JP4160297B2 - Optical deflection element - Google Patents

Optical deflection element Download PDF

Info

Publication number
JP4160297B2
JP4160297B2 JP2001380596A JP2001380596A JP4160297B2 JP 4160297 B2 JP4160297 B2 JP 4160297B2 JP 2001380596 A JP2001380596 A JP 2001380596A JP 2001380596 A JP2001380596 A JP 2001380596A JP 4160297 B2 JP4160297 B2 JP 4160297B2
Authority
JP
Japan
Prior art keywords
light
prism
light source
convex curved
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001380596A
Other languages
Japanese (ja)
Other versions
JP2003203513A (en
JP2003203513A5 (en
Inventor
友義 山下
一清 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2001380596A priority Critical patent/JP4160297B2/en
Publication of JP2003203513A publication Critical patent/JP2003203513A/en
Publication of JP2003203513A5 publication Critical patent/JP2003203513A5/ja
Application granted granted Critical
Publication of JP4160297B2 publication Critical patent/JP4160297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light source device having a narrow distribution of emitted light, capable of enhancing efficiency in using the quantity of light of a primary light source, and easy to enhance image quality of a display device with a simplified structure. <P>SOLUTION: This light source device is provided with a light guiding body 3 to guide primary light source light and to emit it on the angle from an light emitting surface 33, and a light deflecting element 4 disposed adjacent to the light emitting surface 33. A plurality of parallel prism rows are formed on the light entering surface 41 of the light deflecting element. Virtual prism rows 1 arranged at the same pitch as one for the prism rows are hypothetically set, and its vertical angle &theta; is set so that virtual light passing toward the peak emitted light from the light emitting surface 33 by almost touching the top part of the adjacent virtual prism enters from a prism surface I-1 and advances toward the line normal to the light exiting surface by being internally and totally reflected by the virtual prism surface I-2. The prism surface of the light entering surface 41 take the form of a projecting curved surface having a larger inclined angle than an inclined angle made by the virtual prism surface I-2 to the light exiting surface 42 at a position closer to the light exiting surface 42 than to a position K2 where the virtual light is internally and totally reflected. <P>COPYRIGHT: (C)2003,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ノートパソコンや液晶テレビ等において表示部として使用される液晶表示装置などを構成するエッジライト方式の光源装置に関するものであり、特に導光体の光出射面側に配置される光偏向素子の改良に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年、カラー液晶表示装置は、携帯用ノートパソコンやパソコン等のモニターとして、あるいは液晶テレビやビデオ一体型液晶テレビ等の表示部として、種々の分野で広く使用されてきている。また、情報処理量の増大化、ニーズの多様化、マルチメディア対応等に伴って、液晶表示装置の大画面化、高精細化が盛んに進められている。
【0003】
液晶表示装置は、基本的にバックライト部と液晶表示素子部とから構成されている。バックライト部としては、液晶表示素子部の直下に光源を配置した直下方式のものや導光体の側端面に対向するように光源を配置したエッジライト方式のものがあり、液晶表示装置のコンパクト化の観点からエッジライト方式が多用されている。
【0004】
ところで、近年、比較的小さな画面寸法の表示装置であって観察方向範囲の比較的狭い例えば携帯電話機の表示部として使用される液晶表示装置等では、消費電力の低減の観点から、エッジライト方式のバックライト部として、一次光源から発せられる光量を有効に利用するために、画面から出射する光束の広がり角度をできるだけ小さくして所要の角度範囲に集中して光を出射させるものが利用されてきている。
【0005】
このように観察方向範囲が限定される表示装置であって、一次光源の光量の利用効率を高め消費電力を低減するために比較的狭い範囲に集中して光出射を行う光源装置として、本出願人は、特願2000−265574号において、導光体の光出射面に隣接して両面にプリズム形成面を有するプリズムシートを使用することを提案している。この両面プリズムシートでは、一方の面である入光面及び他方の面である出光面のそれぞれに、互いに平行な複数のプリズム列が形成されており、入光面と出光面とでプリズム列方向を合致させ且つプリズム列どうしを対応位置に配置している。これにより、導光体の光出射面から該光出射面に対して傾斜した方向に出射光のピークを持ち適宜の角度範囲に分布して出射する光を、プリズムシートの入光面の一方のプリズム面から入射させ他方のプリズム面で内面反射させ、更に出光面のプリズムでの屈折作用を受けさせて、比較的狭い所要方向へ光を集中出射させる。
【0006】
この光源装置によれば、狭い角度範囲の集中出射が可能であるが、光偏向素子として使用されるプリズムシートとして両面に互いに平行な複数のプリズム列を、入光面と出光面とでプリズム列方向を合致させ且つプリズム列どうしを対応位置に配置することが必要であり、この成形が複雑になる。
【0007】
そこで、本発明の目的は、出射光の分布が非常に狭くコントロールされ、一次光源の光量の利用効率の向上が可能(即ち、一次光源から発せられる光を所要の観察方向へ集中して出射させる効率が高く)、しかも簡素化された構成で画像品位の向上が容易な光源装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明の光偏向素子は、入光面とその反対側の出光面とを有しており、前記入光面には互いに並列に配列された複数のプリズム列が形成されており、該プリズム列は2つのプリズム面を有し、一方のプリズム面の少なくとも一部領域が凸曲面形状をなし、前記凸曲面形状の曲率半径r前記プリズム列の配列ピッチPとの比(r/P)が7〜30であることを特徴とするものである。
【0009】
また、本発明の光偏向素子は、入光面とその反対側の出光面とを有しており、前記入光面には互いに並列に配列された複数のプリズム列が形成されており、該プリズム列は2つのプリズム面を有し、一方のプリズム面の少なくとも一部領域が凸曲面形状をなし、前記凸曲面形状を有するプリズム面と前記プリズム列の稜線と谷線を含む平面との最大距離dと、前記プリズム列の配列ピッチPとの比(d/P)が、0.05〜5%であることを特徴とするものである。
【0018】
【発明の実施の形態】
以下、図面を参照しながら、本発明の実施の形態を説明する。
【0019】
図1は、本発明による面光源装置の一つの実施形態を示す模式的斜視図である。図1に示されているように、本発明の面光源装置は、少なくとも一つの側端面を光入射面31とし、これと略直交する一つの表面を光出射面33とする導光体3と、この導光体3の光入射面31に対向して配置され光源リフレクタ2で覆われた一次光源1と、導光体3の光出射面上に配置された光偏向素子4と、導光体3の光出射面33の裏面34に対向して配置された光反射素子5とから構成される。
【0020】
導光体3は、XY面と平行に配置されており、全体として矩形板状をなしている。導光体3は4つの側端面を有しており、そのうちYZ面と平行な1対の側端面のうちの少なくとも一つの側端面を光入射面31とする。光入射面31は光源1と対向して配置されており、光源1から発せられた光は光入射面31から導光体3内へと入射する。本発明においては、例えば、光入射面31と対向する側端面32等の他の側端面にも光源を配置してもよい。
【0021】
導光体3の光入射面31に略直交した2つの主面は、それぞれXY面と略平行に位置しており、いずれか一方の面(図では上面)が光出射面33となる。この光出射面33またはその裏面34のうちの少なくとも一方の面に粗面からなる指向性光出射機能部や、プリズム列、レンチキュラーレンズ列、V字状溝等の多数のレンズ列を光入射面31と略平行に並列形成したレンズ面からなる指向性光出射機能部などを付与することによって、光入射面31から入射した光を導光体3中を導光させながら光出射面33から光入射面31および光出射面33に直交する面(XZ面)内の出射光分布において指向性のある光を出射させる。このXZ面内分布における出射光分布のピークの方向が光出射面31となす角度をαとする。該角度αは例えば10〜40度であり、出射光分布の半値幅は例えば10〜40度である。
【0022】
導光体3の表面に形成する粗面やレンズ列は、ISO4287/1−1984による平均傾斜角θaが0.5〜15°の範囲のものとすることが、光出射面33内での輝度の均斉度を図る点から好ましい。平均傾斜角θaは、さらに好ましくは1〜12°の範囲であり、より好ましくは1.5〜11°の範囲である。この平均傾斜角θaは、導光体3の厚さ(t)と入射光が伝搬する方向の長さ(L)との比(L/t)によって最適範囲が設定されることが好ましい。すなわち、導光体3としてL/tが20〜200程度のものを使用する場合は、平均傾斜角θaを0.5〜7.5°とすることが好ましく、さらに好ましくは1〜5°の範囲であり、より好ましくは1.5〜4°の範囲である。また、導光体3としてL/tが20以下程度のものを使用する場合は、平均傾斜角θaを7〜12°とすることが好ましく、さらに好ましくは8〜11°の範囲である。
【0023】
導光体3に形成される粗面の平均傾斜角θaは、ISO4287/1−1984に従って、触針式表面粗さ計を用いて粗面形状を測定し、測定方向の座標をxとして、得られた傾斜関数f(x)から次の(1)式および(2)式を用いて求めることができる。ここで、Lは測定長さであり、Δaは平均傾斜角θaの正接である。
【0024】
Δa=(1/L)∫0 L|(d/Dx)f(x)|dx ・・・ (1)
θa=tan-1(Δa) ・・・ (2)
さらに、導光体3としては、その光出射率が0.5〜5%の範囲にあるものが好ましく、より好ましくは1〜3%の範囲である。これは、光出射率が0.5%より小さくなると導光体3から出射する光量が少なくなり十分な輝度が得られなくなる傾向にあり、光出射率が5%より大きくなると光源1近傍で多量の光が出射して、光出射面33内でのX方向における光の減衰が著しくなり、光出射面33での輝度の均斉度が低下する傾向にあるためである。このように導光体3の光出射率を0.5〜5%とすることにより、光出射面から出射する光の出射光分布におけるピーク光の角度が光出射面の法線に対し50〜90°の範囲にあり、光入射面と光出射面との双方に垂直なXZ面における出射光分布の半値幅が10〜40°であるような指向性の高い出射特性の光を導光体3から出射させることができ、その出射方向を光偏向素子4で効率的に偏向させることができ、高い輝度を有する面光源素子を提供することができる。
【0025】
本発明において、導光体3からの光出射率は次のように定義される。光出射面33の光入射面31側の端縁での出射光の光強度(I0 )と光入射面31側の端縁から距離Lの位置での出射光強度(I)との関係は、導光体3の厚さ(Z方向寸法)をtとすると、次の(3)式のような関係を満足する。
【0026】
I=I0 ・a(1−α)L/t ・・・ (3)
ここで、定数αが光出射率であり、光出射面33における光入射面31と直交するX方向での単位長さ(導光体厚さtに相当する長さ)当たりの導光体3から光が出射する割合(%)である。この光出射率αは、縦軸に光出射面23からの出射光の光強度の対数と横軸に(L/t)をプロットすることで、その勾配から求めることができる。
【0027】
また、指向性光出射機能部が付与されていない他の主面には、導光体3からの出射光の光源1と平行な面(YZ面)での指向性を制御するために、光入射面31に対して略垂直の方向(X方向)に延びる多数のレンズ列を配列したレンズ面を形成することが好ましい。図1に示した実施形態においては、光出射面33に粗面を形成し、裏面34に光入射面31に対して略垂直方向(X方向)に延びる多数のレンズ列の配列からなるレンズ面を形成している。本発明においては、図1に示した形態とは逆に、光出射面33にレンズ面を形成し、裏面34を粗面とするものであってもよい。
【0028】
図1に示したように、導光体3の裏面34あるいは光出射面33にレンズ列を形成する場合、そのレンズ列としては略X方向に延びたプリズム列、レンチキュラーレンズ列、V字状溝等が挙げられるが、YZ方向の断面の形状が略三角形状のプリズム列とすることが好ましい。
【0029】
本発明において、導光体3に形成されるレンズ列としてプリズム列を形成する場合には、その頂角を70〜150°の範囲とすることが好ましい。これは、頂角をこの範囲とすることによって導光体3からの出射光を十分集光さることができ、面光源素子としての輝度の十分な向上を図ることができるためである。すなわち、プリズム頂角をこの範囲内とすることによって、出射光分布におけるピーク光を含みXZ面に垂直な面において出射光分布の半値幅が35〜65°である集光された出射光を出射させることができ、面光源素子としての輝度を向上させることができる。なお、プリズム列を光出射面33に形成する場合には、頂角は80〜100゜の範囲とすることが好ましく、プリズム列を裏面34に形成する場合には、頂角は70〜80゜または100〜150゜の範囲とすることが好ましい。
【0030】
なお、本発明では、上記のような光出射面33またはその裏面34に光出射機能部を形成する代わりにあるいはこれと併用して、導光体内部に光拡散性微粒子を混入分散することで指向性光出射機能を付与したものでもよい。また、導光体3としては、図1に示したような形状に限定されるものではなく、くさび状、船型状等の種々の形状のものが使用できる。
【0031】
光偏向素子4は、導光体3の光出射面33上に配置されている。光偏向素子4の2つの主面41,42は互いに対向しており、それぞれ全体としてXY面と平行に位置する。主面41,42のうちの一方(導光体の光出射面33側に位置する主面)は入光面41とされており、他方が出光面42とされている。出光面42は、導光体3の光出射面33と平行な平坦面とされている。入光面41は、多数のY方向に延びるプリズム列が互いに平行に配列されたプリズム形成面とされている。プリズム形成面は、隣接するプリズム列の間に比較的幅の狭い平坦部(例えば、プリズム列ピッチと同程度あるいはそれより小さい幅の平坦部)を設けてもよいが、光の利用効率を高める点からは平坦部を設けることなくプリズム列を連続して形成することが好ましい。
【0032】
図2は、光偏向素子4の入光面41のプリズム列の形状の説明図である。入光面41のプリズム列の形状は、次のようにして設定されている。
【0033】
即ち、プリズム列配列のピッチをPとして、先ず、断面三角形状の仮想プリズム列Iを設定する。この仮想プリズム列Iの2つのプリズム面I−1,I−2のなす角度(即ち仮想プリズム頂角)をθとする。この仮想プリズム頂角θは、導光体3の光出射面33から到来する光のXZ面内の強度分布のピーク出射光(傾斜角α)が仮想プリズム列Iに入射して仮想プリズム面I−2により内面全反射された上で、例えば出光面42の法線方向へと進行するように設定されている。仮想プリズム頂角θは、例えば、光偏向素子4の出光面42から出射される光のピーク出射光を出光面42の法線方向近傍(例えば、法線方向から±10度の範囲内)へ向ける場合には、50〜80度とすることが好ましく、さらに好ましくは55〜75度の範囲であり、より好ましくは60〜70度の範囲である。また、仮想プリズム列の一方のプリズム面の傾斜角(出光面42に対してなす角度)は、導光体3からの出射光を光偏向素子4で効率よくの所望の方向に偏向させることから45度以上とすることが好ましく、さらに好ましくは47度以上、より好ましくは50度以上である。
【0034】
通常は、位置K2よりも出光面42に近い全面(即ち、プリズム列の谷部に近い領域全面)を凸曲面形状とすることが好ましい。一方、仮想プリズム列Iにおけるプリズム面I−2の内面全反射位置K2よりも入光面41に近い位置(即ち、出光面42から遠い位置またはプリズム列の頂部に近い領域)では、平面形状としてもよく凸曲面形状としてもよい。いずれの場合も、位置K2の出光面42側近傍のプリズム面形状を延長するような形状とすることが好ましく、プリズム列の頂部は仮想プリズム列の頂部と一致しなくてもよい。
【0035】
通常は、位置K2よりも出光面42に近い全面を凸曲面形状とすることが好ましい。一方、仮想プリズム列Iにおけるプリズム面I−2の内面全反射位置K2よりも入光面41に近い位置(即ち、出光面42から遠い位置)では、平面形状としてもよく凸曲面形状としてもよい。いずれの場合も、位置K2の出光面42側近傍のプリズム面形状を延長するような形状とすることが好ましく、プリズム列の頂部は仮想プリズム列の頂部と一致しなくてもよい。
【0036】
プリズム列の形状は、仮想プリズム列Iにおけるプリズム面I−2の内面全反射位置K2よりも出光面42に近い位置では、その少なくとも一部または全部にプリズム面の傾斜角が仮想プリズム列Iのプリズム面I−2の傾斜角よりも大きな傾斜角をもつような凸曲面形状とすることが好ましい。
【0037】
これは、図2に示されている寸法z(プリズム列の頂点と仮想プリズム面I−2の内面反射位置K2との間のZ方向距離)が以下の式:
z={(P・tanα・cot[θ/2])/
(tanα+cot[θ/2])}・〔cot[θ/2]
+{cotθ/(cot[θ/2]−cotθ)}〕
で示される値以上のZ方向位置では、実際のプリズム面が以下の式:
ncos[3θ/2]=sin(α−[θ/2])
で表される仮想プリズム列Iのプリズム面I−2より大きな傾斜角を持つようにすることである(なお、式中nはプリズム列の屈折率である。)。
【0038】
入光面41のプリズム列の形状をこのように設定することで、光偏向素子4から出射する光の分布角度(半値幅)を小さくすることができる。その理由は次のとおりである。即ち、仮想プリズム列Iにおけるプリズム面I−2の内面全反射位置K2よりも出光面42に近い位置に到達する光は、一次光源側の隣接仮想プリズム列の頂部よりも下側からαより大きな傾斜角で入射する光線の集合である。従って、その分布ピークの方向は、αより大きな傾斜の方向であり、その内面全反射光の分布ピークの方向は出光面42の法線方向から内面全反射の仮想プリズム面に沿った方向の方へと傾斜した方向となる。このような光は出光面42からの出射光の角度分布を広げる作用をなす。そこで、特定方向へ光量を集中して出射させるために、仮想プリズム列Iにおけるプリズム面I−2の内面全反射位置K2よりも出光面42に近い位置で、その少なくとも一部を実際のプリズム列のプリズム面の傾斜角を、対応する仮想プリズム面の傾斜角より大きくすることで、この領域で実際に内面全反射された光の進行方向を仮想プリズム面での反射光よりも出光面42の法線方向の方へと移動させるように修正することができ、高輝度化、狭視野化を図ることができる。
【0039】
以上のような凸曲面形状は、仮想プリズム列Iにおけるプリズム面I−2の内面全反射位置K2よりも出光面42に近い位置全体に形成して、内面全反射位置K2よりも出光面42から遠い位置では仮想プリズム列のプリズム面I−2のままの形状とすることもでき、内面全反射位置K2よりも出光面42から遠い位置も含めてプリズム面全体を凸曲面形状とすることもできる。このような凸曲面形状としては、仮想プリズム列と少なくとも底部を共通にした曲率半径rの凸円柱面形状を例示することができる。
【0040】
ここで、ピッチPで規格化した曲率半径rの値(r/P)としては、2〜80の範囲とすることが好ましく、より好ましくは7〜30の範囲であり、さらに好ましくは8〜20の範囲である。これは、r/Pをこの範囲とすることによって光偏向素子4の出光面42から出射する出射光分布の半値幅を十分に狭くでき、光源装置としての輝度を十分に高くすることができるためである。例えば、プリズム列のピッチが40〜60μmである場合には、曲率半径rは、250〜3000μmの範囲とすることが好ましく、より好ましくは350〜1000μmの範囲であり、さらに好ましくは400〜700μmの範囲である。
【0041】
また、光偏向素子4の各プリズム列のプリズム面の凸曲面形状としては、仮想プリズム列のプリズム面(即ち、プリズム列の稜線と谷線を含む平面)と凸曲面形状のプリズム面の最大距離dと前記プリズム列の配列ピッチPとの比(d/P)が0.05〜5%の範囲となるような比較的緩やかな曲面形状とすることが好ましく、より好ましくは0.1〜3%の範囲であり、さらに好ましくは0.2〜2%の範囲である。これは、d/Pが5%を超えると光偏向素子4による集光効果が損なわれ光の発散が起こる傾向にあり、光偏向素子4の出光面42から出射する出射光分布の半値幅を十分に狭くできなくなる傾向にあるためである。逆に、d/Pが0.05%未満であると光偏向素子4による集光効果が不十分となる傾向にあり、光偏向素子4の出光面42から出射する出射光分布の半値幅を十分に狭くできなくなる傾向にあるためである。
【0042】
なお、本発明においては、光偏向素子4の各プリズム列の凸曲面形状は、上記のような曲率半径rの断面円弧状のものに限らず、上記のようなd/Pの範囲内であれば非球面状の凸曲面形状であってもよい。
【0043】
本発明において、上記のような凸曲面形状のプリズム面は、少なくとも一次光源1から遠い側の面に形成することが好ましい。これによれば、導光体3の端面32にも一次光源を配置する場合の光偏向素子4から出射する光の分布角度を十分に小さくすることができる。凸曲面形状のプリズム面は、例えば、導光体3を伝搬する光が光入射面31と反対側の端面32で反射して戻ってくる割合が比較的高い場合には、一次光源1に近い側のプリズム面も凸曲面形状とすることがより好ましい。特に、一次光源1に近い側のプリズム面を出光面42の法線方向に関して仮想プリズム面I−2に対応する実際のプリズム面と対称的な形状にするのが好ましい。一方、導光体3を伝搬する光が光入射面31と反対側の端面32で反射して戻ってくる割合が比較的低い場合には、一次光源1に近い側のプリズム面を平面としてもよい。また、導光体3に光偏向素子4を載置した際のスティッキング現象の発生を抑止する目的でプリズム列の頂部を尖鋭にすること(頂部先端のエッジを明確に形成すること)が必要な場合には、一次光源1に近い側のプリズム面を平面とすることが、双方のプリズム面を凸曲面とした場合に比べてプリズム列形成のための成形用型部材の形状転写面形状のより正確な形成が可能になることに基づきプリズム列頂部を尖鋭に形成することが容易になることから好ましい。
【0044】
本発明の光偏向素子においては、所望のプリズム形状を精確に作製し、安定した光学性能を得るとともに、組立作業時や面光源装置としての使用時におけるプリズム頂部の摩耗や変形を抑止する目的で、プリズム列の頂部に平坦部あるいは曲面部を形成してもよい。この場合、プリズム頂部に形成する平坦部あるいは曲面部の幅は、3μm以下とすることが、面光源装置としての輝度の低下やスティキング現象による輝度の不均一パターンの発生を抑止する観点から好ましく、より好ましくは2μm以下であり、さらに好ましくは1μm以下である。
【0045】
また、本発明においては、面光源装置としての視野角を調整したり、品位を向上させる目的で、光偏向素子の出光面側に光拡散層を形成したり、プリズム列中に光拡散剤を含有させてもよい。光拡散層としては、光偏向素子の出光面側に光拡散シートを載置したり、出光面側に光偏向素子と一体に光拡散層を形成したりすることによって形成することができる。この場合、光偏向素子による狭視野化による輝度向上効果をできるだけ妨げないようにするために、異方拡散性の光拡散層を形成し所望の方向に光を拡散させることが好ましい。プリズム列に分散させる光拡散剤としては、プリズム列と屈折率が異なる透明な微粒子を使用することができる。この場合も、光偏向素子による狭視野化による輝度向上効果をできるだけ妨げないように、光拡散剤の含有量、粒径、屈折率等を選定する。
【0046】
このように、導光体3の光出射面33上に上記のような光偏向素子4を、そのプリズム列形成面が入光面側となるように載置することによって、導光体3の光出射面33から出射する指向性出射光のXZ面内での出射光分布をより狭くすることができ、光源装置としての高輝度化、狭視野化を図ることができる。このような光偏向素子4からの出射光のXZ面内での出射光分布の半値幅は、5〜25度の範囲であることが好ましく、より好ましくは10〜20度の範囲であり、さらに好ましくは12〜18度の範囲である。これは、この出射光分布の半値幅を5度以上とすることによって極端な狭視野化による画像等の見づらさをなくすことができ、25度以下とすることによって高輝度化と狭視野化を図ることができるためである。
【0047】
本発明における光偏向素子4の狭視野化は、導光体3の光出射面33からの出射光分布(XZ面内)の広がりの程度(半値幅)に影響されるため、光偏向素子4の出光面42からの出射光分布の半値幅Aの導光体3の光出射面33からの出射光分布の半値幅Bに対する割合も、導光体3からの出射光分布の半値幅Bによって変わる。例えば、導光体3からの出射光分布の半値幅Bが26度未満の場合には、半値幅Aが半値幅Bの30〜95%の範囲であることが好ましく、より好ましくは30〜80%の範囲であり、さらに好ましくは30〜70%の範囲である。また、導光体3からの出射光分布の半値幅Bが26度以上の場合には、半値幅Aが半値幅Bの30〜80%の範囲であることが好ましく、より好ましくは30〜70%の範囲であり、さらに好ましくは30〜60%の範囲である。特に、導光体3からの出射光分布の半値幅Bが26〜36度の場合には、半値幅Aが半値幅Bの30〜80%の範囲であることが好ましく、より好ましくは30〜70%の範囲であり、さらに好ましくは30〜60%の範囲である。さらに、導光体3からの出射光分布の半値幅Bが36度を超える場合には、半値幅Aが半値幅Bの30〜70%の範囲であることが好ましく、より好ましくは30〜60%の範囲であり、さらに好ましくは30〜50%の範囲である。
【0048】
このように、本発明においては、導光体3からの出射光分布の半値幅が大きいものほど狭視野化の効果は大きくなるため、狭視野化の効率という点では出射光分布の半値幅Bが26度以上である導光体との組み合わせで光偏向素子を使用することが好ましく、より好ましくは半値幅Bが36度を超える導光体である。また、導光体3からの出射光分布の半値幅が小さい場合には狭視野化の効果は小さくなるが、導光体3からの出射光分布の半値幅が小さいものほど高輝度化を図ることができるため、高輝度化という点では出射光分布の半値幅Bが26度未満である導光体との組み合わせで光偏向素子を使用することが好ましい。
【0049】
一次光源1はY方向に延在する線状の光源であり、該一次光源1としては例えば蛍光ランプや冷陰極管を用いることができる。なお、本発明においては、一次光源1としては線状光源に限定されるものではなく、LED光源、ハロゲンランプ、メタハロランプ等のような点光源を使用することもできる。特に、携帯電話機や携帯情報端末機等の比較的小さな画面寸法の表示装置に使用する場合には、LED等の小さな点光源を使用することが好ましい。また、一次光源1は、図1に示したように、導光体3の一方の側端面に設置する場合だけでなく、必要に応じて対向する他方の側端面にもさらに設置することもできる。
【0050】
光源リフレクタ2は一次光源1の光をロスを少なく導光体3へ導くものである。材質としては、例えば表面に金属蒸着反射層有するプラスチックフィルムを用いることができる。図示されているように、光源リフレクタ2は、光反射素子5の端縁部外面から一次光源1の外面を経て光偏向素子4の出光面端縁部へと巻きつけられている。他方、光源リフレクタ2は、光偏向素子4を避けて、光反射素子5の端縁部外面から一次光源1の外面を経て導光体3の光出射面端縁部へと巻きつけることも可能である。
【0051】
このような光源リフレクタ2と同様な反射部材を、導光体3の側端面31以外の側端面に付することも可能である。光反射素子5としては、例えば表面に金属蒸着反射層を有するプラスチックシートを用いることができる。本発明においては、光反射素子5として反射シートに代えて、導光体3の裏面34に金属蒸着等により形成された光反射層等とすることも可能である。
【0052】
本発明の導光体3及び光偏向素子4は、光透過率の高い合成樹脂から構成することができる。このような合成樹脂としては、メタクリル樹脂、アクリル樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂が例示できる。特に、メタクリル樹脂が、光透過率の高さ、耐熱性、力学的特性、成形加工性に優れており、最適である。このようなメタクリル樹脂としては、メタクリル酸メチルを主成分とする樹脂であり、メタクリル酸メチルが80重量%以上であるものが好ましい。導光体3及び光偏光素子4の粗面の表面構造やプリズム列等の表面構造を形成するに際しては、透明合成樹脂板を所望の表面構造を有する型部材を用いて熱プレスすることで形成してもよいし、スクリーン印刷、押出成形や射出成形等によって成形と同時に形状付与してもよい。また、熱あるいは光硬化性樹脂等を用いて構造面を形成することもできる。更に、ポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂、ポリメタクリルイミド系樹脂等からなる透明フィルムあるいはシート等の透明基材上に、活性エネルギー線硬化型樹脂からなる粗面構造またレンズ列配列構造を表面に形成してもよいし、このようなシートを接着、融着等の方法によって別個の透明基材上に接合一体化させてもよい。活性エネルギー線硬化型樹脂としては、多官能(メタ)アクリル化合物、ビニル化合物、(メタ)アクリル酸エステル類、アリル化合物、(メタ)アクリル酸の金属塩等を使用することができる。
【0053】
以上のような一次光源1、光源リフレクタ2、導光体3、光偏向素子4および光反射素子5からなる面光源装置の発光面(光偏光素子4の出光面42)上に、液晶表示素子を配置することにより液晶表示装置が構成される。液晶表示装置は、図1における上方から液晶表示素子を通して観察者により観察される。また、本発明においては、十分にコリメートされた狭い分布の光を面光源装置から液晶表示素子に入射させることができるため、液晶表示素子での階調反転等がなく明るさ、色相の均一性の良好な画像表示が得られるとともに、所望の方向に集中した光照射が得られ、この方向の照明に対する一次光源の発光光量の利用効率を高めることができる。
【0054】
図3は、本発明による面光源装置の更に別の実施形態を示す模式的斜視図である。この実施形態は、導光体3の裏面34が平坦面とされており、光入射端面31から反対側の端面32の方へと次第に厚さが減少するくさび状をなしており、一次光源1の近傍の輝線や暗線を防止するための遮光材6が配置されていることのみ、上記図1〜2に関し説明した実施形態と異なる。
【0055】
尚、以上の実施形態は面光源装置に関して説明したが、本発明はY方向寸法が例えば導光体3の厚さの5倍以下であるX方向に細長い棒状の光源装置にも適用できる。その場合、一次光源1としてはLEDなどの略点状のものを使用することができる。
【0056】
【実施例】
以下、実施例によって本発明を具体的に説明する。
【0057】
なお、以下の実施例における各物性の測定は下記のようにして行った。
【0058】
面光源素子の法線輝度、光度半値幅の測定
光源として冷陰極管を用い、インバータ(ハリソン社製HIU−742A)にDC12Vを印加して高周波点灯させた。輝度は、面光源装置あるいは導光体の表面を20mm四方の正方形に3×5分割し、各正方形の法線方向の輝度値の15点平均を求めた。光度半値幅は、面光源装置あるいは導光体の表面に4mmφのピンホールを有する黒色の紙をピンホールが表面の中央に位置するように固定し、輝度計の測定円が8〜9mmとなるように距離を調整し、冷陰極管の長手方向軸と垂直方向および平行方向でピンホールを中心にゴニオ回転軸が回転するように調節した。それぞれの方向で回転軸を+80°〜−80°まで0.5°間隔で回転させながら、輝度計で出射光の光度分布を測定し、法線方向の輝度、光度分布の半値幅(ピーク値の1/2の分布の広がり角)を求めた。
【0059】
平均傾斜角(θa)の測定
ISO4287/1−1987に従って、触針として010−2528(1μmR、55°円錐、ダイヤモンド)を用いた触針式表面粗さ計(東京精器(株)製サーフコム570A)にて、粗面の表面粗さを駆動速度0.03mm/秒で測定した。この測定により得られたチャートより、その平均線を差し引いて傾斜を補正し、前記式(1)式および(2)式によって計算して求めた。
【0060】
[実施例1]
アクリル樹脂(三菱レイヨン(株)製アクリペットVH5#000)を用い射出成形することによって一方の面がマット(平均傾斜角3.0度)である導光板を作製した。該導光板は、195mm×253mm、厚さ3mm−1mmのクサビ板状をなしていた。この導光体の鏡面側に、導光体の長さ195mmの辺(短辺)と平行になるように、アクリル系紫外線硬化樹脂によってプリズム列のプリズム頂角140°、ピッチ50μmのプリズム列が並列に連設配列されたプリズム層を形成した。導光体の長さ253mmの辺(長辺)に対応する一方の側端面(厚さ3mmの側の端面)に対向するようにして、長辺に沿って冷陰極管を光源リフレクター(麗光社製銀反射フィルム)で覆い配置した。さらに、その他の側端面に光拡散反射フィルム(東レ社製E60)を貼付し、プリズム列配列(裏面)に反射シートを配置した。以上の構成を枠体に組み込んだ。この導光体は、光出射率1.5%で、出射光光度分布の最大ピークは光出射面法線方向に対して70度、半値幅(半値幅B)は24.5度であった。
【0061】
一方、屈折率1.5064のアクリル系紫外線硬化性樹脂を用いて、両方のプリズム面のそれぞれの全体が表1に示した曲率半径である凸曲面形状で、ピッチ50μmの多数のプリズム列が並列に連設されたプリズム列形成面を厚さ50μmのポリエステルフィルムの一方の表面に形成したプリズムシートを作製した。この際、仮想プリズム列としては、プリズムシートからの出射光がその出光面の法線方向となるように、ピッチ50μmで、頂角65.4度の断面二等辺三角形のプリズム列を設定した。
【0062】
得られたそれぞれのプリズムシートを、上記導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム列の稜線が平行になるように載置した。以上のようにして作製された面光源装置のピーク輝度の強度比と冷陰極管に垂直方向の面内での出射光分布における半値幅(半値幅A)を求め、その結果を表1に示した。
【0063】
[比較例1]
プリズムシートのプリズム列を構成するプリズム面を平面とした以外は実施例1と同様にして、ピッチ50μmで、頂角65.4度の断面二等辺三角形のプリズム列が一方の表面に形成されたプリズムシートを作製した。このプリズムシートを実施例1で得られた導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行になるように載置した。以上のようにして作製された面光源装置のピーク輝度の強度比と冷陰極管に垂直方向の面内での出射光分布における半値幅(半値幅A)を求め、その結果を表1に示した。
【0064】
【表1】

Figure 0004160297
[実施例2]
アクリル樹脂(三菱レイヨン(株)製アクリペットVH5#000)を用い射出成形することによって一方の面がマット(平均傾斜角8.0度)である導光板を作製した。該導光板は、195mm×253mm、厚さ3mm−1mmのクサビ板状をなしていた。この導光体の鏡面側に、導光体の長さ195mmの辺(短辺)と平行になるように、アクリル系紫外線硬化樹脂によってプリズム列のプリズム頂角140°、ピッチ50μmのプリズム列が並列に連設配列されたプリズム層を形成した。導光体の長さ253mmの辺(長辺)に対応する一方の側端面(厚さ3mmの側の端面)に対向するようにして、長辺に沿って冷陰極管を光源リフレクター(麗光社製銀反射フィルム)で覆い配置した。さらに、その他の側端面に光拡散反射フィルム(東レ社製E60)を貼付し、プリズム列配列(裏面)に反射シートを配置した。以上の構成を枠体に組み込んだ。この導光体は、光出射率4.5%で、出射光光度分布の最大ピークは光出射面法線方向に対して61度、半値幅(半値幅B)は39度であった。
【0065】
一方、屈折率1.5064のアクリル系紫外線硬化性樹脂を用いて、両方のプリズム面のそれぞれの全体が表2に示した曲率半径である凸曲面形状で、ピッチ50μmの多数のプリズム列が並列に連設されたプリズム列形成面を厚さ50μmのポリエステルフィルムの一方の表面に形成したプリズムシートを作製した。この際、仮想プリズム列としては、プリズムシートからの出射光がその出光面の法線方向となるように、ピッチ50μmで、頂角65.4度の断面二等辺三角形のプリズム列を設定した。
【0066】
得られたそれぞれのプリズムシートを、上記導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム列の稜線が平行になるように載置した。以上のようにして作製された面光源装置のピーク輝度の強度比と冷陰極管に垂直方向の面内での出射光分布における半値幅(半値幅A)を求め、その結果を表2に示した。
【0067】
[比較例2]
プリズムシートのプリズム列を構成するプリズム面を平面とした以外は実施例1と同様にして、ピッチ50μmで、頂角65.4度の断面二等辺三角形のプリズム列が一方の表面に形成されたプリズムシートを作製した。このプリズムシートを実施例2で得られた導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行になるように載置した。以上のようにして作製された面光源装置のピーク輝度の強度比と冷陰極管に垂直方向の面内での出射光分布における半値幅(半値幅A)を求め、その結果を表2に示した。
【0068】
【表2】
Figure 0004160297
[実施例3]
プリズムシートのプリズム列を構成するプリズム面のうち、冷陰極管に近い側の面を平面とし、冷陰極管から遠い側の面全体が曲率半径400μmである凸曲面形状とした以外は実施例1と同様にして、ピッチ50μmで、頂角65.4度のプリズム列が一方の表面に形成されたプリズムシートを作製した。このプリズムシートを実施例1で得られた導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行になるように載置した。以上のようにして作製された面光源装置の法線輝度と冷陰極管に垂直方向の面内での出射光分布における半値幅を求め、その結果を表3に示した。
【0069】
[実施例4]
プリズムシートのプリズム列を構成する両方のプリズム面を、プリズム列の高さ16μm以上の面(プリズム列頂部近傍の面)を平面とし、高さ16μm以下の面(プリズム列底部近傍の面)を曲率半径400μmである凸曲面形状(平面と凸曲面の境界とプリズム面の底部を結ぶ面のプリズムシート法線に対する傾斜角を30°とした)とした以外は実施例1と同様にして、ピッチ50μmで、頂角65.4度のプリズム列が一方の表面に形成されたプリズムシートを作製した。このプリズムシートを実施例1で得られた導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行になるように載置した。なお、この場合の仮想プリズム面の位置K2は、プリズム列の高さ27μmの位置となる。以上のようにして作製された面光源装置の法線輝度と冷陰極管に垂直方向の面内での出射光分布における半値幅を求め、その結果を表3に示した。
【0070】
[実施例5]
プリズムシートのプリズム列を構成するプリズム面のうち、冷陰極管に近い側の面を平面とした以外は実施例4と同様にして、ピッチ50μmで、頂角65.4度のプリズム列が一方の表面に形成されたプリズムシートを作製した。このプリズムシートを実施例1で得られた導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行になるように載置した。なお、この場合の仮想プリズム面の位置K2は、プリズム列の高さ27μmの位置となる。以上のようにして作製された面光源装置の法線輝度と冷陰極管に垂直方向の面内での出射光分布における半値幅を求め、その結果を表3に示した。
【0071】
[実施例6]
プリズムシートのプリズム列を構成するプリズム面のうち、冷陰極管に近い側の面のプリズムシート法線に対する傾斜角を34°とし、冷陰極管から遠い側の面の平面部分のプリズムシート法線に対する傾斜角を32°とした以外は実施例5と同様にして、ピッチ50μmで、頂角66度のプリズム列が一方の表面に形成されたプリズムシートを作製した。このプリズムシートを実施例1で得られた導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行になるように載置した。なお、この場合の仮想プリズム面の位置K2は、プリズム列の高さ27μmの位置となる。以上のようにして作製された面光源装置の法線輝度と冷陰極管に垂直方向の面内での出射光分布における半値幅を求め、その結果を表3に示した。
【0072】
【表3】
Figure 0004160297
【0073】
【発明の効果】
以上説明したように、本発明によれば、光偏向素子の入光面に形成されるプリズム列の少なくとも一方のプリズム面が、導光体からのピーク出射光の傾斜角に応じて設定される仮想プリズム列の形状を基準として、凸面形状に形成されているので、一次光源から発せられる光を所要の観察方向へ集中して出射させる効率(一次光源の光量の利用効率)が高く、しかも光偏向素子の出光面が平坦面で簡素化され成形が容易である光源装置が提供される。特に、本発明においては、光偏向素子の入光面のプリズム面の傾斜角度を、導光体からのピーク出射光の傾斜角に応じて設定される仮想プリズム列の位置より出光面に近い位置では仮想プリズム面の傾斜角より大きな傾斜角をもつような凸曲面形状とすることで、一次光源から発せられる光を所要の観察方向へ集中して出射させる効率(一次光源の光量の利用効率)が高く、しかも光偏向素子の出光面が平坦面で簡素化され成形が容易である光源装置が提供される。
【図面の簡単な説明】
【図1】本発明による面光源装置を示す模式的斜視図である。
【図2】光偏向素子の入光面のプリズム列の形状の説明図である。
【図3】本発明による面光源装置を示す模式的斜視図である。
【符号の説明】
1 一次光源
2 光源リフレクタ
3 導光体
4 光偏向素子
5 光反射素子
6 遮光材
31 光入射端面
32 端面
33 光出射面
34 裏面
41 入光面
42 出光面
I 仮想プリズム列
I−1,I−2 仮想プリズム列のプリズム面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an edge light type light source device that constitutes a liquid crystal display device used as a display unit in a notebook computer, a liquid crystal television, and the like, and in particular, a light deflection disposed on the light emitting surface side of a light guide. The present invention relates to an improvement of the element.
[0002]
[Prior art and problems to be solved by the invention]
In recent years, color liquid crystal display devices have been widely used in various fields as monitors for portable notebook personal computers and personal computers, or as display units for liquid crystal televisions and video integrated liquid crystal televisions. In addition, with the increase in the amount of information processing, diversification of needs, compatibility with multimedia, and the like, liquid crystal display devices have been increased in size and definition.
[0003]
The liquid crystal display device basically includes a backlight unit and a liquid crystal display element unit. As the backlight unit, there are a direct type with a light source arranged directly under the liquid crystal display element unit and an edge light type with a light source arranged so as to face the side end face of the light guide. The edge light method is frequently used from the viewpoint of realizing the same.
[0004]
By the way, in recent years, in a display device having a relatively small screen size and a relatively narrow viewing direction range, for example, a liquid crystal display device used as a display unit of a mobile phone, the edge light system is used from the viewpoint of reducing power consumption. In order to effectively use the amount of light emitted from the primary light source, a backlight unit has been used that emits light by concentrating it in a required angle range by making the spread angle of the light beam emitted from the screen as small as possible. Yes.
[0005]
In this way, the present application is a display device in which the viewing direction range is limited, and is a light source device that emits light concentrated in a relatively narrow range in order to increase the use efficiency of the light amount of the primary light source and reduce power consumption. In Japanese Patent Application No. 2000-265574, it is proposed to use a prism sheet having prism forming surfaces on both sides adjacent to the light emitting surface of the light guide. In this double-sided prism sheet, a plurality of prism rows parallel to each other are formed on the light incident surface that is one surface and the light exit surface that is the other surface, and the prism row direction is formed by the light incident surface and the light exit surface. And the prism rows are arranged at corresponding positions. Thus, the light emitted from the light exit surface of the light guide having a peak of the emitted light in a direction inclined with respect to the light exit surface and distributed in an appropriate angle range is transmitted to one of the light incident surfaces of the prism sheet. The light is incident from the prism surface, is internally reflected by the other prism surface, and is further refracted by the prism on the light exit surface, so that the light is concentrated and emitted in a relatively narrow required direction.
[0006]
According to this light source device, concentrated emission in a narrow angle range is possible. As a prism sheet used as a light deflection element, a plurality of prism rows parallel to each other are arranged on both surfaces, and the prism rows are arranged on the light incident surface and the light exit surface. It is necessary to match the directions and to arrange the prism rows at corresponding positions, and this molding becomes complicated.
[0007]
Accordingly, an object of the present invention is to control the distribution of the emitted light to be very narrow and to improve the utilization efficiency of the light amount of the primary light source (that is, concentrate the light emitted from the primary light source in the required observation direction). It is an object of the present invention to provide a light source device that is highly efficient) and that can easily improve image quality with a simplified configuration.
[0008]
[Means for Solving the Problems]
The light deflection element of the present invention has a light incident surface and a light exit surface opposite to the light incident surface, and a plurality of prism rows arranged in parallel to each other are formed on the light incident surface. Has two prism surfaces, at least a partial region of one of the prism surfaces has a convex curved surface shape, and a ratio (r / P) between the radius of curvature r of the convex curved surface shape and the arrangement pitch P of the prism rows is 7-30.
[0009]
The light deflecting element of the present invention has a light incident surface and a light exit surface opposite to the light incident surface, and a plurality of prism rows arranged in parallel to each other are formed on the light incident surface. The prism array has two prism surfaces, and at least a partial region of one prism surface has a convex curved surface shape, and the maximum of the prism surface having the convex curved surface shape and a plane including a ridge line and a valley line of the prism array. A ratio (d / P) between the distance d and the arrangement pitch P of the prism rows is 0.05 to 5%.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
FIG. 1 is a schematic perspective view showing one embodiment of a surface light source device according to the present invention. As shown in FIG. 1, the surface light source device of the present invention includes a light guide 3 having at least one side end surface as a light incident surface 31 and a light exit surface 33 as one surface substantially orthogonal thereto. The primary light source 1 disposed opposite to the light incident surface 31 of the light guide 3 and covered with the light source reflector 2, the light deflection element 4 disposed on the light emitting surface of the light guide 3, and the light guide The light reflecting element 5 is disposed to face the back surface 34 of the light emitting surface 33 of the body 3.
[0020]
The light guide 3 is arranged in parallel with the XY plane and has a rectangular plate shape as a whole. The light guide 3 has four side end surfaces, and at least one of the pair of side end surfaces parallel to the YZ plane is a light incident surface 31. The light incident surface 31 is arranged to face the light source 1, and light emitted from the light source 1 enters the light guide 3 from the light incident surface 31. In the present invention, for example, a light source may be arranged on another side end surface such as the side end surface 32 facing the light incident surface 31.
[0021]
The two principal surfaces substantially orthogonal to the light incident surface 31 of the light guide 3 are respectively positioned substantially parallel to the XY plane, and one of the surfaces (upper surface in the drawing) serves as the light emitting surface 33. At least one of the light emitting surface 33 and the back surface 34 thereof is a directional light emitting function portion having a rough surface, and a large number of lens rows such as a prism row, a lenticular lens row, and a V-shaped groove. By providing a directional light emitting function unit composed of a lens surface formed in parallel substantially in parallel with 31, light incident from the light incident surface 31 is guided from the light emitting surface 33 while being guided through the light guide 3. Light having directivity is emitted in the emitted light distribution in a plane (XZ plane) orthogonal to the incident surface 31 and the light emitting surface 33. An angle formed by the peak direction of the outgoing light distribution in the XZ in-plane distribution and the light outgoing surface 31 is α. The angle α is, for example, 10 to 40 degrees, and the half width of the emitted light distribution is, for example, 10 to 40 degrees.
[0022]
The rough surface and the lens array formed on the surface of the light guide 3 have a luminance within the light emitting surface 33 that the average inclination angle θa according to ISO 4287 / 1-1984 is in the range of 0.5 to 15 °. It is preferable from the point of aiming at the degree of uniformity. The average inclination angle θa is more preferably in the range of 1 to 12 °, and more preferably in the range of 1.5 to 11 °. The average inclination angle θa is preferably set in an optimum range by a ratio (L / t) between the thickness (t) of the light guide 3 and the length (L) in the direction in which the incident light propagates. That is, when using the light guide 3 having L / t of about 20 to 200, the average inclination angle θa is preferably 0.5 to 7.5 °, more preferably 1 to 5 °. It is a range, More preferably, it is the range of 1.5-4 degrees. Moreover, when using the thing with L / t of about 20 or less as the light guide 3, it is preferable to make average inclination-angle (theta) a into 7-12 degrees, More preferably, it is the range of 8-11 degrees.
[0023]
The average inclination angle θa of the rough surface formed on the light guide 3 is obtained in accordance with ISO 4287 / 1-1984 by measuring the rough surface shape using a stylus type surface roughness meter and setting the coordinate in the measurement direction as x. From the obtained gradient function f (x), the following equation (1) and equation (2) can be used. Here, L is the measurement length, and Δa is the tangent of the average inclination angle θa.
[0024]
Δa = (1 / L) ∫ 0 L | (d / Dx) f (x) | dx (1)
θa = tan −1 (Δa) (2)
Further, the light guide 3 preferably has a light emission rate in the range of 0.5 to 5%, and more preferably in the range of 1 to 3%. This is because when the light emission rate is smaller than 0.5%, the amount of light emitted from the light guide 3 tends to be small and sufficient luminance cannot be obtained. When the light emission rate is larger than 5%, a large amount of light is emitted near the light source 1. This is because the light in the X direction in the light emitting surface 33 is remarkably attenuated, and the luminance uniformity on the light emitting surface 33 tends to decrease. Thus, by setting the light emission rate of the light guide 3 to 0.5 to 5%, the angle of the peak light in the light emission distribution of the light emitted from the light emission surface is 50 to the normal of the light emission surface. Light having a high directivity and having a directivity such that the half-value width of the outgoing light distribution in the XZ plane perpendicular to both the light incident surface and the light outgoing surface is in the range of 90 ° is 10 to 40 °. 3, and the direction of emission can be efficiently deflected by the light deflection element 4, and a surface light source element having high luminance can be provided.
[0025]
In the present invention, the light emission rate from the light guide 3 is defined as follows. The relationship between the light intensity (I 0 ) of the emitted light at the edge on the light incident surface 31 side of the light emitting surface 33 and the emitted light intensity (I) at a distance L from the edge on the light incident surface 31 side is If the thickness (dimension in the Z direction) of the light guide 3 is t, the following relationship (3) is satisfied.
[0026]
I = I 0 · a (1-α) L / t (3)
Here, the constant α is the light output rate, and the light guide 3 per unit length (a length corresponding to the light guide thickness t) in the X direction orthogonal to the light incident surface 31 on the light output surface 33. It is the ratio (%) at which light is emitted from. The light emission rate α can be obtained from the gradient by plotting the logarithm of the light intensity of light emitted from the light emission surface 23 on the vertical axis and (L / t) on the horizontal axis.
[0027]
Moreover, in order to control the directivity in the surface (YZ surface) parallel to the light source 1 of the emitted light from the light guide 3, the other main surface to which the directional light emitting function unit is not provided is light. It is preferable to form a lens surface in which a large number of lens rows extending in a direction substantially perpendicular to the incident surface 31 (X direction) are arranged. In the embodiment shown in FIG. 1, a lens surface formed by an array of a large number of lens rows, in which a rough surface is formed on the light emitting surface 33 and the back surface 34 extends in a direction substantially perpendicular to the light incident surface 31 (X direction). Is forming. In the present invention, conversely to the embodiment shown in FIG. 1, a lens surface may be formed on the light emitting surface 33 and the back surface 34 may be a rough surface.
[0028]
As shown in FIG. 1, when a lens array is formed on the back surface 34 or the light emitting surface 33 of the light guide 3, the lens array includes a prism array, a lenticular lens array, and a V-shaped groove extending substantially in the X direction. However, it is preferable that the YZ-direction cross-sectional shape be a substantially triangular prism array.
[0029]
In the present invention, when a prism row is formed as a lens row formed on the light guide 3, the apex angle is preferably in the range of 70 to 150 °. This is because by setting the apex angle within this range, the emitted light from the light guide 3 can be sufficiently collected, and the luminance as a surface light source element can be sufficiently improved. That is, by setting the prism apex angle within this range, the condensed outgoing light including the peak light in the outgoing light distribution and having a half-value width of 35 to 65 ° on the surface perpendicular to the XZ plane is emitted. The luminance as a surface light source element can be improved. When the prism row is formed on the light emitting surface 33, the apex angle is preferably in the range of 80 to 100 °. When the prism row is formed on the back surface 34, the apex angle is 70 to 80 °. Or it is preferable to set it as the range of 100-150 degrees.
[0030]
In the present invention, light diffusing fine particles are mixed and dispersed in the light guide instead of or in combination with the light emitting surface 33 or the back surface 34 as described above. What provided the directional light emission function may be used. In addition, the light guide 3 is not limited to the shape shown in FIG. 1, and various shapes such as a wedge shape and a ship shape can be used.
[0031]
The light deflection element 4 is disposed on the light emitting surface 33 of the light guide 3. The two main surfaces 41 and 42 of the light deflection element 4 are opposed to each other, and are located in parallel with the XY plane as a whole. One of the main surfaces 41 and 42 (the main surface located on the light emitting surface 33 side of the light guide) is a light incident surface 41, and the other is a light emitting surface 42. The light exit surface 42 is a flat surface parallel to the light exit surface 33 of the light guide 3. The light incident surface 41 is a prism forming surface in which a large number of prism rows extending in the Y direction are arranged in parallel to each other. The prism forming surface may be provided with a flat portion having a relatively narrow width between adjacent prism rows (for example, a flat portion having a width equal to or smaller than the prism row pitch), but increases the light utilization efficiency. From the point of view, it is preferable to form the prism rows continuously without providing a flat portion.
[0032]
FIG. 2 is an explanatory diagram of the shape of the prism row on the light incident surface 41 of the light deflection element 4. The shape of the prism row on the light incident surface 41 is set as follows.
[0033]
That is, assuming that the pitch of the prism array is P, first, a virtual prism array I having a triangular cross section is set. An angle formed by the two prism surfaces I-1 and I-2 of the virtual prism array I (that is, a virtual prism apex angle) is defined as θ. The virtual prism apex angle θ corresponds to the virtual prism surface I when the peak outgoing light (inclination angle α) of the intensity distribution in the XZ plane of the light arriving from the light emitting surface 33 of the light guide 3 enters the virtual prism array I. -2 is set so as to proceed in the normal direction of the light exit surface 42 after being totally reflected by the inner surface. The virtual prism apex angle θ is, for example, the peak emission light of the light emitted from the light exit surface 42 of the light deflection element 4 to the vicinity of the normal direction of the light exit surface 42 (for example, within a range of ± 10 degrees from the normal direction). When turning, it is preferable to set it as 50 to 80 degree | times, More preferably, it is the range of 55 to 75 degree | times, More preferably, it is the range of 60 to 70 degree | times. Further, the inclination angle of one prism surface of the virtual prism row (the angle formed with respect to the light exit surface 42) is that the light emitted from the light guide 3 is efficiently deflected in the desired direction by the light deflecting element 4. The angle is preferably 45 degrees or more, more preferably 47 degrees or more, and more preferably 50 degrees or more.
[0034]
Usually, it is preferable that the entire surface closer to the light exit surface 42 than the position K2 (that is, the entire region closer to the valley of the prism row) has a convex curved surface shape. On the other hand, at the position closer to the light incident surface 41 than the inner surface total reflection position K2 of the prism surface I-2 in the virtual prism array I (that is, the position far from the light exit surface 42 or the area near the top of the prism array) , the planar shape is Alternatively, it may have a convex curved surface shape. In any case, it is preferable that the prism surface shape in the vicinity of the light exit surface 42 side of the position K2 is extended, and the top of the prism row does not have to coincide with the top of the virtual prism row.
[0035]
Usually, it is preferable that the entire surface closer to the light exit surface 42 than the position K2 has a convex curved surface shape. On the other hand, at the position closer to the light incident surface 41 than the inner surface total reflection position K2 of the prism surface I-2 in the virtual prism row I (that is, the position far from the light exit surface 42), it may have a planar shape or a convex curved surface shape. . In any case, it is preferable that the prism surface shape in the vicinity of the light exit surface 42 side of the position K2 is extended, and the top of the prism row does not have to coincide with the top of the virtual prism row.
[0036]
The shape of the prism array is such that the inclination angle of the prism surface is at least partially or entirely at the position of the virtual prism array I at the position closer to the light exit surface 42 than the inner surface total reflection position K2 of the prism surface I-2 in the virtual prism array I. A convex curved surface shape having an inclination angle larger than the inclination angle of the prism surface I-2 is preferable.
[0037]
This is because the dimension z shown in FIG. 2 (distance in the Z direction between the apex of the prism row and the inner surface reflection position K2 of the virtual prism surface I-2) is as follows:
z = {(P · tan α · cot [θ / 2]) /
(Tan α + cot [θ / 2])} · [cot [θ / 2]
+ {Cot [theta] / (cot [[theta] / 2] -cot [theta])}]
In the Z direction position equal to or greater than the value indicated by, the actual prism surface is expressed by the following formula:
ncos [3θ / 2] = sin (α− [θ / 2])
The angle of inclination is larger than the prism surface I-2 of the virtual prism array I represented by (where n is the refractive index of the prism array).
[0038]
By setting the shape of the prism row on the light incident surface 41 in this way, the distribution angle (half width) of the light emitted from the light deflecting element 4 can be reduced. The reason is as follows. That is, the light reaching the position closer to the light exit surface 42 than the inner surface total reflection position K2 of the prism surface I-2 in the virtual prism array I is larger than α from below the top of the adjacent virtual prism array on the primary light source side. It is a set of rays incident at an inclination angle. Therefore, the direction of the distribution peak is a direction of inclination larger than α, and the direction of the distribution peak of the inner surface total reflected light is the direction from the normal direction of the light exit surface 42 to the direction along the virtual prism surface of the inner surface total reflection. It becomes the direction inclined to. Such light serves to widen the angular distribution of light emitted from the light exit surface 42. Therefore, in order to concentrate and emit the light amount in a specific direction, at least a part of the virtual prism array I is closer to the light exit surface 42 than the inner surface total reflection position K2 of the prism surface I-2. By making the inclination angle of the prism surface larger than the inclination angle of the corresponding virtual prism surface, the traveling direction of the light that is actually totally reflected at the inner surface in this region is made to be greater than that of the reflected light at the virtual prism surface. It can be corrected so as to move toward the normal direction, and high brightness and narrow field of view can be achieved.
[0039]
The convex curved surface shape as described above is formed in the entire position closer to the light exit surface 42 than the inner surface total reflection position K2 of the prism surface I-2 in the virtual prism array I, and from the light output surface 42 than the inner surface total reflection position K2. At a distant position, the shape of the prism surface I-2 of the virtual prism row can be used as it is, and the entire prism surface including the position farther from the light exit surface 42 than the inner surface total reflection position K2 can be formed into a convex curved surface shape. . An example of such a convex curved surface shape is a convex cylindrical surface shape having a radius of curvature r that shares at least the bottom with the virtual prism array.
[0040]
Here, the value (r / P) of the radius of curvature r normalized by the pitch P is preferably in the range of 2 to 80, more preferably in the range of 7 to 30, and still more preferably in the range of 8 to 20. Range. This is because by setting r / P within this range, the half-value width of the outgoing light distribution emitted from the light outgoing surface 42 of the light deflection element 4 can be sufficiently narrowed, and the luminance as the light source device can be sufficiently increased. It is. For example, when the prism row pitch is 40 to 60 μm, the radius of curvature r is preferably in the range of 250 to 3000 μm, more preferably in the range of 350 to 1000 μm, and still more preferably in the range of 400 to 700 μm. It is a range.
[0041]
Further, as the convex curved surface shape of the prism surface of each prism row of the light deflection element 4, the maximum distance between the prism surface of the virtual prism row (that is, the plane including the ridge line and valley line of the prism row) and the prism surface of the convex curved surface shape. It is preferable that the ratio (d / P) of d and the arrangement pitch P of the prism rows is a relatively gentle curved surface shape in a range of 0.05 to 5%, more preferably 0.1 to 3. %, And more preferably in the range of 0.2 to 2%. This is because when d / P exceeds 5%, the light condensing effect by the light deflecting element 4 tends to be impaired and light divergence tends to occur, and the half-value width of the outgoing light distribution emitted from the light emitting surface 42 of the light deflecting element 4 is reduced. This is because they tend not to be sufficiently narrow. Conversely, if d / P is less than 0.05%, the light condensing effect by the light deflecting element 4 tends to be insufficient, and the half-value width of the outgoing light distribution emitted from the light exiting surface 42 of the light deflecting element 4 is reduced. This is because they tend not to be sufficiently narrow.
[0042]
In the present invention, the convex curved surface shape of each prism row of the light deflection element 4 is not limited to the circular arc shape having the radius of curvature r as described above, but may be within the range of d / P as described above. For example, it may be an aspherical convex curved surface.
[0043]
In the present invention, the convex curved prism surface as described above is preferably formed at least on the surface far from the primary light source 1. According to this, the distribution angle of the light emitted from the light deflection element 4 when the primary light source is also arranged on the end face 32 of the light guide 3 can be sufficiently reduced. The convex curved prism surface is close to the primary light source 1 when, for example, the proportion of light propagating through the light guide 3 is reflected and returned by the end surface 32 opposite to the light incident surface 31 is relatively high. It is more preferable that the prism surface on the side also has a convex curved surface shape. In particular, it is preferable that the prism surface closer to the primary light source 1 has a shape symmetrical to the actual prism surface corresponding to the virtual prism surface I-2 with respect to the normal direction of the light exit surface 42. On the other hand, when the ratio of the light propagating through the light guide 3 that is reflected and returned by the end face 32 opposite to the light incident surface 31 is relatively low, the prism surface near the primary light source 1 may be a flat surface. Good. In addition, it is necessary to sharpen the apex of the prism row (to clearly form the edge of the apex of the apex) in order to suppress the occurrence of sticking phenomenon when the light deflection element 4 is placed on the light guide 3. In this case, the prism surface on the side closer to the primary light source 1 is made flat, and the shape transfer surface shape of the molding die member for forming the prism array is more than the case where both the prism surfaces are convex curved surfaces. It is preferable because it becomes easy to form the apex of the prism row sharply on the basis that accurate formation is possible.
[0044]
In the light deflecting element of the present invention, a desired prism shape is accurately manufactured to obtain stable optical performance, and the prism top portion is prevented from being worn or deformed during assembly work or use as a surface light source device. A flat portion or a curved surface portion may be formed at the top of the prism row. In this case, the width of the flat portion or curved surface portion formed on the prism top is preferably 3 μm or less from the viewpoint of suppressing the occurrence of uneven luminance patterns due to a decrease in luminance or a sticking phenomenon as a surface light source device. More preferably, it is 2 μm or less, and further preferably 1 μm or less.
[0045]
In the present invention, for the purpose of adjusting the viewing angle as a surface light source device and improving the quality, a light diffusion layer is formed on the light exit surface side of the light deflection element, or a light diffusing agent is added in the prism array. You may make it contain. The light diffusion layer can be formed by placing a light diffusion sheet on the light exit surface side of the light deflection element or by forming a light diffusion layer integrally with the light deflection element on the light exit surface side. In this case, it is preferable to form an anisotropic diffusive light diffusing layer to diffuse light in a desired direction so as not to hinder the luminance enhancement effect due to the narrow field of view by the light deflection element. As the light diffusing agent to be dispersed in the prism row, transparent fine particles having a refractive index different from that of the prism row can be used. Also in this case, the content of the light diffusing agent, the particle size, the refractive index, and the like are selected so as not to hinder the luminance enhancement effect by narrowing the visual field by the light deflecting element as much as possible.
[0046]
As described above, the light deflection element 4 as described above is placed on the light emitting surface 33 of the light guide 3 so that the prism array forming surface is on the light incident surface side. The distribution of the outgoing light in the XZ plane of the directional outgoing light emitted from the light outgoing surface 33 can be made narrower, and high brightness and narrow field of view as a light source device can be achieved. The half-value width of the outgoing light distribution in the XZ plane of the outgoing light from such a light deflection element 4 is preferably in the range of 5 to 25 degrees, more preferably in the range of 10 to 20 degrees, Preferably it is the range of 12-18 degree | times. This makes it possible to eliminate the difficulty of viewing images and the like due to an extremely narrow field of view by setting the half-value width of this outgoing light distribution to 5 degrees or more, and to increase the brightness and narrow field of view by setting it to 25 degrees or less. It is because it can plan.
[0047]
Since the narrowing of the visual field of the light deflecting element 4 in the present invention is affected by the extent (half width) of the outgoing light distribution (in the XZ plane) from the light emitting surface 33 of the light guide 3, the light deflecting element 4. The ratio of the half-value width A of the outgoing light distribution from the light emitting surface 42 to the half-value width B of the outgoing light distribution from the light emitting surface 33 of the light guide 3 also depends on the half-value width B of the outgoing light distribution from the light guide 3. change. For example, when the half-value width B of the light distribution from the light guide 3 is less than 26 degrees, the half-value width A is preferably in the range of 30 to 95% of the half-value width B, more preferably 30 to 80. %, And more preferably in the range of 30 to 70%. Moreover, when the half value width B of the light distribution from the light guide 3 is 26 degrees or more, the half value width A is preferably in the range of 30 to 80% of the half value width B, more preferably 30 to 70. %, And more preferably in the range of 30 to 60%. In particular, when the half-value width B of the distribution of light emitted from the light guide 3 is 26 to 36 degrees, the half-value width A is preferably in the range of 30 to 80% of the half-value width B, more preferably 30 to 30%. It is in the range of 70%, more preferably in the range of 30 to 60%. Furthermore, when the half-value width B of the light emitted from the light guide 3 exceeds 36 degrees, the half-value width A is preferably in the range of 30 to 70% of the half-value width B, more preferably 30 to 60. %, And more preferably in the range of 30 to 50%.
[0048]
In this way, in the present invention, the effect of narrowing the field of view increases as the half-value width of the outgoing light distribution from the light guide 3 becomes larger. Therefore, the half-value width B of the outgoing light distribution in terms of the efficiency of narrowing the field of view. It is preferable to use an optical deflecting element in combination with a light guide having an angle of 26 degrees or more, more preferably a light guide having a half width B exceeding 36 degrees. Further, when the half-value width of the light distribution from the light guide 3 is small, the effect of narrowing the field of view is small. However, as the half-value width of the light distribution from the light guide 3 is small, the brightness is increased. Therefore, it is preferable to use the light deflection element in combination with a light guide having a half-value width B of the outgoing light distribution of less than 26 degrees in terms of increasing the brightness.
[0049]
The primary light source 1 is a linear light source extending in the Y direction. As the primary light source 1, for example, a fluorescent lamp or a cold cathode tube can be used. In the present invention, the primary light source 1 is not limited to a linear light source, and a point light source such as an LED light source, a halogen lamp, a metahalo lamp, or the like can also be used. In particular, when used in a display device having a relatively small screen size such as a mobile phone or a portable information terminal, it is preferable to use a small point light source such as an LED. In addition, as shown in FIG. 1, the primary light source 1 is not only installed on one side end surface of the light guide 3, but can be further installed on the other side end surface facing each other as necessary. .
[0050]
The light source reflector 2 guides the light from the primary light source 1 to the light guide 3 with little loss. As a material, for example, a plastic film having a metal-deposited reflective layer on the surface can be used. As shown in the drawing, the light source reflector 2 is wound from the outer surface of the edge of the light reflecting element 5 to the edge of the light emitting surface of the light deflecting element 4 through the outer surface of the primary light source 1. On the other hand, the light source reflector 2 can be wound around the light emitting surface edge of the light guide 3 through the outer surface of the primary light source 1 from the outer surface of the light reflecting element 5, avoiding the light deflection element 4. It is.
[0051]
A reflection member similar to the light source reflector 2 can be attached to a side end surface other than the side end surface 31 of the light guide 3. As the light reflecting element 5, for example, a plastic sheet having a metal vapor deposition reflecting layer on the surface can be used. In the present invention, the light reflecting element 5 may be a light reflecting layer or the like formed on the back surface 34 of the light guide 3 by metal vapor deposition or the like instead of the reflecting sheet.
[0052]
The light guide 3 and the light deflection element 4 of the present invention can be made of a synthetic resin having a high light transmittance. Examples of such synthetic resins include methacrylic resins, acrylic resins, polycarbonate resins, polyester resins, and vinyl chloride resins. In particular, methacrylic resins are optimal because of their high light transmittance, heat resistance, mechanical properties, and molding processability. Such a methacrylic resin is a resin mainly composed of methyl methacrylate, and preferably has a methyl methacrylate content of 80% by weight or more. When forming the rough surface structure of the light guide 3 and the light polarizing element 4 and the surface structure such as a prism array, the transparent synthetic resin plate is formed by hot pressing using a mold member having a desired surface structure. Alternatively, the shape may be imparted simultaneously with molding by screen printing, extrusion molding, injection molding, or the like. The structural surface can also be formed using heat or a photocurable resin. Furthermore, on a transparent substrate such as a polyester film, acrylic resin, polycarbonate resin, vinyl chloride resin, polymethacrylamide resin, or other transparent substrate or rough surface structure made of an active energy ray curable resin. Moreover, a lens array arrangement structure may be formed on the surface, or such a sheet may be bonded and integrated on a separate transparent base material by a method such as adhesion or fusion. As the active energy ray-curable resin, polyfunctional (meth) acrylic compounds, vinyl compounds, (meth) acrylic acid esters, allyl compounds, (meth) acrylic acid metal salts, and the like can be used.
[0053]
On the light emitting surface (the light exit surface 42 of the light polarizing element 4) of the surface light source device including the primary light source 1, the light source reflector 2, the light guide 3, the light deflecting element 4, and the light reflecting element 5 as described above, a liquid crystal display element is provided. A liquid crystal display device is configured by disposing. The liquid crystal display device is observed by an observer through the liquid crystal display element from above in FIG. Further, in the present invention, a sufficiently collimated narrow distribution of light can be incident on the liquid crystal display element from the surface light source device, so that there is no gradation inversion in the liquid crystal display element and the brightness and hue uniformity. Can be obtained, and light irradiation concentrated in a desired direction can be obtained, and the utilization efficiency of the light emission amount of the primary light source for illumination in this direction can be increased.
[0054]
FIG. 3 is a schematic perspective view showing still another embodiment of the surface light source device according to the present invention. In this embodiment, the back surface 34 of the light guide 3 is a flat surface, and has a wedge shape in which the thickness gradually decreases from the light incident end surface 31 toward the opposite end surface 32. The only difference from the embodiment described above with reference to FIGS.
[0055]
Although the above embodiments have been described with respect to the surface light source device, the present invention can also be applied to a light source device having a bar shape elongated in the X direction whose Y direction dimension is, for example, five times or less the thickness of the light guide 3. In that case, as the primary light source 1, a substantially dot-like one such as an LED can be used.
[0056]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
[0057]
In addition, the measurement of each physical property in the following examples was performed as follows.
[0058]
Measurement of normal luminance and half-width of luminous intensity of surface light source element Using a cold cathode tube as a light source, DC12V was applied to an inverter (HIU-742A manufactured by Harrison Co., Ltd.) and high frequency lighting was performed. For the luminance, the surface of the surface light source device or the light guide was divided into 3 × 5 squares of 20 mm squares, and the average of 15 luminance values in the normal direction of each square was obtained. The light intensity half width is fixed to black paper having a pinhole of 4 mmφ on the surface of the surface light source device or the light guide so that the pinhole is located at the center of the surface, and the measurement circle of the luminance meter is 8 to 9 mm. The distance was adjusted in such a way that the gonio rotation axis was rotated about the pinhole in the direction perpendicular to and parallel to the longitudinal axis of the cold cathode tube. While rotating the rotation axis in each direction from + 80 ° to -80 ° at 0.5 ° intervals, the luminous intensity distribution of the emitted light is measured with a luminance meter, the luminance in the normal direction, the half value width of the luminous intensity distribution (peak value) The spread angle of 1/2 of the distribution was determined.
[0059]
Measurement of average inclination angle (θa) According to ISO4287 / 1-1987, a stylus type surface roughness meter (Surfcom 570A manufactured by Tokyo Seiki Co., Ltd.) using 010-2528 (1 μmR, 55 ° cone, diamond) as a stylus. The surface roughness of the rough surface was measured at a driving speed of 0.03 mm / sec. From the chart obtained by this measurement, the average line was subtracted to correct the inclination, and the calculation was made according to the equations (1) and (2).
[0060]
[Example 1]
A light guide plate having one surface having a mat (average inclination angle of 3.0 degrees) was prepared by injection molding using an acrylic resin (Acrypet VH5 # 000 manufactured by Mitsubishi Rayon Co., Ltd.). The light guide plate had a wedge plate shape of 195 mm × 253 mm and a thickness of 3 mm-1 mm. On the mirror surface side of the light guide, a prism row having a prism apex angle of 140 ° and a pitch of 50 μm is formed by an acrylic ultraviolet curable resin so as to be parallel to a side (short side) having a length of 195 mm. A prism layer arranged in parallel was formed. The cold cathode tube is connected to a light source reflector (reiko) along the long side so as to face one side end surface (end surface on the side of 3 mm thickness) corresponding to the side (long side) having a length of 253 mm of the light guide. (Silver reflective film manufactured by company). Furthermore, a light diffusion reflection film (E60 manufactured by Toray Industries, Inc.) was attached to the other side end face, and a reflection sheet was arranged on the prism array (back face). The above configuration was incorporated into the frame. This light guide had a light emission rate of 1.5%, the maximum peak of the emitted light luminous intensity distribution was 70 degrees with respect to the normal direction of the light emitting surface, and the half width (half width B) was 24.5 degrees. .
[0061]
On the other hand, using an acrylic ultraviolet curable resin having a refractive index of 1.5064, each of both prism surfaces has a convex curved surface shape having the radius of curvature shown in Table 1, and a large number of prism rows with a pitch of 50 μm are arranged in parallel. A prism sheet in which a prism row forming surface continuously provided on the surface of one side of a 50 μm thick polyester film was produced. At this time, as the virtual prism array, a prism array having an isosceles triangle section with a pitch of 50 μm and an apex angle of 65.4 degrees was set so that the emitted light from the prism sheet was in the normal direction of the light output surface.
[0062]
Each of the obtained prism sheets was placed so that the prism row forming surface faces the light exit surface side of the light guide and the ridge lines of the prism rows are parallel to the light incident surface of the light guide. The intensity ratio of the peak luminance of the surface light source device manufactured as described above and the half-value width (half-value width A) in the emission light distribution in the plane perpendicular to the cold cathode tube were obtained, and the results are shown in Table 1. It was.
[0063]
[Comparative Example 1]
A prism row having an isosceles triangular section with a pitch of 50 μm and an apex angle of 65.4 degrees was formed on one surface in the same manner as in Example 1 except that the prism surface constituting the prism row of the prism sheet was flat. A prism sheet was prepared. This prism sheet was placed so that the prism array forming surface was directed to the light exit surface side of the light guide obtained in Example 1 and the prism ridges were parallel to the light incident surface of the light guide. The intensity ratio of the peak luminance of the surface light source device manufactured as described above and the half-value width (half-value width A) in the emission light distribution in the plane perpendicular to the cold cathode tube were obtained, and the results are shown in Table 1. It was.
[0064]
[Table 1]
Figure 0004160297
[Example 2]
A light guide plate having one surface with a mat (average inclination angle 8.0 degrees) was produced by injection molding using an acrylic resin (Acrypet VH5 # 000 manufactured by Mitsubishi Rayon Co., Ltd.). The light guide plate had a wedge plate shape of 195 mm × 253 mm and a thickness of 3 mm-1 mm. On the mirror surface side of the light guide, a prism row having a prism apex angle of 140 ° and a pitch of 50 μm is formed by an acrylic ultraviolet curable resin so as to be parallel to a side (short side) having a length of 195 mm. A prism layer arranged in parallel was formed. The cold cathode tube is connected to a light source reflector (reiko) along the long side so as to face one side end surface (end surface on the side of 3 mm thickness) corresponding to the side (long side) having a length of 253 mm of the light guide. (Silver reflective film manufactured by company). Furthermore, a light diffusion reflection film (E60 manufactured by Toray Industries, Inc.) was attached to the other side end face, and a reflection sheet was arranged on the prism array (back face). The above configuration was incorporated into the frame. This light guide had a light emission rate of 4.5%, the maximum peak of the emitted light luminous intensity distribution was 61 degrees with respect to the normal direction of the light emitting surface, and the half-value width (half-value width B) was 39 degrees.
[0065]
On the other hand, using an acrylic ultraviolet curable resin having a refractive index of 1.5064, each of both prism surfaces has a convex curved surface shape having the curvature radius shown in Table 2, and a large number of prism rows with a pitch of 50 μm are arranged in parallel. A prism sheet in which a prism row forming surface continuously provided on the surface of one side of a 50 μm thick polyester film was produced. At this time, as the virtual prism array, a prism array having an isosceles triangle section with a pitch of 50 μm and an apex angle of 65.4 degrees was set so that the emitted light from the prism sheet was in the normal direction of the light output surface.
[0066]
Each of the obtained prism sheets was placed so that the prism row forming surface faces the light exit surface side of the light guide and the ridge lines of the prism rows are parallel to the light incident surface of the light guide. The intensity ratio of the peak luminance of the surface light source device manufactured as described above and the half-value width (half-value width A) in the emission light distribution in the plane perpendicular to the cold cathode tube were obtained, and the results are shown in Table 2. It was.
[0067]
[Comparative Example 2]
A prism row having an isosceles triangular section with a pitch of 50 μm and an apex angle of 65.4 degrees was formed on one surface in the same manner as in Example 1 except that the prism surface constituting the prism row of the prism sheet was flat. A prism sheet was prepared. This prism sheet was placed so that the prism array forming surface faces the light exit surface side of the light guide obtained in Example 2 and the prism ridges are parallel to the light incident surface of the light guide. The intensity ratio of the peak luminance of the surface light source device manufactured as described above and the half-value width (half-value width A) in the emission light distribution in the plane perpendicular to the cold cathode tube were obtained, and the results are shown in Table 2. It was.
[0068]
[Table 2]
Figure 0004160297
[Example 3]
Example 1 of the prism sheet constituting the prism row of the prism sheet, except that the surface closer to the cold cathode tube is a flat surface and the entire surface far from the cold cathode tube is a convex curved surface having a radius of curvature of 400 μm. In the same manner as described above, a prism sheet in which a prism array with a pitch of 50 μm and an apex angle of 65.4 degrees was formed on one surface was produced. This prism sheet was placed so that the prism array forming surface was directed to the light exit surface side of the light guide obtained in Example 1 and the prism ridges were parallel to the light incident surface of the light guide. The normal luminance of the surface light source device manufactured as described above and the half-value width in the distribution of emitted light in the plane perpendicular to the cold cathode tube were obtained. The results are shown in Table 3.
[0069]
[Example 4]
Both prism surfaces constituting the prism row of the prism sheet have a plane (surface near the top of the prism row) having a height of 16 μm or more (surface near the top of the prism row) and a surface (surface near the bottom of the prism row) having a height of 16 μm or less. The pitch is the same as in Example 1 except that the convex curved surface has a radius of curvature of 400 μm (the inclination angle of the surface connecting the boundary between the plane and the convex curved surface and the bottom of the prism surface is 30 ° with respect to the prism sheet normal). A prism sheet having a prism row of 50 μm and an apex angle of 65.4 degrees formed on one surface was prepared. This prism sheet was placed so that the prism array forming surface was directed to the light exit surface side of the light guide obtained in Example 1 and the prism ridges were parallel to the light incident surface of the light guide. In this case, the position K2 of the virtual prism surface is a position where the height of the prism row is 27 μm. The normal luminance of the surface light source device manufactured as described above and the half-value width in the distribution of emitted light in the plane perpendicular to the cold cathode tube were obtained. The results are shown in Table 3.
[0070]
[Example 5]
Of the prism surfaces constituting the prism row of the prism sheet, one side of the prism row having a pitch of 50 μm and an apex angle of 65.4 degrees is the same as in Example 4 except that the surface close to the cold cathode tube is a flat surface. A prism sheet formed on the surface was prepared. This prism sheet was placed so that the prism array forming surface was directed to the light exit surface side of the light guide obtained in Example 1 and the prism ridges were parallel to the light incident surface of the light guide. In this case, the position K2 of the virtual prism surface is a position where the height of the prism row is 27 μm. The normal luminance of the surface light source device manufactured as described above and the half-value width in the distribution of emitted light in the plane perpendicular to the cold cathode tube were obtained. The results are shown in Table 3.
[0071]
[Example 6]
Of the prism surfaces constituting the prism row of the prism sheet, the inclination angle with respect to the prism sheet normal of the surface close to the cold cathode tube is 34 °, and the prism sheet normal of the plane portion of the surface far from the cold cathode tube A prism sheet having a pitch of 50 μm and an apex angle of 66 degrees formed on one surface was prepared in the same manner as in Example 5 except that the inclination angle with respect to was 32 °. This prism sheet was placed so that the prism array forming surface was directed to the light exit surface side of the light guide obtained in Example 1 and the prism ridges were parallel to the light incident surface of the light guide. In this case, the position K2 of the virtual prism surface is a position where the height of the prism row is 27 μm. The normal luminance of the surface light source device manufactured as described above and the half-value width in the distribution of emitted light in the plane perpendicular to the cold cathode tube were obtained. The results are shown in Table 3.
[0072]
[Table 3]
Figure 0004160297
[0073]
【The invention's effect】
As described above, according to the present invention, at least one prism surface of the prism array formed on the light incident surface of the light deflection element is set according to the inclination angle of the peak emission light from the light guide. Since it is formed in a convex shape based on the shape of the virtual prism array, the efficiency of concentrating and emitting light emitted from the primary light source in the required observation direction (utilization efficiency of the light amount of the primary light source) is high, and light A light source device is provided in which the light exit surface of the deflecting element is a flat surface and is easy to mold. In particular, in the present invention, the angle of inclination of the prism surface of the light incident surface of the light deflection element is closer to the light exit surface than the position of the virtual prism row set according to the angle of inclination of the peak output light from the light guide. Then, by making the convex curved surface shape to have an inclination angle larger than the inclination angle of the virtual prism surface, the light emitted from the primary light source is concentrated and emitted in the required observation direction (utilization efficiency of the light amount of the primary light source) In addition, a light source device is provided that has a high light output, and the light exit surface of the light deflecting element is simplified to be flat and easy to mold.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a surface light source device according to the present invention.
FIG. 2 is an explanatory diagram of a shape of a prism row on a light incident surface of a light deflection element.
FIG. 3 is a schematic perspective view showing a surface light source device according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Primary light source 2 Light source reflector 3 Light guide 4 Light deflecting element 5 Light reflecting element 6 Light shielding material 31 Light incident end surface 32 End surface 33 Light emitting surface 34 Back surface 41 Light incident surface 42 Light emitting surface I Virtual prism rows I-1, I- 2 Prism surface of virtual prism array

Claims (7)

入光面とその反対側の出光面とを有しており、前記入光面には互いに並列に配列された複数のプリズム列が形成されており、該プリズム列は2つのプリズム面を有し、一方のプリズム面の少なくとも一部領域が凸曲面形状をなし、前記凸曲面形状の曲率半径r前記プリズム列の配列ピッチPとの比(r/P)が7〜30であることを特徴とする光偏向素子。A light incident surface and a light exit surface opposite to the light incident surface. The light incident surface includes a plurality of prism rows arranged in parallel to each other, the prism row having two prism surfaces. , At least a partial region of one of the prism surfaces has a convex curved surface shape, and a ratio (r / P) between the curvature radius r of the convex curved surface shape and the arrangement pitch P of the prism rows is 7 to 30. An optical deflection element. 前記凸曲面形状を有するプリズム面と前記プリズム列の稜線と谷線を含む平面との最大距離dと、前記プリズム列の配列ピッチPとの比(d/P)が0.05〜5%であることを特徴とする請求項1に記載の光偏向素子。  The ratio (d / P) between the maximum distance d between the prism surface having the convex curved surface shape and the plane including the ridge line and valley line of the prism row and the arrangement pitch P of the prism row is 0.05 to 5%. The optical deflection element according to claim 1, wherein the optical deflection element is provided. 前記凸曲面形状を有するプリズム面が、凸曲面と平面とから構成されることを特徴とする請求項1または2に記載の光偏向素子。  The light deflection element according to claim 1, wherein the prism surface having the convex curved surface shape includes a convex curved surface and a flat surface. 前記凸曲面形状を有するプリズム面が、前記プリズム列の頂部に近い領域は平面形状をなし、前記プリズム列の谷部に近い領域は凸曲面形状をなすことを特徴とする請求項3に記載の光偏向素子。4. The prism surface having the convex curved shape has a planar shape in a region near the top of the prism row, and a convex curved shape in a region near a trough in the prism row. Optical deflection element. 入光面とその反対側の出光面とを有しており、前記入光面には互いに並列に配列された複数のプリズム列が形成されており、該プリズム列は2つのプリズム面を有し、一方のプリズム面の少なくとも一部領域が凸曲面形状をなし、前記凸曲面形状を有するプリズム面と前記プリズム列の稜線と谷線を含む平面との最大距離dと、前記プリズム列の配列ピッチPとの比(d/P)が、0.05〜5%であることを特徴とする光偏向素子。  A light incident surface and a light exit surface opposite to the light incident surface. The light incident surface includes a plurality of prism rows arranged in parallel to each other, the prism row having two prism surfaces. , At least a partial region of one prism surface has a convex curved surface shape, and a maximum distance d between the prism surface having the convex curved surface shape and a plane including a ridge line and a valley line of the prism row, and an arrangement pitch of the prism rows A light deflection element having a ratio (d / P) with P of 0.05 to 5%. 前記凸曲面形状を有するプリズム面が、凸曲面と平面とから構成されることを特徴とする請求項5に記載の光偏向素子。6. The optical deflection element according to claim 5 , wherein the prism surface having the convex curved surface shape includes a convex curved surface and a flat surface. 前記凸曲面形状を有するプリズム面が、前記プリズム列の頂部に近い領域は平面形状をなし、前記プリズム列の谷部に近い領域は凸曲面形状をなすことを特徴とする請求項6に記載の光偏向素子。The prism surface having the convex curved surface shape has a planar shape in a region close to a top portion of the prism row, and a convex surface shape in a region near a valley portion of the prism row. Optical deflection element.
JP2001380596A 2000-12-13 2001-12-13 Optical deflection element Expired - Fee Related JP4160297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001380596A JP4160297B2 (en) 2000-12-13 2001-12-13 Optical deflection element

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2000-379089 2000-12-13
JP2000379089 2000-12-13
JP2001-314149 2001-10-11
JP2001314149 2001-10-11
JP2001325205 2001-10-23
JP2001-325205 2001-10-23
JP2001380596A JP4160297B2 (en) 2000-12-13 2001-12-13 Optical deflection element

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2008058764A Division JP2008209929A (en) 2000-12-13 2008-03-07 Light source device and light deflector for use therein
JP2008058763A Division JP2008209928A (en) 2000-12-13 2008-03-07 Light source device and light deflector for use therein

Publications (3)

Publication Number Publication Date
JP2003203513A JP2003203513A (en) 2003-07-18
JP2003203513A5 JP2003203513A5 (en) 2005-07-28
JP4160297B2 true JP4160297B2 (en) 2008-10-01

Family

ID=27670878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001380596A Expired - Fee Related JP4160297B2 (en) 2000-12-13 2001-12-13 Optical deflection element

Country Status (1)

Country Link
JP (1) JP4160297B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1852735A1 (en) * 2000-12-13 2007-11-07 Mitsubishi Rayon Co. Ltd. Light source device
JP4613566B2 (en) * 2004-09-30 2011-01-19 ソニー株式会社 Light transmission sheet
JP5360592B2 (en) * 2009-12-28 2013-12-04 大日本印刷株式会社 Prism sheet, surface light source device and display device

Also Published As

Publication number Publication date
JP2003203513A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
JP2008209928A (en) Light source device and light deflector for use therein
JP4677019B2 (en) Light source device
JP4454020B2 (en) Light source device and light deflection element
US7534024B2 (en) Optical deflector element and light source device
JP4323189B2 (en) Optical deflection element and surface light source device
JP4889130B2 (en) Optical deflection element and surface light source device
JP2005049857A (en) Light source device
JP2008218418A (en) Surface light source and light guide used for same
JP2002245824A (en) Light source device and light polarization element used for it
JP4242162B2 (en) Light source device
JP4119633B2 (en) Surface light source device and light guide used therefor
JP4210053B2 (en) Light source device
JP4160297B2 (en) Optical deflection element
JP4118043B2 (en) Light source device
JP4761422B2 (en) Surface light source device and light guide used therefor
JP4730873B2 (en) Optical deflection element and surface light source device using the same
JP4162399B2 (en) Light source device
JP2004287415A (en) Optical deflection device and light source device
JP4960327B2 (en) Light deflection element and light source device
JP2012042502A (en) Optical deflection element and surface light source device
JP4485416B2 (en) Light deflection element and light source device
JP2012203081A (en) Light deflecting element and surface light source device using the same
JP2012013756A (en) Optical deflection element and surface light source device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees