WO2007123059A1 - Heat-resistant crosslinked polyester fiber and heat-resistant crosslinked polyester fiber cord - Google Patents

Heat-resistant crosslinked polyester fiber and heat-resistant crosslinked polyester fiber cord Download PDF

Info

Publication number
WO2007123059A1
WO2007123059A1 PCT/JP2007/058138 JP2007058138W WO2007123059A1 WO 2007123059 A1 WO2007123059 A1 WO 2007123059A1 JP 2007058138 W JP2007058138 W JP 2007058138W WO 2007123059 A1 WO2007123059 A1 WO 2007123059A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester fiber
heat
resistant
elastic modulus
polyester
Prior art date
Application number
PCT/JP2007/058138
Other languages
French (fr)
Japanese (ja)
Inventor
Shigenori Nagahara
Kenji Yoshino
Yasushi Aikawa
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006114326A external-priority patent/JP2007284829A/en
Priority claimed from JP2006114325A external-priority patent/JP2007284828A/en
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Publication of WO2007123059A1 publication Critical patent/WO2007123059A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0042Reinforcements made of synthetic materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • D06M14/26Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of synthetic origin
    • D06M14/30Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of synthetic origin of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M14/32Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters

Definitions

  • the present invention relates to a heat-resistant crosslinked polyester fiber and a heat-resistant crosslinked polyester fiber cord. Specifically, it has dimensional stability and heat resistance, and more specifically, tire cords, belt materials, canvas, screens that can maintain mechanical properties (storage elastic modulus) in the middle temperature range from room temperature.
  • the present invention provides a heat-resistant cross-linked polyester fiber useful for industrial material applications such as, and a heat-resistant bridge-type polyester fiber cord useful for industrial material applications such as tire cords and belt materials.
  • nylon fibers such as nylon fibers, rayon fibers, and polyester fibers have been used for tire cords as fiber reinforcing materials for tires.
  • nylon fibers When nylon fibers are used for tire cords, they have high toughness and good adhesion to rubber, but their elongation is relatively large, so that they are inferior in dimensional stability and easily cause a flat spot phenomenon.
  • rayon fibers when used for tire cords, the strength is lower than that of the nylon fiber tire cords. Therefore, when used for tire carcass members, the amount used must be increased, resulting in tire weight. There is a disadvantage that increases. Furthermore, there are concerns about the future supply of pulp, which is the raw material for rayon fibers. For this reason, attention has been paid to the use of high-strength polyester fibers as tire cords that are excellent in dimensional stability as materials to compensate for the disadvantages of both.
  • a run-flat tire is a tire that can travel at a predetermined speed for a certain distance even if the tire punctures during high-speed driving and the tire internal pressure becomes OKPa.
  • This run-flat tire has a side reinforcement type that is reinforced by placing a relatively hard rubber layer with a crescent-shaped cross section on the inner surface of the carcass over the shoulder area and the beat part force of the tire sidewall, and in the tire air chamber.
  • Core tie with an annular core made of metal or synthetic resin attached to the rim Is known.
  • This inner side reinforcement type supports the load by the inherent rigidity of the sidewall reinforced with a reinforced rubber layer when the tire punctures and the air escapes during driving, and is capable of traveling over a predetermined distance.
  • frictional heat is generated due to contact with the road surface, and the internal temperature of the tire may be 200 ° C or higher, and extremely high even locally.
  • the main cause of tire failure is deterioration due to heat generation. Therefore, particularly in the case of runflat tires, heat-resistant rayon fibers, aramide fibers, steel, and the like are used as carcass members.
  • Nylon fibers and polyester fibers can be mass-produced by melt spinning, and are advantageous in terms of price and suitable for industrial materials.
  • the melting point of nylon 6 is 215-220.
  • C nylon 66 is 250-260.
  • the melting point of C positive ethylene terephthalate is 255-260.
  • C when the inside of the tire generates heat at 200 ° C or higher, the adhesive interface with the rubber begins to break down, and the strength, dimensional stability and mechanical properties suddenly decrease. Therefore, not only the carcass member for run-flat tires but also belts and other fabric cords are similarly restricted or unsuitable for applications requiring heat resistance.
  • polyester fibers made of copolymerized polyethylene terephthalate are less expensive than rayon fibers.
  • they are provided with functions of heat resistance and mechanical properties, their use is expanded and commercially available. It is advantageous.
  • polyethylene naphthalate fibers or nylon fibers made of copolymerized polyethylene naphthalate are similarly given heat resistance and mechanical properties.
  • Polyester fiber cords such as copolyester fibers that provide dimensional stability, durability, thermal properties, and the like, and methods for producing the same (see Patent Documents 13 to 17) are disclosed.
  • a fiber made of a copolymerized polyester fiber having excellent dimensional stability, high strength, durability and the like used for a carcass member belt material is produced by a known method in the art, but is particularly preferable. Examples of the method include methods described in Patent Documents 19 and 20.
  • Patent Document 1 Japanese Patent Laid-Open No. 55-166235
  • Patent Document 2 Japanese Patent Laid-Open No. 54-6051
  • Patent Document 3 Japanese Patent Laid-Open No. 7-166419
  • Patent Document 4 JP-A-7-166420
  • Patent Document 5 Japanese Patent Laid-Open No. 58-23916
  • Patent Document 6 Japanese Patent Application Laid-Open No. 5-163612
  • Patent Document 7 Japanese Patent Laid-Open No. 10-168661
  • Patent Document 8 Japanese Patent Laid-Open No. 10-168655
  • Patent Document 9 Japanese Patent Laid-Open No. 2003-193331
  • Patent Document 10 JP-A-2-99667
  • Patent Document 11 JP-A-2-127562
  • Patent Document 12 JP-A-3-59168
  • Patent Document 13 Japanese Unexamined Patent Publication No. 2001-115354
  • Patent Document 14 JP-A-5-71033
  • Patent Document 15 JP-A-5-59627
  • An object of the present invention is to maintain the excellent dimensional stability, high strength, and durability of a polyester fiber having copolyester strength, and in particular, to maintain heat resistance and mechanical properties at medium temperature and high temperature range.
  • polyester undrawn yarn and Z or drawn yarn obtained by melt-spinning a polymer such as a copolyester cable have at least 2 unsaturated bonds.
  • Polyester fibers obtained by melt spinning a polymer having copolyester strength are impregnated with aliphatic and Z or alicyclic compounds having at least two unsaturated bonds. Irradiated with actinic rays to form heat-resistant cross-linked fibers, (2) and then twisted into cords, and (3) polyester fibers obtained by melt spinning a polymer that has copolyester strength Polyester fiber cords are impregnated with aliphatic and Z or alicyclic compounds having at least two unsaturated bonds and irradiated with actinic rays to withstand resistance.
  • Polyester fiber and Z or polyester fiber cord obtained by melt-spinning a polymer made of copolymerized polyester fiber are treated with a carrier agent in advance, and then (2) or (3 ) By obtaining the code.
  • the present invention is as follows.
  • a heat-resistant cross-linked polyester characterized by a ratio E 'ZE
  • polyester fiber obtained by melt spinning the copolyester is impregnated with aliphatic and Z or alicyclic compounds having at least two unsaturated bonds and irradiated with active light, and then the fiber cord and 6.
  • the heat-resistant crosslinked polyester fiber cord as described in 5 above.
  • Polyester fiber cords such as polyester fibers obtained by melt spinning a copolyester are aliphatic and Z or fat having at least two unsaturated bonds. 6. The heat-resistant crosslinked polyester fiber cord according to 5 above, wherein the cyclic compound is impregnated and irradiated with actinic rays.
  • Polyester fibers and Z or polyester fiber cords are pretreated with a carrier agent, and then impregnated with aliphatic and Z or alicyclic compounds having at least two unsaturated bonds and irradiated with actinic rays.
  • the present invention relates to storage elastic modulus E 'at 100 ° C and storage at 250 ° C in dynamic viscoelasticity measurement.
  • the ratio of elastic modulus E, ratio E 'ZE, is 10 or less.
  • the present invention provides a re-ester fiber, and includes at least a part of the above-mentioned heat-resistant cross-linked polyester fiber, and has a storage elastic modulus E ′ at 250 ° C. and 250 in dynamic viscoelasticity measurement.
  • a polyester fiber cord is provided.
  • Polyester fibers that also have copolyester strength are impregnated with aliphatic and Z or alicyclic compounds having at least two unsaturated bonds, and then irradiated onto the surface layer of the polyester fibers by irradiation with electron beams, ⁇ rays, etc.
  • the cross-linking reaction between compounds with unsaturated bonds existing and the cross-linking reaction between compounds with unsaturated bonds penetrating inside or inside suppresses the fluidity of the amorphous and crystalline parts due to heating in the middle and high temperature range. As described above, the mechanical properties can be maintained and the shape can be maintained even at a temperature higher than the melting point temperature.
  • polyester fibers gradually decrease in mechanical properties (storage elastic modulus ⁇ ') due to heating at a temperature of about 100 ° C. This is because the non-crystalline part has a large thermal motion due to heating. As the temperature rises further, the partial crystal force easily breaks down and the mechanical properties further decline, and as a result, fluidity is exhibited and this temperature is defined as the melting temperature. When the temperature reaches the melting point or higher, the shape cannot be maintained due to thermal fluidity.
  • the storage elastic modulus E ′ does not significantly decrease in the melting point temperature range of 255 to 260 ° C. of the polyester fiber and does not melt at higher temperatures. As a result, the shape can be held.
  • the present invention is useful as a run-flat tire cord member that particularly requires heat resistance, mechanical properties, and the like, and also provides heat resistance to functional fibers other than copolymerized polyester fibers by the method of the present invention.
  • Application development is also possible.
  • the present invention is a heat-resistant cross-linking type that retains mechanical properties (storage elastic modulus) in the middle and high temperature range from room temperature to heat and can retain its shape without being melted by heat at a temperature equal to or higher than the melting point of the copolymer polyester.
  • Polyester fiber that is, the ratio of the storage elastic modulus E 'at 100 ° C and the storage elastic modulus E at 250 ° C in dynamic viscoelasticity measurement, E' / E, is less than 10
  • a thermally crosslinkable polyester fiber is provided.
  • the ratio of the storage modulus E ′ at 100 ° C. to the storage modulus E at 250 ° C. in the dynamic viscoelasticity measurement is at least partially including the above heat-resistant crosslinked polyester fiber.
  • E '/ E the value of
  • a heat-resistant cross-linked polyester fiber cord is provided.
  • the copolyester particularly the aromatic copolyester in the present invention is a polycondensate of an aromatic dicarboxylic acid component and a diol component, and is not particularly limited, including known ones. Further, an unsaturated group-containing polyester obtained by reacting with a glycidyl group-containing unsaturated compound using a polyester acid terminal may be used.
  • Aromatic dicarboxylic acid components include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenyletherdicarboxylic acid Examples include 5-sodium sulfophthalic acid. Of these, terephthalic acid and 2,6-naphthalenedicarboxylic acid are preferred.
  • Diol components include ethylene glycol, diethylene glycol, triethylene glycol
  • Aliphatic diols such as cornole, trimethylene glycol, tetramethylene glycol, propylene glycol, otaethylene glycol, decanmethylene glycol, polyethylene glycol
  • alicyclic diols such as cyclohexanediol and cyclohexanedimethanol
  • aromatic diols such as naphthalenediol, bisphenol A, and resorcin. Of these, aliphatic diols such as ethylene glycol and trimethylene glycol are preferred.
  • the aromatic dicarboxylic acid component and the diol component are each composed of a single monomer, and may be a copolyester composed of three or more kinds. Further, it may be a blend of two or more types of aromatic polyester resin.
  • the aromatic polyester can be obtained by polycondensing a reaction product of an aromatic dicarboxylic acid component and Z or an ester-forming derivative thereof with a diol component, which does not require special polymerization conditions, into a polyester. Can be synthesized by any method employed.
  • the polymerization equipment can be batch or continuous. Furthermore, after the polyester obtained in the liquid phase polycondensation step is granulated and pre-crystallized, it can be subjected to solid phase polymerization in an inert gas atmosphere or under reduced pressure under a temperature below the melting point.
  • the polymerization catalyst is not particularly limited as long as it has a desired catalytic activity, but an antimony compound, a titanium compound, a germanium compound, and an aluminum compound are preferably used. When these catalysts are used alone or in combination of two or more, the amount used is 0.002 to 0.1 mol% based on the aromatic carboxylic acid component constituting the polyester. preferable.
  • the intrinsic viscosity (IV) of the copolyester in the present invention is preferably 0.6 or more, more preferably 0.8 or more. If IV is 0.6 or less, the intended strength and inertia cannot be obtained.
  • the amount of carboxy terminal group of the aromatic polyester is preferably 50 eqZton or less, more preferably 30 eqZton or less. If it exceeds 50eqZton, polyester When used as a cord, durability is deteriorated due to the occurrence of hydrolysis by an amine compound entering from rubber, which is not preferable.
  • the copolymerized polyester is used as a yarn under the usual melt spinning conditions. Then, it can be obtained by, for example, thermal stretching by a spin draw method of stretching.
  • the thermal stretching is performed by one-stage stretching at a high magnification or multi-stage stretching of two or more stages.
  • the heating method includes a method using a superheated roll, superheated steam, a heat plate, a heat box or the like, and is not particularly limited.
  • polyester fibers those excellent in dimensional stability, high strength and durability manufactured for industrial materials such as a reinforcing material for rubber products such as tires can be preferably used.
  • the undrawn yarn and Z or drawn yarn of the copolyester fiber thus obtained are impregnated with an aliphatic and Z or alicyclic compound having at least two unsaturated bonds, Polyester fibers with unsaturated compounds present on the surface and Z or inside of the polyester fibers are produced batchwise or continuously.
  • a heat-resistant crosslinked fiber cord can be obtained by the following method.
  • aliphatic and Z or alicyclic compounds having at least two unsaturated bonds using a drawn fiber of copolymer polyester fiber obtained by melt spinning a polymer having copolyester strength Is made into polyester fiber with aliphatic and Z or cycloaliphatic compounds present in the polyester fiber, then irradiated with actinic rays to form crosslinked polyester fiber, and then used as a cord with a ring twisting machine or straight twisting machine.
  • a heat-resistant crosslinked fiber and a heat-resistant crosslinked fiber cord can be obtained by the following method. That is, (1) at least two unsaturated bonds using a drawn yarn of a copolyester fiber obtained by melt spinning a polymer having copolyester strength After impregnating with the aliphatic and Z or alicyclic compound possessed to make the polyester fiber a polyester fiber with the aliphatic and Z or alicyclic compound present, actinic rays are irradiated to form a crosslinked polyester fiber.
  • Polyester fibers and / or polyester fiber cords are pretreated with a carrier agent, impregnated with aliphatic and Z or alicyclic compounds having at least two unsaturated bonds, and then irradiated with actinic rays to crosslink polyester.
  • a carrier agent impregnated with aliphatic and Z or alicyclic compounds having at least two unsaturated bonds, and then irradiated with actinic rays to crosslink polyester.
  • a raw cord can be formed by a ring twisting machine or a straight twisting machine by a conventional method.
  • the standard raw cord is 10 ⁇ per 10cm: After applying the LOO twist (lower twist), combine multiple yarns, and the opposite side is 10 ⁇ per 10cm: the twist (upper twist) And
  • the aliphatic and Z or alicyclic compounds having at least two unsaturated bonds used in the present invention are compounds capable of proceeding radical polymerization reaction by irradiation with ultraviolet rays, electron beams, ⁇ rays, etc.
  • Unsaturated group in one molecule consisting of attalyloyl group, methacryloyl group, itaconol group, maleolyl group, fumaroyl group, crotoyl group, attalyloylamino group, methacryloylamino group, cinnamoyl group, vinyl group, aryl group, styryl group, etc.
  • glycol dimetatalate examples include (ethylene, diethylene, triethylene) glycol dimetatalate, polyethylene glycol dimetatalate, 1, 3 butylene glycol dimetatalate, 1, 4 butanediol dimetatalate, 1, 6 Xanthandiol dimetatalylate, 1,9-nonanediol dimetatalylate, neopentyl dallicol dimetatalylate, trimethylolpropane tri (meth) acrylate, trimethylol methane (meth) acrylate, tetramethylol methane tetra acrylate, Pentaerythritol tetraatalylate, dipentaerythritol pentaatalylate, bisphenol in one molecule
  • examples thereof include, but are not limited to, epoxyacrylates obtained by (meth) atalylating an aliphatic or alicyclic group having a Nord A skeleton.
  • the concept for maintaining the storage elastic modulus E 'in the high temperature range from the normal temperature according to the present invention is how to reduce the thermal motion due to the heating temperature of the crystalline part and the amorphous part.
  • the surface layer formed on the polyester fiber and fiber cord acts as a thermal noria layer by the cross-linking reaction, and a small amount of unsaturated compound inside the polyester fiber and cord is impregnated.
  • the polyester structure (non-crystalline part and crystalline part) It is presumed that the thermal motility due to heating is suppressed to a small extent, and that is why the storage elastic modulus E ′ is maintained without significantly decreasing.
  • the crosslinking reactivity of unsaturated compounds becomes important, and in the present invention, unsaturated compounds having an unsaturated group functional group number of more than ⁇ , particularly preferably an unsaturated functional group number of 3 or more are preferred.
  • -(R) group-containing (meth) atalylate compounds can be preferably used.
  • the ultraviolet rays, electron beams, ⁇ rays, etc. can be used, and in order to advance the crosslinking reaction of the impregnated unsaturated compounds, electrons having excellent permeability are used. Lines and gamma rays can be preferably used.
  • ultraviolet rays for cross-linking the surface layer can be used and are not limited.
  • the type and amount of the radical polymerization initiator are not limited.
  • a preferable viscosity of the unsaturated compound used in the present invention can be used in the range of 5 to LOOOcps at room temperature (25 ° C), but it may be heated to such an extent that the compound does not volatilize. Yes. Furthermore, it is preferable to warm up to the vicinity of the glass transition point of the aromatic copolyester so that the compound is actively impregnated into the polyester fiber.
  • the conditions for impregnating the polyester fiber and fiber cord with the unsaturated compound are not particularly limited, but it is preferable to immerse in a warm bath at 30 to L00 ° C for about 3 to 15 minutes.
  • Polyester fiber and fiber cord attached to the fiber cord can be It is preferable that the thickness after removal of the polyester fiber and the fiber cord surface layer after cross-linking is: m or more, preferably 4 m or more. When the thickness of the surface layer is 1 m or less, it is disadvantageous because the crosslinking density is insufficient and the heat resistance is insufficient.
  • a carrier agent in order to improve the permeability when the copolymerized polyester fiber and the copolymerized polyester fiber cord are impregnated with an unsaturated compound.
  • the use of a carrier agent is preferably recommended in order to improve the permeability when an unsaturated compound is impregnated into a polyester fiber that has already been twisted and corded.
  • the overlap caused by twisting of polyester fibers tends to be insufficient for unsaturated compound permeability, and as a result, the heat resistance due to insufficient crosslinking due to insufficient permeability for unsaturated compounds is prevented. It is to do.
  • carrier agent examples include 1,2,4-trichlorodiethylbenzene, orthodichlorobenzene, orthophenylphenol, diethyl ether, methylnaphthalene, butyl benzoate, dimethyl terephthalate, and methyl salicylate.
  • Carriers are exemplified, and in the case of spray treatments where immersion treatment and spraying treatment are preferred, the carrier treatment is preferably heated and treated before 100 ° C.
  • the impregnated compound is impregnated with actinic rays such as ultraviolet rays, electron beams, and ⁇ rays.
  • actinic rays such as ultraviolet rays, electron beams, and ⁇ rays.
  • An electron beam or ⁇ - ray that is irradiated and generates a radical reaction to be crosslinked and has a particularly high transmittance of irradiation energy among actinic rays can be preferably used.
  • the irradiation energy of the active rays, 50 ⁇ : LOOOOKGy is preferably irradiated with an electron beam at 1000 ⁇ 6000KG y crosslinking.
  • the crosslinking reaction does not proceed sufficiently, so heat resistance cannot be obtained and the storage elastic modulus E 'cannot be maintained, and the formed crosslinking reaction layer becomes brittle when irradiated with lOOOOKGy or more. Furthermore, the polyester is further decomposed and the strength properties are deteriorated, which may make it difficult to maintain the storage elastic modulus E '. /.
  • this ratio is 5 or more, the heat resistance of the polyester fiber cord is insufficient, and the mechanical properties are deteriorated and the shape is difficult to maintain. More preferably, the ratio of storage elastic modulus E 'E' /
  • E ′ is preferably within 2.
  • a sample obtained by the immersion treatment was set on a tray and irradiated with an electron beam.
  • the electron beam was irradiated evenly on the front and back, and the irradiation amount was the sum of them.
  • JIS-L1017 the fineness was measured after leaving in a room where temperature and humidity were controlled at 20 ° C and 65% RH for 24 hours.
  • JIS-L1017 it was measured in a tensile tester after being left for 24 hours in a room controlled at 20 ° C and 65% RH.
  • the thickness of the surface layer was determined by subtracting the thickness of the polyester fiber before impregnation from the thickness power of the impregnated and crosslinked polyester fiber.
  • polyester fiber After being immersed for 5 minutes in a bath made of pentaerythritol tetratalate (viscosity 342cps, 25 ° C) at room temperature, The required impregnated polyester fibers were squeezed with a roller and placed in a required amount tray, and irradiated with an electron beam with a total electron energy of 6000 kgy. Using the obtained electron beam cross-linked polyester fiber, measurement was performed by each measurement method.
  • Example 1 The polyester fiber used in Example 1 was preliminarily treated with a 100 ° C. warm-mouthed benzene carrier for 5 minutes, and then treated and measured in the same manner as in Example 2.
  • Electron beam cross-linking obtained by obtaining an impregnated polyester fiber in the same manner as in Example 1 except that pentaerythritol tetraatalylate was switched to trimethylolpropane tritalylate, and irradiating with an electron beam in the same manner as in Example 1. 7 pieces measured with each measuring method using the polyester fiber.
  • the bath temperature comprising trimethylolpropane tritalate was heated to 70 ° C. and treated in the same manner as in Example 3 and measured.
  • the polyester fiber used in Example 1 was measured for the state of fiber without compound impregnation treatment or electron beam crosslinking.
  • a polyester fiber stretched at a stretch ratio of 1.6 to obtain 5 cNZdtex was obtained.
  • the necessary amount of the polyester fiber was placed in a tray and irradiated with an electron beam with a total electron energy of lOOOKGy.
  • the obtained electron beam cross-linked polyester fiber was used and measured by each measuring method.
  • PETA Pentaerisuri
  • TMPA Tri-Met mouthpiece, Rubropan Triacre
  • DA-MGIC diallyl monoglycidyl isocyanurate
  • Example 2 Two pieces of the electron beam cross-linked polyester fiber obtained in Example 1 were twisted to obtain a raw cord of 1440 dtex Z2 and a twist number of 43 ⁇ 43 (tZl0 cm), and measurement was performed by each measurement method.
  • Example 2 Using the electron beam cross-linked polyester fiber obtained in Example 2, the raw cord was measured in the same manner as in Example 6.
  • Example 4 Using the electron beam cross-linked polyester fiber obtained in Example 4, the raw cord was measured in the same manner as in Example 6.
  • Example 6 Only the necessary measurement was performed on the polyester fiber which had been treated and crosslinked in the same manner as in Example 1 except that trimethylolpropane tritalylate was used and the immersion condition was a 70 ° C. bath. Next, measurement was performed using raw cords in the same manner as in Example 6.
  • Example 1 Twist the polyester fibers used in Example 1 and immerse the raw cord made of 1440dtexZ2 and twist number 43 X 43 (tZlOcm) in advance with a black mouth benzene carrier heated at 100 ° C for 5 minutes, and then Then, the sample was immersed in a trimethylolpropane tritalylate at 70 ° C for 5 minutes and irradiated with an electron beam with an electron energy of 6000KGy. The obtained electron beam cross-linked polyester fiber cord was measured by each measuring method.
  • the polyester fibers obtained in Examples 1 to 5 retain the stored viscoelastic modulus E ′. Furthermore, even when the heat flow start temperature was 340 ° C, the polyester fiber was excellent in heat resistance with no heat flow and shape.
  • the uncrosslinked polyester fiber obtained in Comparative Example 1 gradually decreased in storage elastic modulus E ′ from 100 ° C. or higher, and had a melting point and Mechanical properties are not maintained at temperatures above the melting point.
  • the heat flow start temperature flowed around 255 ° C near the melting point, and it did not maintain its shape.
  • the polyester fiber obtained in Comparative Example 2 has a storage elastic modulus E ′ that gradually decreases from 100 ° C or higher, and has a mechanical strength at the melting point and above the melting point. Physical properties are not maintained.
  • the heat flow start temperature was around 264 ° C near the melting point, and it did not maintain its shape.
  • the polyester fiber cords obtained in Examples 6 to 10 retain the storage viscoelastic modulus E ′. Further, even when the heat flow starting temperature was 340 ° C, the polyester fiber cord had excellent heat resistance and no heat flow and the shape was maintained.
  • the polyester fiber cord obtained in Comparative Example 3 has a storage elastic modulus that gradually decreases from 130 ° C or higher. The physical properties are not maintained. In addition, the heat flow start temperature was around 255 ° C near the melting point, and it did not maintain its shape.
  • the polyester fiber cord obtained in Comparative Example 4 gradually decreased in storage modulus from 130 ° C or higher, and the mechanical properties were maintained at the melting point and above the melting point. Not. Also, the heat flow starting temperature flowed around 267 ° C near the melting point and did not retain its shape.
  • TMPA Tri-Met mouthpiece, Rubropan Triacre
  • the type polyester fiber cord can retain its mechanical properties and retain its shape even at a temperature higher than the melting point temperature.
  • FIG. 1 Storage elastic modulus E ′ of the heat-resistant crosslinked polyester fiber obtained in Example 1.
  • FIG. 2 is a storage elastic modulus E ′ of the heat-resistant crosslinked polyester fiber obtained in Example 4.
  • FIG. 3 is a storage elastic modulus E ′ of the polyester fiber of Comparative Example 1.
  • FIG. 4 is a storage elastic modulus E ′ of the crosslinked polyester fiber of Comparative Example 2.
  • FIG. 5 is a storage elastic modulus E ′ of the heat-resistant crosslinked polyester fiber cord obtained in Example 1.
  • FIG. 6 is a storage elastic modulus E ′ of the heat-resistant crosslinked polyester fiber cord obtained in Example 3.
  • FIG. 7 is a storage elastic modulus E ′ of the polyester fiber cord of Comparative Example 1.
  • FIG. 8 is a storage elastic modulus E ′ of the polyester fiber cord of Comparative Example 2.

Abstract

Disclosed are a polyester fiber and polyester fiber cord having excellent heat resistance which are capable of maintaining mechanical properties at medium and high temperatures and is not thermally melted, while maintaining characteristics such as dimensional stability, high strength and durability. The polyester fiber and polyester fiber cord are useful as a material for belt and carcass members of tires. Specifically disclosed is a heat-resistant crosslinked polyester fiber which is characterized in that the ratio between the storage modulus at 100˚C (E'100) and the storage modulus at 250˚C (E'250), namely E'100/E'250 is not more than 10 in a dynamic viscoelasticity measurement. Also specifically disclosed is a heat-resistant crosslinked polyester fiber cord which is characterized in that the heat-resistant crosslinked polyester fiber is at least partially contained therein and the ratio between the storage modulus at 100˚C (E'100) and the storage modulus at 250˚C (E'250), namely E'100/E'250 is not more than 4 in a dynamic viscoelasticity measurement.

Description

明 細 書  Specification
耐熱性架橋型ポリエステル繊維及び耐熱性架橋型ポリエステル繊維コー Heat-resistant cross-linked polyester fiber and heat-resistant cross-linked polyester fiber cord
K K
技術分野  Technical field
[0001] 本発明は、耐熱性架橋型ポリエステル繊維及び耐熱性架橋型ポリエステル繊維コ ードに関するものである。詳しくは、寸法安定性、耐熱性を具備し、更に詳しくは常温 カゝら中高温域に於ける力学物性 (貯蔵弾性率)を保持することが可能なタイヤコード やベルト材、キャンバス、スクリーン紗等の産業資材用途に有用な耐熱性架橋型ポリ エステル繊維、及び、タイヤコードやベルト材等の産業資材用途に有用な耐熱性架 橋型ポリエステル繊維コードを提供するものである。  [0001] The present invention relates to a heat-resistant crosslinked polyester fiber and a heat-resistant crosslinked polyester fiber cord. Specifically, it has dimensional stability and heat resistance, and more specifically, tire cords, belt materials, canvas, screens that can maintain mechanical properties (storage elastic modulus) in the middle temperature range from room temperature. The present invention provides a heat-resistant cross-linked polyester fiber useful for industrial material applications such as, and a heat-resistant bridge-type polyester fiber cord useful for industrial material applications such as tire cords and belt materials.
背景技術  Background art
[0002] 従来カゝらタイヤの繊維補強材としてのタイヤコードにナイロン繊維、レーヨン繊維、 ポリエステル繊維等の有機繊維が用いられてきて 、る。ナイロン繊維をタイヤコード に用いた場合、強靭性が高くゴムとの接着性が良い点があるものの伸度が比較的大 きくそのため寸法安定性に劣り、フラットスポット現象が発生し易い欠点がある。また、 レーヨン繊維をタイヤコードに用いた場合は、前記ナイロン繊維タイヤコードに比べ 強度が低くその為、タイヤのカーカス部材に使用する場合、その使用量を増量せざる を得ず、その結果タイヤ重量が増す欠点がある。更に、レーヨン繊維の原料のパルプ の今後の供給面に不安がある。このため、両者の欠点を補う素材として寸法安定性 に優れ、高強度なポリエステル繊維をタイヤコードとして使用することが着目されてき ている。  Conventionally, organic fibers such as nylon fibers, rayon fibers, and polyester fibers have been used for tire cords as fiber reinforcing materials for tires. When nylon fibers are used for tire cords, they have high toughness and good adhesion to rubber, but their elongation is relatively large, so that they are inferior in dimensional stability and easily cause a flat spot phenomenon. Also, when rayon fibers are used for tire cords, the strength is lower than that of the nylon fiber tire cords. Therefore, when used for tire carcass members, the amount used must be increased, resulting in tire weight. There is a disadvantage that increases. Furthermore, there are concerns about the future supply of pulp, which is the raw material for rayon fibers. For this reason, attention has been paid to the use of high-strength polyester fibers as tire cords that are excellent in dimensional stability as materials to compensate for the disadvantages of both.
[0003] 更に近年、自動車の安全性向上力もランフラットタイヤのニーズが高くなつている。  [0003] Further, in recent years, there is a growing need for run-flat tires for improving the safety of automobiles.
ランフラットタイヤは、高速走行中にタイヤがパンクしてタイヤ内圧が OKPaになっても ある程度の距離を所定の速度で走行が可能なタイヤのことである。このランフラットタ ィャにはタイヤサイドウォールのビート部力もショルダー区域にかけてカーカスの内面 に断面が三日月状の比較的硬質なゴム層を配置して補強したサイド補強タイプと、タ ィャ空気室におけるリムの部分に金属、合成樹脂製の環状中子を取付けた中子タイ プとが知られている。 A run-flat tire is a tire that can travel at a predetermined speed for a certain distance even if the tire punctures during high-speed driving and the tire internal pressure becomes OKPa. This run-flat tire has a side reinforcement type that is reinforced by placing a relatively hard rubber layer with a crescent-shaped cross section on the inner surface of the carcass over the shoulder area and the beat part force of the tire sidewall, and in the tire air chamber. Core tie with an annular core made of metal or synthetic resin attached to the rim Is known.
[0004] この内サイド補強型は走行中にタイヤがパンクして空気が抜けてしまうと補強ゴム層 で強化したサイドウォール固有の剛性によって荷重を支持し、所定の距離を走行でき る力 高荷重でたわみの大きいタイヤの場合、路面との接触による摩擦熱が発生しタ ィャ内部温度が 200°C以上、さらに局所的にそれ以上の極めて高温になることがあ る。このようにタイヤ故障の主な要因は発熱による劣化であり、そのため、特にランフ ラットタイヤの場合、カーカス部材として耐熱性のあるレーヨン繊維ゃァラミド繊維及 びスチール等が使用されて 、る。  [0004] This inner side reinforcement type supports the load by the inherent rigidity of the sidewall reinforced with a reinforced rubber layer when the tire punctures and the air escapes during driving, and is capable of traveling over a predetermined distance. In the case of tires with large deflection, frictional heat is generated due to contact with the road surface, and the internal temperature of the tire may be 200 ° C or higher, and extremely high even locally. Thus, the main cause of tire failure is deterioration due to heat generation. Therefore, particularly in the case of runflat tires, heat-resistant rayon fibers, aramide fibers, steel, and the like are used as carcass members.
[0005] ナイロン繊維やポリエステル繊維は溶融紡糸で多量生産が可能である事力 価格 面的にも有利で産業資材用途に適している。しかし、ナイロン 6の融点は 215〜220 。C、ナイロン 66は 250〜260。C、ポジエチレンテレフタレー卜の融点は 255〜260。C であるがタイヤ内部が 200°C以上に発熱してくるとゴムとの接着界面が破壊され始め 、強度、寸法安定性および力学物性が急激に低下し、更に、融点以上に発熱すると 熱融解が起こり補強材として機能しなくなり、そのため、ランフラットタイヤ用カーカス 部材のみならずベルトおよび他の織物コードも同様に耐熱性が要求される用途には 、使用制限または不適とされていた。  [0005] Nylon fibers and polyester fibers can be mass-produced by melt spinning, and are advantageous in terms of price and suitable for industrial materials. However, the melting point of nylon 6 is 215-220. C, nylon 66 is 250-260. The melting point of C, positive ethylene terephthalate is 255-260. Although it is C, when the inside of the tire generates heat at 200 ° C or higher, the adhesive interface with the rubber begins to break down, and the strength, dimensional stability and mechanical properties suddenly decrease. Therefore, not only the carcass member for run-flat tires but also belts and other fabric cords are similarly restricted or unsuitable for applications requiring heat resistance.
[0006] 共重合ポリエチレンテレフタレートからなるポリエステル繊維は、レーヨン繊維に比 ベると低価格であることは前記したが、これに耐熱性や力学物性の機能が付与され れば用途拡大され商業的に有利である。更には、共重合ポリエチレンナフタレートか らなるポリエチレンナフタレート繊維やナイロン繊維にも同様に耐熱性や力学物性の 機能が付与されれば有用となりうる。  [0006] As described above, polyester fibers made of copolymerized polyethylene terephthalate are less expensive than rayon fibers. However, if they are provided with functions of heat resistance and mechanical properties, their use is expanded and commercially available. It is advantageous. Furthermore, it can be useful if polyethylene naphthalate fibers or nylon fibers made of copolymerized polyethylene naphthalate are similarly given heat resistance and mechanical properties.
[0007] 前記のポリエステル繊維をタイヤコードに用いた時、ゴム中のアミン化合物がカノレポ キシ末端基と中和反応することによって生成する水分子がポリエステルのエステル結 合を攻撃し加水分解を起こし劣化させる問題がある。この問題を解決するために種 々の提案がなされている。例えば、アクリル酸および Zまたはメタクリル酸力もなる重 合体を付与する方法 (特許文献 1参照)、ポリエステルに対してエポキシィ匕合物また は特定のジエポキシィ匕合物を含有させポリエステルのカルボキシ基末端量を低減さ せる方法 (特許文献 2〜4参照)、ポリエステルにカルポジイミド系化合物を含有させ カルボキシ基末端量を低減させる方法 (特許文献 5〜9参照)が開示されている。これ 等の方法は、カルボキシ基の濃度を減少させることによって強度ゃ耐疲労性等の低 下を抑えることには有効であるが完全にカルボキシル基末端量を無くすことは困難で あり、ポリエステル本来の耐熱性不足を解決するものではな ヽ。 [0007] When the polyester fiber is used for a tire cord, water molecules generated by the neutralization reaction of amine compounds in the rubber with canolepoxy end groups attack the ester bond of the polyester, causing hydrolysis and deterioration. There is a problem to make. Various proposals have been made to solve this problem. For example, a method of providing a polymer having acrylic acid and Z or methacrylic acid (see Patent Document 1), an epoxy compound or a specific diepoxy compound is added to the polyester, and the terminal amount of the carboxy group of the polyester is reduced. (See Patent Documents 2 to 4), a polyester containing a carpositimide compound A method for reducing the amount of terminal carboxyl groups (see Patent Documents 5 to 9) is disclosed. These methods are effective in suppressing the decrease in strength and fatigue resistance by reducing the concentration of carboxy groups, but it is difficult to completely eliminate the terminal amount of carboxyl groups. It does not solve the lack of heat resistance.
[0008] また、ゴム中でのカーカス部材の劣化を防止する方法として、コードィ匕した後、ディ ップ処理方法によって保護する方法 (特許文献 10〜12参照)が開示されている。し かし、これらのいずれも繊維表面をアミンィ匕合物の浸入を防止 ·保護するのみで、内 部構造の改質までに至っておらず期待する効果が少ない。  [0008] Further, as a method of preventing the deterioration of the carcass member in rubber, a method of protecting by a dipping method after cording is disclosed (see Patent Documents 10 to 12). However, all of these only prevent and protect the fiber surface from entering the amine compound, and the internal structure has not been modified, and the expected effect is small.
[0009] 寸法安定性、耐久性、熱特性等が得られる共重合ポリエステルカゝらなるポリエステ ル繊維コードおよびその製造法 (特許文献 13〜17参照)が開示されている。  [0009] Polyester fiber cords such as copolyester fibers that provide dimensional stability, durability, thermal properties, and the like, and methods for producing the same (see Patent Documents 13 to 17) are disclosed.
[0010] し力しながら、いずれも特定の条件を満足することによって目的を達成されるタイヤ コードではある力 飛躍的に改善できるものではなぐ且つ、前記したような耐熱性お よび力学物性を満足するものではな 、。  [0010] However, all of these tire cords can achieve their objectives by satisfying specific conditions. However, they cannot be improved dramatically and satisfy the heat resistance and mechanical properties as described above. It ’s not something to do.
[0011] 一方、架橋によりポリエステル繊維の耐熱性を向上させる方法 (特許文献 18参照) が開示されている。この方法によると溶融紡糸直後の糸条を架橋剤に浸漬し、延伸し ながら電子線を照射し、架橋したポリエステル繊維とすることによってタバコ防融性が 改善できると記載されている。しかし、この方法では操業性および安定性に問題があ り、ポリエステルの融点以上の温度での熱融解の現象や力学物性を保持させるもの ではない。  [0011] On the other hand, a method for improving the heat resistance of a polyester fiber by crosslinking (see Patent Document 18) is disclosed. According to this method, it is described that the melt resistance of tobacco can be improved by immersing the yarn immediately after melt spinning in a crosslinking agent and irradiating it with an electron beam while drawing to form a crosslinked polyester fiber. However, this method has problems in operability and stability, and does not retain the phenomenon of thermal melting or mechanical properties at temperatures above the melting point of polyester.
[0012] カーカス部材ゃベルト材に用いられる寸法安定性、高強度、耐久性等に優れる共 重合ポリエステルカゝらなる繊維は、当技術分野の公知の方法で製造されるが、特に 好ま 、方法の例示として特許文献 19、 20記載の方法が挙げられる。  [0012] A fiber made of a copolymerized polyester fiber having excellent dimensional stability, high strength, durability and the like used for a carcass member belt material is produced by a known method in the art, but is particularly preferable. Examples of the method include methods described in Patent Documents 19 and 20.
[0013] 特許文献 1:特開昭 55— 166235号公報 Patent Document 1: Japanese Patent Laid-Open No. 55-166235
特許文献 2 :特開昭 54— 6051号公報  Patent Document 2: Japanese Patent Laid-Open No. 54-6051
特許文献 3:特開平 7— 166419号公報  Patent Document 3: Japanese Patent Laid-Open No. 7-166419
特許文献 4:特開平 7 - 166420号公報  Patent Document 4: JP-A-7-166420
特許文献 5:特開昭 58 - 23916号公報  Patent Document 5: Japanese Patent Laid-Open No. 58-23916
特許文献 6:特開平 5 - 163612号公報 特許文献 7:特開平 10— 168661号公報 Patent Document 6: Japanese Patent Application Laid-Open No. 5-163612 Patent Document 7: Japanese Patent Laid-Open No. 10-168661
特許文献 8:特開平 10— 168655号公報  Patent Document 8: Japanese Patent Laid-Open No. 10-168655
特許文献 9 :特開 2003— 193331号公報  Patent Document 9: Japanese Patent Laid-Open No. 2003-193331
特許文献 10:特開平 2— 99667号公報  Patent Document 10: JP-A-2-99667
特許文献 11 :特開平 2— 127562号公報  Patent Document 11: JP-A-2-127562
特許文献 12:特開平 3— 59168号公報  Patent Document 12: JP-A-3-59168
特許文献 13:特開 2001— 115354号公報  Patent Document 13: Japanese Unexamined Patent Publication No. 2001-115354
特許文献 14:特開平 5— 71033号公報  Patent Document 14: JP-A-5-71033
特許文献 15:特開平 5— 59627号公報  Patent Document 15: JP-A-5-59627
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] 本発明の目的は、共重合ポリエステル力 なるポリエステル繊維の優れた寸法安定 性、高強度、耐久性を保持し、特に常温力 中高温域に於ける耐熱性および力学物 性を保持しつつ高温での形状保持性に優れた耐熱性架橋型ポリエステル繊維、耐 熱性架橋型ポリエステル繊維コードおよびこれを用いたゴム複合体を得ることにある 課題を解決するための手段 [0014] An object of the present invention is to maintain the excellent dimensional stability, high strength, and durability of a polyester fiber having copolyester strength, and in particular, to maintain heat resistance and mechanical properties at medium temperature and high temperature range. Means for solving the problems of obtaining a heat-resistant crosslinked polyester fiber excellent in shape retention at high temperature, a heat-resistant crosslinked polyester fiber cord, and a rubber composite using the same
[0015] 本発明者らは鋭意研究を重ねた結果、共重合ポリエステルカゝらなるポリマーを溶融 紡糸して得られたポリエステル未延伸糸および Zまたは延伸糸を、不飽和結合を少 なくとも 2個以上有する脂肪族および Zまたは脂環族化合物に含浸処理した後、活 性光線を照射することにより、上記目的が達成されることを見いだし本発明に至った [0015] As a result of intensive research, the inventors of the present invention have found that polyester undrawn yarn and Z or drawn yarn obtained by melt-spinning a polymer such as a copolyester cable have at least 2 unsaturated bonds. After impregnating with aliphatic and Z or alicyclic compounds having at least one, it was found that the above object was achieved by irradiating with active light, and the present invention was achieved.
[0016] 即ち、(1)共重合ポリエステル力もなるポリマーを溶融紡糸して得られるポリエステ ル繊維を、不飽和結合を少なくとも 2個以上有する脂肪族および Zまたは脂環族化 合物に含浸処理し活性光線を照射し耐熱性架橋型繊維とする、 (2)そしてこれに撚 りをかけコードとする、 (3)共重合ポリエステル力もなるポリマーを溶融紡糸して得られ たポリエステル繊維カゝらなるポリエステル繊維コードを、不飽和結合を少なくとも 2個 以上有する脂肪族および Zまたは脂環族化合物に含浸処理し活性光線を照射し耐 熱性架橋型繊維コードとする、(4)共重合ポリエステルカゝらなるポリマーを溶融紡糸し て得られたポリエステル繊維および Zまたはポリエステル繊維コードを予めキヤリヤー 剤で処理した後、(2)または(3)によりコードを得ることによる。 [0016] Specifically, (1) Polyester fibers obtained by melt spinning a polymer having copolyester strength are impregnated with aliphatic and Z or alicyclic compounds having at least two unsaturated bonds. Irradiated with actinic rays to form heat-resistant cross-linked fibers, (2) and then twisted into cords, and (3) polyester fibers obtained by melt spinning a polymer that has copolyester strength Polyester fiber cords are impregnated with aliphatic and Z or alicyclic compounds having at least two unsaturated bonds and irradiated with actinic rays to withstand resistance. (4) Polyester fiber and Z or polyester fiber cord obtained by melt-spinning a polymer made of copolymerized polyester fiber are treated with a carrier agent in advance, and then (2) or (3 ) By obtaining the code.
[0017] 本発明は下記の通りである。 [0017] The present invention is as follows.
[0018] 1. 動的粘弾性測定に於ける 100°Cでの貯蔵弾性率 E ' と 250°Cでの貯蔵弾性率  [0018] 1. Storage modulus E 'at 100 ° C and storage modulus at 250 ° C in dynamic viscoelasticity measurement
100  100
E, の比 E' ZE, の値が 10以下であることを特徴とする耐熱性架橋型ポリエス A heat-resistant cross-linked polyester characterized by a ratio E 'ZE,
250 100 250 250 100 250
テル繊維。  Tell fiber.
2. 共重合ポリエステルを溶融紡糸して得られたポリエステル未延伸糸および Zま たは延伸糸を、不飽和結合を少なくとも 2個以上有する脂肪族および Zまたは脂環 族化合物を含浸処理した後、活性光線を照射することにより得られる上記 1に記載の 耐熱性架橋型ポリエステル繊維。  2. After impregnating the polyester undrawn yarn and Z or drawn yarn obtained by melt spinning the copolyester with aliphatic and Z or alicyclic compounds having at least two unsaturated bonds, 2. The heat-resistant crosslinked polyester fiber as described in 1 above, which is obtained by irradiating actinic rays.
3. 共重合ポリエステルを溶融紡糸して得られたポリエステル未延伸糸および Zま たは延伸糸をキヤリヤー剤で処理した後、不飽和結合を少なくとも 2個以上有する脂 肪族および Zまたは脂環族化合物を含浸処理した後、活性光線を照射することによ り得られる上記 1に記載の耐熱性架橋型ポリエステル繊維。  3. An aliphatic and Z or alicyclic group having at least two unsaturated bonds after the polyester undrawn yarn and Z or drawn yarn obtained by melt spinning the copolyester are treated with a carrier agent. 2. The heat-resistant crosslinked polyester fiber according to 1 above, which is obtained by impregnating a compound and then irradiating with actinic rays.
4. 活性光線が、電子線、 γ線であることを特徴とする上記 1〜3のいずれかに記載 の耐熱性架橋型ポリエステル繊維。  4. The heat-resistant crosslinked polyester fiber according to any one of 1 to 3 above, wherein the actinic ray is an electron beam or a γ-ray.
5. 動的粘弾性測定に於ける 100°Cでの貯蔵弾性率 E ' と 250°Cでの貯蔵弾性率  5. Storage elastic modulus E 'at 100 ° C and storage elastic modulus at 250 ° C in dynamic viscoelasticity measurement
100  100
E, の比 E' ZE, の値が 10以下である耐熱性架橋型ポリエステル繊維が少なく There are few heat-resistant cross-linked polyester fibers whose ratio of E, to E 'ZE, is less than 10.
250 100 250 250 100 250
とも一部に含まれてなり、動的粘弾性測定に於ける 100°Cでの貯蔵弾性率 E ' と 25  Storage elastic modulus E 'and 25 at 100 ° C in dynamic viscoelasticity measurement.
100 100
0°Cでの貯蔵弾性率 E, の比 E ' /E, の値力 以下であることを特徴とする耐熱 Storage elastic modulus E at 0 ° C, ratio E '/ E
250 100 250  250 100 250
性架橋型ポリエステル繊維コード。  Crosslinkable polyester fiber cord.
6. 共重合ポリエステルを溶融紡糸して得られたポリエステル繊維を、不飽和結合を 少なくとも 2個以上有する脂肪族および Zまたは脂環族化合物を含浸処理し活性光 線を照射した後、繊維コードとすることを特徴とする上記 5に記載の耐熱性架橋型ポ リエステル繊維コード。  6. The polyester fiber obtained by melt spinning the copolyester is impregnated with aliphatic and Z or alicyclic compounds having at least two unsaturated bonds and irradiated with active light, and then the fiber cord and 6. The heat-resistant crosslinked polyester fiber cord as described in 5 above.
7. 共重合ポリエステルを溶融紡糸して得られたポリエステル繊維カゝらなるポリエス テル繊維コードを、不飽和結合を少なくとも 2個以上有する脂肪族および Zまたは脂 環族化合物に含浸処理し活性光線を照射することを特徴とする上記 5に記載の耐熱 性架橋型ポリエステル繊維コード。 7. Polyester fiber cords such as polyester fibers obtained by melt spinning a copolyester are aliphatic and Z or fat having at least two unsaturated bonds. 6. The heat-resistant crosslinked polyester fiber cord according to 5 above, wherein the cyclic compound is impregnated and irradiated with actinic rays.
8. ポリエステル繊維および Zまたはポリエステル繊維コードを予めキヤリヤー剤で 処理した後、不飽和結合を少なくとも 2個以上有する脂肪族および Zまたは脂環族 化合物を含浸させ活性光線を照射することを特徴とする上記 6または 7に記載の耐熱 性架橋型ポリエステル繊維コード。  8. Polyester fibers and Z or polyester fiber cords are pretreated with a carrier agent, and then impregnated with aliphatic and Z or alicyclic compounds having at least two unsaturated bonds and irradiated with actinic rays. 8. The heat-resistant crosslinked polyester fiber cord according to 6 or 7 above.
9. 活性光線が、電子線、 γ線であることを特徴とする上記 5〜8のいずれかに記載 の耐熱性架橋型ポリエステル繊維コード。  9. The heat-resistant crosslinked polyester fiber cord according to any one of 5 to 8 above, wherein the actinic ray is an electron beam or a γ-ray.
10. 上記 5〜9のいずれか〖こ記載の耐熱性架橋型ポリエステル繊維コードをカー力 ス材として用いた空気入りラジアルタイヤ。  10. A pneumatic radial tire using the heat-resistant crosslinked polyester fiber cord described in any one of 5 to 9 as a carcass material.
11. 上記 5〜: LOの 、ずれか〖こ記載の耐熱性架橋型ポリエステル繊維コードを用い たゴム複合体。  11. A rubber composite using a heat-resistant crosslinked polyester fiber cord described in 5 to 5 above: LO.
発明の効果  The invention's effect
[0019] 本発明は動的粘弾性測定に於ける 100°Cでの貯蔵弾性率 E ' と 250°Cでの貯蔵  [0019] The present invention relates to storage elastic modulus E 'at 100 ° C and storage at 250 ° C in dynamic viscoelasticity measurement.
100  100
弾性率 E, の比 E' ZE, の値が 10以下であることを特徴とする耐熱性架橋型ポ  The ratio of elastic modulus E, ratio E 'ZE, is 10 or less.
250 100 250  250 100 250
リエステル繊維を提供するものであり、また、前記の耐熱架橋型ポリエステル繊維を 少なくとも一部に含み、動的粘弾性測定に於ける 100°Cでの貯蔵弾性率 E ' と 250  The present invention provides a re-ester fiber, and includes at least a part of the above-mentioned heat-resistant cross-linked polyester fiber, and has a storage elastic modulus E ′ at 250 ° C. and 250 in dynamic viscoelasticity measurement.
100 100
°Cでの貯蔵弾性率 E, の比 E ' /E, の値力 以下であることを特徴とする耐熱 Storage elastic modulus E at ° C, ratio E '/ E, value power of
250 100 250  250 100 250
性架橋型  Cross-linking type
ポリエステル繊維コードを提供するものである。共重合ポリエステル力もなるポリエス テル繊維に不飽和結合を少なくとも 2個以上有する脂肪族および Zまたは脂環族化 合物を含浸処理した後、電子線、 γ線等の照射によってポリエステル繊維の表面層 に存在する不飽和結合有する化合物間の架橋反応および Ζまたは内部に浸透した 不飽和結合有する化合物間の架橋反応により、中高温域での加熱による非結晶部 分および結晶部分の流動性を押さえその結果として、力学物性を保持し融点温度以 上の温度でも形状を保持することができるものである。  A polyester fiber cord is provided. Polyester fibers that also have copolyester strength are impregnated with aliphatic and Z or alicyclic compounds having at least two unsaturated bonds, and then irradiated onto the surface layer of the polyester fibers by irradiation with electron beams, γ rays, etc. The cross-linking reaction between compounds with unsaturated bonds existing and the cross-linking reaction between compounds with unsaturated bonds penetrating inside or inside suppresses the fluidity of the amorphous and crystalline parts due to heating in the middle and high temperature range. As described above, the mechanical properties can be maintained and the shape can be maintained even at a temperature higher than the melting point temperature.
[0020] 一般にポリエステル繊維は、 100°C程度の温度力 加熱により除々に力学物性 (貯 蔵弾性率 Ε ')が低下する。これは、非結晶部分が加熱により熱運動が大きくなつたこ とによるもので、更に温度が上昇するに伴って結晶部分力こわれ易くなり力学物性が 更に低下し、それに伴 、流動性を示しこの温度を融点ある 、は融解温度と定義して いる。これ等、融点以上の温度域に達すると熱流動性により形状を保持することがで きない。しかし、本発明で驚くべきことは、ポリエステル繊維の融点温度 255〜260°C 域で貯蔵弾性率 E'が大きく低下する事なく且つ、それ以上の温度でも熱融解するこ となく貯蔵弾性率 E 'を保持しその結果、形状が保持できることにある。 [0020] In general, polyester fibers gradually decrease in mechanical properties (storage elastic modulus Ε ') due to heating at a temperature of about 100 ° C. This is because the non-crystalline part has a large thermal motion due to heating. As the temperature rises further, the partial crystal force easily breaks down and the mechanical properties further decline, and as a result, fluidity is exhibited and this temperature is defined as the melting temperature. When the temperature reaches the melting point or higher, the shape cannot be maintained due to thermal fluidity. However, what is surprising in the present invention is that the storage elastic modulus E ′ does not significantly decrease in the melting point temperature range of 255 to 260 ° C. of the polyester fiber and does not melt at higher temperatures. As a result, the shape can be held.
したがって、本発明は、耐熱性および力学物性等が特に必要なランフラットタイヤコ 一ド部材として有用であり、また、本発明の方法により共重合ポリエステル繊維以外 の機能繊維等の耐熱性付与への応用展開も可能である。  Therefore, the present invention is useful as a run-flat tire cord member that particularly requires heat resistance, mechanical properties, and the like, and also provides heat resistance to functional fibers other than copolymerized polyester fibers by the method of the present invention. Application development is also possible.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明は、常温カゝら中高温域の力学物性 (貯蔵弾性率)を保持し、共重合ポリエス テルの融点以上の温度でも熱融解することなく形状を保持できる耐熱性を有する耐 熱性架橋型ポリエステル繊維、すなわち動的粘弾性測定に於ける 100°Cでの貯蔵 弾性率 E ' と 250°Cでの貯蔵弾性率 E, の比 E ' /E, の値が 10以下である耐  The present invention is a heat-resistant cross-linking type that retains mechanical properties (storage elastic modulus) in the middle and high temperature range from room temperature to heat and can retain its shape without being melted by heat at a temperature equal to or higher than the melting point of the copolymer polyester. Polyester fiber, that is, the ratio of the storage elastic modulus E 'at 100 ° C and the storage elastic modulus E at 250 ° C in dynamic viscoelasticity measurement, E' / E, is less than 10
100 250 100 250  100 250 100 250
熱性架橋型ポリエステル繊維を提供するものである。また、前記の耐熱性架橋型ポリ エステル繊維を少なくとも一部に含み、動的粘弾性測定に於ける 100°Cでの貯蔵弹 性率 E ' と 250°Cでの貯蔵弾性率 E, の比 E ' /E, の値力 以下であることを A thermally crosslinkable polyester fiber is provided. The ratio of the storage modulus E ′ at 100 ° C. to the storage modulus E at 250 ° C. in the dynamic viscoelasticity measurement is at least partially including the above heat-resistant crosslinked polyester fiber. E '/ E, the value of
100 250 100 250 100 250 100 250
特徴とする耐熱性架橋型ポリエステル繊維コードを提供するものである。  A heat-resistant cross-linked polyester fiber cord is provided.
[0022] 本発明における共重合ポリエステル、特に芳香族共重合ポリエステルとは、芳香族 ジカルボン酸成分とジオール成分との重縮合物であって公知のものを含め特に限定 されるものではない。また、ポリエステル酸末端を利用しグリシジル基含有不飽和化 合物と反応して得られた不飽和基含有ポリエステルを用いても構わな ヽ。芳香族ジカ ルボン酸成分としては、テレフタル酸、イソフタル酸、 2, 6—ナフタレンジカルボン酸 、 2, 7—ナフタレンジカルボン酸、 1, 5—ナフタレンジカルボン酸、ジフエ-ルジカル ボン酸、ジフエニルエーテルジカルボン酸、 5—ナトリウムスルホンフタル酸などが例 示することができる。中でもテレフタル酸、 2, 6—ナフタレンジカルボン酸が好ましい 。ジオール成分としては、エチレングリコール、ジエチレングリコール、トリエチレングリ コーノレ、トリメチレングリコール、テトラメチレングリコール、プロピレングリコール、オタ タネチレングリコール、デカンメチレングリコール、ポリエチレングリコールなどの脂肪 族ジオール;シクロへキサンジオール、シクロへキサンジメタノールなどの脂環族ジォ ール;ナフタレンジオール、ビスフエノール A、レゾルシンなどの芳香族ジオール等を 例示することができる。中でもエチレングリコール、トリメチレングリコールなどの脂肪 族ジオールが好まし ヽ。また本発明の芳香族ポリエステルは芳香族ジカルボン酸成 分およびジオール成分はそれぞれ単独カゝら構成されたものであって 3種以上力ゝら構 成される共重合ポリエステルであっても差し支えない。さらに 2種以上の芳香族ポリエ ステル榭脂をブレンドしたものであっても構わない。 [0022] The copolyester, particularly the aromatic copolyester in the present invention is a polycondensate of an aromatic dicarboxylic acid component and a diol component, and is not particularly limited, including known ones. Further, an unsaturated group-containing polyester obtained by reacting with a glycidyl group-containing unsaturated compound using a polyester acid terminal may be used. Aromatic dicarboxylic acid components include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenyletherdicarboxylic acid Examples include 5-sodium sulfophthalic acid. Of these, terephthalic acid and 2,6-naphthalenedicarboxylic acid are preferred. Diol components include ethylene glycol, diethylene glycol, triethylene glycol Aliphatic diols such as cornole, trimethylene glycol, tetramethylene glycol, propylene glycol, otaethylene glycol, decanmethylene glycol, polyethylene glycol; alicyclic diols such as cyclohexanediol and cyclohexanedimethanol; Examples include aromatic diols such as naphthalenediol, bisphenol A, and resorcin. Of these, aliphatic diols such as ethylene glycol and trimethylene glycol are preferred. In the aromatic polyester of the present invention, the aromatic dicarboxylic acid component and the diol component are each composed of a single monomer, and may be a copolyester composed of three or more kinds. Further, it may be a blend of two or more types of aromatic polyester resin.
[0023] 更に前記共重合ポリエステル中に少量の他の任意の重合体や酸化防止剤、ラジカ ル補足剤、静電剤、染色改良剤、染料、顔料、艷消し剤、蛍光増白剤、不活性微粒 子その他の添加剤が含有されても良い。芳香族ポリエステルを得る方法としては、特 別な重合条件を採用する必要もなぐ芳香族ジカルボン酸成分および Zまたはその エステル形成誘導体とジオール成分との反応生成物を重縮合してポリエステルにす る際に採用される任意の方法で合成することができる。重合の装置は回分式であつ ても連続式であってもよ ヽ。さらに前記液相重縮合工程で得られたポリエステルを粒 状ィ匕し予備結晶化させた後に不活性ガス雰囲気下あるいは減圧真空下、融点以下 の温度で固相重合することもできる。  [0023] Further, a small amount of any other polymer, antioxidant, radical supplement, electrostatic agent, dyeing improver, dye, pigment, matting agent, fluorescent brightener, Active fine particles and other additives may be contained. The aromatic polyester can be obtained by polycondensing a reaction product of an aromatic dicarboxylic acid component and Z or an ester-forming derivative thereof with a diol component, which does not require special polymerization conditions, into a polyester. Can be synthesized by any method employed. The polymerization equipment can be batch or continuous. Furthermore, after the polyester obtained in the liquid phase polycondensation step is granulated and pre-crystallized, it can be subjected to solid phase polymerization in an inert gas atmosphere or under reduced pressure under a temperature below the melting point.
[0024] 重合触媒は所望の触媒活性を有するものであれば特に限定はしないが、アンチモ ン化合物、チタンィ匕合物、ゲルマウム化合物、アルミニウム化合物が好ましく用いられ る。これらの触媒を使用する際には単独でも、また 2種類以上を併用してもよぐ使用 量としてはポリエステルを構成する芳香族カルボン酸成分に対して 0. 002-0. 1モ ル%が好ましい。  [0024] The polymerization catalyst is not particularly limited as long as it has a desired catalytic activity, but an antimony compound, a titanium compound, a germanium compound, and an aluminum compound are preferably used. When these catalysts are used alone or in combination of two or more, the amount used is 0.002 to 0.1 mol% based on the aromatic carboxylic acid component constituting the polyester. preferable.
[0025] また本発明における共重合ポリエステルの固有粘度 (IV)は、 0. 6以上であることが 好ましぐ更に好ましくは 0. 8以上である。 IVが 0. 6以下であると目的とする強度、弹 性率が得られない。  [0025] In addition, the intrinsic viscosity (IV) of the copolyester in the present invention is preferably 0.6 or more, more preferably 0.8 or more. If IV is 0.6 or less, the intended strength and inertia cannot be obtained.
また、芳香族ポリエステルのカルボキシ末端基量は 50eqZton以下であることが好 ましぐ更に好ましくは 30eqZton以下である。 50eqZtonを超えるとポリエステルタ ィャコードとして用いた場合、ゴム中から浸入するァミン化合物による加水分解の発 生により耐久性が劣化し好ましくない。 Further, the amount of carboxy terminal group of the aromatic polyester is preferably 50 eqZton or less, more preferably 30 eqZton or less. If it exceeds 50eqZton, polyester When used as a cord, durability is deteriorated due to the occurrence of hydrolysis by an amine compound entering from rubber, which is not preferable.
[0026] 本発明では、前記共重合ポリエステルを常法の溶融紡糸条件で糸条とする方法が 採用でき、引取った糸条をー且卷き取り未延伸糸にする力、あるいは紡糸に連続し て延伸するスピンドロー法により熱延伸する等で得られる。一般的に熱延伸は高倍率 の一段延伸もしくは二段以上の多段延伸で行われる。また、加熱方法としては、過熱 ロールや過熱蒸気、ヒートプレート、ヒートボックス等による方法があり、特に限定され るものではない。  [0026] In the present invention, it is possible to employ a method in which the copolymerized polyester is used as a yarn under the usual melt spinning conditions. Then, it can be obtained by, for example, thermal stretching by a spin draw method of stretching. In general, the thermal stretching is performed by one-stage stretching at a high magnification or multi-stage stretching of two or more stages. The heating method includes a method using a superheated roll, superheated steam, a heat plate, a heat box or the like, and is not particularly limited.
これ等、ポリエステル繊維は、タイヤのようなゴム製品の補強材等の産業資材用途 に製造された寸法安定性、高強度、耐久性の優れたものが好ましく使用できる。  As these polyester fibers, those excellent in dimensional stability, high strength and durability manufactured for industrial materials such as a reinforcing material for rubber products such as tires can be preferably used.
[0027] 本発明では、このようにして得られた共重合ポリエステル繊維の未延伸糸および Z または延伸糸に不飽和結合を少なくとも 2個以上有する脂肪族および Zまたは脂環 族化合物を含浸させ、ポリエステル繊維の表面および Zまたは内部に不飽和化合物 が存在するポリエステル繊維をバッチ式或いは連続的に製造する。  [0027] In the present invention, the undrawn yarn and Z or drawn yarn of the copolyester fiber thus obtained are impregnated with an aliphatic and Z or alicyclic compound having at least two unsaturated bonds, Polyester fibers with unsaturated compounds present on the surface and Z or inside of the polyester fibers are produced batchwise or continuously.
[0028] 本発明では、以下の方法により耐熱性架橋型繊維コードを得ることができる。  In the present invention, a heat-resistant crosslinked fiber cord can be obtained by the following method.
即ち(1)共重合ポリエステル力 なるポリマーを溶融紡糸して得られた共重合ポリェ ステル繊維の延伸糸を用いて、不飽和結合を少なくとも 2個以上有する脂肪族およ び Zまたは脂環族化合物を含浸させ、ポリエステル繊維に脂肪族および Zまたは脂 環族化合物が存在するポリエステル繊維とした後、活性光線を照射し架橋ポリエステ ル繊維とし、その後、リング撚糸機ゃ直撚機でコードとする方法、(2)共重合ポリエス テル力もなるポリマーを溶融紡糸して得られた共重合ポリエステル繊維を用いてリン グ撚糸機ゃ直撚機でコードとしたものに不飽和結合を少なくとも 2個以上有する脂肪 族および Zまたは脂環族化合物を含浸させ同様にポリエステル繊維に脂肪族および Zまたは脂環族化合物が存在する様にした後、活性光線を照射し架橋型ポリエステ ル繊維コードとする方法があり、バッチ式或いは連続的に製造する。  That is, (1) aliphatic and Z or alicyclic compounds having at least two unsaturated bonds using a drawn fiber of copolymer polyester fiber obtained by melt spinning a polymer having copolyester strength Is made into polyester fiber with aliphatic and Z or cycloaliphatic compounds present in the polyester fiber, then irradiated with actinic rays to form crosslinked polyester fiber, and then used as a cord with a ring twisting machine or straight twisting machine. (2) Fat having at least two unsaturated bonds in a ring twisting machine using a copolymerized polyester fiber obtained by melt spinning a polymer having copolyester strength as a cord with a direct twisting machine After impregnating with aliphatic and Z or alicyclic compounds, the polyester fiber is made to contain aliphatic and Z or alicyclic compounds, and then irradiated with actinic rays to form a crosslinked type. There are ways to Riesute Le fiber cord, producing batchwise or continuously.
[0029] 本発明では、以下の方法により耐熱性架橋型繊維および耐熱性架橋型繊維コード を得ることができる。即ち(1)共重合ポリエステル力もなるポリマーを溶融紡糸して得 られた共重合ポリエステル繊維の延伸糸を用いて、不飽和結合を少なくとも 2個以上 有する脂肪族および Zまたは脂環族化合物を含浸させ、ポリエステル繊維に脂肪族 および Zまたは脂環族化合物が存在するポリエステル繊維とした後、活性光線を照 射し架橋ポリエステル繊維とし、(2)その後、この架橋ポリエステル繊維をリング撚糸 機ゃ直撚機でコードとする方法、 (3)共重合ポリエステルカゝらなるポリマーを溶融紡 糸して得られた共重合ポリエステル繊維を用いてリング撚糸機ゃ直撚機でコードとし たものに不飽和結合を少なくとも 2個以上有する脂肪族および Zまたは脂環族化合 物を含浸させ同様にポリエステル繊維に脂肪族および Zまたは脂環族化合物が存 在する様にした後、活性光線を照射し架橋型ポリエステル繊維コードとする方法、(4 )共重合ポリエステルカゝらなるポリマーを溶融紡糸して得られた共重合ポリエステル繊 維および/またはポリエステル繊維コードを予めキヤリヤー剤で処理した後、不飽和結 合を少なくとも 2個以上有する脂肪族および Zまたは脂環族化合物を含浸させた後、 活性光線を照射し架橋ポリエステル繊維および架橋ポリエステル繊維コードとする方 法があり、バッチ式或いは連続的に製造する。 [0029] In the present invention, a heat-resistant crosslinked fiber and a heat-resistant crosslinked fiber cord can be obtained by the following method. That is, (1) at least two unsaturated bonds using a drawn yarn of a copolyester fiber obtained by melt spinning a polymer having copolyester strength After impregnating with the aliphatic and Z or alicyclic compound possessed to make the polyester fiber a polyester fiber with the aliphatic and Z or alicyclic compound present, actinic rays are irradiated to form a crosslinked polyester fiber. (2) , A method in which this crosslinked polyester fiber is corded by a ring twisting machine or a straight twisting machine, and (3) a ring twisting machine using a copolymerized polyester fiber obtained by melt spinning a polymer comprising a copolymerized polyester fiber. It is implied that aliphatic and Z or alicyclic compounds having at least two unsaturated bonds impregnated in the cords of a straight twist machine and that the polyester fiber contains aliphatic and Z or alicyclic compounds. A method of irradiating actinic rays to form a crosslinked polyester fiber cord, and (4) a copolymer obtained by melt spinning a polymer such as a copolymerized polyester fiber. Polyester fibers and / or polyester fiber cords are pretreated with a carrier agent, impregnated with aliphatic and Z or alicyclic compounds having at least two unsaturated bonds, and then irradiated with actinic rays to crosslink polyester. There are methods to make fibers and cross-linked polyester fiber cords, which are manufactured batchwise or continuously.
[0030] 本発明では、常法によりリング撚糸機ゃ直撚機で生コードとすることができる。常法 による生コードは、 10cm当り 10〜: LOO回の撚り(下撚り)を掛けた後、複数本合糸し 、反対方面に 10cm当り 10〜: LOO回の撚り(上撚り)を掛けコードとする。  [0030] In the present invention, a raw cord can be formed by a ring twisting machine or a straight twisting machine by a conventional method. The standard raw cord is 10 ~ per 10cm: After applying the LOO twist (lower twist), combine multiple yarns, and the opposite side is 10 ~ per 10cm: the twist (upper twist) And
[0031] 本発明で用いる不飽和結合を少なくとも 2個以上有する脂肪族および Zまたは脂 環族化合物とは、紫外線、電子線、 γ線等の照射によってラジカル重合反応を進行 できる化合物であって、アタリロイル基、メタクリロイ基、イタコノィル基、マレノィル基、 フマロイル基、クロトイル基、アタリロイルァミノ基、メタクリロイルァミノ基、シンナモイル 基、ビニル基、ァリル基、スチリル基等からなる 1分子中に不飽和基を 2個以上有する 化合物およびその誘導体である。具体的な例示を挙げれば、(エチレン、ジエチレン 、トリエチレン)グリコールジメタタリレート、ポリエチレングリコールジメタタリレート、 1, 3 ブチレングリコールジメタタリレート、 1, 4 ブタンジオールジメタタリレート、 1, 6 一へキサンジオールジメタタリレート、 1, 9ーノナンジオールジメタタリレート、ネオペ ンチルダリコールジメタタリレート、トリメチロールプロパントリ(メタ)アタリレート、トリメチ ロールメタン (メタ)アタリレート、テトラメチロールメタンテトラアタリレート、ペンタエリス リトールテトラアタリレート、ジペンタエリスリトールペンタアタリレート、 1分子中にビスフ ノール A骨格を有する脂肪族或いは脂環族を (メタ)アタリレート化したエポキシァク リレート類が挙げられこれ等に限定するものではない。 [0031] The aliphatic and Z or alicyclic compounds having at least two unsaturated bonds used in the present invention are compounds capable of proceeding radical polymerization reaction by irradiation with ultraviolet rays, electron beams, γ rays, etc. Unsaturated group in one molecule consisting of attalyloyl group, methacryloyl group, itaconol group, maleolyl group, fumaroyl group, crotoyl group, attalyloylamino group, methacryloylamino group, cinnamoyl group, vinyl group, aryl group, styryl group, etc. A compound having two or more and derivatives thereof. Specific examples include (ethylene, diethylene, triethylene) glycol dimetatalate, polyethylene glycol dimetatalate, 1, 3 butylene glycol dimetatalate, 1, 4 butanediol dimetatalate, 1, 6 Xanthandiol dimetatalylate, 1,9-nonanediol dimetatalylate, neopentyl dallicol dimetatalylate, trimethylolpropane tri (meth) acrylate, trimethylol methane (meth) acrylate, tetramethylol methane tetra acrylate, Pentaerythritol tetraatalylate, dipentaerythritol pentaatalylate, bisphenol in one molecule Examples thereof include, but are not limited to, epoxyacrylates obtained by (meth) atalylating an aliphatic or alicyclic group having a Nord A skeleton.
[0032] 本発明による常温カゝら高温域での貯蔵弾性率 E 'を保持するための概念は、結晶 部分と非結晶部分の加熱温度による熱運動をいかに小さくするかである。本発明に よる方法では、ポリエステル繊維および繊維コードに形成された表面層の架橋反応 によりこの層が熱ノリア層的な働きをし、そしてポリエステル繊維およびコード内部の 例え少量の不飽和化合物が含浸されていれば不飽和化合物同士の架橋反応およ び表面層の不飽和化合物と内部の不飽和化合物同士の架橋反応が起こることによ る作用の結果、ポリエステル構造 (非結晶部分および結晶部分)の加熱による熱運動 性を小さく抑制しているものと推定され、そのことによって貯蔵弾性率 E 'が大きく低下 することなく保持して 、るものと考えて 、る。特に不飽和化合物の架橋反応性が重要 となってくる訳で、本発明では、不飽和基官能基数力 ^個以上、特に好ましくは不飽 和官能基数が 3つ以上の不飽和化合物が好ましぐ特にビ  [0032] The concept for maintaining the storage elastic modulus E 'in the high temperature range from the normal temperature according to the present invention is how to reduce the thermal motion due to the heating temperature of the crystalline part and the amorphous part. In the method according to the present invention, the surface layer formed on the polyester fiber and fiber cord acts as a thermal noria layer by the cross-linking reaction, and a small amount of unsaturated compound inside the polyester fiber and cord is impregnated. As a result of the cross-linking reaction between the unsaturated compounds and the cross-linking reaction between the unsaturated compound in the surface layer and the internal unsaturated compound, the polyester structure (non-crystalline part and crystalline part) It is presumed that the thermal motility due to heating is suppressed to a small extent, and that is why the storage elastic modulus E ′ is maintained without significantly decreasing. Particularly, the crosslinking reactivity of unsaturated compounds becomes important, and in the present invention, unsaturated compounds having an unsaturated group functional group number of more than ^, particularly preferably an unsaturated functional group number of 3 or more are preferred. Especially
-ル基含有 (メタ)アタリレート系化合物が好ましく使用できる。これ等不飽和化合物の ラジカル反応を進行させる手段として、前記紫外線、電子線、 γ線等が使用でき、含 浸された内部の不飽和化合物の架橋反応を進めるためには透過性の優れた電子線 、 γ線が好ましく使用できる。但し使用用途によっては表面層を架橋反応させるため の紫外線も使用でき限定するものではない。紫外線で架橋反応を進めるにはラジカ ル重合開始剤を配合する事が好ましぐ特にラジカル重合開始剤の種類、配合量は 限定しない。  -(R) group-containing (meth) atalylate compounds can be preferably used. As a means for advancing the radical reaction of these unsaturated compounds, the ultraviolet rays, electron beams, γ rays, etc. can be used, and in order to advance the crosslinking reaction of the impregnated unsaturated compounds, electrons having excellent permeability are used. Lines and gamma rays can be preferably used. However, depending on the intended use, ultraviolet rays for cross-linking the surface layer can be used and are not limited. In order to advance the crosslinking reaction with ultraviolet rays, it is preferable to add a radical polymerization initiator. In particular, the type and amount of the radical polymerization initiator are not limited.
[0033] 本発明で用いる不飽和化合物の好ましい粘度は、常温(25°C)で 5〜: LOOOcpsの 範囲であれば使用可能であるが、化合物が揮発しない程度に加温することも構わな い。更には、特に芳香族共重合ポリエステルのガラス転位点近傍までに加温してポリ エステル繊維の内部に積極的に化合物が含浸する様にするこが好ましく推奨できる  [0033] A preferable viscosity of the unsaturated compound used in the present invention can be used in the range of 5 to LOOOcps at room temperature (25 ° C), but it may be heated to such an extent that the compound does not volatilize. Yes. Furthermore, it is preferable to warm up to the vicinity of the glass transition point of the aromatic copolyester so that the compound is actively impregnated into the polyester fiber.
[0034] 前記の不飽和化合物を用いてポリエステル繊維および繊維コードに含浸する条件 は、特に限定しないが、 30〜: L00°Cの加温浴槽に 3〜 15分程度浸漬することが好ま しい。ポリエステル繊維および繊維コードに付着したィ匕合物は、任意のローラーゃガ イドバー等によって必要量以外除去され、ポリエステル繊維および繊維コード表面層 の架橋硬化後の厚みが: m以上、好ましくは 4 m以上あれば好ましい。表面層の 厚みが 1 m以下の場合、架橋密度が不足し耐熱性が不充分となるために不利であ る。 [0034] The conditions for impregnating the polyester fiber and fiber cord with the unsaturated compound are not particularly limited, but it is preferable to immerse in a warm bath at 30 to L00 ° C for about 3 to 15 minutes. Polyester fiber and fiber cord attached to the fiber cord can be It is preferable that the thickness after removal of the polyester fiber and the fiber cord surface layer after cross-linking is: m or more, preferably 4 m or more. When the thickness of the surface layer is 1 m or less, it is disadvantageous because the crosslinking density is insufficient and the heat resistance is insufficient.
[0035] 本発明では、共重合ポリエステル繊維および共重合ポリエステル繊維コードに不飽 和化合物を含浸する時に浸透性を向上させるためにキヤリヤー剤の使用が好ましい 。特に、既にポリエステル繊維を撚り生コードしたものに不飽和化合物を含浸する時 に浸透性を向上させるためにキヤリヤー剤の使用が好ましく推奨できる。ポリエステル 繊維の撚りによって生じた重なり部分は不飽和化合物の浸透性が不足がちになり易 ぐその結果、不飽和化合物の浸透性不足からくる架橋不足による耐熱性が不足す る恐れがあるのを防止するためである。含浸時間を長くするとか積極的に加温する等 の方法もあるが工業的に好ましくない。  In the present invention, it is preferable to use a carrier agent in order to improve the permeability when the copolymerized polyester fiber and the copolymerized polyester fiber cord are impregnated with an unsaturated compound. In particular, the use of a carrier agent is preferably recommended in order to improve the permeability when an unsaturated compound is impregnated into a polyester fiber that has already been twisted and corded. The overlap caused by twisting of polyester fibers tends to be insufficient for unsaturated compound permeability, and as a result, the heat resistance due to insufficient crosslinking due to insufficient permeability for unsaturated compounds is prevented. It is to do. There are methods such as increasing the impregnation time or positively heating, but this is not industrially preferable.
[0036] キヤリヤー剤としては、具体的には 1, 2, 4—トリクロ口ベンゼン、オルトジクロロベン ゼン、オルトフェニルフェノール、ジュフエ-ル、メチルナフタレン、安息香酸ブチル、 テレフタル酸ジメチル、サリチル酸メチル等のキヤリヤー剤が例示され、キヤリヤー剤 処理は、浸漬処理および噴霧法による処理が好ましぐ噴霧処理の場合、 100°C前 後に加温し処理することが好ま ヽ。  [0036] Specific examples of the carrier agent include 1,2,4-trichlorodiethylbenzene, orthodichlorobenzene, orthophenylphenol, diethyl ether, methylnaphthalene, butyl benzoate, dimethyl terephthalate, and methyl salicylate. Carriers are exemplified, and in the case of spray treatments where immersion treatment and spraying treatment are preferred, the carrier treatment is preferably heated and treated before 100 ° C.
[0037] 本発明の耐熱性架橋型ポリエステル繊維および耐熱性架橋型ポリエステル繊維コ ードを得るには、不飽和化合物を含浸処理されたものを、紫外線、電子線、 γ線等の 活性光線を照射しラジカル反応を発生させ架橋させたもので活性光線の中で特に照 射エネルギーの透過力の大きい電子線や γ線が好ましく使用できる。本発明では、 活性光線の照射エネルギーは、 50〜: LOOOOKGy、好ましくは 1000〜6000KGyで 電子線を照射し架橋させる。電子線の照射量エネルギーが 50KGy以下の場合、十 分に架橋反応が進まないため耐熱性が得られず貯蔵弾性率 E 'も保持できなくなり、 また lOOOOKGy以上照射すると形成された架橋反応層が脆くなり、更にポリエステ ルの分解が進み強度物性が低下してしまい貯蔵弾性率 E'の保持が困難となってし まう恐れがあるので好ましくな!/、。 [0037] In order to obtain the heat-resistant crosslinked polyester fiber and the heat-resistant crosslinked polyester fiber cord of the present invention, the impregnated compound is impregnated with actinic rays such as ultraviolet rays, electron beams, and γ rays. An electron beam or γ- ray that is irradiated and generates a radical reaction to be crosslinked and has a particularly high transmittance of irradiation energy among actinic rays can be preferably used. In the present invention, the irradiation energy of the active rays, 50~: LOOOOKGy, is preferably irradiated with an electron beam at 1000~6000KG y crosslinking. When the irradiation energy of the electron beam is 50KGy or less, the crosslinking reaction does not proceed sufficiently, so heat resistance cannot be obtained and the storage elastic modulus E 'cannot be maintained, and the formed crosslinking reaction layer becomes brittle when irradiated with lOOOOKGy or more. Furthermore, the polyester is further decomposed and the strength properties are deteriorated, which may make it difficult to maintain the storage elastic modulus E '. /.
[0038] 本発明の耐熱性架橋型ポリエステル繊維の動的粘弾性測定に於ける 100°Cでの 貯蔵弾性率 E ' 100と 250°Cでの貯蔵弾性率 E ' 250の比 E, /E ' の値は 10以内 [0038] The dynamic viscoelasticity measurement of the heat-resistant crosslinked polyester fiber of the present invention at 100 ° C Storage elastic modulus E '100 and storage elastic modulus at 250 ° C E' 250 Ratio E, / E 'is within 10
100 250  100 250
が好ましい。この比が 10以上となるとポリエステル繊維の耐熱性が不足し力学物性の 低下及び形状の保持が困難となる。更に好ましくは貯蔵弾性率 E, ZE ' の値が 5  Is preferred. When this ratio is 10 or more, the heat resistance of the polyester fiber is insufficient, and the mechanical properties are lowered and the shape is difficult to maintain. More preferably, the values of storage elastic modulus E and ZE 'are 5
100 250 以内、更に好ましくは 2以内であることが好ましい。  It is preferably within 100 250, more preferably within 2.
[0039] 本発明の耐熱性架橋型ポリエステル繊維コードの動的粘弾性測定に於ける 100°C での貯蔵弾性率 E ' と 250°Cでの貯蔵弾性率 E ' の比 E, /E ' の値が 4以内 [0039] Ratio E, / E 'of storage elastic modulus E' at 100 ° C and storage elastic modulus E 'at 250 ° C in dynamic viscoelasticity measurement of heat-resistant crosslinked polyester fiber cord of the present invention Value within 4
100 250 100 250  100 250 100 250
が好ましい。この比が 5以上となるとポリエステル繊維コードの耐熱性が不足し力学物 性の低下及び形状の保持が困難となる。更に好ましくは貯蔵弾性率 E'の比 E' /  Is preferred. When this ratio is 5 or more, the heat resistance of the polyester fiber cord is insufficient, and the mechanical properties are deteriorated and the shape is difficult to maintain. More preferably, the ratio of storage elastic modulus E 'E' /
100 100
E ' の値が 2以内であることが好ましい。 The value of E ′ is preferably within 2.
250  250
実施例  Example
[0040] 以下本発明を実施例で具体的に説明するが、本発明はこれらの実施例に限定され ることはない。なお、各種測定機器及び測定法は次に示した。  [0040] The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Various measuring instruments and measuring methods are shown below.
[0041] (1)電子線照射 [0041] (1) Electron beam irradiation
測定機器  measuring equipment
照射機 エレクト口カーテンラボ機  Irradiator Elect mouth curtain lab machine
加速電圧 165KV  Acceleration voltage 165KV
電子流 5mA  Electron current 5mA
測定方法  Measuring method
浸漬処理して得られた試料をトレーにセットし電子線を照射した。尚、電子線は表 裏に均等に照射し、照射量はそれの合計とした。  A sample obtained by the immersion treatment was set on a tray and irradiated with an electron beam. The electron beam was irradiated evenly on the front and back, and the irradiation amount was the sum of them.
[0042] (2)動的粘弾性 [0042] (2) Dynamic viscoelasticity
測定機器  measuring equipment
機器 Rheogel - E4000 (株)ユービーェム製  Equipment Rheogel-E4000 Made by UBM
測定条件 周波数 11Hz  Measurement conditions Frequency 11Hz
開始温度 30°C  Starting temperature 30 ° C
ステップ温度 2°C  Step temperature 2 ° C
終了温度 300°C  End temperature 300 ° C
昇温速度 5°C/min 試料 幅 5mm、長さ 15mm Temperature increase rate 5 ° C / min Sample width 5mm, length 15mm
測定方法  Measuring method
試料を測定機器にセットした後、前記測定条件で測定した。測定終了後形状が保 持されて!、るか目視観察した。  After setting the sample in a measuring instrument, the measurement was performed under the measurement conditions. After the measurement was completed, the shape was maintained!
[0043] (3)固有粘度 [0043] (3) Intrinsic viscosity
ポリマーを 0. 4gZdlの濃度で、パラクロロフエノール Zテトラクロロェタン =3Zl混 合溶媒に溶解し、 30°Cにおいて測定した。  The polymer was dissolved in parachlorophenol Z tetrachloroethane = 3 Zl mixed solvent at a concentration of 0.4 gZdl and measured at 30 ° C.
[0044] (4)繊度 [0044] (4) Fineness
JIS— L1017の定義により、 20°C、 65%RHの温湿度管理された部屋で 24時間放 置後、繊度を測定した。  According to the definition of JIS-L1017, the fineness was measured after leaving in a room where temperature and humidity were controlled at 20 ° C and 65% RH for 24 hours.
[0045] (5)強度 [0045] (5) Strength
JIS— L1017の定義により、 20°C、 65%RHの温湿度管理された部屋で 24時間放 置後、引張り試験機により測定した。  According to the definition of JIS-L1017, it was measured in a tensile tester after being left for 24 hours in a room controlled at 20 ° C and 65% RH.
[0046] (6)表面層の厚み [0046] (6) Surface layer thickness
厚み測定機を用いて測定した。  It measured using the thickness measuring machine.
表層厚みは、含浸し架橋したポリエステル繊維の厚み力ゝら含浸前のポリエステル繊 維の厚みを引 、た値とした。  The thickness of the surface layer was determined by subtracting the thickness of the polyester fiber before impregnation from the thickness power of the impregnated and crosslinked polyester fiber.
[0047] (7)熱流動開始温度 [0047] (7) Heat flow start temperature
一定温度に設定可能なホットプレートにサンプルを 1分間置いた後、熱溶融流動し て 、るか目視あるいは顕微鏡にて判断し、熱流動が生じて 、る温度を熱流動開始温 度 (°C)とした。  After placing the sample on a hot plate that can be set to a certain temperature for 1 minute, it is judged whether it melts and flows by heat or visually or under a microscope. ).
[0048] (実施例 1) [0048] (Example 1)
固有粘度(IV) 0. 95のポリエチレンテレフタレートチップを、紡糸温度 310°Cで、孔 数 336の紡糸口金より、繊度が 1440dtexになるよう吐出量を調整し、紡糸筒内で 7 0°C、 1. OmZsecの冷却風にて冷却固化せしめた糸条を紡糸速度 3400mZmin で引取った後、引き続き強度が 6. 9cNZdtexになるよう、延伸倍率 1. 6倍で延伸処 理したポリエステル繊維を得た。このポリエステル繊維を用いて、室温下でペンタエリ スリトールテトラアタリレート (粘性 342cps, 25°C)から成る浴槽に 5分間浸漬した後、 ローラーで絞り、そして得られた含浸ポリエステル繊維を必要量トレーに入れ、そして 電子エネルギー合計 6000KGyで電子線を照射した。得られた電子線架橋したポリ エステル繊維を用いて各測定法で測定した。 Adjust the discharge rate of polyethylene terephthalate chips with an intrinsic viscosity (IV) of 0.95 at a spinning temperature of 310 ° C and a spinneret of 336 holes so that the fineness becomes 1440dtex, and 70 ° C in the spinning cylinder. 1. After pulling the yarn cooled and solidified with OmZsec cooling air at a spinning speed of 3400 mZmin, a polyester fiber stretched at a draw ratio of 1.6 to obtain a strength of 6.9 cNZdtex was obtained. . Using this polyester fiber, after being immersed for 5 minutes in a bath made of pentaerythritol tetratalate (viscosity 342cps, 25 ° C) at room temperature, The required impregnated polyester fibers were squeezed with a roller and placed in a required amount tray, and irradiated with an electron beam with a total electron energy of 6000 kgy. Using the obtained electron beam cross-linked polyester fiber, measurement was performed by each measurement method.
[0049] (実施例 2) [0049] (Example 2)
ペンタエリスリトールテトラアタリレートからなる浴槽温度を 70°Cに加温し処理した以 外、実施例 1と同様な方法で処理し測定した。  It was processed and measured in the same manner as in Example 1 except that the bath temperature of pentaerythritol tetraatalylate was heated to 70 ° C and processed.
[0050] (実施例 3) [Example 3]
実施例 1で用いたポリエステル繊維を予め 100°C加温クロ口ベンゼン系キヤリヤー 剤で 5分間浸漬処理した後、実施例 2と同様な方法で処理し測定した。  The polyester fiber used in Example 1 was preliminarily treated with a 100 ° C. warm-mouthed benzene carrier for 5 minutes, and then treated and measured in the same manner as in Example 2.
[0051] (実施例 4) [0051] (Example 4)
ペンタエリスリトールテトラアタリレートからトリメチロールプロパントリアタリレートに切 替えた以外、実施例 1と同様な方法で含浸ポリエステル繊維を得て、実施例 1と同様 に電子線を照射し得られた電子線架橋したポリエステル繊維を用いて各測定法で測 し 7こ。  Electron beam cross-linking obtained by obtaining an impregnated polyester fiber in the same manner as in Example 1 except that pentaerythritol tetraatalylate was switched to trimethylolpropane tritalylate, and irradiating with an electron beam in the same manner as in Example 1. 7 pieces measured with each measuring method using the polyester fiber.
[0052] (実施例 5) [Example 5]
実施例 3と同様にキヤリヤー剤で浸漬処理した後、トリメチロールプロパントリアタリレ ートからなる浴槽温度を 70°Cに加温し処理し、実施例 3と同様な方法で処理し測定 した。  In the same manner as in Example 3, after immersion treatment with a carrier agent, the bath temperature comprising trimethylolpropane tritalate was heated to 70 ° C. and treated in the same manner as in Example 3 and measured.
[0053] (比較例 1)  [0053] (Comparative Example 1)
実施例 1で用いたポリエステル繊維を化合物の含浸処理や電子線架橋なしの繊維 状態を測定した。  The polyester fiber used in Example 1 was measured for the state of fiber without compound impregnation treatment or electron beam crosslinking.
[0054] (比較例 2) [Comparative Example 2]
固有粘度 (IV) 1. 05のポリエチレンテレフタレートチップを、溶融押出機に供給し、 同時にエタストルーダー入口から 50〜60°Cに加温したジァリルモノグリシジルイソシ ァヌレートをポリエチレンテレフタレートに対して、 0. 7重量0 /0になるよう一定流量で 添加した。この混練りポリマーを紡糸温度 310°Cで、孔数 336の紡糸口金より、繊度 が 1440dtexになるよう吐出量を調整し、紡糸筒内で 70°C、 1. OmZsecの冷却風に て冷却固化せしめた糸条を紡糸速度 3400mZminで引取った後、引き続き強度が 6. 5cNZdtexになるよう、延伸倍率 1. 6倍で延伸処理したポリエステル繊維を得た 。そして得られたポリエステル繊維を必要量トレーに入れ、そして電子エネルギー合 計 lOOOKGyで電子線を照射した。得られた電子線架橋したポリエステル繊維を用 いて各測定法で測定した。 Polyethylene terephthalate chips with an intrinsic viscosity (IV) of 1.05 were fed to the melt extruder and at the same time diaryl monoglycidyl isocyanurate heated to 50-60 ° C from the etastruder inlet to polyethylene terephthalate. It was added at a constant flow rate so as to be 0.7 weight 0/0. Adjust the discharge rate of this kneaded polymer at a spinning temperature of 310 ° C from a spinneret with 336 pores so that the fineness becomes 1440dtex, and cool and solidify in the spinning cylinder at 70 ° C, 1. OmZsec cooling air After pulling the caulked yarn at a spinning speed of 3400mZmin, the strength continues. 6. A polyester fiber stretched at a stretch ratio of 1.6 to obtain 5 cNZdtex was obtained. The necessary amount of the polyester fiber was placed in a tray and irradiated with an electron beam with a total electron energy of lOOOKGy. The obtained electron beam cross-linked polyester fiber was used and measured by each measuring method.
[表 1] [table 1]
Figure imgf000019_0001
Figure imgf000019_0001
* 1:比較例 2は含漫ではなぐポリマーに架棟剤添加。 キヤリャ一剤 A:クロ口ベンゼン系  * 1: In Comparative Example 2, a building agent is added to a polymer that is not indulgent. Carrier A: Black mouth benzene
PETA:ペンタエリスリ! ^一ル亍トラァクリレート  PETA: Pentaerisuri!
TMPA:トリメチ口一ルブロパントリアクリレ一卜 TMPA: Tri-Met mouthpiece, Rubropan Triacre
DA-MGIC:ジァリルモノグリシジルイソシァヌレート DA-MGIC: diallyl monoglycidyl isocyanurate
[0056] (実施例 6) [Example 6]
実施例 1で得られた電子線架橋したポリエステル繊維を 2本撚り合せ、 1440dtex Z2、撚数 43 X 43(tZl0cm)とし生コードとし、各測定法で測定を行った。  Two pieces of the electron beam cross-linked polyester fiber obtained in Example 1 were twisted to obtain a raw cord of 1440 dtex Z2 and a twist number of 43 × 43 (tZl0 cm), and measurement was performed by each measurement method.
[0057] (実施例 7) [0057] (Example 7)
実施例 2で得られた電子線架橋したポリエステル繊維を用いて実施例 6と同様な方 法で生コードとし測定を行った。  Using the electron beam cross-linked polyester fiber obtained in Example 2, the raw cord was measured in the same manner as in Example 6.
[0058] (実施例 8) [Example 8]
実施例 4で得られた電子線架橋したポリエステル繊維を用いて実施例 6と同様な方 法で生コードとし測定を行った。  Using the electron beam cross-linked polyester fiber obtained in Example 4, the raw cord was measured in the same manner as in Example 6.
[0059] (実施例 9) [Example 9]
トリメチロールプロパントリアタリレートを用い、浸漬条件を加温 70°C浴槽とした以外 、実施例 1と同様な方法で処理し架橋したポリエステル繊維を必要な測定のみ行った 。次いで実施例 6と同様な方法で生コードとし測定を行った。  Only the necessary measurement was performed on the polyester fiber which had been treated and crosslinked in the same manner as in Example 1 except that trimethylolpropane tritalylate was used and the immersion condition was a 70 ° C. bath. Next, measurement was performed using raw cords in the same manner as in Example 6.
[0060] (実施例 10) [Example 10]
実施例 1で用いたポリエステル繊維を 2本撚り合せ、 1440dtexZ2、撚数 43 X 43 ( tZlOcm)とした生コードを予め 100°C加温のクロ口ベンゼン系キヤリヤー剤で 5分間 浸漬処理し、その後、加温浴槽 70°Cのトリメチロールプロパントリアタリレートに 5分間 浸漬させ、電子エネルギー 6000KGyで電子線を照射した。得られた電子線架橋し たポリエステル繊維コードを各測定法で測定を行った。  Twist the polyester fibers used in Example 1 and immerse the raw cord made of 1440dtexZ2 and twist number 43 X 43 (tZlOcm) in advance with a black mouth benzene carrier heated at 100 ° C for 5 minutes, and then Then, the sample was immersed in a trimethylolpropane tritalylate at 70 ° C for 5 minutes and irradiated with an electron beam with an electron energy of 6000KGy. The obtained electron beam cross-linked polyester fiber cord was measured by each measuring method.
[0061] (比較例 3)  [0061] (Comparative Example 3)
比較例 1のポリエステル繊維を用 、て実施例 6と同様な方法で生コードとし測定を 行った。  Using the polyester fiber of Comparative Example 1, measurement was performed using the same method as in Example 6 to obtain a raw cord.
[0062] (比較例 4) [0062] (Comparative Example 4)
比較例 2で得られた電子線架橋したポリエステル繊維用いて実施例 6と同様な方法 で生コードとし測定を行った。  Using the electron beam cross-linked polyester fiber obtained in Comparative Example 2, a raw cord was measured in the same manner as in Example 6.
[0063] 表 1、図 1〜2からも明らかなように、実施例 1〜5で得られたポリエステル繊維は貯 蔵粘弾性率 E 'が保持されている。更に、熱流動開始温度は 340°Cでも熱流動がなく 形状も保持され耐熱性に優れたポリエステル繊維であった。 [0064] それに対し、表 1、図 3に示したように、比較例 1で得られた架橋されていないポリエ ステル繊維は貯蔵弾性率 E 'が 100°C以上から除々に低下し、融点および融点以上 の温度では力学物性が保持されていない。また、熱流動開始温度は融点近傍 255 °Cで流動し形状を保持していな力つた。また、表 1、図 4に示したように、比較例 2で 得られたポリエステル繊維は貯蔵弾性率 E 'が 100°C以上カゝら徐々に低下し、融点お よび融点以上の温度では力学物性が保持されていない。また、熱流動開始温度は 融点近傍 264°Cで流動し形状を保持していな力つた。 As apparent from Table 1 and FIGS. 1 and 2, the polyester fibers obtained in Examples 1 to 5 retain the stored viscoelastic modulus E ′. Furthermore, even when the heat flow start temperature was 340 ° C, the polyester fiber was excellent in heat resistance with no heat flow and shape. [0064] On the other hand, as shown in Table 1 and FIG. 3, the uncrosslinked polyester fiber obtained in Comparative Example 1 gradually decreased in storage elastic modulus E ′ from 100 ° C. or higher, and had a melting point and Mechanical properties are not maintained at temperatures above the melting point. In addition, the heat flow start temperature flowed around 255 ° C near the melting point, and it did not maintain its shape. In addition, as shown in Table 1 and FIG. 4, the polyester fiber obtained in Comparative Example 2 has a storage elastic modulus E ′ that gradually decreases from 100 ° C or higher, and has a mechanical strength at the melting point and above the melting point. Physical properties are not maintained. In addition, the heat flow start temperature was around 264 ° C near the melting point, and it did not maintain its shape.
[0065] 表 2、図 5〜6からも明らかなように、実施例 6〜 10で得られたポリエステル繊維コー ドは貯蔵粘弾性率 E 'が保持されている。更に、熱流動開始温度は 340°Cでも熱流 動がなく形状も保持され耐熱性に優れたポリエステル繊維コードであった。  As is clear from Table 2 and FIGS. 5 to 6, the polyester fiber cords obtained in Examples 6 to 10 retain the storage viscoelastic modulus E ′. Further, even when the heat flow starting temperature was 340 ° C, the polyester fiber cord had excellent heat resistance and no heat flow and the shape was maintained.
[0066] それに対し、表 2、図 7に示したように、比較例 3で得られたポリエステル繊維コード は貯蔵弾性率が 130°C以上から除々に低下し、融点および融点以上の温度では力 学物性が保持されていない。また、熱流動開始温度は融点近傍 255°Cで流動し形 状を保持していな力つた。  [0066] On the other hand, as shown in Table 2 and FIG. 7, the polyester fiber cord obtained in Comparative Example 3 has a storage elastic modulus that gradually decreases from 130 ° C or higher. The physical properties are not maintained. In addition, the heat flow start temperature was around 255 ° C near the melting point, and it did not maintain its shape.
また、表 2、図 8に示したように、比較例 4で得られたポリエステル繊維コードは貯蔵 弾性率が 130°C以上から除々に低下し、融点および融点以上の温度では力学物性 が保持されていない。また、熱流動開始温度は融点近傍 267°Cで流動し形状を保持 していな;^つた。  In addition, as shown in Table 2 and FIG. 8, the polyester fiber cord obtained in Comparative Example 4 gradually decreased in storage modulus from 130 ° C or higher, and the mechanical properties were maintained at the melting point and above the melting point. Not. Also, the heat flow starting temperature flowed around 267 ° C near the melting point and did not retain its shape.
[0067] [表 2] [0067] [Table 2]
Figure imgf000022_0001
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000022_0002
* 2:比較例 4は含 *ではなぐポリマーに架樓剤添加。 キヤリャ一剤 A:クロ口ベンゼン系  * 2: Comparative Example 4 does not contain *. Carrier A: Black mouth benzene
PETA ベンタエリスリトールテトラァクリレート  PETA Bentaerythritol tetraacrylate
TMPA:トリメチ口一ルブロパントリアクリレ一卜 TMPA: Tri-Met mouthpiece, Rubropan Triacre
DA— MGIC:ジァリルモノグリシジルイソシァヌレート DA—MGIC: diallyl monoglycidyl isocyanurate
[0068] 本発明の動的粘弾性測定に於ける 100°Cでの貯蔵弾性率 E ' と 250°Cでの貯蔵 [0068] Storage elastic modulus E 'at 100 ° C and storage at 250 ° C in the dynamic viscoelasticity measurement of the present invention
100  100
弾性率 E, の比 E ' /E, の値が 10以下である耐熱性架橋型ポリエステル繊維  Heat resistant cross-linked polyester fiber with a modulus E, ratio E '/ E, of 10 or less
250 100 250  250 100 250
は、融点温度以上の温度でも力学物性を保持し形状を保持することができるもので あり、本発明の動的粘弾性測定に於ける 100°Cでの貯蔵弾性率 E ' と 250°Cでの  Can maintain the mechanical properties and maintain the shape even at temperatures higher than the melting point temperature, and the storage elastic modulus E ′ at 100 ° C and 250 ° C in the dynamic viscoelasticity measurement of the present invention. of
100  100
貯蔵弾性率 E, の比 E ' /E, の値力 以下であることを特徴とする耐熱性架橋  Storage elastic modulus E, ratio E '/ E, value power
250 100 250  250 100 250
型ポリエステル繊維コードは、融点温度以上の温度でも力学物性を保持し形状を保 持することができるものである。不飽和結合を少なくとも 2個以上有する脂肪族および Zまたは脂環族化合物を含浸処理し、活性光線を照射させそれによつて耐熱性や 力学物性を改善する方法は、共重合ポリエステル力 なる繊維は勿論それ以外の天 然繊維や有機繊維およびこれを用いた繊維コードに利用することが可能である。また 、その他のフィルム分野やエンプラ分野等の耐熱性や寸法安定性等が要求される分 野にも利用されることも期待される。  The type polyester fiber cord can retain its mechanical properties and retain its shape even at a temperature higher than the melting point temperature. The method of impregnating aliphatic and Z or alicyclic compounds having at least two unsaturated bonds and irradiating them with actinic rays, thereby improving the heat resistance and mechanical properties, as well as the fibers of copolyester strength. It can be used for other natural fibers, organic fibers, and fiber cords using the same. It is also expected to be used in other fields such as film and engineering plastics where heat resistance and dimensional stability are required.
図面の簡単な説明  Brief Description of Drawings
[0069] [図 1]実施例 1で得られた耐熱性架橋型ポリエステル繊維の貯蔵弾性率 E 'である。  [0069] [FIG. 1] Storage elastic modulus E ′ of the heat-resistant crosslinked polyester fiber obtained in Example 1.
[図 2]実施例 4で得られた耐熱性架橋型ポリエステル繊維の貯蔵弾性率 E'である。  FIG. 2 is a storage elastic modulus E ′ of the heat-resistant crosslinked polyester fiber obtained in Example 4.
[図 3]比較例 1のポリエステル繊維の貯蔵弾性率 E 'である。  FIG. 3 is a storage elastic modulus E ′ of the polyester fiber of Comparative Example 1.
[図 4]比較例 2の架橋型ポリエステル繊維の貯蔵弾性率 E 'である。  FIG. 4 is a storage elastic modulus E ′ of the crosslinked polyester fiber of Comparative Example 2.
[図 5]実施例 1で得られた耐熱性架橋型ポリエステル繊維コードの貯蔵弾性率 E 'で ある。  FIG. 5 is a storage elastic modulus E ′ of the heat-resistant crosslinked polyester fiber cord obtained in Example 1.
[図 6]実施例 3で得られた耐熱性架橋型ポリエステル繊維コードの貯蔵弾性率 E 'で ある。  FIG. 6 is a storage elastic modulus E ′ of the heat-resistant crosslinked polyester fiber cord obtained in Example 3.
[図 7]比較例 1のポリエステル繊維コードの貯蔵弾性率 E 'である。  FIG. 7 is a storage elastic modulus E ′ of the polyester fiber cord of Comparative Example 1.
[図 8]比較例 2のポリエステル繊維コードの貯蔵弾性率 E 'である。  FIG. 8 is a storage elastic modulus E ′ of the polyester fiber cord of Comparative Example 2.

Claims

請求の範囲 The scope of the claims
[1] 動的粘弾性測定に於ける 100°Cでの貯蔵弾性率 E ' と 250°Cでの貯蔵弾性率 E'  [1] Storage elastic modulus E 'at 100 ° C and storage elastic modulus E' at 250 ° C in dynamic viscoelasticity measurement
100  100
の比 E ' ZE, の値が 10以下であることを特徴とする耐熱性架橋型ポリエステル Heat-resistant cross-linked polyester, characterized in that the ratio of E 'ZE, is 10 or less
250 100 250 250 100 250
繊維。  fiber.
[2] 共重合ポリエステルを溶融紡糸して得られたポリエステル未延伸糸および Zまたは 延伸糸を、不飽和結合を少なくとも 2個以上有する脂肪族および Zまたは脂環族化 合物を含浸処理した後、活性光線を照射することにより得られる請求項 1に記載の耐 熱性架橋型ポリエステル繊維。  [2] After the polyester undrawn yarn and Z or drawn yarn obtained by melt spinning the copolyester are impregnated with aliphatic and Z or alicyclic compounds having at least two unsaturated bonds 2. The heat resistant cross-linked polyester fiber according to claim 1, obtained by irradiating with actinic rays.
[3] 共重合ポリエステルを溶融紡糸して得られたポリエステル未延伸糸および Zまたは 延伸糸をキヤリヤー剤で処理した後、不飽和結合を少なくとも 2個以上有する脂肪族 および Zまたは脂環族化合物を含浸処理した後、活性光線を照射することにより得ら れる請求項 1に記載の耐熱性架橋型ポリエステル繊維。  [3] After the polyester undrawn yarn and Z or drawn yarn obtained by melt spinning the copolyester are treated with a carrier agent, an aliphatic and Z or alicyclic compound having at least two unsaturated bonds 2. The heat-resistant crosslinked polyester fiber according to claim 1, obtained by irradiating with actinic rays after impregnation.
[4] 活性光線が、電子線、 γ線であることを特徴とする請求項 1〜3のいずれかに記載 の耐熱性架橋型ポリエステル繊維。  [4] The heat-resistant crosslinked polyester fiber according to any one of claims 1 to 3, wherein the actinic ray is an electron beam or a γ-ray.
[5] 動的粘弾性測定に於ける 100°Cでの貯蔵弾性率 E ' と 250°Cでの貯蔵弾性率 E'  [5] Storage elastic modulus E 'at 100 ° C and storage elastic modulus E' at 250 ° C in dynamic viscoelasticity measurement
100  100
の比 E ' ZE, の値が 10以下である耐熱性架橋型ポリエステル繊維が少なくとも At least a heat-resistant cross-linked polyester fiber having a ratio E'ZE of 10 or less
250 100 250 250 100 250
一部に含まれてなり、動的粘弾性測定に於ける 100°Cでの貯蔵弾性率 E ' と 250°C  Included in part, storage elastic modulus E 'at 100 ° C and 250 ° C in dynamic viscoelasticity measurement
100 での貯蔵弾性率 E, の比 E ' /E, の値力 以下であることを特徴とする耐熱性  Heat resistance characterized by a storage elastic modulus E at 100, the ratio E '/ E
250 100 250  250 100 250
架橋型ポリエステル繊維コード。  Cross-linked polyester fiber cord.
[6] 共重合ポリエステルを溶融紡糸して得られたポリエステル繊維を、不飽和結合を少 なくとも 2個以上有する脂肪族および Zまたは脂環族化合物を含浸処理し活性光線 を照射した後、繊維コードとすることを特徴とする請求項 5に記載の耐熱性架橋型ポ リエステル繊維コード。 [6] Polyester fibers obtained by melt spinning the copolyester are impregnated with aliphatic and Z or alicyclic compounds having at least two unsaturated bonds and irradiated with actinic rays, and then fibers 6. The heat-resistant crosslinked polyester fiber cord according to claim 5, wherein the cord is a cord.
[7] 共重合ポリエステルを溶融紡糸して得られたポリエステル繊維カゝらなるポリエステル 繊維コードを、不飽和結合を少なくとも 2個以上有する脂肪族および Zまたは脂環族 化合物に含浸処理し活性光線を照射することを特徴とする請求項 5に記載の耐熱性 架橋型ポリエステル繊維コード。  [7] A polyester fiber cord obtained by melt spinning a copolyester is impregnated with an aliphatic and Z or alicyclic compound having at least two unsaturated bonds and irradiated with actinic rays. 6. The heat resistant cross-linked polyester fiber cord according to claim 5, wherein the cord is irradiated.
[8] ポリエステル繊維および Zまたはポリエステル繊維コードを予めキヤリヤー剤で処理 した後、不飽和結合を少なくとも 2個以上有する脂肪族および Zまたは脂環族化合 物を含浸させ活性光線を照射することを特徴とする請求項 6または 7に記載の耐熱性 架橋型ポリエステル繊維コード。 [8] Polyester fibers and Z or polyester fiber cords are pre-treated with a carrier agent After that, the heat-resistant crosslinked polyester fiber cord according to claim 6 or 7, which is impregnated with an aliphatic group having at least two unsaturated bonds and Z or an alicyclic compound and irradiated with actinic rays. .
[9] 活性光線が、電子線、 γ線であることを特徴とする請求項 5〜8の 、ずれかに記載 の耐熱性架橋型ポリエステル繊維コード。 [9] The heat-resistant crosslinked polyester fiber cord according to any one of [5] to [8], wherein the actinic ray is an electron beam or a gamma ray.
[10] 請求項 5〜9の 、ずれか〖こ記載の耐熱性架橋型ポリエステル繊維コードをカーカス 材として用いた空気入りラジアルタイヤ。 [10] A pneumatic radial tire using the heat-resistant crosslinked polyester fiber cord according to any one of claims 5 to 9 as a carcass material.
[11] 請求項 5〜10のいずれかに記載の耐熱性架橋型ポリエステル繊維コードを用いた ゴム複合体。 [11] A rubber composite using the heat-resistant crosslinked polyester fiber cord according to any one of claims 5 to 10.
PCT/JP2007/058138 2006-04-18 2007-04-13 Heat-resistant crosslinked polyester fiber and heat-resistant crosslinked polyester fiber cord WO2007123059A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-114325 2006-04-18
JP2006114326A JP2007284829A (en) 2006-04-18 2006-04-18 Heat-resistant crosslinked polyester fiber cord
JP2006-114326 2006-04-18
JP2006114325A JP2007284828A (en) 2006-04-18 2006-04-18 Heat-resistant crosslinked polyester fiber

Publications (1)

Publication Number Publication Date
WO2007123059A1 true WO2007123059A1 (en) 2007-11-01

Family

ID=38624960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058138 WO2007123059A1 (en) 2006-04-18 2007-04-13 Heat-resistant crosslinked polyester fiber and heat-resistant crosslinked polyester fiber cord

Country Status (1)

Country Link
WO (1) WO2007123059A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133546A (en) * 1978-04-10 1979-10-17 Teijin Ltd Manufacturing of crosslinked polyester molded article
WO2002002356A1 (en) * 2000-07-03 2002-01-10 Bridgestone Corporation Pneumatic tire
WO2005111297A1 (en) * 2004-05-18 2005-11-24 Toyo Boseki Kabushiki Kaisha Reinforcement polyester cords for rubbers and process for production thereof
JP2006265745A (en) * 2005-03-22 2006-10-05 Toyobo Co Ltd Polyester fiber material for tire cord
WO2006118143A1 (en) * 2005-04-28 2006-11-09 Toyo Boseki Kabushiki Kaisha Heat-resistant crosslinked polyester fiber and fiber cord
JP2006322083A (en) * 2005-05-17 2006-11-30 Toyobo Co Ltd Method for producing polyester fibrous material for tire cap ply cord

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133546A (en) * 1978-04-10 1979-10-17 Teijin Ltd Manufacturing of crosslinked polyester molded article
WO2002002356A1 (en) * 2000-07-03 2002-01-10 Bridgestone Corporation Pneumatic tire
WO2005111297A1 (en) * 2004-05-18 2005-11-24 Toyo Boseki Kabushiki Kaisha Reinforcement polyester cords for rubbers and process for production thereof
JP2006265745A (en) * 2005-03-22 2006-10-05 Toyobo Co Ltd Polyester fiber material for tire cord
WO2006118143A1 (en) * 2005-04-28 2006-11-09 Toyo Boseki Kabushiki Kaisha Heat-resistant crosslinked polyester fiber and fiber cord
JP2006322083A (en) * 2005-05-17 2006-11-30 Toyobo Co Ltd Method for producing polyester fibrous material for tire cap ply cord

Similar Documents

Publication Publication Date Title
JP3768389B2 (en) Polyester filament yarn, polyester tire cord and manufacturing method thereof
JP2008038295A (en) High heat-resistant polyester dipped cord and method for producing the same
JP4617945B2 (en) Polyester fiber material for tire cord
CN1273658C (en) High tenacity polyethylene-2,6-naphthalate fibers having excellent processability
KR101602385B1 (en) Dimensionally stable polyethyleneterephthalate dipped cord, method of manufacturing the same and tire including the same
US11807054B2 (en) Polyester tire cord and radial tire using same
WO2006118143A1 (en) Heat-resistant crosslinked polyester fiber and fiber cord
JP2007303056A (en) Polyester fiber material having high heat-resistance, tire cord, dip cord and method for producing polyester fiber material having high heat-resistance
KR101878787B1 (en) Dimensionally stable polyethyleneterephthalate tire cord, method of manufacturing the same and tire including the same
KR20150097126A (en) Dimensionally stable polyethyleneterephthalate dipped cord, method of manufacturing the same and tire including the same
JP2007284829A (en) Heat-resistant crosslinked polyester fiber cord
WO2007123059A1 (en) Heat-resistant crosslinked polyester fiber and heat-resistant crosslinked polyester fiber cord
JP2006307381A (en) Heat-resistant cross-linked polyester fiber
JP2977679B2 (en) Core-sheath type composite fiber and method for producing the same
KR101551425B1 (en) High tenacity polyester filament and process for preparing polyester tire cord
JP2006256600A (en) Pneumatic radial tire
KR102001061B1 (en) Polyethyleneterephthalate tire cord having good creep resistance
JP2007284828A (en) Heat-resistant crosslinked polyester fiber
KR20170082891A (en) Process for preparing polyester dip cord for motercycle
KR20170091968A (en) Manufacturing method of polyethylene terephthalate cord having excellent fatigue resistance
JP2006307382A (en) Heat-resistant cross-linked polyester fiber cord
JP2006265744A (en) Fiber material for reinforcing rubber and method for producing the same
KR100584695B1 (en) High performance radial tire using polyethylene-2,6-naphthalate fiber
JP2008260804A (en) Heat-resistant crosslinkable polyester composition, and polyester fiber material
JPH09256220A (en) Polyester fiber for rubber reinforcement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741574

Country of ref document: EP

Kind code of ref document: A1