WO2007122151A1 - Verfahren und vorrichtung zur prüfung von stromwandlern mittels hochstromimpuls - Google Patents

Verfahren und vorrichtung zur prüfung von stromwandlern mittels hochstromimpuls Download PDF

Info

Publication number
WO2007122151A1
WO2007122151A1 PCT/EP2007/053763 EP2007053763W WO2007122151A1 WO 2007122151 A1 WO2007122151 A1 WO 2007122151A1 EP 2007053763 W EP2007053763 W EP 2007053763W WO 2007122151 A1 WO2007122151 A1 WO 2007122151A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
test
conductor
energy
energy store
Prior art date
Application number
PCT/EP2007/053763
Other languages
English (en)
French (fr)
Inventor
Markus Engel
Harald Karl
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CA002650254A priority Critical patent/CA2650254A1/en
Priority to EP07728225A priority patent/EP2010934A1/de
Priority to US12/298,588 priority patent/US20090153145A1/en
Publication of WO2007122151A1 publication Critical patent/WO2007122151A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/02Testing or calibrating of apparatus covered by the other groups of this subclass of auxiliary devices, e.g. of instrument transformers according to prescribed transformation ratio, phase angle, or wattage rating

Definitions

  • the invention relates to a device and a method for testing a current transformer.
  • Current transformers are used in the field of power distribution and transmission and, for example, in the power supply of rail vehicles such as the Transrapid. They are typically used to monitor the current flow in a primary current conductor that is at a high voltage potential. The current transformer generates an output signal proportional to the current flow in the primary current conductor in the low voltage range, which can be processed by downstream switching devices or control and regulating units.
  • a current transformer is provided according to the prior art, which has an additional test winding.
  • the test winding is applied to a core of the current transformer, to the lung and the secondary Wick ⁇ of the current transformer is provided.
  • a primary winding of the current transformer usually serves on the core with the secondary winding together acting conductor, which also as
  • Winding with the number of turns 1 can be considered.
  • the test winding usually has several thousand turns, so that a large primary current can be simulated with a small test current.
  • the test winding is usually cally in an insulating body of the current transformer eingos ⁇ sen. It considerably increases the cost of the current transformer.
  • the object of the invention is therefore to provide a device and a method of the type mentioned, with which a testing of conventional and cost-effective current transformer is possible.
  • the invention achieves this object, according to a first variant of an apparatus for testing a current transformer with egg ⁇ nem test current conductor and a test pulse circuit comprising an energy storage device, charging means for charging the Energyspei ⁇ Chers and a switching element for discharging the energy store via the test current conductor, so that a discharge current can be generated in the test current conductor, wherein an evaluation unit is provided for detecting a current transformer signal caused by the discharge current.
  • the invention solves this object according to a second variant by a method for testing a current transformer in which a test current conductor is passed at least once through the current transformer and then the outputs of a Testimpulsschal ⁇ tion are connected to each other by means of the test current conductor, an energy storage is charged, then a switching element for discharging the energy store under Erzeu ⁇ a supply over the test current conductor flowing discharge current operated and the current transformer signal in consequence of the discharge current generated by the current transformers is measured.
  • an apparatus and a method are riding ⁇ be provided with which the verification of the Functionally ⁇ is ness allows current transformers which have no expensive test winding and which are therefore inexpensive. Furthermore, according to the invention, the functional test of already fixed current transformers possible.
  • the inventive device comprises a test pulse circuit whose output or its outputs are short-circuited by a possibly selectable test current conductor.
  • the test pulse circuit comprises an energy store and a switching element. By operating the switching element there is a Entla ⁇ -making of the energy storage with a high discharge current in the test conductor in the wake.
  • the energy charged in the energy storage device is sufficient according to the invention to generate such a high discharge current that the secondary current at the output of the current transformer to be tested can be detected by the evaluation unit used.
  • the evaluation unit is, for example, an evaluation unit which is also connected to the current transformer during normal operation. Deviating from this, the evaluation unit is one in the examination of the
  • the energy store may also be inductively coupled to the test current conductor. It is essential within the scope of the invention that a high current is generated in the test current conductor as a result of the discharge of the energy store.
  • the energy store is for example a coil.
  • the coil may be arranged in a short circuit, in which, moreover, the switching element and the charging means are arranged.
  • the test current conductor is arranged parallel to the coil. If the switching element is in its contact position, in which a flow of current through the switching element is made possible, a charging current generated by the charging means flows in the short circuit.
  • the impedance of the connected parallel to the coil conductor test is so high that the ter over the Teststromlei ⁇ flowing current can be neglected. By tripping ⁇ sen a switching operation, the switching element opens. The current flow in the short circuit is interrupted. It comes it for discharging the coil via the test current conductor with a high discharge current in the wake.
  • the energy store is a capacitor, wherein the switching element is connected in series with the capacitor.
  • the switching element is in its disconnected position, it comes through the charging means for charging the capacitor.
  • the sator on condensate ⁇ voltage drop is called charging voltage.
  • a discharge of the Kon ⁇ densators via the switching element and finally on the selected test current conductor is provided by triggering a switching operation.
  • the capacitor advantageously has a capacity ness of the achievable by the charging means charging voltage of the capacitor is sufficient in Depending ⁇ to generate such a high discharge current that this produces a detectable secondary current at the output of the current transformer.
  • the switching element is a Halbleiterschal- is ter, which can be transferred from a blocking position in which a current flow is enabled through the power semiconductor, position to a passage ⁇ , in which a current flow is interrupted by means of the power semiconductor.
  • Switchable power semiconductors are, for example, thyristors, IGBTs or the like. Semiconductor switches allow fast switching compared to mechanical switches. An undesirable influence of the switching process on the pulse shape of the discharge ⁇ current can be avoided in this way.
  • At least two mutually parallel test current conductor and a relay are provided, which is for connecting one of Teststromlei ⁇ ter set up with the initial test pulse circuit.
  • a plurality of thyristors are provided, each associated with a test current conductor. By igniting a particular thyristor, the current transformer to be tested can thus be selected.
  • test current conductors arranged in series with one another are provided. In this way, several current transformers can be tested simultaneously.
  • any combination of parallel to each other and arranged in series test current conductors are possible within the scope of the invention.
  • test current conductor for example, permanently integrated in the current ler ⁇ wall, but it has a limited number of turns.
  • test current conductor is flexurally elastic. Due to the flexurally elastic design of the test current conductor, this can be retrofitted to the
  • test conductor is led by hand through the toroidal core.
  • the test current conductor is then connected in parallel with the primary conductor.
  • the device according to the invention and the method according to the invention are suitable both for inductively operating current transformers and for current transformers which are based on the so-called Hall effect.
  • the test pulse circuit comprises a limiting inductor connected in series with the energy source. Storage.
  • the limiting inductance limits the Entla ⁇ dung current to a certain level, so that the height of the Ent ⁇ charging current in the interpretation of the test pulse circuit is more precisely fixed.
  • the test pulse circuit ⁇ regulation means for adjusting the charging voltage of the energy store on.
  • the control means allow, for example, a one ⁇ provide the charging voltage of the capacitor in dependence on the length of the test conductor. This can in particular be part way before ⁇ when the test pulse circuit is connected to a plurality of test current conductors which are each passed through an associated current transformer.
  • the test pulse circuit has an additional relay with which the test current conductor can be selected, which leads the discharge current as a result of the switching. In other words, the relay switches the respectively selected test current conductor parallel to the series circuit of capacitor and power semiconductor.
  • the control means can also adjust the height of a current flowing through a coil as an energy storage current. In this connection, reference is made to the above comments on the coil.
  • the test pulse circuit further enables the impressing of a specific waveform on the discharge current.
  • control means comprise a shunt resistor arranged in series with the energy store for measuring the waveform of a discharge current flowing across the shunt resistor.
  • shunt resistor is expediently to ei ⁇ nen ohmic resistance. The voltage drop across this shunt resistor is measured, the converted voltage signal then being converted into current values. The comparison The curve shape of the detected at the output of the current transformer secondary current with the waveform of the impressed discharge ⁇ current allows additional information about the function ⁇ ability of each tested current transformer.
  • the waveform can also be achieved via an inductive coupling (Ü bertrager or printed circuit board structures) of the generated discharge current to the evaluation circuit.
  • the energy quantity of the energy store is regulated.
  • the regulation ⁇ control medium the charge voltage of the capacitor. This allows so ⁇ probably an adaptation of the charging voltage to different lengths of the test current conductor, as well as a readjustment of the La- voltage depending on the aging of the capacitor.
  • the test current conductor is placed through the current transformer between two and twenty times.
  • the multiple performing the test conductor through the current transformer simulates a higher primary flow at the same test current circuit and therefore extends the capabilities of erfindungsge ⁇ MAESSEN process.
  • the height of the test current can be set ⁇ .
  • a specific curve shape is impressed on the discharge current.
  • the comparison of the waveform of the impressed discharge current with the waveform of the induced secondary current at the output of the current transformer expands the possibilities of statement for the functionality of the respective current transformer.
  • the discharge current is by a Be ⁇ grenzungsindukt technically limited.
  • the limitation of the Entla ⁇ dung stream allows a more accurate adjustment of the Entla ⁇ dung current as a function of the charging means and as a function of the amount of stored energy.
  • the charging means are realized for example by a switching network ⁇ part.
  • Such switching power supplies include —particularly insomniaßi ⁇ gate a DC voltage source in the form of a battery or the like which is connected to a winding of a transformer or carry-over.
  • the charging means have at ⁇ play also in series with the winding of a switch, for example in the form of a semiconductor switch, so that depending on the switching position of said switch changing the flows through the primary winding of said capacitor ⁇ sequent direct current between zero and a maximum DC current is generated.
  • the energy store is a capacitor
  • the secondary current thus generated is rectified by a diode and then used to charge the capacitor, by chopping the direct current by means of the switch and returning the actual value of the capacitor Charging state of Energyspei ⁇ chers on the control circuit is further a control of the energy stored in the energy storage allows.
  • FIG. 1 shows an embodiment of the device according to the invention with a once passed through the current transformer test current conductor
  • FIG. 2 shows an embodiment of the invention
  • FIG 3 shows an embodiment of the test pulse scarf ⁇ processing of the device according to the invention show.
  • FIG. 1 shows an exemplary embodiment of the invention
  • Test current conductor 1 comprising a test current conductor 1, which is guided in parallel to a primary current conductor 2 through a toroidal core 3 of a current transformer.
  • the current transformer comprising in addition to egg ⁇ nem not illustrated figuratively insulating body, a secondary därwicklung 4 which firmly together with the ring core 3 in the
  • a secondary current I 3 can be generated at the output of the current transformer by inductive coupling between the test current conductor 1 and secondary winding 4, which is fed to an evaluation unit, not shown figuratively. If the height of the impressed discharge current is known, for example, the calibration of the current transformer and thus the functionality of the current transformer can be checked.
  • FIG. 2 shows a test current conductor 1, which is guided twice through the toroidal core 3 of the current transformer.
  • the test is ⁇ conductor 1 connected to the same test pulse circuit, as in the example illustrated in Figure 1 embodiment.
  • FIG. 3 shows an embodiment of a Testimpulsschal ⁇ device 5, which has a capacitor 6 and a switchable power semiconductor in the form of a thyristor 7.
  • the thyristor 7 can be ignited by ignition pulses 8 by means of an ignition circuit 8 which is not shown in FIG. 3, whereby the thyristor 7 can be converted from a blocking position in which a current flow is interrupted via the thyristor 7 into a passage position in which there is a current flow is made possible via the thyristor 7.
  • an ohmic shunt resistor 9 and a limiting inductor 10 are also arranged.
  • the voltage dropping across the shunt resistor 9 is detected as a voltage signal, wherein sampling means samples the obtained voltage signal to obtain samples, and the samples are converted to digital voltage values by an analog-to-digital converter.
  • the voltage values are subsequently converted into digital current values 11.
  • the sampling rate of the voltage signals is so high that the waveform of a discharge current, which is by short-circuiting ⁇ 6 SEN of the capacitor produced can be detected.
  • Such a discharge current is advantageously pulse-shaped and has, for example, a half-value width of 3 ms, the half-value value being measured as the total width which the current pulse has at its half of its maximum.
  • the test pulse circuit shown in Figure 3 also has a relay 12, with which a selection is made possible, via which the parallel-connected test current conductor Ia, Ib or Ic, the discharge current flows.
  • a relay 12 with which a selection is made possible, via which the parallel-connected test current conductor Ia, Ib or Ic, the discharge current flows.
  • this embodiment of the invention is thus only one test pulse ⁇ circuit for the testing of three current transformers necessary, wherein each current converter JE only a test current conductors Ia, Ib or Ic wells assigned.
  • the test current circuit 5 further comprises charging means 13, which comprise a DC voltage source, not shown in the figures, as well as a transformer 14 with a primary winding 15 and a secondary winding 16. Furthermore, the charging means 13 have a rectifier diode 17 and a semiconductor switch 18. By igniting the semiconductor switch 18 in a certain pulse sequence 19, the semiconductor switch is periodically transferred from its passage position into its blocking position. By such a periodic change of the switching ⁇ position of the semiconductor switch 18, the current flow through the secondary winding 15 is quasi chopped and a corresponding secondary current generated in the secondary winding 16. The secondary current is then rectified by the rectifier diode 17, wherein it comes to charging the capacitor 6. The charging voltage of the capacitor 6 is dependent for egg ⁇ nen of the selected DC voltage source as well as the control of the semiconductor switch 18 and can be adjusted by figuratively not shown control means.
  • the charging voltage of the capacitor 6 also influenced towards ⁇ from the waveform and the amplitude of Entladungsstro ⁇ mes.
  • control means are provided, wherein the control means the temperature measured at the shunt resistor 9 Stromkur ⁇ venute via an appropriate communication line to receive and compare the resulting waveform of the discharge current ⁇ with a predetermined desired course. If the deviation is too large, this is done by means of an internal logic generates a charging voltage setpoint, which is passed to a subordinate voltage regulation, which sets by means of a suitable pulse train 19 a the charging voltage setpoint corre sponding ⁇ charging voltage of the capacitor 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Dc-Dc Converters (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

Um die Funktionsfähigkeit eines herkömmlichen Stromwandlers kostengünstig überwachen zu können, wird eine Vorrichtung zum Prüfen eines Stromwandlers mit einem Teststromleiter (1) und einer Testimpulsschaltung (5), die einen Energiespeicher (6), Auflademittel (13) zum Aufladen des Energiespeichers (6) und ein Schaltelement (7) zum Entladen des Energiespeichers über den Teststromleiter (1) aufweist, bereitgestellt, so dass ein Entladungsstrom in dem Teststromleiter erzeugbar ist, wobei eine Auswerteeinheit zum Erfassen eines durch den Entladungsstrom hervorgerufenen Stromwandlersignals vorgesehen ist.

Description

Beschreibung
Verfahren und Vorrichtung zur Prüfung von Stromwandlern mittels Hochstromimpuls
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Prüfen eines Stromwandlers.
Stromwandler werden im Bereich der Energieverteilung und - Übertragung und beispielsweise bei der Energieversorgung schienengeführter Fahrzeuge wie dem Transrapid eingesetzt. Sie dienen in der Regel zur Überwachung des Stromflusses in einem Primärstromleiter, der sich auf einem Hochspannungspotenzial befindet. Der Stromwandler erzeugt ein dem Stromfluss im Primärstromleiter proportionales Ausgangssignal im Nieder¬ spannungsbereich, das von nachgeschalteten Schaltgeräten oder Steuer- und Regelungseinheiten verarbeitet werden kann.
Um den Ausfall eines Stromwandlers erkennen zu können, muss die fehlerfreie Funktion des Stromwandlers in der Regel zyk¬ lisch überprüft werden. Solche Überprüfungen sind insbesonde¬ re dann notwendig, wenn der Stromwandler Teil einer Einrichtung ist, für die hohe Sicherheitsanforderungen gelten. Zur Durchführung eines Funktionstestes wird gemäß dem Stand der Technik ein Stromwandler bereitgestellt, der eine zusätzliche Testwicklung aufweist. Die Testwicklung ist auf einem Kern des Stromwandlers aufgebracht, an dem auch die Sekundärwick¬ lung des Stromwandlers vorgesehen ist. Als Primärwicklung des Stromwandlers dient in der Regel ein über den Kern mit der Sekundärwicklung zusammen wirkender Leiter, der auch als
Wicklung mit der Windungszahl 1 betrachtet werden kann. Die Testwicklung weist hingegen in der Regel mehrere tausend Windungen auf, so dass mit einem kleinen Teststrom ein großer Primärstrom simuliert werden kann. Die Testwicklung ist übli- cherweise in einem Isolierkörper des Stromwandlers eingegos¬ sen. Sie verteuert den Stromwandler erheblich.
Aufgabe der Erfindung ist es daher eine Vorrichtung und ein Verfahren der eingangs genannten Art bereitzustellen, mit denen ein Prüfen herkömmlicher und kostengünstiger Stromwandler ermöglicht ist.
Die Erfindung löst diese Aufgabe gemäß einer ersten Variante durch eine Vorrichtung zum Prüfen eines Stromwandlers mit ei¬ nem Teststromleiter und einer Testimpulsschaltung, die einen Energiespeicher, Auflademittel zum Aufladen des Energiespei¬ chers und ein Schaltelement zum Entladen des Energiespeichers über den Teststromleiter aufweist, so dass ein Entladungs- ström in dem Teststromleiter erzeugbar ist, wobei eine Auswerteeinheit zum Erfassen eines durch den Entladungsstrom hervorgerufenen Stromwandlersignals vorgesehen ist.
Die Erfindung löst diese Aufgabe gemäß einer zweiten Variante durch ein Verfahren zum Prüfen eines Stromwandlers, bei dem ein Teststromleiter wenigstens einmal durch den Stromwandler geführt und anschließend die Ausgänge einer Testimpulsschal¬ tung mittels des Teststromleiters miteinander verbunden werden, ein Energiespeicher aufgeladen wird, anschließend ein Schaltelement zum Entladen des Energiespeichers unter Erzeu¬ gung eines über den Teststromleiter fließenden Entladungsstromes betätigt und das in Folge des Entladungsstromes vom Stromwandler erzeugte Stromwandlersignal gemessen wird.
Erfindungsgemäß sind eine Vorrichtung und ein Verfahren be¬ reitgestellt, mit denen die Überprüfung der Funktionstüchtig¬ keit von Stromwandlern ermöglicht ist, die keine aufwändige Testwicklung aufweisen und die daher kostengünstig sind. Ferner ist erfindungsgemäß auch die Funktionsprüfung von bereits fest installierten Stromwandlern möglich. Die erfindungsgemäße Vorrichtung umfasst eine Testimpulsschaltung, deren Ausgang oder deren Ausgänge durch einen ggf. auswählbaren Teststromleiter kurzgeschlossen sind. Dabei umfasst die Testim- pulsschaltung einen Energiespeicher und ein Schaltelement. Durch Betätigen des Schaltelements kommt es zu einer Entla¬ dung des Energiespeichers mit einem hohen Entladungsstrom im Teststromleiter im Gefolge. Dabei ist die in dem Energiespei¬ cher geladene Energie erfindungsgemäß ausreichend, einen so hohen Entladungsstrom zu erzeugen, dass der Sekundärstrom am Ausgang des zu überprüfenden Stromwandlers von der eingesetzten Auswerteeinheit erfassbar ist. Bei der Auswerteeinheit handelt es sich beispielsweise um eine auch im Normalbetrieb mit dem Stromwandler verbundene Auswerteeinheit. Abweichend hiervon ist die Auswerteeinheit eine bei der Prüfung des
Stromwandlers an dem Ausgang extra anzuschließende Auswerte¬ einheit. Der Energiespeicher kann beispielsweise auch induktiv mit dem Teststromleiter gekoppelt sein. Wesentlich im Rahmen der Erfindung ist, dass durch die Entladung des Ener- giespeichers ein hoher Strom im Teststromleiter erzeugt wird.
Der Energiespeicher ist beispielsweise eine Spule. Die Spule kann in einem Kurschlusskreis angeordnet sein, in dem darüber hinaus das Schaltelement und die Auflademittel angeordnet sind. Der Teststromleiter ist parallel zur Spule angeordnet. Ist das Schaltelement in seiner Kontaktstellung, in der ein Stromfluss über das Schaltelement ermöglicht ist, fließt ein von den Auflademitteln erzeugter Ladestrom im Kurzschlusskreis. Die Impedanz des parallel zur Spule angeschlossenen Teststromleiters ist so hoch, dass der über den Teststromlei¬ ter fließende Strom vernachlässigt werden kann. Durch Auslö¬ sen eines Schaltvorganges öffnet sich das Schaltelement. Der Stromfluss im Kurzschlusskreis ist unterbrochen. Dabei kommt es zur Entladung der Spule über den Teststromleiter mit einem hohen Entladungsstrom im Gefolge.
Gemäß einer bevorzugten Weiterentwicklung der Erfindung ist der Energiespeicher ein Kondensator, wobei das Schaltelement in Reihe zum Kondensator geschaltet ist. Befindet sich das Schaltelement in seiner Trennstellung, kommt es durch die Auflademittel zur Aufladung des Kondensators. Die am Konden¬ sator abfallende Spannung wird Ladespannung genannt. Durch Auslösen eines Schaltvorganges wird eine Entladung des Kon¬ densators über das Schaltelement und schließlich über den ausgewählten Teststromleiter ermöglicht. Der Kondensator weist zweckmäßigerweise eine Kapazität auf, die in Abhängig¬ keit der durch die Auflademittel erzielbaren Ladespannung des Kondensators ausreichend ist, einen so hohen Entladungsstrom zu erzeugen, dass dieser am Ausgang des Stromwandlers einen erfassbaren Sekundärstrom erzeugt.
Zweckmäßigerweise ist das Schaltelement ein Halbleiterschal- ter, der von einer Sperrstellung, in der ein Stromfluss über den Leistungshalbleiter ermöglicht ist, in eine Durchgangs¬ stellung überführbar ist, in der ein Stromfluss über den Leistungshalbleiter unterbrochen ist. Schaltbare Leistungshalbleiter sind beispielsweise Thyristoren, IGBTs oder der- gleichen. Halbleiterschalter ermöglichen ein im Vergleich zu mechanischen Schaltern schnelles Schalten. Ein unerwünschter Einfluss des Schaltvorganges auf die Pulsform des Entladungs¬ stromes kann auf diese Weise vermieden werden.
Gemäß einer vorteilhaften Weiterentwicklung sind mindestens zwei parallel zueinander angeordnete Teststromleiter und ein Relais vorgesehen, das zum Verbinden eines der Teststromlei¬ ter mit dem Ausgang Testimpulsschaltung eingerichtet ist. Auf diese Weise können mehrere Stromwandler mit einer gemeinsamen Testimpulsschaltung getestet werden. Abweichend hiervon sind mehrere Thyristoren vorgesehen, die jeweils einem Teststromleiter zugeordnet sind. Durch Zünden eines bestimmten Thyristors ist somit der zu testende Stromwandler auswählbar.
Abweichend hiervon sind mindestens zwei in Reihe zueinander angeordnete Teststromleiter vorgesehen. Auf diese Weise können mehrer Stromwandler gleichzeitig getestet werden. Selbstverständlich sind beliebige Kombinationen von parallel zuein- ander angeordneten und in Reihe zueinander angeordneten Teststromleitern im Rahmen der Erfindung möglich.
Der Teststromleiter ist beispielsweise fest in dem Stromwand¬ ler integriert, wobei er jedoch eine nur begrenzte Anzahl von Windungen aufweist.
Gemäß einer vorteilhaften Weiterentwicklung der ersten Variante ist der Teststromleiter jedoch biegeelastisch. Aufgrund der biegeelastischen Ausgestaltung des Teststromleiters kann dieser auf besonders einfache Weise nachträglich an dem
Stromwandler angebracht werden. Weist der Stromwandler beispielsweise einen geschlossen umlaufenden Ringkern auf, wird der Testleiter beispielsweise von Hand durch den Ringkern geführt. Der Teststromleiter ist dann parallel zum Primärleiter geschaltet.
Die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren sind sowohl für induktiv arbeitende Stromwandler als auch für Stromwandler geeignet, die auf dem so genannten Halleffekt basieren.
Bei einer weiteren vorteilhaften Ausgestaltung gemäß der ersten Variante der Erfindung umfasst die Testimpulsschaltung eine Begrenzungsinduktivität in Reihenschaltung zum Energie- Speicher. Die Begrenzungsinduktivität begrenzt den Entla¬ dungsstrom auf ein bestimmtes Maß, so dass die Höhe des Ent¬ ladungsstromes bei der Auslegung der Testimpulsschaltung genauer festlegbar ist.
Vorteilhafterweise weist die Testimpulsschaltung Regelungs¬ mittel zum Einstellen der Ladespannung des Energiespeichers auf. Die Regelungsmittel ermöglichen beispielsweise ein Ein¬ stellen der Ladespannung des Kondensators in Abhängigkeit der Länge des Teststromleiters. Dies kann insbesondere dann vor¬ teilhaft sein, wenn die Testimpulsschaltung mit mehreren Teststromleitern verbunden ist, die jeweils durch einen zugeordneten Stromwandler geführt sind. In diesem Fall weist die Testimpulsschaltung ein zusätzliches Relais auf, mit dem der Teststromleiter auswählbar ist, der in Folge des Schaltens den Entladungsstrom führt. Das Relais schaltet mit anderen Worten den jeweils ausgewählten Teststromleiter parallel zur Reihenschaltung aus Kondensator und Leistungshalbleiter. Die Regelungsmittel können jedoch auch die Höhe eines über eine Spule als Energiespeicher fließenden Stromes einstellen. In diesem Zusammenhang sei auf die obigen Ausführungen zur Spule verwiesen .
Die Testimpulsschaltung ermöglicht weiterhin das Aufprägen einer bestimmten Kurvenform auf den Entladungsstrom.
Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung umfassen die Regelungsmittel einen in Reihe zum Energiespeicher angeordneten Shuntwiderstand zum Messen der Kurvenform eines über den Shuntwiderstand fließenden Entladungsstromes. Bei dem Shuntwiderstand handelt es sich zweckmäßigerweise um ei¬ nen Ohmschen Widerstand. Der Spannungsabfall an diesem Shunt¬ widerstand wird gemessen, wobei das erfasste Spannungsignal anschließend in Stromwerte umgerechnet wird. Der Vergleich der Kurvenform des am Ausgang des Stromwandlers erfassten Sekundärstromes mit der Kurvenform des aufgeprägten Entladungs¬ stromes ermöglicht zusätzliche Aussagen über die Funktions¬ tüchtigkeit des jeweils geprüften Stromwandlers. Alternativ kann die Kurvenform auch über eine induktive Kopplung (Ü- bertrager oder Leiterplattenstrukturen) des erzeugten Entladungsstromes mit dem Auswertekreis erreicht werden.
Gemäß einer vorteilhaften Weiterentwicklung des erfindungsge- mäßen Verfahrens wird die Energiemenge des Energiespeichers geregelt. Im Falle eines Kondensators regeln die Regelungs¬ mittel die Ladespannung des Kondensators. Dies ermöglicht so¬ wohl eine Anpassung der Ladespannung an unterschiedliche Längen des Teststromleiters, als auch ein Nacheinstellen der La- despannung in Abhängigkeit der Alterung des Kondensators.
Vorteilhafterweise wird der Teststromleiter zwischen zwei- und zwanzigmal durch den Stromwandler gelegt. Das mehrfache Durchführen des Teststromleiters durch den Stromwandler simu- liert bei gleicher Teststromschaltung einen höheren Primärstrom und erweitert daher die Möglichkeiten des erfindungsge¬ mäßen Verfahrens. Durch die Regelung der gespeicherten Energie lässt sich natürlich auch die Höhe des Teststroms ein¬ stellen .
Gemäß einer weiteren zweckmäßigen Ausgestaltung des erfindungsgemäßen Verfahrens wird dem Entladungsstrom eine spezielle Kurvenform aufgeprägt. Der Vergleich der Kurvenform des eingeprägten Entladungsstromes mit der Kurvenform des hervorgerufenen Sekundärstromes am Ausgang des Stromwandlers erweitert die Aussagemöglichkeiten zur Funktionstüchtigkeit des jeweiligen Stromwandlers. Vorteilhafterweise wird der Entladungsstrom durch eine Be¬ grenzungsinduktivität begrenzt. Die Begrenzung des Entla¬ dungsstromes ermöglicht ein genaueres Einstellen des Entla¬ dungsstromes in Abhängigkeit der Auflademittel sowie in Ab- hängigkeit der Menge der gespeicherten Energie.
Die Auflademittel sind beispielsweise durch ein Schaltnetz¬ teil realisiert. Solche Schaltnetzteile umfassen zweckmäßi¬ gerweise eine Gleichspannungsquelle in Form einer Batterie oder dergleichen, die mit einer Wicklung eines Transformators oder Übertrages verbunden ist. Die Auflademittel weisen bei¬ spielsweise ferner in Reihe zur Wicklung einen Schalter beispielsweise in Form eines Halbleiterschalters auf, so dass je nach Schaltstellung des besagten Schalters eine Veränderung des über die Primärwicklung des besagten Kondensators flie¬ ßenden Gleichstromes zwischen Null und einem maximalen Gleichstrom erzeugbar ist. Durch dieses „Zerhacken" des Gleichstromes wird am Transformator ein Sekundärstrom erzeugt. Ist der Energiespeicher ein Kondensator wird der so erzeugte Sekundärstrom durch eine Diode gleichgerichtet und anschließend zum Aufladen des Kondensators eingesetzt. Durch das Zerhacken des Gleichstromes mittels des Schalters und der Rückführung des Istwerts des Ladezustandes des Energiespei¬ chers auf die Regelungsschaltung ist weiterhin eine Regelung der in dem Energiespeicher gespeicherten Energie ermöglicht.
Die Realisierung des Energiespeichers ist keineswegs auf Spu¬ len oder Kondensatoren begrenzt. Grundsätzlich kommen beliebige Energiespeicher in Betracht, die mittels des Schaltele- ments ausreichend schnell entladen werden können.
Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfin¬ dung sind Gegenstand der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung unter Bezug auf die Figuren der Zeichnungen, wobei gleiche Bezugszeichen auf gleich wirkende Bauteile verweisen und wobei
Figur 1 ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung mit einem einmal durch den Stromwandler geführten Teststromleiter,
Figur 2 ein Ausführungsbeispiel der erfindungsgemäßen
Vorrichtung mit einem zweimal durch einen Stromwandler geführten Teststromleiter und
Figur 3 ein Ausführungsbeispiel der Testimpulsschal¬ tung der erfindungsgemäßen Vorrichtung zeigen.
Figur 1 zeigt ein Ausführungsbeispiel der erfindungsgemäßen
Vorrichtung, die einen Teststromleiter 1 aufweist, der parallel zu einem Primärstromleiter 2 durch einen Ringkern 3 eines Stromwandlers geführt ist. Der Stromwandler umfasst neben ei¬ nem figürlich nicht dargestellten Isolierkörper, eine Sekun- därwicklung 4, die mit dem Ringkern 3 zusammen fest in dem
Isolierkörper eingebettet ist. Durch Aufprägen eines ausrei¬ chend hohen Teststromes I1 ist am Ausgang des Stromwandlers durch induktive Kopplung zwischen Teststromleiter 1 und Sekundärwicklung 4 ein Sekundärstrom I3 erzeugbar, der einer figürlich nicht dargestellten Auswerteeinheit zugeführt wird. Ist die Höhe des aufgeprägten Entladungsstromes bekannt, kann beispielsweise die Kalibrierung des Stromwandlers und somit die Funktionsfähigkeit des Stromwandlers überprüft werden.
Figur 2 zeigt einen Teststromleiter 1, der zweimal durch den Ringkern 3 des Stromwandlers geführt ist. Dabei ist der Test¬ stromleiter 1 mit der gleichen Testimpulsschaltung verbunden, wie in dem in Figur 1 dargestellten Ausführungsbeispiel. Durch das zweifache Hindurchführen des Teststromleiters 1 durch den Ringkern 3 wird somit eine Wicklung mit einer Windungszahl von n gleich 2 bereitgestellt, mit der ein höherer Primärstrom IP simulierbar ist, als in dem in Figur 1 dargestellten Ausführungsbeispiel.
Figur 3 zeigt ein Ausführungsbeispiel einer Testimpulsschal¬ tung 5, die einen Kondensator 6 sowie einen schaltbaren Leistungshalbleiter in Form eines Thyristors 7 aufweist. Der Thyristor 7 ist durch eine in Figur 3 figürlich nicht darge- stellte Zündschaltung durch Zündimpulse 8 zündbar, wodurch der Thyristor 7 von einer Sperrstellung, in der ein Strom- fluss über den Thyristor 7 unterbrochen ist, in eine Durchgangsstellung überführbar, in der ein Stromfluss über den Thyristor 7 ermöglicht ist.
In Reihe zum Thyristor 7 sind ferner ein ohmscher Shuntwi- derstand 9 sowie eine Begrenzungsinduktivität 10 angeordnet. Die an dem Shuntwiderstand 9 abfallende Spannung wird als Spannungssignal erfasst, wobei Abtastmittel das erhaltene Spannungssignal unter Gewinnung von Abtastwerten abtastet und die Abtastwerte durch einen Analog-/Digitalwandler in digitale Spannungswerte umgewandelt werden. Die Spannungswerte wer¬ den anschließend in digitale Stromwerte 11 umgerechnet. Dabei ist die Abtastrate der Spannungssignale so hoch, dass der Kurvenverlauf eines Entladungsstromes, der durch Kurzschlie¬ ßen des Kondensators 6 erzeugbar ist, erfasst werden kann. Ein solcher Entladungsstrom ist vorteilhafterweise pulsförmig und weist beispielsweise eine Halbwertsbreite von 3 ms auf, wobei die Halbwertsbeite als gesamte Breite gemessen wird, die der Stromimpuls an der Hälfte seines Maximums aufweist.
Die in Figur 3 dargestellte Testimpulsschaltung verfügt ferner über ein Relais 12, mit dem eine Auswahl ermöglicht ist, über welchen der parallel geschalteten Teststromleiter Ia, Ib oder Ic der Entladungsstrom fließt. Gemäß diesem Ausführungsbeispiel der Erfindung ist somit lediglich eine Testimpuls¬ schaltung zum Prüfen von drei Stromwandlern nötig, wobei jedem Stromwandler nur ein Teststromleiter Ia, Ib oder Ic je- weils zugeordnet ist.
Die Teststromschaltung 5 umfasst ferner Auflademittel 13, die eine figürlich nicht dargestellte Gleichspannungsquelle sowie einen Transformator 14 mit einer Primärwicklung 15 und einer Sekundärwicklung 16 umfassen. Ferner weisen die Auflademittel 13 eine Gleichrichterdiode 17 sowie einen Halbleiterschalter 18 auf. Durch Zünden des Halbleiterschalters 18 in einer be¬ stimmten Pulsfolge 19, wird der Halbleiterschalter periodisch von seiner Durchgangsstellung in seine Sperrstellung über- führt. Durch ein solches periodisches Verändern der Schalt¬ stellung des Halbleiterschalters 18 wird der Stromfluss über die Sekundärwicklung 15 quasi zerhackt und ein entsprechender Sekundärstrom in der Sekundärwicklung 16 erzeugt. Der Sekundärstrom wird anschließend durch die Gleichrichterdiode 17 gleichgerichtet, wobei es zum Aufladen des Kondensators 6 kommt. Die Ladespannung des Kondensators 6 ist dabei zum ei¬ nen von der gewählten Gleichspannungsquelle sowie von der Ansteuerung des Halbleiterschalters 18 abhängig und kann durch figürlich nicht dargestellte Regelungsmittel eingestellt wer- den.
Die Ladespannung des Kondensators 6 beeinflusst darüber hin¬ aus auch die Kurvenform und die Amplitude des Entladungsstro¬ mes. Hierzu sind Regelungsmittel vorgesehen, wobei die Rege- lungsmittel die an dem Shuntwiderstand 9 gemessene Stromkur¬ venwerte über eine zweckmäßige Kommunikationsleitung empfangen und die sich daraus ergebende Kurvenform des Entladungs¬ stromes mit einem vorgegebenen Sollverlauf vergleichen. Bei einer zu großen Abweichung wird mittels einer internen Logik ein Ladespannungssollwert erzeugt, der an eine untergeordnete Spannungsregelung übergeben wird, die mittels einer zweckmäßigen Impulsfolge 19 eine dem Ladespannungssollwert entspre¬ chende Ladespannung des Kondensators 6 einstellt.

Claims

Patentansprüche
1. Vorrichtung zum Prüfen eines Stromwandlers mit einem Teststromleiter (1) und einer Testimpulsschaltung (5), die einen Energiespeicher (6), Auflademittel (13) zum Aufladen des E- nergiespeichers (6) und ein Schaltelement (7) zum Entladen des Energiespeichers über den Teststromleiter (1) aufweist, so dass ein Entladungsstrom in dem Teststromleiter erzeugbar ist, wobei eine Auswerteeinheit zum Erfassen eines durch den Entladungsstrom hervorgerufenen Stromwandlersignals vorgesehen ist.
2. Vorrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass der Teststromleiter (1) wenigstens einmal durch den Stromwandler führbar ist.
3. Vorrichtung nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass der Energiespeicher ein Kondensator (6) ist, wobei das
Schaltelement (7) in Reihe zum Kondensator (6) geschaltet ist .
4. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Schaltelement ein Halbleiterschalter (7) ist, der von einer Sperrstellung, in der ein Stromfluss über den Leistungshalbleiter (7) ermöglicht ist, in eine Durchgangsstellung ü- berführbar ist, in der ein Stromfluss über den Leistungshalb- leiter (7) unterbrochen ist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, g e k e n n z e i c h n e t d u r c h mindestens zwei parallel zueinander angeordnete Teststromlei¬ ter (1) und ein Relais (12), das zum Verbinden eines der Teststromleiter mit dem Ausgang Testimpulsschaltung (5) eingerichtet ist.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, g e k e n n z e i c h n e t d u r c h mindestens zwei in Reihe zueinander angeordnete Teststromlei¬ ter (1) .
7. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass jeder Teststromleiter (1) biegeelastisch ist.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Testimpulsschaltung (5) eine Begrenzungsinduktivität (10) in Reihenschaltung zum Energiespeicher (6) aufweist.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Testimpulsschaltung (5) Regelungsmittel zum Einstellen einer Speicherenergie des Energiespeichers (6) aufweist.
10. Vorrichtung nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t , dass die Regelungsmittel einen in Reihe zum Energiespeicher (6) angeordneten Shuntwiderstand (9) zum Messen der Kurvenform eines über den Shuntwiderstand (9) fließenden Entladungsstro- mes aufweisen.
11. Verfahren zum Prüfen eines Stromwandlers, bei dem ein Teststromleiter (1) wenigstens einmal durch den Stromwandler geführt und anschließend die Ausgänge einer Testimpulsschal- tung (5) mittels des Teststromleiters (1) miteinander verbun¬ den werden, ein Energiespeicher (6) aufgeladen wird, anschließend ein Schaltelement (7) zum Entladen des Energie¬ speichers unter Erzeugung eines über den Teststromleiter fließenden Entladungsstromes betätigt und das in Folge des Entladungsstromes vom Stromwandler erzeugte Stromwandlersig¬ nal gemessen wird.
12. Verfahren nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , dass die in dem Energiespeicher (6) gespeicherte Energiemenge ge¬ regelt wird.
13. Vorrichtung nach einem der Ansprüche 11 oder 12, d a d u r c h g e k e n n z e i c h n e t , dass der Teststromleiter (1) zwischen zwei- und zwanzigmal durch den Stromwandler geführt wird.
14. Verfahren nach einem der Ansprüche 11 bis 13, d a d u r c h g e k e n n z e i c h n e t , dass dem Entladungsstrom eine spezielle Kurvenform aufgeprägt wird.
15. Verfahren nach einem der Ansprüche 11 bis 14, d a d u r c h g e k e n n z e i c h n e t , dass der Entladungsstrom durch eine Begrenzungsinduktivität (10) begrenzt wird.
16. Verfahren nach einem der Ansprüche 11 bis 15, d a d u r c h g e k e n n z e i c h n e t, dass mindes¬ tens zwei Teststromleiter parallel angeordnet werden und ein Relais (12) so geschaltet wird, dass der Entladungsstrom ei¬ nen ausgewählten Teststromleiter fließt.
17. Verfahren nach einem der Ansprüche 11 bis 16, d a d u r c h g e k e n n z e i c h n e t , dass mindes¬ tens zwei Teststromleiter in Reihe geschaltet werden, so dass der Entladungsstrom über jeden Testromleiter fließt.
PCT/EP2007/053763 2006-04-25 2007-04-18 Verfahren und vorrichtung zur prüfung von stromwandlern mittels hochstromimpuls WO2007122151A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002650254A CA2650254A1 (en) 2006-04-25 2007-04-18 Method and device for checking current converters by means of high-current pulses
EP07728225A EP2010934A1 (de) 2006-04-25 2007-04-18 Verfahren und vorrichtung zur prüfung von stromwandlern mittels hochstromimpuls
US12/298,588 US20090153145A1 (en) 2006-04-25 2007-04-18 Method and Device for Checking Current Converters by Means of High-Current Pulses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006020086.1 2006-04-25
DE102006020086A DE102006020086A1 (de) 2006-04-25 2006-04-25 Verfahren und Vorrichtung zur Prüfung von Stromwandlern mittels Hochstromimpuls

Publications (1)

Publication Number Publication Date
WO2007122151A1 true WO2007122151A1 (de) 2007-11-01

Family

ID=38457920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/053763 WO2007122151A1 (de) 2006-04-25 2007-04-18 Verfahren und vorrichtung zur prüfung von stromwandlern mittels hochstromimpuls

Country Status (6)

Country Link
US (1) US20090153145A1 (de)
EP (1) EP2010934A1 (de)
CN (1) CN101432634A (de)
CA (1) CA2650254A1 (de)
DE (1) DE102006020086A1 (de)
WO (1) WO2007122151A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8193818B2 (en) * 2009-01-15 2012-06-05 Hamilton Sundstrand Corporation Partial corona discharge detection
DE102011101480B4 (de) 2011-05-13 2013-11-07 Ean Elektroschaltanlagen Gmbh Wandlertester und Verfahren zum Testen eines Durchsteckstromwandlers
CN103439681B (zh) * 2013-07-31 2015-11-04 国家电网公司 电子式电流互感器短时电流振动试验装置及其方法
US9915720B2 (en) * 2015-03-04 2018-03-13 Siemens Industry, Inc. Apparatus and methods for field testing an electrical panel meter system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659197A (en) * 1970-05-11 1972-04-25 Gen Electric Apparatus for electrically testing a coil including a primary coil and core, a pick-up coil, and limited supply of high voltage d.c. for energizing the primary coil
DE3827758A1 (de) * 1988-08-16 1990-02-22 Bayerische Motoren Werke Ag Einrichtung zur ueberwachung einer vorgegebenen stromstaerke in mindestens einem elektrischen leiter
DE4230939A1 (de) * 1992-09-16 1994-03-17 Heidelberger Druckmasch Ag Schaltungsanordnung zum Ändern oder Kompensieren elektrischer Eigenschaften eines Stromwandlers mit Magnetfeldkompensation
JPH07333263A (ja) * 1994-06-13 1995-12-22 Toyo Commun Equip Co Ltd 電流パルス検出装置
JP2001201519A (ja) * 2000-01-17 2001-07-27 Meidensha Corp 電流計測回路の試験装置および試験方法
WO2001084168A1 (en) * 2000-05-04 2001-11-08 Georgia Tech Research Corporation System and method for off-line impulse frequency response analysis test
WO2004042882A1 (en) * 2002-11-08 2004-05-21 Eaton Electric Limited Residual current devices

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3742346A (en) * 1971-08-23 1973-06-26 Westinghouse Electric Corp Surge generator for transformer testing
DE2256881C2 (de) * 1972-11-20 1974-07-18 Danfoss A/S, Nordborg (Daenemark) Gleichstromwandler
US3887866A (en) * 1973-06-08 1975-06-03 Avtron Manufacturing Inc Surge tester for testing an electrical winding and including voltage comparison means
US4274052A (en) * 1979-08-13 1981-06-16 Bell Telephone Laboratories, Incorporated Current meter using core saturation
FR2493527A1 (fr) * 1980-11-06 1982-05-07 Alsthom Atlantique Dispositif pour l'elimination rapide des charges piegees dans un pont diviseur capacitif utilise pour la surveillance des tensions alternatives elevees
FR2518266A1 (fr) * 1981-12-15 1983-06-17 Telemecanique Electrique Dispositif de mesure du courant qui circule dans un conducteur
DE3537140A1 (de) * 1985-10-18 1987-04-23 Turck Werner Kg Selbstueberwachender fehlerstromschutzschalter
US6313642B1 (en) * 1995-03-13 2001-11-06 Square D Company Apparatus and method for testing an arcing fault detection system
JPH11352157A (ja) * 1998-06-11 1999-12-24 Yazaki Corp 電源電圧検出方法及びその装置
US6940266B2 (en) * 2003-12-17 2005-09-06 Bae Systems Controls, Inc. Enhanced cost effective method for high current measurements
US6977824B1 (en) * 2004-08-09 2005-12-20 System General Corp. Control circuit for controlling output current at the primary side of a power converter
WO2007008202A1 (en) * 2005-07-11 2007-01-18 Semiconductor Components Industries, L.L.C. Switched capacitor controller and method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659197A (en) * 1970-05-11 1972-04-25 Gen Electric Apparatus for electrically testing a coil including a primary coil and core, a pick-up coil, and limited supply of high voltage d.c. for energizing the primary coil
DE3827758A1 (de) * 1988-08-16 1990-02-22 Bayerische Motoren Werke Ag Einrichtung zur ueberwachung einer vorgegebenen stromstaerke in mindestens einem elektrischen leiter
DE4230939A1 (de) * 1992-09-16 1994-03-17 Heidelberger Druckmasch Ag Schaltungsanordnung zum Ändern oder Kompensieren elektrischer Eigenschaften eines Stromwandlers mit Magnetfeldkompensation
JPH07333263A (ja) * 1994-06-13 1995-12-22 Toyo Commun Equip Co Ltd 電流パルス検出装置
JP2001201519A (ja) * 2000-01-17 2001-07-27 Meidensha Corp 電流計測回路の試験装置および試験方法
WO2001084168A1 (en) * 2000-05-04 2001-11-08 Georgia Tech Research Corporation System and method for off-line impulse frequency response analysis test
WO2004042882A1 (en) * 2002-11-08 2004-05-21 Eaton Electric Limited Residual current devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199609, Derwent World Patents Index; AN 1996-082216 *

Also Published As

Publication number Publication date
US20090153145A1 (en) 2009-06-18
CN101432634A (zh) 2009-05-13
EP2010934A1 (de) 2009-01-07
CA2650254A1 (en) 2007-11-01
DE102006020086A1 (de) 2007-10-31

Similar Documents

Publication Publication Date Title
EP3213095B1 (de) Transformatorprüfvorrichtung und verfahren zum prüfen eines transformators
EP0882990A2 (de) Verfahren und Vorrichtung zur Erkennung und Korrektur eines gesättigten Stromverlaufs eines Stromwandlers
DE19917268A1 (de) Verfahren zum Überprüfen eines elektromagnetischen Durchflußmessers und elektromagnetische Durchflußmesseranordnung
DE10256456A1 (de) Überwachungsverfahren für einen Aktor und zugehörige Treiberschaltung
WO2007122151A1 (de) Verfahren und vorrichtung zur prüfung von stromwandlern mittels hochstromimpuls
DE102011082172B4 (de) Leistungsschalter sowie Verfahren zum Überprüfen eines Rogowskiwandlers in einem Leistungsschalter
EP3832324A1 (de) Schaltungsanordnung mit aktiver messspannung zur bestimmung eines isolationswiderstands gegen erdpotential in einem ungeerdeten stromversorgungssystem
WO2012016939A1 (de) Messsystem
DE102014103321A1 (de) Isolationsüberwachung für reihenkompensierte Wicklungen eines kontaktlosen Energieübertragungssystems
DE3723568C2 (de) Differenzstromschutzschalter
DE19943802A1 (de) Allstromsensitive Fehlerstrom-Schutzeinrichtung und Verfahren zur Erfassung eines Fehlerstroms
WO1997006980A2 (de) Anordnung zum kontrollieren des widerstandes einer an einem übertrager angeschlossenen last
EP2051360A1 (de) Steuerschaltung für ein primär gesteuertes Schaltnetzteil mit erhöhter Genauigkeit der Spannungsregelung sowie primär gesteuertes Schaltnetzteil
EP2313954B1 (de) Verfahren zum betreiben eines fehlerstromschutzschalters sowie fehlerstromschutzschalter
DE10118299B4 (de) Verfahren zur Bestimmung des ohmschen Anteils des Innenwiderstands eines Kondensators und Vorrichtung zur Durchführung des Verfahrens
AT504988B1 (de) Schaltung und verfahren zur spannungsversorgung von elektrolumineszenz-folien
DE10152171B4 (de) Vorrichtung zur Zündung einer Brennkraftmaschine
DE112015004140T5 (de) Kapazitiver Belegungs- oder Annäherungssensor
DE2051836C2 (de) Einrichtung zur Isolationsüberwachung nicht geerdeter Gleichstromnetze
WO1992022182A1 (de) Vorrichtung zum betreiben einer gasentladungslampe
AT523449B1 (de) Verfahren und Vorrichtung für einen Personenschutz bei einer Hochspannungsprüfung
DE3304921A1 (de) Digitalelektronischer ueberstromausloeser
DE4139608A1 (de) Verfahren zur versorgungsspannungseinstellung der speiseeinrichtung von teilnehmeranschlussschaltungen
DE4110990A1 (de) Einrichtung zur pruefung von signallampen in eisenbahnanlagen
EP3311179B1 (de) Prüfvorrichtung und verfahren zum betreiben einer prüfvorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07728225

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007728225

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008101640

Country of ref document: EG

WWE Wipo information: entry into national phase

Ref document number: 2650254

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12298588

Country of ref document: US

Ref document number: 200780015127.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE