WO2007122963A1 - 脈波測定装置 - Google Patents

脈波測定装置 Download PDF

Info

Publication number
WO2007122963A1
WO2007122963A1 PCT/JP2007/056204 JP2007056204W WO2007122963A1 WO 2007122963 A1 WO2007122963 A1 WO 2007122963A1 JP 2007056204 W JP2007056204 W JP 2007056204W WO 2007122963 A1 WO2007122963 A1 WO 2007122963A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switch
capacitor
pulse wave
charging
Prior art date
Application number
PCT/JP2007/056204
Other languages
English (en)
French (fr)
Inventor
Kazuhisa Tanabe
Original Assignee
Omron Healthcare Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Healthcare Co., Ltd. filed Critical Omron Healthcare Co., Ltd.
Publication of WO2007122963A1 publication Critical patent/WO2007122963A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02116Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave amplitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/144Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors with associated circuitry

Definitions

  • the present invention relates to a pulse wave measuring device, and more particularly, to a pulse wave measuring device that measures a pressure waveform in an artery using a capacitance element.
  • Non-Patent Document 1 a Transducer for the ontuous External Measurement of Arterial Blood Pressure, IEEE TRANSACTIONS ON BIO- The tonometry method described in MEDICAL ELECT RONICS, 1963, pp.74_81 (Non-Patent Document 1) is known, in which a solid flat plate is pressed against the surface of a living body, and the flat portion is formed on the artery by this solid flat plate. The pressure on the surface of the living body is compressed to the extent that it is formed, and only the pressure change in the artery is measured accurately and stably by maintaining a pressure equilibrium state that excludes the effects of tension on the surface of the artery.
  • a sensing method using a strain resistance element and a sensing method using a capacitance element are known.
  • the structure of the sensor element is simpler than that of the strain resistance element, so it can be manufactured inexpensively without using a semiconductor manufacturing process that requires a large amount of manufacturing cost. There is.
  • JP 2005-507083 A Patent Document 1
  • An impedance bridge type sensor device in which a feedback loop is configured by an amplifier, a capacitance element, and the like is disclosed.
  • Patent Document 1 requires a configuration for performing phase control and phase measurement of a signal in the feedback loop in order to increase accuracy, resulting in an increase in circuit scale.
  • Non-Patent Document 2 discloses a charge-voltage conversion type sensor device including an amplifier, a capacitor, a switch, and the like.
  • the charge-voltage conversion method does not require the phase control and phase measurement required for the impedance bridge method, and can reduce the size of the sensor device.
  • Non-Patent Document 2 uses a MOS process, the manufacturing process can be shared even when a multiplexer is required, and the sensor device can be downsized.
  • Non-Patent Document 2 The sensor device described in Non-Patent Document 2 can be miniaturized in this way, and since it uses the MOS process, the power consumption is small. Therefore, MEMS (Micro Electro Mechanical Systems: Micro electro mechanical system) Pressure sensor and MEMS accelerometer It is adopted by S.
  • MEMS Micro Electro Mechanical Systems: Micro electro mechanical system
  • Patent Document 1 JP 2005-507083 Publication
  • Non-Patent Document 1 G ⁇ . Pressman, P.M. Newgard, "A Transducer for the Continuous
  • Non-Patent Document 2 Y.E.Park and K.D.Wise, "AN MOS SWITCHED- CAPACITOR R EADOUT AMPLIFIER FOR CAPACITIVE PRESSURE SENSORS", Proc. IEEE Custom Circuit Conf., May 1983, pp.380—384
  • an error factor of the sensor device described in Non-Patent Document 2 there is low-frequency noise generated in an amplifier.
  • the power of the low frequency noise generated is larger than that of the bipolar process because the MOS process is used.
  • these low-frequency noises for example, 1 / f noise and thermal noise generated by the amplifier coincide with all or part of the frequency components from OHz to about 30 Hz to be detected by the pulse measurement device.
  • an object of the present invention is to provide a pulse wave measuring device capable of preventing deterioration in pulse wave detection performance and reducing the size.
  • a pulse wave measuring device is provided by pressing against a surface of a living body.
  • a pulse wave measuring device for measuring a pressure waveform in an artery, wherein a first detection voltage is applied to the pressure detection capacitor and the pressure detection capacitor whose electrostatic capacity changes according to the pressure in the artery.
  • a charging unit that stores the second charge by applying a second charging voltage different from the first charging voltage to the pressure detection capacitor, and a first charge based on the first charge.
  • a voltage conversion unit that generates a second conversion voltage based on the second charge, and a pressure detection capacitor based on the first conversion voltage and the second conversion voltage.
  • an arithmetic unit that outputs a voltage representing the electric capacity.
  • the calculation unit outputs a voltage representing the capacitance of the pressure detection capacitor based on the difference between the first conversion voltage and the second conversion voltage.
  • the pulse wave measurement device further includes a voltage holding unit that holds the first converted voltage, and the charging unit has the second voltage after the voltage holding unit holds the first converted voltage.
  • the second charge is stored in the pressure detection capacitor
  • the voltage conversion unit stores the second charge stored in the pressure detection capacitor after the voltage holding unit holds the first conversion voltage.
  • a second conversion voltage is generated based on the electric charge, and the calculation unit outputs a voltage representing the capacitance of the pressure detection capacitor based on the second conversion voltage and the held first conversion voltage.
  • a pulse wave measurement device is a pulse wave measurement device that measures a pressure waveform in an artery by pressing against the surface of a living body, and measures the pressure in the artery.
  • a capacitor for pressure detection whose capacitance changes in response, an operational amplifier in which the inverting input terminal is coupled to one end of the pressure sensing capacitor, and the non-inverting input terminal is coupled to the i-th reference voltage, and one end is operated
  • a charge transfer capacitor coupled to the inverting input terminal of the amplifier, the other end coupled to the output of the operational amplifier, and one end coupled to the inverting input terminal of the operational amplifier and the other end coupled to the output of the operational amplifier.
  • 1 switch a charge holding capacitor that has one end coupled to the output of the operational amplifier, a second end coupled to the other end of the charge holding capacitor, and the other end coupled to the second reference voltage. With a switch.
  • a pulse wave measuring device is a pulse wave measuring device that measures a pressure waveform in an artery by pressing against the surface of a living body,
  • the pressure detection capacitor whose capacitance changes in response to the pressure detection capacitor and the inverting input terminal are coupled to one end of the pressure detection capacitor, and the non-inverting input terminal is coupled to the first reference voltage.
  • An operational amplifier a charge transfer capacitor having one end coupled to the inverting input terminal of the operational amplifier and the other end coupled to the output of the operational amplifier, and one end coupled to the inverting input terminal of the operational amplifier and the other end
  • a first switch coupled to the output of the first amplifier
  • a second switch having one end coupled to the output of the operational amplifier, one end coupled to the other end of the second switch, and the other end coupled to the second reference voltage.
  • a differential amplifier having a first input terminal coupled to the other end of the second switch and a second input terminal coupled to the output of the operational amplifier.
  • the pulse wave measuring device further includes a third switch having one end coupled to the output of the operational amplifier, one end coupled to the other end of the third switch, and the other end coupled to the third reference.
  • a differential charge amplifier having a first input terminal coupled to the other end of the second switch, and a second input terminal coupled to the third switch. Connected to the other end.
  • the pulse wave measurement device further includes a charging unit that applies a charging voltage to the other end of the pressure detection capacitor, and a control unit, and the control unit includes the charging unit, the first switch, and the first switch. 2 is controlled, the first charging voltage is applied to the other end of the pressure detection capacitor, the first switch is turned on, the first switch is turned off, and then the second switch is turned on. The switch is turned on and the application of the first charging voltage is stopped, and then the second switch is turned off, and then the second charging voltage is applied to the other end of the pressure detecting capacitor. Turn on switch 1 and then turn off the first switch, and then stop applying the second charging voltage.
  • control unit stops the application of the first charging voltage and the first reference voltage at the other end of the pressure detection capacitor when stopping the application of the second charging voltage. Apply.
  • the first charging voltage and the second charging voltage have equal absolute values and opposite application directions.
  • the pulse wave measurement device further includes a charging unit that applies a charging voltage to the other end of the pressure detection capacitor, and a control unit, and the control unit includes the charging unit, the first switch, and the first switch.
  • the first reference voltage is applied to the other end of the pressure detection capacitor by controlling the switch in FIG. Then, the first switch is turned off, the second switch is turned on, the second switch is turned off, and then the pressure detection capacitor is turned on. Apply a charging voltage different from the first reference voltage to the end, turn the first switch on, then turn the first switch off, and then stop applying the charging voltage
  • the pulse wave measurement device further includes a charging unit that applies a charging voltage to the other end of the pressure detection capacitor, and a control unit, and the control unit includes the charging unit, the first switch, and the first switch.
  • the control unit includes the charging unit, the first switch, and the first switch.
  • FIG. 1 is an external view of a pulse wave measurement device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the wrist and pulse wave measuring device in the measurement state shown in FIG.
  • FIG. 3 is a diagram showing a configuration of a sensor array 19, a multiplexer 20, and a CV conversion unit 21 in the pulse wave measurement device according to the first embodiment of the present invention.
  • FIG. 4 is an external perspective view of a sensor array 19.
  • FIG. 5 is a functional block diagram of the pulse wave measurement device according to the first embodiment of the present invention.
  • FIG. 6 is a flowchart defining an operation procedure when the pulse wave measuring apparatus according to the first embodiment of the present invention performs pulse wave measurement.
  • Fig. 7 is a functional block diagram showing configurations of a CV conversion unit 21 and a capacitor CX in the pulse wave measurement device according to the first embodiment of the present invention.
  • FIG. 8 is a circuit diagram showing a configuration of a CV conversion unit 21 and a capacitor CX in the pulse wave measurement device according to the first embodiment of the present invention.
  • FIG. 9 C C when the pulse wave measuring apparatus according to the first embodiment of the present invention performs pulse wave measurement.
  • 4 is a time chart showing the operation of the V conversion unit 21.
  • FIG. 10 is a flowchart defining an operation procedure of the CV conversion unit 21 when the pulse wave measurement device according to the first embodiment of the present invention performs pulse wave measurement.
  • FIG. 11 is a circuit diagram showing a configuration of a CV conversion unit 21 and a capacitor CX in the pulse wave measurement device according to the second embodiment of the present invention.
  • FIG. 12 is a time chart showing the operation of the CV conversion unit 21 when the pulse wave measurement device according to the second embodiment of the present invention performs pulse wave measurement.
  • FIG. 13 is a flowchart that defines the operation procedure of the CV conversion unit 21 when the pulse wave measurement device according to the second embodiment of the present invention performs pulse wave measurement.
  • Sensor unit 122 casing, 130 thread embossed beret, 200 fl, 210 artery, 220 rib, CX capacitor (pressure detection capacitor), CC capacitor, CF charge transfer capacitor, CN capacitor (charge retention capacitor), CH11 capacitor (1st charge holding capacitor), CH12 capacitor (2nd charge holding capacitor), SW 1 switch (1st switch), SW2, SW12 switch (2nd switch), SW13 switch (1st switch) 3 switches), SW3, SW14, SW51 to SW54 switches, G1 to G3, G12 to G15 operational amplifiers, VI and V2 power supplies, R1 to R9 resistors.
  • CX capacitor pressure detection capacitor
  • CC capacitor CF charge transfer capacitor
  • CN capacitor charge retention capacitor
  • CH11 capacitor (1st charge holding capacitor CH12 capacitor (2nd charge holding capacitor
  • SW 1 switch (1st switch) SW2, SW12 switch (2nd switch), SW13 switch (1st switch) 3 switches
  • SW3, SW14, SW51 to SW54 switches G1 to G3, G12 to G15 operational amplifiers, VI and V2 power supplies,
  • FIG. 1 is an external view of a pulse wave measuring apparatus according to the first embodiment of the present invention.
  • FIG. 1 shows a measurement state in which the sensor array is pressed against the wrist.
  • FIG. 2 is a schematic cross-sectional view of the wrist and pulse wave measuring device in the measurement state shown in FIG.
  • pulse wave measuring apparatus 100 is for measuring a pressure waveform in an artery at the wrist of a subject.
  • the pulse wave measuring device 100 is free of the mounting table 110, the sensor unit 1, and the Ito Emperor Benoleto 130.
  • the sensor unit 1 includes a casing 122, a pressing cuff 18, and a sensor array 19.
  • the mounting table 110 includes a mounting unit 112 for mounting the wrist and forearm of one arm 200 of the subject.
  • the tightening belt 130 fixes the wrist portion of the arm 200 mounted on the mounting table 110.
  • the sensor unit 1 is attached to the tightening benolet 130 and incorporates a sensor array 19.
  • artery 210 is positioned in a direction parallel to the extending direction of arm 200.
  • the sensor array 19 is lowered and the sensor surface of the sensor array 19 is pressed against the wrist surface. It is done.
  • the inner pressure of the pressing cuff 18 is adjusted by a pressurizing pump 15 and a negative pressure pump 16 described later.
  • the sensor array 19 is arranged such that a lower electrode 31 (described later) provided on the sensor surface extends in a direction substantially perpendicular to the extending direction of the artery 210.
  • the artery 210 is sandwiched between the ribs 220 and the sensor surface of the sensor array 19 from above and below, and a flat portion is formed in the artery 210. Then, at least one sensor element 28 is positioned immediately above the flat portion formed in the artery 210.
  • FIG. 3 is a diagram showing a configuration of the sensor array 19, the multiplexer 20, and the CV conversion unit 21 in the pulse wave measurement device according to the first embodiment of the present invention.
  • FIG. 4 is an external perspective view of the sensor array 19.
  • sensor array 19 is used in combination with multiplexer 20 and CV conversion unit 21.
  • the C_V conversion unit 21 includes a charging unit 51.
  • sensor array 19 includes a lower electrode 31, an upper electrode 32, and a spacer member 30.
  • the lower electrode 31 is composed of a plurality of strip-shaped copper foil electrodes extending in a substantially straight line and arranged in a row so as to run parallel to each other.
  • the upper electrode 32 is composed of a plurality of strip-like copper foil electrodes extending in a substantially straight line and arranged in a row so as to run parallel to each other in a direction orthogonal to the lower electrode 31.
  • a spacer member 30 made of silicon rubber is disposed between the lower electrode 31 and the upper electrode 32.
  • the spacer member 30 separates the lower electrode 31 and the upper electrode 32 from each other by a predetermined distance.
  • the sensor element 28 is formed at the intersection of the lower electrode 31 and the upper electrode 32. That is, the sensor array 19 includes a plurality of sensor elements 28 arranged in a matrix.
  • the sensor element 28 is distorted in a direction in which the sensor element 28 approaches each other by the pressure applied to the upper electrode 32 or the lower electrode 31, thereby changing the capacitance.
  • CV conversion unit 21 is connected to one of lower electrode 31 and upper electrode 32 via multiplexer 20.
  • the multiplexer 20 selects a specific lower electrode 31 and upper electrode 32.
  • any one of the plurality of sensor elements 28 arranged in a matrix can be obtained as an output voltage of the CV conversion unit 21.
  • the sensor element 28 A is connected to the C—V converter 21. Therefore, it is possible to measure a pressure waveform at an arbitrary position of the sensor array 19.
  • the upper electrode 32 is connected to the charging unit 51 via the multiplexer 20, and the connection relationship between the lower electrode 31 and the upper electrode 32 is reversed, and the lower electrode 31 is connected to the charging unit 51 via the multiplexer 20. It may be configured to be connected to.
  • FIG. 5 is a functional block diagram of the pulse wave measurement device according to the first embodiment of the present invention.
  • pulse wave measuring apparatus 100 includes sensor unit 1, display unit 3, and mounting table 110.
  • the display unit 3 includes an operation unit 24 and a display unit 25.
  • the sensor unit 1 includes a pressing cuff 18 and a sensor array 19.
  • the mounting table 110 is ROM (Read Only Memory) 12, RAM (Random Access Memory) 13, CPU (Central Processing Unit) (control unit) 11, drive circuit 14, pressurization pump 15, negative pressure pump 16, switching valve 17, and multiplexer 20, a C—V converter 21, a low-pass filter 22, and an A / D converter 23.
  • the operation unit 24 detects an external operation and outputs the detection result to the CPU 11 or the like as an operation signal.
  • the user operates the operation unit 24 to input various information related to pulse wave measurement to the pulse wave measurement device 100.
  • the display unit 25 includes an LED (Light Emitting Diode) for outputting various information such as an artery position detection result and a pulse wave measurement result to the outside, and an LCD (Liquid Crystal Display).
  • LED Light Emitting Diode
  • LCD Liquid Crystal Display
  • the R0M12 and RAM13 store data and a program for controlling the pulse wave measuring apparatus 100, for example.
  • the drive circuit 14 drives the pressurization pump 15, the negative pressure pump 16 and the switching valve 17 based on a control signal from the CPU 11.
  • the CPU 11 accesses the ROM 12 to read the program, develops the read program on the RAM 13 and executes it, and performs control of each block and calculation processing in the pulse wave measuring apparatus 100. Further, the CPU 11 performs control processing for each block in the pulse wave measuring apparatus 100 based on the user's operation signal received from the operation unit 24. That is, the CPU 11 outputs a control signal to each block based on the operation signal received from the operation unit 24. Further, the CPU 11 displays the pulse wave measurement result and the like on the display unit 25.
  • the pressurizing pump 15 is a pump for pressurizing the internal pressure of the pressing cuff 18, and the negative pressure pump 16 is a pump for reducing the internal pressure of the pressing cuff 18.
  • the switching valve 17 selectively connects either the calo pressure pump 15 or the negative pressure pump 16 to the air pipe 6.
  • the pressure cuff 18 includes an air bag that is pressurized to adjust the sensor array 19 onto the wrist.
  • the sensor array 19 is pressed against a measurement site such as a wrist of the subject by the pressure of the pressing cuff 18.
  • the sensor array 19 detects a pulse wave of the subject, that is, a pressure waveform in the artery via the radial artery in a pressed state.
  • the multiplexer 20 selects one of the plurality of sensor elements 28 in the sensor array 19 based on the control signal received from the CPU 11 force.
  • the C—V converter 21 converts the capacitance value of the sensor element 28 selected by the multiplexer 20 into a voltage, that is, represents the pressure vibration wave transmitted from the artery to the surface of the living body, which represents the pressure waveform in the artery. Output as a voltage signal (hereinafter also referred to as a pressure signal).
  • the low-pass filter 22 attenuates a predetermined frequency component in the pressure signal received from the C—V conversion unit 21.
  • the AZD converter 23 converts the pressure signal, which is an analog signal that has passed through the low-pass filter 22, into a digital signal and outputs the digital signal to the CPU 11.
  • the mounting table 110 may include the display unit 3.
  • the mounting table 110 includes the CPU 11, the ROM 12, and the RAMI 3, but the display unit 3 may include these. Also, the CPU 11 may be connected to a PC (Personal Computer) to perform various controls.
  • PC Personal Computer
  • FIG. 6 is a flowchart defining an operation procedure when the pulse wave measuring apparatus according to the first embodiment of the present invention performs pulse wave measurement.
  • the processing shown in the flowchart of FIG. 6 is realized by accessing the CPU 11 ROM 22 and reading the program, and developing and executing the read program on the RAM 23.
  • CPU 11 instructs drive circuit 14 to drive negative pressure pump 16.
  • the drive circuit 14 switches the switching valve 17 to the negative pressure pump 16 side based on the instruction of the CPU 11 force, and drives the negative pressure pump 16 (S101).
  • the driven negative pressure pump 16 reduces the internal pressure of the pressing cuff 18 via the switching valve 17 so that it is sufficiently lower than the atmospheric pressure. With such a configuration, it can be avoided that the sensor array 19 protrudes carelessly and malfunctions and failures occur.
  • the CPU 11 When the CPU 11 detects that the sensor array 19 has moved to the measurement site (S102), it starts pulse wave measurement.
  • the sensor unit 1 includes a micro switch (not shown) for detecting the movement of the sensor array 19, and the CPU 11 recognizes the position of the sensor array 19 based on the detection signal of the micro switch.
  • the CPU 11 is included in the operation unit 24.
  • the pulse wave measurement may be started when it is detected that a measurement start switch (not shown) is pressed.
  • the CPU 11 instructs the drive circuit 14 to drive the pressurizing pump 15.
  • the drive circuit 14 switches the switching valve 17 to the pressurizing pump 15 side based on an instruction from the CPU 11 and drives the pressurizing pump 15 (S103).
  • the driven pressurizing pump 15 pressurizes the internal pressure of the pressing cuff 18 via the switching valve 17 and presses the sensor array 19 against the surface of the measurement site of the subject.
  • the multiplexer 20 switches the sensor element 28 connected to the CV conversion unit 21 in a time-sharing manner based on the control of the CPU 11.
  • the C—V converter 21 converts the capacitance value of the sensor element 28 selected by the multiplexer 20 into a voltage.
  • the low-pass filter 22 attenuates a predetermined frequency component of the pressure signal received from the CV conversion unit 21.
  • the A / D conversion unit 23 converts the pressure signal that has passed through the low-pass filter 22 into digital information and outputs the digital information to the CPU 11.
  • the CPU 11 creates a tonogram representing the relationship between the position of the sensor element 28 and the pressure signal based on the digital information received from the A / D conversion unit 23, and displays it on the display unit 25 (S104).
  • the CPU 11 detects and selects the sensor element 28 located on the artery based on the created tonogram (S105).
  • S105 created tonogram
  • the CPU 11 extracts a DC component of the pressure signal output from the C—V conversion unit 21 based on the digital information received from the A / D conversion unit 23 (S106).
  • the DC component of the pressure signal is the average value of the pressure signal for a predetermined period, the pressure signal of which the pressure signal is lower than the predetermined frequency, that is, the pressure signal from which the pulse wave component has been removed, and the pulse wave rising point, that is, immediately before the pulse wave component is mixed It is expressed by a pressure signal level or the like.
  • a direct current component can be extracted by dividing an output change of the pressure signal into windows (sections) for each predetermined period and calculating an average in each window. Or, if you calculate the intermediate value between the maximum and minimum values in each window, A DC component can be extracted.
  • the above-mentioned predetermined period is a period set in advance in the pulse wave measuring device 100 that does not depend on the pulse of the subject, and is preferably about 1.5 seconds, which is equal to or greater than a general pulse interval. .
  • the CPU 11 controls the drive circuit 14 to perform optimum pressure adjustment, that is, adjusts the internal pressure of the pressure cuff 18 so that the DC component of the pressure signal is stabilized (S107).
  • the CPU 11 acquires waveform data based on the pressure signal from the currently selected C-V conversion unit 21 represented by the digital information received from the AZD conversion unit 23, and acquires the acquired waveform data.
  • the pulse wave is measured based on (S108).
  • the CPU 11 controls the drive circuit 14 to drive the negative pressure pump 16, and presses the sensor array 19 against the measurement site.
  • the state is released (S110).
  • the end condition of the pulse wave measurement may be the elapse of a predetermined time (for example, 30 seconds), an instruction to end the measurement, an instruction to interrupt the measurement, or the like. Also good.
  • CPU 11 repeats the waveform data transfer process and continues the pulse wave measurement (S108).
  • FIG. 7 is a functional block diagram showing the configurations of the CV conversion unit 21 and the capacitor CX in the pulse wave measurement device according to the first embodiment of the present invention.
  • CV conversion unit 21 includes charging unit 51, voltage conversion unit 52, and voltage holding unit 5.
  • Capacitor CX corresponds to sensor element 28.
  • Capacitor CX changes its capacitance according to the pressure in the artery of the living body in a state where sensor array 19 of pulse wave measuring device 100 is pressed against the surface of the living body.
  • Charging unit 51 applies the first charging voltage to capacitor CX and stores the first charge.
  • the voltage conversion unit 52 generates a first conversion voltage based on the first charge stored in the capacitor CX, and outputs the first conversion voltage to the voltage holding unit 53.
  • Voltage holding unit 53 holds the first converted voltage received from voltage converting unit 52.
  • the charging unit 51 applies the second charging voltage to the capacitor CX and stores the second charge.
  • the voltage conversion unit 52 generates a second conversion voltage based on the second electric charge stored in the capacitor CX, and outputs the second conversion voltage to the calculation unit 54.
  • Operation unit 54 outputs a voltage representing the capacitance of capacitor CX based on the first conversion voltage held by voltage holding unit 53 and the second conversion voltage received by voltage conversion unit 52. To do.
  • the CV conversion unit 21 may not include the voltage holding unit 53.
  • a CPU (not shown) outside the pulse wave measuring apparatus 100 stores the first conversion voltage in a RAM or the like.
  • the charging unit 51 applies the second charging voltage to the capacitor CX to store the second charge, and the voltage conversion unit 52 sets the second conversion voltage based on the second charge stored in the capacitor CX. Is output to the calculation unit 54.
  • the calculation unit 54 outputs a voltage representing the capacitance of the capacitor CX based on the first conversion voltage acquired from the RAM via the CPU (not shown) and the second conversion voltage received from the voltage conversion unit 52. It may be.
  • FIG. 8 is a circuit diagram showing a configuration of C V conversion unit 21 and capacitor CX in the pulse wave measurement device according to the first embodiment of the present invention.
  • C—V converter 21 is used in combination with a capacitor (pressure detecting capacitor) CX corresponding to sensor element 28.
  • the C—V converter 21 includes a capacitor CC, a charge transfer capacitor CF, a capacitor (charge holding capacitor) CN, a capacitor CH1, a switch (first switch) SW1, and a switch (second switch).
  • Charging unit 51 includes switches SW51 to SW54 and power supplies VI and V2.
  • the switches SW1 to SW3 are, for example, analog switches.
  • the multiplexer 20 is not shown, and only the capacitor CX selected by the multiplexer 20 is shown.
  • the operational amplifier G1, the switch SW1, the capacitor CF, and the force correspond to the voltage conversion unit 52 shown in FIG.
  • the switch SW2 and the capacitor CN correspond to the voltage holding unit 53 shown in FIG.
  • the switch SW2, the capacitor CN, and the operational amplifier G1 correspond to the computing unit 54 shown in FIG.
  • the operational amplifier Gl has an inverting input terminal connected to one end of the capacitor CX and one end of the capacitor CC, and a non-inverting input terminal connected to the ground voltage (first reference voltage).
  • One end of the capacitor CF is connected to the inverting input terminal of the operational amplifier G1, and the other end is connected to the output of the operational amplifier G1.
  • One end of the switch SW1 is connected to the inverting input terminal of the operational amplifier G1, and the other end is connected to the output of the operational amplifier G1.
  • One end of the capacitor CN is connected to the output of the operational amplifier G1.
  • One end of the switch SW2 is connected to the other end of the capacitor CN, and the other end is connected to the ground voltage (second reference voltage).
  • the operational amplifier G2 has a non-inverting input terminal connected to one end of the switch SW2, and an inverting input terminal connected to the output of the operational amplifier G2.
  • One end of the switch SW3 is connected to the output of the operational amplifier G2, and the other end is connected to one end of the capacitor CH1 and the non-inverting input terminal of the operational amplifier G3.
  • the other end of the capacitor CH1 is connected to the ground voltage.
  • the inverting input terminal of the operational amplifier G3 is connected to the output of the operational amplifier G3.
  • one end of switch SW51 is connected to the positive electrode of power supply VI, and the other end is connected to one end of switch SW52 and the other end of capacitor CX.
  • One end of the switch SW54 is connected to the negative electrode of the power source V2, and the other end is connected to one end of the switch SW53 and the other end of the capacitor CC.
  • the other end of the switch SW52, the other end of the switch SW53, the negative electrode of the power source VI, and the positive electrode of the power source V2 are connected to the ground voltage.
  • the output voltage value of the power supplies VI and V2 is VCC.
  • the capacitor CC is called a counter capacitance, and is arranged for the purpose of adjusting the offset of the capacitance of the capacitor CX.
  • Switches SW1 to SW3 switch between an on state and an off state based on control signals SC1 to SC3 received from CPU 11.
  • the switches SW51 to SW54 switch between an on state and an off state based on a control signal (not shown) received from the CPU 11.
  • FIG. 9 is a time chart showing the operation of the CV conversion unit 21 when the pulse wave measurement device according to the first embodiment of the present invention performs pulse wave measurement.
  • VP is a voltage applied to the other end of the capacitor CX
  • VN is a voltage applied to the other end of the capacitor CC
  • VG1 is an output voltage of the operational amplifier G1
  • VG2 is an output of the operational amplifier G2.
  • Voltage, VOUT Is the output voltage of the operational amplifier G3.
  • FIG. 10 is a flowchart that defines the operation procedure of the CV conversion unit 21 when the pulse wave measurement device according to the first embodiment of the present invention performs pulse wave measurement.
  • the processing shown in the flowchart of FIG. 10 is realized by accessing the CPU 11 ROM 22 to read the program, and developing the read program on the RAM 23 and executing it.
  • CPU 11 turns on switch SW1 and turns off switches SW2 and SW3.
  • the CPU 11 turns on the switches SW52 and SW53 and turns off the switches SW51 and SW54 so that the other end of the capacitor CX and the other end of the capacitor CC are connected to the ground voltage (first charge). Voltage).
  • the ground voltage applied to the non-inverting input terminal of the operational amplifier G1 is fed back from the output of the operational amplifier G1 to the inverting input terminal of the operational amplifier G1.
  • the potential at the inverting input terminal of the operational amplifier G1 may not become the ground potential due to thermal noise and 1 / f noise generated in the operational amplifier G1 and charge injection of the analog switch.
  • a potential difference occurs between both ends of the capacitor CX and the capacitor CC, and a charge corresponding to a noise component is stored in the capacitor CX and the capacitor CC (step Sl).
  • Step S2 CPU 11 turns off switch SW1. Then, the electric charge stored in the capacitor CX and the capacitor CC moves to the capacitor CF.
  • the operational amplifier G1 outputs a voltage (first conversion voltage) corresponding to the charge stored in the capacitor CF as the output voltage VG1, that is, the charge corresponding to the noise component described above is converted into a voltage. (Step S2).
  • step S3 the CPU 11 turns on the switch SW2.
  • capacitor CN is charged based on the first conversion voltage output from operational amplifier G1 (step S3).
  • switch SW2 may be on in steps S1 and S2.
  • CPU 11 turns off switch SW2 (step S4).
  • the CPU 11 turns on the switch SW1.
  • the CPU 11 applies the charging voltage VCC (second charging voltage) to the other end of the capacitor CX by turning off the switches SW52 and SW53 and turning on the switches SW51 and SW54.
  • VCC second charging voltage
  • Charge voltage at the other end of CC — VCC that is, a voltage that has the same absolute value as the charge voltage VCC but in the opposite direction is applied.
  • the voltage applied to the non-inverting input terminal of the operational amplifier G1 that is, the ground voltage, is fed back to the inverting input terminal of the operational amplifier G1. Therefore, a charge corresponding to the charging voltage VCC is stored in the capacitor CX, and a charge corresponding to the charging voltage—VCC is stored in the capacitor CC (step S5).
  • the CPU 11 stops applying the charging voltages VCC and -VCC, and applies the ground voltage (first reference voltage) to the other end of the capacitor CX and the other end of the capacitor CC. Then, the charge corresponding to the difference between the charge amount stored in the capacitor CX and the charge amount stored in the capacitor CC moves to the capacitor CF. Then, the operational amplifier G1 outputs a voltage (second conversion voltage) corresponding to the charge stored in the capacitor CF as the output voltage G1 (step S7). More specifically, if the capacitance of the capacitor CX is CX, the capacitance of the capacitor CC is CC, and the charge voltage VCC is VCC, the charge transferred to the capacitor CF is (CX-CC ) Expressed as XVCC. The electric charge transferred to the capacitor CF is converted to a voltage (second conversion voltage) expressed by ((CX -CO / CF) X VCC) by the operational amplifier G1 when the capacitance of the capacitor CF is CF.
  • the charge stored in the capacitor CF includes the thermal noise generated in the operational amplifier G1 and the 1 / f noise as well as the analog switch as described above. Charges corresponding to low frequency noise such as charge instructions are included.
  • the second conversion voltage includes a noise voltage corresponding to the noise component described above and a sensor voltage corresponding to the capacitance of the capacitor CX.
  • the charge corresponding to the first conversion voltage is stored in the capacitor CN, and the charge stored in the capacitor CN and the charge stored in the capacitor CF are calculated.
  • the polarity is reversed when viewed from the non-inverting input terminal of amplifier G2.
  • the voltage value of the first conversion voltage is VN1
  • the voltage value of the noise voltage of the second conversion voltage is VN2
  • the capacitance of the capacitor CX of the second conversion voltage is If the corresponding voltage value is VS, the input voltage at the non-inverting input terminal of the operational amplifier G2 is (VS + VN2) _VN1.
  • VN1 and VN2 are substantially equal.
  • the input voltage of the non-inverting input terminal of the operational amplifier G2 is (VS + VN2) _V N1 VS. Therefore, the noise component is removed from the non-inverting input terminal of the operational amplifier G2, and the voltage corresponding to the capacitance of the capacitor CX, that is, the pressure in the living artery is input.
  • the operational amplifier G2 outputs a voltage corresponding to the pressure in the artery as the output voltage VG2.
  • CPU 11 turns on switch SW3.
  • the capacitor CH1 is charged based on the output voltage of the operational amplifier G2 (step S8).
  • the CPU 11 turns off the switch SW3.
  • the voltage input to the non-inverting input terminal of the operational amplifier G3 is fixed.
  • the operational amplifier G3 outputs a voltage corresponding to the electric charge stored in the capacitor CH1, that is, a voltage corresponding to the pressure in the artery of the living body, as the output voltage VOUT to the low-pass filter 22 (step S9).
  • the CPU 11 updates the pressure signal output from the CV conversion unit 21 by repeating the processing of steps S1 to S9. Thereby, the pressure waveform in the artery is measured.
  • the sensor device described in Patent Document 1 requires a configuration for performing phase control and phase measurement of a signal in a feedback loop in order to improve accuracy, and there is a problem that the circuit scale increases. there were.
  • the pulse wave measurement device employs a charge-voltage conversion method.
  • the voltage conversion unit 52 generates a conversion voltage based on the electric charge stored in the capacitor CX whose electrostatic capacity changes according to the pressure in the artery of the living body.
  • the phase control and impedance required in the impedance bridge method In addition, phase measurement is not required, and the pulse wave measuring device can be downsized.
  • the charging unit 51 applies the first charging voltage to the capacitor CX to store the first charge, and stores the first charge in the capacitor CX. Apply a charge voltage of 2 to store the second charge.
  • the voltage converter 52 generates a first converted voltage based on the first charge stored in the capacitor CX, and generates a second converted voltage based on the second charge stored in the capacitor CX. To do.
  • calculation unit 54 outputs a voltage representing the capacitance of capacitor CX based on the first conversion voltage and the second conversion voltage.
  • the pulse wave measurement device it is possible to prevent deterioration of the pulse wave detection performance and to reduce the size.
  • the first reference voltage is applied to the other end of the capacitor CX. More specifically, when the CPU 11 stops applying the charging voltage VCC to the other end of the capacitor CX, the ground voltage is the voltage applied to the non-inverting input terminal of the operational amplifier G1 at the other end of the capacitor CX. Apply. With such a configuration, the voltage operating range of the operational amplifier G1 can be increased.
  • the first conversion voltage is generated by applying the ground voltage (first charging voltage) to the other end of the capacitor CX.
  • the second conversion voltage is generated by applying the charging voltage VCC (second charging voltage) to the other end of the capacitor CX, the present invention is not limited to this. If the first charging voltage and the second charging voltage are different voltage values, it is possible to eliminate the pressure signal force from the voltage corresponding to the low frequency noise such as thermal noise and 1 / f noise generated by the operational amplifier G1. it can.
  • the first charging voltage and the second charging voltage are equal in absolute value and applied. The voltage can have a reverse relationship.
  • the first conversion voltage is generated by applying the ground voltage to the other end of the capacitor CX, and then the capacitor CX A force that is configured to generate the second conversion voltage by applying the charging voltage VCC to the end is not limited to this.
  • the first conversion voltage is generated by applying the charging voltage VCC to the other end of the capacitor CX, and then the second conversion voltage is generated by applying the ground voltage to the other end of the capacitor CX. May be.
  • the present embodiment relates to a pulse wave measurement device in which the configuration of the C_V conversion unit 21 is changed.
  • FIG. 11 is a circuit diagram showing the configuration of CV conversion unit 21 and capacitor CX in the pulse wave measurement device according to the second embodiment of the present invention.
  • C—V converter 21 is used in combination with a capacitor (pressure detecting capacitor) CX corresponding to sensor element 28.
  • the C-V converter 21 includes a capacitor, a charge transfer capacitor CF, a capacitor (first charge retention capacitor) CH11, a capacitor (second charge retention capacitor) CH12, a capacitor CH13, Resistors R1 and R9, switch (first switch) SW1, switch (second switch) SW 12, switch (third switch) SW13, switch SW14, operational amplifiers G1 and G15, charging A unit 51 and a differential amplifier 55 are provided.
  • Differential amplifier 55 includes operational amplifiers G12 to G14 and resistors R2 to R8.
  • Charging unit 51 includes switches SW51 to SW54 and power supplies V1 and V2.
  • the switches SW1 and SW12 to SW14 are, for example, analog switches.
  • the operational amplifier G1, the switch SW1, the capacitor CF, and the force correspond to the voltage conversion unit 52 shown in FIG. Also corresponds to the switch SW12, the capacitor CH11, and the voltage holding unit 53 shown in FIG. Further, it corresponds to the switch SW13, the capacitor CH12, and the voltage holding unit 53 shown in FIG.
  • the differential amplifier 55 corresponds to the calculation unit 54 shown in FIG. [0110] One end of the resistor Rl is connected to the output of the operational amplifier Gl. One end of the switch SW12 is connected to the other end of the resistor R1, and the other end is connected to one end of the capacitor CH11 and the non-inverting input terminal of the operational amplifier G12.
  • the switch SW13 has one end connected to the other end of the resistor R1, and the other end connected to one end of the capacitor CH12 and the non-inverting input terminal of the operational amplifier G13.
  • the other ends of the capacitors CH11 to CH12 are connected to the ground voltage (second reference voltage).
  • the operational amplifier G12 has an output connected to one end of the resistor R2 and one end of the resistor R5, and an inverting input terminal connected to the other end of the resistor R2 and one end of the resistor R3.
  • the operational amplifier G13 has an output connected to one end of the resistor R4 and one end of the resistor R6, and an inverting input terminal connected to the other end of the resistor R4 and the other end of the resistor R3.
  • the operational amplifier G14 has an inverting input terminal connected to the other end of the resistor R5 and one end of the resistor R7, a non-inverting input terminal connected to the other end of the resistor R6 and one end of the resistor R8, and an output connected to the resistor R7. And the other end of resistor R9.
  • One end of the switch SW14 is connected to the other end of the resistor R9, and the other end is connected to one end of the capacitor CH13 and the non-inverting input terminal of the operational amplifier G15.
  • the output of the operational amplifier G15 is connected to the inverting input terminal.
  • the other end of capacitor CH13 and the other end of resistor R8 are connected to the ground voltage.
  • one end of switch SW55 is connected to the positive electrode of power supply VI, and the other end is connected to the other end of S capacitor CC.
  • One end of switch SW56 is connected to the negative electrode of power supply V2, and the other end is connected to the other end of capacitor CX.
  • Switches SW12 to SW14 are switched between an on state and an off state based on control signals SC12 to SC14 received from CPU 11.
  • FIG. 12 is a time chart showing the operation of the CV conversion unit 21 when the pulse wave measurement device according to the second embodiment of the present invention performs pulse wave measurement.
  • VP is the voltage applied to the other end of the capacitor CX
  • VN is the voltage applied to the other end of the capacitor CC
  • the control signals SC1 and SC12 to SC14 are at high level, the corresponding switch SW1 SW12 to SW14 are turned on, and when they are low level, they are turned off.
  • FIG. 13 is a flowchart defining the operation procedure of the CV conversion unit 21 when the pulse wave measurement device according to the second embodiment of the present invention performs pulse wave measurement.
  • the processing shown in the flowchart of FIG. 13 is realized by accessing the CPU 11 ROM 22 to read the program, and developing the read program on the RAM 23 and executing it.
  • CPU 11 turns on switch SW1 and turns off switches SW12-SW14.
  • the CPU 11 sets the switches SW51 and SW54 to the old state and the powerful switches SW52, SW53, SW55 and SW56 to the old state, so that the charge voltage VCC (first charge) is applied to the other end of the capacitor CX. Voltage) and the charging voltage-VCC is applied to the other end of the capacitor CC.
  • the voltage applied to the non-inverting input terminal of the operational amplifier G1 that is, the ground voltage, is fed back to the inverting input terminal of the operational amplifier G1. Therefore, a charge corresponding to the charging voltage VCC is stored in the capacitor CX, and a charge corresponding to the charging voltage—VCC is stored in the capacitor CC (step Sl l).
  • the CPU 11 turns off the switches SW52 and SW53 and turns off the switches SW51 and SW54 to SW56, thereby stopping the application of the charging voltage VCC and one VCC, and the other end of the capacitor CX and Apply the ground voltage (first reference voltage) to the other end of capacitor CC.
  • the charge corresponding to the difference between the amount of charge stored in the capacitor CX and the amount of charge stored in the capacitor CC moves to the capacitor CF.
  • a voltage (first converted voltage) corresponding to the electric charge stored in the capacitor CF is output as the output voltage G1 (step S13).
  • the charge transferred to the capacitor CF is represented by (CX-CC) XVCC.
  • the charge that has moved to the capacitor CF is converted to a voltage (first conversion voltage) represented by ((CX-CC) / CF) X VCC by the operational amplifier G1 when the capacitance of the capacitor CF is CF. .
  • the CPU 11 turns on the switch SW12. Then, the capacitor CH11 is charged based on the first conversion voltage output from the operational amplifier G1 (step S1 3). At this time, a voltage corresponding to the electric charge stored in the capacitor CH11 is input to the non-inverting input terminal of the operational amplifier Gl2.
  • the operational amplifier G12 outputs a voltage corresponding to the voltage input to the non-inverting input terminal to the inverting input terminal of the operational amplifier G14.
  • step S14 the CPU 11 turns off the switch SW12 (step S14). This fixes the voltage input to the non-inverting input terminal of the operational amplifier G12.
  • the CPU 11 turns on the switch SW1. Further, the CPU 11 applies the charging voltage—VCC (second charging voltage) to the other end of the capacitor CX by turning on the switches SW 55 and SW56 and turning off the switches SW51 to SW54, and Apply charging voltage VCC to the other end of capacitor CC.
  • VCC second charging voltage
  • the voltage applied to the non-inverting input terminal of the operational amplifier G1 that is, the ground voltage, is fed back to the inverting input terminal of the operational amplifier G1. Therefore, a charge corresponding to the charge voltage VCC is stored in the capacitor CX, and a charge corresponding to the charge voltage VCC is stored in the capacitor CC (step S15).
  • the CPU 11 turns off the switches SW52 and SW53 and turns off the switches SW51 and SW54 to SW56, thereby stopping the application of the charging voltage VCC and one VCC, and the other end of the capacitor CX and Apply the ground voltage (first reference voltage) to the other end of capacitor CC. Then, the charge corresponding to the difference between the charge amount stored in the capacitor CX and the charge amount stored in the capacitor CC moves to the capacitor CF.
  • the operational amplifier G1 outputs a voltage (second converted voltage) corresponding to the charge stored in the capacitor CF as the output voltage G1 (step S17).
  • the charge transferred to the capacitor CF is represented by-(CX-CC) XVCC.
  • the electric charge transferred to the capacitor CF is converted into a voltage (second conversion voltage) represented by ((CC—C X) / CF) X VCC by the operational amplifier G1 when the capacitance of the capacitor CF is CF.
  • the CPU 11 turns on the switch SW13. Then, the capacitor CH12 is charged based on the second conversion voltage output from the operational amplifier G1 force (step S17). At this time, the non-inverting input terminal of the operational amplifier G13 is stored in the capacitor CH12. A voltage corresponding to the charged charge is input. The operational amplifier G13 outputs a voltage corresponding to the voltage input to the non-inverting input terminal to the non-inverting input terminal of the operational amplifier G14.
  • step S18 the CPU 11 turns off the switch SW13 (step S18). This fixes the voltage input to the non-inverting input terminal of the operational amplifier G13.
  • the charge stored in the capacitor CF includes the thermal noise, 1 / f noise, and analog switch generated by the operational amplifier G1 as described above. Charges corresponding to low frequency noise such as charge instructions are included.
  • the first conversion voltage and the second conversion voltage include the noise voltage corresponding to the noise component described above and the sensor voltage corresponding to the capacitance of the capacitor CX.
  • the voltage value of the noise voltage in the first conversion voltage is VN1
  • the voltage value corresponding to the capacitance of the capacitor CX in the first conversion voltage is VS1
  • the second conversion voltage If the voltage value of the noise voltage of the voltage is VN2, the voltage value corresponding to the capacitance of the capacitor CX in the second conversion voltage is VS2, and the gain of the entire differential amplifier 55 is K
  • the differential The output voltage VDIFF of the amplifier 55 is KX ((VN1 + VS1)-(VN2 + VS2)).
  • VS1 and VS2 are voltage values having the same absolute value and different signs. Further, when the time interval between the operations of Steps S11 to S14 and the operations of Steps S15 to S18 is sufficiently short with respect to the change rate of the noise component described above, VN1 and VN2 are substantially equal. Therefore, the output voltage VDIFF of the differential amplifier 55 is K X ((VN 1 + VS1) _ (VN2 + VS2)) 2 X K XVN1. That is, the output voltage VDIFF of the differential amplifier 55 is a voltage corresponding to the capacitance of the capacitor CX, that is, the pressure in the living artery, with the noise component removed.
  • the CPU 11 turns on the switch SW14.
  • the capacitor CHI 3 is charged based on the output voltage VDIFF (step S19).
  • the CPU 11 turns off the switch SW14 (step S20). This fixes the voltage input to the non-inverting input terminal of the operational amplifier G12. And operational amplification The voltage corresponding to the electric charge stored in the capacitor CH13, that is, the voltage corresponding to the pressure in the artery of the living body is output from the device G15 to the low-pass filter 22 as the output voltage VOUT.
  • the CPU 11 updates the pressure signal output from the C—V conversion unit 21 by repeating the processes of steps S11 to S20. Thereby, the pressure waveform in the artery is measured.
  • the pulse wave measurement device similarly to the pulse wave measurement device according to the first embodiment, deterioration of the pulse wave detection performance is prevented and the size is reduced.
  • the power to plan S similarly to the pulse wave measurement device according to the first embodiment, deterioration of the pulse wave detection performance is prevented and the size is reduced.
  • the CPU 11 applies the charging voltage VCC (first charging voltage) to the other end of the capacitor CX, thereby The conversion voltage is generated, and the second conversion voltage is generated by applying the charging voltage VCC (second charging voltage) to the other end of the capacitor CX.
  • VCC first charging voltage
  • VCC second charging voltage
  • the present invention is not limited to this. is not. If the first charging voltage and the second charging voltage are different voltage values, it is possible to eliminate the pressure signal force from the voltage corresponding to the low frequency noise such as thermal noise and 1 / f noise generated in the operational amplifier G1. it can.
  • the first converted voltage is generated by applying a ground voltage to the other end of the capacitor CX, and the other end of the capacitor CX is applied.
  • the second conversion voltage may be generated by applying the charging voltage VCC.
  • the CV conversion unit 21 includes, as the voltage holding unit 53, the switch SW12 and the capacitor CH11, and the switch SW13 and the capacitor CHI 2
  • the present invention is not limited to this. Since the voltage holding unit 53 only needs to hold at least the first conversion voltage, the CV conversion unit 21 does not include the switch SW12 and the capacitor CH11, or includes the switch SW13 and the capacitor CH12. There may be no configuration.
  • both the first reference voltage and the second reference voltage are ground voltages. But This is n’t limited to this. Even if the first reference voltage and the second reference voltage are different and different from the ground voltage, it corresponds to the low frequency noise such as thermal noise and 1 / f noise generated in the operational amplifier G1. It is possible to eliminate the pressure signal force from the voltage.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Biomedical Technology (AREA)
  • Vascular Medicine (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

 脈波測定装置は、生体の表面に押し当てることにより、動脈内の圧力波形を測定する。脈波測定装置は、動脈内の圧力に応じて静電容量が変化する圧力検出用コンデンサ(CX)と、圧力検出用コンデンサ(CX)に第1の充電電圧を印加して第1の電荷を蓄え、かつ圧力検出用コンデンサ(CX)に第1の充電電圧と異なる第2の充電電圧を印加して第2の電荷を蓄える充電部(51)と、第1の電荷に基づいて第1の変換電圧を生成し、かつ第2の電荷に基づいて第2の変換電圧を生成する電圧変換部(52)と、第1の変換電圧および第2の変換電圧に基づいて圧力検出用コンデンサ(CX)の静電容量を表わす電圧を出力する演算部(54)とを備える。

Description

明 細 書
脈波測定装置
技術分野
[0001] 本発明は、脈波測定装置に関し、特に、静電容量素子を用いて動脈内の圧力波形 を測定する脈波測定装置に関する。
背景技術
[0002] 非観血式で簡便に動脈内の圧力波形を得る圧脈波測定法として、 G丄. Pressman, P.M.Newgard, A Transducer for the ontinuous External Measurement of Arterial Blood Pressure", IEEE TRANSACTIONS ON BIO-MEDICAL ELECT RONICS, 1963, pp.74_81 (非特許文献 1)に記載されるトノメトリ法が知られている。 トノメトリ法では、生体の表面に固形平板を押し当て、この固形平板によって動脈に 平坦部が形成される程度に生体の表面を圧迫する。そして、動脈の表面に生じる張 力の影響が除外された圧平衡状態を保つことにより、動脈内の圧力変化のみを精度 よく安定して測定する。
[0003] 近年、トノメトリ法によって測定した動脈内の圧力波形力 特徴量を算出することに より、生体内の状態を測定する試みがなされている。その試みの一つとして、動脈の 硬化度合レ、を判断する指標である AI (Augmentation Index)値にっレ、ての研究が鋭 意行なわれている。
[0004] トノメトリ法を用いて動脈内の圧力波形を測定する条件としては、動脈に平坦部が 形成される程度に生体の表面を圧迫することの他に、動脈に形成された平坦部の直 上にセンサ素子が配置されることが必要になる。また、精度よく動脈内の圧力波形の 測定を行なうためには、動脈に形成された平坦部の幅よりもセンサ素子の幅を小さく 構成することが必要であり、そのためにはセンサ素子が動脈径よりも十分に小さいこと が必要である。以上を考慮した場合、単一のセンサ素子を動脈に形成された平坦部 の直上に位置決めして配置することは非常に困難であるため、微小加工された複数 のセンサ素子が配置された圧力センサを動脈の延在方向と略直交するように配置し て圧脈波を測定することが現実的である。 [0005] 一般に、圧力を測定するセンシング方式としては、歪み抵抗素子を利用したセンシ ング方式および静電容量素子を利用したセンシング方式が知られている。静電容量 素子を利用したセンシング方式では、センサ素子の構造が歪み抵抗素子に比べて 簡素であるため、多額の製造コストを要する半導体製造プロセスを利用することなく 安価に製作できるとレ、うメリットがある。
[0006] 動脈内の圧力波形を得るためのものではないが、測定面に静電容量素子がアレイ 状に配置された圧力センサとして、特表 2005— 507083号公報(特許文献 1)には、 増幅器および静電容量素子等でフィードバックループが構成されるインピーダンスブ リッジ方式のセンサ装置が開示されている。
[0007] し力、しながら、特許文献 1記載のセンサ装置では、精度を高めるためにフィードバッ クループにおける信号の位相制御および位相測定を行なう構成が必要であり、回路 規模が増大してしまう。
[0008] このような問題点を解決するために、 Y.E.Park and K.D.Wise, "AN MOS SWIT CHED-CAPACITOR READOUT AMPLIFIER FOR CAPACITIVE PRESSURE SENSORS", Proc.IEEE Custom Circuit Conf., May 1983, pp.380- 384 (非特許 文献 2)には、増幅器、コンデンサおよびスィッチ等で構成される電荷電圧変換方式 のセンサ装置が開示されている。電荷電圧変換方式は、インピーダンスブリッジ方式 におレ、て必要となる位相制御および位相測定が不要であり、センサ装置の小型化を 図ること力 Sできる。
[0009] ここで、前述のように複数のセンサ素子が配置された圧力センサを用いる場合、複 数のセンサ素子からの出力を選択するマルチプレクサが必要となる。マルチプレクサ は、通常 M〇S (Metal Oxide Semiconductor)プロセスを使用して製造する必要があ る。非特許文献 2記載のセンサ装置では、 MOSプロセスを使用していることから、マ ルチプレクサが必要となる場合でも製造プロセスの共通化を図ることができ、センサ 装置の小型化を図ることができる。
[0010] 非特許文献 2記載のセンサ装置は、このように小型化を図ることができ、かつ M〇S プロセスを使用しているために消費電力が小さいことから、 MEMS (Micro Electro Mechanical Systems:微小電気機械システム)圧力センサおよび MEMS加速度セン サに採用されている。
特許文献 1 :特表 2005— 507083号公報
非特許文献 1: G丄. Pressman, P.M.Newgard, "A Transducer for the Continuous
External Measurement of Arterial Blood Pressure", IEEE TRANSACTIONS ON BIO-MEDICAL ELECTRONICS, 1963, pp.74-81
非特許文献 2 : Y.E.Park and K.D.Wise, "AN MOS SWITCHED- CAPACITOR R EADOUT AMPLIFIER FOR CAPACITIVE PRESSURE SENSORS", Proc.IEEE Custom Circuit Conf., May 1983, pp.380— 384
発明の開示
発明が解決しょうとする課題
[0011] ところで、動脈内の圧力波形を測定する脈波測定装置では、脈波の周波数成分の うち、少なくとも 0Hzすなわち DC成分から約 30Hzまでの周波数成分を検出して圧 力波形を再現する必要がある。したがって、 0Hzから約 30Hzまでの周波数成分の振 幅および位相に影響を与えるフィルタ処理等を行なうことは望ましくない。
[0012] ここで、非特許文献 2記載のセンサ装置の誤差要因として、増幅器で発生する低周 波ノイズがある。非特許文献 2記載のセンサ装置では、 M〇Sプロセスを使用している ためにバイポーラプロセスと比べて発生する低周波ノイズの電力が大きくなる。これら の低周波ノイズのうち、たとえば、増幅器で発生する 1/fノイズおよび熱雑音は、脈 波測定装置で検出すべき OHzから約 30Hzまでの周波数成分の全部または一部と 一致する。しかしながら、前述のように 0Hzから約 30Hzまでの周波数成分の振幅お よび位相に影響を与えるフィルタ処理等を行なうことは望ましくなレ、。したがって、非 特許文献 2記載のセンサ装置では、増幅器の 1/fノイズおよび熱雑音等をアナログ フィルタおよびデジタルフィルタ等を使用して除去することができず、検出性能が劣 化してしまうという問題点があった。
[0013] それゆえに、本発明の目的は、脈波検出性能の劣化を防ぎ、かつ小型化を図るこ とが可能な脈波測定装置を提供することである。
課題を解決するための手段
[0014] この発明のある局面に係わる脈波測定装置は、生体の表面に押し当てることにより 、動脈内の圧力波形を測定する脈波測定装置であって、動脈内の圧力に応じて静 電容量が変化する圧力検出用コンデンサと、圧力検出用コンデンサに第 1の充電電 圧を印加して第 1の電荷を蓄え、かつ圧力検出用コンデンサに第 1の充電電圧と異 なる第 2の充電電圧を印加して第 2の電荷を蓄える充電部と、第 1の電荷に基づいて 第 1の変換電圧を生成し、かつ第 2の電荷に基づいて第 2の変換電圧を生成する電 圧変換部と、第 1の変換電圧および第 2の変換電圧に基づいて圧力検出用コンデン サの静電容量を表わす電圧を出力する演算部とを備える。
[0015] 好ましくは、演算部は、第 1の変換電圧および第 2の変換電圧の差に基づいて圧力 検出用コンデンサの静電容量を表わす電圧を出力する。
[0016] 好ましくは、脈波測定装置は、さらに、第 1の変換電圧を保持する電圧保持部を備 え、充電部は、電圧保持部が第 1の変換電圧を保持した後、第 2の充電電圧に基づ レ、て圧力検出用コンデンサに第 2の電荷を蓄え、電圧変換部は、電圧保持部が第 1 の変換電圧を保持した後、圧力検出用コンデンサに蓄えられた第 2の電荷に基づい て第 2の変換電圧を生成し、演算部は、第 2の変換電圧および保持された第 1の変 換電圧に基づいて圧力検出用コンデンサの静電容量を表わす電圧を出力する。
[0017] またこの発明のさらに別の局面に係わる脈波測定装置は、生体の表面に押し当て ることにより、動脈内の圧力波形を測定する脈波測定装置であって、動脈内の圧力 に応じて静電容量が変化する圧力検出用コンデンサと、反転入力端子が圧力検出 用コンデンサの一端に結合され、非反転入力端子が第 iの基準電圧に結合される演 算増幅器と、一端が演算増幅器の反転入力端子に結合され、他端が演算増幅器の 出力に結合される電荷転送用コンデンサと、一端が演算増幅器の反転入力端子に 結合され、他端が演算増幅器の出力に結合される第 1のスィッチと、一端が演算増幅 器の出力に結合される電荷保持用コンデンサと、一端が電荷保持用コンデンサの他 端に結合され、他端が第 2の基準電圧に結合される第 2のスィッチとを備える。
[0018] またこの発明のさらに別の局面に係わる脈波測定装置は、生体の表面に押し当て ることにより、動脈内の圧力波形を測定する脈波測定装置であって、動脈内の圧力 に応じて静電容量が変化する圧力検出用コンデンサと、反転入力端子が圧力検出 用コンデンサの一端に結合され、非反転入力端子が第 1の基準電圧に結合される演 算増幅器と、一端が演算増幅器の反転入力端子に結合され、他端が演算増幅器の 出力に結合される電荷転送用コンデンサと、一端が演算増幅器の反転入力端子に 結合され、他端が演算増幅器の出力に結合される第 1のスィッチと、一端が演算増幅 器の出力に結合される第 2のスィッチと、一端が第 2のスィッチの他端に結合され、他 端が第 2の基準電圧に結合される第 1の電荷保持用コンデンサと、第 1の入力端子が 第 2のスィッチの他端に結合され、第 2の入力端子が演算増幅器の出力に結合され る差動増幅器とを備える。
[0019] 好ましくは、脈波測定装置は、さらに、一端が演算増幅器の出力に結合される第 3 のスィッチと、一端が第 3のスィッチの他端に結合され、他端が第 3の基準電圧に結 合される第 2の電荷保持用コンデンサとを備え、差動増幅器は、第 1の入力端子が第 2のスィッチの他端に結合され、第 2の入力端子が第 3のスィッチの他端に結合され る。
[0020] 好ましくは、脈波測定装置は、さらに、圧力検出用コンデンサの他端に充電電圧を 印加する充電部と、制御部とを備え、制御部は、充電部、第 1のスィッチおよび第 2の スィッチを制御して、圧力検出用コンデンサの他端に第 1の充電電圧を印加し、第 1 のスィッチをオン状態とし、その後、第 1のスィッチをオフ状態とし、その後、第 2のスィ ツチをオン状態とし、かつ第 1の充電電圧の印加を停止し、その後、第 2のスィッチを オフ状態とし、その後、圧力検出用コンデンサの他端に第 2の充電電圧を印加し、第 1のスィッチをオン状態とし、その後、第 1のスィッチをオフ状態とし、その後、第 2の充 電電圧の印加を停止する。
[0021] より好ましくは、制御部は、第 1の充電電圧の印加を停止するとき、および第 2の充 電電圧の印加を停止するとき、圧力検出用コンデンサの他端に第 1の基準電圧を印 加する。
[0022] より好ましくは、第 1の充電電圧および第 2の充電電圧は、絶対値が等しぐかつ印 加方向が逆である。
[0023] 好ましくは、脈波測定装置は、さらに、圧力検出用コンデンサの他端に充電電圧を 印加する充電部と、制御部とを備え、制御部は、充電部、第 1のスィッチおよび第 2の スィッチを制御して、圧力検出用コンデンサの他端に第 1の基準電圧を印加し、第 1 のスィッチをオン状態とし、その後、第 1のスィッチをオフ状態とし、その後、第 2のスィ ツチをオン状態とし、その後、第 2のスィッチをオフ状態とし、その後、圧力検出用コン デンサの他端に第 1の基準電圧と異なる充電電圧を印加し、第 1のスィッチをオン状 態とし、その後、第 1のスィッチをオフ状態とし、その後、充電電圧の印加を停止する
[0024] 好ましくは、脈波測定装置は、さらに、圧力検出用コンデンサの他端に充電電圧を 印加する充電部と、制御部とを備え、制御部は、充電部、第 1のスィッチおよび第 2の スィッチを制御して、圧力検出用コンデンサの他端に第 1の基準電圧と異なる充電電 圧を印加し、第 1のスィッチをオン状態とし、その後、第 1のスィッチをオフ状態とし、 その後、第 2のスィッチをオン状態とし、かつ充電電圧の印加を停止し、その後、第 2 のスィッチをオフ状態とし、その後、圧力検出用コンデンサの他端に第 1の基準電圧 を印加し、第 1のスィッチをオン状態とし、その後、第 1のスィッチをオフ状態とする。 発明の効果
[0025] 本発明によれば、脈波検出性能の劣化を防ぎ、かつ小型化を図ることができる。
図面の簡単な説明
[0026] [図 1]本発明の第 1の実施の形態に係る脈波測定装置の外観図である。
[図 2]図 1に示す測定状態における手首および脈波測定装置の模式断面図である。
[図 3]本発明の第 1の実施の形態に係る脈波測定装置におけるセンサアレイ 19、マ ルチプレクサ 20および C—V変換部 21の構成を示す図である。
[図 4]センサアレイ 19の外観斜視図である。
[図 5]本発明の第 1の実施の形態に係る脈波測定装置の機能ブロック図である。
[図 6]本発明の第 1の実施の形態に係る脈波測定装置が脈波測定を行なう際の動作 手順を定めたフローチャートである。
[図 7]本発明の第 1の実施の形態に係る脈波測定装置における C V変換部 21およ びコンデンサ CXの構成を示す機能ブロック図である。
[図 8]本発明の第 1の実施の形態に係る脈波測定装置における C V変換部 21およ びコンデンサ CXの構成を示す回路図である。
[図 9]本発明の第 1の実施の形態に係る脈波測定装置が脈波測定を行なう際の C一 V変換部 21の動作を示すタイムチャートである。
[図 10]本発明の第 1の実施の形態に係る脈波測定装置が脈波測定を行なう際の C V変換部 21の動作手順を定めたフローチャートである。
[図 11]本発明の第 2の実施の形態に係る脈波測定装置における C—V変換部 21お よびコンデンサ CXの構成を示す回路図である。
[図 12]本発明の第 2の実施の形態に係る脈波測定装置が脈波測定を行なう際の C一 V変換部 21の動作を示すタイムチャートである。
[図 13]本発明の第 2の実施の形態に係る脈波測定装置が脈波測定を行なう際の C一 V変換部 21の動作手順を定めたフローチャートである。
符号の説明
[0027] 1 センサユニット、 3 表示ユニット、 11 CPU (制御部)、 12 ROM, 13 RAM, 14 駆動回路、 15 加圧ポンプ、 16 負圧ポンプ、 17 切り替え弁、 18 押圧カフ、 19 センサアレイ、 20 マルチプレクサ、 21 C— V変換部、 22 ローパスフィルタ、 2 3 A/D変換部、 24 操作部、 25 表示部、 26 PCB、 27 フレキシブル配線、 28 , 28A センサエレメント、 30 スぺーサ部材、 31 下部電極、 32 上部電極、 51 充電部、 52 電圧変換部、 53 電圧保持部、 54 演算部、 55 差動増幅器、 100 脈波測定装置、 110 載置台、 120
センサユニット、 122 ケーシング、 130 糸帝付けべノレト、 200 fl宛、 210 動脈、 220 橈骨、 CX コンデンサ (圧力検出用コンデンサ)、 CC コンデンサ、 CF 電荷転送 用コンデンサ、 CN コンデンサ (電荷保持用コンデンサ)、 CH11 コンデンサ(第 1 の電荷保持用コンデンサ)、 CH12 コンデンサ(第 2の電荷保持用コンデンサ)、 SW 1 スィッチ(第 1のスィッチ)、 SW2, SW12 スィッチ(第 2のスィッチ)、 SW13 スィ ツチ(第 3のスィッチ)、 SW3, SW14, SW51〜SW54 スィッチ、 G1〜G3, G12〜 G15 演算増幅器、 VI , V2 電源、 R1〜R9 抵抗。
発明を実施するための最良の形態
[0028] 以下、本発明の実施の形態について図面を用いて説明する。なお、図中同一また は相当部分には同一符号を付してその説明は繰り返さなレ、。
[0029] <第 1の実施の形態 > [脈波測定装置の構成および基本動作]
図 1は、本発明の第 1の実施の形態に係る脈波測定装置の外観図である。なお、図 1は、センサアレイを手首に押圧した測定状態を示している。図 2は、図 1に示す測定 状態における手首および脈波測定装置の模式断面図である。
[0030] 図 1および図 2を参照して、脈波測定装置 100は、被験者の手首において動脈内 の圧力波形を測定するためのものである。脈波測定装置 100は、載置台 110と、セン サユニット 1と、糸帝付けべノレト 130とを備免る。センサユニット 1は、ケーシング 122と、 押圧カフ 18と、センサアレイ 19とを含む。
[0031] 載置台 110は、被験者の一方の腕 200の手首および前腕を載置するための載置 部 112を含む。締付けベルト 130は、載置台 110に載置された腕 200の手首部分を 固定する。センサユニット 1は、締付けベノレト 130に取付けられ、センサアレイ 19を内 蔵する。
[0032] 図 1を参照して、載置台 110に手首が固定された状態においては、動脈 210が腕 2 00の延在方向と平行な方向に位置する。図 2を参照して、センサユニット 1のケーシ ング 122内に内蔵された押圧カフ 18が膨張することにより、センサアレイ 19が下降し 、手首の表面に向かってセンサアレイ 19のセンサ面が押し当てられる。押圧カフ 18 は、後述する加圧ポンプ 15および負圧ポンプ 16により内圧が調整される。センサァ レイ 19は、センサ面に設けられた後述する下部電極 31が動脈 210の延在方向と略 直交する方向に延在するように配置される。
[0033] 押圧時においては、動脈 210が橈骨 220とセンサアレイ 19のセンサ面とによって上 下方向から挟み込まれれた状態となり、動脈 210に平坦部が形成される。そして、動 脈 210に形成された平坦部の直上に少なくとも 1個のセンサエレメント 28が位置する ことになる。
[0034] 図 3は、本発明の第 1の実施の形態に係る脈波測定装置におけるセンサアレイ 19、 マルチプレクサ 20および C—V変換部 21の構成を示す図である。図 4は、センサァレ ィ 19の外観斜視図である。
[0035] 図 3を参照して、センサアレイ 19は、マルチプレクサ 20と、 C—V変換部 21と組み 合わされて使用される。 C_V変換部 21は、充電部 51を含む。 [0036] 図 4を参照して、センサアレイ 19は、下部電極 31と、上部電極 32と、スぺーサ部材 30とを含む。下部電極 31は、互いに並走するように行状に設けられた実質的に直線 状に延びる複数の帯状銅箔電極からなる。上部電極 32は、下部電極 31と直交する 方向に互いに並走するように列状に設けられた実質的に直線状に延びる複数の帯 状銅箔電極からなる。下部電極 31および上部電極 32の間には、シリコンラバーから なるスぺーサ部材 30が配置される。
[0037] 行列状に配置された下部電極 31および上部電極 32の交差部においては、スぺー サ部材 30によって所定の距離だけ離れて下部電極 31と上部電極 32とが対向配置 される。これにより、下部電極 31および上部電極 32の交差部においてセンサエレメ ント 28が形成される。すなわち、センサアレイ 19は、行列状に配置された複数個のセ ンサエレメント 28を含む。
[0038] センサエレメント 28は、上部電極 32または下部電極 31に加わる圧力によって互い に接近する方向に歪むことにより、静電容量が変化する。
[0039] 再び図 3を参照して、下部電極 31および上部電極 32の一方の電極にマルチプレ クサ 20を介して C—V変換部 21が接続される。マルチプレクサ 20は、特定の下部電 極 31および上部電極 32を選択する。このような構成により、行列状に配置された複 数個のセンサエレメント 28のうちのいずれ力 1個の静電容量を C—V変換部 21の出 力電圧として得ることが可能になる。たとえば、マルチプレクサ 20が、上から 2行目の 下部電極 31と左から 3列目の上部電極 32とを選択した場合には、センサエレメント 2 8Aが C— V変換部 21に接続される。したがって、センサアレイ 19の任意の位置にお ける圧力波形を測定することが可能になる。なお、図 3では上部電極 32がマルチプ レクサ 20を介して充電部 51に接続されている力 下部電極 31および上部電極 32の 接続関係を逆にして下部電極 31がマルチプレクサ 20を介して充電部 51に接続され る構成であってもよい。
[0040] 図 5は、本発明の第 1の実施の形態に係る脈波測定装置の機能ブロック図である。
図 5を参照して、脈波測定装置 100は、センサユニット 1と、表示ユニット 3と、載置 台 110とを備える。表示ユニット 3は、操作部 24と、表示部 25とを含む。センサュニッ ト 1は、押圧カフ 18と、センサアレイ 19とを含む。載置台 110は、 ROM (Read Only Memory) 12と、 RAM (Random Access Memory) 13と、 CPU (Central Processing Unit) (制御部) 11と、駆動回路 14と、加圧ポンプ 15と、負圧ポンプ 16と、切り替え 弁 17と、マルチプレクサ 20と、 C—V変換部 21と、ローパスフィルタ 22と、 A/D変換 部 23とを含む。
[0041] 操作部 24は、外部からの操作を検出し、検出結果を操作信号として CPU11等に 出力する。ユーザは、操作部 24を操作して脈波測定に関する各種情報を脈波測定 装置 100に入力する。
[0042] 表示部 25は、動脈位置検出結果および脈波測定結果等の各種情報を外部に出 力するための LED (Light Emitting Diode)と、 LCD (Liquid Crystal Display)とを 含む。
[0043] R〇M12ぉょびRAM13は、たとえば、脈波測定装置 100を制御するためのデータ およびプログラムを記憶する。
[0044] 駆動回路 14は、 CPU11からの制御信号に基づいて加圧ポンプ 15、負圧ポンプ 1 6および切り替え弁 17を駆動する。
[0045] CPU11は、 ROM12にアクセスしてプログラムを読み出し、読み出したプログラムを RAM13上に展開して実行し、脈波測定装置 100における各ブロックの制御および 演算処理を行なう。また、 CPU11は、操作部 24から受けたユーザの操作信号に基 づいて脈波測定装置 100における各ブロックの制御処理を行なう。すなわち、 CPU1 1は、操作部 24から受けた操作信号に基づいて制御信号を各ブロックに出力する。 また、 CPU11は、脈波測定結果等を表示部 25に表示する。
[0046] 加圧ポンプ 15は、押圧カフ 18の内圧を加圧するためのポンプであり、また、負圧ポ ンプ 16は、押圧カフ 18の内圧を減圧するためのポンプである。切り替え弁 17は、カロ 圧ポンプ 15および負圧ポンプ 16のいずれかを選択的にエア管 6に接続する。
[0047] 押圧カフ 18は、センサアレイ 19を手首上に押圧させるために加圧調整される空気 袋を含む。
[0048] センサアレイ 19は、押圧カフ 18の圧力によって被験者の手首等の測定部位に押 圧される。センサアレイ 19は、押圧された状態で、橈骨動脈を介して被験者の脈波 すなわち動脈内の圧力波形を検出する。 [0049] マルチプレクサ 20は、 CPU11力ら受けた制御信号に基づいて、センサアレイ 19に おける複数個のセンサエレメント 28のうちのいずれ力 1個を選択する。 C— V変換部 2 1は、マルチプレクサ 20が選択したセンサエレメント 28の静電容量値を電圧に変換 する、すなわち動脈内の圧力波形を表わす、動脈から生体表面に伝達される圧力振 動波を電圧信号として出力する(以下、圧力信号とも称する)。
[0050] ローパスフィルタ 22は、 C—V変換部 21から受けた圧力信号のうち、所定の周波数 成分を減衰させる。
[0051] AZD変換部 23は、ローパスフィルタ 22を通過したアナログ信号である圧力信号を デジタル信号に変換して CPU11に出力する。
[0052] なお、載置台 110が表示ユニット 3を含む構成であってもよい。また、載置台 110が CPU11、 ROM12および RAMI 3を備える構成としたが、これらを表示ユニット 3が 含む構成としてもよレ、。また、 CPU 11が PC (Personal Computer)と接続されて、各 種制御を行なう構成であってもよレ、。
[0053] [脈波測定装置の動作]
図 6は、本発明の第 1の実施の形態に係る脈波測定装置が脈波測定を行なう際の 動作手順を定めたフローチャートである。図 6のフローチャートに示される処理は、 C PU11力 ROM22にアクセスしてプログラムを読み出し、読み出したプログラムを R AM23上に展開して実行することによって実現される。
[0054] 図 6を参照して、まず、脈波測定装置 100に電源が投入されると、 CPU11は、駆動 回路 14に対して負圧ポンプ 16を駆動するように指示する。駆動回路 14は、 CPU11 力 の指示に基づいて切り替え弁 17を負圧ポンプ 16側に切り替え、負圧ポンプ 16 を駆動する(S101)。駆動された負圧ポンプ 16は、切り替え弁 17を介して押圧カフ 1 8の内圧が大気圧よりも十分に低くなるように減圧する。このような構成により、センサ アレイ 19が不用意に突出して誤動作および故障が生じることを回避できる。
[0055] CPU11は、センサアレイ 19が測定部位に移動したことを検知すると(S102)、脈波 測定を開始する。ここで、センサユニット 1は、センサアレイ 19の移動を検知するため の図示しないマイクロスィッチ等を備え、 CPU11は、マイクロスイッチの検出信号に 基づいてセンサアレイ 19の位置を認識する。なお、 CPU11は、操作部 24に含まれ る測定開始スィッチ(図示せず)が押されたことを検知すると、脈波測定を開始する構 成であってもよい。
[0056] CPU11は、センサアレイ 19が測定部位に移動すると(S102で YES)、駆動回路 1 4に対し、加圧ポンプ 15を駆動するように指示する。駆動回路 14は、 CPU11力もの 指示に基づいて切り替え弁 17を加圧ポンプ 15側に切り替え、加圧ポンプ 15を駆動 する(S103)。駆動された加圧ポンプ 15は、切り替え弁 17を介して押圧カフ 18の内 圧を加圧し、センサアレイ 19を被験者の測定部位の表面に押圧する。
[0057] センサアレイ 19が測定部位に押圧されると、マルチプレクサ 20は、 CPU11の制御 に基づいて、 C—V変換部 21に接続するセンサエレメント 28を時分割で切り替える。
C—V変換部 21は、マルチプレクサ 20が選択したセンサエレメント 28の静電容量値 を電圧に変換する。ローパスフィルタ 22は、 C—V変換部 21から受けた圧力信号のう ち、所定の周波数成分を減衰させる。 A/D変換部 23は、ローパスフィルタ 22を通 過した圧力信号をデジタル情報に変換し、 CPU11に出力する。
[0058] CPU11は、 A/D変換部 23から受けたデジタル情報に基づいてセンサエレメント 2 8の位置と圧力信号との関係を表わすトノグラムを作成し、表示部 25に表示する(S1 04)。
[0059] CPU11は、作成したトノグラムに基づいて、動脈上に位置するセンサエレメント 28 を検出して選択する(S105)。なお、センサエレメント 28を検出する処理については 、本願出願人がすでに出願して公開されている特開 2004— 222847号公報に記載 の技術等を用いることができる。
[0060] また、 CPU11は、 A/D変換部 23から受けたデジタル情報に基づいて、 C— V変 換部 21から出力される圧力信号の直流成分を抽出する(S106)。圧力信号の直流 成分は、所定期間の圧力信号の平均値、圧力信号のうちの所定周波数以下の成分 すなわち脈波成分を除去した圧力信号、および脈波立上り点すなわち脈波成分が 混入する直前の圧力信号レベル等で表わされる。
[0061] より具体的には、圧力信号の出力変化を所定期間ごとのウィンドウ(区間)に分割し 、各ウィンドウ内の平均を算出することで、直流成分を抽出することができる。あるい は、各ウィンドウ内の最大値と最小値との中間値を算出する等を行なっても、同様に 直流成分を抽出することができる。なお、上述の所定期間は、被験者の脈拍に拠らな い予め脈波測定装置 100に設定されている期間であり、一般的な脈拍の間隔以上 である 1. 5秒程度であることが好ましい。
[0062] 次に、 CPU11は、駆動回路 14を制御して最適圧力調整を行なう、すなわち圧力 信号の直流成分が安定するように押圧カフ 18の内圧を調整する(S107)。
[0063] 次に、 CPU11は、 AZD変換部 23から受けたデジタル情報が表わす、現在選択し ている C—V変換部 21からの圧力信号に基づいて、波形データを取得し、取得した 波形データに基づいて脈波を測定する(S 108)。
[0064] そして、 CPU11は、脈波測定の終了条件が成立した場合には(S109で YES)、駆 動回路 14を制御して負圧ポンプ 16を駆動し、測定部位に対するセンサアレイ 19の 押圧状態を解除する(S110)。ここで、脈波測定の終了条件は、予め設定された所 定時間(たとえば 30秒)の経過であってもよいし、ユーザからの測定終了の指示およ び測定中断の指示等であってもよい。
[0065] 一方、 CPU11は、所定条件が成立しない場合には(S109で NO)、波形データの 転送処理を繰り返し行ない、脈波測定を継続する(S108)。
[0066] [C V変換部およびセンサエレメントの構成および基本動作]
図 7は、本発明の第 1の実施の形態に係る脈波測定装置における C V変換部 21 およびコンデンサ CXの構成を示す機能ブロック図である。
[0067] 図 7を参照して、 C V変換部 21は、充電部 51と、電圧変換部 52と、電圧保持部 5
3と、演算部 54とを含む。コンデンサ CXは、センサエレメント 28に対応する。なお、図
7では説明を簡単にするためにマルチプレクサ 20を図示せず、また、マルチプレクサ
20が選択したコンデンサ CXのみを示している。
[0068] コンデンサ CXは、脈波測定装置 100のセンサアレイ 19が生体の表面に押し当てら れた状態において、生体の動脈内の圧力に応じて静電容量が変化する。
[0069] 充電部 51は、コンデンサ CXに第 1の充電電圧を印加して第 1の電荷を蓄える。電 圧変換部 52は、コンデンサ CXに蓄えられた第 1の電荷に基づいて第 1の変換電圧 を生成し、電圧保持部 53に出力する。電圧保持部 53は、電圧変換部 52から受けた 第 1の変換電圧を保持する。 [0070] そして、充電部 51は、コンデンサ CXに第 2の充電電圧を印加して第 2の電荷を蓄 える。電圧変換部 52は、コンデンサ CXに蓄えられた第 2の電荷に基づいて第 2の変 換電圧を生成し、演算部 54に出力する。
[0071] 演算部 54は、電圧保持部 53が保持している第 1の変換電圧および電圧変換部 52 力 受けた第 2の変換電圧に基づいてコンデンサ CXの静電容量を表わす電圧を出 力する。
[0072] なお、 C—V変換部 21は、電圧保持部 53を含まない構成であってもよレ、。たとえば 、脈波測定装置 100の外部における図示しない CPUが RAM等に第 1の変換電圧を 保存する。そして、充電部 51は、コンデンサ CXに第 2の充電電圧を印加して第 2の 電荷を蓄え、電圧変換部 52は、コンデンサ CXに蓄えられた第 2の電荷に基づいて 第 2の変換電圧を生成し、演算部 54に出力する。そして、演算部 54が、図示しない CPU経由で RAMから取得した第 1の変換電圧および電圧変換部 52から受けた第 2 の変換電圧に基づいてコンデンサ CXの静電容量を表わす電圧を出力する構成であ つてもよい。
[0073] 図 8は、本発明の第 1の実施の形態に係る脈波測定装置における C V変換部 21 およびコンデンサ CXの構成を示す回路図である。
[0074] 図 8を参照して、 C—V変換部 21は、センサエレメント 28に対応するコンデンサ(圧 力検出用コンデンサ) CXと組み合わせて使用される。 C— V変換部 21は、コンデン サ CCと、電荷転送用コンデンサ CFと、コンデンサ(電荷保持用コンデンサ) CNと、コ ンデンサ CH1と、スィッチ(第 1のスィッチ) SW1と、スィッチ(第 2のスィッチ) SW2と、 スィッチ SW3と、演算増幅器 G1〜G3と、充電部 51とを備える。充電部 51は、スイツ チ SW51〜SW54と、電源 VIおよび V2とを含む。スィッチ SW1〜SW3は、たとえば アナログスィッチである。なお、図 8では説明を簡単にするためにマルチプレクサ 20 を図示せず、また、マルチプレクサ 20が選択したコンデンサ CXのみを示している。
[0075] ここで、演算増幅器 G1と、スィッチ SW1と、コンデンサ CFと力 図 7に示す電圧変 換部 52に対応する。また、スィッチ SW2と、コンデンサ CNとが、図 7に示す電圧保持 部 53に対応する。また、スィッチ SW2と、コンデンサ CNと、演算増幅器 G1とが、図 7 に示す演算部 54に対応する。 [0076] 演算増幅器 Glは、反転入力端子がコンデンサ CXの一端およびコンデンサ CCの 一端に接続され、非反転入力端子が接地電圧(第 1の基準電圧)に接続される。コン デンサ CFは、一端が演算増幅器 G1の反転入力端子に接続され、他端が演算増幅 器 G1の出力に接続される。スィッチ SW1は、一端が演算増幅器 G1の反転入力端 子に接続され、他端が演算増幅器 G1の出力に接続される。コンデンサ CNは、一端 が演算増幅器 G1の出力に接続される。スィッチ SW2は、一端がコンデンサ CNの他 端に接続され、他端が接地電圧(第 2の基準電圧)に接続される。
[0077] 演算増幅器 G2は、非反転入力端子がスィッチ SW2の一端に接続され、反転入力 端子が演算増幅器 G2の出力に接続される。スィッチ SW3は、一端が演算増幅器 G 2の出力に接続され、他端がコンデンサ CH1の一端および演算増幅器 G3の非反転 入力端子に接続される。コンデンサ CH1の他端が接地電圧に接続される。演算増幅 器 G3の反転入力端子が演算増幅器 G3の出力に接続される。
[0078] 充電部 51において、スィッチ SW51の一端が電源 VIの正電極に接続され、他端 がスィッチ SW52の一端およびコンデンサ CXの他端に接続される。スィッチ SW54 の一端が電源 V2の負電極に接続され、他端がスィッチ SW53の一端およびコンデ ンサ CCの他端に接続される。スィッチ SW52の他端と、スィッチ SW53の他端と、電 源 VIの負電極と、電源 V2の正電極とが接地電圧に接続される。また、電源 VIおよ び V2の出力電圧値は VCCである。
[0079] コンデンサ CCは、カウンタ容量と呼ばれ、コンデンサ CXの静電容量のオフセットを 調整する目的で配置される。
[0080] スィッチ SW1〜SW3は、 CPU11から受けた制御信号 SC1〜SC3に基づいてォ ン状態およびオフ状態を切り替える。スィッチ SW51〜SW54は、 CPU11から受け た図示しない制御信号に基づいてオン状態およびオフ状態を切り替える。
[0081] [C一 V変換部の動作]
図 9は、本発明の第 1の実施の形態に係る脈波測定装置が脈波測定を行なう際の C—V変換部 21の動作を示すタイムチャートである。 VPはコンデンサ CXの他端に印 カロされる電圧であり、 VNはコンデンサ CCの他端に印加される電圧であり、 VG1は演 算増幅器 G1の出力電圧であり、 VG2は演算増幅器 G2の出力電圧であり、 VOUT は演算増幅器 G3の出力電圧である。制御信号 SC1〜SC3がハイレベルの場合は それぞれ対応するスィッチ SW1〜SW3がオン状態となり、ローレベルの場合はオフ 状態となる。
[0082] 図 10は、本発明の第 1の実施の形態に係る脈波測定装置が脈波測定を行なう際 の C—V変換部 21の動作手順を定めたフローチャートである。図 10のフローチャート に示される処理は、 CPU11力 ROM22にアクセスしてプログラムを読み出し、読み 出したプログラムを RAM23上に展開して実行することによって実現される。
[0083] 図 9および図 10を参照して、まず、 CPU11は、スィッチ SW1をオン状態とし、かつ スィッチ SW2および SW3をオフ状態とする。また、 CPU11は、スィッチ SW52およ び SW53をオン状態とし、かつスィッチ SW51および SW54をオフ状態とすることによ り、コンデンサ CXの他端およびコンデンサ CCの他端に接地電圧(第 1の充電電圧) を印加する。
[0084] ここで、理想的には、演算増幅器 G1の非反転入力端子に印加されている接地電 圧が演算増幅器 G1の出力から演算増幅器 G1の反転入力端子に帰還される。しか しながら、演算増幅器 G1で発生する熱雑音および 1/fノイズならびにアナログスイツ チのチャージインジェクション等に起因して演算増幅器 G1の反転入力端子の電位は 接地電位とならない場合がある。この場合、コンデンサ CXおよびコンデンサ CCの両 端に電位差が生じ、コンデンサ CXおよびコンデンサ CCにノイズ成分に相当する電 荷が蓄えられる(ステップ Sl)。
[0085] 次に、 CPU11は、スィッチ SW1をオフ状態とする。そうすると、コンデンサ CXおよ びコンデンサ CCに蓄えられた電荷がコンデンサ CFに移動する。そして、演算増幅 器 G1からは、コンデンサ CFに蓄えられた電荷に対応する電圧(第 1の変換電圧)が 出力電圧 VG1として出力される、すなわち前述のノイズ成分に相当する電荷が電圧 に変換される(ステップ S2)。
[0086] 次に、 CPU11は、スィッチ SW2をオン状態とする。そうすると、演算増幅器 G1から 出力される第 1の変換電圧に基づいてコンデンサ CNが充電される (ステップ S3)。な お、スィッチ SW2は、ステップ S1および S2においてオン状態であってもよレヽ。
[0087] 次に、 CPU11は、スィッチ SW2をオフ状態とする(ステップ S4)。 次に、 CPU11は、スィッチ SW1をオン状態とする。また、 CPU11は、スィッチ SW 52および SW53をオフ状態とし、かつスィッチ SW51および SW54をオン状態とする ことにより、コンデンサ CXの他端に充電電圧 VCC (第 2の充電電圧)を印加し、かつ コンデンサ CCの他端に充電電圧— VCCすなわち充電電圧 VCCと絶対値が等しく かつ印加方向が逆の電圧を印加する。
[0088] ここで、演算増幅器 G1の非反転入力端子に印加されている電圧すなわち接地電 圧が演算増幅器 G1の出力力 演算増幅器 G1の反転入力端子に帰還される。した がって、コンデンサ CXに充電電圧 VCCに対応する電荷が蓄えられ、また、コンデン サ CCに充電電圧—VCCに対応する電荷が蓄えられる(ステップ S5)。
[0089] 次に、 CPU11は、スィッチ SW1をオフ状態とする(ステップ S6)。
次に、 CPU11は、充電電圧 VCCおよび—VCCの印加を停止し、コンデンサ CX の他端およびコンデンサ CCの他端に接地電圧(第 1の基準電圧)を印加する。そう すると、コンデンサ CXに蓄えられた電荷量およびコンデンサ CCに蓄えられた電荷量 の差に対応する電荷がコンデンサ CFに移動する。そして、演算増幅器 G1からは、コ ンデンサ CFに蓄えられた電荷に対応する電圧(第 2の変換電圧)が出力電圧 G1とし て出力される(ステップ S7)。より詳細には、コンデンサ CXの静電容量を CXとし、コン デンサ CCの静電容量を CCとし、充電電圧 VCCの電圧値を VCCとすると、コンデン サ CFに移動する電荷は、 (CX-CC) XVCCで表わされる。コンデンサ CFに移動し た電荷は、コンデンサ CFの静電容量を CFとすると、演算増幅器 G1によって((CX -CO/CF) X VCCで表わされる電圧(第 2の変換電圧)に変換される。
[0090] ここで、コンデンサ CFに蓄えられる電荷には、コンデンサ CXの静電容量に対応す る電荷以外に、前述のように演算増幅器 G1で発生する熱雑音および 1/fノイズなら びにアナログスィッチのチャージインジヱクシヨン等の低周波ノイズに対応する電荷が 含まれる。
[0091] したがって、第 2の変換電圧には、前述のノイズ成分に対応するノイズ電圧と、コン デンサ CXの静電容量に対応するセンサ電圧とが含まれる。
[0092] ところで、コンデンサ CNには第 1の変換電圧に対応する電荷が蓄えられており、コ ンデンサ CNに蓄えられてレ、る電荷とコンデンサ CFに蓄えられてレ、る電荷とは、演算 増幅器 G2の非反転入力端子からみると極性が逆である。
[0093] したがって、第 1の変換電圧の電圧値を VN1とし、第 2の変換電圧のうちのノイズ電 圧の電圧値を VN2とし、第 2の変換電圧のうちのコンデンサ CXの静電容量に対応 する電圧値を VSとすると、演算増幅器 G2の非反転入力端子の入力電圧は、(VS + VN2) _VN1となる。
[0094] ここで、ステップ S1〜S4の動作と、ステップ S5〜S7の動作との時間間隔が前述の ノイズ成分の変化速度に対して十分短い間隔である場合には、 VN1および VN2は ほぼ等しくなり、演算増幅器 G2の非反転入力端子の入力電圧は、(VS +VN2) _V N1 VSとなる。したがって、演算増幅器 G2の非反転入力端子には、ノイズ成分が 除去されて、コンデンサ CXの静電容量すなわち生体の動脈内の圧力に対応する電 圧が入力される。そして、演算増幅器 G2からは、動脈内の圧力に対応する電圧が出 力電圧 VG2として出力される。
[0095] 次に、 CPU11は、スィッチ SW3をオン状態とする。これにより、演算増幅器 G2の 出力電圧に基づレ、てコンデンサ CH1が充電される(ステップ S8)。
[0096] 次に、 CPU11は、スィッチ SW3をオフ状態とする。これにより、演算増幅器 G3の 非反転入力端子に入力される電圧が固定される。そして、演算増幅器 G3からは、コ ンデンサ CH1に蓄えられている電荷に対応する電圧すなわち生体の動脈内の圧力 に対応する電圧が出力電圧 VOUTとしてローパスフィルタ 22に出力される(ステップ S9)。
[0097] CPU11は、ステップ S1〜S9の処理を繰り返すことにより、 C— V変換部 21から出 力される圧力信号を更新する。これにより、動脈内の圧力波形が測定される。
[0098] ところで、特許文献 1記載のセンサ装置では、精度を高めるためにフィードバックル ープにおける信号の位相制御および位相測定を行なう構成が必要であり、回路規模 が増大してしまうという問題点があった。
[0099] し力、しながら、本発明の第 1の実施の形態に係る脈波測定装置では、電荷電圧変 換方式を採用する。すなわち、電圧変換部 52は、生体の動脈内の圧力に応じて静 電容量が変化するコンデンサ CXに蓄えられた電荷に基づいて変換電圧を生成する 。このような構成により、インピーダンスブリッジ方式において必要となる位相制御およ び位相測定が不要となり、脈波測定装置の小型化を図ることができる。
[0100] また、非特許文献 2記載のセンサ装置では、増幅器の 1/fノイズおよび熱雑音等を アナログフィルタおよびデジタルフィルタ等を使用して除去することができず、検出性 能が劣化してしまうという問題点があった。し力 ながら、本発明の第 1の実施の形態 に係る脈波測定装置では、充電部 51は、コンデンサ CXに第 1の充電電圧を印加し て第 1の電荷を蓄え、かつコンデンサ CXに第 2の充電電圧を印加して第 2の電荷を 蓄える。電圧変換部 52は、コンデンサ CXに蓄えられた第 1の電荷に基づいて第 1の 変換電圧を生成し、かつコンデンサ CXに蓄えられた第 2の電荷に基づいて第 2の変 換電圧を生成する。そして、演算部 54は、第 1の変換電圧および第 2の変換電圧に 基づいてコンデンサ CXの静電容量を表わす電圧を出力する。このような構成により、 演算増幅器 G1で発生する熱雑音および 1/fノイズ等の低周波ノイズに対応する電 圧を圧力信号力 排除することができる。
[0101] したがって、本発明の第 1の実施の形態に係る脈波測定装置では、脈波検出性能 の劣化を防ぎ、かつ小型化を図ることができる。
[0102] また、本発明の第 1の実施の形態に係る脈波測定装置では、第 2の充電電圧の印 加を停止するとき、コンデンサ CXの他端に第 1の基準電圧を印加する。より詳細には 、 CPU11は、コンデンサ CXの他端への充電電圧 VCCの印加を停止するとき、コン デンサ CXの他端に演算増幅器 G1の非反転入力端子に印加されている電圧である 接地電圧を印加する。このような構成により、演算増幅器 G1の電圧動作範囲を大き くすることができる。
[0103] なお、本発明の第 1の実施の形態に係る脈波測定装置では、コンデンサ CXの他端 に接地電圧(第 1の充電電圧)を印加することによって第 1の変換電圧を生成し、また 、コンデンサ CXの他端に充電電圧 VCC (第 2の充電電圧)を印加することによって 第 2の変換電圧を生成する構成であるとしたが、これに限定するものではない。第 1 の充電電圧および第 2の充電電圧が異なる電圧値であれば、演算増幅器 G1で発生 する熱雑音および 1/fノイズ等の低周波ノイズに対応する電圧を圧力信号力 排除 すること力 Sできる。たとえば、後述する本発明の第 2の実施の形態に係る脈波測定装 置と同様に、第 1の充電電圧および第 2の充電電圧を、絶対値が等しぐかつ印加方 向が逆の関係の電圧とすることができる。
[0104] また、本発明の第 1の実施の形態に係る脈波測定装置では、コンデンサ CXの他端 に接地電圧を印加することによって第 1の変換電圧を生成し、その後、コンデンサ CX の他端に充電電圧 VCCを印加することによって第 2の変換電圧を生成する構成であ るとした力 これに限定するものではなレ、。コンデンサ CXの他端に充電電圧 VCCを 印加することによって第 1の変換電圧を生成し、その後、コンデンサ CXの他端に接 地電圧を印加することによって第 2の変換電圧を生成する構成であってもよい。
[0105] 次に、本発明の他の実施の形態について図面を用いて説明する。なお、図中同一 または相当部分には同一符号を付してその説明は繰り返さない。
[0106] <第 2の実施の形態 >
本実施の形態は、 C_V変換部 21の構成を変更した脈波測定装置に関する。
[0107] [C_V変換部およびセンサエレメントの構成]
図 11は、本発明の第 2の実施の形態に係る脈波測定装置における C V変換部 2 1およびコンデンサ CXの構成を示す回路図である。
[0108] 図 11を参照して、 C— V変換部 21は、センサエレメント 28に対応するコンデンサ( 圧力検出用コンデンサ) CXと組み合わせて使用される。 C— V変換部 21は、コンデ ンサじじと、電荷転送用コンデンサ CFと、コンデンサ (第 1の電荷保持用コンデンサ) CH11と、コンデンサ(第 2の電荷保持用コンデンサ) CH12と、コンデンサ CH13と、 抵抗 R1および R9と、スィッチ(第 1のスィッチ) SW1と、スィッチ(第 2のスィッチ) SW 12と、スィッチ(第 3のスィッチ) SW13と、スィッチ SW14と、演算増幅器 G1および G 15と、充電部 51と、差動増幅器 55とを備える。差動増幅器 55は、演算増幅器 G12 〜G14と、抵抗 R2〜R8とを含む。充電部 51は、スィッチ SW51〜SW54と、電源 V 1および V2とを含む。スィッチ SW1および SW12〜SW14は、たとえばアナログスィ ツチである。
[0109] ここで、演算増幅器 G1と、スィッチ SW1と、コンデンサ CFと力 図 7に示す電圧変 換部 52に対応する。また、スィッチ SW12と、コンデンサ CH11と力 図 7に示す電圧 保持部 53に対応する。また、スィッチ SW13と、コンデンサ CH12と力 図 7に示す電 圧保持部 53に対応する。また、差動増幅器 55が、図 7に示す演算部 54に対応する [0110] 抵抗 Rlは、一端が演算増幅器 Glの出力に接続される。スィッチ SW12は、一端が 抵抗 R1の他端に接続され、他端がコンデンサ CH11の一端および演算増幅器 G12 の非反転入力端子に接続される。スィッチ SW13は、一端が抵抗 R1の他端に接続さ れ、他端がコンデンサ CH12の一端および演算増幅器 G13の非反転入力端子に接 続される。コンデンサ CH11〜CH12の他端が接地電圧(第 2の基準電圧)に接続さ れる。
[0111] 演算増幅器 G12は、出力が抵抗 R2の一端および抵抗 R5の一端に接続され、反 転入力端子が抵抗 R2の他端および抵抗 R3の一端に接続される。演算増幅器 G13 は、出力が抵抗 R4の一端および抵抗 R6の一端に接続され、反転入力端子が抵抗 R4の他端および抵抗 R3の他端に接続される。
[0112] 演算増幅器 G14は、反転入力端子が抵抗 R5の他端および抵抗 R7の一端に接続 され、非反転入力端子が抵抗 R6の他端及び抵抗 R8の一端に接続され、出力が抵 抗 R7の他端および抵抗 R9の一端に接続される。
[0113] スィッチ SW14は、一端が抵抗 R9の他端に接続され、他端がコンデンサ CH13の 一端および演算増幅器 G15の非反転入力端子に接続される。演算増幅器 G15は、 反転入力端子に出力が接続される。コンデンサ CH13の他端および抵抗 R8の他端 が接地電圧に接続される。
[0114] 充電部 51において、スィッチ SW55の一端が電源 VIの正電極に接続され、他端 力 Sコンデンサ CCの他端に接続される。スィッチ SW56の一端が電源 V2の負電極に 接続され、他端がコンデンサ CXの他端に接続される。
[0115] スィッチ SW12〜SW14は、 CPU11から受けた制御信号 SC12〜SC14に基づい てオン状態およびオフ状態を切り替える。
[0116] [C一 V変換部の動作]
図 12は、本発明の第 2の実施の形態に係る脈波測定装置が脈波測定を行なう際 の C—V変換部 21の動作を示すタイムチャートである。 VPはコンデンサ CXの他端に 印加される電圧であり、 VNはコンデンサ CCの他端に印加される電圧であり、制御信 号 SC1および SC12〜SC14がハイレベルの場合はそれぞれ対応するスィッチ SW1 および SW12〜SW14がオン状態となり、ローレベルの場合はオフ状態となる。
[0117] 図 13は、本発明の第 2の実施の形態に係る脈波測定装置が脈波測定を行なう際 の C—V変換部 21の動作手順を定めたフローチャートである。図 13のフローチャート に示される処理は、 CPU11力 ROM22にアクセスしてプログラムを読み出し、読み 出したプログラムを RAM23上に展開して実行することによって実現される。
[0118] 図 12および図 13を参照して、まず、 CPU11は、スィッチ SW1をオン状態とし、 つスィッチ SW12〜SW14をオフ状態とする。また、 CPU11は、スィッチ SW51およ び SW54を才ン状態とし、力つスィッチ SW52、 SW53、 SW55および SW56を才フ 状態とすることにより、コンデンサ CXの他端に充電電圧 VCC (第 1の充電電圧)を印 加し、かつコンデンサ CCの他端に充電電圧— VCCを印加する。
[0119] ここで、演算増幅器 G1の非反転入力端子に印加されている電圧すなわち接地電 圧が演算増幅器 G1の出力力 演算増幅器 G1の反転入力端子に帰還される。した がって、コンデンサ CXに充電電圧 VCCに対応する電荷が蓄えられ、また、コンデン サ CCに充電電圧—VCCに対応する電荷が蓄えられる(ステップ Sl l)。
[0120] 次に、 CPU11は、スィッチ SW1をオフ状態とする(ステップ S12)。
次に、 CPU11は、スィッチ SW52および SW53をオン状態とし、かつスィッチ SW5 1、 SW54〜SW56をオフ状態とすることにより、充電電圧 VCCおよび一 VCCの印 加を停止し、コンデンサ CXの他端およびコンデンサ CCの他端に接地電圧(第 1の基 準電圧)を印加する。そうすると、コンデンサ CXに蓄えられた電荷量およびコンデン サ CCに蓄えられた電荷量の差に対応する電荷がコンデンサ CFに移動する。そして 、演算増幅器 G1からは、コンデンサ CFに蓄えられた電荷に対応する電圧(第 1の変 換電圧)が出力電圧 G1として出力される (ステップ S13)。より詳細には、コンデンサ CXの静電容量を CXとし、コンデンサ CCの静電容量を CCとすると、コンデンサ CF に移動する電荷は、 (CX-CC) XVCCで表わされる。コンデンサ CFに移動した電 荷は、コンデンサ CFの静電容量を CFとすると、演算増幅器 G1によって((CX—CC ) /CF) X VCCで表わされる電圧(第 1の変換電圧)に変換される。
[0121] また、 CPU11は、スィッチ SW12をオン状態とする。そうすると、演算増幅器 G1か ら出力される第 1の変換電圧に基づいてコンデンサ CH11が充電される(ステップ S1 3)。このとき、演算増幅器 Gl 2の非反転入力端子には、コンデンサ CH11に蓄えら れている電荷に対応する電圧が入力される。演算増幅器 G12は、非反転入力端子 に入力される電圧に対応する電圧を演算増幅器 G14の反転入力端子に出力する。
[0122] 次に、 CPU11は、スィッチ SW12をオフ状態とする(ステップ S14)。これにより、演 算増幅器 G12の非反転入力端子に入力される電圧が固定される。
[0123] 次に、 CPU11は、スィッチ SW1をオン状態とする。また、 CPU11は、スィッチ SW 55および SW56をオン状態とし、かつスィッチ SW51〜SW54をオフ状態とすること により、コンデンサ CXの他端に充電電圧—VCC (第 2の充電電圧)を印加し、かつコ ンデンサ CCの他端に充電電圧 VCCを印加する。
[0124] ここで、演算増幅器 G1の非反転入力端子に印加されている電圧すなわち接地電 圧が演算増幅器 G1の出力力 演算増幅器 G1の反転入力端子に帰還される。した がって、コンデンサ CXに充電電圧一VCCに対応する電荷が蓄えられ、また、コンデ ンサ CCに充電電圧 VCCに対応する電荷が蓄えられる(ステップ S15)。
[0125] 次に、 CPU11は、スィッチ SW1をオフ状態とする(ステップ S16)。
次に、 CPU11は、スィッチ SW52および SW53をオン状態とし、かつスィッチ SW5 1、 SW54〜SW56をオフ状態とすることにより、充電電圧 VCCおよび一 VCCの印 加を停止し、コンデンサ CXの他端およびコンデンサ CCの他端に接地電圧(第 1の基 準電圧)を印加する。そうすると、コンデンサ CXに蓄えられた電荷量およびコンデン サ CCに蓄えられた電荷量の差に対応する電荷がコンデンサ CFに移動する。そして 、演算増幅器 G1からは、コンデンサ CFに蓄えられた電荷に対応する電圧(第 2の変 換電圧)が出力電圧 G1として出力される (ステップ S17)。より詳細には、コンデンサ CXの静電容量を CXとし、コンデンサ CCの静電容量を CCとすると、コンデンサ CF に移動する電荷は、 - (CX-CC) XVCCで表わされる。コンデンサ CFに移動した 電荷は、コンデンサ CFの静電容量を CFとすると、演算増幅器 G1によって((CC— C X) /CF) X VCCで表わされる電圧(第 2の変換電圧)に変換される。
[0126] また、 CPU11は、スィッチ SW13をオン状態とする。そうすると、演算増幅器 G1力、 ら出力される第 2の変換電圧に基づいてコンデンサ CH12が充電される(ステップ S1 7)。このとき、演算増幅器 G13の非反転入力端子には、コンデンサ CH12に蓄えら れている電荷に対応する電圧が入力される。演算増幅器 G13は、非反転入力端子 に入力される電圧に対応する電圧を演算増幅器 G14の非反転入力端子に出力する
[0127] 次に、 CPU11は、スィッチ SW13をオフ状態とする(ステップ S18)。これにより、演 算増幅器 G13の非反転入力端子に入力される電圧が固定される。
[0128] ここで、コンデンサ CFに蓄えられる電荷には、コンデンサ CXの静電容量に対応す る電荷以外に、前述のように演算増幅器 G1で発生する熱雑音および 1/fノイズなら びにアナログスィッチのチャージインジヱクシヨン等の低周波ノイズに対応する電荷が 含まれる。
[0129] したがって、第 1の変換電圧および第 2の変換電圧には、前述のノイズ成分に対応 するノイズ電圧と、コンデンサ CXの静電容量に対応するセンサ電圧とが含まれる。
[0130] ここで、第 1の変換電圧のうちのノイズ電圧の電圧値を VN1とし、第 1の変換電圧の うちのコンデンサ CXの静電容量に対応する電圧値を VS1とし、第 2の変換電圧のう ちのノイズ電圧の電圧値を VN2とし、第 2の変換電圧のうちのコンデンサ CXの静電 容量に対応する電圧値を VS2とし、差動増幅器 55全体のゲインを Kとすると、差動 増幅器 55の出力電圧 VDIFFは、 K X ( (VN1 +VS1) - (VN2 +VS2) )となる。
[0131] また、 VS1は充電電圧 VCCに対応する電圧値であり、 VS2は VCCに対応する 電圧値であるから、 VS1および VS2は絶対値が等しくかつ符号が異なる電圧値であ る。また、ステップ S11〜S14の動作と、ステップ S15〜S18の動作との時間間隔が 前述のノイズ成分の変化速度に対して十分短い間隔である場合には、 VN1および V N2はほぼ等しくなる。したがって、差動増幅器 55の出力電圧 VDIFFは、 K X ( (VN 1 +VS1) _ (VN2 +VS2) ) 2 X K XVN1となる。すなわち、差動増幅器 55の出 力電圧 VDIFFは、ノイズ成分が除去されて、コンデンサ CXの静電容量すなわち生 体の動脈内の圧力に対応する電圧となる。
[0132] 次に、 CPU11は、スィッチ SW14をオン状態とする。これにより、出力電圧 VDIFF に基づいてコンデンサ CHI 3が充電される(ステップ S 19)。
[0133] 次に、 CPU11は、スィッチ SW14をオフ状態とする(ステップ S20)。これにより、演 算増幅器 G12の非反転入力端子に入力される電圧が固定される。そして、演算増幅 器 G15からは、コンデンサ CH13に蓄えられている電荷に対応する電圧すなわち生 体の動脈内の圧力に対応する電圧が出力電圧 VOUTとしてローパスフィルタ 22に 出力される。
[0134] CPU11は、ステップ S11〜S20の処理を繰り返すことにより、 C— V変換部 21から 出力される圧力信号を更新する。これにより、動脈内の圧力波形が測定される。
[0135] その他の構成および動作は第 1の実施の形態に係る脈波測定装置と同様であるた め、ここでは詳細な説明を繰り返さない。
[0136] したがって、本発明の第 2の実施の形態に係る脈波測定装置では、第 1の実施の 形態に係る脈波測定装置と同様に、脈波検出性能の劣化を防ぎ、かつ小型化を図 ること力 Sできる。
[0137] なお、本発明の第 2の実施の形態に係る脈波測定装置では、 CPU11は、コンデン サ CXの他端に充電電圧 VCC (第 1の充電電圧)を印加することによって第 1の変換 電圧を生成し、また、コンデンサ CXの他端に充電電圧 VCC (第 2の充電電圧)を 印加することによって第 2の変換電圧を生成する構成であるとしたが、これに限定す るものではない。第 1の充電電圧および第 2の充電電圧が異なる電圧値であれば、 演算増幅器 G1で発生する熱雑音および 1/fノイズ等の低周波ノイズに対応する電 圧を圧力信号力 排除することができる。たとえば、第 1の実施の形態に係る脈波測 定装置と同様に、コンデンサ CXの他端に接地電圧を印加することによって第 1の変 換電圧を生成し、また、コンデンサ CXの他端に充電電圧 VCCを印加することによつ て第 2の変換電圧を生成する構成であってもよい。
[0138] また、本発明の第 2の実施の形態に係る脈波測定装置では、 C— V変換部 21は、 電圧保持部 53として、スィッチ SW12およびコンデンサ CH11、ならびにスィッチ SW 13およびコンデンサ CHI 2を含む構成であるとした力 これに限定するものではない 。電圧保持部 53は少なくとも第 1の変換電圧を保持する構成であればよいため、 C- V変換部 21は、スィッチ SW12およびコンデンサ CH11を含まなレ、か、あるいはスィ ツチ SW13およびコンデンサ CH12を含まない構成であってもよい。
[0139] さらに、本発明の第 1の実施の形態および第 2の実施の形態に係る脈波測定装置 では、第 1の基準電圧および第 2の基準電圧の両方が接地電圧である構成としたが 、これに限定するものではなレ、。第 1の基準電圧および第 2の基準電圧が異なる電圧 であり、かつ接地電圧と異なる電圧であっても、演算増幅器 G1で発生する熱雑音お よび 1/fノイズ等の低周波ノイズに対応する電圧を圧力信号力 排除することが可 能である。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと 考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって 示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが 意図される。

Claims

請求の範囲
[1] 生体の表面に押し当てることにより、動脈内の圧力波形を測定する脈波測定装置 であって、
前記動脈内の圧力に応じて静電容量が変化する圧力検出用コンデンサ (CX)と、 前記圧力検出用コンデンサ(CX)に第 1の充電電圧を印加して第 1の電荷を蓄え、 かつ前記圧力検出用コンデンサ(CX)に前記第 1の充電電圧と異なる第 2の充電電 圧を印加して第 2の電荷を蓄える充電部(51)と、
前記第 1の電荷に基づいて第 1の変換電圧を生成し、かつ前記第 2の電荷に基づ いて第 2の変換電圧を生成する電圧変換部(52)と、
前記第 1の変換電圧および前記第 2の変換電圧に基づいて前記圧力検出用コン デンサ (CX)の静電容量を表わす電圧を出力する演算部(54)とを備える脈波測定 装置。
[2] 前記演算部(54)は、前記第 1の変換電圧および前記第 2の変換電圧の差に基づ いて前記圧力検出用コンデンサ(CX)の静電容量を表わす電圧を出力する請求の 範囲第 1項記載の脈波測定装置。
[3] 前記脈波測定装置は、さらに、
前記第 1の変換電圧を保持する電圧保持部(53)を備え、
前記充電部(51)は、前記電圧保持部(53)が前記第 1の変換電圧を保持した後、 前記第 2の充電電圧に基づいて前記圧力検出用コンデンサ(CX)に前記第 2の電荷 を蓄え、
前記電圧変換部(52)は、前記電圧保持部(53)が前記第 1の変換電圧を保持した 後、前記圧力検出用コンデンサ (CX)に蓄えられた前記第 2の電荷に基づいて前記 第 2の変換電圧を生成し、
前記演算部(54)は、前記第 2の変換電圧および前記保持された第 1の変換電圧 に基づいて前記圧力検出用コンデンサ(CX)の静電容量を表わす電圧を出力する 請求の範囲第 1項記載の脈波測定装置。
[4] 生体の表面に押し当てることにより、動脈内の圧力波形を測定する脈波測定装置 であって、 前記動脈内の圧力に応じて静電容量が変化する圧力検出用コンデンサ(CX)と、 反転入力端子が前記圧力検出用コンデンサ (CX)の一端に結合され、非反転入力 端子が第 1の基準電圧に結合される演算増幅器 (G1)と、
一端が前記演算増幅器 (G1)の反転入力端子に結合され、他端が前記演算増幅 器 (G 1 )の出力に結合される電荷転送用コンデンサ(CF)と、
一端が前記演算増幅器 (G1)の反転入力端子に結合され、他端が前記演算増幅 器 (G1)の出力に結合される第 1のスィッチ(SW1)と、
一端が前記演算増幅器 (G1)の出力に結合される電荷保持用コンデンサ (CN)と、 一端が前記電荷保持用コンデンサ (CN)の他端に結合され、他端が第 2の基準電 圧に結合される第 2のスィッチ(SW2)とを備える脈波測定装置。
[5] 前記脈波測定装置は、さらに、
前記圧力検出用コンデンサ(CX)の他端に充電電圧を印加する充電部(51)と、 制御部(11)とを備え、
前記制御部(11)は、前記充電部(51)、前記第 1のスィッチ(SW1)および前記第 2のスィッチ(SW2)を制御して、
前記圧力検出用コンデンサ(CX)の他端に第 1の充電電圧を印加し、前記第 1のス イッチ(SW1)をオン状態とし、その後、
前記第 1のスィッチ(SW1)をオフ状態とし、その後、
前記第 2のスィッチ(SW2)をオン状態とし、かつ前記第 1の充電電圧の印加を停止 し、その後、
前記第 2のスィッチ(SW2)をオフ状態とし、その後、
前記圧力検出用コンデンサ(CX)の他端に第 2の充電電圧を印加し、前記第 1のス イッチ(SW1)をオン状態とし、その後、
前記第 1のスィッチ(SW1)をオフ状態とし、その後、
前記第 2の充電電圧の印加を停止する請求の範囲第 4項記載の脈波測定装置。
[6] 前記制御部(11)は、前記第 1の充電電圧の印加を停止するとき、および前記第 2 の充電電圧の印加を停止するとき、前記圧力検出用コンデンサ(CX)の他端に前記 第 1の基準電圧を印加する請求の範囲第 5項記載の脈波測定装置。
[7] 前記第 1の充電電圧および前記第 2の充電電圧は、絶対値が等しぐかつ印加方 向が逆である請求の範囲第 5項記載の脈波測定装置。
[8] 前記脈波測定装置は、さらに、
前記圧力検出用コンデンサ(CX)の他端に充電電圧を印加する充電部(51)と、 制御部(11)とを備え、
前記制御部(11)は、前記充電部(51)、前記第 1のスィッチ(SW1)および前記第 2のスィッチ(SW2)を制御して、
前記圧力検出用コンデンサ(CX)の他端に前記第 1の基準電圧を印加し、前記第 1のスィッチ(SW1)をオン状態とし、その後、
前記第 1のスィッチ(SW1)をオフ状態とし、その後、
前記第 2のスィッチ(SW2)をオン状態とし、その後、
前記第 2のスィッチ(SW2)をオフ状態とし、その後、
前記圧力検出用コンデンサ(CX)の他端に前記第 1の基準電圧と異なる充電電圧 を印加し、前記第 1のスィッチ(SW1)をオン状態とし、その後、
前記第 1のスィッチ(SW1)をオフ状態とし、その後、
前記充電電圧の印加を停止する請求の範囲第 4項記載の脈波測定装置。
[9] 前記脈波測定装置は、さらに、
前記圧力検出用コンデンサ(CX)の他端に充電電圧を印加する充電部(51)と、 制御部(11)とを備え、
前記制御部(11)は、前記充電部(51)、前記第 1のスィッチ(SW1)および前記第 2のスィッチ(SW2)を制御して、
前記圧力検出用コンデンサ(CX)の他端に前記第 1の基準電圧と異なる充電電圧 を印加し、前記第 1のスィッチ(SW1)をオン状態とし、その後、
前記第 1のスィッチ(SW1)をオフ状態とし、その後、
前記第 2のスィッチ(SW2)をオン状態とし、かつ前記充電電圧の印加を停止し、そ の後、
前記第 2のスィッチ(SW2)をオフ状態とし、その後、
前記圧力検出用コンデンサ(CX)の他端に前記第 1の基準電圧を印加し、前記第 1のスィッチ(SW1)をオン状態とし、その後、
前記第 1のスィッチ (SW1)をオフ状態とする請求の範囲第 4項記載の脈波測定装 置。
[10] 生体の表面に押し当てることにより、動脈内の圧力波形を測定する脈波測定装置 であって、
前記動脈内の圧力に応じて静電容量が変化する圧力検出用コンデンサ (CX)と、 反転入力端子が前記圧力検出用コンデンサ (CX)の一端に結合され、非反転入力 端子が第 1の基準電圧に結合される演算増幅器 (G1)と、
一端が前記演算増幅器 (G1)の反転入力端子に結合され、他端が前記演算増幅 器 (G 1 )の出力に結合される電荷転送用コンデンサ(CF)と、
一端が前記演算増幅器 (G1)の反転入力端子に結合され、他端が前記演算増幅 器 (G1)の出力に結合される第 1のスィッチ(SW1)と、
一端が前記演算増幅器 (G1)の出力に結合される第 2のスィッチ(SW2)と、 一端が前記第 2のスィッチ(SW2)の他端に結合され、他端が第 2の基準電圧に結 合される第 1の電荷保持用コンデンサ (CN)と、
第 1の入力端子が前記第 2のスィッチ(SW2)の他端に結合され、第 2の入力端子 が前記演算増幅器 (G1)の出力に結合される差動増幅器とを備える脈波測定装置。
[11] 前記脈波測定装置は、さらに、
一端が前記演算増幅器 (G1)の出力に結合される第 3のスィッチ(SW3)と、 一端が前記第 3のスィッチ(SW3)の他端に結合され、他端が第 3の基準電圧に結 合される第 2の電荷保持用コンデンサ (CN)とを備え、
前記差動増幅器は、前記第 1の入力端子が前記第 2のスィッチ(SW2)の他端に結 合され、前記第 2の入力端子が前記第 3のスィッチ(SW3)の他端に結合される請求 の範囲第 10項記載の脈波測定装置。
[12] 前記脈波測定装置は、さらに、
前記圧力検出用コンデンサ(CX)の他端に充電電圧を印加する充電部(51)と、 制御部(11)とを備え、
前記制御部(11)は、前記充電部(51)、前記第 1のスィッチ(SW1)および前記第 2のスィッチ(SW2)を制御して、
前記圧力検出用コンデンサ(CX)の他端に第 1の充電電圧を印加し、前記第 1のス イッチ(SW1)をオン状態とし、その後、
前記第 1のスィッチ(SW1)をオフ状態とし、その後、
前記第 2のスィッチ(SW2)をオン状態とし、かつ前記第 1の充電電圧の印加を停止 し、その後、
前記第 2のスィッチ(SW2)をオフ状態とし、その後、
前記圧力検出用コンデンサ(CX)の他端に第 2の充電電圧を印加し、前記第 1のス イッチ(SW1)をオン状態とし、その後、
前記第 1のスィッチ(SW1)をオフ状態とし、その後、
前記第 2の充電電圧の印加を停止する請求の範囲第 10項記載の脈波測定装置。
[13] 前記制御部(11)は、前記第 1の充電電圧の印加を停止するとき、および前記第 2 の充電電圧の印加を停止するとき、前記圧力検出用コンデンサ(CX)の他端に前記 第 1の基準電圧を印加する請求の範囲第 12項記載の脈波測定装置。
[14] 前記第 1の充電電圧および前記第 2の充電電圧は、絶対値が等しぐかつ印加方 向が逆である請求の範囲第 12項記載の脈波測定装置。
[15] 前記脈波測定装置は、さらに、
前記圧力検出用コンデンサ(CX)の他端に充電電圧を印加する充電部(51)と、 制御部(11)とを備え、
前記制御部(11)は、前記充電部(51)、前記第 1のスィッチ(SW1)および前記第 2のスィッチ(SW2)を制御して、
前記圧力検出用コンデンサ(CX)の他端に前記第 1の基準電圧を印加し、前記第 1のスィッチ(SW1)をオン状態とし、その後、
前記第 1のスィッチ(SW1)をオフ状態とし、その後、
前記第 2のスィッチ(SW2)をオン状態とし、その後、
前記第 2のスィッチ(SW2)をオフ状態とし、その後、
前記圧力検出用コンデンサ(CX)の他端に前記第 1の基準電圧と異なる充電電圧 を印加し、前記第 1のスィッチ(SW1)をオン状態とし、その後、 前記第 1のスィッチ(SW1)をオフ状態とし、その後、
前記充電電圧の印加を停止する請求の範囲第 10項記載の脈波測定装置。
前記脈波測定装置は、さらに、
前記圧力検出用コンデンサ(CX)の他端に充電電圧を印加する充電部(51)と、 制御部(11)とを備え、
前記制御部(11)は、前記充電部(51)、前記第 1のスィッチ(SW1)および前記第 2のスィッチ(SW2)を制御して、
前記圧力検出用コンデンサ(CX)の他端に前記第 1の基準電圧と異なる充電電圧 を印加し、前記第 1のスィッチ(SW1)をオン状態とし、その後、
前記第 1のスィッチ(SW1)をオフ状態とし、その後、
前記第 2のスィッチ(SW2)をオン状態とし、かつ前記充電電圧の印加を停止し、そ の後、
前記第 2のスィッチ(SW2)をオフ状態とし、その後、
前記圧力検出用コンデンサ(CX)の他端に前記第 1の基準電圧を印加し、前記第 1のスィッチ(SW1)をオン状態とし、その後、
前記第 1のスィッチ(SW1)をオフ状態とする請求の範囲第 10項記載の脈波測定 装置。
PCT/JP2007/056204 2006-04-18 2007-03-26 脈波測定装置 WO2007122963A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-114565 2006-04-18
JP2006114565A JP4363411B2 (ja) 2006-04-18 2006-04-18 脈波測定装置

Publications (1)

Publication Number Publication Date
WO2007122963A1 true WO2007122963A1 (ja) 2007-11-01

Family

ID=38624872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056204 WO2007122963A1 (ja) 2006-04-18 2007-03-26 脈波測定装置

Country Status (3)

Country Link
JP (1) JP4363411B2 (ja)
TW (1) TW200803789A (ja)
WO (1) WO2007122963A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282903A (ja) * 2006-04-18 2007-11-01 Omron Healthcare Co Ltd 脈波測定装置
CN102334292B (zh) * 2009-02-26 2014-05-14 欧姆龙健康医疗事业株式会社 电压/频率转换电路以及具有该电路的血压测定装置
EP3029444A1 (en) * 2014-12-02 2016-06-08 Horiba Stec, Co., Ltd. Capacitive sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327677A (ja) * 1995-05-26 1996-12-13 Nec Corp 容量型センサ用検出回路および検出方法
JPH0972757A (ja) * 1995-09-01 1997-03-18 Murata Mfg Co Ltd 微少容量検出回路
JP2006020823A (ja) * 2004-07-08 2006-01-26 Omron Healthcare Co Ltd アレイ型静電容量式圧脈波センサおよびこれを備えた脈波測定装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4363411B2 (ja) * 2006-04-18 2009-11-11 オムロンヘルスケア株式会社 脈波測定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327677A (ja) * 1995-05-26 1996-12-13 Nec Corp 容量型センサ用検出回路および検出方法
JPH0972757A (ja) * 1995-09-01 1997-03-18 Murata Mfg Co Ltd 微少容量検出回路
JP2006020823A (ja) * 2004-07-08 2006-01-26 Omron Healthcare Co Ltd アレイ型静電容量式圧脈波センサおよびこれを備えた脈波測定装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282903A (ja) * 2006-04-18 2007-11-01 Omron Healthcare Co Ltd 脈波測定装置
CN102334292B (zh) * 2009-02-26 2014-05-14 欧姆龙健康医疗事业株式会社 电压/频率转换电路以及具有该电路的血压测定装置
EP3029444A1 (en) * 2014-12-02 2016-06-08 Horiba Stec, Co., Ltd. Capacitive sensor
US9903891B2 (en) 2014-12-02 2018-02-27 Horiba Stec, Co., Ltd. Capacitive sensor

Also Published As

Publication number Publication date
JP2007282903A (ja) 2007-11-01
JP4363411B2 (ja) 2009-11-11
TW200803789A (en) 2008-01-16

Similar Documents

Publication Publication Date Title
JP4325638B2 (ja) 脈波測定装置
US7816838B2 (en) Piezoelectric force sensing
US8232972B2 (en) Touch position detector of capacitive touch panel and method for detecting the touch position
US20180184923A1 (en) Blood Pressure Measurement System Using Force Resistive Sensor Array
US7101338B2 (en) Sphygmomanometer with three-dimensional positioning function
KR101455269B1 (ko) 박막형 압력 센서를 이용한 손목형 혈압측정장치
WO2005091126A1 (ja) 信号処理装置
WO2006109519A1 (ja) 血圧測定装置および血圧測定方法
CN103930019A (zh) 血压测量装置和血压测量装置的控制方法
US20200221961A1 (en) Display control device and recording medium of program
CN101884529B (zh) 电子血压计及其标定方法
KR102308547B1 (ko) 휴대용 혈압 측정 장치
JP2011239840A (ja) 血圧測定システム
EP1467178A3 (en) Capacitance-sensing vibratory gyro and method for detecting change in capacitance
JP4363411B2 (ja) 脈波測定装置
WO2015053241A1 (ja) 増幅回路およびそれを備えた検出装置
US10649001B2 (en) Dual capacitive linearization circuit
Krestovnikov et al. Development of a circuit design for a capacitive pressure sensor, applied in walking robot foot
EP1897489A1 (en) Pulse wave measuring instrument manufacturable at suppressed cost
JP2004223035A (ja) 脈波測定装置
KR20090030122A (ko) 복합 생체신호 센서
JP2002282232A5 (ja)
US20040171947A1 (en) Pulse wave detecting apparatus
US10806350B2 (en) Sensor system for occupant support
WO2010098202A1 (ja) 電圧―周波数変換回路およびそれを備えた血圧測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739642

Country of ref document: EP

Kind code of ref document: A1