • This incident luminous intensity distribution S corresponds to the luminous intensity distribution of the point-like primary light source 1B.
  • the primary light source 1B is a substantially Lambertian light source with the maximum luminous intensity in the direction of the normal NL, and the half-value half width of the luminous intensity distribution is not less than 40 degrees and not more than 80 degrees.
  • FIG. 14 shows the first average distribution Pa with respect to the absolute value 0 ° to 90 ° of the angle ⁇ obtained by averaging the first luminous intensity distributions P1 and P2, and the second luminous intensity. It is a figure which shows 2nd average distribution Qa regarding absolute value 0 degree-90 degrees of angle (theta) obtained by averaging distribution Q1 and Q2.
  • the third average distribution Ra with respect to the absolute value 0 ° to 90 ° of the angle ⁇ obtained by averaging the third light intensity distribution R is also shown.
  • FIG. 15 is a diagram showing a fourth average distribution Sa with respect to absolute values 0 ° to 90 ° of the angle ⁇ obtained by averaging the fourth light intensity distribution S.
  • the second light source 2B only the light traveling from the primary light source 1B that travels in a direction of an angle of 20 degrees or less with respect to the direction of the normal line NL of the second main surface 22 of the light control element 2 is transmitted to the second light source 2B.
  • the amount of light LQm emitted from the first main surface 21 of the light control element 2 in the direction of the normal NL with an angle ⁇ of 20 degrees or less when incident on the main surface 22 is the luminous flux from the primary light source 1B. Is incident on the second main surface 22 from the first main surface 21 of the light control element 2 with respect to the direction of the normal NL. In the following, it is preferably 30% or less, more preferably 15% or less.
  • the light amounts LPm and LQm emitted from the first main surface 21 of the light control element 2 in the direction of the angle ⁇ force 3 ⁇ 40 degrees or less with respect to the direction of the normal NL are the first average distribution described above.
  • Pa and second average Based on the distribution Qa, it can be obtained as follows. That is, here, the average distribution Pa, Q a is set as the luminous intensity distribution f ( ⁇ ), and the normal line is perpendicular to the normal line NL and within the first main surface 21 of the light control element 2 as shown in FIG. A polar coordinate system (r, ⁇ ) with the position where NL passes as the origin is taken.
  • the area of the small region ⁇ between the coordinates ( ⁇ , ⁇ ) and coordinates ( ⁇ + ⁇ ⁇ , ⁇ + ⁇ ) on the spherical surface of the unit radius is ⁇ ⁇ ⁇ (sin ⁇ ) ( ⁇ ⁇ ) It becomes. Therefore, the amount of light in this minute region is proportional to f ( ⁇ ) ⁇ ⁇ ⁇ (sin ⁇ ) ( ⁇ ). Therefore, the amount of light emitted to a solid angle region with an angle ⁇ force of 3 ⁇ 40 degrees or less with respect to the direction of the normal NL is the minute region light amount f ( ⁇ ) ⁇ ⁇ ⁇ ⁇ (sine) ( ⁇ ⁇ ). Integrating in the range of 360 degrees and for angle ⁇ integrated in the range of angle 0-20 degrees, ie
  • the first main surface 21 of the light control element 2 is used.
  • the amount of light LQm emitted in the direction with an angle ⁇ of 20 degrees or less with respect to the direction of the normal NL is preferably 40% or less of the amount of light LR incident on the second main surface 22 and more preferably 25% or less.
  • % Or less is more preferable.
  • the amount of light LR can be obtained based on the third average distribution Ra in the same manner as the case of the amount of light LQm (however, the integration range is the entire region from 0 degrees to 90 degrees).
  • the first main surface 21 of the light control element 2 is used.
  • LQ n is emitted in the direction of angle ⁇ of 20 degrees or more and 80 degrees or less with respect to the direction of normal NL from 1 to the amount of light LQm emitted in the direction of angle ⁇ of 20 degrees or less with respect to the direction of normal NL
  • the above is preferred 5 times or more is more preferred 10 times or more is more preferred.
  • the light quantity LQn can be obtained based on the second average distribution Qa in the same manner as in the case of the light quantity LQm (however, the integration range is an area of 20 degrees to 80 degrees). [0064] Further, when only IR is incident on the second main surface 22, the emission light from the first main surface 21 is reduced.
  • the peak angle in the luminous intensity distribution (second average distribution Qa) with respect to the emission angle is preferably 10 degrees or more, more preferably 25 degrees or more, and further preferably 40 degrees or more with respect to the direction of the normal NL.
  • the amount LQs is more preferably 35% or less, more preferably 30% or less, more preferably 40% or less of the amount of light LR incident on the second main surface 22.
  • the light quantity LQs can be obtained based on the second average distribution Qa in the same manner as in the case of the light quantity LQm (however, the integration range is the entire region of 0 ° to 90 °).
  • optical characteristics are defined on the basis of the three-dimensional angular region distribution of the light amount, but the light amount distribution on any one of the measurement surfaces (for example, the first measurement surface or the second measurement surface). It is further preferable that similar optical characteristics can be obtained even when defined based on.
  • the angle ⁇ is from the first main surface 21 of the light control element 2 to the direction of the normal NL.
  • Amount of light emitted in the direction of 20 degrees or more and 80 degrees or less (the angle ⁇ of the second luminous intensity distribution Q1 shown in Fig. 12 is proportional to the integral value in the region of 20 degrees to 80 degrees and 20 degrees to 80 degrees) Is the amount of light emitted in the direction where the angle ⁇ is 20 degrees or less with respect to the direction of the normal NL (the integrated value for the region where the angle ⁇ of the second luminous intensity distribution Q1 shown in Fig. 12 is -20 degrees to 20 degrees 1) or more, preferably 2 times or more, more preferably 6 times or more.
  • first luminous intensity distributions PI and P2 and the second luminous intensity distributions Ql and Q2 indicate that the second main surface 22 of the light control element 2 is moved from the fine irregular surface of the multiple array of convex cells 220. This is the case.
  • the first main surface 21 of the light control element 2 may be formed of a fine concavo-convex surface of a multi-array of convex cells.
  • FIGS. 17 and 18 show views corresponding to FIGS. 12 and 14 when the same light control element 2 is used in the reverse direction.
  • FIG. 17 shows the first luminous intensity distribution P1 'on the first measurement surface and the first luminous intensity distribution on the second measurement surface.
  • An example of the cloth P2 ′, the second light intensity distribution Q1 ′ on the first measurement surface, and the second light intensity distribution Q2 ′ on the second measurement surface is shown.
  • the luminous intensity distribution R is also shown.
  • FIG. 18 shows the first average distribution Pa ′ with respect to the absolute value 0 ° to 90 ° of the angle ⁇ obtained by averaging the first light intensity distributions P1 ′ and P2 ′, and the second light intensity distribution P1 ′ and P2 ′.
  • the second average distribution Qa ' is shown for the absolute values of 0 ° to 90 ° of the angle ⁇ obtained by averaging the luminous intensity distributions Q1' and Q2 '.
  • the third average distribution Ra is also shown.
  • the second light source 1B only the light traveling from the primary light source 1B that travels in a direction of an angle of 20 degrees or less with respect to the direction of the normal NL of the second main surface 22 of the light control element 2 is transmitted to the second light source 1B.
  • the amount of light LQm 'emitted from the first main surface 21 of the light control element 2 in the direction of the normal NL to the direction of the normal NL when the light enters the main surface 22 is less than 20 degrees is calculated from the primary light source 1B.
  • the light amounts LPm ′ and LQm ′ can be obtained in the same manner as the light amounts LPm and LQm based on the first average distribution Pa ′ and the second average distribution Qa ′.
  • the first of the light control element 2 when only IR is incident on the second main surface 22, the first of the light control element 2
  • the amount of light LQ m ′ emitted from the principal surface 21 in a direction with an angle ⁇ force of 3 ⁇ 40 degrees or less with respect to the direction of the normal line NL is 40% or less of the light amount LR incident on the second principal surface 22.
  • the first of the light control element 2 is
  • the light quantity LQn ′ can be obtained based on the second average distribution Qa in the same manner as in the case of the light quantity LQm ′ (however, the integration range is an area of 20 degrees or more and 80 degrees or less).
  • the first main surface 21 when only IR is incident on the second main surface 22, the first main surface 21
  • the peak in the luminous intensity distribution (second average distribution Qa ') with respect to the outgoing angle of the outgoing light is at an angle of 10 degrees or more with respect to the direction of the normal NL.
  • the IR when the IR is incident on the second main surface 22, the light is emitted from the first main surface 21.
  • the amount of light LQs ′ to be emitted is 40% or less of the amount of light LR incident on the second main surface 22.
  • the light quantity LQs' is obtained on the basis of the second average distribution Qa 'in the same manner as in the case of the light quantity LQm' (however, the integration range is the entire region of 0 degrees or more and 90 degrees or less). it can.
  • the angle ⁇ of the second luminous intensity distribution Q1 'shown in Fig. 17 is about 20 to 80 degrees and -20 to 80 degrees.
  • the amount of light emitted in the direction where the angle ⁇ is 20 degrees or less with respect to the direction of the normal line NL is more than 1 time (proportional to the integral value for the degree region).
  • the B-LED (1B) is used as the primary light source for measuring the luminous intensity distribution for defining the optical characteristics of the light control element 2.
  • the present invention is not limited thereto, and R-LED (1R) or G-LED (1G) is used as a primary light source for measuring the light intensity distribution for defining the optical characteristics of the light control element 2.
  • the light guide 3 is arranged in parallel with the XY plane and has a rectangular plate shape as a whole.
  • the light guide 3 has four side end faces, and one side end face parallel to the YZ plane is used as the light incident end face 31.
  • the two main surfaces that are substantially orthogonal to the light incident end surface 31 of the light guide 3 are respectively positioned substantially parallel to the XY plane, and one of the surfaces (the upper surface in the figure) is the light emitting surface 33.
  • the thickness of the light guide 3 is largest at the end on the light incident end face 31 side, and then gradually decreases with increasing distance from the X direction. That is, the back surface 34 of the light guide is formed with an inclination, and the light guide has a wedge shape in the X direction. This wedge shaped wedge The angle can be, for example, 0.2-3 degrees.
  • the thickness of the light guide 3 is a force that is appropriately set according to the size of the light emitting surface 33, for example, about 2 to 8 mm in the vicinity of the light incident end surface 31.
  • the light guide 3 is not limited to the wedge shape as described above, but may have a uniform overall thickness.
  • At least one of the light output surface 33 and the back surface 34 of the light guide 3 has a rough directional light output mechanism, a prism array, a lenticular lens array, a V-shaped groove, and the like.
  • a directional light emitting mechanism, etc. consisting of a lens surface in which the lens array is formed in parallel with the light incident end face 31, the light incident from the light incident end face 31 is guided through the light guide 3.
  • Light having directivity is emitted from the light emitting surface 33 in a plane (XZ plane) orthogonal to both the light incident end surface 31 and the light emitting surface 33.
  • the peak direction (peak light) of the outgoing light intensity distribution in this XZ in-plane distribution is the angle formed by the light outgoing surface 33.
  • the angle a is, for example, 10 to 40 degrees, and the full width at half maximum of the emitted light luminous intensity distribution is, for example, 10 to 40 degrees.
  • the rough surface and the lens array formed on the surface of the light guide 3 should have an average inclination angle ⁇ a in the range of 0.5 to 15 degrees according to IS04287 / 1-1984. It is preferable from the viewpoint of improving the uniformity of the luminance in the interior.
  • the average inclination angle ⁇ a is more preferably in the range of 1 to 12 degrees, and more preferably in the range of 1.5 to 11 degrees.
  • the average inclination angle ⁇ a of the rough surface formed on the light guide 3 is measured according to IS04287 / 1-1984 using a stylus type surface roughness meter, and the coordinates in the measurement direction are determined.
  • L is the measurement length
  • ⁇ a is a tangent of the average inclination angle ⁇ a.
  • the light guide 3 preferably has a light emission rate in the range of 0.5 to 5%, more preferably in the range of 1 to 3%. This is because when the light emission rate is smaller than 0.5%, the amount of light emitted from the light guide 3 tends to be small and sufficient luminance cannot be obtained. When the ratio is greater than 5%, a large amount of light is emitted in the vicinity of the primary light source 1, and the attenuation of the emitted light in the X direction within the light emitting surface 33 becomes significant, and the luminance uniformity at the light emitting surface 33 is increased. This is because it tends to decrease.
  • the angle of the peak light in the light intensity distribution (in the XZ plane) of the light emitted from the light output surface is the light output.
  • the full width at half maximum of the emitted light intensity distribution (in the XZ plane) in the XZ plane that is in the range of 50 to 80 degrees with respect to the normal of the surface and is perpendicular to both the light incident end face and the light emitting face is 10 to 40 degrees.
  • a light source with a high directivity can emit light with a high directivity from the light guide 3 and its light emitting direction can be efficiently deflected by the light deflecting element 4. Can be provided.
  • the light emission rate from the light guide 3 is defined as follows.
  • the constant ⁇ is the light output rate, and the light guide 3 per unit length (the length corresponding to the light guide thickness t) in the X direction perpendicular to the light incident end surface 31 on the light output surface 33 It is a ratio (percentage:%) at which light is emitted from the light source.
  • This light emission rate ⁇ is obtained from the gradient by plotting the relationship between the logarithm of the light intensity of the light emitted from the light exit surface 23 on the vertical axis and (L / t) on the horizontal axis. be able to.
  • the directivity in the plane parallel to the light incident end face 31 (YZ plane) of the light emitted from the light guide 3 is controlled on the other main surface not provided with the directional light emission mechanism. Therefore, it is preferable to form a lens surface in which a large number of lens rows extending in a direction substantially perpendicular to the light incident end surface 31 (X direction) are arranged.
  • a rough surface is formed on the light emitting surface 33, and as shown in FIG. 19, a large number of lenses extending on the back surface 34 in a direction substantially perpendicular to the light incident end surface 31 (X direction).
  • a lens surface is formed by arranging the rows 34a in parallel with each other.
  • a lens surface may be formed on the light emitting surface 33 and the back surface 34 may be a rough surface.
  • a lens array is formed on the back surface 34 or the light emitting surface 33 of the light guide 3.
  • the lens array may be a prism array 1J extending substantially in the X direction, a lenticular lens array, a V-shaped groove, or the like, but the YZ cross-sectional shape is preferably a substantially triangular prism array.
  • the apex angle is preferably in the range of 85 to 110 degrees. This is because by setting the apex angle within this range, the light emitted from the light guide 3 can be collected appropriately, and the luminance as a surface light source device can be improved. Preferably 90-: 100 degree range.
  • a desired prism array shape is accurately manufactured to obtain stable optical performance, and wear and deformation of the prism top during assembly work and use as a light source device are prevented.
  • a flat part or a curved part may be formed at the top of the prism row.
  • light diffusing fine particles are mixed and dispersed in the light guide instead of or in combination with the light emitting surface 33 or the back surface 34 as described above. By doing so, a directional light emitting mechanism may be provided.
  • the light deflection element 4 is disposed on the light exit surface 33 of the light guide 3.
  • the two main surfaces 41 and 42 of the light deflection element 4 are arranged in parallel with each other as a whole, and are respectively located in parallel with the XY plane.
  • One of the main surfaces 41 and 42 (the main surface located on the light emitting surface 33 side of the light guide 3) is a light incident surface 41, and the other is a light emitting surface.
  • the light exit surface 42 is a flat surface parallel to the light exit surface 33 of the light guide 3.
  • the light incident surface 41 is a prism row forming surface in which a large number of prisms lj41a extending in the Y direction are arranged in parallel to each other.
  • a flat portion having a relatively narrow width (for example, a flat portion having a width equal to or smaller than the dimension in the X direction of the prism array) may be provided between the prism arrays in contact with P. From the viewpoint of improving the utilization efficiency, it is preferable to arrange the prism rows continuously in the X direction without providing a flat portion.
  • the prism array forming surface may be provided on the light exit surface 42 instead of the light entrance surface 41. Further, the opposite surface of the prism array forming surface may be a diffusing surface provided with minute protrusions instead of a flat surface.
  • FIG. 20 shows the state of light deflection by the light deflection element 4.
  • This figure shows the light guide in the XZ plane 3 shows the traveling direction of peak light from 3 (light corresponding to the peak of the outgoing light distribution).
  • the peak light obliquely emitted from the light output surface 33 of the light guide 3 at an angle ⁇ is incident on the first surface of the prism array 41a, is totally reflected by the second surface, and is substantially in the direction of the normal of the light output surface 42.
  • the luminance in the normal direction of the light exit surface 42 can be sufficiently improved in a wide area by the action of the prism row 34a on the back surface 34 of the light guide as described above.
  • the shape of the prism surface of each prism row 41a of the light deflection element 4 is not limited to a single plane, and may be, for example, a convex polygonal shape or a convex curved surface shape. Visualization can be achieved.
  • a desired prism shape is accurately manufactured to obtain stable optical performance, and wear and deformation of the prism top during assembly work and use as a light source device are suppressed.
  • a flat portion or a curved surface portion may be formed at the top of the prism row.
  • the width of the flat portion or curved surface portion formed on the top of the prism row should be 3 ⁇ m or less to suppress the occurrence of uneven brightness patterns due to the sticking phenomenon if the brightness of the light source device is reduced. From the viewpoint, it is more preferably 2 / m or less, and further preferably 1 ⁇ m or less.
  • the light guide 3 and the light deflection element 4 can be formed using a synthetic resin having a high light transmittance.
  • synthetic resins include methacrylic resins, acrylic resins, polycarbonate resins, polyester resins, and chlorinated resin.
  • methacrylic resin is optimal because of its high light transmittance, heat resistance, mechanical properties, and molding processability.
  • a methacrylic resin is a resin containing methyl methacrylate as a main component, and a methyl methacrylate having a content of 80% by weight or more is preferable.
  • the transparent synthetic resin plate is formed with the desired surface structure. It may be formed by hot pressing using a mold member, or may be formed simultaneously with molding by screen printing, extrusion molding, injection molding or the like.
  • the structural surface can also be formed using heat or a photo-curable resin.
  • active energy is applied to the surface of a transparent substrate such as a polyester film, an acrylic resin, a polycarbonate resin, a salt bulb resin, a polymethacrylimide resin, or the like.
  • a rough surface structure or a lens array arrangement structure made of a one-line curable resin may be formed, or such a sheet may be bonded and integrated on a separate transparent substrate by a method such as adhesion or fusion.
  • Active energy ray curable resins include polyfunctional (meth) acrylic compounds, vinyl compounds, (meth) acrylic acid esters, aryl compounds, metal salts of (meth) acrylic acid, etc.
  • the light emitting surface of the surface light source device including the primary light source 1, the light control element 2, the light guide 3, the light deflection element 4, and the light reflection elements 5, 5 'as described above (light deflection element)
  • a liquid crystal display element (not shown) on the light exit surface 42)
  • a liquid crystal display device using the surface light source device of the present invention as a backlight is configured.
  • the liquid crystal display device is observed by an observer through the liquid crystal display element from above.
  • the display area of the liquid crystal display device is determined by the display area of the liquid crystal display element or the opening area of the frame that holds the liquid crystal display element.
  • each of the plurality of point-like primary light sources 1R, 1G, IB is emitted from each of the reflecting surfaces (light reflecting elements 5, 5 'and the point-like primary light source support substrate 10).
  • the light that is reflected by the surface of the surrounding member including the light enters the second main surface 22 of the light control element 2.
  • a part of the light is reflected by the surface of the large number of convex cells 220 constituting the second main surface 22, and the other part is reflected by or not refracted by the surface of the large number of convex cells 220.
  • the light is introduced into the control element 2 and is emitted from the first main surface 21 with or without receiving the refraction action by the first main surface 21.
  • the reflected light reflected by the surface of the convex cell 220 is incident on the second main surface 22 again after being reflected by the reflecting surface. Since the direction of this re-incident light is generally different from the direction of incidence at the time of initial incidence, the light is repeatedly reflected by the second main surface 22 and re-incident on the second main surface 22. Is introduced into the light control element 2. Based on the shape of the convex cell 220, the distribution of the angle of the light emitted from the first principal surface 21 with respect to the normal direction NL is broad for the light from each point-like primary light source 1R, 1G, IB. It becomes.
  • the light of each color emitted from the first main surface 21 is efficiently mixed at a short distance in the X direction, and is sufficiently mixed into white light.
  • the uniformity of the light distribution depending on the position is improved.
  • Such light mixing is not necessarily limited to what should be done before the light reaches the light guide 3, and after light is introduced into the light guide 3 from the light incident end face 31, Distance (Re, shorter than the width of the picture frame, distance ).
  • Distance (Re shorter than the width of the picture frame, distance
  • the distance W extending in the X direction on the light guide light exit surface 33 of the light reflecting element 5 ′ is equal to or smaller than the frame width, and the light control element 2 and the light guide light incident end surface 31 are the same.
  • a part of the light introduced into the light guide 3 may be emitted from the light incident end face 31 and arrive at the light control element 2, but such light is emitted from the light control element 2. Or reflected through the light control element 2 without being refracted or reflected by the reflecting surface in the same manner as described above and used for light mixing in the same manner as described above.
  • the light mixing means has the second main surface 22 composed of fine concavo-convex surfaces in which a large number of specific-shaped convex cells 220 are arranged. And a reflection surface that reflects the return light from the light control element. Accordingly, among the light emitted from each of the plurality of point-like primary light sources 1R, 1G, and 1B, the component that travels in an oblique direction with respect to the normal direction of the light control element 2 is convex on the second main surface. The main cell can be transmitted.
  • the component incident in the normal direction of the light control element or a direction close thereto is mainly reflected by the convex cell 220 on the second main surface and returned to the direction oblique to the normal direction. be able to. Then, the return light obtained thereby is reflected by the reflecting surface, so that it travels in a different path from the light first emitted from the point-like primary light source, and enters the second main surface 22 of the light control element. It is possible to make S.
  • the size of the light mixing means is small, good light mixing is possible, the distance between the primary light source and the light incident end face of the light guide can be shortened, and even a small frame size is effective.
  • the reduction in color reproducibility and brightness uniformity at the periphery of the light-emitting area can be reduced, and the device can be downsized.
  • FIG. 21 is a schematic partially cutaway exploded perspective view showing a direct type surface light source device that is one embodiment of the light source device according to the present invention
  • FIG. 22 is a schematic view of the surface light source device of the present embodiment. It is a partial exploded sectional view.
  • members having the same functions as in FIGS. 1 to 20 are given the same reference numerals.
  • the support substrate 10 that supports the point-like primary light sources 1R, 1G, 1B in a two-dimensional manner is the bottom surface of the box-shaped case 7. Arranged above.
  • the inner surface of the support substrate 10 is preferably a reflecting surface having a high light reflectance.
  • the arrangement of the point-like primary light sources 1R, 1G, and IB can be a plurality of arrangements as described with reference to FIG. 3, and these can be arranged in parallel to each other.
  • a light control element 2 attached to the support substrate 10 is arranged so as to cover the point-like primary light sources 1R, 1G, 1B.
  • the bottom average diameter L of the convex cell 220 is preferably 5 mm to 4 cm.
  • the bottom average diameter L is more preferably 1 to 3 cm, and particularly preferably 1.5 to 2 cm. If the bottom average diameter L is smaller than 5 mm, it tends to be difficult to arrange the point-like primary light sources 1R, 1G, and IB so as to correspond to the convex cells 220.
  • the bottom average diameter L is larger than 4 cm. Then, the effect of light mixing by the convex cell 220 tends to decrease.
  • the side apex angle ⁇ is preferably 40 to 110 °, more preferably 60 to 110 °, and even more preferably 70 to 100 °.
  • the height H of the convex cell 220 is preferably 4 mm to 3 cm, more preferably 7 mm to 2 cm, and particularly preferably:! To 1.5 cm.
  • the light control element 2 has optical characteristics similar to those of the embodiments of FIGS.
  • a plate-like optical member 6 attached to the case 7 is arranged above the light control element 2 so as to cover the light control element 2.
  • the optical member 6 has a light incident surface 61 facing the light control element 2 and a light exit surface 62 on the opposite side, and has light diffusibility or light convergence.
  • Examples of such an optical member 6 include a light diffusing element or a condensing element in which at least one surface is a lens forming surface formed by forming a large number of fine light focusing lens patterns.
  • the light is emitted from each of the plurality of point-like primary light sources 1R, 1G, and IB, and a part thereof is a reflecting surface (the inner surface of the case and the point). Of the surrounding light source including the support substrate 10 of the primary light source.
  • the scattered light is incident on the second main surface 22 of the light control element 2.
  • the light of each color emitted from the first main surface 21 is efficiently mixed at a short distance, and is sufficiently mixed into white light.
  • the uniformity of the light distribution depending on the position is improved.
  • the distance D2 'between the light control element 2 and the optical member 6 is, for example, It is 5 to 50 mm, preferably 10 to 40 mm, and more preferably 15 to 30 mm.
  • the distance D1 ′ between the point-like primary light sources 1R, 1G, 1B and the optical member 6 is, for example, 5 to 60 mm.
  • the force in which the second main surface 22 of the light control element 2 is mainly composed of a plurality of fine uneven surfaces of the convex cells 220.
  • the light control element If the optical element 2 has the optical characteristics as described above, the first main surface 21 of the light control element 2 may be composed of a fine concavo-convex surface of a large array of convex cells, or the light control element. Both the first main surface 21 and the second main surface 22 of the second may be formed of a fine uneven surface force of a multi-array of convex cells.
  • the light control element 2 having the optical characteristics as described above may be additionally used, and the plurality of light control elements 2 may be arranged in parallel.
  • the light control element 2 an element containing a light diffusing agent inside, particularly in a convex cell can be used. As a result, a better light mixing effect can be obtained.
  • edge light type surface light source devices [device No. 1-1 to device No. 1-8] belonging to the embodiment described with reference to FIG. 1 and others were manufactured.
  • the light exit surface has a matte surface with an average inclination angle of 3.5 degrees
  • the back surface has a prism apex angle. It consists of a number of X-direction prism rows that are 100 degrees, a radius of curvature of the top tip of 15 ⁇ m, and a pitch of 50 ⁇ m.
  • the X-direction dimensions are 235 mm and the Y-direction dimensions are parallel to each other.
  • Eight wedge-shaped rectangular light guides having a thickness of 5.6 mm at the end on the light incident end face side and l mm at the end on the other side were prepared.
  • a light reflecting film was affixed to an end face other than the light incident end face of each light guide, and a light diffusing and reflecting film was disposed so as to face the back face.
  • Eight light control elements were produced by forming an acrylic resin layer with a fine uneven surface on one side of a polyethylene terephthalate (PET) sheet.
  • the fine concavo-convex surface (second main surface) of these light control elements is a close-packed filling of convex cells consisting of a substantially triangular pyramidal surface whose bottom is a regular triangle with a side length of 35 xm. It was.
  • Convex senores on the substantially triangular pyramid surface of each light control element The J-plane apex angle ⁇ I was 40 °, 50 °, 60 °, 70 °, 80 °, 90 °, 100 ° and 110 °.
  • Each light control element obtained by force was placed so that the first main surface thereof was opposed to the light incident end surface of the light guide.
  • R-LED, G-LED, and B-LED which are substantially Lambertian light sources as primary light sources, were arranged so as to face the second main surface of each light control element.
  • the primary light source was disposed on an aluminum support substrate with a pitch P1 of 2.8 mm and a distance P2 of 2 mm, and covered with a sealing resin.
  • the light-diffusion reflection film extended from the light-projection surface and back surface of the light guide was arrange
  • the distance D1 shown in Fig. 2 is 5mm
  • the distance D2 shown in Fig. 2 is 4mm
  • the distance W shown in Fig. 1 is lmm.
  • each of the above eight configurations was incorporated into a frame.
  • the maximum peak of the luminous intensity distribution (in the XZ plane) from the light guide was 70 ° with respect to the normal direction of the light emitting surface, and the full width at half maximum was 22.5 °.
  • the first light intensity distributions PI and P2 and the second light intensity distributions Ql and Q2 were measured as described with reference to FIGS. Further, the third luminous intensity distribution R and the fourth luminous intensity distribution S were measured. Based on these measurement results, the first to fourth average distributions Pa, Qa, Ra, Sa were obtained. Further, based on these, the light amounts LPm, LQm, LQn, LQs, LR are calculated as described in FIG. 16 and others, and based on these, the following Dl, D2, D3, D4 are calculated. , D5 and D6, the values shown in Table 1 below were obtained.
  • D1 Ratio of light quantity LQm to light quantity LPm
  • a prism array formed by forming a large number of prism arrays with an apex angle of 68 degrees in parallel with a pitch of 50 ⁇ m using an acrylic ultraviolet curable resin with a refractive index of 1.5064 has a thickness of 125.
  • Eight prism sheets formed on one surface of a ⁇ m polyester film were prepared.
  • the obtained prism sheets are arranged such that the prism row forming surface faces the light exit surface (mat surface) of each light guide and the ridge line of the prism row is parallel to the light incident end surface of the light guide. Placed on
  • a surface light source device [device No. 1_9] was produced in the same manner as in Example 1 except that a light-transmitting sheet having smooth surfaces was used in place of the light control element.
  • Dl, D2, D3, D4, D5, and D6 were obtained in the same manner as the light control element of Example 1, and the values shown in Table 1 below were obtained.
  • the surface light source device [Device No. 1-10] was used in the same manner as in Example 1 except that the light control element was not used (the air layer was used instead of the light control element). Manufactured.
  • the air layer sheet used in place of the light control element is the same as the light control element of Example 1.
  • Dl, D2, D3, D4, D5, and D6 were obtained, and the values shown in Table 1 below were obtained.
  • the R-LED, G-LED and B-LED as the primary light source are turned on.
  • the emission pattern of each color light corresponding to each light emitting diode was visually recognized in the vicinity of the light guide light incident end surface, and in device No. 1_10, Light guide The emission pattern of each color light corresponding to each light emitting diode was clearly seen near the light incident end face.
  • the fine uneven surface (second main surface) of the light control element is a close-packed filling of convex cells consisting of a substantially quadrangular pyramid with a square shape with a bottom of 30 ⁇ m on one side.
  • the fine concavo-convex surface (second main surface) of the light control element is a close-packed filling of convex cells consisting of approximately hexagonal pyramid surfaces that are regular hexagons with a bottom shape of 35 ⁇ m on one side.
  • the surface light source device [Device No. 3_1 to Device No. 3] was used in the same manner as in Example 1 except that the convex cell had a side apex angle ⁇ of 30 °, 40 °, and 50 °. 3_3] was manufactured.
  • Dl, D2, D3, D4, D5, and D6 were obtained in the same manner as in Example 1.
  • the values shown in Table 3 below were obtained.
  • Example 1 Except that the light control element is arranged so that the fine uneven surface thereof faces the light guide light incident end surface (that is, the fine uneven surface becomes the first main surface), it is the same as in Example 1.
  • Surface light source devices [Device No. 4_1 to Device No. 4_8] were manufactured.
  • Dl, D2, D3, D4, D5, and D6 were obtained in the same manner as in Example 1.
  • the values shown in Table 4 below were obtained.
  • the R_LED, G-LED, and B-LED as the primary light source are turned on and the light emitting surface is visually observed.
  • the emission pattern of each color light corresponding to each light emitting diode was not visually recognized, and the entire light emitting surface was white and uniform in brightness.
  • the fine uneven surface (second main surface) of the light control element is a close-packed filling of convex cells consisting of a substantially quadrangular pyramid with a square shape with a bottom of 30 ⁇ m on one side.
  • the R_LED, G-LED and B-LED as the primary light source are turned on and the light emitting surface is visually observed.
  • the emission pattern of each color light corresponding to each light emitting diode was not visually recognized, and the entire light emitting surface was white and uniform in brightness.
  • the fine concavo-convex surface (second main surface) of the light control element is a close-packed filling of convex cells consisting of approximately hexagonal pyramid surfaces that are regular hexagons with a bottom shape of 35 ⁇ m on one side.
  • the surface light source device [Device No. 6_1 to Device No. 6] was used in the same manner as in Example 4 except that the convex cell had a side apex angle ⁇ force of 3 ⁇ 40 °, 40 ° and 50 °. 6_3] was manufactured.
  • Dl, D2, D3, D4, D5, and D6 were obtained in the same manner as in Example 1. The values shown in Table 6 below were obtained.
  • the R_LED, G-LED, and B-LED as the primary light sources are turned on to emit light.
  • the emission pattern of each color light corresponding to each light emitting diode was not visually recognized, and the entire light emitting surface was white and uniform in brightness.
  • the direct type surface light source device belonging to the embodiment described with reference to FIG. 21 and others was manufactured as follows.
  • the bottom shape is a square with a side length of 2 cm, and the side apex angle is ⁇ 70 ° and high.
  • a number of translucent square pyramids with a length of lcm were produced. This quadrangular pyramid is spread and bonded to the adhesive surface of a PET sheet that has a vertical dimension of 235 mm, a horizontal dimension of 370 mm, a thickness of 125 zm, and an adhesive on one side so that it is closely packed.
  • two light control elements were produced. These two light control elements were both placed horizontally with their smooth surfaces facing down.
  • one element and the other element were overlapped so as to be shifted from each other by 1 cm vertically and horizontally along the bottom side of the quadrangular pyramid (that is, when viewed in the normal direction of the PET sheet of the light control element, The top of the quadrangular pyramid of one element overlaps the center of gravity of the bottom of the quadrangular pyramid of the other element).
  • LED light sources there are four LED light sources (one R-LED) corresponding to the apex of the quadrangular pyramid of the light control element as a primary light source. And one B-LED and two G-LEDs). Further, a light diffusing plate as a light diffusing optical member was disposed above the upper light control element. The distance D2 'between the lower light control element and the optical member was 57 mm, and the ⁇ separation D1' between the primary light sources 1R, 1G, IB and the optical member was 60 mm.
  • the R_LED, G one LED, and B- LED as the primary light source were turned on and the light emitting surface (light emitting surface of the light diffusing plate) was visually observed.
  • the emission pattern of each color light corresponding to each light emitting diode was not visually recognized, and the entire light emitting surface was white and uniform brightness.
  • Example 8-1 As a quadrangular pyramid, the shape of the bottom is a square with a side length of 2 cm, and the side apex angle ⁇ force (Example 8-1), 50 ° (Example 8-2), 60 ° (Example 8-3)
  • ⁇ force Example 8-1
  • 50 ° Example 8-2
  • 60 ° Example 8-3
  • a surface light source device was manufactured in the same manner as in Example 7 except that the one at 80 ° (Example 8-4) was used.
  • LED and B When the LED is turned on and the light emitting surface (light emitting surface of the light diffusing plate) is visually observed, the emission pattern of each color light corresponding to each light emitting diode is not visually recognized, and the entire light emitting surface is white. It was like this.
  • the shape of the bottom is an equilateral triangle with a side length of 3 cm, and the side apex angle ⁇ is 60 ° (Example 9-11), 70 ° (Example 91-2), 80 ° Example 9 1 3), 90 ° (Example 9 1 4) 100 ° (Example 9 _ 5) using a triangular pyramid, two light control elements were fabricated, and the two light control elements Place one element so that it is displaced 1.5cm laterally along one side of the bottom of the triangular pyramid and 8.7mm vertically perpendicular to it.
  • a surface light source device was manufactured in the same manner as Example 7 except that the other element was overlapped.
  • LED and B When the LED is turned on and the light emitting surface (light emitting surface of the light diffusing plate) is visually observed, the emission pattern of each color light corresponding to each light emitting diode is not visually recognized, and the entire light emitting surface is white. It was like this.
  • Example 1 one light control element having the same shape was produced for the side apex angle ⁇ of the convex cell having a substantially triangular pyramid surface of 90 °.

Abstract

A surface-area light source device having a light guide body (3) having a light entry end surface (31) and a light exit surface (33), a primary light source (1) placed adjacent to the light entry end surface (31), and light mixing means for light emitted from the primary light source (1) and entering into the light entry end surface (31). The light mixing means includes a light control element (2) placed along the light entry end surface (31). The light control element (2) has a first main surface facing the light entry end surface (31) and also has a second main surface on the opposite side of the first main surface. When only the light that is out of light fluxes from the primary light source (1) and advances in the direction less than or equal to 20 degrees relative to the direction normal to the second main surface is made to enter in the second main surface, the light control element (2) causes the amount of light emitted in the direction less than or equal to 20 degrees relative to the direction normal to the first main surface is 50% or less of the light amount when the entire light fluxes from the primary light source (1) is caused to enter in the second main surface.

Description

明 細 書  Specification
光混合手段を用いた面光源装置  Surface light source device using light mixing means
技術分野  Technical field
[0001] 本発明は、一次光源から発せられる光を光混合手段を介して導光体等の光学部材 へと導入し該光学部材の光出射面から出射させる面光源装置に関するものである。 本発明の面光源装置は、例えば液晶表示装置のバックライトとして使用することがで きる。  The present invention relates to a surface light source device that introduces light emitted from a primary light source into an optical member such as a light guide via a light mixing unit and emits the light from a light emitting surface of the optical member. The surface light source device of the present invention can be used as a backlight of a liquid crystal display device, for example.
背景技術  Background art
[0002] 近年、カラー液晶表示装置のバックライト(面光源装置)としては、より鮮明で色再現 性良好な液晶表示画像の得られるものが要望されている。従来のエッジライト方式の バックライトでは、白色発光冷陰極管等の白色発光光源を一次光源として使用して いる。そして、該一次光源からの光が入射する光入射端面と該光入射端面を横切る 面に沿って位置する光出射面とを持つ導光体が使用されている。このような従来のェ ッジライト方式のバックライトを使用した液晶表示装置においては、カラー画像信号に 対する液晶表示の色再現性に問題があることが分かってきた。とくに、 R (赤色)信号 に対する表示色の再現性が十分でなレ、とレ、う問題がある。  [0002] In recent years, backlights (surface light source devices) for color liquid crystal display devices have been demanded that can provide liquid crystal display images with clearer and better color reproducibility. In the conventional edge light type backlight, a white light emitting light source such as a white light emitting cold cathode tube is used as a primary light source. A light guide having a light incident end surface on which light from the primary light source is incident and a light emitting surface located along a plane crossing the light incident end surface is used. It has been found that a liquid crystal display device using such a conventional edge light type backlight has a problem in the color reproducibility of the liquid crystal display for a color image signal. In particular, the reproducibility of the display color for the R (red) signal is insufficient.
[0003] 一方、液晶表示装置のバックライトの一次光源として低消費電力且つ長寿命の発 光ダイオード (LED)を使用することが、一般化している。 LEDは、点状の発光光源 であり、とくに小面積のバックライトの一次光源として使用されてきた。近年では、上記 カラー液晶表示の色再現性を向上させる観点から、 RGB三原色をそれぞれ発光す る 3種類の LEDを組み合わせて使用することが提案されている。これは、 RGB三原 色発光 LEDを適宜の順序及び様式で配列し、これらの LEDから発せられる三原色 光を導光体内に導入して混合し白色光を得るものである。  On the other hand, it has become common to use a light-emitting diode (LED) with low power consumption and long life as a primary light source of a backlight of a liquid crystal display device. The LED is a point-like light source, and has been used as a primary light source for a backlight with a small area. In recent years, from the viewpoint of improving the color reproducibility of the above-mentioned color liquid crystal display, it has been proposed to use a combination of three types of LEDs that emit three primary colors of RGB. In this, RGB three primary color light emitting LEDs are arranged in an appropriate order and manner, and the three primary color lights emitted from these LEDs are introduced into the light guide and mixed to obtain white light.
[0004] ところで、液晶表示装置においては、可能な限り小さな外形寸法で可能な限り大き な有効発光領域を持つバックライトが求められ、また、ノ ックライトの有効発光領域に 近付くように液晶表示画面を可能な限り大きくすることが求められている。しかるに、 上記 RGB三原色発光 LEDを一次光源として用いたエッジライト方式のバックライトに おいて、有効発光領域を導光体の外周縁のできる限り近くにまで広げようとすると(即 ち、有効発光領域の外側に位置するいわゆる額縁の幅を小さくしょうとすると)、次の ような問題が生ずる。即ち、 RGB三原色発光 LEDに近い有効発光領域部分では、 R GB三原色発光 LEDに対応した未混合原色光の出射パターンが観察されるようにな る。このような未混合原色光出射パターンの発生は、カラー液晶表示画面の周辺領 域での色再現性の著しい低下の原因となる。また、一次光源として単色の LEDのみ を複数用いたモノクロ液晶表示の場合においても、同様に、単色発光 LEDに近い有 効発光領域部分では、 LEDに対応した光の出射パターンが観察されるようになる。こ のような光出射パターンの発生は、モノクロ液晶表示画面の周辺領域での部分的な 輝度低下即ち輝度均斉度低下の原因となる。 [0004] By the way, in a liquid crystal display device, a backlight having an effective light emitting area as large as possible with the smallest possible outer dimensions is required, and the liquid crystal display screen is arranged so as to approach the effective light emitting area of the knock light. It is required to be as large as possible. However, the above-mentioned RGB three-primary-color LED is used as an edge-light type backlight using a primary light source. When trying to expand the effective light emitting area as close as possible to the outer periphery of the light guide (that is, trying to reduce the width of the so-called frame located outside the effective light emitting area), the following Problems arise. In other words, in the effective light emitting area near the RGB three primary color light emitting LEDs, an emission pattern of unmixed primary color light corresponding to the R GB three primary color light emitting LEDs can be observed. The occurrence of such an unmixed primary color light emission pattern causes a significant decrease in color reproducibility in the peripheral region of the color liquid crystal display screen. Similarly, in the case of a monochrome liquid crystal display that uses only a single color LED as the primary light source, the light emission pattern corresponding to the LED is observed in the effective light emission region near the single color LED. Become. The occurrence of such a light emission pattern causes a partial decrease in luminance, that is, a decrease in luminance uniformity in the peripheral area of the monochrome liquid crystal display screen.
[0005] 特開 2004— 158336号公報(特許文献 1)には、複数の点状光源から発せられた 複数色の光を、混色手段により混色し、導光体に導入させるようにした面光源装置が 開示されている。このような混色手段即ち光混合手段により、互いに異なる複数の色 の光たとえば R (赤色) G (緑色) B (青色)の三原色の光をそれぞれ発する複数の点 状一次光源からの光を混合して所要の混合色たとえば白色の光を得ることができる。  [0005] Japanese Unexamined Patent Application Publication No. 2004-158336 (Patent Document 1) discloses a surface light source in which light of a plurality of colors emitted from a plurality of point light sources is mixed by a color mixing means and introduced into a light guide. An apparatus is disclosed. By such color mixing means, that is, light mixing means, light from a plurality of point primary light sources respectively emitting light of a plurality of different colors, for example, light of three primary colors of R (red), G (green), and B (blue) are mixed. Thus, a desired mixed color such as white light can be obtained.
[0006] また、実用新案登録第 3114195号公報 (特許文献 2)には、光源とライトガイド板端 との間に光調整構造を設置し、該光調整構造の入光面及び出光面に複数個の拡散 体を設置し、該拡散体を多角錐型突出構造により構成したバックライトモジュールが 開示されている。  [0006] In addition, in Utility Model Registration No. 3114195 (Patent Document 2), a light adjustment structure is installed between the light source and the end of the light guide plate, and a plurality of light incident surfaces and light exit surfaces of the light adjustment structure are provided. There is disclosed a backlight module in which a plurality of diffusers are installed and the diffusers are configured by a polygonal pyramidal projecting structure.
[0007] エッジライト方式面光源装置のみでなぐ光拡散性または光集束性を持ち且つ光入 射面に入射した光を該光入射面と反対側の光出射面から出射させる光学部材を用 レ、、該光学部材の光入射面に対向して一次光源を配置してなる直下方式の面光源 装置においても、一次光源として複数の点状一次光源の使用たとえば RGB三原色 をそれぞれ発光する 3種類の LEDの組み合わせ使用が行われている。従って、光混 合の手段は、エッジライト方式面光源装置のみでなぐ直下方式の面光源装置にお いても有用である。  [0007] An optical member that has light diffusibility or light convergence that can be obtained only by an edge light type surface light source device and that emits light incident on the light incident surface from a light emitting surface opposite to the light incident surface is used. Even in a direct-type surface light source device in which a primary light source is arranged opposite to the light incident surface of the optical member, the use of a plurality of point-like primary light sources as the primary light source, for example, three types of light emitting each of the three primary colors of RGB LED combinations are being used. Therefore, the light mixing means is useful even in a direct-type surface light source device that uses only an edge light type surface light source device.
特許文献 1:特開 2004— 158336号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-158336
特許文献 2:実用新案登録第 3114195号公報 発明の開示 Patent Document 2: Utility Model Registration No. 3114195 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] しかるに、特許文献 1に記載の混色手段は単なる透明板状体であり、各点状一次 光源から到来する互いに異なる色の光をその板状体内部での導光中に混合させるよ うにするものである。このため、良好な光混合には長い距離を必要とし、混色手段寸 法の低減ができず、面光源装置の寸法が大きくなりがちである。  [0008] However, the color mixing means described in Patent Document 1 is a simple transparent plate-like body, and lights of different colors coming from each point-like primary light source are mixed during light guide inside the plate-like body. It is something to do. For this reason, a long distance is required for good light mixing, and the size of the color mixing means cannot be reduced, and the size of the surface light source device tends to be large.
[0009] また、特許文献 2には、光調整構造の多角錐型突出構造の具体的内容が記載され ていない。  [0009] Further, Patent Document 2 does not describe the specific content of the polygonal pyramid-shaped protruding structure of the light adjustment structure.
[0010] 本発明の目的は、以上のような技術的課題を解決することにあり、とりわけ、一次光 源力 発せられる光を小寸法領域にて良好に混合し得る光混合手段を用い色再現 性良好な或いは輝度均斉度良好な表示画像を可能にする面光源装置を提供するこ とにある。  [0010] An object of the present invention is to solve the above technical problems, and in particular, color reproduction using a light mixing means that can mix light emitted from a primary light source power well in a small size region. It is an object of the present invention to provide a surface light source device that enables a display image with good performance or brightness uniformity.
課題を解決するための手段  Means for solving the problem
[0011] 本発明によれば、上記の技術的課題を解決するものとして、  [0011] According to the present invention, as a solution to the above technical problem,
光入射端面及び光出射面を有する導光体と、該導光体の光入射端面に隣接して 配置された一次光源と、該一次光源から発せられ前記導光体の光入射端面に入射 する光に対する混合作用を持つ光混合手段とを備えている面光源装置であって、 前記光混合手段は前記光入射端面に沿って配置された光制御素子を含んでおり A light guide having a light incident end surface and a light exit surface, a primary light source disposed adjacent to the light incident end surface of the light guide, and a light emitted from the primary light source and incident on the light incident end surface of the light guide. A surface light source device having a light mixing means having a mixing action on light, wherein the light mixing means includes a light control element arranged along the light incident end face.
、該光制御素子は前記光入射端面と対向する第 1の主面とその反対側の第 2の主面 とを有しており、 The light control element has a first main surface facing the light incident end surface and a second main surface opposite to the first main surface.
前記光制御素子は、前記一次光源からの光束のうち前記第 2の主面の法線方向に 対し角度 20度以下の方向に進行する光のみを前記第 2の主面に入射させた時に、 前記第 1の主面から前記法線方向に対し角度 20度以下の方向に出射する光量が、 前記一次光源からの光束の全てを前記第 2の主面に入射させた時の 50%以下とな るものであることを特徴とする面光源装置、  The light control element causes only light traveling in a direction of an angle of 20 degrees or less to the normal direction of the second main surface of the light flux from the primary light source to be incident on the second main surface. The amount of light emitted from the first main surface in a direction with an angle of 20 degrees or less with respect to the normal direction is 50% or less when all of the light flux from the primary light source is incident on the second main surface. A surface light source device, characterized in that
が提供される。  Is provided.
[0012] 本発明の一態様においては、前記光制御素子は、前記一次光源からの光束のうち 前記法線方向に対し角度 20度以下の方向に進行する光のみを前記第 2の主面に 入射させた時に、前記第 1の主面から前記法線方向に対し角度 20度以下の方向に 出射する光量が、前記第 2の主面に入射する光量の 40%以下となるものである。 [0012] In one aspect of the present invention, the light control element causes only light traveling in a direction of an angle of 20 degrees or less with respect to the normal direction to the second main surface among the light flux from the primary light source. When incident, the amount of light emitted from the first main surface in an angle of 20 degrees or less with respect to the normal direction is 40% or less of the amount of light incident on the second main surface.
[0013] 本発明の一態様においては、前記光制御素子は、前記一次光源からの光束のうち 前記法線方向に対し角度 20度以下の方向に進行する光のみを前記第 2の主面に 入射させた時に、前記第 1の主面から前記法線方向に対し角度 20度以上 80度以下 の方向に出射する光量が、前記法線方向に対し角度 20度以下の方向に出射する 光量の 1倍以上となるものである。  In one aspect of the present invention, the light control element has only the light traveling from the primary light source traveling in a direction with an angle of 20 degrees or less with respect to the normal direction as the second main surface. The amount of light emitted from the first main surface in the direction of an angle of 20 degrees or more and 80 degrees or less with respect to the normal direction is emitted from the first main surface in the direction of an angle of 20 degrees or less with respect to the normal direction. It will be more than 1 time.
[0014] 本発明の一態様においては、前記光制御素子は、前記一次光源からの光束のうち 前記法線方向に対し角度 20度以下の方向に進行する光のみを前記第 2の主面に 入射させた時に、前記法線方向を含む或る平面内において、前記第 1の主面から前 記法線方向に対し角度 20度以上 80度以下の方向に出射する光量が、前記法線方 向に対し角度 20度以下の方向に出射する光量の 1倍以上となるものである。  [0014] In one aspect of the present invention, the light control element causes only light that travels in a direction of an angle of 20 degrees or less with respect to the normal direction to the second main surface of the light flux from the primary light source. When incident, the amount of light emitted from the first main surface in a direction with an angle of 20 degrees or more and 80 degrees or less with respect to the normal direction in a certain plane including the normal direction is the normal direction. In contrast, the amount of light emitted in a direction with an angle of 20 degrees or less is 1 or more times.
[0015] 本発明の一態様においては、前記光制御素子は、前記一次光源からの光束のうち 前記法線方向に対し角度 20度以下の方向に進行する光のみを前記第 2の主面に 入射させた時に、前記第 1の主面からの出射光の出射角度に対する光度分布にお けるピークが、前記法線方向に対して 10度以上の角度となるものである。  [0015] In one aspect of the present invention, the light control element causes only light that travels in a direction with an angle of 20 degrees or less with respect to the normal direction to the second main surface of the light flux from the primary light source. When incident, the peak in the luminous intensity distribution with respect to the outgoing angle of the outgoing light from the first main surface is an angle of 10 degrees or more with respect to the normal direction.
[0016] 本発明の一態様においては、前記光制御素子は、前記一次光源からの光束のうち 前記法線方向に対し角度 20度以下の方向に進行する光のみを前記第 2の主面に 入射させた時に、前記第 1の主面から出射する光量が、前記第 2の主面に入射する 光量の 40%以下となるものである。  [0016] In one aspect of the present invention, the light control element causes only light that travels in a direction with an angle of 20 degrees or less with respect to the normal direction to the second main surface of the light flux from the primary light source. The amount of light emitted from the first main surface when incident is 40% or less of the amount of light incident on the second main surface.
[0017] 本発明の一態様においては、前記導光体と前記一次光源との間の距離が 2〜: 15 mmで ¾。。  [0017] In one aspect of the present invention, the distance between the light guide and the primary light source is 2 to 15 mm. .
[0018] 本発明の一態様においては、前記導光体の光出射面上に配置され且つ前記導光 体の光出射面から出射する光が入光する入光面及びその反対側の出光面を有する 光偏向素子を備えており、該光偏向素子は、前記入光面に前記導光体の光入射端 面に沿って延び且つ互いに平行に配列された複数のプリズム列を備えており、該プ リズム列のそれぞれは前記導光体の光出射面から到来する光が入射する第 1のプリ ズム面と入射した光が内面反射される第 2のプリズム面とを有する。 [0019] また、本発明によれば、上記の技術的課題を解決するものとして、 光入射面及びその反対側の光出射面を有し且つ光拡散性または光集束性を持つ 光学部材と、該光学部材の光入射面に隣接して配置された一次光源と、該一次光源 から発せられ前記光学部材の光入射面に入射する光に対する混合作用を持つ光混 合手段とを備えている面光源装置であって、 In one aspect of the present invention, a light incident surface that is disposed on a light output surface of the light guide and receives light emitted from the light output surface of the light guide and a light output surface on the opposite side. The light deflection element comprises a plurality of prism rows that extend along the light incident end surface of the light guide and are arranged in parallel to each other on the light incident surface, Each prism row has a first prism surface on which light coming from the light exit surface of the light guide is incident and a second prism surface on which the incident light is internally reflected. [0019] According to the present invention, an optical member having a light incident surface and a light emitting surface opposite to the light incident surface and having a light diffusing property or a light focusing property, A surface provided with a primary light source disposed adjacent to a light incident surface of the optical member, and a light mixing means having a mixing action on light emitted from the primary light source and incident on the light incident surface of the optical member. A light source device,
前記光混合手段は前記光入射面に沿って配置された光制御素子を含んでおり、 該光制御素子は前記光入射面と対向する第 1の主面とその反対側の第 2の主面とを 有しており、  The light mixing means includes a light control element disposed along the light incident surface, and the light control element includes a first main surface facing the light incident surface and a second main surface opposite to the first main surface. And
前記光制御素子は、前記一次光源からの光束のうち前記第 2の主面の法線方向に 対し角度 20度以下の方向に進行する光のみを前記第 2の主面に入射させた時に、 前記第 1の主面から前記法線方向に対し角度 20度以下の方向に出射する光量が、 前記一次光源からの光束の全てを前記第 2の主面に入射させた時の 50%以下とな るものであることを特徴とする面光源装置、  The light control element causes only light traveling in a direction of an angle of 20 degrees or less to the normal direction of the second main surface of the light flux from the primary light source to be incident on the second main surface. The amount of light emitted from the first main surface in a direction with an angle of 20 degrees or less with respect to the normal direction is 50% or less when all of the light flux from the primary light source is incident on the second main surface. A surface light source device, characterized in that
が提供される。  Is provided.
[0020] 本発明の一態様においては、前記光制御素子は、前記一次光源からの光束のうち 前記法線方向に対し角度 20度以下の方向に進行する光のみを前記第 2の主面に 入射させた時に、前記第 1の主面から前記法線方向に対し角度 20度以下の方向に 出射する光量が、前記第 2の主面に入射する光量の 40%以下となるものである。  [0020] In one aspect of the present invention, the light control element causes only light that travels in a direction of an angle of 20 degrees or less with respect to the normal direction to the second main surface of the light flux from the primary light source. When incident, the amount of light emitted from the first main surface in an angle of 20 degrees or less with respect to the normal direction is 40% or less of the amount of light incident on the second main surface.
[0021] 本発明の一態様においては、前記光制御素子は、前記一次光源からの光束のうち 前記法線方向に対し角度 20度以下の方向に進行する光のみを前記第 2の主面に 入射させた時に、前記第 1の主面から前記法線方向に対し角度 20度以上 80度以下 の方向に出射する光量が、前記法線方向に対し角度 20度以下の方向に出射する 光量の 1倍以上となるものである。  [0021] In one aspect of the present invention, the light control element causes only light that travels in a direction of an angle of 20 degrees or less with respect to the normal direction to the second main surface among the light flux from the primary light source. The amount of light emitted from the first main surface in the direction of an angle of 20 degrees or more and 80 degrees or less with respect to the normal direction is emitted from the first main surface in the direction of an angle of 20 degrees or less with respect to the normal direction. It will be more than 1 time.
[0022] 本発明の一態様においては、前記光制御素子は、前記一次光源からの光束のうち 前記法線方向に対し角度 20度以下の方向に進行する光のみを前記第 2の主面に 入射させた時に、前記法線方向を含む或る平面内において、前記第 1の主面から前 記法線方向に対し角度 20度以上 80度以下の方向に出射する光量が、前記法線方 向に対し角度 20度以下の方向に出射する光量の 1倍以上となるものである。 [0023] 本発明の一態様においては、前記光制御素子は、前記一次光源からの光束のうち 前記法線方向に対し角度 20度以下の方向に進行する光のみを前記第 2の主面に 入射させた時に、前記第 1の主面からの出射光の出射角度に対する光度分布にお けるピークが、前記法線方向に対して 10度以上の角度となるものである。 [0022] In one aspect of the present invention, the light control element causes only light that travels in a direction of an angle of 20 degrees or less with respect to the normal direction to the second main surface of the light flux from the primary light source. When incident, the amount of light emitted from the first main surface in a direction with an angle of 20 degrees or more and 80 degrees or less with respect to the normal direction in a certain plane including the normal direction is the normal direction. In contrast, the amount of light emitted in a direction with an angle of 20 degrees or less is 1 or more times. [0023] In one aspect of the present invention, the light control element causes only light that travels in a direction with an angle of 20 degrees or less with respect to the normal direction to the second main surface of the light flux from the primary light source. When incident, the peak in the luminous intensity distribution with respect to the outgoing angle of the outgoing light from the first main surface is an angle of 10 degrees or more with respect to the normal direction.
[0024] 本発明の一態様においては、前記光制御素子は、前記一次光源からの光束のうち 前記法線方向に対し角度 20度以下の方向に進行する光のみを前記第 2の主面に 入射させた時に、前記第 1の主面から出射する光量が、前記第 2の主面に入射する 光量の 40%以下となるものである。  In one aspect of the present invention, the light control element has only the light traveling from the primary light source traveling in a direction with an angle of 20 degrees or less with respect to the normal direction as the second main surface. The amount of light emitted from the first main surface when incident is 40% or less of the amount of light incident on the second main surface.
[0025] 本発明の一態様においては、前記光学部材と前記一次光源との間の距離が 5〜6 Ommである。  In one embodiment of the present invention, a distance between the optical member and the primary light source is 5 to 6 Omm.
[0026] 本発明の一態様においては、前記光学部材の光出射面上に配置され且つ前記光 学部材の光出射面から出射する光が入光する入光面及びその反対側の出光面を有 する光偏向素子を備えており、該光偏向素子は、前記入光面または出光面に互いに 平行に配列された複数のプリズム列を備えている。  In one aspect of the present invention, a light incident surface that is disposed on a light output surface of the optical member and receives light emitted from the light output surface of the optical member and a light output surface on the opposite side are provided. The light deflection element includes a plurality of prism rows arranged in parallel to each other on the light incident surface or the light exit surface.
[0027] 更に、以上のような本発明の一態様においては、前記光混合手段は、前記第 2の 主面から出射する戻り光を反射する反射面を含んでいる。本発明の一態様において は、前記光混合手段は、前記光制御素子と略平行に配列された光拡散素子を含ん でいる。  Furthermore, in one aspect of the present invention as described above, the light mixing means includes a reflective surface that reflects the return light emitted from the second main surface. In one aspect of the present invention, the light mixing means includes a light diffusing element arranged substantially parallel to the light control element.
[0028] 本発明の一態様においては、前記第 1の主面及び第 2の主面のうちの少なくとも一 方は凸状セルが多数配列されてなる微細凹凸面からなり、前記凸状セルは略角錐面 または略円錐面からなる。本発明の一態様においては、前記凸状セルは底部の平 均径が 10 x m〜4cmである。本発明の一態様においては、前記凸状セルは高さが 3 z m〜3cmである。本発明の一態様においては、前記凸状セルは、底部の形状が 正三角形である略三角錐面または底部の形状が正六角形である略六角錐面または 底部の形状が正方形である略四角錐面からなり、前記底部が最密充填されるように 配列されている。本発明の一態様においては、前記凸状セルは、側面頂角が 40〜1 10° の略三角錐面からなる。本発明の一態様においては、前記凸状セルは、側面 頂角が 30〜80° の略四角錐面からなる。本発明の一態様においては、前記凸状セ ノレは、側面頂角が 30〜50° の略六角錐面からなる。本発明の一態様においては、 前記凸状セルは頂部に平坦領域を有しており、該平坦領域は前記底部に対する面 積比率が 10%以下である。本発明の一態様においては、前記第 1の主面及び第 2 の主面の双方が前記微細凹凸面からなる。本発明の一態様においては、前記光制 御素子は前記凸状セル内に光拡散剤を含んでレ、る。 [0028] In one aspect of the present invention, at least one of the first main surface and the second main surface includes a fine uneven surface in which a large number of convex cells are arranged, and the convex cells are It consists of a substantially pyramidal surface or a substantially conical surface. In one embodiment of the present invention, the convex cell has an average diameter at the bottom of 10 xm to 4 cm. In one embodiment of the present invention, the convex cell has a height of 3 zm to 3 cm. In one aspect of the present invention, the convex cell includes a substantially triangular pyramid surface having a regular triangular bottom shape, a substantially hexagonal pyramid surface having a regular hexagonal bottom shape, or a substantially quadrangular pyramid having a square bottom shape. It consists of a surface and is arranged so that the bottom part is closely packed. In one aspect of the present invention, the convex cell comprises a substantially triangular pyramidal surface having a side vertex angle of 40 to 110 °. In one embodiment of the present invention, the convex cell comprises a substantially quadrangular pyramid surface having a side surface apex angle of 30 to 80 °. In one embodiment of the present invention, the convex cell Nore consists of a substantially hexagonal pyramid surface with a side apex angle of 30 to 50 °. In one aspect of the present invention, the convex cell has a flat region at the top, and the flat region has an area ratio of 10% or less with respect to the bottom. In one aspect of the present invention, both the first main surface and the second main surface are made of the fine uneven surface. In one aspect of the present invention, the light control element includes a light diffusing agent in the convex cell.
[0029] 本発明の一態様においては、前記光制御素子は内部に光拡散剤を含んでいる。 In one embodiment of the present invention, the light control element includes a light diffusing agent.
本発明の一態様においては、前記光混合手段は複数の前記光制御素子を含んで いる。本発明の一態様においては、前記一次光源は前記法線方向の光度が最大と なる略ランバーシャン (Lambertian)光源である。本発明の一態様においては、前 記一次光源は光度分布の半値半幅が 40度以上 80度以下である。本発明の一態様 においては、前記一次光源は点状光源からなり、前記面光源装置は複数の前記点 状一次光源を備えている。本発明の一態様においては、前記複数の点状一次光源 は互いに発光色の異なる複数種類のものからなる。  In one aspect of the present invention, the light mixing means includes a plurality of the light control elements. In one aspect of the present invention, the primary light source is a substantially Lambertian light source having a maximum luminous intensity in the normal direction. In one embodiment of the present invention, the primary light source has a half-width of light intensity distribution of 40 degrees or more and 80 degrees or less. In one aspect of the present invention, the primary light source includes a point light source, and the surface light source device includes a plurality of the point primary light sources. In one aspect of the present invention, the plurality of point-like primary light sources are composed of a plurality of types having different emission colors.
発明の効果  The invention's effect
[0030] 以上のような本発明の面光源装置によれば、特定の光制御素子を含んでなる光混 合手段を配置することで、一次光源から発せられる光を小寸法領域にて良好に混合 することができ、色再現性良好な或いは輝度均斉度良好な液晶表示などの表示が 可能になる。  [0030] According to the surface light source device of the present invention as described above, the light mixing means including the specific light control element is arranged so that the light emitted from the primary light source can be satisfactorily obtained in a small size region. They can be mixed, and display such as a liquid crystal display with good color reproducibility or luminance uniformity is possible.
図面の簡単な説明  Brief Description of Drawings
[0031] [図 1]本発明による光源装置の一つの実施形態であるエッジライト方式面光源装置を 示す模式的部分断面図である。  FIG. 1 is a schematic partial sectional view showing an edge light type surface light source device which is one embodiment of a light source device according to the present invention.
[図 2]図 1の実施形態の面光源装置の模式的部分平面図である。  2 is a schematic partial plan view of the surface light source device of the embodiment of FIG.
[図 3]点状一次光源の配列を示す模式図である。  FIG. 3 is a schematic diagram showing an array of point-like primary light sources.
[図 4]光制御素子の模式的部分斜視図である。  FIG. 4 is a schematic partial perspective view of a light control element.
[図 5]光制御素子の第 2の主面の拡大図である。  FIG. 5 is an enlarged view of a second main surface of the light control element.
[図 6]光制御素子の模式的部分断面図である。  FIG. 6 is a schematic partial cross-sectional view of a light control element.
[図 7]光制御素子の凸状セルの模式図である。  FIG. 7 is a schematic diagram of a convex cell of a light control element.
[図 8]光制御素子の凸状セルの模式図である。 [図 9]光制御素子の凸状セルの模式図である。 FIG. 8 is a schematic diagram of a convex cell of a light control element. FIG. 9 is a schematic diagram of a convex cell of a light control element.
[図 10]光制御素子に関する第 1の光度分布の測定方法を示す模式図である。  FIG. 10 is a schematic diagram showing a first light intensity distribution measuring method related to the light control element.
[図 11]光制御素子に関する第 2の光度分布の測定方法を示す模式図である。  FIG. 11 is a schematic diagram showing a second light intensity distribution measuring method related to the light control element.
[図 12]光制御素子の光学的特性を説明するための模式図である。  FIG. 12 is a schematic diagram for explaining optical characteristics of the light control element.
[図 13]光制御素子の光学的特性を説明するための模式図である。  FIG. 13 is a schematic diagram for explaining optical characteristics of the light control element.
[図 14]光制御素子の光学的特性を説明するための模式図である。  FIG. 14 is a schematic diagram for explaining optical characteristics of the light control element.
[図 15]光制御素子の光学的特性を説明するための模式図である。  FIG. 15 is a schematic diagram for explaining optical characteristics of the light control element.
[図 16]光量算出方法を説明するための模式図である。  FIG. 16 is a schematic diagram for explaining a light amount calculation method.
[図 17]光制御素子の光学的特性を説明するための模式図である。  FIG. 17 is a schematic diagram for explaining optical characteristics of the light control element.
[図 18]光制御素子の光学的特性を説明するための模式図である。  FIG. 18 is a schematic diagram for explaining optical characteristics of the light control element.
[図 19]導光体の模式的断面図である。  FIG. 19 is a schematic cross-sectional view of a light guide.
[図 20]光偏向素子による光偏向の様子を示す図である。  FIG. 20 is a diagram showing a state of light deflection by the light deflection element.
[図 21]本発明による光源装置の一つの実施形態である直下方式面光源装置を示す 模式的一部切欠分解斜視図である。  FIG. 21 is a schematic partially cutaway exploded perspective view showing a direct type surface light source device which is one embodiment of a light source device according to the present invention.
[図 22]図 21の実施形態の面光源装置の模式的部分分解断面図である。  22 is a schematic partial exploded cross-sectional view of the surface light source device of the embodiment of FIG.
符号の説明 Explanation of symbols
1 点状一次光源群 1 Point primary light source group
1A 封止樹脂 1A sealing resin
1R, 1G, IB 点状一次光源  1R, 1G, IB Point primary light source
2 光制御素子  2 Light control element
21 第 1の主面  21 First main surface
22 第 2の主面  22 Second main surface
220 凸状セル  220 Convex cell
221 底部  221 Bottom
222 頂部平坦領域  222 Flat top area
2X 光拡散素子  2X Light diffusing element
3 導光体  3 Light guide
31 光入射端面 33 光出射面 31 Light incident end face 33 Light exit surface
34 裏面  34 Back side
34a レンズ列(プリズム列)  34a Lens array (prism array)
4 光偏向素子  4 Light deflection element
41 入光面  41 Incident surface
41a プリズム列  41a prism row
42 出光面  42 Light emitting surface
5, 5' 光反射素子  5, 5 'Light reflecting element
10 支持基板  10 Support substrate
11 放熱フィン  11 Radiation fin
6 板状光学部材  6 Plate optical member
61 光入射面  61 Light incident surface
62 光出射面  62 Light exit surface
7 ケース  7 cases
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0033] 以下、図面を参照しながら、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0034] 図 1は本発明による光源装置の一つの実施形態であるエッジライト方式面光源装 置を示す模式的部分断面図であり、図 2は本実施形態の面光源装置の模式的部分 平面図である。これらの図に示されているように、本実施形態の面光源装置は、 1つ の側端面を光入射端面 31とし、これと略直交する 1つの主表面を光出射面 33とする 導光体 3と、この導光体 3の光入射端面 31に隣接して配置された光制御素子 2と、こ の光制御素子 2に隣接して導光体 3と反対側に配置された点状一次光源 1R, 1G, 1 Bからなる点状一次光源群 1と、導光体 3の光出射面 33の大部分の領域上に配置さ れた光偏向素子 4と、導光体 3の光出射面 33とは反対側の裏面 34に対向して配置さ れた光反射素子 5と、導光体 3の光出射面 33の光入射端面 31に近接する領域の上 に配置された光反射素子 5 'とを含んで構成される。 FIG. 1 is a schematic partial sectional view showing an edge light type surface light source device which is one embodiment of a light source device according to the present invention, and FIG. 2 is a schematic partial plan view of the surface light source device of this embodiment. FIG. As shown in these drawings, in the surface light source device of the present embodiment, one side end surface is a light incident end surface 31, and one main surface substantially orthogonal thereto is a light emitting surface 33. Body 3, the light control element 2 disposed adjacent to the light incident end face 31 of the light guide body 3, and the dot-like structure disposed adjacent to the light control element 2 on the opposite side of the light guide body 3. Primary light source group 1 composed of primary light sources 1R, 1G, and 1B, light deflecting element 4 arranged on the most area of light emitting surface 33 of light guide 3, and light of light guide 3 The light reflecting element 5 disposed opposite to the back surface 34 opposite to the light exit surface 33, and the light reflection disposed on the light exit surface 33 of the light guide 3 on the region near the light incident end surface 31. It is configured to include the element 5 ′.
[0035] 点状一次光源 1Rは赤色発光ダイオード (R— LED)であり、点状一次光源 1Gは緑 色発光ダイオード (G— LED)であり、点状一次光源 1Bは青色発光ダイオード(B— LED)力 なる。点状一次光源 1R, 1G, IBは、発散光を発するものであり、その発 光面に対する法線の方向の光度が最大となる略ランバーシャン光源であり、その光 度分布の半値半幅が 40度以上 80度以下である。これらの点状一次光源の YZ面内 の寸法は、例えば 0. 3mm角である。これらの点状一次光源は、支持基板 10上にお いて、 Y方向に適宜の間隔を置いて 2列状に配列されて、点状一次光源群 1を構成 している。即ち、図 3に示されているように、 R_LED (1R)と B_LED (1B)とが交互 になるようにピッチ P1にて Y方向に 1列に配列されており、これら R— LED及び B— L EDに近接して Z方向距離 P2をもって G_LED (1G)が配置されている。即ち、 G— L ED (1G)はピッチ PIにて Y方向に 1列に配列されている。換言すれば、 R-LED (1 R)と G— LED (1G)との対と B— LED (1B)と G— LED (1G)との対とがピッチ P1に て Y方向に 1列に配列された形態をなしている。点状一次光源 1R, 1G, IBの配列ピ ツチは、 目標とする色再現性や輝度均斉度の程度、後述の額縁幅、更には光制御 素子 2を用いた光混合手段の性能などを勘案して、適宜設定することができる。配列 ピッチ P1は例えば 2. 8mmであり、距離 P2は例えば 2mmである。このような配列と することで、 G— LED (1G)の発光光度が R— LED及び B— LEDに比べて低いこと による欠点を、 G— LED (1G)の配列密度を高めることで補って、カラー液晶表示等 のカラー表示における色再現性を高めることができる。 [0035] The point primary light source 1R is a red light emitting diode (R—LED), the point primary light source 1G is a green light emitting diode (G—LED), and the point primary light source 1B is a blue light emitting diode (B— LED) power. The point primary light sources 1R, 1G, and IB emit divergent light, and are approximately Lambertian light sources that have the maximum luminous intensity in the direction of the normal to the light emitting surface. The half-width at half maximum of the luminous intensity distribution is 40. More than 80 degrees and less than 80 degrees. The dimensions of these point primary light sources in the YZ plane are, for example, 0.3 mm square. These point-like primary light sources are arranged in two rows on the support substrate 10 at appropriate intervals in the Y direction to constitute the point-like primary light source group 1. That is, as shown in Fig. 3, R_LED (1R) and B_LED (1B) are arranged in a line in the Y direction at pitch P1 so that they alternate, and these R-LED and B- G_LED (1G) is placed near the L ED with a distance P2 in the Z direction. That is, G-L ED (1G) is arranged in a line in the Y direction at a pitch PI. In other words, a pair of R-LED (1 R) and G- LED (1G) and a pair of B- LED (1B) and G- LED (1G) are arranged in a line in the Y direction at pitch P1. It is in an arranged form. The arrangement pitch of the point-like primary light sources 1R, 1G, and IB takes into account the target color reproducibility and the degree of luminance uniformity, the frame width described later, and the performance of the light mixing means using the light control element 2. And it can set suitably. The arrangement pitch P1 is 2.8 mm, for example, and the distance P2 is 2 mm, for example. This arrangement compensates for the disadvantage of the G-LED (1G) having lower luminous intensity than the R-LED and B-LED by increasing the density of the G-LED (1G). In addition, color reproducibility in color display such as color liquid crystal display can be improved.
[0036] 点状一次光源 1R, 1G, 1Bは、封止樹脂 1Aにより封止されている。封止樹脂 1A は、透光性を有しており、光拡散剤を含有していてもよい。封止樹脂 1Aの幅即ち Z方 向寸法は、導光体の光入射端面 31の Z方向寸法と大略同一であり、例えば 5mmで ある。点状一次光源 1R, 1G, 1Bが取り付けられている支持基板 10の表面は反射面 として機能する。支持基板 10には、点状一次光源 1R, 1G, IBを点灯した時に発生 する熱を放散するための放熱フィン 11が付されてレ、る。  The point-like primary light sources 1R, 1G, 1B are sealed with a sealing resin 1A. The sealing resin 1A has translucency and may contain a light diffusing agent. The width of the sealing resin 1A, that is, the dimension in the Z direction, is substantially the same as the dimension in the Z direction of the light incident end face 31 of the light guide, and is, for example, 5 mm. The surface of the support substrate 10 on which the point-like primary light sources 1R, 1G, and 1B are attached functions as a reflecting surface. The support substrate 10 is provided with heat radiating fins 11 for radiating heat generated when the point-like primary light sources 1R, 1G, and IB are turned on.
[0037] 図 4は光制御素子 2の模式的部分斜視図である。光制御素子 2は、導光体の光入 射端面 31と対向する向きの第 1の主面 21とその反対側の第 2の主面 22とを有する。 第 1の主面 21は YZ面と平行な平坦面からなる。一方、第 2の主面 22は、図 5に拡大 図を示すように、凸状セル 220が多数配列されてなる微細凹凸面からなる。凸状セル 220は YZ面と平行な底部の形状が正三角形などの三角形である略三角錐面からな り、各凸状セル 220の底部が最密充填されるように多数の凸状セル 220が配列され ている。 FIG. 4 is a schematic partial perspective view of the light control element 2. The light control element 2 has a first main surface 21 facing the light incident end surface 31 of the light guide and a second main surface 22 on the opposite side. The first main surface 21 is a flat surface parallel to the YZ surface. On the other hand, as shown in the enlarged view of FIG. 5, the second main surface 22 is formed of a fine uneven surface in which a large number of convex cells 220 are arranged. The convex cell 220 is formed from a substantially triangular pyramidal surface whose bottom shape parallel to the YZ plane is a triangle such as an equilateral triangle. Thus, a large number of convex cells 220 are arranged so that the bottoms of the respective convex cells 220 are closely packed.
[0038] 図 6に光制御素子 2の模式的部分断面図を示す。凸状セル 220は高さ(即ち、 YZ 面と平行な底部 221から頂部までの X方向距離)が Hであり、底部 221の平均径が L である。ここで、底部平均径 Lは、底部 221と平行な面内での最大径と最小径との平 均値をレ、うものとする。即ち、図 7に示されるように、底部 221の 1つの辺に沿った方 向の径 Lmaxとこれに直交する方向の径 Lminとの平均値を、底部平均径 Lとするこ とができる。また、図 7に示されるように、凸状セル 220の側面頂角(1つの側面内に おける該側面の三角形状の頂角)は Φである。  FIG. 6 shows a schematic partial cross-sectional view of the light control element 2. The convex cell 220 has a height (that is, a distance in the X direction from the bottom 221 parallel to the YZ plane) to H, and the average diameter of the bottom 221 is L. Here, the bottom average diameter L is the average value of the maximum diameter and the minimum diameter in a plane parallel to the bottom 221. That is, as shown in FIG. 7, the average value of the diameter Lmax in the direction along one side of the bottom 221 and the diameter Lmin in the direction perpendicular thereto can be used as the bottom average diameter L. Further, as shown in FIG. 7, the side surface apex angle of the convex cell 220 (the apex angle of the triangular shape of the side surface in one side surface) is Φ.
[0039] 底部平均径 Lは 10〜200 μ mであるのが好ましレ、。底部平均径 Lは、更に好ましく は 20〜: 100 x mであり、特に好ましくは 30〜70 μ πιである。底部平均径 Lが 10 z m より小さくなると凸状セル 220の作製が困難になる傾向があり、底部平均径 Lが 200 β mより大きくなると凸状セル 220による光混合の効果が低下する傾向がある。また、 側面頂角 Φは、 40〜: 1 10° であるのが好ましぐ 60〜1 10° であるのがより好ましく 、 70〜: 100° であるのが更に好ましい。平均頂角 Θ力 0〜1 10° の範囲力 外れる と、凸状セル 220による光混合の効果が低下する傾向がある。また、凸状セル 220の 高さ Hは、好ましくは 3〜200 /i mであり、更に好ましくは 6〜: 100 μ mであり、特に好 ましくは 15〜70 μ mである。  [0039] The bottom average diameter L is preferably 10 to 200 µm. The bottom average diameter L is more preferably 20 to: 100 × m, and particularly preferably 30 to 70 μπι. If the bottom average diameter L is smaller than 10 zm, the production of the convex cell 220 tends to be difficult, and if the bottom average diameter L is larger than 200 βm, the light mixing effect by the convex cell 220 tends to be reduced. . Further, the side apex angle Φ is preferably 40 to 110 °, more preferably 60 to 110 °, and even more preferably 70 to 100 °. If the average apex angle Θ force is outside the range of 0 to 1 10 °, the effect of light mixing by the convex cell 220 tends to decrease. Further, the height H of the convex cell 220 is preferably 3 to 200 / im, more preferably 6 to 100 μm, and particularly preferably 15 to 70 μm.
[0040] 凸状セル 220は、図 8に示されるように、頂部に平坦領域(または曲面領域) 222を 有していてもよい。これにより、頂部が損傷しに《なる。但し、凸状セル 220による光 混合の効果の低下を少なくするためには、この平坦領域 (または曲面領域) 222は底 部 221に対する面積比率が 10%以下であるのが好ましい。  [0040] As shown in FIG. 8, the convex cell 220 may have a flat region (or curved region) 222 at the top. As a result, the top is damaged. However, in order to reduce the decrease in the effect of light mixing by the convex cell 220, it is preferable that the area ratio of the flat region (or curved region) 222 with respect to the bottom portion 221 is 10% or less.
[0041] 凸状セル 220の形状は、以上のような略三角錐面でなくともよい。即ち、本発明に おいては、凸状セル 220の形状は、図 9に模式図を示すように底部の形状が正六角 形などの六角形である略六角錐面からなるものであってもよいし、或いは、図示はし ないが、底部の形状が正方形などの四角形である略四角錐面からなるものであって もよレ、。これらの場合にも、各凸状セル 220の底部が最密充填されるように多数の凸 状セル 220を配列することができ、凸状セル 220による光混合の効果は高い。但し、 凸状セル 220の形状が略四角錐面からなる場合は、側面頂角 φについては、 30〜 80° であるのが好ましぐ 50〜80° であるのがより好ましぐ 60〜70° であるのが 更に好ましい。また、凸状セル 220の形状が略六角錐面からなる場合は、側面頂角 φにつレ、ては、 30〜50° であるのが好ましぐ 30〜40° であるのがより好ましい。 尚、本発明においては、凸状セル 220の形状は、その他の略角錐面または略円錐 面からなるものであってもよい。 [0041] The shape of the convex cell 220 does not have to be a substantially triangular pyramid surface as described above. In other words, in the present invention, the shape of the convex cell 220 may be a substantially hexagonal pyramid surface whose bottom is a hexagon such as a regular hexagon as shown in the schematic diagram of FIG. Alternatively, although not shown, the bottom portion may be formed of a substantially quadrangular pyramid surface having a square shape such as a square. Also in these cases, a large number of convex cells 220 can be arranged so that the bottoms of the respective convex cells 220 are closely packed, and the light mixing effect by the convex cells 220 is high. However, When the shape of the convex cell 220 is substantially a quadrangular pyramid surface, the side apex angle φ is preferably 30 to 80 °, more preferably 50 to 80 °, and more preferably 60 to 70 °. More preferably. Further, when the shape of the convex cell 220 is a substantially hexagonal pyramid surface, it is preferably 30 to 40 °, more preferably 30 to 50 °, with respect to the side apex angle φ. . In the present invention, the shape of the convex cell 220 may be another substantially pyramidal surface or substantially conical surface.
[0042] 光制御素子 2の材質としては、たとえばガラスまたはアクリル系樹脂等の合成樹脂 が挙げられる。この光制御素子 2としては例えば屈折率 1. 4〜: 1. 8程度のものを使 用すること力 Sできる。凸状セル 220の高さを除外した光制御素子 2の基部の厚さ(凸 状セル 220の底部 221と第 1の主面 21との間の X方向寸法)は、所要の強度を得るこ と及び装置を小型化するという観点からは、例えば 10〜500 μ mの範囲内とするの 力 S好ましく、 30〜300〃111の範囲内とするのカょり好ましく、 50〜200 μ πιの範囲内 とするのが更に好ましい。  [0042] Examples of the material of the light control element 2 include synthetic resin such as glass or acrylic resin. For example, the light control element 2 having a refractive index of about 1.4 to about 1.18 can be used. The thickness of the base of the light control element 2 excluding the height of the convex cell 220 (the dimension in the X direction between the bottom 221 of the convex cell 220 and the first main surface 21) can obtain the required strength. From the viewpoint of reducing the size of the apparatus, for example, a force S within a range of 10 to 500 μm is preferable, a range of 30 to 300 mm 111 is preferable, and a range of 50 to 200 μπι is preferable. More preferably, it is within the range.
[0043] さて、図 1に示されているように、光反射素子 5, 5 'は、光制御素子 2、並びに点状 一次光源 1R, 1G, 1B及び封止樹脂 1Aを下方及び上方から覆うように延びている。 従って、光反射素子 5, 5'及び一次光源支持基板 10は、導光体の光入射端面 31と 協働して点状一次光源 1R, 1G, IB及び光制御素子 2を包囲する包囲部材として機 能する。但し、点状一次光源 1R, 1G, IB及び封止樹脂 1Aの上下に位置する光反 射素子を、導光体の光出射面上及び裏面上に位置する光反射素子 5, 5 'とは別体 にて形成しても良い。  As shown in FIG. 1, the light reflecting elements 5 and 5 ′ cover the light control element 2 and the point-like primary light sources 1R, 1G and 1B and the sealing resin 1A from below and above. It extends like so. Accordingly, the light reflecting elements 5 and 5 ′ and the primary light source support substrate 10 cooperate with the light incident end face 31 of the light guide as enclosing members that surround the point-like primary light sources 1R, 1G, IB and the light control element 2. Function. However, the light reflecting elements positioned above and below the point-like primary light sources 1R, 1G, IB and the sealing resin 1A are referred to as the light reflecting elements 5, 5 ′ positioned on the light emitting surface and the back surface of the light guide. It may be formed separately.
[0044] 光反射素子 5, 5 'としては、例えば表面に金属蒸着反射層を有するプラスチックシ ートを用いることもできるが、導光体光入射端面 31の近傍における面光源装置の発 光輝度の均斉度を一層高めるためには、光反射素子 5, 5 'として、ポリエチレンテレ フタレート(PET)等からなるプラスチックシートに酸化チタンなどの光拡散微粒子を 分散混合してなる光拡散反射シートを用いることが好ましい。  [0044] As the light reflecting elements 5, 5 ', for example, a plastic sheet having a metal-deposited reflective layer on the surface can be used, but the light emission luminance of the surface light source device in the vicinity of the light guide light incident end surface 31 is used. In order to further increase the degree of uniformity, a light diffusing and reflecting sheet made by dispersing and mixing light diffusing fine particles such as titanium oxide in a plastic sheet made of polyethylene terephthalate (PET) or the like is used as the light reflecting element 5 or 5 '. It is preferable.
[0045] 以上のように、光反射素子 5, 5 '及び点状一次光源の支持基板 10を含んで構成さ れる包囲部材の表面(内面)は反射面として機能する。そして、この反射面及び光制 御素子 2を含んで光混合手段が構成される。 [0046] 尚、図 2に仮想線で示されているように、光制御素子 2と略平行に配列された光拡 散素子 2Xをも含んで光混合手段を構成することができる。光拡散素子 2Xの光拡散 性は、光拡散素子 2X中に光拡散剤例えば、シリコーンビーズ、ポリスチレン、ポリメチ ノレメタタリレート、フッ素化メタタリレート等の単独重合体あるいは共重合体等を混入し たり、光拡散素子 2Xの少なくとも一方の表面に凹凸構造を付与することによって付 与すること力 Sできる。光拡散素子 2Xを配置することで、一層光混合の効果を高めるこ とができる。 [0045] As described above, the surface (inner surface) of the surrounding member including the light reflecting elements 5, 5 'and the support substrate 10 of the point-like primary light source functions as a reflecting surface. The light mixing means is configured to include the reflecting surface and the light control element 2. Note that, as indicated by phantom lines in FIG. 2, the light mixing means can also be configured including the light diffusing elements 2X arranged substantially in parallel with the light control elements 2. The light diffusing property of the light diffusing element 2X is such that a light diffusing agent, for example, a homopolymer or copolymer such as silicone beads, polystyrene, polymethylol methacrylate, fluorinated metatalylate or the like is mixed in the light diffusing element 2X. The force S can be applied by providing an uneven structure on at least one surface of the light diffusing element 2X. By arranging the light diffusing element 2X, the effect of light mixing can be further enhanced.
[0047] 図 2に示されているように、点状一次光源 1R, 1G, 1Bと導光体の光入射端面 31と の間の距離は D1であり、光制御素子 2と導光体の光入射端面 31との間の距離は D2 である。距離 D1は例えば 2〜15mm、好ましくは 3〜: 10mm、より好ましくは 4〜6m mであり、距離 D2は例えば 0. 5〜: 14. 5mm,好ましくは:!〜 10mm、より好ましくは 2 〜6mmである。距離 D1及び D2をこのような範囲内にすることで、小寸法領域にて 良好に混合するという本願発明の効果の達成が容易になる。  [0047] As shown in FIG. 2, the distance between the point-like primary light sources 1R, 1G, 1B and the light incident end face 31 of the light guide is D1, and the light control element 2 and the light guide The distance from the light incident end face 31 is D2. The distance D1 is, for example, 2 to 15 mm, preferably 3 to: 10 mm, more preferably 4 to 6 mm, and the distance D2 is, for example, 0.5 to: 14.5 mm, preferably:! To 10 mm, more preferably 2 to 6mm. By setting the distances D1 and D2 within such a range, it is easy to achieve the effect of the present invention that mixing is favorably performed in a small size region.
[0048] 光制御素子 2は、次のような光学的特性を持つ。  [0048] The light control element 2 has the following optical characteristics.
[0049] 即ち、先ず、図 10に示されているように、光制御素子 2と一次光源 (例えば 1B)とを 上記実施形態と同様な位置関係となるように配置し、一次光源 1Bを点灯させる。そ の時の、光制御素子 2の第 1の主面 21からの出射光の光度分布(第 1の光度分布) を測定する。この光度分布は、光制御素子 2の第 2の主面 22の法線 NLであって一 次光源 1Bの中心を通るものに対する角度 Θに対する分布である。具体的には、光 制御素子 2と一次光源 1Bとの間の距離に比べて十分に大きい距離をおいて、光制 御素子 2に対して受光素子としてのフォトダイオード PDを配置し、該フォトダイオード PDを図示されるように法線 NLに対する角度 Θが一90° 力も 90° まで変化するよう に移動させる。これにより、法線 NLを含む面(測定面)内での角度 Θに応じた第 1の 光度分布が得られる。  That is, first, as shown in FIG. 10, the light control element 2 and the primary light source (for example, 1B) are arranged so as to have the same positional relationship as in the above embodiment, and the primary light source 1B is turned on. Let At that time, the luminous intensity distribution (first luminous intensity distribution) of the light emitted from the first main surface 21 of the light control element 2 is measured. This luminous intensity distribution is a distribution with respect to the angle Θ with respect to the normal NL of the second main surface 22 of the light control element 2 and passing through the center of the primary light source 1B. Specifically, a photodiode PD as a light receiving element is arranged with respect to the light control element 2 at a distance sufficiently larger than the distance between the light control element 2 and the primary light source 1B. The diode PD is moved so that the angle Θ with respect to the normal NL changes by 90 ° as well as 90 ° as shown. As a result, the first luminous intensity distribution corresponding to the angle Θ in the plane (measurement plane) including the normal NL is obtained.
[0050] 測定面のとり方により分布に差が生ずることがあるので、以上のような測定を凸状セ ノレ 220に対する方向性が互いに異なる少なくとも 2つの測定面(第 1測定面及び第 2 測定面)に関して実行する。凸状セル 220の対称性を考慮すると、凸状セル 220が 略三角錐面からなる場合には、法線 NLを中心として 60° 回転させるごとに同等の 測定面が得られるので、例えば、第 1測定面を XY面(図 4参照)とし、それを X方向の 法線 NLを中心として 30° または 90° 回転させることで得られる面(例えば XZ面(図 4参照))を第 2測定面とするのが好ましい。これにより、第 1測定面は凸状セル 220の 底部の一辺に沿ったものとなり、第 2測定面は凸状セル 220の底部の一辺に直交す るものとなる。凸状セル 220が略四角錐面からなる場合には、法線 NLを中心として 9 0° 回転させるごとに同等の測定面が得られるので、例えば、第 1測定面を凸状セル の底部の一辺に沿った面とし、それを法線 NLを中心として 45° 回転させることで得 られる面(凸状セルの底部の一辺と 45° をなす面)を第 2測定面とするのが好ましレ、 。また、凸状セル 220が略六角錐面からなる場合には、法線 NLを中心として 60° 回 転させるごとに同等の測定面が得られるので、例えば、第 1測定面を凸状セルの底部 の一辺に沿った面とし、それを法線 NLを中心として 30° または 90° 回転させること で得られる面(凸状セルの底部の一辺に直交する面)を第 2測定面とするのが好まし レ、。 [0050] Since the distribution may vary depending on how the measurement surface is taken, at least two measurement surfaces (the first measurement surface and the second measurement surface) having different directions with respect to the convex senor 220 are measured. ). Considering the symmetry of the convex cell 220, if the convex cell 220 has a substantially triangular pyramid surface, it is equivalent every time it is rotated 60 ° around the normal NL. Since the measurement surface is obtained, for example, the first measurement surface is the XY plane (see Fig. 4), and the surface is obtained by rotating it by 30 ° or 90 ° around the normal NL in the X direction (for example, the XZ surface) (See Fig. 4) is preferably the second measurement surface. Thus, the first measurement surface is along one side of the bottom of the convex cell 220, and the second measurement surface is orthogonal to the one side of the bottom of the convex cell 220. When the convex cell 220 has a substantially quadrangular pyramid surface, an equivalent measurement surface can be obtained each time it is rotated 90 ° around the normal line NL, so that, for example, the first measurement surface is placed at the bottom of the convex cell. It is preferable that the second measurement surface is a surface along one side and a surface obtained by rotating it 45 ° around the normal NL (a surface that forms 45 ° with one side of the bottom of the convex cell). Les,. In addition, when the convex cell 220 is formed of a substantially hexagonal pyramid surface, an equivalent measurement surface can be obtained each time it is rotated by 60 ° about the normal line NL. Therefore, for example, the first measurement surface is formed of the convex cell. A surface along one side of the bottom and a surface obtained by rotating it by 30 ° or 90 ° about the normal NL (a surface perpendicular to one side of the bottom of the convex cell) is the second measurement surface. Is preferred.
[0051] 以上のようにして得られた複数の測定面に関する複数の第 1の光度分布について の平均分布をとる。その際、角度 Θが正の領域の分布と角度 Θが負の領域の分布と を角度 Θの絶対値 0° 〜90° に関する別分布とみなして平均化を行レ、、角度 Θの 絶対値 0° 〜90° に関しての平均分布(第 1の平均分布)を得る。  [0051] An average distribution of a plurality of first luminous intensity distributions related to a plurality of measurement surfaces obtained as described above is taken. At that time, the distribution of the region with positive angle Θ and the distribution of region with negative angle Θ are regarded as different distributions with respect to the absolute value of 0 ° to 90 ° of angle Θ, and averaging is performed, and the absolute value of angle Θ Obtain the average distribution (first average distribution) from 0 ° to 90 °.
[0052] 次に、図 11に示されるように、光制御素子 2と一次光源 1Bとの間に、法線 NLを中 心とする円形開口を有するスリット Sを配置し、一次光源 1Bからの光束のうち法線 NL に対し角度 20度以下の方向に進行する光(以下、 IR という)のみを光制御素子 2の  Next, as shown in FIG. 11, a slit S having a circular opening centered on the normal NL is disposed between the light control element 2 and the primary light source 1B, so that the light from the primary light source 1B Only light (hereinafter referred to as IR) traveling in a direction with an angle of 20 degrees or less with respect to the normal NL of the luminous flux is transmitted to the light control element 2.
20  20
第 2の主面 22に入射させる。その時の光度分布(第 2の光度分布)を上記第 1の光度 分布の測定の場合と同様にして測定する。上記第 1の光度分布の測定の場合と同様 にして、複数の測定面に関して光度分布を測定し、それらの平均化を行って角度 Θ の絶対値 0° 〜90° に関しての平均分布(第 2の平均分布)を得る。  Incident on the second main surface 22. The luminous intensity distribution at that time (second luminous intensity distribution) is measured in the same manner as the measurement of the first luminous intensity distribution. In the same manner as the measurement of the first luminous intensity distribution, the luminous intensity distributions are measured for a plurality of measurement surfaces, averaged, and the average distribution for the absolute values of the angles Θ of 0 ° to 90 ° (second Average distribution).
[0053] 図 12は、凸状セル 220が側面頂角 ) 90° の略三角錐面からなる場合に以上の ようにして得られた第 1測定面での第 1の光度分布 P1及び第 2測定面での第 1の光 度分布 P2並びに第 1測定面での第 2の光度分布 Q1及び第 2測定面での第 2の光度 分布 Q2の一例を示す図である。ここには、第 1測定面での第 2の光度分布測定にお レ、て光制御素子 2を除去した状態で同様にして測定された角度 Θに応じた光度分布 (光制御素子 2への入射光度分布:第 3の光度分布) Rも示されている。第 2測定面で の第 2の光度分布測定において光制御素子 2を除去した状態で同様にして測定され る第 3の光度分布も、第 3の光度分布 Rと同様である。 [0053] FIG. 12 shows the first luminous intensity distribution P1 and the second luminous intensity distribution on the first measurement surface obtained as described above when the convex cell 220 has a substantially triangular pyramid surface having a side apex angle of 90 °. FIG. 6 is a diagram showing an example of a first luminous intensity distribution P2 on the measurement surface, a second luminous intensity distribution Q1 on the first measurement surface, and a second luminous intensity distribution Q2 on the second measurement surface. This includes the second light intensity distribution measurement on the first measurement surface. The light intensity distribution (incident light intensity distribution on the light control element 2: third light intensity distribution) R corresponding to the angle Θ measured in the same manner with the light control element 2 removed is also shown. The third light intensity distribution measured in the same manner with the light control element 2 removed in the second light intensity distribution measurement on the second measurement surface is the same as the third light intensity distribution R.
[0054] 図 13は、第 1測定面での第 1の光度分布測定において光制御素子 2を除去した状 態で同様にして測定された角度 Θに応じた光度分布(光制御素子 2への入射光度分 布:第 4の光度分布) Sを示す図である。第 2測定面での第 1の光度分布測定におい て光制御素子 2を除去した状態で同様にして測定される第 4の光度分布も、第 4の光 度分布 Sと同様である。尚、図 13における光度値目盛りは、図 12のものと同一である 。この入射光度分布 Sは、点状一次光源 1Bの発光光度分布に対応するものである。 一次光源 1Bは、法線 NLの方向の光度が最大となる略ランバーシャン光源であり、 光度分布の半値半幅が 40度以上 80度以下である。  [0054] FIG. 13 shows a light intensity distribution corresponding to the angle Θ measured in the same manner in a state where the light control element 2 is removed in the first light intensity distribution measurement on the first measurement surface (to the light control element 2). (Incident light intensity distribution: fourth light intensity distribution) FIG. The fourth luminous intensity distribution measured in the same manner with the light control element 2 removed in the first luminous intensity distribution measurement on the second measurement surface is the same as the fourth luminous intensity distribution S. The luminous intensity value scale in FIG. 13 is the same as that in FIG. This incident luminous intensity distribution S corresponds to the luminous intensity distribution of the point-like primary light source 1B. The primary light source 1B is a substantially Lambertian light source with the maximum luminous intensity in the direction of the normal NL, and the half-value half width of the luminous intensity distribution is not less than 40 degrees and not more than 80 degrees.
[0055] 図 14は、上記第 1の光度分布 P1及び P2の平均化を行って得られた角度 Θの絶対 値 0° 〜90° に関しての第 1の平均分布 Pa、及び上記第 2の光度分布 Q1及び Q2 の平均化を行って得られた角度 Θの絶対値 0° 〜90° に関しての第 2の平均分布 Qaを示す図である。ここには、上記第 3の光度分布 Rの平均化を行って得られた角 度 Θの絶対値 0° 〜90° に関しての第 3の平均分布 Raも示されている。  FIG. 14 shows the first average distribution Pa with respect to the absolute value 0 ° to 90 ° of the angle Θ obtained by averaging the first luminous intensity distributions P1 and P2, and the second luminous intensity. It is a figure which shows 2nd average distribution Qa regarding absolute value 0 degree-90 degrees of angle (theta) obtained by averaging distribution Q1 and Q2. Here, the third average distribution Ra with respect to the absolute value 0 ° to 90 ° of the angle Θ obtained by averaging the third light intensity distribution R is also shown.
[0056] 図 15は、上記第 4の光度分布 Sの平均化を行って得られた角度 Θの絶対値 0° 〜 90° に関しての第 4の平均分布 Saを示す図である。  FIG. 15 is a diagram showing a fourth average distribution Sa with respect to absolute values 0 ° to 90 ° of the angle Θ obtained by averaging the fourth light intensity distribution S.
[0057] 本実施形態では、一次光源 1Bからの光束のうち光制御素子 2の第 2の主面 22の 法線 NLの方向に対し角度 20度以下の方向に進行する光のみを第 2の主面 22に入 射させた時に、光制御素子 2の第 1の主面 21から法線 NLの方向に対し角度 Θが 20 度以下の方向に出射する光量 LQmは、一次光源 1Bからの光束の全てを第 2の主 面 22に入射させた時に光制御素子 2の第 1の主面 21から法線 NLの方向に対し角 度 Θ力 ¾0度以下の方向に出射する光量 LPmの 50%以下、好ましくは 30%以下、よ り好ましくは 15%以下である。  In the present embodiment, only the light traveling from the primary light source 1B that travels in a direction of an angle of 20 degrees or less with respect to the direction of the normal line NL of the second main surface 22 of the light control element 2 is transmitted to the second light source 2B. The amount of light LQm emitted from the first main surface 21 of the light control element 2 in the direction of the normal NL with an angle Θ of 20 degrees or less when incident on the main surface 22 is the luminous flux from the primary light source 1B. Is incident on the second main surface 22 from the first main surface 21 of the light control element 2 with respect to the direction of the normal NL. In the following, it is preferably 30% or less, more preferably 15% or less.
[0058] ここで、光制御素子 2の第 1の主面 21から法線 NLの方向に対し角度 Θ力 ¾0度以 下の方向に出射する光量 LPm, LQmは、上記の第 1の平均分布 Pa及び第 2の平均 分布 Qaに基づき、次のようにして求めることができる。即ち、ここで、平均分布 Pa, Q aを光度分布 f ( Θ )とおき、図 16に示されるように法線 NLに直交し光制御素子 2の第 1の主面 21内で、法線 NLが通る位置を原点とする極座標系(r, ω)をとる。そのとき 、単位半径の球面上での座標( θ , ω )と座標(Θ +Δ Θ, ω + Δω)との間の微小 領域 Κの面積は、 Δ Θ · (sin θ ) (Δ ω)となる。従って、この微小領域の光量は、 f ( Θ ) · Δ Θ · (sin θ) (Δ ω)に比例する。従って、法線 NLの方向に対し角度 Θ力 ¾0度 以下の立体角領域に出射する光量は、微小領域光量 f ( θ ) · Δ Θ · (sine ) (Δ ω)を 角度 ωについては 0〜360度の範囲で積分し且つ角度 Θについては角度 0〜20度 の範囲で積分したもの、即ち、 Here, the light amounts LPm and LQm emitted from the first main surface 21 of the light control element 2 in the direction of the angle Θ force ¾0 degrees or less with respect to the direction of the normal NL are the first average distribution described above. Pa and second average Based on the distribution Qa, it can be obtained as follows. That is, here, the average distribution Pa, Q a is set as the luminous intensity distribution f (Θ), and the normal line is perpendicular to the normal line NL and within the first main surface 21 of the light control element 2 as shown in FIG. A polar coordinate system (r, ω) with the position where NL passes as the origin is taken. At that time, the area of the small region Κ between the coordinates (θ, ω) and coordinates (Θ + Δ Θ, ω + Δω) on the spherical surface of the unit radius is Δ Θ · (sin θ) (Δ ω) It becomes. Therefore, the amount of light in this minute region is proportional to f (Θ) · ΔΘ · (sin θ) (Δω). Therefore, the amount of light emitted to a solid angle region with an angle Θ force of ¾0 degrees or less with respect to the direction of the normal NL is the minute region light amount f (θ) · Δ Θ · (sine) (Δ ω). Integrating in the range of 360 degrees and for angle Θ integrated in the range of angle 0-20 degrees, ie
ί 360 ί 2°ϊ( θ ) (8ϊηθ )άθ άω ί 360 ί 2 ° ϊ (θ) (8ϊηθ) άθ άω
0 0  0 0
= 360 2Of(0)(sin0)d0 = 360 2O f (0) (sin0) d0
0  0
となる。  It becomes.
[0059] 従って、光量 LPmに対する光量 LQmの比は、  Therefore, the ratio of the light quantity LQm to the light quantity LPm is
[J 2OQa(0) (sin0)d0] [J 2O Qa (0) (sin0) d0]
0  0
/V 2°Pa(0)(sin0)d0] / V 2 ° Pa (0) (sin0) d0]
0  0
となる。  It becomes.
[0060] また、 IR のみを第 2の主面 22に入射させた時に、光制御素子 2の第 1の主面 21  [0060] When only IR is incident on the second main surface 22, the first main surface 21 of the light control element 2 is used.
20  20
から法線 NLの方向に対し角度 Θが 20度以下の方向に出射する光量 LQmは、第 2 の主面 22に入射する光量 LRの 40%以下が好ましぐ 25%以下がより好ましぐ 15 The amount of light LQm emitted in the direction with an angle Θ of 20 degrees or less with respect to the direction of the normal NL is preferably 40% or less of the amount of light LR incident on the second main surface 22 and more preferably 25% or less. 15
%以下がさらに好ましい。 % Or less is more preferable.
[0061] ここで、光量 LRは、上記第 3の平均分布 Raに基づき、上記光量 LQmの場合と同 様にして(但し積分範囲は 0度以上 90度以下の全領域)求めること力できる。 Here, the amount of light LR can be obtained based on the third average distribution Ra in the same manner as the case of the amount of light LQm (however, the integration range is the entire region from 0 degrees to 90 degrees).
[0062] また、 IR のみを第 2の主面 22に入射させた時に、光制御素子 2の第 1の主面 21 [0062] Further, when only IR is incident on the second main surface 22, the first main surface 21 of the light control element 2 is used.
20  20
から法線 NLの方向に対し角度 Θが 20度以上 80度以下の方向に出射する光量 LQ nは、法線 NLの方向に対し角度 Θが 20度以下の方向に出射する光量 LQmの 1倍 以上が好ましぐ 5倍以上がより好ましぐ 10倍以上がさらに好ましい。  LQ n is emitted in the direction of angle Θ of 20 degrees or more and 80 degrees or less with respect to the direction of normal NL from 1 to the amount of light LQm emitted in the direction of angle Θ of 20 degrees or less with respect to the direction of normal NL The above is preferred 5 times or more is more preferred 10 times or more is more preferred.
[0063] ここで、光量 LQnは、上記第 2の平均分布 Qaに基づき、上記光量 LQmの場合と同 様にして(但し積分範囲は 20度以上 80度以下の領域)求めること力できる。 [0064] また、 IR のみを第 2の主面 22に入射させた時に、第 1の主面 21からの出射光の[0063] Here, the light quantity LQn can be obtained based on the second average distribution Qa in the same manner as in the case of the light quantity LQm (however, the integration range is an area of 20 degrees to 80 degrees). [0064] Further, when only IR is incident on the second main surface 22, the emission light from the first main surface 21 is reduced.
20 20
出射角度に対する光度分布(第 2の平均分布 Qa)におけるピークの角度は、法線 N Lの方向に対して 10度以上が好ましぐ 25度以上がより好ましぐ 40度以上がさらに 好ましい。  The peak angle in the luminous intensity distribution (second average distribution Qa) with respect to the emission angle is preferably 10 degrees or more, more preferably 25 degrees or more, and further preferably 40 degrees or more with respect to the direction of the normal NL.
[0065] また、 IR のみを第 2の主面 22に入射させた時に、第 1の主面 21から出射する光  [0065] Further, the light emitted from the first main surface 21 when only IR is incident on the second main surface 22
20  20
量 LQsは、第 2の主面 22に入射する光量 LRの 40%以下が好ましぐ 35%以下がよ り好ましぐ 30%以下がさらに好ましい。  The amount LQs is more preferably 35% or less, more preferably 30% or less, more preferably 40% or less of the amount of light LR incident on the second main surface 22.
[0066] ここで、光量 LQsは、上記第 2の平均分布 Qaに基づき、上記光量 LQmの場合と同 様にして(但し積分範囲は 0度以上 90度以下の全領域)求めること力できる。 [0066] Here, the light quantity LQs can be obtained based on the second average distribution Qa in the same manner as in the case of the light quantity LQm (however, the integration range is the entire region of 0 ° to 90 °).
[0067] 以上の光学的特性は、光量の立体的角度領域分布に基づき規定されているが、い ずれかの測定面 (例えば上記第 1測定面または上記第 2測定面)についての光量分 布に基づき規定される場合にも同様な光学的特性が得られるのが更に好ましい。 [0067] The above optical characteristics are defined on the basis of the three-dimensional angular region distribution of the light amount, but the light amount distribution on any one of the measurement surfaces (for example, the first measurement surface or the second measurement surface). It is further preferable that similar optical characteristics can be obtained even when defined based on.
[0068] 例えば、本実施形態においては、 IR のみを第 2の主面 22に入射させた時に、法 [0068] For example, in the present embodiment, when only IR is incident on the second main surface 22, the method
20  20
線 NLの方向を含む或る平面たとえば上記第 1測定面内において (即ち第 2の光度 分布 Q1に関して)、光制御素子 2の第 1の主面 21から法線 NLの方向に対し角度 Θ が 20度以上 80度以下の方向に出射する光量(図 12に示される第 2の光度分布 Q1 の角度 Θが 20度〜 80度及び 20度〜 80度の領域についての積分値に比例す る)は、法線 NLの方向に対し角度 Θが 20度以下の方向に出射する光量(図 12に示 される第 2の光度分布 Q1の角度 Θが— 20度〜 20度の領域についての積分値に比 例する)の 1倍以上、好ましくは 2倍以上、より好ましくは 6倍以上である。  In a certain plane including the direction of the line NL, for example, in the first measurement plane (that is, with respect to the second luminous intensity distribution Q1), the angle Θ is from the first main surface 21 of the light control element 2 to the direction of the normal NL. Amount of light emitted in the direction of 20 degrees or more and 80 degrees or less (the angle Θ of the second luminous intensity distribution Q1 shown in Fig. 12 is proportional to the integral value in the region of 20 degrees to 80 degrees and 20 degrees to 80 degrees) Is the amount of light emitted in the direction where the angle Θ is 20 degrees or less with respect to the direction of the normal NL (the integrated value for the region where the angle Θ of the second luminous intensity distribution Q1 shown in Fig. 12 is -20 degrees to 20 degrees 1) or more, preferably 2 times or more, more preferably 6 times or more.
[0069] 光制御素子 2として以上のような光学的特性を持つものを使用することで、小寸法 領域にて良好に光混合するという本願発明の効果の達成が容易になる。  [0069] By using the light control element 2 having the optical characteristics as described above, it is easy to achieve the effect of the present invention that the light is mixed well in a small size region.
[0070] 以上の第 1の光度分布 PI , P2及び第 2の光度分布 Ql, Q2の例は、光制御素子 2 の第 2の主面 22を凸状セル 220の多数配列の微細凹凸面からなるものとした場合の ものである。本発明においては、光制御素子 2の第 1の主面 21を凸状セルの多数配 列の微細凹凸面からなるものとしてもよい。このように同一の光制御素子 2を逆向きに 使用した場合の上記図 12及び図 14に相当する図を、図 17及び図 18に示す。  [0070] The above-described examples of the first luminous intensity distributions PI and P2 and the second luminous intensity distributions Ql and Q2 indicate that the second main surface 22 of the light control element 2 is moved from the fine irregular surface of the multiple array of convex cells 220. This is the case. In the present invention, the first main surface 21 of the light control element 2 may be formed of a fine concavo-convex surface of a multi-array of convex cells. FIGS. 17 and 18 show views corresponding to FIGS. 12 and 14 when the same light control element 2 is used in the reverse direction.
[0071] 図 17には、第 1測定面での第 1の光度分布 P1 '及び第 2測定面での第 1の光度分 布 P2'並びに第 1測定面での第 2の光度分布 Ql '及び第 2測定面での第 2の光度分 布 Q2'の一例が示されている。ここには、上記光度分布 Rも示されている。図 18には 、上記第 1の光度分布 P1 '及び P2'の平均化を行って得られた角度 Θの絶対値 0° 〜90° に関しての第 1の平均分布 Pa'、及び上記第 2の光度分布 Q1 '及び Q2'の 平均化を行って得られた角度 Θの絶対値 0° 〜90° に関しての第 2の平均分布 Qa 'が示されている。ここには、上記第 3の平均分布 Raも示されている。 [0071] FIG. 17 shows the first luminous intensity distribution P1 'on the first measurement surface and the first luminous intensity distribution on the second measurement surface. An example of the cloth P2 ′, the second light intensity distribution Q1 ′ on the first measurement surface, and the second light intensity distribution Q2 ′ on the second measurement surface is shown. Here, the luminous intensity distribution R is also shown. FIG. 18 shows the first average distribution Pa ′ with respect to the absolute value 0 ° to 90 ° of the angle Θ obtained by averaging the first light intensity distributions P1 ′ and P2 ′, and the second light intensity distribution P1 ′ and P2 ′. The second average distribution Qa 'is shown for the absolute values of 0 ° to 90 ° of the angle Θ obtained by averaging the luminous intensity distributions Q1' and Q2 '. Here, the third average distribution Ra is also shown.
[0072] 本実施形態では、一次光源 1Bからの光束のうち光制御素子 2の第 2の主面 22の 法線 NLの方向に対し角度 20度以下の方向に進行する光のみを第 2の主面 22に入 射させた時に、光制御素子 2の第 1の主面 21から法線 NLの方向に対し角度 Θが 20 度以下の方向に出射する光量 LQm'は、一次光源 1Bからの光束の全てを第 2の主 面 22に入射させた時に光制御素子 2の第 1の主面 21から法線 NLの方向に対し角 度 Θが 20度以下の方向に出射する光量 LPm'の 50%以下である。  In the present embodiment, only the light traveling from the primary light source 1B that travels in a direction of an angle of 20 degrees or less with respect to the direction of the normal NL of the second main surface 22 of the light control element 2 is transmitted to the second light source 1B. The amount of light LQm 'emitted from the first main surface 21 of the light control element 2 in the direction of the normal NL to the direction of the normal NL when the light enters the main surface 22 is less than 20 degrees is calculated from the primary light source 1B. When all the light beams are incident on the second main surface 22, the amount of light LPm ′ emitted from the first main surface 21 of the light control element 2 in the direction where the angle Θ is 20 degrees or less with respect to the direction of the normal NL 50% or less.
[0073] ここで、光量 LPm' , LQm'は、第 1の平均分布 Pa'及び第 2の平均分布 Qa'に基 づき、上記光量 LPm, LQmの場合と同様にして求めることができる。  Here, the light amounts LPm ′ and LQm ′ can be obtained in the same manner as the light amounts LPm and LQm based on the first average distribution Pa ′ and the second average distribution Qa ′.
[0074] また、望ましくは、 IR のみを第 2の主面 22に入射させた時に、光制御素子 2の第 1  [0074] Further, preferably, when only IR is incident on the second main surface 22, the first of the light control element 2
20  20
の主面 21から法線 NLの方向に対し角度 Θ力 ¾0度以下の方向に出射する光量 LQ m'は、第 2の主面 22に入射する上記光量 LRの 40%以下である。  The amount of light LQ m ′ emitted from the principal surface 21 in a direction with an angle Θ force of ¾0 degrees or less with respect to the direction of the normal line NL is 40% or less of the light amount LR incident on the second principal surface 22.
[0075] また、望ましくは、 IR のみを第 2の主面 22に入射させた時に、光制御素子 2の第 1 [0075] Preferably, when only IR is incident on the second main surface 22, the first of the light control element 2 is
20  20
の主面 21から法線 NLの方向に対し角度 Θ力 ¾0度以上 80度以下の方向に出射す る光量 LQn'は、法線 NLの方向に対し角度 Θが 20度以下の方向に出射する光量 L LQn 'is emitted in the direction of angle Θ of 20 degrees or less with respect to the normal NL direction. Light intensity L
Qm'の 1倍以上である。 It is more than 1 times Qm '.
[0076] ここで、光量 LQn'は、上記第 2の平均分布 Qaに基づき、上記光量 LQm'の場合と 同様にして(但し積分範囲は 20度以上 80度以下の領域)求めること力できる。 Here, the light quantity LQn ′ can be obtained based on the second average distribution Qa in the same manner as in the case of the light quantity LQm ′ (however, the integration range is an area of 20 degrees or more and 80 degrees or less).
[0077] また、望ましくは、 IR のみを第 2の主面 22に入射させた時に、第 1の主面 21から [0077] In addition, preferably, when only IR is incident on the second main surface 22, the first main surface 21
20  20
の出射光の出射角度に対する光度分布(第 2の平均分布 Qa' )におけるピークは、法 線 NLの方向に対して 10度以上の角度にある。  The peak in the luminous intensity distribution (second average distribution Qa ') with respect to the outgoing angle of the outgoing light is at an angle of 10 degrees or more with respect to the direction of the normal NL.
[0078] また、望ましくは、 IR を第 2の主面 22に入射させた時に、第 1の主面 21から出射 [0078] Preferably, when the IR is incident on the second main surface 22, the light is emitted from the first main surface 21.
20  20
する光量 LQs'は、第 2の主面 22に入射する光量 LRの 40%以下である。 [0079] ここで、光量 LQs 'は、上記第 2の平均分布 Qa'に基づき、上記光量 LQm'の場合 と同様にして (但し積分範囲は 0度以上 90度以下の全領域)求めることができる。 The amount of light LQs ′ to be emitted is 40% or less of the amount of light LR incident on the second main surface 22. [0079] Here, the light quantity LQs' is obtained on the basis of the second average distribution Qa 'in the same manner as in the case of the light quantity LQm' (however, the integration range is the entire region of 0 degrees or more and 90 degrees or less). it can.
[0080] また、望ましくは、本実施形態において、 IR を第 2の主面 22に入射させた時に、 [0080] Preferably, in the present embodiment, when IR is incident on the second main surface 22,
20  20
法線 NLの方向を含む或る平面たとえば上記第 1測定面内において (即ち第 2の光 度分布 Q1 'に関して)、光制御素子 2の第 1の主面 21から法線 NLの方向に対し角 度 Θが 20度以上 80度以下の方向に出射する光量(図 17に示される第 2の光度分布 Q1 'の角度 Θが 20度〜 80度及び—20度〜—80度の領域についての積分値に比 例する)は、法線 NLの方向に対し角度 Θが 20度以下の方向に出射する光量(図 17 に示される第 2の光度分布 Q1 'の角度 Θが—20度〜 20度の領域についての積分 値に比例する)の 1倍以上である。  In a certain plane including the direction of the normal NL, for example, in the first measurement plane (that is, with respect to the second luminous intensity distribution Q1 ′), from the first main surface 21 of the light control element 2 to the direction of the normal NL The amount of light emitted in the direction where the angle Θ is 20 degrees or more and 80 degrees or less (the angle Θ of the second luminous intensity distribution Q1 'shown in Fig. 17 is about 20 to 80 degrees and -20 to 80 degrees. The amount of light emitted in the direction where the angle Θ is 20 degrees or less with respect to the direction of the normal line NL (the angle Θ of the second light intensity distribution Q1 'shown in Fig. 17 is -20 degrees to 20 degrees) It is more than 1 time (proportional to the integral value for the degree region).
[0081] 光制御素子 2として以上のような光学的特性を持つものを使用することで、小寸法 領域にて良好に光混合するという本願発明の効果の達成が容易になる。  [0081] By using the light control element 2 having the optical characteristics as described above, it is easy to achieve the effect of the present invention that the light is mixed well in a small size region.
[0082] 以上の説明では、光制御素子 2の光学的特性の規定のための光度分布の測定に 一次光源として B— LED (1B)を使用している。但し、本発明は、それに限定されるも のではなぐ光制御素子 2の光学的特性の規定のための光度分布の測定に一次光 源として R— LED (1R)または G— LED (1G)を使用することができる。全ての種類の 一次光源に関して上記のような光学的特性が得られることが最も好ましいが、本発明 においては、少なくとも 1つの種類の一次光源について上記のような光学的特性が 得られれば、小寸法領域にて良好に光混合するという本願発明の効果の達成が容 易になる。  In the above description, the B-LED (1B) is used as the primary light source for measuring the luminous intensity distribution for defining the optical characteristics of the light control element 2. However, the present invention is not limited thereto, and R-LED (1R) or G-LED (1G) is used as a primary light source for measuring the light intensity distribution for defining the optical characteristics of the light control element 2. Can be used. It is most preferable that the optical characteristics as described above can be obtained with respect to all types of primary light sources. However, in the present invention, if the optical characteristics as described above are obtained with respect to at least one type of primary light sources, small dimensions are required. It is easy to achieve the effect of the present invention that the light is mixed well in the region.
[0083] 導光体 3は、 XY面と平行に配置されており、全体として矩形板状をなしている。導 光体 3は 4つの側端面を有しており、そのうち YZ面と平行な 1つの側端面を光入射端 面 31としてレ、る。  The light guide 3 is arranged in parallel with the XY plane and has a rectangular plate shape as a whole. The light guide 3 has four side end faces, and one side end face parallel to the YZ plane is used as the light incident end face 31.
[0084] 導光体 3の光入射端面 31に略直交した 2つの主面は、それぞれ XY面と略平行に 位置しており、いずれか一方の面(図では上面)が光出射面 33とされている。尚、導 光体 3の厚さは、光入射端面 31の側の端部において最も大きぐそれから X方向に 離れるに従い徐々に小さくなつている。即ち、導光体の裏面 34は傾斜をもって形成さ れており、導光体は X方向に関してくさび形状をなしている。このくさび形状のくさび 角は、たとえば 0· 2〜3度とすることができる。 [0084] The two main surfaces that are substantially orthogonal to the light incident end surface 31 of the light guide 3 are respectively positioned substantially parallel to the XY plane, and one of the surfaces (the upper surface in the figure) is the light emitting surface 33. Has been. Note that the thickness of the light guide 3 is largest at the end on the light incident end face 31 side, and then gradually decreases with increasing distance from the X direction. That is, the back surface 34 of the light guide is formed with an inclination, and the light guide has a wedge shape in the X direction. This wedge shaped wedge The angle can be, for example, 0.2-3 degrees.
[0085] 導光体 3の厚さは、その光出射面 33の大きさに応じて適宜設定される力 たとえば 、光入射端面 31の近傍において 2〜8mm程度である。但し、導光体 3は、以上のよ うなくさび形状のものに限定されるものではなぐ全体の厚さが均一なものであっても よい。 The thickness of the light guide 3 is a force that is appropriately set according to the size of the light emitting surface 33, for example, about 2 to 8 mm in the vicinity of the light incident end surface 31. However, the light guide 3 is not limited to the wedge shape as described above, but may have a uniform overall thickness.
[0086] この導光体 3の光出射面 33または裏面 34のうちの少なくとも一方の面に粗面から なる指向性光出射機構や、プリズム列、レンチキュラーレンズ列、 V字状溝等の多数 のレンズ列を光入射端面 31と略平行に並列形成したレンズ面からなる指向性光出 射機構等を付与することによって、光入射端面 31から入射した光を導光体 3中を導 光させながら光出射面 33から光入射端面 31および光出射面 33の双方に直交する 面 (XZ面)内において指向性のある光を出射させる。この XZ面内分布における出射 光光度分布のピークの方向(ピーク光)が光出射面 33となす角度をひとする。該角度 aは例えば 10〜40度であり、出射光光度分布の半値全幅は例えば 10〜40度であ る。  [0086] At least one of the light output surface 33 and the back surface 34 of the light guide 3 has a rough directional light output mechanism, a prism array, a lenticular lens array, a V-shaped groove, and the like. By providing a directional light emitting mechanism, etc., consisting of a lens surface in which the lens array is formed in parallel with the light incident end face 31, the light incident from the light incident end face 31 is guided through the light guide 3. Light having directivity is emitted from the light emitting surface 33 in a plane (XZ plane) orthogonal to both the light incident end surface 31 and the light emitting surface 33. The peak direction (peak light) of the outgoing light intensity distribution in this XZ in-plane distribution is the angle formed by the light outgoing surface 33. The angle a is, for example, 10 to 40 degrees, and the full width at half maximum of the emitted light luminous intensity distribution is, for example, 10 to 40 degrees.
[0087] 導光体 3の表面に形成する粗面やレンズ列は、 IS04287/1— 1984による平均 傾斜角 Θ aが 0. 5〜: 15度の範囲のものとすること力 光出射面 33内での輝度の均斉 度の向上を図る点から好ましい。平均傾斜角 Θ aは、さらに好ましくは 1〜: 12度の範 囲であり、より好ましくは 1· 5〜: 11度の範囲である。  [0087] The rough surface and the lens array formed on the surface of the light guide 3 should have an average inclination angle Θ a in the range of 0.5 to 15 degrees according to IS04287 / 1-1984. It is preferable from the viewpoint of improving the uniformity of the luminance in the interior. The average inclination angle Θa is more preferably in the range of 1 to 12 degrees, and more preferably in the range of 1.5 to 11 degrees.
[0088] 導光体 3に形成される粗面の平均傾斜角 Θ aは、 IS04287/1— 1984に従って、 触針式表面粗さ計を用いて粗面形状を測定し、測定方向の座標を Xとして、得られた 傾斜関数 f (X)から次の式(1)および式 (2)  [0088] The average inclination angle Θ a of the rough surface formed on the light guide 3 is measured according to IS04287 / 1-1984 using a stylus type surface roughness meter, and the coordinates in the measurement direction are determined. The following equation (1) and equation (2) from the obtained gradient function f (X) as X
Aa= (l/L) ί L Aa = (l / L) ί L
o I (d/dx)f(x) I dx · · · (1)  o I (d / dx) f (x) I dx (1)
Θ a = tan_1(Aa) . · · (2) Θ a = tan _1 (Aa). (2)
を用いて求めることができる。ここで、 Lは測定長さであり、 Δ aは平均傾斜角 Θ aの正 接である。  Can be obtained using Here, L is the measurement length, and Δa is a tangent of the average inclination angle Θa.
[0089] さらに、導光体 3としては、その光出射率が 0. 5〜5%の範囲にあるものが好ましぐ より好ましくは 1〜3%の範囲である。これは、光出射率が 0. 5%より小さくなると導光 体 3から出射する光量が少なくなり十分な輝度が得られなくなる傾向にあり、光出射 率が 5%より大きくなると一次光源 1の近傍で多量の光が出射して、光出射面 33内で の X方向における出射光の減衰が著しくなり、光出射面 33での輝度の均斉度が低下 する傾向にあるためである。このように導光体 3の光出射率を 0· 5〜5%とすることに より、光出射面から出射する光の出射光光度分布 (XZ面内)におけるピーク光の角 度が光出射面の法線に対し 50〜80度の範囲にあり、光入射端面と光出射面との双 方に垂直な XZ面における出射光光度分布 (XZ面内)の半値全幅が 10〜40度であ るような指向性の高い出射特性の光を導光体 3から出射させることができ、その出射 方向を光偏向素子 4で効率的に偏向させることができ、高い輝度を有する面光源装 置を提供することができる。 [0089] Further, the light guide 3 preferably has a light emission rate in the range of 0.5 to 5%, more preferably in the range of 1 to 3%. This is because when the light emission rate is smaller than 0.5%, the amount of light emitted from the light guide 3 tends to be small and sufficient luminance cannot be obtained. When the ratio is greater than 5%, a large amount of light is emitted in the vicinity of the primary light source 1, and the attenuation of the emitted light in the X direction within the light emitting surface 33 becomes significant, and the luminance uniformity at the light emitting surface 33 is increased. This is because it tends to decrease. In this way, by setting the light output rate of the light guide 3 to 0.5-5%, the angle of the peak light in the light intensity distribution (in the XZ plane) of the light emitted from the light output surface is the light output. The full width at half maximum of the emitted light intensity distribution (in the XZ plane) in the XZ plane that is in the range of 50 to 80 degrees with respect to the normal of the surface and is perpendicular to both the light incident end face and the light emitting face is 10 to 40 degrees. A light source with a high directivity can emit light with a high directivity from the light guide 3 and its light emitting direction can be efficiently deflected by the light deflecting element 4. Can be provided.
[0090] 本発明において、導光体 3からの光出射率は次のように定義される。光出射面 33 の光入射端面 31側の端縁での出射光の光強度 (I )と光入射端面 31側の端縁から In the present invention, the light emission rate from the light guide 3 is defined as follows. The light intensity (I) of the emitted light at the light incident end surface 31 side edge of the light emitting surface 33 and the light incident end surface 31 side edge
0  0
距離 Lの位置での出射光強度 (I)との関係は、導光体 3の厚さ(Z方向寸法)を tとする と、次の式(3)  The relationship with the emitted light intensity (I) at the distance L is given by the following equation (3), where t is the thickness of the light guide 3 (dimension in the Z direction).
1=1 /100) [l— /100) ] ]L/t … (3) 1 = 1/100) [l— / 100)]] L / t … (3)
0  0
のような関係を満足する。ここで、定数 αが光出射率であり、光出射面 33における光 入射端面 31と直交する X方向での単位長さ(導光体厚さ tに相当する長さ)当たりの 導光体 3から光が出射する割合(百分率:%)である。この光出射率 αは、縦軸に光 出射面 23からの出射光の光強度の対数をとり、横軸に (L/t)をとり、これらの関係を プロットすることで、その勾配から求めることができる。 Satisfying such a relationship. Here, the constant α is the light output rate, and the light guide 3 per unit length (the length corresponding to the light guide thickness t) in the X direction perpendicular to the light incident end surface 31 on the light output surface 33 It is a ratio (percentage:%) at which light is emitted from the light source. This light emission rate α is obtained from the gradient by plotting the relationship between the logarithm of the light intensity of the light emitted from the light exit surface 23 on the vertical axis and (L / t) on the horizontal axis. be able to.
[0091] また、指向性光出射機構が付与されていない他の主面には、導光体 3からの出射 光の光入射端面 31と平行な面 (YZ面)内での指向性を制御するために、光入射端 面 31に対して略垂直の方向(X方向)に延びる多数のレンズ列を配列したレンズ面を 形成することが好ましい。本実施形態においては、光出射面 33に粗面を形成し、図 1 9に示されるように、裏面 34に、光入射端面 31に対して略垂直方向(X方向)に延び る多数のレンズ列 34aを互いに平行に配列してなるレンズ面を形成している。本発明 においては、図 19に示した形態とは逆に、光出射面 33にレンズ面を形成し、裏面 34 を粗面とするものであってもよい。  [0091] In addition, the directivity in the plane parallel to the light incident end face 31 (YZ plane) of the light emitted from the light guide 3 is controlled on the other main surface not provided with the directional light emission mechanism. Therefore, it is preferable to form a lens surface in which a large number of lens rows extending in a direction substantially perpendicular to the light incident end surface 31 (X direction) are arranged. In the present embodiment, a rough surface is formed on the light emitting surface 33, and as shown in FIG. 19, a large number of lenses extending on the back surface 34 in a direction substantially perpendicular to the light incident end surface 31 (X direction). A lens surface is formed by arranging the rows 34a in parallel with each other. In the present invention, contrary to the embodiment shown in FIG. 19, a lens surface may be formed on the light emitting surface 33 and the back surface 34 may be a rough surface.
[0092] 図 19に示したように、導光体 3の裏面 34あるいは光出射面 33にレンズ列を形成す る場合、そのレンズ列としては略 X方向に延びたプリズム歹 1J、レンチキュラーレンズ列 、 V字状溝等が挙げられるが、 YZ断面の形状が略三角形状のプリズム列とすること が好ましい。 As shown in FIG. 19, a lens array is formed on the back surface 34 or the light emitting surface 33 of the light guide 3. In this case, the lens array may be a prism array 1J extending substantially in the X direction, a lenticular lens array, a V-shaped groove, or the like, but the YZ cross-sectional shape is preferably a substantially triangular prism array.
[0093] 本発明において、導光体 3の裏面 34にレンズ列 34aとしてプリズム列を形成する場 合には、その頂角を 85〜110度の範囲とすることが好ましい。これは、頂角をこの範 囲とすることによって導光体 3からの出射光を適度に集光させることができ、面光源装 置としての輝度の向上を図ることができるためであり、より好ましくは 90〜: 100度の範 囲である。  [0093] In the present invention, when a prism row is formed as the lens row 34a on the back surface 34 of the light guide 3, the apex angle is preferably in the range of 85 to 110 degrees. This is because by setting the apex angle within this range, the light emitted from the light guide 3 can be collected appropriately, and the luminance as a surface light source device can be improved. Preferably 90-: 100 degree range.
[0094] 本発明の導光体においては、所望のプリズム列形状を精確に作製し、安定した光 学性能を得るとともに、組立作業時や光源装置としての使用時におけるプリズム頂部 の摩耗や変形を抑止する目的で、プリズム列の頂部に平坦部あるいは曲面部を形成 してもよい。  [0094] In the light guide of the present invention, a desired prism array shape is accurately manufactured to obtain stable optical performance, and wear and deformation of the prism top during assembly work and use as a light source device are prevented. For the purpose of suppression, a flat part or a curved part may be formed at the top of the prism row.
[0095] なお、本発明では、上記のような光出射面 33またはその裏面 34に光出射機構を形 成する代わりにあるいはこれと併用して、導光体内部に光拡散性微粒子を混入分散 することで指向性光出射機構を付与してもよい。  In the present invention, light diffusing fine particles are mixed and dispersed in the light guide instead of or in combination with the light emitting surface 33 or the back surface 34 as described above. By doing so, a directional light emitting mechanism may be provided.
[0096] 光偏向素子 4は、導光体 3の光出射面 33上に配置されている。光偏向素子 4の 2つ の主面 41, 42は全体として互いに平行に配列されており、それぞれ全体として XY 面と平行に位置する。主面 41, 42のうちの一方(導光体 3の光出射面 33側に位置す る主面)は入光面 41とされており、他方が出光面 42とされている。出光面 42は、導 光体 3の光出射面 33と平行な平坦面とされている。入光面 41は、多数の Y方向に延 びるプリズム歹 lj41aが互いに平行に配列されたプリズム列形成面とされている。プリズ ム列形成面は、 P 接するプリズム列の間に比較的幅の狭い平坦部(例えば、プリズム 列の X方向寸法と同程度あるいはそれより小さい幅の平坦部)を設けてもよいが、光 の利用効率を高める点からは平坦部を設けることなくプリズム列を X方向に連続して 配列することが好ましい。プリズム列形成面は、入光面 41ではなく出光面 42に設け てもよレ、。また、プリズム列形成面の反対面は平坦面ではなく微小な突起を設けた拡 散面でもよい。  The light deflection element 4 is disposed on the light exit surface 33 of the light guide 3. The two main surfaces 41 and 42 of the light deflection element 4 are arranged in parallel with each other as a whole, and are respectively located in parallel with the XY plane. One of the main surfaces 41 and 42 (the main surface located on the light emitting surface 33 side of the light guide 3) is a light incident surface 41, and the other is a light emitting surface. The light exit surface 42 is a flat surface parallel to the light exit surface 33 of the light guide 3. The light incident surface 41 is a prism row forming surface in which a large number of prisms lj41a extending in the Y direction are arranged in parallel to each other. On the prism array forming surface, a flat portion having a relatively narrow width (for example, a flat portion having a width equal to or smaller than the dimension in the X direction of the prism array) may be provided between the prism arrays in contact with P. From the viewpoint of improving the utilization efficiency, it is preferable to arrange the prism rows continuously in the X direction without providing a flat portion. The prism array forming surface may be provided on the light exit surface 42 instead of the light entrance surface 41. Further, the opposite surface of the prism array forming surface may be a diffusing surface provided with minute protrusions instead of a flat surface.
[0097] 図 20に、光偏向素子 4による光偏向の様子を示す。この図は、 XZ面内での導光体 3からのピーク光(出射光分布のピークに対応する光)の進行方向を示すものである。 導光体 3の光出射面 33から角度 αで斜めに出射されるピーク光は、プリズム列 41a の第 1面へ入射し第 2面により全反射されてほぼ出光面 42の法線の方向に出射する 。また、 YZ面内では、上記のような導光体裏面 34のプリズム列 34aの作用により広範 囲の領域において出光面 42の法線の方向の輝度の十分な向上を図ることができる。 FIG. 20 shows the state of light deflection by the light deflection element 4. This figure shows the light guide in the XZ plane 3 shows the traveling direction of peak light from 3 (light corresponding to the peak of the outgoing light distribution). The peak light obliquely emitted from the light output surface 33 of the light guide 3 at an angle α is incident on the first surface of the prism array 41a, is totally reflected by the second surface, and is substantially in the direction of the normal of the light output surface 42. Exit. Further, in the YZ plane, the luminance in the normal direction of the light exit surface 42 can be sufficiently improved in a wide area by the action of the prism row 34a on the back surface 34 of the light guide as described above.
[0098] 光偏向素子 4の各プリズム列 41aのプリズム面の形状は、単一平面に限られず、例 えば断面凸多角形状または凸曲面形状とすることができ、これにより、高輝度化、狭 視野化を図ることができる。  [0098] The shape of the prism surface of each prism row 41a of the light deflection element 4 is not limited to a single plane, and may be, for example, a convex polygonal shape or a convex curved surface shape. Visualization can be achieved.
[0099] 本発明の光偏向素子においては、所望のプリズム形状を精確に作製し、安定した 光学性能を得るとともに、組立作業時や光源装置としての使用時におけるプリズム頂 部の摩耗や変形を抑止する目的で、プリズム列の頂部に平坦部あるいは曲面部を形 成してもよい。この場合、プリズム列頂部に形成する平坦部あるいは曲面部の幅は、 3 β m以下とすることが、光源装置としての輝度の低下ゃステイツキング現象による輝 度の不均一パターンの発生を抑止する観点から好ましぐより好ましくは 2 / m以下で あり、さらに好ましくは 1 μ m以下である。 [0099] In the light deflection element of the present invention, a desired prism shape is accurately manufactured to obtain stable optical performance, and wear and deformation of the prism top during assembly work and use as a light source device are suppressed. For this purpose, a flat portion or a curved surface portion may be formed at the top of the prism row. In this case, the width of the flat portion or curved surface portion formed on the top of the prism row should be 3 β m or less to suppress the occurrence of uneven brightness patterns due to the sticking phenomenon if the brightness of the light source device is reduced. From the viewpoint, it is more preferably 2 / m or less, and further preferably 1 μm or less.
[0100] 導光体 3及び光偏向素子 4は、光透過率の高い合成樹脂を用いて構成することが できる。このような合成樹脂としては、メタクリル樹脂、アクリル樹脂、ポリカーボネート 系樹脂、ポリエステル系樹脂、塩化ビュル系樹脂が例示できる。特に、メタクリル樹脂 、光透過率の高さ、耐熱性、力学的特性、成形加工性に優れており、最適である。 このようなメタクリル樹脂としては、メタクリル酸メチルを主成分とする樹脂であり、メタク リル酸メチルが 80重量%以上であるものが好ましい。導光体 3、光偏向素子 4および 光拡散素子 6の粗面又はヘアライン等の表面構造やプリズム列又はレンチキュラー レンズ列等の表面構造を形成するに際しては、透明合成樹脂板を所望の表面構造 を有する型部材を用いて熱プレスすることで形成してもよいし、スクリーン印刷、押出 成形や射出成形等によって成形と同時に形状付与してもよい。また、熱あるいは光 硬化性樹脂等を用いて構造面を形成することもできる。更に、ポリエステル系樹脂、 アクリル系樹脂、ポリカーボネート系樹脂、塩ィ匕ビュル系樹脂、ポリメタクリルイミド系 樹脂等からなる透明フィルムあるいはシート等の透明基材の表面に、活性エネルギ 一線硬化型樹脂からなる粗面構造またレンズ列配列構造を形成してもよレ、し、このよ うなシートを接着、融着等の方法によって別個の透明基材上に接合一体化させても よい。活性エネルギー線硬化型樹脂としては、多官能 (メタ)アクリル化合物、ビニル 化合物、(メタ)アクリル酸エステル類、ァリル化合物、 (メタ)アクリル酸の金属塩等を [0100] The light guide 3 and the light deflection element 4 can be formed using a synthetic resin having a high light transmittance. Examples of such synthetic resins include methacrylic resins, acrylic resins, polycarbonate resins, polyester resins, and chlorinated resin. In particular, methacrylic resin is optimal because of its high light transmittance, heat resistance, mechanical properties, and molding processability. Such a methacrylic resin is a resin containing methyl methacrylate as a main component, and a methyl methacrylate having a content of 80% by weight or more is preferable. When forming the surface structure such as the rough surface or hairline of the light guide 3, the light deflecting element 4 and the light diffusing element 6 or the surface structure such as the prism array or the lenticular lens array, the transparent synthetic resin plate is formed with the desired surface structure. It may be formed by hot pressing using a mold member, or may be formed simultaneously with molding by screen printing, extrusion molding, injection molding or the like. The structural surface can also be formed using heat or a photo-curable resin. Furthermore, active energy is applied to the surface of a transparent substrate such as a polyester film, an acrylic resin, a polycarbonate resin, a salt bulb resin, a polymethacrylimide resin, or the like. A rough surface structure or a lens array arrangement structure made of a one-line curable resin may be formed, or such a sheet may be bonded and integrated on a separate transparent substrate by a method such as adhesion or fusion. Good. Active energy ray curable resins include polyfunctional (meth) acrylic compounds, vinyl compounds, (meth) acrylic acid esters, aryl compounds, metal salts of (meth) acrylic acid, etc.
[0101] 以上のような一次光源 1、光制御素子 2、導光体 3、光偏向素子 4および光反射素 子 5, 5'を含んで構成される面光源装置の発光面 (光偏向素子 4の出光面 42)上に 、不図示の液晶表示素子を配置することにより、本発明の面光源装置をバックライトと した液晶表示装置が構成される。液晶表示装置は、上方から液晶表示素子を通して 観察者により観察される。液晶表示装置の表示エリアは、液晶表示素子の表示領域 あるいは該液晶表示素子を保持するフレームの開口領域等により決まる。 [0101] The light emitting surface of the surface light source device including the primary light source 1, the light control element 2, the light guide 3, the light deflection element 4, and the light reflection elements 5, 5 'as described above (light deflection element) By disposing a liquid crystal display element (not shown) on the light exit surface 42), a liquid crystal display device using the surface light source device of the present invention as a backlight is configured. The liquid crystal display device is observed by an observer through the liquid crystal display element from above. The display area of the liquid crystal display device is determined by the display area of the liquid crystal display element or the opening area of the frame that holds the liquid crystal display element.
[0102] 本実施形態においては、複数の点状一次光源 1R, 1G, IBのそれぞれから発せら れ、一部が反射面 (光反射素子 5, 5'及び点状一次光源の支持基板 10を含んで構 成される包囲部材の表面からなる)による反射を受けた光は、光制御素子 2の第 2の 主面 22に入射する。その一部は第 2の主面 22を構成する多数の凸状セル 220の表 面により反射され、他の一部は多数の凸状セル 220の表面による屈折作用を受け又 は受けずに光制御素子 2内に導入され、第 1の主面 21による屈折作用を受け又は受 けずに該第 1の主面 21から出射する。凸状セル 220の表面による反射を受けた反射 光は、上記反射面による反射を受けた後に再び第 2の主面 22に入射 (再入射)する 。この再入射する光の方向は当初の入射の際の入射の方向とは一般に異なるので、 この第 2の主面 22による反射及び該第 2の主面 22への再入射を繰り返すうちに、光 は光制御素子 2内に導入される。凸状セル 220の形状に基づき第 1の主面 21から出 射する光の法線方向 NLに対する角度に関する分布は、各点状一次光源 1R, 1G, IBからの光につき、いずれもブロードなものとなる。従って、第 1の主面 21から出射 する各色の光は、 X方向に短い距離にて効率よく混合され、十分な光混合がなされ て白色光となる。また、位置による光分布の均斉度も向上する。このような光混合は、 必ずしも光が導光体 3に到達する前になされるべきものに限られず、光が光入射端 面 31から導光体 3内へと導入された後に、短レ、距離 (レ、わゆる額縁の幅より短レ、距離 )でなされても良い。例えば、図 1において、導光体の光出射面 33上に光入射端面 3 1の近傍を覆うように X方向に延びている光反射素子 5'の存在する XY面内領域に おいて、以上のような光混合がなされればよい。光反射素子 5'の導光体光出射面 3 3上にて X方向に延びている距離 Wは、額縁幅と同一又はそれより小さぐ上記光制 御素子 2と導光体光入射端面 31との間の距離 D2等に応じて適宜設定することがで きる力 例えば 0. 2〜5mmである。 [0102] In the present embodiment, each of the plurality of point-like primary light sources 1R, 1G, IB is emitted from each of the reflecting surfaces (light reflecting elements 5, 5 'and the point-like primary light source support substrate 10). The light that is reflected by the surface of the surrounding member including the light enters the second main surface 22 of the light control element 2. A part of the light is reflected by the surface of the large number of convex cells 220 constituting the second main surface 22, and the other part is reflected by or not refracted by the surface of the large number of convex cells 220. The light is introduced into the control element 2 and is emitted from the first main surface 21 with or without receiving the refraction action by the first main surface 21. The reflected light reflected by the surface of the convex cell 220 is incident on the second main surface 22 again after being reflected by the reflecting surface. Since the direction of this re-incident light is generally different from the direction of incidence at the time of initial incidence, the light is repeatedly reflected by the second main surface 22 and re-incident on the second main surface 22. Is introduced into the light control element 2. Based on the shape of the convex cell 220, the distribution of the angle of the light emitted from the first principal surface 21 with respect to the normal direction NL is broad for the light from each point-like primary light source 1R, 1G, IB. It becomes. Accordingly, the light of each color emitted from the first main surface 21 is efficiently mixed at a short distance in the X direction, and is sufficiently mixed into white light. In addition, the uniformity of the light distribution depending on the position is improved. Such light mixing is not necessarily limited to what should be done before the light reaches the light guide 3, and after light is introduced into the light guide 3 from the light incident end face 31, Distance (Re, shorter than the width of the picture frame, distance ). For example, in FIG. 1, in the region in the XY plane where the light reflecting element 5 ′ extending in the X direction so as to cover the vicinity of the light incident end surface 31 on the light emitting surface 33 of the light guide is present. It is sufficient that the light mixing is performed. The distance W extending in the X direction on the light guide light exit surface 33 of the light reflecting element 5 ′ is equal to or smaller than the frame width, and the light control element 2 and the light guide light incident end surface 31 are the same. The force that can be set as appropriate according to the distance D2 between and the like, for example, 0.2 to 5 mm.
[0103] 尚、導光体 3へと導入された光の一部が光入射端面 31から出射して光制御素子 2 へと到来することがあるが、そのような光は、光制御素子 2により反射されるか又は光 制御素子 2を屈折作用を受け又は受けず透過した後に、上記同様に反射面により反 射され、上記同様にして光混合に供される。  It should be noted that a part of the light introduced into the light guide 3 may be emitted from the light incident end face 31 and arrive at the light control element 2, but such light is emitted from the light control element 2. Or reflected through the light control element 2 without being refracted or reflected by the reflecting surface in the same manner as described above and used for light mixing in the same manner as described above.
[0104] 以上のような本実施形態のエッジライト方式面光源装置によれば、光混合手段が、 特定形状の凸状セル 220が多数配列されてなる微細凹凸面からなる第 2の主面 22 を有する光制御素子 2と、該光制御素子からの戻り光を反射する反射面とを含んでな る。従って、複数の点状一次光源 1R, 1G, 1Bのそれぞれから発せられる光のうち、 光制御素子 2の法線方向に対して斜めの方向に進行する成分については、第 2の主 面の凸状セルを主として透過させることができる。また、光制御素子の法線方向又は それに近い方向に入射する成分については、第 2の主面の凸状セル 220により主と して反射させて前記法線方向に対して斜めの方向に戻すことができる。そして、これ により得られる戻り光を反射面により反射させることで、当該点状一次光源から最初 に出射された光とは異なる経路にて進行させ、光制御素子の第 2の主面 22に入射さ せること力 Sできる。力べして、光混合手段の寸法が小さくとも良好な光混合が可能にな り、一次光源と導光体の光入射端面との距離を短縮することができ、小さな額縁寸法 であっても有効発光領域の周辺部における色再現性や輝度均斉度の低下がなぐし 力、も装置の小型化が可能になる。  [0104] According to the edge light type surface light source device of the present embodiment as described above, the light mixing means has the second main surface 22 composed of fine concavo-convex surfaces in which a large number of specific-shaped convex cells 220 are arranged. And a reflection surface that reflects the return light from the light control element. Accordingly, among the light emitted from each of the plurality of point-like primary light sources 1R, 1G, and 1B, the component that travels in an oblique direction with respect to the normal direction of the light control element 2 is convex on the second main surface. The main cell can be transmitted. The component incident in the normal direction of the light control element or a direction close thereto is mainly reflected by the convex cell 220 on the second main surface and returned to the direction oblique to the normal direction. be able to. Then, the return light obtained thereby is reflected by the reflecting surface, so that it travels in a different path from the light first emitted from the point-like primary light source, and enters the second main surface 22 of the light control element. It is possible to make S. In addition, even if the size of the light mixing means is small, good light mixing is possible, the distance between the primary light source and the light incident end face of the light guide can be shortened, and even a small frame size is effective. The reduction in color reproducibility and brightness uniformity at the periphery of the light-emitting area can be reduced, and the device can be downsized.
[0105] 図 21は本発明による光源装置の一つの実施形態である直下方式面光源装置を示 す模式的一部切欠分解斜視図であり、図 22は本実施形態の面光源装置の模式的 部分分解断面図である。これらの図において、上記図 1〜20におけると同様の機能 を持つ部材については、同一の符号が付されている。 [0106] 本実施形態においては、図 21及び 22に示されているように、点状一次光源 1R, 1 G, 1Bを 2次元状に支持する支持基板 10は、箱形のケース 7の底面上に配置されて いる。支持基板 10の内側面は高い光反射率を持つ反射面とされているのが好ましい 。点状一次光源 1R, 1G, IBの配列は、上記図 3に関し説明したような配歹を複数用 レ、、これらを互いに平行に配列したものとすることができる。点状一次光源 1R, 1G, IBの上方には、支持基板 10に取り付けられた光制御素子 2が点状一次光源 1R, 1 G, 1Bを覆うように配置されている。 FIG. 21 is a schematic partially cutaway exploded perspective view showing a direct type surface light source device that is one embodiment of the light source device according to the present invention, and FIG. 22 is a schematic view of the surface light source device of the present embodiment. It is a partial exploded sectional view. In these drawings, members having the same functions as in FIGS. 1 to 20 are given the same reference numerals. In this embodiment, as shown in FIGS. 21 and 22, the support substrate 10 that supports the point-like primary light sources 1R, 1G, 1B in a two-dimensional manner is the bottom surface of the box-shaped case 7. Arranged above. The inner surface of the support substrate 10 is preferably a reflecting surface having a high light reflectance. The arrangement of the point-like primary light sources 1R, 1G, and IB can be a plurality of arrangements as described with reference to FIG. 3, and these can be arranged in parallel to each other. Above the point-like primary light sources 1R, 1G, IB, a light control element 2 attached to the support substrate 10 is arranged so as to cover the point-like primary light sources 1R, 1G, 1B.
[0107] 本実施形態では、特に各凸状セル 220に対応して点状一次光源 1R, 1G, IBの 組が配置されているのが好ましい。本実施形態では、凸状セル 220の底部平均径 L は 5mm〜4cmであるのが好ましい。底部平均径 Lは、更に好ましくは l〜3cmであり 、特に好ましくは 1. 5〜2cmである。底部平均径 Lが 5mmより小さくなると点状一次 光源 1R, 1G, IBの組を各凸状セル 220に対応するように配置することが困難になる 傾向があり、底部平均径 Lが 4cmより大きくなると凸状セル 220による光混合の効果 が低下する傾向がある。また、側面頂角 φは、 40〜: 110° であるのが好ましぐ 60〜 110° であるのがより好ましぐ 70〜: 100° であるのが更に好ましい。平均頂角 Θが 40〜: 110° の範囲から外れると、凸状セル 220による光混合の効果が低下する傾向 がある。また、凸状セル 220の高さ Hは、好ましくは 4mm〜3cmであり、更に好ましく は 7mm〜2cmであり、特に好ましくは:!〜 1. 5cmである。光制御素子 2は、上記図 1 〜20の実施形態のものと同様な光学的特性を持つ。  In the present embodiment, it is particularly preferable that a set of point-like primary light sources 1R, 1G, and IB is arranged corresponding to each convex cell 220. In the present embodiment, the bottom average diameter L of the convex cell 220 is preferably 5 mm to 4 cm. The bottom average diameter L is more preferably 1 to 3 cm, and particularly preferably 1.5 to 2 cm. If the bottom average diameter L is smaller than 5 mm, it tends to be difficult to arrange the point-like primary light sources 1R, 1G, and IB so as to correspond to the convex cells 220. The bottom average diameter L is larger than 4 cm. Then, the effect of light mixing by the convex cell 220 tends to decrease. Further, the side apex angle φ is preferably 40 to 110 °, more preferably 60 to 110 °, and even more preferably 70 to 100 °. When the average apex angle Θ is out of the range of 40 to 110 °, the effect of light mixing by the convex cell 220 tends to decrease. The height H of the convex cell 220 is preferably 4 mm to 3 cm, more preferably 7 mm to 2 cm, and particularly preferably:! To 1.5 cm. The light control element 2 has optical characteristics similar to those of the embodiments of FIGS.
[0108] 光制御素子 2の上方には、ケース 7に取り付けられた板状の光学部材 6が光制御素 子 2を覆うように配置されてレ、る。  A plate-like optical member 6 attached to the case 7 is arranged above the light control element 2 so as to cover the light control element 2.
[0109] 光学部材 6は、光制御素子 2と対向する光入射面 61及びその反対側の光出射面 6 2を有しており、光拡散性または光集束性を持っている。このような光学部材 6として は、光拡散素子または少なくとも一方の面を微細な光集束性レンズパターンを多数 形成してなるレンズ形成面とした集光素子が例示される。  The optical member 6 has a light incident surface 61 facing the light control element 2 and a light exit surface 62 on the opposite side, and has light diffusibility or light convergence. Examples of such an optical member 6 include a light diffusing element or a condensing element in which at least one surface is a lens forming surface formed by forming a large number of fine light focusing lens patterns.
[0110] 本実施形態においては、上記図 1〜20の実施形態と同様に、複数の点状一次光 源 1R, 1G, IBのそれぞれから発せられ、一部が反射面 (ケース内側面及び点状一 次光源の支持基板 10を含んで構成される包囲部材の表面からなる)による反射を受 けた光は、光制御素子 2の第 2の主面 22に入射する。上記図:!〜 20の実施形態と同 様にして、第 1の主面 21から出射する各色の光は、短い距離にて効率よく混合され、 十分な光混合がなされて白色光となる。また、位置による光分布の均斉度も向上する [0110] In the present embodiment, similar to the embodiments of Figs. 1 to 20 described above, the light is emitted from each of the plurality of point-like primary light sources 1R, 1G, and IB, and a part thereof is a reflecting surface (the inner surface of the case and the point). Of the surrounding light source including the support substrate 10 of the primary light source. The scattered light is incident on the second main surface 22 of the light control element 2. As in the above embodiments:! To 20, the light of each color emitted from the first main surface 21 is efficiently mixed at a short distance, and is sufficiently mixed into white light. In addition, the uniformity of the light distribution depending on the position is improved.
[0111] 本実施形態では、光混合は、光が光学部材 6に到達するまでになされるのが好まし ぐこのため、光制御素子 2と光学部材 6との間の距離 D2'は、例えば 5〜50mmで あり、好ましくは 10〜40mmであり、更に好ましくは 15〜30mmである。また、点状一 次光源 1R, 1G, 1Bと光学部材 6との間の距離 D1 'は例えば 5〜60mmである。距 離 D1 '及び D2'をこのような範囲内にすることで、小寸法領域にて良好に混合すると レ、う本願発明の効果の達成が容易になる。 [0111] In the present embodiment, it is preferable that the light mixing is performed before the light reaches the optical member 6. Therefore, the distance D2 'between the light control element 2 and the optical member 6 is, for example, It is 5 to 50 mm, preferably 10 to 40 mm, and more preferably 15 to 30 mm. Further, the distance D1 ′ between the point-like primary light sources 1R, 1G, 1B and the optical member 6 is, for example, 5 to 60 mm. By making the distances D1 ′ and D2 ′ within such a range, it is easy to achieve the effect of the present invention when mixing is performed well in a small size region.
[0112] 以上の実施形態の説明においては主として光制御素子 2の第 2の主面 22を凸状セ ル 220の多数配列の微細凹凸面からなるものとしている力 本発明においては、光 制御素子 2が上記のような光学的特性を持つものであれば、光制御素子 2の第 1の 主面 21を凸状セルの多数配列の微細凹凸面からなるものとしてもよいし、光制御素 子 2の第 1の主面 21及び第 2の主面 22の双方を凸状セルの多数配列の微細凹凸面 力らなるものとしてもよい。また、本発明においては、上記のような光学的特性を持つ 光制御素子 2を更に追加して使用し、これら複数の光制御素子 2を並列配置してもよ レ、。  [0112] In the description of the above-described embodiment, the force in which the second main surface 22 of the light control element 2 is mainly composed of a plurality of fine uneven surfaces of the convex cells 220. In the present invention, the light control element If the optical element 2 has the optical characteristics as described above, the first main surface 21 of the light control element 2 may be composed of a fine concavo-convex surface of a large array of convex cells, or the light control element. Both the first main surface 21 and the second main surface 22 of the second may be formed of a fine uneven surface force of a multi-array of convex cells. In the present invention, the light control element 2 having the optical characteristics as described above may be additionally used, and the plurality of light control elements 2 may be arranged in parallel.
[0113] 更に、本発明においては、光制御素子 2として、内部とくに凸状セル内に光拡散剤 を含んでいるものを使用することができる。これにより、更に良好な光混合効果が得ら れる。  Furthermore, in the present invention, as the light control element 2, an element containing a light diffusing agent inside, particularly in a convex cell can be used. As a result, a better light mixing effect can be obtained.
実施例  Example
[0114] 以下、実施例によって本発明を説明する。  [0114] Hereinafter, the present invention will be described by way of examples.
[0115] [実施例 1] [0115] [Example 1]
以下のようにして、図 1他に関し説明した実施形態に属する 8個のエッジライト方式 面光源装置 [装置 No. 1— 1〜装置 No. 1— 8]を製造した。  As described below, eight edge light type surface light source devices [device No. 1-1 to device No. 1-8] belonging to the embodiment described with reference to FIG. 1 and others were manufactured.
[0116] アクリル樹脂(三菱レイヨン (株)製アタリペット TF8 [商品名 ] )を用い射出成形する ことによって、光出射面が平均傾斜角 3. 5度のマット面からなり、裏面がプリズム頂角 100度、頂部先端曲率半径 15 μ m、ピッチ 50 μ mの多数の X方向プリズム列が互い に平行になるように形成されたプリズム列形成面からなり、 X方向寸法が 235mmで、 Y方向寸法が 370mmで、厚さが光入射端面側の端部において 5. 6mmで且つ他 方側の端部において lmmであるくさび形の矩形状導光体を 8個作製した。各導光体 の光入射端面以外の端面に光反射フィルムを貼付し、裏面に対向するように光拡散 反射フィルムを配置した。 [0116] By injection molding using acrylic resin (Ataripet TF8 [trade name] manufactured by Mitsubishi Rayon Co., Ltd.), the light exit surface has a matte surface with an average inclination angle of 3.5 degrees, and the back surface has a prism apex angle. It consists of a number of X-direction prism rows that are 100 degrees, a radius of curvature of the top tip of 15 μm, and a pitch of 50 μm. The X-direction dimensions are 235 mm and the Y-direction dimensions are parallel to each other. Eight wedge-shaped rectangular light guides having a thickness of 5.6 mm at the end on the light incident end face side and l mm at the end on the other side were prepared. A light reflecting film was affixed to an end face other than the light incident end face of each light guide, and a light diffusing and reflecting film was disposed so as to face the back face.
[0117] ポリエチレンテレフタレート(PET)製シートの片面に、表面を微細凹凸面としたァク リル系樹脂層を形成することで、 8個の光制御素子を作製した。これらの光制御素子 の微細凹凸面(第 2の主面)は、底部の形状が一辺の長さ 35 x mの正三角形である 略三角錐面からなる凸状セルを最密充填したものであった。各光制御素子の略三角 錐面の凸状セノレの佃 J面頂角 φ I 40° 、 50° 、 60° 、 70° 、 80° 、 90° 、 100° 及び 110° であった。力べして得られた各光制御素子を、その第 1の主面が導光体の 光入射端面に対向するように配置した。  [0117] Eight light control elements were produced by forming an acrylic resin layer with a fine uneven surface on one side of a polyethylene terephthalate (PET) sheet. The fine concavo-convex surface (second main surface) of these light control elements is a close-packed filling of convex cells consisting of a substantially triangular pyramidal surface whose bottom is a regular triangle with a side length of 35 xm. It was. Convex senores on the substantially triangular pyramid surface of each light control element The J-plane apex angle φI was 40 °, 50 °, 60 °, 70 °, 80 °, 90 °, 100 ° and 110 °. Each light control element obtained by force was placed so that the first main surface thereof was opposed to the light incident end surface of the light guide.
[0118] 各光制御素子の第 2の主面に対向するように、一次光源としての略ランバーシャン 光源である R— LED、 G— LED及び B— LEDを配置した。ここで、一次光源は、図 2 に示されるようにして、ピッチ P1を 2. 8mmとし且つ距離 P2を 2mmとして、アルミニゥ ム製支持基板上に配置し、封止樹脂で覆った。尚、一次光源の上下にはそれぞれ 導光体の光出射面上及び裏面上から延びた光拡散反射フィルムを配置した。図 2に 示す距離 D1は 5mmであり、図 2に示す距離 D2は 4mmであり、図 1に示す距離 Wは lmmであつに。  [0118] R-LED, G-LED, and B-LED, which are substantially Lambertian light sources as primary light sources, were arranged so as to face the second main surface of each light control element. Here, as shown in FIG. 2, the primary light source was disposed on an aluminum support substrate with a pitch P1 of 2.8 mm and a distance P2 of 2 mm, and covered with a sealing resin. In addition, the light-diffusion reflection film extended from the light-projection surface and back surface of the light guide was arrange | positioned at the upper and lower sides of the primary light source, respectively. The distance D1 shown in Fig. 2 is 5mm, the distance D2 shown in Fig. 2 is 4mm, and the distance W shown in Fig. 1 is lmm.
[0119] 以上の 8つの構成をそれぞれ枠体に組み込んだ。これらの構成において、導光体 からの出射光光度分布 (XZ面内)の最大ピークは光出射面法線方向に対して 70度 、半値全幅が 22. 5度であった。  [0119] Each of the above eight configurations was incorporated into a frame. In these configurations, the maximum peak of the luminous intensity distribution (in the XZ plane) from the light guide was 70 ° with respect to the normal direction of the light emitting surface, and the full width at half maximum was 22.5 °.
[0120] 尚、各光制御素子について、図 10及び図 11に関し説明したようにして第 1の光度 分布 PI , P2及び第 2の光度分布 Ql , Q2を測定した。更に、第 3の光度分布 R及び 第 4の光度分布 Sを測定した。これらの測定結果に基づき、第 1〜第 4の平均分布 Pa , Qa, Ra, Saを得た。更に、これらに基づき図 16他に関して説明したようにして光量 LPm, LQm, LQn, LQs, LRを算出し、これらに基づき、以下の Dl , D2, D3, D4 , D5, D6にっき、以下の表 1に示す値を得た。 [0120] For each light control element, the first light intensity distributions PI and P2 and the second light intensity distributions Ql and Q2 were measured as described with reference to FIGS. Further, the third luminous intensity distribution R and the fourth luminous intensity distribution S were measured. Based on these measurement results, the first to fourth average distributions Pa, Qa, Ra, Sa were obtained. Further, based on these, the light amounts LPm, LQm, LQn, LQs, LR are calculated as described in FIG. 16 and others, and based on these, the following Dl, D2, D3, D4 are calculated. , D5 and D6, the values shown in Table 1 below were obtained.
[0121] D1 :光量 LPmに対する光量 LQmの割合; [0121] D1: Ratio of light quantity LQm to light quantity LPm;
D2:光量 LRに対する光量 LQmの割合;  D2: Ratio of light quantity LQm to light quantity LR;
D3:光量 LQmに対する光量 LQnの比;  D3: Ratio of light quantity LQn to light quantity LQm;
D4:第 2の平均分布 Qaにおけるピークの角度;  D4: Peak angle in the second average distribution Qa;
D5:光量 LRに対する光量 LQsの割合;  D5: Ratio of light quantity LQs to light quantity LR;
D6 :第 2の光度分布 Q 1に基づぐ Θが—20度〜 20度の領域の出射光量に対 する Θ力 ¾0度〜 80度及び一 20度〜一 80度の領域の出射光量の比 [但し、第 2の 光度分布 Q 1は最大出射光量比が得られる測定面に関するものである]。  D6: Based on the second luminous intensity distribution Q 1 Θ force against the emitted light quantity in the region of -20 ° to 20 ° based on the second light intensity distribution Q 1 of the emitted light amount in the region of ¾0 ° to 80 ° and 120 ° to 80 ° Ratio [however, the second luminous intensity distribution Q 1 relates to the measurement surface where the maximum emitted light quantity ratio can be obtained].
[0122] 一方、屈折率 1. 5064のアクリル系紫外線硬化性樹脂を用いて、頂角 68度のプリ ズム列をピッチ 50 μ mで多数並列に形成してなるプリズム列形成体を厚さ 125 μ m のポリエステルフィルムの一方の表面に形成したプリズムシートを 8個作製した。  [0122] On the other hand, a prism array formed by forming a large number of prism arrays with an apex angle of 68 degrees in parallel with a pitch of 50 μm using an acrylic ultraviolet curable resin with a refractive index of 1.5064 has a thickness of 125. Eight prism sheets formed on one surface of a μm polyester film were prepared.
[0123] 得られた各プリズムシートを、上記各導光体の光出射面(マット面)側にプリズム列 形成面が向き、導光体の光入射端面にプリズム列の稜線が平行となるように載置した  [0123] The obtained prism sheets are arranged such that the prism row forming surface faces the light exit surface (mat surface) of each light guide and the ridge line of the prism row is parallel to the light incident end surface of the light guide. Placed on
[0124] 以上のようにして製造された装置 No. 1— 1〜装置 No. 1— 8の面光源装置につい て、一次光源としての R— LED、 G— LED及び B— LEDを点灯させて発光面を目視 により観察したところ、いずれも導光体光入射端面の近傍での各発光ダイオードに対 応した各色光の出射パターンは視認されず、発光面全体が白色で一様な明るさであ つに。 [0124] For the surface light source devices No. 1-1 to No. 1-8 manufactured as described above, turn on the R-LED, G-LED and B-LED as the primary light source. When the light emitting surface was visually observed, the emission pattern of each color light corresponding to each light emitting diode in the vicinity of the light guide light incident end surface was not visually recognized, and the entire light emitting surface was white and uniform in brightness. Suddenly.
[0125] [比較例 1 ]  [0125] [Comparative Example 1]
光制御素子の代わりに両面が平滑な透光性シートを使用したこと以外は、実施例 1 と同様にして、面光源装置 [装置 No. 1 _ 9]を製造した。透光性シートについて、実 施例 1の光制御素子と同様にして、 D l, D2, D3, D4, D5, D6を得たところ、以下 の表 1に示す値を得た。  A surface light source device [device No. 1_9] was produced in the same manner as in Example 1 except that a light-transmitting sheet having smooth surfaces was used in place of the light control element. With respect to the translucent sheet, Dl, D2, D3, D4, D5, and D6 were obtained in the same manner as the light control element of Example 1, and the values shown in Table 1 below were obtained.
[0126] 更に、光制御素子を使用しなかったこと(光制御素子の代わりに空気層を使用した こと)以外は、実施例 1と同様にして、面光源装置 [装置 No. 1— 10]を製造した。光 制御素子の代わりに使用された空気層シートについて、実施例 1の光制御素子と同 様にして、 Dl , D2, D3, D4, D5, D6を得たところ、以下の表 1に示す値を得た。 [0126] Furthermore, the surface light source device [Device No. 1-10] was used in the same manner as in Example 1 except that the light control element was not used (the air layer was used instead of the light control element). Manufactured. The air layer sheet used in place of the light control element is the same as the light control element of Example 1. In the same manner, Dl, D2, D3, D4, D5, and D6 were obtained, and the values shown in Table 1 below were obtained.
[0127] 以上のようにして製造された装置 No. 1— 9〜装置 No. 1— 10の面光源装置につ いて、一次光源としての R— LED、 G— LED及び B— LEDを点灯させて発光面を目 視により観察したところ、装置 No. 1— 9では導光体光入射端面の近傍で各発光ダイ オードに対応した各色光の出射パターンが視認され、装置 No. 1 _ 10では導光体 光入射端面の近傍で各発光ダイオードに対応した各色光の出射パターンが明確に 視認された。 [0127] For the surface light source devices No. 1-9 to No. 1-10 manufactured as described above, the R-LED, G-LED and B-LED as the primary light source are turned on. As a result of visual observation of the light emitting surface, in device No. 1-9, the emission pattern of each color light corresponding to each light emitting diode was visually recognized in the vicinity of the light guide light incident end surface, and in device No. 1_10, Light guide The emission pattern of each color light corresponding to each light emitting diode was clearly seen near the light incident end face.
[0128] [表 1] [0128] [Table 1]
Figure imgf000032_0001
Figure imgf000032_0001
[0129] [実施例 2] [Example 2]
光制御素子の微細凹凸面(第 2の主面)を、底部の形状が一辺の長さ 30 μ mの正 四角形である略四角錐面からなる凸状セルを最密充填したものであって、該凸状セ ルの側面頂角 φ力 ¾0° 、40° 、 50° 、 60° 、 70° 及び 80° であるものを使用した こと以外は、実施例 1と同様にして、面光源装置 [装置 No. 2—1〜装置 No. 2-6] を製造した。  The fine uneven surface (second main surface) of the light control element is a close-packed filling of convex cells consisting of a substantially quadrangular pyramid with a square shape with a bottom of 30 μm on one side. A surface light source device in the same manner as in Example 1 except that the side apex angle φ force of the convex cell is ¾0 °, 40 °, 50 °, 60 °, 70 ° and 80 °. [Device No. 2-1 to Device No. 2-6] were manufactured.
[0130] 各光制御素子について、実施例 1と同様にして、 Dl , D2, D3, D4, D5, D6を得 たところ、以下の表 2に示す値を得た。  [0130] For each light control element, D1, D2, D3, D4, D5, and D6 were obtained in the same manner as in Example 1. The values shown in Table 2 below were obtained.
[0131] 以上のようにして製造された装置 No. 2_ 1〜装置 No. 2_6の面光源装置につい て、一次光源としての R_LED、 G— LED及び B— LEDを点灯させて発光面を目視 により観察したところ、いずれも導光体光入射端面の近傍での各発光ダイオードに対 応した各色光の出射パターンは視認されず、発光面全体が白色で一様な明るさであ つに。 [0132] [表 2] [0131] For the surface light source devices of device No. 2_1 to device No. 2_6 manufactured as described above, the R_LED, G-LED and B-LED as the primary light source are turned on and the light-emitting surface is visually observed. As a result of observation, the emission pattern of each color light corresponding to each light emitting diode in the vicinity of the light guide light incident end face is not visually recognized, and the entire light emitting surface is white and uniform in brightness. [0132] [Table 2]
Figure imgf000033_0001
Figure imgf000033_0001
[0133] [実施例 3] [0133] [Example 3]
光制御素子の微細凹凸面(第 2の主面)を、底部の形状が一辺の長さ 35 μ mの正 六角形である略六角錐面からなる凸状セルを最密充填したものであって、該凸状セ ルの側面頂角 Φが 30° 、40° 及び 50° であるものを使用したこと以外は、実施例 1 と同様にして、面光源装置 [装置 No. 3_1〜装置 No. 3_3]を製造した。  The fine concavo-convex surface (second main surface) of the light control element is a close-packed filling of convex cells consisting of approximately hexagonal pyramid surfaces that are regular hexagons with a bottom shape of 35 μm on one side. The surface light source device [Device No. 3_1 to Device No. 3] was used in the same manner as in Example 1 except that the convex cell had a side apex angle Φ of 30 °, 40 °, and 50 °. 3_3] was manufactured.
[0134] 各光制御素子について、実施例 1と同様にして、 Dl, D2, D3, D4, D5, D6を得 たところ、以下の表 3に示す値を得た。  For each light control element, Dl, D2, D3, D4, D5, and D6 were obtained in the same manner as in Example 1. The values shown in Table 3 below were obtained.
[0135] 以上のようにして製造された装置 No. 3— 1〜装置 No. 3— 3の面光源装置につい て、一次光源としての R— LED、 G— LED及び B— LEDを点灯させて発光面を目視 により観察したところ、いずれも導光体光入射端面の近傍での各発光ダイオードに対 応した各色光の出射パターンは視認されず、発光面全体が白色で一様な明るさであ つに。  [0135] With respect to the surface light source devices manufactured as described above from device No. 3—1 to device No. 3—3, the R-LED, G-LED and B-LED as the primary light source were turned on. When the light emitting surface was visually observed, the emission pattern of each color light corresponding to each light emitting diode in the vicinity of the light guide light incident end surface was not visually recognized, and the entire light emitting surface was white and uniform in brightness. Suddenly.
[0136] [表 3] 装置 No. 3-1 3-2 3-3 [0136] [Table 3] Device No. 3-1 3-2 3-3
Φ (° ) 30 40 50  Φ (°) 30 40 50
Dl{%) 1.1 21.2 45.1  Dl (%) 1.1 21.2 45.1
D2{ ) 0.82 9.40  D2 {) 0.82 9.40
D3 111.5 9.2 1.4  D3 111.5 9.2 1.4
D4{° ) 31 25 15  D4 (°) 31 25 15
D5{%) 92.7 96.0 95.6  D5 (%) 92.7 96.0 95.6
D6 43.4 3.4 0.5  D6 43.4 3.4 0.5
[0137] [実施例 4] [Example 4]
光制御素子を、その微細凹凸面が導光体光入射端面と対向するように (即ち微細 凹凸面が第 1の主面となるように)配置したこと以外は、実施例 1と同様にして、面光 源装置 [装置 No.4_1〜装置 No.4_8]を製造した。  Except that the light control element is arranged so that the fine uneven surface thereof faces the light guide light incident end surface (that is, the fine uneven surface becomes the first main surface), it is the same as in Example 1. Surface light source devices [Device No. 4_1 to Device No. 4_8] were manufactured.
[0138] 各光制御素子について、実施例 1と同様にして、 Dl, D2, D3, D4, D5, D6を得 たところ、以下の表 4に示す値を得た。 For each light control element, Dl, D2, D3, D4, D5, and D6 were obtained in the same manner as in Example 1. The values shown in Table 4 below were obtained.
[0139] 以上のようにして製造された装置 No.4_1〜装置 No.4_8の面光源装置につい て、一次光源としての R_LED、 G— LED及び B— LEDを点灯させて発光面を目視 により観察したところ、いずれも各発光ダイオードに対応した各色光の出射パターン は視認されず、発光面全体が白色で一様な明るさであった。 [0139] For the surface light source devices of device No. 4_1 to device No. 4_8 manufactured as described above, the R_LED, G-LED, and B-LED as the primary light source are turned on and the light emitting surface is visually observed. As a result, the emission pattern of each color light corresponding to each light emitting diode was not visually recognized, and the entire light emitting surface was white and uniform in brightness.
[0140] [表 4] 装置 No. 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 [0140] [Table 4] Equipment No. 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8
(。 ) 40 50 60 70 80 90 100 110  (.) 40 50 60 70 80 90 100 110
Dl(¾) 10.1 0.3 0.5 2.6 1.5 2.4 9.2 36.1  Dl (¾) 10.1 0.3 0.5 2.6 1.5 2.4 9.2 36.1
D2(¾) 7.01 0, 27 0.46 2.39 1.37 2.31 8.55  D2 (¾) 7.01 0, 27 0.46 2.39 1.37 2.31 8.55
D3 11.2 325.0 151.9 15.4 26.9 10.0 5.6 1.3  D3 11.2 325.0 151.9 15.4 26.9 10.0 5.6 1.3
D4(° ) 37 57 69 29 61 61 15 1  D4 (°) 37 57 69 29 61 61 15 1
D5(%) 91.5 90.6 77.5 48.6 38.0 25.4 58.9 77.9  D5 (%) 91.5 90.6 77.5 48.6 38.0 25.4 58.9 77.9
D6 3.7 129.2 73.9 5.5 9.1 3.1 1.9 0, 6 [0141] [実施例 5] D6 3.7 129.2 73.9 5.5 9.1 3.1 1.9 0, 6 [0141] [Example 5]
光制御素子の微細凹凸面(第 2の主面)を、底部の形状が一辺の長さ 30 μ mの正 四角形である略四角錐面からなる凸状セルを最密充填したものであって、該凸状セ ノレの側面頂角 Φ力 ¾0° 、40° 、 50° 、 60° 、 70° 及び 80° であるものを使用した こと以外は、実施例 4と同様にして、面光源装置 [装置 No. 5_1〜装置 No. 5-6] を製造した。  The fine uneven surface (second main surface) of the light control element is a close-packed filling of convex cells consisting of a substantially quadrangular pyramid with a square shape with a bottom of 30 μm on one side. A surface light source device in the same manner as in Example 4 except that the convex vertex has a side apex angle Φ force of ¾0 °, 40 °, 50 °, 60 °, 70 ° and 80 °. [Device No. 5_1 to Device No. 5-6] were manufactured.
[0142] 各光制御素子について、実施例 1と同様にして、 Dl, D2, D3, D4, D5, D6を得 たところ、以下の表 5に示す値を得た。  [0142] For each light control element, Dl, D2, D3, D4, D5, and D6 were obtained in the same manner as in Example 1. The values shown in Table 5 below were obtained.
[0143] 以上のようにして製造された装置 No.5_1〜装置 No.5_6の面光源装置につい て、一次光源としての R_LED、 G— LED及び B— LEDを点灯させて発光面を目視 により観察したところ、いずれも各発光ダイオードに対応した各色光の出射パターン は視認されず、発光面全体が白色で一様な明るさであった。 [0143] For the surface light source devices of device No. 5_1 to device No. 5_6 manufactured as described above, the R_LED, G-LED and B-LED as the primary light source are turned on and the light emitting surface is visually observed. As a result, the emission pattern of each color light corresponding to each light emitting diode was not visually recognized, and the entire light emitting surface was white and uniform in brightness.
[0144] [表 5] [0144] [Table 5]
Figure imgf000035_0001
Figure imgf000035_0001
[実施例 6] [Example 6]
光制御素子の微細凹凸面(第 2の主面)を、底部の形状が一辺の長さ 35 μ mの正 六角形である略六角錐面からなる凸状セルを最密充填したものであって、該凸状セ ルの側面頂角 Φ力 ¾0° 、40° 及び 50° であるものを使用したこと以外は、実施例 4 と同様にして、面光源装置 [装置 No. 6_1〜装置 No. 6_3]を製造した。 [0146] 各光制御素子について、実施例 1と同様にして、 Dl , D2, D3, D4, D5, D6を得 たところ、以下の表 6に示す値を得た。 The fine concavo-convex surface (second main surface) of the light control element is a close-packed filling of convex cells consisting of approximately hexagonal pyramid surfaces that are regular hexagons with a bottom shape of 35 μm on one side. The surface light source device [Device No. 6_1 to Device No. 6] was used in the same manner as in Example 4 except that the convex cell had a side apex angle Φ force of ¾0 °, 40 ° and 50 °. 6_3] was manufactured. For each light control element, Dl, D2, D3, D4, D5, and D6 were obtained in the same manner as in Example 1. The values shown in Table 6 below were obtained.
[0147] 以上のようにして製造された装置 No. 6— 1〜装置 No. 6— 3の面光源装置につい て、一次光源としての R_LED、 G— LED及び B— LEDを点灯させて発光面を目視 により観察したところ、いずれも各発光ダイオードに対応した各色光の出射パターン は視認されず、発光面全体が白色で一様な明るさであった。 [0147] For the surface light source devices of devices No. 6-1 to No. 6-3 manufactured as described above, the R_LED, G-LED, and B-LED as the primary light sources are turned on to emit light. As a result, the emission pattern of each color light corresponding to each light emitting diode was not visually recognized, and the entire light emitting surface was white and uniform in brightness.
[0148] [表 6] [0148] [Table 6]
Figure imgf000036_0001
Figure imgf000036_0001
[0149] [実施例 7] [Example 7]
以下のようにして、図 21他に関し説明した実施形態に属する直下方式面光源装置 を製造した。  The direct type surface light source device belonging to the embodiment described with reference to FIG. 21 and others was manufactured as follows.
[0150] アクリル樹脂板(三菱レイヨン (株)製アタリライト [商品名] )をカットすることにより、底 部の形状が一辺の長さ 2cmの正方形で、側面頂角 φ力 70° で、高さが lcmの透光 性四角錐体を多数作製した。この四角錐体を、縦寸法が 235mm、横寸法が 370m m、厚さが 125 z mで片面に粘着性を持った PET製シートの粘着面に、最密充填す るように敷き詰めて接合することで、光制御素子を 2個作製した。これら 2個の光制御 素子を、いずれも平滑面が下向きになるようにして重ねて水平に配置した。この配置 では、四角錐体の底部の辺に沿って縦横にそれぞれ lcmずつ互いにずれるように 一方の素子と他方の素子とを重ねた(即ち、光制御素子の PET製シートの法線方向 にみて、一方の素子の四角錐体の頂点が他方の素子の四角錐体の底部の重心に 重なるようにした)。 [0150] By cutting an acrylic resin plate (Mitsubishi Rayon Co., Ltd. Atarilite [trade name]), the bottom shape is a square with a side length of 2 cm, and the side apex angle is φ70 ° and high. A number of translucent square pyramids with a length of lcm were produced. This quadrangular pyramid is spread and bonded to the adhesive surface of a PET sheet that has a vertical dimension of 235 mm, a horizontal dimension of 370 mm, a thickness of 125 zm, and an adhesive on one side so that it is closely packed. Thus, two light control elements were produced. These two light control elements were both placed horizontally with their smooth surfaces facing down. This arrangement Then, one element and the other element were overlapped so as to be shifted from each other by 1 cm vertically and horizontally along the bottom side of the quadrangular pyramid (that is, when viewed in the normal direction of the PET sheet of the light control element, The top of the quadrangular pyramid of one element overlaps the center of gravity of the bottom of the quadrangular pyramid of the other element).
[0151] 下側の光制御素子の下方に、該光制御素子の四角錐体の頂点に対応して、一次 光源としての略ランバーシャン光源である LED光源を 4個(1個の R— LEDと 1個の B — LEDと 2個の G— LED)互いに近接するように配置した。更に、上側の光制御素子 の上方に、光拡散性光学部材としての光拡散板を配置した。下側の光制御素子と光 学部材との間の距離 D2'は 57mmであり、一次光源 1R, 1G, IBと光学部材との間 の β巨離 D1 'は 60mmであった。  [0151] Below the lower light control element, there are four LED light sources (one R-LED) corresponding to the apex of the quadrangular pyramid of the light control element as a primary light source. And one B-LED and two G-LEDs). Further, a light diffusing plate as a light diffusing optical member was disposed above the upper light control element. The distance D2 'between the lower light control element and the optical member was 57 mm, and the β separation D1' between the primary light sources 1R, 1G, IB and the optical member was 60 mm.
[0152] 以上のようにして製造された面光源装置について、一次光源としての R_LED、 G 一 LED及び B— LEDを点灯させて発光面(光拡散板の光出射面)を目視により観察 したところ、各発光ダイオードに対応した各色光の出射パターンは視認されず、発光 面全体が白色で一様な明るさであった。  [0152] For the surface light source device manufactured as described above, the R_LED, G one LED, and B- LED as the primary light source were turned on and the light emitting surface (light emitting surface of the light diffusing plate) was visually observed. The emission pattern of each color light corresponding to each light emitting diode was not visually recognized, and the entire light emitting surface was white and uniform brightness.
[0153] [実施例 8]  [Example 8]
四角錐体として、底部の形状が一辺の長さ 2cmの正方形で、側面頂角 φ力 ( 実施例 8— 1)、 50° (実施例 8— 2)、 60° (実施例 8— 3)、 80° (実施例 8— 4)のも のを使用したこと以外は、実施例 7と同様にして、面光源装置を製造した。  As a quadrangular pyramid, the shape of the bottom is a square with a side length of 2 cm, and the side apex angle φ force (Example 8-1), 50 ° (Example 8-2), 60 ° (Example 8-3) A surface light source device was manufactured in the same manner as in Example 7 except that the one at 80 ° (Example 8-4) was used.
[0154] 以上のようにして製造された面光源装置について、一次光源としての R—LED、 G  [0154] For the surface light source device manufactured as described above, R-LED, G as the primary light source
LED及び B— LEDを点灯させて発光面(光拡散板の光出射面)を目視により観察 したところ、各発光ダイオードに対応した各色光の出射パターンは視認されず、発光 面全体が白色で一様な明るさであった。  LED and B— When the LED is turned on and the light emitting surface (light emitting surface of the light diffusing plate) is visually observed, the emission pattern of each color light corresponding to each light emitting diode is not visually recognized, and the entire light emitting surface is white. It was like this.
[0155] [実施例 9]  [0155] [Example 9]
四角錐体の代わりに、底部の形状が一辺の長さ 3cmの正三角形で、側面頂角 φが 60° (実施例 9一 1)、 70° (実施例 9一 2)、 80° (実施例 9一 3)、 90° (実施例 9一 4) 100° (実施例 9 _ 5)の三角錐体を使用して、光制御素子を 2個作製し、これら 2 個の光制御素子の配置において、三角錐体の底部の一辺に沿って横方向に互いに 1. 5cmずれ且つそれと垂直の縦方向に互いに 8. 7mmずれるように一方の素子と 他方の素子とを重ねたこと以外は、実施例 7と同様にして、面光源装置を製造した。 Instead of a quadrangular pyramid, the shape of the bottom is an equilateral triangle with a side length of 3 cm, and the side apex angle φ is 60 ° (Example 9-11), 70 ° (Example 91-2), 80 ° Example 9 1 3), 90 ° (Example 9 1 4) 100 ° (Example 9 _ 5) using a triangular pyramid, two light control elements were fabricated, and the two light control elements Place one element so that it is displaced 1.5cm laterally along one side of the bottom of the triangular pyramid and 8.7mm vertically perpendicular to it. A surface light source device was manufactured in the same manner as Example 7 except that the other element was overlapped.
[0156] 以上のようにして製造された面光源装置について、一次光源としての R—LED、 G [0156] Regarding the surface light source device manufactured as described above, R-LED, G as the primary light source
LED及び B— LEDを点灯させて発光面(光拡散板の光出射面)を目視により観察 したところ、各発光ダイオードに対応した各色光の出射パターンは視認されず、発光 面全体が白色で一様な明るさであった。  LED and B— When the LED is turned on and the light emitting surface (light emitting surface of the light diffusing plate) is visually observed, the emission pattern of each color light corresponding to each light emitting diode is not visually recognized, and the entire light emitting surface is white. It was like this.
[0157] [実施例 10] [0157] [Example 10]
実施例 1において、略三角錐面からなる凸状セルの側面頂角 φが 90° である光制 御素子について、同一の形状のものを更に 1個作製した。  In Example 1, one light control element having the same shape was produced for the side apex angle φ of the convex cell having a substantially triangular pyramid surface of 90 °.
[0158] これら 2個の光制御素子を、平滑面が互いに向き合うようにして、一次光源と導光体 光入射端面との間に配置したこと(即ち、装置 No. 1—6に、そこで使用されている光 制御素子と同様な素子を平滑面が互いに向き合うように追加配置したこと)以外は、 実施例 1と同様にして、面光源装置を製造した。 [0158] These two light control elements were arranged between the primary light source and the light guide light incident end face so that the smooth surfaces face each other (that is, used in the apparatus No. 1-6 there) A surface light source device was manufactured in the same manner as in Example 1 except that elements similar to the light control elements that were used were additionally arranged so that the smooth surfaces face each other.
[0159] 以上のようにして製造された面光源装置について、一次光源としての R—LED、 G [0159] For the surface light source device manufactured as described above, R-LED, G as the primary light source
LED及び B— LEDを点灯させて発光面を目視により観察したところ、各発光ダイ オードに対応した各色光の出射パターンは視認されず、発光面全体が白色でより均 一な明るさであった。  When the LED and B-LEDs were turned on and the light emitting surface was visually observed, the emission pattern of each color light corresponding to each light emitting diode was not visually recognized, and the entire light emitting surface was white and more uniform in brightness. .

Claims

請求の範囲 The scope of the claims
[1] 光入射端面及び光出射面を有する導光体と、該導光体の光入射端面に隣接して配 置された一次光源と、該一次光源から発せられ前記導光体の光入射端面に入射す る光に対する混合作用を持つ光混合手段とを備えている面光源装置であって、 前記光混合手段は前記光入射端面に沿って配置された光制御素子を含んでおり [1] A light guide having a light incident end surface and a light exit surface, a primary light source disposed adjacent to the light incident end surface of the light guide, and light incident on the light guide emitted from the primary light source A surface light source device including a light mixing unit having a mixing effect on light incident on the end surface, the light mixing unit including a light control element disposed along the light incident end surface.
、該光制御素子は前記光入射端面と対向する第 1の主面とその反対側の第 2の主面 とを有しており、 The light control element has a first main surface facing the light incident end surface and a second main surface opposite to the first main surface.
前記光制御素子は、前記一次光源からの光束のうち前記第 2の主面の法線方向に 対し角度 20度以下の方向に進行する光のみを前記第 2の主面に入射させた時に、 前記第 1の主面から前記法線方向に対し角度 20度以下の方向に出射する光量が、 前記一次光源からの光束の全てを前記第 2の主面に入射させた時の 50%以下とな るものであることを特徴とする面光源装置。  The light control element causes only light traveling in a direction of an angle of 20 degrees or less to the normal direction of the second main surface of the light flux from the primary light source to be incident on the second main surface. The amount of light emitted from the first main surface in a direction with an angle of 20 degrees or less with respect to the normal direction is 50% or less when all of the light flux from the primary light source is incident on the second main surface. A surface light source device, characterized in that
[2] 前記光制御素子は、前記一次光源からの光束のうち前記法線方向に対し角度 20度 以下の方向に進行する光のみを前記第 2の主面に入射させた時に、前記第 1の主面 力 前記法線方向に対し角度 20度以下の方向に出射する光量が、前記第 2の主面 に入射する光量の 40%以下となるものであることを特徴とする、請求項 1に記載の面 光源装置。 [2] The light control element causes the first light source to emit only light that travels in a direction with an angle of 20 degrees or less with respect to the normal direction out of the light flux from the primary light source. The main surface force of the light source is characterized in that the amount of light emitted in an angle of 20 degrees or less with respect to the normal direction is 40% or less of the amount of light incident on the second main surface. The surface light source device described in 1.
[3] 前記光制御素子は、前記一次光源からの光束のうち前記法線方向に対し角度 20度 以下の方向に進行する光のみを前記第 2の主面に入射させた時に、前記第 1の主面 力 前記法線方向に対し角度 20度以上 80度以下の方向に出射する光量が、前記 法線方向に対し角度 20度以下の方向に出射する光量の 1倍以上となるものであるこ とを特徴とする、請求項 1に記載の面光源装置。  [3] The light control element causes the first light source when only light traveling in a direction of an angle of 20 degrees or less with respect to the normal direction is incident on the second main surface among the light flux from the primary light source. The amount of light emitted in the direction of an angle of 20 degrees or more and 80 degrees or less with respect to the normal direction is greater than or equal to one time the amount of light emitted in a direction of an angle of 20 degrees or less with respect to the normal direction. The surface light source device according to claim 1, wherein:
[4] 前記光制御素子は、前記一次光源からの光束のうち前記法線方向に対し角度 20度 以下の方向に進行する光のみを前記第 2の主面に入射させた時に、前記法線方向 を含む或る平面内において、前記第 1の主面から前記法線方向に対し角度 20度以 上 80度以下の方向に出射する光量が、前記法線方向に対し角度 20度以下の方向 に出射する光量の 1倍以上となるものであることを特徴とする、請求項 1に記載の面 光源装置。 [4] The light control element causes the normal line when only light that travels in a direction of an angle of 20 degrees or less with respect to the normal direction of the light flux from the primary light source is incident on the second main surface. In a certain plane including the direction, the amount of light emitted from the first main surface in a direction with an angle of 20 degrees to 80 degrees with respect to the normal direction is a direction with an angle of 20 degrees or less with respect to the normal direction 2. The surface light source device according to claim 1, wherein the surface light source device is one or more times the amount of light emitted to the light source.
[5] 前記光制御素子は、前記一次光源からの光束のうち前記法線方向に対し角度 20度 以下の方向に進行する光のみを前記第 2の主面に入射させた時に、前記第 1の主面 力 の出射光の出射角度に対する光度分布におけるピークが、前記法線方向に対し て 10度以上の角度となるものであることを特徴とする、請求項 1に記載の面光源装置 [5] The light control element causes the first light source when only light traveling in a direction of an angle of 20 degrees or less with respect to the normal direction is incident on the second main surface among the light flux from the primary light source. 2. The surface light source device according to claim 1, wherein a peak in a luminous intensity distribution with respect to an outgoing angle of outgoing light of the principal surface force is an angle of 10 degrees or more with respect to the normal direction.
[6] 前記光制御素子は、前記一次光源からの光束のうち前記法線方向に対し角度 20度 以下の方向に進行する光のみを前記第 2の主面に入射させた時に、前記第 1の主面 力 出射する光量が、前記第 2の主面に入射する光量の 40%以下となるものである ことを特徴とする、請求項 1に記載の面光源装置。 [6] The light control element causes the first light source to emit only light that travels in a direction of an angle of 20 degrees or less with respect to the normal direction out of the light flux from the primary light source. 2. The surface light source device according to claim 1, wherein the amount of light emitted from the main surface is 40% or less of the amount of light incident on the second main surface.
[7] 前記導光体と前記一次光源との間の距離が 2〜: 15mmであることを特徴とする、請求 項 1に記載の面光源装置。  7. The surface light source device according to claim 1, wherein a distance between the light guide and the primary light source is 2 to 15 mm.
[8] 前記導光体の光出射面上に配置され且つ前記導光体の光出射面から出射する光 が入光する入光面及びその反対側の出光面を有する光偏向素子を備えており、該 光偏向素子は、前記入光面に前記導光体の光入射端面に沿って延び且つ互いに 平行に配列された複数のプリズム列を備えており、該プリズム列のそれぞれは前記導 光体の光出射面から到来する光が入射する第 1のプリズム面と入射した光が内面反 射される第 2のプリズム面とを有することを特徴とする、請求項 1に記載の面光源装置  [8] An optical deflection element that is disposed on the light exit surface of the light guide and has a light entrance surface on which light emitted from the light exit surface of the light guide enters and a light exit surface on the opposite side. The light deflection element includes a plurality of prism rows that extend along the light incident end surface of the light guide and are arranged in parallel to each other on the light incident surface. 2. The surface light source device according to claim 1, comprising a first prism surface on which light coming from a light exit surface of the body is incident and a second prism surface on which incident light is reflected on the inner surface.
[9] 光入射面及びその反対側の光出射面を有し且つ光拡散性または光集束性を持つ 光学部材と、該光学部材の光入射面に隣接して配置された一次光源と、該一次光源 から発せられ前記光学部材の光入射面に入射する光に対する混合作用を持つ光混 合手段とを備えている面光源装置であって、 [9] An optical member having a light incident surface and a light emitting surface opposite to the light incident surface, and having a light diffusing property or a light focusing property; a primary light source disposed adjacent to the light incident surface of the optical member; A surface light source device comprising a light mixing means having a mixing action on light emitted from a primary light source and incident on a light incident surface of the optical member,
前記光混合手段は前記光入射面に沿って配置された光制御素子を含んでおり、 該光制御素子は前記光入射面と対向する第 1の主面とその反対側の第 2の主面とを 有しており、  The light mixing means includes a light control element disposed along the light incident surface, and the light control element includes a first main surface facing the light incident surface and a second main surface opposite to the first main surface. And
前記光制御素子は、前記一次光源からの光束のうち前記第 2の主面の法線方向に 対し角度 20度以下の方向に進行する光のみを前記第 2の主面に入射させた時に、 前記第 1の主面から前記法線方向に対し角度 20度以下の方向に出射する光量が、 前記一次光源からの光束の全てを前記第 2の主面に入射させた時の 50%以下とな るものであることを特徴とする面光源装置。 The light control element causes only light traveling in a direction of an angle of 20 degrees or less to the normal direction of the second main surface of the light flux from the primary light source to be incident on the second main surface. The amount of light emitted from the first main surface in a direction with an angle of 20 degrees or less with respect to the normal direction, A surface light source device characterized in that it is 50% or less of the total luminous flux from the primary light source when it is incident on the second main surface.
[10] 前記光制御素子は、前記一次光源からの光束のうち前記法線方向に対し角度 20度 以下の方向に進行する光のみを前記第 2の主面に入射させた時に、前記第 1の主面 力 前記法線方向に対し角度 20度以下の方向に出射する光量が、前記第 2の主面 に入射する光量の 40%以下となるものであることを特徴とする、請求項 9に記載の面 光源装置。 [10] The light control element causes the first light source to emit only light that travels in a direction with an angle of 20 degrees or less with respect to the normal direction out of the light flux from the primary light source. The main surface force of the light source is characterized in that the amount of light emitted in an angle of 20 degrees or less with respect to the normal direction is 40% or less of the amount of light incident on the second main surface. The surface light source device described in 1.
[11] 前記光制御素子は、前記一次光源からの光束のうち前記法線方向に対し角度 20度 以下の方向に進行する光のみを前記第 2の主面に入射させた時に、前記第 1の主面 力 前記法線方向に対し角度 20度以上 80度以下の方向に出射する光量が、前記 法線方向に対し角度 20度以下の方向に出射する光量の 1倍以上となるものであるこ とを特徴とする、請求項 9に記載の面光源装置。  [11] The light control element causes the first light source to emit only light that travels in a direction with an angle of 20 degrees or less with respect to the normal direction out of the light flux from the primary light source. The amount of light emitted in the direction of an angle of 20 degrees or more and 80 degrees or less with respect to the normal direction is greater than or equal to one time the amount of light emitted in a direction of an angle of 20 degrees or less with respect to the normal direction. The surface light source device according to claim 9, wherein:
[12] 前記光制御素子は、前記一次光源からの光束のうち前記法線方向に対し角度 20度 以下の方向に進行する光のみを前記第 2の主面に入射させた時に、前記法線方向 を含む或る平面内において、前記第 1の主面から前記法線方向に対し角度 20度以 上 80度以下の方向に出射する光量が、前記法線方向に対し角度 20度以下の方向 に出射する光量の 1倍以上となるものであることを特徴とする、請求項 9に記載の面 光源装置。  [12] The light control element causes the normal line when only light traveling in a direction of an angle of 20 degrees or less with respect to the normal direction of the light flux from the primary light source is incident on the second main surface. In a plane including the direction, the amount of light emitted from the first main surface in a direction with an angle of 20 degrees or more and 80 degrees or less with respect to the normal direction is a direction with an angle of 20 degrees or less with respect to the normal direction 10. The surface light source device according to claim 9, wherein the surface light source device is one or more times the amount of light emitted to the light source.
[13] 前記光制御素子は、前記一次光源からの光束のうち前記法線方向に対し角度 20度 以下の方向に進行する光のみを前記第 2の主面に入射させた時に、前記第 1の主面 力 の出射光の出射角度に対する光度分布におけるピークが、前記法線方向に対し て 10度以上の角度となるものであることを特徴とする、請求項 9に記載の面光源装置  [13] The light control element causes the first light source to emit only light that travels in a direction of an angle of 20 degrees or less with respect to the normal direction out of the light flux from the primary light source. 10. The surface light source device according to claim 9, wherein the peak in the luminous intensity distribution with respect to the outgoing angle of the outgoing light of the principal surface force is an angle of 10 degrees or more with respect to the normal direction.
[14] 前記光制御素子は、前記一次光源からの光束のうち前記法線方向に対し角度 20度 以下の方向に進行する光のみを前記第 2の主面に入射させた時に、前記第 1の主面 力 出射する光量が、前記第 2の主面に入射する光量の 40%以下となるものである ことを特徴とする、請求項 9に記載の面光源装置。 [14] The light control element causes the first light source to emit only light that travels in a direction with an angle of 20 degrees or less with respect to the normal direction out of the light flux from the primary light source. The surface light source device according to claim 9, wherein the amount of light emitted from the main surface is 40% or less of the amount of light incident on the second main surface.
[15] 前記光学部材と前記一次光源との間の距離が 5〜60mmであることを特徴とする、請 求項 9に記載の面光源装置。 [15] The distance between the optical member and the primary light source is 5 to 60 mm. The surface light source device according to claim 9.
[16] 前記光学部材の光出射面上に配置され且つ前記光学部材の光出射面から出射す る光が入光する入光面及びその反対側の出光面を有する光偏向素子を備えており、 該光偏向素子は、前記入光面または出光面に互いに平行に配列された複数のプリ ズム列を備えていることを特徴とする、請求項 9に記載の面光源装置。 [16] An optical deflecting element that is disposed on the light emitting surface of the optical member and has a light incident surface on which light emitted from the light emitting surface of the optical member enters and a light emitting surface opposite to the light incident surface. 10. The surface light source device according to claim 9, wherein the light deflection element includes a plurality of prism arrays arranged in parallel to each other on the light incident surface or the light exit surface.
[17] 前記光混合手段は、前記第 2の主面から出射する戻り光を反射する反射面を含んで レ、ることを特徴とする、請求項 1または 9に記載の面光源装置。 17. The surface light source device according to claim 1, wherein the light mixing unit includes a reflection surface that reflects return light emitted from the second main surface.
[18] 前記光混合手段は、前記光制御素子と略平行に配列された光拡散素子を含んでい ることを特徴とする、請求項 1または 9に記載の面光源装置。 18. The surface light source device according to claim 1 or 9, wherein the light mixing means includes a light diffusing element arranged substantially in parallel with the light control element.
[19] 前記第 1の主面及び第 2の主面のうちの少なくとも一方は凸状セルが多数配列され てなる微細凹凸面からなり、前記凸状セルは略角錐面または略円錐面からなることを 特徴とする、請求項 1または 9に記載の面光源装置。 [19] At least one of the first main surface and the second main surface is made of a fine uneven surface in which a large number of convex cells are arranged, and the convex cell is made of a substantially pyramidal surface or a substantially conical surface. The surface light source device according to claim 1 or 9, characterized in that.
[20] 前記凸状セルは底部の平均径が 10 μ m〜4cmであることを特徴とする、請求項 19 に記載の面光源装置。 20. The surface light source device according to claim 19, wherein the convex cell has an average diameter at the bottom of 10 μm to 4 cm.
[21] 前記凸状セルは高さが 3 /i m〜3cmであることを特徴とする、請求項 19に記載の面 光源装置。  21. The surface light source device according to claim 19, wherein the convex cell has a height of 3 / im to 3 cm.
[22] 前記凸状セルは、底部の形状が正三角形である略三角錐面または底部の形状が正 六角形である略六角錐面または底部の形状が正方形である略四角錐面からなり、前 記底部が最密充填されるように配列されていることを特徴とする、請求項 19に記載の 面光源装置。  [22] The convex cell consists of a substantially triangular pyramidal surface whose bottom shape is a regular triangle, a substantially hexagonal pyramidal surface whose bottom shape is a regular hexagon, or a substantially quadrangular pyramid surface whose bottom shape is a square. 20. The surface light source device according to claim 19, wherein the bottom portions are arranged so as to be closely packed.
[23] 前記凸状セルは、側面頂角が 40〜: 110° の略三角錐面からなることを特徴とする、 請求項 19に記載の面光源装置。  23. The surface light source device according to claim 19, wherein the convex cell comprises a substantially triangular pyramid surface having a side apex angle of 40 to 110 degrees.
[24] 前記凸状セルは、側面頂角が 30〜80° の略四角錐面からなることを特徴とする、請 求項 19に記載の面光源装置。 [24] The surface light source device according to claim 19, wherein the convex cell comprises a substantially quadrangular pyramid surface having a side apex angle of 30 to 80 °.
[25] 前記凸状セルは、側面頂角が 30〜50° の略六角錐面からなることを特徴とする、請 求項 19に記載の面光源装置。 [25] The surface light source device according to claim 19, wherein the convex cell is formed of a substantially hexagonal pyramid surface having a side apex angle of 30 to 50 °.
[26] 前記凸状セルは頂部に平坦領域を有しており、該平坦領域は前記底部に対する面 積比率が 10%以下であることを特徴とする、請求項 19に記載の面光源装置。 26. The surface light source device according to claim 19, wherein the convex cell has a flat area at the top, and the flat area has an area ratio of 10% or less with respect to the bottom.
[27] 前記第 1の主面及び第 2の主面の双方が前記微細凹凸面からなることを特徴とする、 請求項 19に記載の面光源装置。 27. The surface light source device according to claim 19, wherein both the first main surface and the second main surface are made of the fine uneven surface.
[28] 前記光制御素子は前記凸状セル内に光拡散剤を含んでいることを特徴とする、請求 項 19に記載の面光源装置。 28. The surface light source device according to claim 19, wherein the light control element includes a light diffusing agent in the convex cell.
[29] 前記光制御素子は内部に光拡散剤を含んでいることを特徴とする、請求項 1または 9 に記載の面光源装置。 29. The surface light source device according to claim 1, wherein the light control element includes a light diffusing agent therein.
[30] 前記光混合手段は複数の前記光制御素子を含んでいることを特徴とする、請求項 1 または 9に記載の面光源装置。  30. The surface light source device according to claim 1, wherein the light mixing means includes a plurality of the light control elements.
[31] 前記一次光源は前記法線方向の光度が最大となる略ランバーシャン光源であること を特徴とする、請求項 1または 9に記載の面光源装置。 31. The surface light source device according to claim 1, wherein the primary light source is a substantially Lambertian light source having a maximum luminous intensity in the normal direction.
[32] 前記一次光源は光度分布の半値半幅が 40度以上 80度以下であることを特徴とする[32] The primary light source is characterized in that the half width at half maximum of the luminous intensity distribution is not less than 40 degrees and not more than 80 degrees
、請求項 29に記載の面光源装置。 30. A surface light source device according to claim 29.
[33] 前記一次光源は点状光源からなり、前記面光源装置は複数の前記点状一次光源を 備えていることを特徴とする、請求項 1または 9に記載の面光源装置。 [33] The surface light source device according to claim 1 or 9, wherein the primary light source is a point light source, and the surface light source device includes a plurality of the point primary light sources.
[34] 前記複数の点状一次光源は互いに発光色の異なる複数種類のものからなることを特 徴とする、請求項 33に記載の面光源装置。 34. The surface light source device according to claim 33, wherein the plurality of point-like primary light sources are made of a plurality of types having different emission colors.
PCT/JP2007/059045 2006-04-28 2007-04-26 Surface-area light source device using light mixing means WO2007125987A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-125335 2006-04-28
JP2006125335A JP2007299572A (en) 2006-04-28 2006-04-28 Surface light source device using optical mixing means

Publications (1)

Publication Number Publication Date
WO2007125987A1 true WO2007125987A1 (en) 2007-11-08

Family

ID=38655512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059045 WO2007125987A1 (en) 2006-04-28 2007-04-26 Surface-area light source device using light mixing means

Country Status (3)

Country Link
JP (1) JP2007299572A (en)
TW (1) TW200741311A (en)
WO (1) WO2007125987A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106125188A (en) * 2016-06-29 2016-11-16 中国人民解放军63983部队 A kind of area source leaded light colour mixture structure and there is the illuminating lamp of this leaded light colour mixture structure
CN110632787A (en) * 2018-06-22 2019-12-31 美蓓亚三美株式会社 Planar lighting device
CN117153995A (en) * 2023-10-30 2023-12-01 罗化芯显示科技开发(江苏)有限公司 LED packaging film layer and LED packaging structure

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI368766B (en) * 2007-12-03 2012-07-21 Ind Tech Res Inst Composite light guiding film module
JP2010282908A (en) * 2009-06-08 2010-12-16 Hayashi Telempu Co Ltd Lighting device
JPWO2011030594A1 (en) * 2009-09-11 2013-02-04 旭化成イーマテリアルズ株式会社 Light diffusion plate for point light source and direct type point light source backlight device
WO2011081014A1 (en) * 2009-12-28 2011-07-07 シャープ株式会社 Lighting device, display device, and television reception device
CN104808270B (en) * 2010-12-04 2017-08-15 3M创新有限公司 Light fixture and forming method thereof
WO2013005147A1 (en) * 2011-07-01 2013-01-10 Koninklijke Philips Electronics N.V. Light guide
JP6751452B2 (en) * 2018-06-22 2020-09-02 ミネベアミツミ株式会社 Area lighting device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341132A (en) * 1992-06-12 1993-12-24 Fujitsu Ltd Surface light source unit
JP2002245832A (en) * 2001-02-22 2002-08-30 Sharp Corp Illumination device
JP2002260427A (en) * 2001-03-05 2002-09-13 Olympus Optical Co Ltd Lighting device
JP2003132722A (en) * 2001-10-22 2003-05-09 Advanced Display Inc Surface-formed lightsource device and liquid crystal display device provided with the same
JP2005196989A (en) * 2003-12-26 2005-07-21 Fujitsu Display Technologies Corp Backlight and liquid crystal display device
JP3114195U (en) * 2005-06-29 2005-09-29 科橋電子股▲ふん▼有限公司 Light adjustment structure of side light source type backlight module
JP2005285702A (en) * 2004-03-31 2005-10-13 Citizen Watch Co Ltd Translucent member and lighting system using it
JP2005352426A (en) * 2004-06-14 2005-12-22 Sony Corp Back light device and liquid crystal display device
JP2006108032A (en) * 2004-10-08 2006-04-20 Mitsubishi Rayon Co Ltd Light guide body for surface light source, its manufacturing method as well as surface light source device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341132A (en) * 1992-06-12 1993-12-24 Fujitsu Ltd Surface light source unit
JP2002245832A (en) * 2001-02-22 2002-08-30 Sharp Corp Illumination device
JP2002260427A (en) * 2001-03-05 2002-09-13 Olympus Optical Co Ltd Lighting device
JP2003132722A (en) * 2001-10-22 2003-05-09 Advanced Display Inc Surface-formed lightsource device and liquid crystal display device provided with the same
JP2005196989A (en) * 2003-12-26 2005-07-21 Fujitsu Display Technologies Corp Backlight and liquid crystal display device
JP2005285702A (en) * 2004-03-31 2005-10-13 Citizen Watch Co Ltd Translucent member and lighting system using it
JP2005352426A (en) * 2004-06-14 2005-12-22 Sony Corp Back light device and liquid crystal display device
JP2006108032A (en) * 2004-10-08 2006-04-20 Mitsubishi Rayon Co Ltd Light guide body for surface light source, its manufacturing method as well as surface light source device
JP3114195U (en) * 2005-06-29 2005-09-29 科橋電子股▲ふん▼有限公司 Light adjustment structure of side light source type backlight module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106125188A (en) * 2016-06-29 2016-11-16 中国人民解放军63983部队 A kind of area source leaded light colour mixture structure and there is the illuminating lamp of this leaded light colour mixture structure
CN106125188B (en) * 2016-06-29 2019-11-26 中国人民解放军63983部队 A kind of area source leaded light colour mixture structure and the headlamp with the leaded light colour mixture structure
CN110632787A (en) * 2018-06-22 2019-12-31 美蓓亚三美株式会社 Planar lighting device
CN117153995A (en) * 2023-10-30 2023-12-01 罗化芯显示科技开发(江苏)有限公司 LED packaging film layer and LED packaging structure

Also Published As

Publication number Publication date
TW200741311A (en) 2007-11-01
JP2007299572A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
TWI417612B (en) Lighting apparatus and image display apparatus using the same
WO2007125987A1 (en) Surface-area light source device using light mixing means
JP4677019B2 (en) Light source device
JP3959024B2 (en) Surface light source device and prism sheet used therefor
TW594108B (en) Light source device and light deflection element
WO2011030594A1 (en) Light diffusing plate used for point light sources, and direct-lighting point-light-source backlight device
JP2008209928A (en) Light source device and light deflector for use therein
WO2007145248A1 (en) Light guide plate, light guide plate assembly, and surface illuminating device and liquid crystal display device using these
JP4323189B2 (en) Optical deflection element and surface light source device
JP2008046606A (en) Optical plate and backlight module using the optical plate
JP2009265616A (en) Optical sheet, backlight device and display
JP2011123379A (en) Light beam control unit, direct backlight apparatus and liquid crystal display apparatus
JP4889130B2 (en) Optical deflection element and surface light source device
JP2011187300A (en) Light guide plate, plane light source device, and liquid crystal display
JP5736957B2 (en) Light guide plate, surface light source device and display device
JP5698498B2 (en) Light beam control unit, direct type backlight device, and liquid crystal display device
JP2007103325A (en) Lighting device, light control member provided for it and image display apparatus using it
JP5012221B2 (en) Backlight unit and display device
JP4242162B2 (en) Light source device
JP2010044921A (en) Plane light source element and light control member used for this as well as image display using this
JP4778279B2 (en) Optical mixing element and surface light source device using the same
JP2012014933A (en) Light guide plate and method for manufacturing the same, plane light source device, and liquid crystal display
JP5791386B2 (en) Direct type point light source backlight device
TW504558B (en) Surface light source device and prism sheet used with the same
JP4160297B2 (en) Optical deflection element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07742480

Country of ref document: EP

Kind code of ref document: A1