WO2007125232A1 - Procédé de fabrication de complexes de trifluorure de bore - Google Patents

Procédé de fabrication de complexes de trifluorure de bore Download PDF

Info

Publication number
WO2007125232A1
WO2007125232A1 PCT/FR2007/051063 FR2007051063W WO2007125232A1 WO 2007125232 A1 WO2007125232 A1 WO 2007125232A1 FR 2007051063 W FR2007051063 W FR 2007051063W WO 2007125232 A1 WO2007125232 A1 WO 2007125232A1
Authority
WO
WIPO (PCT)
Prior art keywords
complexes
boron trifluoride
complexing agent
static mixer
temperature
Prior art date
Application number
PCT/FR2007/051063
Other languages
English (en)
Inventor
Philippe Joubert
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to EP07731866A priority Critical patent/EP2013143A1/fr
Publication of WO2007125232A1 publication Critical patent/WO2007125232A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/12Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/146Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/06Boron halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type

Definitions

  • the present invention relates to a process for producing boron trifluoride complexes.
  • complexing agents are generally compounds comprising oxygen, nitrogen, phosphorus or sulfur, for example water, ethers, alcohols, ketones, acids, amines, phosphines and the thiols.
  • trifluoride is the most widely used. Many applications rely on its strong Lewis acid properties.
  • Boron trifluoride (BF 3 ) is an agent of outstanding interest for organic synthesis because of the variety of reaction types it allows and the large number of compounds that can react.
  • Boron trifluoride is often used for its catalytic action, for example in Friedel and Crafts alkylation reactions, esterification reactions and in the "nitration" and sulphonation of aromatic compounds. Boron trifluoride is used as an initiator of olefin polymerization in combination with proton donors. Boron trifluoride is also used to catalyze the isomerization of alkenes, alkanes.
  • the boron trifluoride complexes are generally prepared batchwise in a stirred reactor.
  • the complexing agent is introduced in the liquid state into a vessel equipped with a stirrer and equipped with a heat exchanger, for example a jacket or an internal coil in which circulates a coolant.
  • Boron trifluoride is introduced in the gaseous state into the complexing agent liquid by means of a diving stick. Since this reaction is highly exothermic, stirring must be maintained in order to control and avoid losses of boron trifluoride and / or complexing agent.
  • the temperature of the heat transfer fluid must be regulated so as to maintain the reaction medium in the liquid state, and at the lowest possible temperature in order to minimize material losses by volatilization and in some cases corrosion of the reactor.
  • the critical molar ratio is in the vicinity of 0.5, corresponding to a specific weight of 32-36%.
  • the boron trifluoride titer is less than 36% by weight in the medium, there is a risk of polymerization, partial or total, of the complexing agent tetrahydrofuran and thus degradation of the final product, for example an abnormally viscous high and very strong coloration.
  • the present invention provides a novel process for the manufacture of boron trifluoride complexes which makes it possible to solve all or part of the aforementioned drawbacks.
  • the subject of the present invention is a process for the production of boron trifluoride complexes comprising a step in the course of which the boron trifluoride is brought into contact with the complexing agent in at least one static mixer and a step of isolating the complexes. thus obtained.
  • the contacting step it is preferable to operate in the presence essentially of boron trifluoride, of the complexing agent and possibly of boron trifluoride complexes.
  • the complexing agent is, in general, compounds comprising oxygen, nitrogen, phosphorus or sulfur and preferably chosen from water, ethers, alcohols, ketones, acids, amines, phosphines and thiols.
  • the complexing agent may be introduced into the static mixer in the gaseous or liquid state or dissolved in a solvent.
  • the contact temperature of the boron trifluoride with the complexing agent can vary within wide limits. This temperature is preferably at least 1 to 5 ° C higher than the melting temperature of the complex. A temperature between 10 and 50 ° C may also be suitable.
  • the complexes leaving the liquid state of the static mixer are then advantageously solidified suddenly in order to limit their thermal decomposition.
  • This solidification can be implemented using a drum or band scale or any other rapid cooling process.
  • the boron trifluoride is introduced in the gaseous state and advantageously under an absolute pressure of between 1 and 100 bar, into the static mixer.
  • a pressure of between 1 and 10 bar is particularly preferred.
  • the process can be carried out both discontinuously and continuously. However, it is preferred to operate continuously.
  • the process makes it possible to prepare complexes in a wide range of boron trifluoride / complexing agent molar ratio, for example from 0.01 to 1, but is aimed in particular at the boron trifluoride boron trifluoride / complexing agent molar ratio complexes. between 0.5 and 1.
  • the complexing agents are advantageously chosen from water, dimethyl ether, diethyl ether, methanol, ethanol, butanol, propanol, isopropanol, phenol, acetic acid, propionic acid and monoethylamine. tetrahydrofuran.
  • any type of static dual envelope mixer may be suitable.
  • Static mixers with fixed elements of helical structure or with alternately inverted steps can be mentioned in particular.
  • the choice of the number of elements depends on the desired homogeneity of the mixture, while the size of the elements depends on the desired working regime, which can be turbulent, transient or laminar.
  • the process according to the present invention makes it possible to obtain quantitative yields and / or high volume productivities.
  • the temperature control is easy thus reducing side reactions and / or corrosion that can lead to a partial or total deterioration of the quality of the desired product.
  • the present invention makes it possible to continuously produce solid and liquid boron trifluoride complexes.
  • the residence time in the mixer is defined as the ratio of the effective volume of the mixer / total gas flow.
  • the residence time, in the absence of reaction, in the static mixer is 0.2 s.
  • the temperature of the flow leaving the static mixer is between 19 and 21 ° C.
  • 450 g of liquid product containing 59.5% of boron trifluoride and of density 1 are obtained. 237 kg / l.
  • Example 2 ( Figure 2)
  • the receptacle (6) used to recover the outflow (3) of the static mixer (4) initially contains 250 g of methanol.
  • 48.6 g / hr of gaseous boron trifluoride (1) is fed continuously into a double jacketed static mixer (4) and, using a pump (7) of the liquid, at a rate of 100 ml / h.
  • the residence time, in the absence of reaction, is 0.4 s.
  • 523 g of liquid complex BF 3 are recovered. 2 CH 3 OH titrating 52.19% BF 3 and density 1, 22 kg / l.
  • Example 3 ( Figure 3)
  • the static mixer (8) is fed continuously firstly from the complex receptacle (6) initially containing 50 g of complex BF 3 -diethylether (47.3% BF 3 ), by means of a pump (7) debiting 76 g / h, secondly diethylether (9) by means of the pump delivering 76 g / h.
  • the static mixer (4) is fed at the same time by the liquid flow (2) leaving the first static mixer (8) and by the gaseous BF 3 (68 g / h). At a flow rate of BF 3 of 68 g / h corresponds to a residence time of 0.5 seconds in the static mixer (4), in the absence of a reaction.
  • a cooling fluid (temperature + 18 ° C.) circulates inside the double envelopes of the static mixers in order to eliminate the calories released during the exothermic reaction of complexation of BF 3 with diethyl ether. After 2 h 26 min of test, and emptying the receptacle (6) equipped with a condenser (5), 400 g of liquid complex of density 1, 12 kg / l, and grading 47.17% of BF are recovered. 3 (stoichiometric composition of complex 1 BF 3 - 1 (C 2 H 2 ) 2 O: 47.82% BF 3 ).
  • Example 3 is repeated except that the receptacle initially contains 50 g of complex BF 3 / CH 3 COOH and that the static mixer (8) is supplied with complex by means of the pump (7) with a flow rate of 53. g / h and with acetic acid with a flow rate of 46.6 g / h.
  • the gas flow rate of BF 3 is 45 g / h and the residence time, in the absence of reaction, is 0.7 s.
  • EXAMPLE 5 At atmospheric pressure, boron trifluoride (gas) (1) is fed continuously at atmospheric pressure into a jacketed static mixer (1) at a rate of 102 g / h and liquid THF (2) at reason of 110 g / h. The temperature of the refrigerant feeding the double envelope of the static mixer is 10 0 C. The liquid flow (3) leaving the static mixer is then recovered in a container (6) provided with a condenser (5).
  • the residence time, in the absence of reaction, in the mixer is static of 0.3 s.
  • the temperature of the flow leaving the static mixer is between 19 and 21 ° C.
  • 2 h 10 min of test one obtains 459 g of liquid complex BF 3 THF very little colored and low viscosity, grading 48.15. % boron trifluoride and mass volume 1, 261 kg / l.
  • Samples were taken at the end of 30, 60 and 150 minutes, and the densities were respectively 1, 260, 1, 257 and 1, 263 corresponding to weightings in BF 3 of 48.1, 47.8 and 48.4%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention concerne un procédé de fabrication de complexes de trifluorure de bore. La présente invention a pour objet un procédé de fabrication de complexes de trifluorure de bore comprenant une étape au cours de laquelle le trifluorure de bore est mis en contact avec l'agent complexant dans au moins un méla ngeur statique et une étape d'isolation des complexes ainsi obtenus.

Description

PROCEDE DE FABRICATION DE COMPLEXES DE TRIFLUORURE DE
BORE
La présente invention concerne un procédé de fabrication de complexes de trifluorure de bore.
Le trifluorure de bore forme des complexes avec de nombreux composés complexant donneurs d'électrons, ci- après dénommés agents complexant. Les agents complexant sont en général des composés comprenant de l'oxygène, de l'azote, du phosphore ou du soufre, comme par exemple l'eau, les éthers, les alcools, les cétones, les acides, les aminés, les phosphines et les thiols.
Parmi les halogénures de bore, le trifluorure est le plus largement utilisé. De nombreuses applications font appel à ses propriétés d'acide de Lewis fort.
Le trifluorure de bore (BF3) est un agent d'un intérêt exceptionnel pour les synthèses organiques, en raison de la variété des types de réactions qu'il permet et de l'important ensemble de composés pouvant ainsi réagir.
Le trifluorure de bore est souvent utilisé pour son action catalytique, par exemple dans des réactions d'alkylation Friedel et Crafts, des réactions d'estérification et dans la "nitration" et sulphonation des composés aromatiques. Le trifluorure de bore est utilisé comme initiateur de polymérisation d'oléfines en combinaison avec des donneurs de proton. Le trifluorure de bore est aussi utilisé pour catalyser l'isomérisation des alcènes, alcanes.
Les complexes de trifluorure de bore sont en général préparés en batch dans un réacteur agité. Ainsi, l'agent complexant est introduit à l'état liquide dans une cuve munie d'un agitateur et équipée d'un échangeur thermique, par exemple une double enveloppe ou un serpentin interne dans lequel circule un fluide caloporteur. Le trifluorure de bore est introduit à l'état gazeux au sein du liquide d'agent complexant au moyen d'une canne plongeante. Cette réaction étant très exothermique, l'agitation doit être maintenue afin de maîtriser et éviter des pertes de trifluorure de bore et/ou d' agent complexant. La température du fluide caloporteur doit être régulée de manière à maintenir à l'état liquide le milieu réactionnel, et ce à une température la plus basse possible afin de minimiser les pertes de matières par volatilisation et dans certains cas la corrosion du réacteur.
Un autre inconvénient rencontré avec le réacteur agité fonctionnant en batch, est celui du risque de polymérisation de certains agents complexant lorsque le ratio molaire trifluorure de bore/agent complexant du milieu réactionnel est inférieur à une valeur critique. Dans le cas du tetrahydrofuranne
(THF) comme agent complexant, le ratio molaire critique se situe au voisinage de 0,5, correspondant à un titre massique de 32-36%. Par exemple, lorsque le titre en trifluorure de bore est inférieur à 36 % en poids dans le milieu, il y a risque de polymérisation, partielle ou totale, de l'agent complexant tetrahydrofuranne et donc dégradation du produit final, par exemple une viscosité anormalement élevée et une très forte coloration.
La présente invention fournit un nouveau procédé de fabrication de complexes de trifluorure de bore qui permet de résoudre en partie ou en totalité les inconvénients précités.
La présente invention a pour objet un procédé de fabrication de complexes de trifluorure de bore comprenant une étape au cours de laquelle le trifluorure de bore est mis en contact avec l'agent complexant dans au moins un mélangeur statique et une étape d'isolation des complexes ainsi obtenus. Pour l'étape de mise en contact, on préfère opérer en présence essentiellement du trifluorure de bore, de l'agent complexant et éventuellement de complexes du trifluorure de bore.
L'agent complexant est en général des composés comprenant de l'oxygène, de l'azote, du phosphore ou du soufre et de préférence choisi parmi l'eau, les éthers, les alcools, les cétones, les acides, les aminés, les phosphines et les thiols.
L'agent complexant peut être introduit dans le mélangeur statique à l'état gazeux ou liquide ou dissous dans un solvant.
La température de mise en contact du trifluorure de bore avec l'agent complexant peut varier dans de larges limites. Cette température est de préférence d'au moins 1 à 5°C supérieure à la température de fusion des complexes. Une température comprise entre 10 et 50° C peut également convenir.
Dans le cas des complexes solides à température ambiante, les complexes sortant à l'état liquide du mélangeur statique sont alors avantageusement solidifiés brutalement afin de limiter leur décomposition thermique. Cette solidification peut être mise en œuvre à l'aide d'une écailleuse à tambour ou à bande ou tout autre procédé de refroidissement rapide.
De préférence, le trifluorure de bore est introduit à l'état gazeux et avantageusement sous une pression absolue comprise entre 1 et 100 bar, dans le mélangeur statique. Une pression comprise entre 1 et 10 bar est particulièrement préférée.
Le procédé peut être mis en oeuvre aussi bien en discontinu que continu. On préfère cependant opérer en continu.
Le procédé permet de préparer des complexes dans une large gamme de ratio molaire trifluorure de bore/agent complexant, par exemple de 0,01 à 1 , mais vise en particulier les complexes de trifluorure de bore de ratio molaire trifluorure de bore/agent complexant compris entre 0,5 et 1.
Les agents complexants sont avantageusement choisis parmi l'eau, le diméthyléther, le diéthyléther, le méthanol, l'éthanol, le butanol, le propanol, l'isopropanol, le phénol, l'acide acétique, l'acide propionique, la monoéthylamine et le tetrahydrofuranne.
Selon le procédé de la présente invention, tout type de mélangeur statique à double enveloppe peut convenir. On peut citer notamment les mélangeurs statiques munis d'éléments fixes de structure hélicoïdale ou à pas alternativement inversés. Le choix du nombre d'éléments dépend de l'homogénéité recherchée du mélange, tandis que la taille des éléments dépend du régime de travail recherché, qui peut être turbulent, transitoire ou laminaire.
Le procédé selon la présente invention permet d'obtenir des rendements quantitatifs et/ou de fortes productivités volumiques. En outre, le contrôle de la température est aisé permettant ainsi de réduire les réactions secondaires et/ou la corrosion pouvant conduire à une détérioration partielle ou totale de la qualité du produit recherché. La présente invention permet de produire en continu des complexes de trifluorure de bore solides et liquides.
PARTIE EXPERIMENTALE Caractéristiques du mélangeur statique Diamètre interne = 5 mm Longueur = 120 mm
Volume utile = 3330 mm3
Le temps de séjour dans le mélangeur est défini comme étant le rapport du volume utile du mélangeur / débit total de gaz. Exemple 1 ( Figure 1)
On alimente en continu à pression atmosphérique, dans un mélangeur statique à double enveloppe ( 4), du trifluorure de bore (gaz) (1) à raison de 76,6 g/h et de l'éther de diméthyle gazeux ( 2) à raison de 52,6 g/h. La température du fluide réfrigérant alimentant la double enveloppe du mélangeur statique est de 5°C. Le flux sortant (3) du réacteur est ensuite récupéré dans un récipient (6), muni d'un condenseur (5).
Le temps de séjour, en l'absence de réaction, dans le mélangeur statique est de 0,2 s. La température du flux sortant du mélangeur statique est comprise entre 19 et 210C. Au bout de 3 h 30 min d'essai, on obtient 450 g de produit liquide titrant 59,5 % de trifluorure de bore et de masse volumique 1 ,237 kg/l.
Exemple 2 ( Figure 2 ) Le réceptacle (6) utilisé pour récupérer le flux sortant (3) du mélangeur statique (4) contient initialement 250 g de méthanol. On alimente en continu, dans un mélangeur statique à double enveloppe (4) , du trifluorure de bore gazeux (1) à raison de 87,6 g/h et à l'aide d'une pompe (7) du liquide à raison de 100 ml/h. Le temps de séjour, en l'absence de réaction, est de 0,4 s. Au bout de 3 h d'essai, on récupère 523 g de complexe liquide BF3. 2 CH3OH titrant 52,19 % de BF3 et de masse volumique 1 ,22 kg/l. Exemple 3 ( Figure 3 )
On utilise deux mélangeurs statiques à double enveloppe montés en série. Le mélangeur statique (8) est alimenté en continu premièrement à partir du réceptacle (6) de complexe contenant initialement 50 g de complexe BF3- Diéthyléther (47,3 % BF3), ce au moyen d'une pompe (7) débitant 76 g/h, deuxièmement en Diéthyléther (9) au moyen de la pompe débitant 76 g/h. Le mélangeur statique (4) est alimenté à la fois par le flux de liquide (2) sortant du premier mélangeur statique (8) et par du BF3 gazeux (68 g/h). A un débit de BF3 de 68 g/h correspond un temps de séjour de 0,5 seconde dans le mélangeur statique (4), en l'absence de réaction.
Un fluide réfrigérant (température +18°C) circule à l'intérieur des doubles enveloppes des mélangeurs statiques afin d'éliminer les calories libérées au cours de la réaction exothermique de complexation du BF3 avec le Diéthyléther. Après 2 h 26 mn d'essai, et vidange du réceptacle (6) muni d'un condenseur (5), on récupère 400 g de complexe liquide de masse volumique 1 ,12 kg/l, et titrant 47,17 % de BF3 (composition stœchiométrique du complexe 1 BF3 - 1 (C2Hs)2 O : 47,82 % de BF3).
Exemple 4 On reprend l'exemple 3 sauf que le réceptacle contient initialement 50 g de complexe BF3/CH3COOH et que le mélangeur statique (8) est alimenté par du complexe au moyen de la pompe (7) avec un débit de 53 g/h et par de l'acide acétique avec un débit de 46,6 g/h.
Le débit gazeux du BF3 est de 45 g/h et le temps de séjour, en l'absence de réaction, est de 0,7 s.
Au bout de 3 h 25 min d'essai, on récupère 362 g de produit final titrant 47,6 % en BF3 et avec une masse volumique de 1 ,46 kg/l.
Exemple 5 ( Figure 1) On alimente en continu à pression atmosphérique, dans un mélangeur statique à double enveloppe (4), du trifluorure de bore (gaz) (1) à raison de 102 g/h et du THF liquide (2) à raison de 110 g/h. La température du fluide réfrigérant alimentant la double enveloppe du mélangeur statique est de 100C. Le flux liquide (3) sortant du mélangeur statique est ensuite récupéré dans un récipient (6), muni d'un condenseur (5).
Le temps de séjour, en l'absence de réaction, dans le mélangeur est statique de 0,3 s.
La température du flux sortant du mélangeur statique est comprise entre 19 et 210C. Au bout de 2 h 10 min d'essai, on obtient 459 g de complexe liquide BF3THF très peu coloré et de faible viscosité, titrant 48,15 % de trifluorure de bore et masse volume 1 ,261 kg/l. Des prélèvements ont été effectués au bout 30, 60 et 150 minutes, et les masses volumiques étaient respectivement de 1 ,260, 1 ,257 et 1 ,263 correspondant à des teneurs en poids en BF3 de 48,1 , 47,8 et 48,4%.

Claims

REVENDICATIONS
1) Procédé de fabrication de complexes de trifluorure de bore comprenant une étape au cours de laquelle le trifluorure de bore est mis en contact avec l'agent complexant dans au moins un mélangeur statique et une étape d'isolation des complexes ainsi obtenus.
2) Procédé selon la revendication 1 caractérisé en ce que, lors de la mise en contact, l'on opère en présence essentiellement du trifluorure de bore, de l'agent complexant et éventuellement de complexes du trifluorure de bore. 3) Procédé selon la revendication 1 ou 2 caractérisé en ce que la température de mise en contact du trifluorure de bore avec l'agent complexant est d'au moins 1 à 50C supérieure à la température de fusion des complexes.
4) Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que la température est comprise entre 10 et 50° C. 5) Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'agent complexant est choisi parmi l'eau, les éthers, les alcools, les cétones, les acides, les aminés, les phosphines et les thiols.
PCT/FR2007/051063 2006-04-28 2007-04-04 Procédé de fabrication de complexes de trifluorure de bore WO2007125232A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07731866A EP2013143A1 (fr) 2006-04-28 2007-04-04 Procédé de fabrication de complexes de trifluorure de bore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0603837A FR2900402B1 (fr) 2006-04-28 2006-04-28 Procede de fabrication de complexes de trifluorure de bore
FR0603837 2006-04-28

Publications (1)

Publication Number Publication Date
WO2007125232A1 true WO2007125232A1 (fr) 2007-11-08

Family

ID=37467575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/051063 WO2007125232A1 (fr) 2006-04-28 2007-04-04 Procédé de fabrication de complexes de trifluorure de bore

Country Status (3)

Country Link
EP (1) EP2013143A1 (fr)
FR (1) FR2900402B1 (fr)
WO (1) WO2007125232A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102911195A (zh) * 2012-10-31 2013-02-06 江峰 三氟化硼四氢呋喃的制备方法
CN111675730A (zh) * 2020-06-22 2020-09-18 东营合益化工有限公司 一种三氟化硼二甲醚络合物的制备方法
CN114409686A (zh) * 2022-01-27 2022-04-29 上海化工研究院有限公司 一种用于制备三氟化硼络合物的系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286823A (en) * 1991-06-22 1994-02-15 Basf Aktiengesellschaft Preparation of highly reactive polyisobutenes
US5556932A (en) * 1993-03-02 1996-09-17 Basf Aktiengesellschaft Chlorine-free, non-drying isobutene/diene copolymers and process for their preparation
WO2001096421A1 (fr) * 2000-06-14 2001-12-20 Basf Aktiengesellschaft Procede de preparation de polyisobutenes
US20040171772A1 (en) * 2001-05-25 2004-09-02 Stephan Huffer Method for producing homopolymers and copolymers of isobutene
JP2004352913A (ja) * 2003-05-30 2004-12-16 Mitsubishi Gas Chem Co Inc ポリオキシメチレン樹脂組成物の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286823A (en) * 1991-06-22 1994-02-15 Basf Aktiengesellschaft Preparation of highly reactive polyisobutenes
US5556932A (en) * 1993-03-02 1996-09-17 Basf Aktiengesellschaft Chlorine-free, non-drying isobutene/diene copolymers and process for their preparation
WO2001096421A1 (fr) * 2000-06-14 2001-12-20 Basf Aktiengesellschaft Procede de preparation de polyisobutenes
US20040171772A1 (en) * 2001-05-25 2004-09-02 Stephan Huffer Method for producing homopolymers and copolymers of isobutene
JP2004352913A (ja) * 2003-05-30 2004-12-16 Mitsubishi Gas Chem Co Inc ポリオキシメチレン樹脂組成物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200505, Derwent World Patents Index; AN 2005-042915, XP002411130 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102911195A (zh) * 2012-10-31 2013-02-06 江峰 三氟化硼四氢呋喃的制备方法
CN111675730A (zh) * 2020-06-22 2020-09-18 东营合益化工有限公司 一种三氟化硼二甲醚络合物的制备方法
CN114409686A (zh) * 2022-01-27 2022-04-29 上海化工研究院有限公司 一种用于制备三氟化硼络合物的系统及方法
CN114409686B (zh) * 2022-01-27 2023-11-07 上海化工研究院有限公司 一种用于制备三氟化硼络合物的系统及方法

Also Published As

Publication number Publication date
FR2900402A1 (fr) 2007-11-02
FR2900402B1 (fr) 2008-07-18
EP2013143A1 (fr) 2009-01-14

Similar Documents

Publication Publication Date Title
EP2399897B1 (fr) Procédé pour produire un composé contenant de l'oxygène
EP2222627B3 (fr) Procede de preparation de composes p-hydroxymandeliques eventuellement substitues et derives
WO2007125232A1 (fr) Procédé de fabrication de complexes de trifluorure de bore
EP3752484B1 (fr) Procédé de synthèse industrielle en continu d'acide alcane-sulfonique
EP0819671B1 (fr) Solutions aqueuses stabilisées de sels d'ammoniums quaternaires insaturés
WO2009010426A1 (fr) Procede de preparation de dinitrotoluene
FR2971783A1 (fr) Procede d'hydroxylation de phenols et d'ethers de phenols
FR3083232A1 (fr) Procede de production du 1-chloro-3,3,3-trifluoropropene
EP1268394A1 (fr) Procede de preparation de nitrites d'alkyles
FR2482591A1 (fr) Fabrication de chlorures d'alcane sulfonyles
EP0233622B1 (fr) Procédé pour la fabrication d'hydroxylamines
JP5432892B2 (ja) ブロモピクリンを調製する連続プロセス
FR2846325A1 (fr) Nouveau procede de preparation d'un intermediaire de synthese de pesticide
EP0915814A1 (fr) Procede pour greffer un groupement difluoromethyle substitue
CA2923347C (fr) Procede de preparation de derives oxysulfures et fluores par sulfination
FR2711365A1 (fr) Procédé d'hydroxycarbonylation du butadiène.
FR2508441A1 (fr) Procede pour produire un derive anionique d'acylium a partir de monoxyde de carbone, d'un acide anhydre et d'un compose organique susceptible d'addition de monoxyde de carbone
WO2012156381A1 (fr) Procede d'hydroxylation de phenols et d'ethers de phenols
FR2470761A1 (fr) Procede de preparation de l'acide trimellitique
EP3115355A1 (fr) Procede de production d'ester(s) de polyglycerol
EP0326455A1 (fr) Procédé de préparation de chloranil
FR2731218A1 (fr) Procede de preparation de l'acide 3-chloropropionique
WO2023232427A1 (fr) Synthese de l'acide levulinique par hydratation d'alcool furfurylque en presence d'un catalyseur homogene acide et d'un solvant a base d'ether et/ou d'acetals
CN114286814A (zh) 制备4,4’-二氯二苯砜的方法
FR2468600A1 (fr) Procede de preparation d'omega-lactames, en particulier du caprolactame

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07731866

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007731866

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE